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ABSTRACT
 

A method of minimizing gravity losses in orbital escape 

maneuvers, known as "perigee propulsion" or "multiorbit injection", 

has been found to have a useful application in transfer problems 

involving high specific- impulse powerplants such as nuclear rockets. 

Unlike conventional chemical rockets which typically have thrust 

phases that can be approximated by velocity impulses, new- genera

tion powerplants require powered phases of finite duration to 

effect a required velocity change, and the impulsive approximation 

is no longer valid for evaluating the performance of the vehicle. 

A theory has recently been proposed, however, which establishes 

ground rules for computing characteristic velocity losses over an 

optimally-steered, finite-thrust trajectory on the basis of the 

velocity impulse required for the same maneuver. Utilizing this 

theory, this thesis develops a procedure for computing gravity 

losses over an N-burn multiorbit escape trajectory of specified 
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final energy and presents a technique which can be readily and ef

ficiently employed to predict optimal burn schedules for time-open
 

and time-fixed multiorbit escape maneuvers.
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LIST OF SYMBOLS
 

Symbol 

a thrust acceleration vector 

aF finite thrust acceleration vector 

c exhaust velocity 

d position discontinuity due to finite thrusting 

f moment correction factor 

F thrust magnitude 

g gravity vector 

G gravity gradient matrix 

i subscript referring to beginning of burn segment 

Isspecific impulse 

J augmented cost function 

k subscript referring to a particular burn segment 

m mass of vehicle 

M 2 second moment of thrust about its centroid 

N number of burns 

r position vector 

R radius of initial circular orbit 

t time 

T period of orbit 

T s total transfer time 

Tsd desired transfer time 

Tb burn time 
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v velocity vector 

V absolute velocity 

V0 initial circular velocity 

VE escape velocity 

V H hyperbolic velocity 

VHp hyperbolic velocity at perigee 

V excess hyperbolic velocity (final velocity) 

V~d desired final velocity 

AV velocity impulse variable 
AV I characteristic velocity over an impulsive 

trajectory 

AV F characteristic velocity over a finite-thrust 
trajectory 

AVG generalized velocity impulse 

AV* characteristic velocity loss 

aangle between thrust acceleration vector and 
primer vector 

angle between 
horizontal 

mean thrust direction and local 

A primer vector 

I primer vector magnitude 

A Lagrange multiplier 

uadjoint to position vector 

pgravitational constant 

g cost function 
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constraint 

p Lagrange multiplier 

COS schuler frequency 

10
 



CHAPTER I
 

INTRODUCTION 

An interplanetary orbital transfer, such as injection from 

an orbit about the earth into a hyperbolic trajectory to Mars, 

can theoretically be effected without gravity losses by an impulsive 

velocity change at perigee. Using conventional chemical-fuel 

propulsion, the velocity change required by the transfer, i. e., 

the difference in periapsis velocity at the junction of the two orbits, 

can be achieved with a high-thrust burn, the duration of which 

is typically much less than the period of the initial orbit. Hence, 

for many orbital transfer problems, a single velocity impulse is 

very often a good approximation for the added velocity increment. 

The impulsive approximation is not valid, however, for vehicles 

requiring finite burns to effect a required velocity change, where, 

by "finite", it is presumed that the burn time is not negligible 

with respect to the period of the orbit and that the thrust segment 

is distributed over a significant portion of the flight path. Finite 

thrust characteristics must be taken into consideration in missions 

involving new-generation powerplants, such as solid-core nuclear 

rockets or electric propulsion devices. For example, a typical 

low- acceleration nuclear-powered injection maneuver using 

continuous thrusting would require a long, spiralling trajectory 

with much of the energy being applied in regions of low velocity. 

A critical factor in the determination of the initial thrust

to-weight ratio is gravity losses, which are defined to be the 
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difference in the impulsive velocity change AVT required for an 

injection maneuver of specified excess hyperbolic velocity V. and 

the characteristic velocity AVF required by the vehicle to perform 

a maneuver of the same magnitude using finite thrust. Gravity 

losses, therefore, are interchangeably referred to as character

-istic velocity losses AV *, given by 

AV* = AVF - AV1 (I-1) 

Energy addition efficiency is defined to be maximum for a given 

transfer when there are no characteristic velocity losses and 

when energy is applied in the region of highest velocity, as in 

the case of an impulsive transfer at perigee. Since the losses 

accumulated during high-thrust burns of short duration are 

very small, energy addition efficiency is near- optimal, and 

one- impulse transfers using conventional powerplants are a 

viable means of interplanetary maneuvering. For new generation 

powerplants requiring finite thrust, however, an alternate thrust 

program to minimize gravity losses must be proposed if such 

devices are to be applied economically and efficiently to inter

planetary missions. 

A thrust program which dramatically reduces gravity 

losses over finite-thrust transfers has been proposed under names 

such as "perigee propulsion" [ 9] and "multiorbit injection"[5] 

These multiburn- multiorbit techniques maximize energy addition 

efficiency by applying thrust intermittently in regions of high 
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velocity (e. g., at perigee) and allowing the vehicle to coast under 

the influence of gravity between burns. The resulting flight 

path, shown in Figure 1, consists of a series of coaxial ellipses 

of sequentially increasing energy, along each of which the vehicle 

falls until it reaches the desired position with respect to the 

next perigee, where thrusting resumes and transfer to a higher 

orbit is effected. When the vehicle arrives at perigee with 

sufficient energy to effect the required injection with a short burn, 

the multiorbit injection maneuver is complete. 

The advantage of using the multiorbit technique for the 

injection maneuver is clear. Whereas a continuous thrust, 

spiralling trajectory typically requires initial thrust-to-weight 

ratios near 0. 5, the multiorbit injection maneuver can make 

use of accelerations less than 0. 1 g [9]. Furthermore, a speci

fied payload can be powered by a smaller engine using a multiburn 

thrust schedule, or the payload for a given mission can be increased. 

This improvement in energy addition efficiency is gained, however, 

only at the expense of longer required transfer times. Neverthe

less, for interplanetary missions requiring new generation power

plants, transfer times on the order of several days are still very 

small when compared to overall mission times measured in 

months or years. 

The purpose of this study is to develop a simple method 

for arriving at the optimal multiorbit burn schedule for both 

*Pericenter is not at the same position for each orbit as is
 
implied in Figure 1. Each burn is accompanied by a small radial
 
displacement as described in Chapter 2.
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Hyperbolic Escape Trajectory 
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Parking Orbtt 

Figure 1.1 Five-Burn Mutiorbit Injection 

14
 



time-open and time-fixed injection maneuvers from a circular near-

Earth parking orbit to a hyperbolic escape trajectory of specified 

excess hyperbolic velocity V. The optimal burn schedule is 

defined to be that thrust program which minimizes the gravity 

losses for a multiorbit injection maneuver of a specified number 

of burns, subject to the initial orbital parameters, the final 

time and energy constraints, and the nature of the characteristic 

velocity approximation. In the following analysis, the effects 

of a third body will be ignored, and a simple planar model for an 

orbital transfer in an inverse-square central field will be utilized. 

The following chapter will develop the equations used to 

calculate gravity losses over an N-burn multiorbit trajectory and 

will outline the assumptions required to permit a closed-form 

computational technique. Also included in Chapter 2 are the im

pulsive velocity and primer vector solutions for the injection 

maneuver. Chapter 3 contains a derivation of the approximate 

solution to the optimal time-open transfer and a presentation of 

an efficient algorithm for generating optimal N-burn trajectories 

for both time-open and time-fixed injection maneuvers. Chapter 4 

presents a description of the procedure used and a summary of 

the results obtained for a typical multiburn injection maneuver. 

A set of conclusions are presented in Chapter 5. The Appendix 

contains a derivation of Robbins' "impulsive approximation", 

a listing of the orbital and powerplant data for a typical injection 

maneuver, and an outline of the computer simulations used in 

this study. 15 



CHAPTER II
 

GRAVITY LOSSES ON A MULTIORBIT 

INJECTION MANEUVER 

2. 1 The "Impulsive Approximation" for the Characteristic Velocity 

Earlier studies [5, 6, 9] have considered the multiorbit 

injection problem and have computed characteristic velocity losses 

using non-optimal steering criteria and numerical integration 

over the thrust trajectory. This analysis, however, will develop 

a procedure to obtain the optimal N-burn thrust program which 

incorporates not only optimal steering but-also a convenient and 

simple closed-form method for calculating gravity losses. The 

groundwork for this analysis has been laid out in a report by 

H. Robbins [ 12], in which a method is presented for predicting 

characteristic velocity losses over a finite-thrust trajectory on 

the basis of the velocity impulse required to effect the equivalent 

maneuver. Robbins' approximation is derived in Appendix A. 

