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INTRODUCTION

In his first paper on wave mechanics Schroedingerl presented his
famous equation in the form of a variation principle, indeed just the
variation principle which we will be discussing in the next section.
Thus our subject had deep roots in quantum mechanics, and of course,
the general use of vardiation principles goes back much further.2
Similarly the variation method, the general approximation method based
on the variation principle, which we will be discussing in detail in
subsequent sections, is one of the pillars of applied quantum mechanics
since most approximation proceduresg are either direct applications of
the variation method, or can be related to it in one way ox another
(and of course the use of variation methods to.approximate the solution
of physical problems has an even longer history).

Finally, if our choice of subject is in need of further justifica-
tion, let us note that in recent years Ruedenberg3 has shown that by
taking the variation principle rather literally and imagining that as a
molecule forms it actually does, se to speak, try one wave fgnction
and then another, relaxing a bit here, tightening a bit there, before
finding the most suitable wave function, one can get real insight

into the nature of chemical binding.



I. POSITIVE EERMITTAN OPERATORS

A positive Hermitian operator is a Hermitian operatdbr whose eigen—
values are all non-negative. For our purposes the most important
consequence of this is that the expectation value of such an operator
is always non-negative. Proof: Let 0 be a positive operator, ?s

w

a complete orthonormal set of its eigenfunctions and Op - its

J
eigenvalues. Then, using a discrete notation, ¢ ¥, O 3} =

Z e ¢ Y’,‘:) Ly \'2" which is 7/Q:v)‘éince by assumption the ©;
[y

are # O .

We will also have use for the following trivial extension of these

ideas: Suppose that although O is net positive, we deal only
with \i/ 's such that ("P\:) \I/):D unless 92 D . Then
clearly we still have & O ) @wo for all such \P .

We will say that such an O is positive with respect to the
functions ‘}b .

II. THE VARIATION PRINCIPLE

o
Given any function \{J for which the requisite integrals
existl:A (we will refer to such functions as "trial functions") we can

calculate the real number
Y CN %) "") (o
e 2 (¥R /F ) (1I-1)

v .
Evidently §& would be the average energy of the system if the system
Py

were in the -state described by the function \%J .B Similarly if
¢ .

\EJ is another trial function we can calculate the corresponding



m?

¢

712

1)

average energy

A K A A
£z (H93)/, %) (11-2)
g
One property of & and &£ is clear immediately: since

each is an average energy, neither can be less than the smallest pos-

sible energy, that is neither can be smaller than the smallest eigenvalue

of ﬁ . We will return to this point in a moment. To derive
A o~
other properties of E and E& we now write \P as
K N
\{; . (X1-3)
Y

thereby defining AN . Then using (1) and (2) we find

A

B ) v EuRIE, 88 (B, uh)

. (I1-4)
(¥, &
b3 A ") o~ ~ v O

so0 we can write (4) as

Howaver from (3)

®, A AL o w
gr (BB (X add w(RebHR)

(& ¥)
Finally we use the Hermiticity of (\— Ej te find

w.oA o~ %
&3 (G209, 5) + (& a-E)) 5 (B,00-5)3)

(&, 9

We will now draw several importent conelusions from this result.

(I1-5)

{1} Suppose that

-8 P = o (11-6)

~ A
that is, suppose that and £ are an eigenfunction and

the corresponding eigenvalue of |3} . Then (5) becomes



[ ¥ Ly
ae R (X, h-® &)
=& — (I1-7)
¥ v)
~ ¢
which tells us, among other things, that when &M is small” so
. o x o~
that Qe’ is nearly the eigenfunction xz! , then © differs
P
from the corresponding eigenvalue = by terms which are at least
[ ]
of second order in & . Therefore the eigenvalues of H are
o~
stationary points of £  a¢ a functional of $
M,
[2] We will now show that B has no other stationary peints.
5 ~
Thus suppose that E is a stationary point of E as a functional
~

of b . This then requires that the first order term in (5)

(-85 + (8, -5

o~
must vanish for all sufficiently small A\ and hence in particu-
lar must vanigsh for
Ao ¥
A= e G-+
where é is an arbitrarily small real number. Thus we must have

A A A
(-8 ¥y M-DP) =p
which can be satisfied only if

(-8B % =0

Therefore we have the result that if = is a stationary point
* %
then "B is an eigenvalue and the corresponding Y/ ig an eigen-

function. The characterization of the eigenvalues and eigenfunctions
of = provided by [1] and [2] comstitutes a statement of the

variation principle.

