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SOLUTION OF THE POTENTIAL IN A SEMICONDUCTOR
WITH EXPONENTIALLY DEPTH-DEPENDENT CONDUCTIVITY AND
APPLICATION TO FOUR-POINT-PROBE MEASUREMENTS

By R. K. Franks* and J. B. Robertson
Langley Research Center

SUMMARY

An exact solution has been obtained for the potential due to a point current source
on a semiconductor whose conductivity varies exponentially with depth. The solution was
obtained by solving the continuity equation in cylindrical coordinates and applying the
appropriate boundary conditions. This solution was then applied to the interpretation of
the "four-point-probe' method of measuring semiconductor conductivity.

INTRODUCTION

The four -point probe is a favorite tool for measuring conductivity because it elim-
inates the problem of contact resistance by use of null-measurement techniques. How-
ever, previous theory has permitted the interpretation of measurements of bulk electrical
conductivity by the four-point-probe method only for media of homogeneous conductivity
(ref. 1). Some approximations have been made for nonhomogeneous conductivity such as
small-amplitude sinusoidal variations (ref. 2). Extension of the theory to permit four-
point-probe measurements of conductivity of nonhomogeneous media is very desirable,
especially for persons studying diffusion of electrically active impurities.

This paper presents a solution for the problem of a semiconductor of finite thick-
ness whose conductivity depends exponentially upon depth. This solution may also serve
as a basis for approximation in many of the actual situations involving depth-dependent
conductivity.

Included in the present paper is an appendix by Carl L. Fales, Jr., of the Langley
Research Center, which explains the behavior of the electric field at small values of
current-probe radius.

*NASA-ASEE Summer Faculty Research Fellow from Applachian State University.



SYMBOLS

a exponential coefficient
A1,Ag, A3 )
B, Bl, Bz, B3

> constants
C,C1,C9,C3,Cy
D1,D9,D3,Dy4 J

e
E(r,z)
E,(r,z)
E,(r,z)
F(a,S,T)

h

base of natural system of logarithms, 2.718

electric field vector

r-component of electric field

z-component of electric field

correction factor

depth of current probe

current

modified Bessel function of the first kind, zero order
Bessel function of the first kind, zero order

current density

r-component of current density

modified Bessel function of the second kind, zero order
cylindrical coordinate

radius of current probe



p(r,z)
o(z)

&(r,z)

solution to radius-dependent portion of equation for the potential
probe spacing

time

thickness of semiconductor

potential difference between inner probes

Weber's Bessel function of the second kind, zero order
cylindrical coordinate

point on vertical axis

solution to depth-dependent portion of equation for the potential
constant of separation

Dirac delta function

cylindrical coordinate

free-charge density

conductivity

coulombic potential

set of eigenfunctions (n=1, 2,. . ., ©)

POTENTIAL OF A POINT CURRENT SOURCE

The essential part of the problem is to determine the exact solution for the potential
due to the presence of a point current source on the surface of a semiconductor whose

conductivity depends exponentially upon depth; that is,

a(z) = ¢(0)edZ



Cylindrical coordinates (r, 6,z) are used and the semiconductor is bound at the planes
z=0 and z =T and at the cylinder r =r,. (See fig. 1.)

r=0

Current
probe

<=/ <
\\ Semiconductor

\r=rc

z

Figure 1.~ Semiconductor with current probe inserted distance z = h into
cylindrical cavity.
The cylindrical current probe is inserted a distance h into the cavity as shown in
figure 1. With the assumption of uniform current density, the boundary conditions on the
cylindrical surface are

Ep(re,2) = m (0<z<h)
(2)
Ep(re,z) =0 (z 2h)

where Er(rc,z) is the radial component of the electric field at the surface r,, I is
the current carried by the probe, and o(z) is the conductivity.

The radial component of the electric field must go to zero as r approaches infinity;
that is,

Er(oo,z) =0 (3)




The z-component of the electric field must be zero on the planes z=0 and z = T;
that is,

E,(r,0) = E (r,T) = 0 4)

In the limit, as both r, and h approach zero, a situation arises which is equiv-
alent to a point current source on the surface of the semiconductor. It has been assumed
that if minority carriers are injected, they will recombine close enough to the electrode
so that the conductivity will not be affected.