The result of Robbins' approximation, as derived in the 

Appendix, expresses the characteristic velocity loss AV over 

a segmented finite-thrust trajectory in terms of the primer 

vector solution and the velocity impulses over the equivalent 

impulsive trajectory. The steering is assumed to vary linearly 

over each burn, and the centroid time for each burn corresponds 

to the time of occurrence of the equivalent velocity impulse. 

The result is given by 

16 



n 

v i k=-IAV*=k i (-X-- - - - 2! Mk (2.1-1)) M2 

where >xis the primer vector of Lawden 10], M is the second 

moment of thrust about its centroid, and n is the number of burns. 

The second moment can be calculated from the expression 

1 AV T 2 (2.1-2)M 2k 12 k k 

where &V I is the equivalent velocity impulse on the k th burn 

and Tb is the duration of the k th burn. (2. 1-2) is exact for 

constant thrust over the burn segment; however, to account for 

non-constant acceleration during the burn, the above equation 

can be multiplied by the correction factor f, which for the k th 

burn is given by 

Vk[_ik£ = 6c [2c \ 2c+ coth /AV k)]
 
'&k Vk 

!-0 + __120 + ... (2.1-3) 

where c is the exhaust velocity. 

Although the characteristic velocity on the k th burn 

is calculated as a function of the equivalent velocity impulse 

AVI for that burn, it is important to note that the k th finite

thrust segment is actually centered about a generalized velocity 

17 



impulse AV G, which has position discontinuities dk at the 

impulse times tk given by

d = -_ (tk) M2 k (2.1-4) 

and which differs in magnitude from AVI as follows: 

AVG k- AVIk =_X(tk) - dk m - I(tk)12 M 2 k (2.1-5) 

Since > (tk) is perpendicular to X (tk), the position discontinuity 

is radial at each perigee burn and its magnitude is of the order 

of JX (tk) I . Thus, the displacement of one perigee with respect 

to another on an optimally steered and timed multiorbit trajectory 

is small enough with respect to the semimajor axis of the orbit 

to be neglected. 

It can be shown that the first term in parentheses on the 

right hand side of (2. I- I) is equivalent to the gravity gradient 

- gxx where x is the mean direction of thrust acceleration, that 

is, along X (tk). The second term, l , is equal to the square 

of the optimal turning rate of the thrust vector. For short burns, 

a constant average value for gxx is a good approximation; and, 

for the simple orbital model described, this term is given by 

-g - (1-3 sin2 e) (2. 1-6) 

r3 
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where p is the gravitational constant, r is the distance from 

the center of attraction, and e is the angle between the mean 

thrust direction and the local horizontal. Therefore, for a 

n-burn multiorbit trajectory in a planar, inverse-square central 

field, Robbins' approximation yields the following equation 

for computing the characteristic velocity loss: 

n 
-

AV = - [ 4 (1- 3sn 2 0)- Li2 

2k= 1r3kkbk 

(2. 1-7) 

2. 2 Thrust and Orbital Constraints 

The multiorbit injection maneuver considered in this study 

consists of an N-burn transfer from a circular orbit of radius 

R (close to the earth) to a hyperbolic escape trajectory with 

specified V.. The transfer profile describes a series of (N-i) 

intermediate elliptical coasting orbits between the initial and 

final burns. The transfer time T is equal to the sum of thes 

periods of the (N- i) coasting orbits. Each perigee burn is 

executed such that its centroid occurs at the junction of the 

circular orbit and the (approximately equal) perigees of the 

N succeeding conic orbits, and the thrust acceleration vector 

is applied parallel to the primer vector, such that optimal 

timing and steering requirements, respectively,, are satisfied. 
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Having specified N, B, and V., sufficient information is 

available to compute the characteristic velocity loss for a multi

orbit escape maneuver from an Earth orbit. Certain constraints 

must be imposed on the analysis, however, to assure validity 

of Robbins' approximation and a closed-form calculation of the 

performance penalty. First, r and e are assumed to remain 

constant over each burn. This assumption places no further 

restrictions on the problem, since it is consistent with Robbins' 

short burn criterion. Therefore, assuming that the position 

discontinuities dk are much smaller than the radius of the initial 

orbit, and specifying r = R and 9 = 0 for each perigee burn, the 

characteristic velocity loss for an N-burn multiorbit injection 

maneuver is given by 

V 1 N u 2 (2.2-1) 

AV F, yT
klBR 

2 )V 
k 
fk Tb 

kc 

Exactly what is meant by a "short" burn in the analytical sense 

is not given in [12]. However, Bobbins' analysis demonstrates 

that, in order for a burn to be short, the dimensionless quantity 

ws Tbk must be sufficiently small, where ws, the Schuler Frequency 

is defined as 

Ws (2.2-2) 

Furthermore, by a rough analysis, Robbins finds that the short 

burn apprpximation is quite good for values of T as large as 
20 k 



unity and progressively worse for values beyond this arbitrary 

value. One indication of the range of flexibility offered by this 

semi-arbitrary short-burn constraint is the maximum allowable 

burn time permitted by it. Comparing the maximum burn time 

given by 

= 3Tb1Tb maxmax S (2.2-3) 

with the period of the circular orbit, 

TO = 2qrr 

The following limit is obtained for a short burn:, 

T 
Tb< .16 (2.2-4) 

In other words, using the short burn criterion based on Ws, 

iRobbins' approximation is valid on thrust trajectories over arcs 

up to a magnitude equivalent in time to a trajectory covering 16% 

of the circular orbit. This result is rather optimistic, if not 

surprising. Nonetheless, Robbins' short burn criterion has been 

shown to give accurate results and will be used as an upper limit 

in the optimal N-burn multiorbit injection analysis. 

For a time-open transfer, that is, one for which the total time 

between the initial and final burns is unspecified, the orbital 
21 



constraints are the requirements that (1) the velocity after the 

last burn will satisfy the final energy constraint and (2) the 

velocity on the next-to-last burn (k = N - 1) will be less than the 

escape velocity, given by 

VE V 	 (2.2-5) 

where V is the velocity of the vehicle in circular parking orbit 

given by 

v = 	 (2.2-6) 

The first requirement will be described in the next section. The 

latter criterion is necessary to constrain to transfer to the 

specified number of burns N. 

2. 3 	 The Velocity Impulse and Primer Vector Solutions 

For an impulsive transfer from a circular orbit to a hyperbolic 

trajectory, the required velocity impulse AV I is equal to the 

difference in the periapsis velocity of the hyperbolic trajectory 

VHpPand the initial circular velocity V . The energy equation 

for 	a hyperbolic orbit is given by 

v H = 	 (2.3-1) 

22 



where a, the semimajor axis is taken to be negative. If the 

escape velocity at infinity (r --> -) is specified to be V., a is 

determined uniquely, and the hyperbolic velocity at perigee 

(r = R) is given by 

VIp = V2 + V (2.3-2) 

or VHp = qVE2 +V 2 (2.3-3) 

The total required impulsive velocity can then be written as 

AV, = 
 H p - V °0 

= 2 +V 2 V (2.3-4) 

The primer vector solution for this transfer can be obtained 

in a simple manner from an examination of the necessary 

conditions along an optimal thrust trajectory. In order for energy 

addition efficiency to be 'maximized along an impulsive trajectory, 

the velocity impulse must occur at a local maximum of the primer 

vector time history, and, immediately after the impulse, necessary 

conditions for the trajectory to be optimal are given by the 

relations [10] 

Xav 

Xag (2.3-5) 

23 



where, immediately after the impulse, the magnitude of the 

gravity vector is (/E 2 ) and the velocity is the periapsis velocity 

of the hyperbola VH . From the conditions given by (2. 3-5), 

the following relationship can be written: 

X v (2.3-6) 

Thus, since the magnitude of the primer vector immediately after 

the impulse is defined to be unity along an optimal trajectory, 

(2.3-6) can be written as 

jx~ =9L---(2. 3-7?) 

and the primer vector solution to be used in the calculation of the 

performance penalty (2.2-1) is given by 

''12 .2 
Ni = A (2.3-8)