- % -
[3] Suppose now that = is the smallest eigenvalue of L4

%
Then {¥% =-E:) has only non-negative eigenvalues and thus is a
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positive operator. In particular then this meansg ‘that however large

~y
A may be

~ A A
(K, (M-B)A) 70O

and hence, from (7) we see, as we.moted at .the outset, .that the.lowest

7
eigenvalue of H is the absolute minimum of & as a functiomnal
LW X
of W .~ On ‘the other hand if is not the smallest:.eigenvalue
o~

‘then by cheosing FaN to be an .arbitrarily -small linear combination

o~ R O~
of ‘the lower (higher) eigenfunctions -we .can-make ( AN -y Ch —’E)’Zl ) -less

than .(greater than) zero. Thus the higher -eigenvalues of .kﬂ are
NG L)
only stationary points of = -as -a -funmctiondl of \E/ .+ and

are neither maxima or mina‘ina.
~

[4] That the lowest eigenvalue is an absolute minimum of T is
a very striking result. However it .does not.in.general .serve to.char-
acterize ithe energiles of :the' _groqnd states of tatoms .or molecules &ince,
because of the vequirements .of the Pauli Principle, these.ground states
are usually not the lowest-states of ‘the.Hamiltonian; for example the
ground state .of the lithium atom .Is (ls_)?f.Zs dnd.-not (lfs)"3.

Happily however there is .a similar theorem which .is -applicable to
physical ground states and te various excited states as well. ‘“Namely
suppose “that H commu!e‘gs with .certain .commuting .operators @J
.80 that we can form a complete .orthonormal set of eigenfunctions of

T

H’ which are also -eigenfunctions of

aq’

s 1.8., can be Ilabelled
by the eigenvalues of . We will say that functions having .the
same Q/ quantum numbers have the same symmetry, and we will say

that the two funections which have different 9 quantum numbersg,

and which are therefore orthogonal to. one. another, have different



symmetry. (We will have no need to compare functions associated
e
with different sets QJ .) If then T  is the smallest eigen-
value of Eﬁ for states of a given symmetry (for example for states
. X
satisfying the Pauli Principle) it follows that CH-H‘E.) will be

a positive operator with respect to functions of that symmetyy berause

clearly such functions will be orthogonal to all the lower eigenfunctions

of CH-"é) .
N

If now we confine attention to. \P with the given symmetry,
™2 N
then A= Y — g will also have that symmetry and therefore

S
however large A, may be, still

I > S IAg
(&, (w-8DD DR/L
Thus we have the result that the lowest eigenvalue of H associated

o
with a given symmettry is the absolute minimum of E as a-functional

of trial furctions of thai.symmetry.

~ [5] We now note that if H commutes with Q\J and if
p AR
Yy’  has a definite symmetry then the variation & (Q-E)™N which
played the decisive role in [2] will have that same symmetry. Thus
we may generalize the result found there as follows: If \,—% com—

x
mutes with % and if ‘-P has a certain symmetry, and 1if &
is stationary with respect to all variations of that symmetry, then
A

\[z is an eigenfunction and = is the associated eigenvalue,

In short, combining this last result with [1], the variation principle

applies separately to each symmetry type.

X
[6] As a generalization of [4] we have the following: Let =
~
be an arbitrary eigenvalue of I} and confine attention to \{/

which are orthogonal to all eigenfunctions of 3 whose associated



»
eigenvalues are less than Eﬁ . Then clearly we will have

P

(X, G-EXR) 7D

and thus an arbitrarv eigenvalue of k* is an absolute minimum of
~

B as a functional of trial functions orthogonal to eigenfunctions

asgociated with smaller eigenvalues.