The continuity equation now applied is
v.Jr,z)=V- o(z)E(r,zil = - %p(r,z) (5)
where -j(r,z) is the current density and p(r,z) is the free-charge density. By using
equation (1) for the conductivity and expressing the electric field as the negative gradient
of the potential (E = -V&(r,z)), equation (5) under time-independent conditions becomes

v28(r,z) +a _8% &(r,z) =0 (6)

Assumption of a product solution of equation (6) of the form &(r,z) = R(r)Z(z) and
separation of variables yield

2
rzd—2—R+riR—a2r2R=0 (7)
dr dr
and
Qz—-z+alz+a22=0 (8)
dzz dz

where @2 is the constant of separation.

There are three physically possible solutions to equation (7), each corresponding to
a different value of @2. These solutions (ref. 3, sec. 4.8) are

Ry = AqI (ar) + B{K (ar) (@2 > 0) ]
R2=A2 +B2 Inr (a2=0) > (9)
R3 = AgJ,(ar) + BgY(ar) (@2 < 0)

J

where I, K, Jg, and Yy are zero-order Bessel functions. The houndary condi-
tion Ep(«,z) =0 requires that Ay =0.



There are four possible solutions to equation (8) corresponding to different values
of @2. These solutions are

2
Z1= e-az/Z(Cl sin kz + Dq cos kz) (az > %—) (10a)
_ |2 _ a2
where k= {ad - T
_ -az/2 -az/2 _ a2
Zg = Coe / + Dgze <ae2 = T) (10b)
2
Zg = e-a.z/2(c3egz + D3e‘gz) (% > al> 0); (@2 < 0) (10c)
_l/az 2
where g = T , and
Z4 = Cy +Dye~32 (@2 = 0) (10d)

The boundary condition Ey(r,0) = Eyx(r,T) = 0 requires that Cg, C3, Dy, D3, and Dy

be zero, that Cy = 2k Dy, and that k = 11,1-7,—7 where n=1 2, .. . « Therefore,
e-32/2 nmw nw
Zl,n D <2n sin T z + cos & T z)
Z2 =0
(11)
Z3=0
Z4=Cy
The solution of equation (6) is a linear combination of all product solutions
<I>(rz)—EAe'az/2 (a r)(aT T 7 + cos 7rz)+B1nr+C (12)
O\"IMA 2n7r T T

n=1

where

2 2
nn ac_ 1 \n2,2 , 5272
(T) + 2T4n7r +a“T



By using boundary conditions at r =r, and the orthogonality of the terms in
Er(rc, z) with respect to the weighting function e3Z over the interval z=0 to z =T,
it can be shown (ref. 3, sec. 5.6) that in the limit of small r, and h

B= al (13
275(0) (1 - eaT) )

and

Ay = 4n2721 n=1,2, ..., (14)
1ro'(0)T(azT2 + 4n2112)

Substituting for A, and B in equation (12) gives

-az/2
_Ie 4n272 T 2 _9 22\ aT ... nw nw
&(r,z) = To(O)T Z K (2—TV4n T4 4+ asT oy SIN TR 2 + cos 7o 2

n=1 4n21r2 + a2T2 °

allnr C 15
* 270(0) (1 - eaT) " (1)

Equation (15) is the solution which has been sought. It is an equation for the poten-
tial in cylindrical coordinates, independent of 6 and in terms of the probe current,
semiconductor thickness, and variation in conductivity. The behavior of the electric
field, as determined from this expression for the potential, in the limit of small r, is
treated in the appendix.

This solution for the potential inside a semiconductor should be of interest to
designers of semiconductor devices since it describes the field variations within the bulk
material. The authors' prime interest in this solution is its use in interpreting four-
point-probe measurements.

APPLICATION TO FOUR-POINT PROBE

The present solution (eq. (15)) is now applied to the case of a four-point probe on a
flat semiconductor. The common four-point probe consists of four colinear, equispaced
point probes (fig. 2). The present treatment is justified if the probe contact radius is
small compared with the probe spacing and if the lateral boundary distance is large com-
pared with the probe spacing.



—® 1
Current

source N

f ——T— Electrometer

Figure 2.- Schematic diagram of four-point probe and associated circuit in
contact with semiconductor surface.