R4( V 2+VE2 
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CHAPTER III
 

OPTIMAL N-BURN THRUST PROGRAMS
 

3.1 Approximate Time-Open Solution 

The optimal burn schedule for the time-open multiorbit 

injection maneuver is that thrust program which, subject to the 

appropriate constraints, minimizes the characteristic velocity 

loss over the entire trajectory. Using the primer vector solution 

obtained in Section 2. 3, the characteristic velocity loss given by 

(2. 2-1) can be rewritten as 

N
N 2 2k~ 

k=l R 4 (VW +VE k k 

(3. 1-1) 

which can be reduced to 

N 

AV* Ck AVI f k Tbk 2 (3.1-2) 

k=lk 

where the constant C., specified by the transfer constraints, is 

given by 

(2 

(3.1-3)C0, i 

For a single burn, the burn time Tb for a constant thrust 

powerplant can be expressed in terms of the equivalent velocity 

25 



change AV over the burn segment, i. e., 

m c(-AYV
Tb - (3.1-4)Tb F 

where m is the initial mass of the vehicle, c is the exhaust 

velocity, and F is the thrust magnitude. For a multiorbit

multiburn trajectory, the burn time for the kth powered phase 

can be expressed by taking the difference in the burn time before 

and after the burn. If Tbi and Tbi+l are defined to be the times 

at the beginning and end, respectively, of the kth powered phase 

(i = k), and if AV i and AVi+ are the corresponding values of the 

total impulse up to times Tbi and Tb i+l' respectively, then the 

velocity increment AV k on the kth burn segment is given by 

AVIk = AVi+ 1 - AV i (3.1-5) 

The burn time on the kth segment is then given by 

b./ AV.i AVi+l) 
Tbk bi+l Tbi FPT Tb -T 0-Yc e 

or, mc - -

bk Fe 
6(3.1-6) 
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Defining the mass at time T to be 
-AV i 

C 
m i m e (3.1-7) 

the kth burn time can be written as 

C (3.1-8)Tbk 


It is now clear that, since Tbk can be expressed in terms of the 

equivalent velocity impulse on the kth segment AVI the optimal 

burn schedule, Tbl Tb2 .... TbN, can be obtained from the 

velocity impulse schedule, AVT AV12 ... AVIN, which 

minimizes the characteristic velocity loss (3. 1-2). 

The optimal N-burn time-open burn schedule can be found by 

performing a parameter optimization on the impulse schedule 

and satisfying the appropriate constraints. For a specified V. , 

the sum of the N velocity impulses must equal the total required 

impulse AV, given by (2. 3-4). Furthermore, each burn must be 

"short", and the periapsis velocity after the next-to-last burn 

must be less than the escape velocity, as described in 2. 2. 

Therefore, the time-open multiorbit parameter optimization 

problem for specified N and V. can be expressed as follows: 

Minimize: 0 = C 
N 

, AV k fk Tbk 
2 (3.1-9) 

27 
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Subject to: 

N 

1) '&AVIk = AI 2 V.2 V. (3.1-I0) 

k=1 

2 ) Tb max - (3.1-Ui) 
k max 

3) VN 1 < VE (3.1-12) 

where o defines the cost function AV and VN- 1 corresponds to 

the absolute periapsis velocity after the N-ist burn. 

The number of burns is not taken as a parameter in the above 

formulation, since g is not differentiable with respect to N. It 

can be seen that the cost function for the time-open maneuver is 

a minimum for a burn schedule consisting of N infinitely small 

impulses, which correspond to an infinitely large number of burns. 

However, the short burn and velocity constraints put an upper 

limit on the number of burns for a given V.. Nevertheless, if 

V is small (V. --> 0), N will get very large, and the solution is 

clearly impractical. Therefore, the optimal time-open solution 

would have to be chosen on the basis of a transfer-time/perfor

mance-penalty tradeoff between solutions corresponding to various 

values for N. 

An approximate solution for the optimal time-open burn 

schedule can be obtained by assuming that the mass decrease 

28 



over each burn is negligible (e. g., for high exhaust velocity 

powerplants). The burn time for each segment is then given by 

m ~A -Ilk)-

0 c e -

Tbk _T -e 

As a simple case, consider the two-burn transfer for which the 

cost function can be written as 

Tb2 ) (3.1-14)02 = C. (AV f1 Tb 2 + AV1 f 2 

Assuming that the inequality constraints (3. 1-11, 12) are satisfied, 

the minimization of 02 is subject only to the velocity constraint 

(3. 1-10) given by 

02 = AVI 1v- ( v11 2) :o(.(AV 4 AV1 0 (3.1-15)V 4-

The solution to this simple two-parameter minimization problem 

can be obtained by defining the Lagrange multiplier v as a penalty 

on the constraint and by solving the Euler-Lagrange equations 

which describe the necessary condition for a stationary point, 

i. e., 

(0 + 0 (i = 1, 2, . N..N) (3.1-16) 
AVI 

Assuming that fk = 1 for all values of k (which is a very good 

29 



approximation), the required partials of (3.1-16) can be computed 

to give 

l -e0 e c +- - AV e - +C 
F ) F 1C 

(m0c+2m 0,A- +< 
= 0

o 
e-A-AVe F A2 e cM 

(3.1-17) 

Equating the expressions for v/C, given by (3.1-17), the obvious 

result is the relation 

AV 1 = AV 1 (3.1-18) 

T T (3.1-19) 

In other words, the approximate two-burn, time-open optimal 

burn schedule is characterized by burns of equal magnitude and 

duration. 

Since the moment correction factor fk on the kth burn is. a 

function of the kth velocity impulse AV1 , removing the assumption 

that fk = 1 does not change the above result. Moreover, this 

result can be extended to the general N-burn time-open transfer. 

With the same initial assumptions used for the two-burn maneuver, 

30 



the N-burn optimization problem can be written as follows: 

N 

min: AV F Tb 22 

kk=l 

(3.1-20) 
N
Subject to: 


AN1 - 3 V' 0 
k=l 

The necessary conditions for a stationary point are given by 

+ 

0 + 0 (3.1-21)
21 

BT56AVI v~~-0+ 

where, without further manipulation, the solution is clearly given 

by equal velocity impulses and equal burn times: 

I=AV k 


k F k = 0, 1, 2, ... N (3.1-22) 
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The general result can be stated as follows: For an N-burn, 

time-open multiorbit transfer for which the mass decrease over 

each thrust phase is negligible, the optimum burn schedule is 

prescribed by specifying each perigee burn to be of equal 

duration. This result is conditioned, of course, on the satis

faction of the inequality constraints. Hence, for a given V., 

a lower limit on the number of burns is established by the short

burn constraint (3. 1-11), and an upper limit is placed on N by the 

escape velocity constraint (3.1-12). 

These results are summarized for a typical injection maneuver 

in Figures 3.1 and 3. 2. The approximate time-open simulation 

is described in Appendix C. 1; the orbital parameters and power 

plant data used in all the simulations are listed in Appendix B. 

The vehicle selected for this study is a nuclear solid-core rocket 

with a capability consistent with the technology for the late 1970's 

or early 1980's; it has been assigned a thrust to weight ratio of 

0.1 and a specific impulse of 800 seconds. Figure 3.1 shows 

the characteristic velocity loss AV4 as a function of the number 

of burns N for four different values of V. The endpoints for 

each family of solutions are specified by the short burn and 

escape velocity constraints as described previously. Figure 3. 2 

illustrates the transfer time T5 as a function of N for the same 

values of V. It is interesting to note that, as the upper limit 

on N is approached for a given V., the time in orbit asymptot

ically approaches infinity. The limiting case for each value of 
32 
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V. corresponds to an (N-l)-burn parabolic escape for which the 

time in orbit is given by the lower family of solutions corre

sponding to V. = 0. The limits on N for each value of V0, are 

listed in Table 3. 1. 

Table 3.1
 

Limits on N for the Approximate
 

Time-Open Optimal Transfer
 

(F/W = 0.1, Isp = 800 sec.)
 

Lower Limit Upper Limit 

V (fps) Tbk Tbmax VN-i > VE 

0 4 

5,000 4 31 

10,000 5 8 

-15,000 

An upper limit on V. is specified by the short burn constraint. 

This fact accounts for the null solution corresponding to 

V. = 15, 000 fps in Table 3. 1. For the approximate time-open 

solution, the upper limit on the excess hyperbolic velocity is 
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given by 

Vmax =V H -V 2 
p max 

= (V +AVImJ - VE2 (3.1-23) 

where, from (3.1-8), the maximum allowable velocity impulse 

AV Imax is given by 

AVimax = ma F)n 

- -c n (1_ Fc#(3.1-24) 

For the maneuver simulated, these values are as follows: 

=Tb max 837 sec. 

max = 2,846 fps. 

V max = 14, 640 fps. 

These results, as well as those obtained for the limits on N, 

imply that the upper family of solutions shown in Figures 3.1 and 

3. 2 are invalid, and demonstrate that the short burn constraint 
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is somewhat restrictive in terms of final obtainable energy. 