I1I. THE VARTATTON METHOD

The results of tlie previous section are of great practical impor-
tancé because they suggest a soundly b;sed method for approximating the
eigenvalues and eigenfunctions of %% . ‘Accoxrding to the wariation
principle we can £ind the eigenvalues and éigenfunctions of ¥% " by

A~ Y
caleulating = for all \F , and then looking for statiomary points.
In praectice this is usually impossible ~ oné cannot examine all Cir .
However what one can do is to examine 2 restricted-class of trial
functions, a class no larger than one can handle, and then take the

Y]
stationary points of € within this restricted class &s approximations

to the eigenfunctions and eigenvalues of ° ¥% .

This procedure is known as the wvariation method., We will call the

~5
g which yield stationary values, optimal trial functions and denote

~
them by Gg ,‘Egssibly with a subseript. The corresponding B  we
will denote by E , again possibly with a subséript.

We said that this is a soundly based method. To support this as-
sertien consider first the lowast state of a given symmetry. Then [4]
of Section I tells us that we have a good approximation scheme in that
it is capable of systematic improvement. Namely if we enlarge the class
of trial functions (assumed to be of appropriate symmetry) then the

Fd .
minimum EE will almost“gertainly decrease ( in any case it



cannot increase) whence, from [4] we will have a better approximation
to the energy. Note also that we have-a quadratic convergence to the
eigenvalue in the semge that, as follqws from [1], the'errof in the
eigenvalue is of second order in the error of the eigenfunction.

For the higher states of a given symmetry the situation at this
point is not so clear. Result [6] of Section I is of little practical
use since one usually cannot guarantee the required orthogonality.

We can of course say that if we enlarge the class of tyial .functions
we will make the higher éé "more étationary", but this may or
may not represent a numerical improvement. Heowever in a later section
we will discuss a practical way of cheosing trial functions (the linear
variation method) which does permit a systematic improvement in the
approximation to higher eigenvalues.

Even from these brief remarks it should be clear that the varia-
tional approximation to eigenvalues is a soundly based ene. It is
harder to make a definite statement about the quality of the'eigenL
function approximation, mainly because there are so many figures of
merit which one might use —— the overlap between the approximation and
the edgenfunction, the accuracy of particular expectation values, the
energy variance (‘% &'}"%”z’q')‘ /C‘i) ) ‘ etc., ete. We will not
attempt a quantitative discusdion of these many possibilities but
we will return to these questions from time to time in the succeeding
sections-.

In a general way however one usually says that the approximation

- - e

te the.eigenvalue furnished-byf‘fi is better than the approximation
.



A
to the eigenfunction furnished by N because, as we have already

noted, the error in the former is of second order In the exrror in the
latter. 1In thié connection though it should be kept.in miﬁd that to
some extent "erdex" is a theoretical concept, and that second order
quantities are-guaranteed to be smzller then first order quantities
only if the order parameter is "'sufficiently" small, Thus A K* s
l'ess than X only for x< \/A“ .

Also it should be admitted that the preceding discu§siqn of energy
is directly relevant-bnlﬁ for very light systems since usudlly it is only
in such cases.-that total energiles are of immediate interest. Rather one
is usually interested in comparatively smdll eneré? differenceé; exel-
tation energies,ionization energies, changes in malecular energy with
nuclear configuration, etc. ~ Therefore since the difference of two
upper bounds is not in general, a bound, and since improving the indivi-
dual upper bouands will not necessarily improve the difference, improve-
ment of the accuracy of the total energy is not of immediate concern.t
(0f course the difference between an upper bound and a 1qwer bound is
an upper bound but that is another story). These considerations might
then lead one to a pessimistic view of the applicability of the vari-
ation method to atoms and molecules. However in practice 'the opposite
situation préviils - differencing of results of only moderate “individual
accuracy often giving results of even very high accuracy. In some cases
this can be understoocd-as a canéellétibn'of.obﬁioﬁs‘éommoﬂ;eixdné%‘but
in other.cases, for example in recent calculation on_}lez,2 the process

is by no means well understood.
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IV. THE VARTATION METHOD: -MORE DETAILS