If probe 1 introduces current +I and if probe 4 introduces current -I, then the
potential difference between probes 2 and 3 due to the current source at probe 1 will be

vt = &(5,0) - 2(25,0)

and the potential difference between probes 2 and 3 due to the current source at probe 4
will be

v = -[p(2s,0) - 3(5,0)
The total potential difference V between the two inner probes will then be

V=Vt v = 2fes,0) - 2(25,0)] (16)




Use of the present solution for the potential (eq. (15)) gives

4n242
4n S Van2q +a2T2>
170(0){ Z an2n2 +a2112[0(2'1“/

1
aln=
2 (17)

- K <—S-V4n21r2 + a2T2>] + —
°\T 2(1 - eaT)

which can be solved for the conductivity at the surface o(0). The resulting equation is

o(0) = F(a S, T)

where

9aS In %
(18)

- g{ 2_2 2m2
Ko(’r 4dn“7T< + a T)j|+—1-eaT

is a correction factor taking into account the semiconductor thick-

The factor F(a,S,T)
ness, the probe spacing, and the variation of the conductivity
The equation for conductivity (eq. (18)) reduces, appropriately, to the equation for
conductivity in a sheet conductor (ref. 4) for very small semiconductor thickness T
and reduces to the equation for homogeneous bulk conductivity (ref. 1) when the coeffi-
The summation term in F(a,S,T) converges rapidly.
in terms

cient a goes to zero.
Figure 3 presents F(a,S,T) as a function of semiconductor thickness T

of probe spacing S and for various values of the exponential coefficient a
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Figure 3.- Correction factor F(a,S,T) as a function of semiconductor thickness T in
terms of probe spacing S and for various values of exponential coefficient a.

CONCLUDING REMARKS
The solution for the potential in a semiconductor with exponentially depth dependent

conductivity allows for the first exact interpretation of four-point-probe resistivity mea-
surements on semiconductors of nonhomogeneous conductivity. Although a semiconductor

10



with a true exponential conductivity dependence may not be encountered, the treatment
presented herein serves as a basis for approximation for other depth dependent conduc-
tivities such as those resulting from diffusion of impurities. This solution for the poten-
tial inside a semiconductor should also be of interest to designers of semiconductor
devices since it describes the field variations within the bulk material.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va. September 1, 1971.
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APPENDIX

ELECTRIC FIELD AT SMALL VALUES OF r,

By Carl L. Fales, Jr,
Langley Research Center

A comment about the behavior of the r-component of the electric field in the limit
of small r seems desirable,

In the limits h -0 and re -0,

-0®(r,z)

Er(raz) = o1

0 -1
2
| fz& (ﬂ) -az/2(_ 4 aT .. n7 n_ﬂ)
" 2710(0) 1 Tli1 " \ons e dr Ko(ar) <_2n77 sin 5z + cos 51 z
I

For r finite, there exists a number N suchthat ajr>>1 forall n> N,
Therefore,

1_ ~0pr

d ~
- == Ky(ar) = Constant X
ar Kolar) anr

and the series surely converges.

On the other hand, it is expected that E;(0,z) =0 for z >0 by symmetry. How-

ever, in the limit of small r, 4 K,(ar) -~ 1 and hence
’ dr r

o0 -1
2
__I 1 § 2 <aT> -az/2/aT .. nm n7w ) a
Ep(r,z) F TE +(300 e <__2n7r sin 55 z + cos 5 2 +——eaT >

Clearly since wn(z) +# 0 as n - =, this series does not converge, at least in the sense
of numerically summing a finite number of terms.

12



APPENDIX — Continued

2
From equation (8), the operator L = a2 .4
dz2 dz
to the self-adjointness of L and the homogeneous boundary conditions on Ep(r,z)). As

a result, the set of eigenfunctions 1,l/n(z) of the eigenvalue equation

can be shown to be Hermitian (due

Ly,(z) = -azll/n n=12,..., )

are orthonormal with respect to the weighting function e®? and form a complete set
(for functions obeying the same homogeneous boundary conditions). Hence, the repre-
sentation for the Dirac delta function can be written as

>}
5(z - 2') = Z 32"y (z) ¥, (') (¥ real)
n=1
or
o0
52) = ) Up(0) vy(2)
n=1
The properly normalized eigenfunctions are
1/2
_ a
Wo(z) = <_—eaT i} 1>
and
1/2
‘ 2
- (Th + (2L) —az/2<aT nm )
wn(z) 2ﬁ+<2nn:| 5 sin T2 tcosTmz
Therefore,
o -1
6(z) = Z l1+<31)2 —az/Z(aT z+cos——z> o
- T 2nm 2n T T 2T _ 1
=1
and

lim E,(r,z) =

0 r\i o7 (0) 8(z)

13



APPENDIX - Concluded

Thus, E.(0,z) =0 for z >0 as had been expected on physical grounds. Also, the
component of current density

Ir(r,2) = 5 6(2)

gives the correct total current

i,i_l_r(l) 5‘ 27r dz Jp(r,z) =1

14
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