Since the mass-loss approximation used in the above analysis 

rarely applies to typical propulsion systems, the approximate 

time-open solution is of little practical value. Nevertheless, the 

results are meaningful in the sense that they provide a simple 

heuristic framework from which to analyze the effects of and the 

restrictions imposed by velocity and burn time constraints on the 

optimal N-burn multiorbit maneuver. 

3.2 Optimal Time-Open/Time-Fixed Solution 

Consider the N-burn multiorbit injection maneuver for which 

the total transfer time is specified, that is, the time between 

the initiation of the first burn, which takes the vehicle out of 

parking orbit, and the escape burn, which occurs at the completion 

of the last intermediate coasting orbit, it assigned a particular 

value. Considering only the time constraint, the minimization 

problem cafi be stated as follows: 

N 

min 0 C. &VI fk Tb 2 (3.2-1)
kkk=l 

subject to: 
= T sd = 0 (3.2-2) 

where Tsd is the specified, or desired, transfer time and T. is 
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the actual transfer time, which is equal to the sum of the periods 

of the (N-i) intermediate orbits. The above problem can be 

restated as an unconstrained problem by defining the augmented 

cost function J such that 

J = 0 + V 1I (3.2-3) 

where v I is a Lagrange multiplier which assigns a penalty to the 

unconstrained cost o proportional to the deviation of the actual 

time T s from the desired time T.sd Hence, if p1 = 0, the 

augmented cost J equals the unconstrained cost 0, and the 

minimization corresponds to the time-open maneuver. 

The optimal burn schedule for the time-fixed maneuver could 

be obtained by means of a conventional constrained parameter 

optimization algorithm, such as a gradient projection scheme. 

An alternate, simpler approach will be considered here. The 

major advantage of the method to be derived is a reduction in 

the dimension of the problem to a form which lends itself to 

simple iterative methods. For purposes of simplification, the 

inequality constraints described in the previous section will be 

temporarily ignored. 

First, let the variable AV i be the total velocity impulse 

effected up to the total burn time Tbi which for constant 
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thrusting is given by 

Tb ° -e -- (3.2-4)
Tb 

Recall the segment variables for-the kth thrust phase previously 

defined as 

AVk AVi+ - AVi. 

Tbk = Tbi+l - Tb (3.2-5) 

where k varies from 1 to N. The problem can now be restated in 

terms of the variables AV i and Tb." which behave as continuous 
1 

variables over the total burn interval of a multiburn-multiorbit 

trajectory. The characteristic velocity loss can be rewritten as 

N-- 2
 
AV'= C L (Av 1 - k (Tb -~)Tb -3.2-6) 

i=o 

where f is a function of the quantity (AVi 1 - Vi). The total 

time in orbit is related to the variable AV by 

N-I N-1 R13/2 

T T(AV1 ) =',I- V + AVVi 

(3.2-7) 

where T i is the period of the orbit following the ith burn. 
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The necessary condition for a stationary point of the augmented 

cost function J is given by 

vi 0 	 (3.2-8) 

Assuming that fk = I and taking the required partials of AV 

given by (3. 2-6), the necessary condition becomes 

C[ 2 2 + 2 AV T Tbk 	 T b k]CM- k+ bk-1 k Tbk av7 Tk-1 Tbk-1--i V j 

+ +6 . (AVI)1 

(3.2-9) 

where the k subscripts denote the segment quantities defined by 

(3. 2-5). Utilizing (3. 1-6), the required partials of the segment 

burn times are found to be 

.Tb -m -AV i m 

-
A-VikA - F o e c F-

bTb k 	 I -AV i 
-i 0 c (3.2-10) 

If the quantity Qk is defined, 	 where 

(-AV) 

0S \1-e / 	 (3.2-11) 
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(3. 2-9) can be written as 

2 2 __c2 i) 2 k + c (mI 	 2c 5 A 

+ 	 2c ) ) Qk-I A VI +I (Avi) - 0 

f t- if -C - 0~i1 

(3.2-12) 

Rearranging, (3. 2-12) can be reduced to 

+ 2 (n42) (mi)Qk1lA~

(- IvJ) (C)k _ 

-)2+2AV) 

+ c V 6 AV i =0 

(3.2-13) 

The variables AVi corresponding to the optimal burn schedule 

must satisfy (3. 2-13). The optimal burn schedule could be 

obtained by simultaneously satisfying (N-i) equations of the form 

(3. 2-13) and the velocity constraint on the last burn given by 

V = V 2 +V 2V0 VN=V-V+AVN 

or, 	 AVN = VE2 +V 2 _ V° = AV 1 (3.2-14) 

A simpler 	method for obtaining the optimal N-burn thrust 

program can be arrived at as follows: First, expand the kth 
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burn time given by (3.1-6) in a Taylor series about A.Vi. To 

first order, this expansion is given by 

i+1 =fAVi+AV 1k) f AVi)+AVikf" (AVi) 

-AV. 
/ 'In 

or, Tb Tb +KVi+l -AV \.e c (3.2-15) 

Hence, the duration of the kth burn is approximated to first order 

by 

Tbi+1 Tb i (Avi±1 - AV) 

which, in terms of segment quantities, is given by 

M. _ 

Tbk F-- AVIk (3.2-16) 

Substituting this approximation for the burn time into (3. 2-9), 

the first order necessary condition reduces to 

-3 (mi AV )+k2 + !~- 1) V k) 2 2 /2 i -1A vIk_ 

41 Ts (AV i)+C-- B AVi = 

(3.2-17) 
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Solving for AVIk2 , the above equation becomes 

v +v % ( 2 "TsAV,)m4AV-2 = Kmmi1ki2 + 

(3.2-18) 

Recalling the definition of AVk given by (3. 2-5), (3. 2-18) can be 

utilized to give an expression for the total velocity impulse AVi+1 

at the end of the kth burn as follows: 

2AV 1 + ji( l2+ 2(ni-i Ak-i + VI F )2 Ts (AV) 

i+,=AVAV-	 I -t I -Twi~r 
(3. 2-19) 

The partial derivative of the transfer time, given by (3. 2-7),. can 

be expanded as follows: 

16T 	 (AV1') / -- 5/2 

AV 6 [ -P (Vo + AVi)j (3.2-20) 

Equation (3. 2-19) gives the useful result that the total velocity 

impulse AV,+, at the end of the kth burn can be calculated from 

a knowledge of the velocity impulse AV on the previous 

segment, the total velocity impulse AVi at The beginning of the 

burn, and the value of the Lagrange multiplier v1. In other words, 

given the initial velocity impulse and pl, an optimal trajectory is 
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completely specified by (3. 2-19). Furthermore, the validity of 

the use of a first-order approximation for the burn time is 

ensured by the fact that it is contained in a first order necessary 

condition. 

The N-dimensional parameter problem has thus been reduced 

to one of two independent variables, AV 1 and v1. By means of an 

iterative procedure, AV 1 and v can be chosen such that a unique 

transfer time can be obtained in exactly N-burns. An optimal 

N-burn schedule results if the burn time and escape velocity 

constraints are also satisfied. A desired final energy, i. e., 

a specified V., can be achieved for a fixed-time transfer by 

iterating on &V1 until the total impulse on the Nth burn is such 

that (3, 2-14) is satisfied. 

The recursion formula (3. 2-19) can likewise be used to 

generate optimal time-open burn schedules by setting the 

Lagrange multiplier to zero in (3. 2-19), i. e., 

=~ 
 + AVIk_14 1(fiD1) +- (ni.//] 
AV AV A 1 2 i (3.2-21) 

This time-open recursion can also be expressed as follows: 

2AV lk rilmi - 2 i-l 

1+ 2( (3.2-22) 
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In other words, for the optimal time-open transfer, the velocity 

impulses on succeeding burn segments of the equivalent impulsive 

trajectory are related by a function of the mass ratio between 

the two segments given by 

AV i - AVi_1 -AV I 
Se c c (3.2-23) 

m i
 

Therefore, for constant thrusting over the burn segment, the 

equivalent velocity impulses on neighboring segments of a 

time-open maneuver are ,relatedby a function of the velocity 

impulse on the earlier burn. 

Equation (3. 2-22) gives a measure of the error in the 

approximate time-open solution discussed in 3.1. It verifies that, 

for a negligible mass decrease over each burn, the ratio given 

by (3. 2-23) approaches unity, and neighboring burn segments have 

equal burn times. For a specific impulse of 800 seconds 

(c se 2. 6 - 104 sec.), the velocity impulses would typically have 

to be less than 300 fps (which gives a value of 0. 99 for (3. 2-23)) 

to yield a valid approximation. Clearly, such small velocity 

increments would require large values for N and total transfer 

times out of the range of practical concern. 