In general the set of trial functions will be labelled by arbitrary
numerical parameters and/or arbitrary functions. To implement the
variation method then what one does in principle, and often in-pract;ce,
is to calculate E§ as a function of the variational parameters
and/or functions and then determine their optimal values by settimg
equal to zero the derivatives of E; with respecE to each parameter
and function. This approach, when carried out formally, yields a set
of équations which must be solved to determine the optimal values of
the variational parameters and/er functions. We should however peint
out that in many practical calculations which must be largely numerical
rather than analytiecal, such equations are often partially or completely
bypassed in favor of some sort of direct numerical search procedure
to locate the stationary points of E; .

For theoretical purposes, and sometimes also for practical pur-
poses, it is, however, convenient to proceed a little more indirectly

o~

in the formal discussions. Starting from a given W » Suppose

that we change the parameters and/or functions infinitesimally in some
~

way so that we go from W to a "neighboring” functien. If we
e o~
denote the first order change in 4/ , the variation in Q( s

~
by SV¥ , and if we write (II-1) as

o e Iy —
() (B~E) ) > (IV-1)

o N
then we see that 5551 s the first erder change in =S , is deter-

mined by
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O Dy B LS Lingd [ Iv-2
(&% -2 D & (&, -8 F) —8T (F, F) = o (1V-2)
A ~ ~
Now the “P are these Y which make & stationary with

respect to all wvariations possible within ‘the set. Thus we must have

(6% -8 $) + (Hea-Byed) =p  “ou® 5¢ (1v-3)

where the quotation marks are to remind us that we are requiring that
equation (3) hold only for variations within the set. We will some-

times write (3) as

3L, w-EH)$Y =p © (Iv-4)

N i
without explicitly stating the qualifications O€ =p and "all"
S
5¢

Equation (3) together with

a -
(¥ (h-8) $) =0 - (=)
) . s P
are then the equations to be used to determine the Y and &

and these are the equations which we will use to characterize the
variation method. An obvious procedure at this point would be to
o

eliminate k& from (3) by means of (5), solve the resultant equa-

’ A ~
tions for YW and then return to (5) to determine £ 3 and
indeed this just leads to the straightforward procedure which we outlined
at the beginning of this section. To see this, and also to make our

notation a bit clearer, suppose for example that the set of trial

functions is labelled by a set of N (independent) real parameters
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~ a«rM + That is

’&”Qz oo T
CFCQ;-”G-M) C%(

For example for a 51ngle patticle we mlght use \]{-—_29{3, Co\,xgowff.a._., )

6‘!’ is

Then evidently the most general

g § = 2: oM@ g4
L= 3&

with the 3& L real but otherwise arbitrary. Inserting this into

{3) we then have

s

?:[( M):C\%@) c‘ac‘l)) (eb(&) G3~£) ?ri?(a) )lgm =g (1V-6)

which, we will new show implies that

( 286) 5 3-8 $\3y -(—(W) W-)2P0 N, . @D
o8, s T

Proof: That conditions (7) are sufficient to satisfy (6} is obvious.

That they are necessary follows from the observation that since the
o~ . Al -

3G are arbitrary we can choose 50-; =p for U < 1 and

g&; '-‘{’O . Then (6) vields (7) directly.

' & /54
Let us now calculate / v Qﬁ . From (5) we have

¥ W0, Lég{é),t?tc’i)) S

L, ¢
. (4@ A +( 4 4
4811 i1 [C&m))ci,[g;) ( &?,%a_,_"{?’_-)]
Y]

(b6, @613 |~ 565




o

5y

28

28
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Fal
- Y 1 - P (5) 2818 ]/
- FwWsT Liwg E [(% l&(&))'i’ (@(B% S > C.@@{.‘)} 4‘?&33)

and hence finally

- [ ( 3;,1’,&@;) 5 (B-E) JPLE.)) + (@Lﬂ -€) B@tﬁ))}/ﬁw) 409

Comparing this result with (7) we see, that as we stated earlier,

equation (7) with (5) ares equivalent to

v

I}
0k o o] 1 =1 XL
3&5 5 \ - (IV-8)

We have implied that the use of equation (3) offers certain
advantages over the use of equation (8). As a first illustrai;ion of
this point we mnow remark that often (5) is a special case of (3), so
that (3) alone then suffices to completely characterize the variation
methoéi. Namely frequently (the linear wvariation method which we will
discuss in detail in subsequent sections is an important case in point)
a set of trial functions will have no fixed overall scale, that is if
,\T’ is a member of the set then so is A(‘-]\:’ where A is an
arbltrary constant. In such cases then, among the neighbors of Q’
in  the set will be (H—SA) Q? where &A is a small real constant,
which in t-;zrn implies that {(3) must be satisfied by é¢=‘— Sh S’

Inserting this éq‘ into {3) and cancelling a factor of SA then

yields (5) which proves the point.
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V. THE VARIATION METHOD AND MOMENTS OF THE SCHRODINGER EQUATION

A
Using the Hermiticity of (H—-E) s Eq. (ILV-3) can be written

as

or

LA W '8 —
Ro (68, M-5F) =p  datss 0D

We now note that if, as is often the case in practice, there are no
2 priori reality conditions on the variational parameters and/or
functions then the equations (1) are equivalent to the seemingly

stronger equations

(5§, &y -8) $ =0 SNt & (v-3)
-4
To see this let us suppose that the W are labelled by a single -
(%
arbitrary function X , the generalization to several functions

and/or parameters then being obvious. Then in general

§¢= 2% 59

?

2>

so that (1) becomes

TR

where, of course, there is noe need to qualify "all". That there are
) ~
no a priori reality restrictions on XK ‘means that we can vary its

W __r\.[\ A& A
(ﬁ oo EM) ¥ ((‘*"g) %) a\y.”)f"“ L0 8% (4

real and imaginary parts separately. Therefore we may replace (4) by
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Al
¢ n A
(?F C&‘@g? CH~E)‘$> . ((_\:}-—E) {P)éﬁ‘ (8"9%.) =0 5 ol 6Py (v-5)
%

and

A

Iy - A -
dY (54 -8 ~E)Y Y =
- o G e)"r) ¥ (c\x )Y, ﬁta’i)r_) 2p | o0 8z (v-6)

where CS’?)R, and Céi?l are-the real and imaginary parts of
éj"}i- and where in (6) we have cancelled out a factor of i. We
now derive (3) as follows: (6) is to be true for all CS'?L):L and
therefore in particular, for a given (Sﬁ) R, , (6) must be true
with LS'(}\L)I = (& !;“)R. . Making this substitution in (6) and

comparing with (5) then immediately yields

bQ’ & .
( by CSQ')]L) h—8) i) =0 , ot 6F) V-7

Similarly for a given {éﬁ)i , (5) must be satisfied with @&)p_g G&ﬂ)l

which then leads to

[a)
(%@’ﬁ)ﬁ) (4-%) ‘({:)% ot 15")%)3 (V—8)

If now we multiply (8) by (-i) and add to (7) then the result is (3).
Having gone through this in detail it is now useful to note the
following quick derivation: If there are no 3 priori reality restrictions

A A
then if 5\ g is a possible variation of - within the

Sek” then S0 is 8% = LS ©
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(Proof: Choose (5{?‘ )p_,-_ - (51§)R P thﬁ)mz (5\’93?_‘ ). Therefore

(1) must also be satisfied if we replace 5‘?— by 16\'}- .
Doing this and cancelling a factor of ¢ then yields
() [ o ™~ S5
(6%, -E> F) + (y-H)H &¥) = (v-9)

Comparison with (1) then yields (3). Finally we note that (1) and (3)
are trivially equivalent if ¥ is explicitly real and if one re-
stricts oneself to real trial functioms.