The following chapter will describe a technique that can be 
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readily employed to predict optimal time-open and time-fixed 

multiorbit transfers using the recursive formulation derived 

above. 
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CHAPTER IV 

ANALYSIS OF A TYPICAL INJECTION MANEUVER 

4.1 Time-Open Solution and Determinatiohi of Initial Values 

The optimal N-burn thrust program for specified values of V. 

and T s can be found by iterating on the parameters AV 1 and vI ,
 

where each intermediate impulse schedule AV T AV12, ... AVIN 

is generated by the recursion formula (3. 2-19). For the time-open 

case (vI = 0), the optimal N-burn schedule (for a a specified V) 

can be computed by iterating on AV1 until the sequence generated 

by (3. 2-21) yields a value for AVN that satisfies the final 

velocity constraint given by (3. 2-14). The impulse schedule 

obtained corresponds to the optimal time-open N-burn thrust 

program if the short-burn constraint (3. 1-11) is satisfied and if 

the solution is constrained to exactly N burns by the escape 

velocity constraint (3.1-12). 

Ifthe appropriate value for the initial velocity impulse AVI is 

selected, a solution corresponding to the desired value for N can 

be obtained. However, if a T"good" initial value is not selected, 

a burn schedule corresponding to a different N will be generated 

and Newton steps will not cause the sequence to converge to the 

desired N-burn solution. In other words, solutions corresponding 

to different values of N are independent and self-contained. This 
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is evident from the nature of the velocity constraint (3. 1-12); each 

N-burn solution is separated from its adjacent (N-l)-burn 

solution by an (N-l)-burn parabolic escape solution. The 

independence of N-burn solutions is illustrated in Figures 4.1 

and 4. 2, which are the results of the simulation described in 

Appendix C. 2. These figures plot, respectively, V. and Ts 

against the parameter AV 1 for the time-open, velocity unconstrained 

injection maneuver specified by the parameters listed in Appendix 

B. Not only do these plots demonstrate the independence of N

burn families, but they can be utilized to give excellent starting 

values for AV1 for a particular N-burn velocity-constrained 

solution. In other words, if the initial impulse AV1 corresponding 

to a specified V and a particular value for N is selected from 

Figure 4. 1, it is guaranteed that (3. 2-19) will generate an impulse 

sequence very close to the desired one, and the Newton iteration 

will converge in a few steps to the optimal N-burn schedule. 

Before discussing the effect of the time constraint (nonzero v1), 

consider the difference in the optimal time-open solution generated 

by the above method as compared to the approximate time-open 

solution derived in 3. 1. Figures 4. 3 and 4. 4 present plots of 

AV- vs. N and Ts vs. N, respectively, for the time-open 

solution. The locus of solutions corresponding to the approximate 

time-open case is shown on each figure to provide a simple means 

of comparing the two methods. The difference in the magnitudes 
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between the values given by each method is not surprising, as 

the exhaust velocity for the powerplant used in the simulation 

is not particularly large. Nevertheless, these results do show 

that the recursive solution gives significantly better results for 

an injection maneuver like the one simulated. Furthermore, 

contrary to the approximate results given in 3. 1, there exists an 

optimal time-open solution for a final velocity of 15, 000 fps 

corresponding to a 5-burn multiorbit trajectory. Therefore, 

limits on N for specified values of V. and on V. for specified 

N's can be obtained from the results of the time-open, velocity

unconstrained simulation. Although solutions only for values of 

N less than 10 are illustrated in Figures 4.1 - 4.4, the same 

arguments apply for large values of N. This study will ignore 

large N solutions, however, as the transfer times and trajectories 

associated with them are too large for practical purposes. 

4. 2 Effect of the Time Constraint on the Optimal Burn Schedule 

Recalling the necessary condition for a stationary point given 

by (3. 2-8), the Lagrange multiplier v, which can be written as 

=I 	 (4.2-1) 

represents the sensitivity of changes in cost with respect to changes 

in the value of the constraint; 	or, in a plot of o vs. 0, v represents 
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the negative slope of the curve. If the stationary point is a local 

minimum, values of 41different from zero must be assigned a 

positive cost. Hence, v must be positive for positive values of 

4 and negative for negative 0. This relation is sketched in 

Figure 4. 5 

0 

oo~
 
0> 

Figure 4.5 0 vs 

Applying this argument to the multiorbit- injection problem, it is 
clear from (3. 2-2) that positive vI corresponds to Ts > Tsd and 

negative v, to T s < Tsd. Thus, a sketch of the characteristic 

velocity vs. the time in orbit for a specified V and a particular 

value for N should resemble the curve shown in Figure 4.6, where 

the minimum value of AV corresponds to the optimal time-open 

performance penalty and corresponding transfer time. 
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A physical interpretation of -the effect of the time constraint 

could be given as follows: For the time-open case (vI = 0), 

each succeeding burn segment will increase in length by an 

amount proportional to the velocity-increment ratio given by 

(3. 2-22). Since nonzero values of v affect the lengths of the AVk 

increments on succeeding segments through the second term under 

the radical in (3. 2-19), a positive value for vI tends to make the 

AVI increase or successive burn-segments greater; whereas, a 

negative v1 reduces the rate of impulse expansion on successive 

burn segments. In other words, for vI > 0, (N-l) AVI segments 

are "stretched-out" to begin and end at higher absolute periapsis 

velocities, which correspond to intermediate orbits of greater 

periods and to a longer overall maneuver time T s . Similarly, 

for I1 < 0, burn begin times are scheduled at periapse velocities 

less than those of the corresponding time-open maneuver, and the 

total injection time Ts is less than that for the time-open case. 
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The effects of a time constraint on a typical maneuver 

(Appendix B) are illustrated by Figures 4. 7 and 4. 8, which 

summarize the results of the simulation described in Appendix 

C. 3. Figure 4.7 is a plot of the specified transfer time Ts vs. 

the characteristic velocity loss AV for a 5-burn injection to a 

specified final velocity of 5000 fps. Note that the Lagrange 

multiplier used in the simulation, X, is weighted by the constant 

C and takes on a sign opposite to that shown in Figure 4. 6 (since 

the constraint is defined with the opposite sign in the simulation). 

In other words, the Lagrange multiplier shown on Figures 4. 6 

and 4. 7 is given, for convenience, by 

= (4.2-2) 

Each point on the curve in Figure 4. 7 corresponds to an 

optimal time-fixed, velocity-constrained burn schedule generated 

by the recursion formula (3. 2-19). Each solution was generated 

by selecting a value for Xand performing a Newton iteration on 

the variable AVI until the final velocity converged to within 5 fps 

of the desired value. The multiplier X was varied in the positive 

and negative direction from X = 0. AV1 was initially selected 

for the time-open case with the aid of Figure 4. 1, and each 

consecutive point on the curve was determined using a greater 

value for X and the value of AV for which the solution converged 

on the previous point. TheX recursion was terminated for positive 
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values when the lower limit on Ts was reached, i. e. when the 

short burn constraint was exceeded. The recursion on negative 

Xwas terminated when AV increased to a value such that the 

optimal recursion (3. 2-19) could not be constrained to 5 burns. 

The endpoints were not determined precisely, as they are not 

required in terms of desired results. 

The predicted effect of the time constraint on the schedule of 

velocity impulses is also confirmed by the simulation. The 

stretching and compressing effect of X on the impulse sequence is 

illustrated in Figure 4. 8. The Figure compares the thrust 

program for the optimal time-open 5-burn injection with two 

corresponding optimal time-fixed transfers, one with a transfer 

time greater than the time-open maneuver and one with a shorter 

transfer time. For each-of the three cases given, the total 

required impulse AV I (for an injection to V0 = 5000 fps) is 

divided graphically into 5 burn segments. In each segment the 

equivalent velocity impulse AVIk and the burn time T are 

given in units of feet-per-second (fps) and seconds (sec), 

respectively. The velocity impulse variable AV i can be read 

from the scale at the bottom of the figure. The semimajor axis 

(in miles) and the period (in hours) of each intermediate coasting 

orbit are listed at the end of the appropriate burn segment for each 

case. The flight path profile for the optimal time-open 5-burn 

injection corresponds to that shown in Figure 1. 
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4.3 Determination of the Optimal Time-Fixed Burn Schedule 

For a multiorbit injection maneuver of specified final energy, 

a tradeoff must be made between the transfer time and the 

performance penalty. Moreover, in order to obtain the optimal 

burn schedule, maneuvers corresponding to different values of 

N must be compared. This tradeoff can be readily accomplished 

with the aid of a plot of T5 vs AV for various N-burn solutions 

satisfying a common final energy requirement. For the injection 

maneuver considered previously, this type of analysis can be 

carried out with the aid of Figures 4.9 and 4. 10, which plot 

Ts vs AV for N-burn families corresponding to V = 5000 fps 

and V = 10, 000 fps, respectively. Each N-burn curve is gen

erated as described for the 5-burn solution given in Figure 4. 7; 

however, for large values of N, the lower limit on each curve 

is specified by their intersection with the (N-1)-burn curve rather 

than by the short-burn constraint. The lower limit on N for a 

given family of curves is established by the short-burn constraint. 

N is not taken to its upper limit as these solutions are not of 

interest. 

It is interesting to note the double solutions given by the inter
section of curves for larger values of N. The values of T and 

s 

6V corresponding to one of these points represents two different 

N-burn optimal transfers; hence, some other criterion must be 

utilized to select the better solution. In general, the optimal 

N-burn solution for an injection maneuver of specified V. should 
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lie on the lower edge of the profile described by the family of 

curves.
 

If a particular transfer time is specified, the simulation used 

to generate the Ts vs. AV t curves will not yield the optimal 

burn schedule in one convergence cycle, since the value of v1 

that corresponds to a specified Tsd is not known. If a particular 

value of Ts is a critical mission requirement, the optimal N-burn 

schedule can be obtained by a two-dimensional iteration on the 

variables AV1 and X. A two-dimensional Newton iteration which 

yields a particular time-fixed, velocity-constrained, optimal 

N-burn schedule is described in Appendix C. 4. This technique 

has several disadvantages, however. First, it requires initial 

values of AV 1 and Xwhich guarantee that the solution will locally 

converge to the desired N-burn maneuver. Second, the solution 

obtained is not a "global" one; hence, it does not guarantee the 

best thrust program. Therefore, the two-dimensional search 

method should be used as a secondary routine to obtain a particular 

fixed-time burn schedule in a local N-burn region. In other words, 

the time/cost tradeoff should be made from the T5 vs. AV curves, 

then the optimal time-fixed solution can be generated by a two

dimensional search routine which utilizes initial values obtained 

from the one dimensional simulation. 

The one-dimensional simulation is not without its difficulties, 

however. For example, the optimal recursion will not converge 
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for a parabolic escape maneuver. This tendency can be explained 

by referring to Figure 4. 1, where it can be seen that the slope 

of each N-burn curve is infinite at V. = 0. This implies that 

the initial value for AV 1 must be exact for the solution to 

converge. Also, for large values of V. and N, the Newton step 

size must be heavily controlled to constrain the solution to N 

burns. Fortunately, however, the latter concern is outside the 

range of interest of this analysis. 

4. 4 Accuracy of the Solution 

In order for the characteristic velocity loss equation to be 

valid, the burn time must be sufficiently short and the variables 

r and 0 must vary very little during each thrusting phase. A 

measure of the accuracy of the solution obtained in this analysis 

is provided by the values taken on by some of the thrust parameters 

which behave as error quantities. The most obvious measure of 

the validity of the solution is the burn time. Longer burn times 

give a less accurate value for the performance penalty, and burn 

times greater than the upper limit given by (3. 1-11) deem the 

solution invalid as far as this analysis is concerned. Another 

measure of accuracy is the magnitude of the radial displacement 

effected during each burn (equation 2.1-4). This displacement, 

which must be negligible with respect to the radius R of the 

initial orbit, provides an indirect measure of the span of the 

thrust arc. These two quantities are tabulated below for various 
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values of N corresponding to the optimal time-open burn schedules. 

Also tabulated is the moment correction factor, which was 

assumed to be unity in the derivation of the recursion formula 

(3. 2-19). For each case, the value of the error quantity repre

sents the "worst case" value for that particular N-burn solution. 

For the time-open maneuver, the worst case, i. e., the largest, 

values of Tb and d occur on the initial burn segment, whereas, 

the worst case value for fk i. e., the one that deviates the most 

from unity, occurs on the escape segment. 

Table 4.1
 
Worst Case Error Quantities for the
 

Time-Open Maneuver
 
(F/W = 0.1, Isp = 800 sec.) 

Number Burn Radial Correction 
of burns Time Displacement Factor 

TbN 1 F 
(sec.) (miles) 

V= 5000 	 4 731 18.58 .99976 

5 587 9.37 .99984 

6 I 490 5.37 .99989 

7 420 3.36 .99992 

8 368 2.24 .99994 

9 328 1.57 99995 

V =10, 000 	 4 788 22.86 .99972 

5 633 11.52 .99981 

6 528 6.60 .99987 

7 453 4.12 .99990 

8 397 2.75 .99992 
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For the N-burn time-open maneuver considered in Table 4. 1, 

the burn times stay well within the short-burn-constraint but 

diverge toward Tb max (837 sec) for small values of N, part

icularly for larger V. The radial displacement at perigee 

likewise gets worse for low values of N and large V.; however, 

even for the worst N-burn case shown, the magnitude of the 

displacement is only 0. 56c of the radius of the initial orbit. 

The values of fk listed are all within at least 0. 01% of unity; 

thus, the approximation used in the derivation is confirmed by 

the results of the simulation. 

It is also useful to note the variation of these error quantities 

along the segment of an optimal N-burn multiorbit transfer. For 

the three cases described in Figure 4. 8, the error quantities 

propagate as shown in Table 4.2. It is interesting to note that 

for the time-open case (X = 0), the error quantities vary little 

over the trajectory. In fact, the displacement is approximately 

the same at each perigee. In a sense, one could conclude that 

these quantities provide a relative measure of the characteristic 

velocity loss along the trajectory. The only trend indicated by 

Table 4. 2 that is of any concern is the rapid divergence of the 

error quantities on the last segment of time-fixed maneuver 

corresponding to positive X. The values listed on Table 4. 2 for 

this case are within the limits for a good approximation; however, 

it should be realized that, for some multiorbit injection problems, 
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Table 4.2
 

Variation of Error Quantities along
 

as Optimal 5-Burn Multiorbit Trajectory
 

(F/W = 0.1, Is = 800 sec, V. = 5000 fps)

P
 

Segment Burn 
Number Time 

k Tb 

(sec) 

X = -5000 1 610 

2 592 

3 572 

4 546 

5 454 

X =0 	 1 587 

2 571 

3 555 

4 538 

5 521 

X = 20, 000 	 1 542 

2 534 

3 531 

4 .540 

5 626 

the approximation may degenerate 

low values of N. 

Radial 
Displacement 

d 

(miles) 

10.55 

10.45 

10.18 

8.42 

5.12 

9.38 

9.37 


9.37 


9.37 


9.36 


7.43 


7.74 


8.44 


11.19 

18.12 


Correction 
Factor 
f 

.99990 

.99989
 

.99987
 

.99986
 

.99987
 

.99990 

.99989
 

.99988
 

.99987
 

.99985
 

.99992
 

.99991
 

.99989
 

.99987 

.99979
 

for large values of V and 

Other errors associated with the analysis described in this 

study are the numerical errors inherent in the Newton iteration. 
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However, for the one-dimensional search utilized, these errors 

can be made negligible by specifying a more restrictive 

convergence criterion on the error associated with the final 

velocity constraint. The analysis has demonstrated that the 

Newton iteration will converge in a few steps for specified 

tolerances of less than 0.5 fps on V., i. e., errors less than 

0. 01% of the magnitude of V. Hence, numerical errors can be 

made small enough to neglect. 

Finally, it should be recalled that there may be a small error 

in the solution, due to the use of a first-order approximation for 

the burn time. This type of error can be avoided by finding the 

impulse schedule that exactly satisfies the first order necessary 

condition given by (3.2-13). Appendix C. 5 outlines an N-dimensional 

search routine that is designed to do this. The results of this 

simulation are not presented, as the solution could not be driven 

to within tolerances that justify its use as a measure of validity 

of the first-order burn time approximation. Furthermore, an 

exact solution of the necessary condition may not be justified in 

light of the nature of the approximation for the characteristic 

velocity loss. 
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CHAPTER 5 

CONCLUSIONS 

This study has presented the followsing results: 1) A simple, 

closed-form method for calculating gravity losses on multiburn

multiorbit finite thrust trajectories can be developed utilizing 

Robbins' "impulsive approximation". 2) This approximation can 

be applied to the multiorbit injection problem for which a simple 

algorithm can be derived to recursively generate optimal N-burn 

thrust programs. 3) The recursion algorithm can be used to plot 

families of time/cost curves for a specified value of the excess 

hyperbolic velocity, and these curves can be utilized to select 

initial values from which the optimal N-burn time-fixed injection 

maneuver, can be generated. 