When (3) applies it provides an interesting and suggestive inter—
pretation of the variation method. In a general way, given a function

F , quantities of the form

(G, F)

for various choices of G, are referred to as "Moments" of F . Thus we
can say that when (3) applies, the variation method approximates making
N o~ . P s
CR-E1 Y = o by requiring the vanishing of a restricted set
Q
of moments of (H~E) ¥ (Note that the other basic equationm,
& £ \?ﬂ) = is also in moment form)
The approximatien of requiring enly that certain moments of
A
CH,.@] ~ wvanish, is certainly one which one.might come upon, and indeed

one which people have come upon, without reference to the variationm

method, In particular consider the linear variation method (which we

will discuss in more detail in succeeding sectdions) in which the set

of trial functions censists of functions of the form
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ﬂ
A\
¢ = (V-10)
L=y
where the -4ﬁn (the "basis set") are a given sSet of linearly in-
dependent functions, and where the ‘EQL‘ are- arbitrary parameters.
If no reality conditions are imposed on the EXI” , -then (3)
applies so that with
- M - = . . 3
o 1
s N A
\{JF—" LZ.;_s G\L' ¢t- ) 6\{' Z: 64\" él— 0Ty (v_ll)
} =}
we‘have
3%..
7: Z 5& (—‘i’w, -8 ) = 5 080 s§&,,
K=} L=y .- Co
and therefore (recallathe proof follewing (TV-7)
1
Z (,89“ W~8) aa_) 0~1, =7 Kl v m M (V-12)
L=

v

. Now the point we want.to make is that ene can arrive at these same
equations, and people often do, by first writing down the "Schrodinger
Equation (Fhe reason for the " " will be discusseé in a moment):
(u-%) Z &&=
L=t

agﬁ then simply taking the scalar product with each &ﬂ& in turn.

Ibis sort of approach to the derivation of equations (1L) éuggests
other possibilities. Since the use of o~ has special reference

to the variation method let us consider the more neutral "equation"
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M LY
A4
(y-e) LZ R | =p : (V-13)

=Y

Then we note that although the procedure of "taking the scalar ———- "
provides one way of trying to determine Eg and the Eix, s
there are other pessibilities. For example one might try to satisfy
(13) identically at M selected points, or-more generally one might

try multiplying through by quite another set of M fgnctiqns and

integrate to find

rM .
N N S
E (Y, W-B) &) Sy =p Kaloo B, (V-14)
[Evidently this reduces to the second suggestion if the 1Fk are

Dirac delta functions]. These observations of course raise questions
as to the relative status of these various approaches. A;e they equi-
valent? Is one superior to the other? First as ;o the equivalence: 7
In general the different procedures (different choices for the set of
Fw ) will lead to different answers. The point is simply that (13)
as it stands is almost certainly an inconsistent eéuatidﬁ - there are
no 5£L~ and E; which satisfy it (hence our Lse of " "); or

more precisely, it is a2 consistent equation only if there happens to

be an eigenfunction of H which can be written as a linear combination
of the éﬁ; . Since in practice in & complicated problem this is
unlikely, we may take it that "equation" (13) is noébcoﬁsistent and,
hence it follows that different methods of "solutien" will in general

lead to different results.
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Now as to the advantages of one method over another. As we have °
seen the variation method leads to (2) and therefore, as we know, this
endows it with the virtue that the lowest % is a guaranteed upper
bound to the lowest eigenvalue of E{ of appropriate symmetry. Indeed,
as we shall see in the next section, it is even more virtuous: the
?;‘: which are selutions of (2) are, in order, guaranteed upper bounds
to the M lowest eigenvalues of H of appropriate symmetry. Thus

there is considerable reason to choose (2). However recently there

has been a revival of interest in the use of equations of the form

('Xu, -2) $) =0 k=t .ae . (V-13)

\Y4
where may be of the form (10), but may also be of a much more

complicated structure, and where the Xy may be given functions, or
given functions multiplying operators, or may involve some of the
arbitrary parameters and/or functions in Y&J which are to be deter-—
mined from equations (15). In any case the reason-for the interest is
guite simply that with the forms of q: which are in use (or whieh
one would like to use) in the applications of (3) to atoms and molecules,
the integrals in (13) are often quite difficult (or impossible in
practice) whereas with a :L of similar form and with a suitable

" choice of the T , the integrals in (15) are quite tractable.