The numerical values presented in this study correspond to a 

particular injection maneuver. It is important to note that the 

results of the simulations are very sensitive to the selected 

values of the specific impulse and thrust-to-weight ratio. Clearly, 

higher values for F/W could be utilized, and the equivalent 

injection maneuver could be accomplished in fewer burns or with 

a smaller penalty. In any case, however, due to the nature of the 

short-burn criterion, the thrust parameters selected will impose 

restrictions on the final obtainable velocity and the minimum 

allowable number of burns. In spite of these restrictions, the 
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method presented in this paper provides a simple and efficient 

means for predicting optimal thrust programs for N-burn 

multiorbit injection maneuvers and provides a framework from 

which optimal burn schedules can be derived for other multiorbit 

missions. 
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APPENDIX A
 

DERIVATION-OF CHARACTERISTIC VELOCITY LOSS
 

OVER A SEGMENTED FINITE-THRUST TRAJECTORY-


The differential equations of motion for a vehicle in a vacuum 

are given by 

r =v 

= .g(r, t) +a(t) (A-i) 

where r and v are, respectively, the position and velocity vectors 

describing the vehicles motion, g- is the gravity vector, and a 

is the thrust acceleration vector. If r and v are perturbed about 

a nominal trajectory, such that terms of order 6r 2 and higher 

can be neglected, A-i can be expressed by 

6r = 6v 

6; = G6r + 6a (A-2) 

where G is the gravity gradient matrix. If there is no thrusting, 

i. e., if the vehicle is coasting under the influence of gravity, the 

* This derivation closely follows that of Robbins [121. 

71 



perturbed equations of motion can be written as 

I]6r 
Ol6YL [ 1 j Lv j(A-3) 

or, in second order form, 

6r = G 6r (A-4) 

Consider the adjoint system to (A-3) given by 

[fl = [0 -G] Etfl-5
 
where g and X are (3 x 1) vectors adjoint to r and v, respectively. 

In second order form, (A-5) becomes__ 

X = GX (A-6) 

Thus, X, the adjoint to the velocity vector or "primer vector" of 

Lawden, satisfies the same differential equation as the perturbed 

position vector. 

It can be shown that the primer vector satisfies the identity 

X- 6v - X • 6r = constant (A-7) 
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For non-zero thrust over the time interval (to, tf), it can 

similarly be shown that 

[x,6vX. rto So 6a dt (A-8) 
0 0 

recognizing that (A-7) takes on a different constant value outisde 

the burn interval. The variation in the characteristic velocity 

from its nominal value is given by 

6(AV) 6v artf + (6a -X - 6a) dt 
t0(A-t 0 9) 

where 6a' is the variational-thrust acceleration over the nominal 

finite-thrust interval. Assuming that both trajectories start 

from the same initial state, i. e. , 6v (t ) 6r (to) = 0, and that 

they both satisfy the same final conditions (such that 6r (tf) and 

6v (tf) are small enough to justify linearity), X (tf) and X (tf) 

can be chosen such that (A-7) is identical to zero over the 

interval. (A-9) then reduces to 

6(AV) f (6a' - X - 6a) dt (A-10) 

If the nominal trajectory is optimal, the right hand side of 

(A-10) must be nonnegative for all perturbations of the acceler

ation. If optimal steering if utilized, that is, if the acceleration 

is applied in the direction of the primer vector, X. 6a = i 6a', 
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and (A-10) becomes 

6(AV) = o (I - IXI) 6a dt (A-li) 

which implies that a necessary condition for an optimal impulsive 

trajectory is that, at the time the impulse is applied, the 

magnitude of the primer vector must be unity, and for all other 

t in -the interval, lX1 < 1. 

Let AV I be the optimal impulsive velocity on a time uncon

strained trajectory, that is, a trajectory on which the time of 

occurence of the impulse is determined by local optimality with 

respect to fuel consumption (with the time constraints playing no 

role except possibly to exclude other local optima). Also, let 

AV F be the characteristic velocity over a finite thrust trajectory 

which is not necessarily optimal, but which is close to the 

optimal impulsive trajectory with respect to position deviations 

and which satisfies the same end conditions. Then, if a F is 

the thrust acceleration vector on the finite thrust trajectory and 

a is the angle between a F and X, (A-10) can be written as 

tf 

AV F - AV, = S (aF ' -X a F ) dt 
t 0 

tf 

(A-12)
St (1 - IXI cos a) af dt 

0 
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If tk are the times of occurence of impulses over a multiburn, 

segmented trajectory, i. e., 6ne that can be broken up into a 

series of short burns about local optima and separated by coasting 

arcs over which a F = 0, the integral (A-12) can be expressed as 

a sum of integrals, each taken -over a short burn period near its 

respective tk* Furthermore, cos a can be expanded as 

Cosc I-L 2 (A-13) 

and the primer vector magnitude can be expanded in a second 

order Taylor series expansion about tk i. e., 

IX(Il I(tk)l + I(tk)I (t-t) Y 1(t-tk)2 

~ , tpI) ILt.1~ ~~ 

= 1+ lI2(tk) (t-tk)2 (A-14) 

since tk is at a local maximum. Furthermore, since rXi(tk)I < 0 

at the local maximum, (A-12) can be expressed as 

n tek 

F I L Y 2 a[1 (t-tk)2 L 
k=l tbk (A-15) 

which is valid for a segmented trajectory of n short burns, each 

of which extend between their respective burn begin times thk 

and end times tek. 
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If tek is the centroid time of the thrust acceleration profile 

on the kth burn, the first moment of the thrust acceleration 

about its centroid is defined to be zero, i. e., 

tek 

Mik = 5 (t-tck) aF (t) dt = 0 (A-16)
tbk 

and the second moment is given by 

- ek a FC~b (t-tek)2 (t) dt (A-17) 

Assuming that a varies approximately linearly during a burn, i. e., 

at)M ack + (t-tk) &ck (A-18) 

and if the burn time is referenced to the centroid time, i. e., 

t-tk = (t-tck) + (tek-tk) (A-19) 

the characteristic velocity loss (A-15) can be written as 

n 

V- I I E -k - tk) k] AVk 

k=l 

+ Lk - Ik M2 k dt (A-20) 
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where the velocity increments AVk, 

tek 

AVk 	 . aE. ( t) dt (A-21) 
tbk 

are given to sufficient accuracy by the impulses of the optimal 

impulsive trajectory. It can be seen from (A-20) that the optimum 

choice for the centroid time tck is the time of occurence of the 

impulse tk; and, it can be, shown that this choice for tck is that 

which also results by requiring the component of position 

deviation parallel to X (tk) to be approximately zero both before 

=and after the burn. Finally, with optimal ,timing ,(tck tk) and 

optimal steering (aF is parallel to X(t) such that ack ck = 0), 

(A-20) reduces to 

n 

AVF AVI -	 (A-22)F 1 7zL I :kIM2k 
k=l 

where the second moment can be accurately approximated as a 

function of the velocity impulses AVIk on the equivalent impulsive 
k 

trajectory. By differentiating the identity 

x :x = [X Li(A-23) 

(A-6) can be utilized to obtain the relation 

X' X + X. =-- X I + 1_12 (A-24) 
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Then, since lxI = 1 and lXI= 0 at tk' IkJ can be solved for as 

1 2 (A-25)Illk X-="G>, 

Substituting into (A-22), the characteristic velocity loss is given 

by 

I n- i -It2) 
V- ?M hV 2 k (A-26) 

k=1 

Therefore, the characteristic velocity loss over a segmented 

trajectory consisting of n optimally steered and timed finite-burn 

segments of short duration can be computed in terms of the primer 

vector solution at the centroid of each burn and the velocity 

impulses required to effect the equivalent transfers. 
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APPENDIX B
 

ORBITAL PARAMETERS AND
 

POWERPLANT DATA
 

The following data correspond to an injection maneuver from 

a circular orbit 100 miles above the surface of the earth using a 

nuclear solid-core rocket consistent with the technology of the 

late 1970's - early 1980's. These values are incorporated into 

all the simulations used in this study. 

Orbital Parameters: 
2 

A= 1.4076 1016 ft 3 / sec 

R = 4. 0632 103 mi. 

V = 2.561 10 4fps 

T = 5.262 103 sec. = 88 minO 

VE = 3.622 104 fps 

Powerplant Data: 

I = 800 sec.sp
 

F/W = 0.1
 

c = 800 g = 2.57 104 fps
 

Short-burn Constraint: 

Tb = 837.6 sec.
 
max
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APPENDIX C 

COMPUTER SIMULATIONS 

To avoid notational difficulties and unnecessary repitition, a 

brief summary, rather than a complete program listing, of each 

simulation is provided in the following sections. The orbital and 

powerplant data used in each program correspond to the maneuver 

defined in Appendix B. 