We will net discuss such methods further here but instead will refer

o .
the interested reader to the original literatire.  We would emphasize
¥ 1

however, that such methods do not in general yield bounds.
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VI. THE LINEAR VARIATION METLHOD

Let us now return to Egq. (V-12). This is a set of linear homo-
A

geneous equations to determine the Owy . It has non~trivial
: . £

A

solutions (that 1s not all Q=9 ) only for certain values of 1= s
those for which the determinant of coefficients (the "secular determin-

ant") wvanishes

| Can, ca-€) d | =0 (VI-1)

Equation (1), the "secular equation", is aﬁrM'th order algebraic
equation to determine Eé A; and incidently note that in accordance
with the discussion at the end of Sec. IV, we have not had to invoke
{IV-5) explicitly since the set of qj which we are using clearly
has no fixed overall scale. We will denote the roots of (L) by %rn
with K=l ... M and %\ 4 é:_\;. & e e, Similarly we will
denote the corresponding Qf by Q’K .

The set of trial functions (V-10) has the special property of

forming a linear space (a subspace of Hilbert space) since any linear

combination of such trial fungtions is again a member of the set. In

. R ~y ,
contrast the set of functions € with o a variational
. . I, T ad
parameter 4o not ferm a linear space since for example € Te .
. ~ R . .
is not of the form ¢ + There are other interesting sets

of trial functions which form linear sgpaces. Thus the set of all
functions of a given symmetry form a linear space. Also there has been

considerable interest in the so called 'S - limit" for Helium~like ions
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in which one deals with all functions of the form \T/C'*:, ’)‘v) where
n}-l and 'L;, are distances of the two electrons from the nucleus.
Clearly the set of all such functionsy or indeed the subset of all
such functions which are symmetric (antisymmetric) form a linear _space.l

We will now show that :whenever the set of trial functions forms

o~ A

a lineay space, then although the "{’k and B (we will use the
same notation for the general case as for the special case (V—l@)} are
generally only ap_prox:imations to the eigenfunctions and eigenvalues
of H , they are exact eigenfunctions and eigenvalues of the "projected

Hamiltonian®

W o2 e ‘ . I-2)

where i is the Hermitian projection operator onte the linear

space spanned by the trial functions:

Tod = @ ww ¢ is in the space
T =0 Ve {7 is orthogonal to the space

Proof: From [1] and [2] of Sec. LI the conditions

(A&, G- 8 + CBu,(F-ED)=0 o D (VI-5)

A
are both necessary and sufficient for ¥« and éK to be an

, . —
eigenfunction and corresponding eigenvalue respectively of b

Now any A can be written

&,: AL\ - AJ__ VI-6)
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where A-n is wholly in the linear space and where Q X is

orthogomnal to thé space. In particular then, this means that A,L is

- A
orthogonal to ( H- {:}@ Y ,» and therefore that the contribu-
tion of AJ_ to the left hand side of (5) vanishes identically.

Thus we are now left with showing that

- 0N -
( Qh) (‘r‘}-gu} “!‘u) A (-‘s:k, (- \gu) tﬁ“.) =0 MDAy (VI-])

We now note that since

o a
we may replace H in (7) by ¥ which yields

{(VI-8)

A n P
cil“ ) (B~Ewx) "h-} +—£$k’ n—€ W) Dy} =p ako Ay

>

But now we are finished because we know that (8) is true, since it
is just. the basic equation .0f the variation method written in somewhat
different notation. Namely since we are dealing with a linear gpace

A
it should be clear that the functions which are-close to ik  can

(\.
all be written in the form % &Dn  where A“ is an arbitrary
member of the space and where & is a small real number. Thus
o
a general d%w ig of the form € Aw and this, when inserted

in (IV-3) yields (8) which proves the point. Of course any function

——

orthegonal to the space is also an eigenfunection of H with eigen-

value zero.
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The observation that for a linear space the QJM and B are
eigenfunctions and corresponding eigenvalues of the Hermitian operator
T-i immediately leads to the following important results which among
other things show that the sPu, and %K have some of the formal
properties of the eigenfunctions and eigenvalues of 2! (these results
can dlso be derived directly from the variational equations, for example