C. I Approximate Time-Open Solution 

For a specified value of V. and N, the approximate time-open 

solution is a completely closed-formed calculation. The simulation 

repeats itself only for different values of N and V.. The total 

required velocity impulse AV I is calculated from (2. 3-4) and the 

equivalent impulse and the burn time are calculated from (3.1-22). 

For a given V., the range of N is determined by the upper and 

lower limits prescribed by the escape velocity and burn time 

constraints given by (3.1-11) and (3.1-12), respectively. In 

addition to the segment quantities, this simulation computes the 

characteristic velocity loss using (3. 1-2). The results of the 

simulation are summarized in Section 3. 1. 

C. 2 Time-Open, Velocity-Unconstrained Simulation 

If V is unspecified and vI 	is set equal to zero, the curves
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given in Figures 4. 1 and 4. 2 can be generated by selecting 

various values of AV 1 between zero and the approximate time-open 

AVi ax and by performing the recursion given by (3. 2-21) until 

the escape velocity is exceeded. ,The value for the index is set 

equal to N on this step, and V.. is computed from (3. 2-14). Hence, 

the array AV 1, AV 2 , .... AVN is defined, and all orbital quantities 
(i, a T ),) and burn segment quantities (AVk, T dk f ) can 

(mi a, i Ik'bk:k' kQ 
be- calculated using the equations given in Chapters 2 and 3. 

C. 3 Time-Fixed Recursive Solution for Specified V 

If V. and X are specified and if a good initial value for AV1 is 

selected (from Figure 4.1), such that the value of N given by the 

recursion (3. 2-19) and the escape velocity constraint (3. 1-12) 

corresponds to the desired value, a one-dimensional Newton 

iteration on AV1 can be effected such that the final velocity given 

by (3.1-2) will converge to the desired value in a few steps. The 

classical one-dimensional Newton step is defined as 

Ax= -f (C. 3-1) 

where f(x) is the value of the function that is to be driven to zero 

byproper choice of the Yariables xand f'(x) is the derivative of 

that function with respect-to x. 
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In this simulation f(x) corresponds to the final velocity 

constraint, given by 

f(x) CAVI ) = V d - V (C.3-2) 

and f (x) is given by 

f (X) = (AV ) -, (C.3-3) 

The derivative is computed numerically by a balanced difference, 

i. e., 

dV V (AV 1 + 6) - V (AV1 - 6) (C. 3-4)
dE 2 6 (.34 

where 6 is a small increment, specified in this simulation as 

6 = .01 AV1 

Subsequent values of AV1 in the iteration are computed as 

follows: 

( (AVI)k (C.3-5)
6(AVI)k+l = (AVI)k - 2c. -)(AVI 
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The iteration is continued until the velocity constraint (C. 3-2) 

has converged to within some specified value of zero. The 

convergence criterion used in the simulation is given by 

4(AV1 ) < 5.0 fps (C. 3-6) 

This criterion gives good results as well as convergence in two 

or three steps. To assure convergence the step size has to be 

controlled in the region of the solution. The control used in this 

simulation is simply a halving of the kth step size 6 (,Vl)k if 

the error, given by (C. 3-2), is not decreased on the kth step. 

When the iteration converges to the optimal impulse sequence, 

the orbital and segment quantities as well as Ts and LVA are 

computed, as in the velocity unconstrained simulation. The iteration 

cycle corresponds to particular values of V., N, and X and 

represents one cycle of the iteration on X described in Section 4. 2. 

When a sufficient number of cycles are run to plot a complete 

Ts vs AV curve, new initial values for AV1 are read in and another 

N-burn family is simulated. The results of this simulation are 

summarized in Figures 4. 9 and 4. 10 for two values of V.. All of 

the orbital and segment quantities given in Chapter 4 for the 5-burn 

maneuver are computed by this simulation. 
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C. 4 Two-Dimensional Search for Specified V. and T s 

If the transfer time Ts is specified along with V, the optimal 

N-burn schedule can be obtained by selecting the proper starting 

values and iterating consecutively on the variables AV1 and X 

until the velocity and time constants are satisfied. The iteration 

follows that described in C. 3; the two dimensional Newton step 

is defined below. 

Let the generalized 2-dimensional constraint o have components 

*1 and 02' where 01 is the velocity constraint given by C. 3-2 and 

2 is the time constraint given by 

=*2 (>) Tsd - T s (C.4-1) 

The step 6(AVI), 6?, that drives (C. 3-2) and C. 4-1) simultaneously 

to zero is given by the solution to the following equations: 

d = 6(AVl) T () = - 1 

(C. 4-2) 

do 2 = _V 6(AV,) +- - 6(X) = - 02 

1 
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If the variables are renamed as-follows 

zF 2=G 

AV1 = x x = y 

b02
 
= IT -- = G 

77= y -6- y 

Cramers' Rule yields the following solution to C. 4-2: 

GF -FG 
6xy y =6 (AV)x F x y- Fy G' 

xy yx 
(C. 4-2) 

FG - G F
6y Gy -Fx x Fy Gxx =6X 6) 

Step size control on both components of the step is employed 

as in C. 3. As mentioned in Chapter 4, this simulation is very 

sensitive to the initial values selected and it does not guarantee 

convergence unless the iteration is initiated in the region of the 

stationary point. Good initial values can be selected from the 

Tvs AV curves obtained from the 1-dimensional iteration C. 3, 

but since these curves supply the information needed, the 

simulation outlined here is only useful as a refinement on data 
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which must be interpolated from the T s vs. AVr curves. 

C. 5 N-Dimensional Search for Exact Solution 

Given an initial set of values IAVI, AV 2 .... AVN} (as 

obtained from the simulation C. 3), an N-dimensional step 

6 (AV,), 6 (AV 2 ), ... 6 (AVN) can be taken such that the new AV 

array will be driven toward that set of values which satisfy the 

first order necessary condition (3. 2-13) and the velocity constraint 

(3. 2-14). In other words, for i = 1, 2 ...... (N-i), AV i must 

satisfy (3. 2-13), and AVN must satisfy (3. 2-14). Therefore, the 

N constraint equations which must be satisfied are given by 

*1 (AV 0 , AVI, AV2 ) = 0 

F 2 (AVI, AV 2 , AV 3 ) = 0 

FN- 1 (AVN2, AVNI, AVN) = 0 

G '(AVN) = 0 (C. 5-1) 

where AV 0 is zero. 

The N-dimensional Newton step 5(AV) that drives these 

constraints to zero is given by the solution to the following set of 
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equations: 

dF 1 -= v 6(AV9+ 1 ) +., &Y(AVN) = -F1 

dF2 bF2 6(AV,)+--bFY2 6(AV2) +-,+	bV--- =-FbF2 N(A(VN) 2 

'6FI WN-I 5( V ) + bFN 

dF_ (AV) +AV 2'1 (AVN = -F 
= b G + 'aG 6(V

d(AVI) + 6(AV2 + + b 6(AVN ) (C.5-2) 

Since G is a function of AVN only, 

bG iN (C.5-3) 

S1 i=N 

and since Fi is a function of only AVi_, AVi, and AV i+1' 

bF. 
TA 1 - 0 For j # (i-1), i,(i+1) (C.5-4) 

The step components 6(AVi ) can be solved for from (C. 5-2) 

using Cramer's Rule; but, before giving the result, define the 
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vectors 

AV 1 , AV2 AV NY..-

_ '6( (Av ..Av 1 , 2 

= {Fl , F2 . FNI , G} (C. 5-5),. 

where x is the vector of parameters AVi, 6x is the Newton step 

vector, and 0 is the generalized constraint vector. Hence, the 

N-dimensional Newton step is found from the solution to the 

following equation: 

D6x = -_ (c.5-6) 

where D is the matrix of partial derivatives given by 

... FINFF 1 F 1 2 

F 2 1  F 2 2  ... F 2N 

D =(C. 5-7) 

F(N-1), F(N-1) 2 ... F(NI)N 

0 0 ... I 
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such that [D]..
1) -6AV-

The new value for the parametek vector is computed from 

Xk+1 .= xk - xk (C. 5-8) 

The Newton step increment is given by Cramer's Rule as 

N 
- =k D 

where each element N. of the n-dimensional numerator vector N 
I 

is the determinate of the matrix of partials D with its jth column 

replaced by the constraint vector g. 

The partial derivatives are computed numerically by 

differencing, and the step size control utilized previously is applied 

to each component of the step increment vector. The analysis 

was terminated when it became evident that a more sophisticated 

step size control was necessary to make the N-dimensional 

constraint converge to within strict tolerances. 
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