.

from the equations (V-12) in the case of the linear variation method):
Farl
(0) Oonsidering % as a function of the variation parameters and/

(s -~ . . -_— D
or functions, E = &, is an absolute minimum, ¥ =%¥m is an
. o
gbsolute maximm and €~ Bw , d LM are only stationary

points, neither maxima or minima.
o~
(1) The Ex are real - this of course has been clear since
Sec. II.

. @& &
(ii) 1If Ek %+ El_ 5 Y and ¥, are automatically

~ o
orthogonal, while if By -z.E-L but \itu& '7’3 ¥ ,» L.e. if there is
@
degeneracy, ‘~¢K and ‘P can be chosen te be orthogonal. A
0"
general degenerate Y is then some linear combination of the

~
orthogonal ones. If further we assume, as we shall that the Y« are

normalized then we have

(.\?u, $) = Su (VI-9)
o , & & &
(11i) Sinece B L = &L we have, from (i) and (ii),

that

(6, T ¢ S hy $ - €L S,

] 7
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) o ¢
or since I\ ‘?‘1@1 Ny and W Wi = M
A a A
( Y, B4%) = B Slar- (VI-10)

et
Thus in words: the “’PL{ are a finite orthonormal set of functions

which diagonalize H within the finize space which they span.

. : A A

(iv) By, = ecd. + b, (VI-11)
where ‘ét‘l__ is orthogonal to the finite space. Proof: Since

A W
the “H span the space we can certainly write Bl a ng&a"}“i .

But then from (9) and (10) and the faect that (—\(;l«, “P.L) =D we have
Al = (.\?u_, Y \-‘?‘l_') = Eu_éu\_ and therefore (11).

(v) As a converse theorem)if we have a set of functions
with the properties (9), (10), and hence (11) then if we use them as

basis functions in a linear variation calculation, the optimal trial

0 A
funetions will just be the Y again and the ¥ will be the
EK . Proof: Let T be the projection onte the space of

o - a
the P . Then we have ¥ Y= T § . which from (11) equals

g\_'n’ 3,_.‘-“\\3_ = gL“$L . Thus the @k are eigenfunctiens of
'—\.-}' with ek the eigenvalues, and this proves the point.

Although the set of trial functions (V-10) and the "s-limit"
functions each form a linear subspace, there is one obvious difference
between them; the space formed by the former is of finite dimensionality
while that formed by the latter is infinite. This has imporrant con-
sequences in practice@s -One can fairly readily solve

finite problems, particularly algebraic problems, to arbitrary accuracy
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(and the same is true for orvdinary differential equations), However
really infinite problems typically imvolving the solution of non separable
partial differeritial or integral equations, are usgually intractable
and make it necessary to introduce further approximations, although
recently partial differentisl equations in two varisbles, such as
occur with the S-limit problem have begun to come under direct attack.2
Usually these further approximations consist simply in again using

D
the variation method but with the %’ finitely, though not neces-
sarily linearly, parametrized subset of the infinite. linear space.
0f course if the finité subspace is linear then the {; and E
will be eigenfunctions and eigenvalues of ¥ A where W is
the projection onto the finite subspace, '

Since the linear wvariation methed leads to a finite problem it
has been widely used and goes under various names: The Ritz method,
the Rayleigh~Ritz method, the method of linear variational parameters,
ete, As the name Rayleigh suggests its use predates quantum mechanics;
it has been applied to all kinds of vibration problems, and quite
generally wherever eigenvalue problems occur.

In atomic-and molecular problems one common application of the
linear variation method is in the configuration interaction method
(CI).4 Here, with i a fixed nueleus Hamiltonian, the 4%; are
Slater determinants made out of given spin orbitals, (the spin orbitals
often alse involving non-linear parameters - see end of Sec. VII). If‘

one uses all the determinants .of appropriate symmetry which one can

make from the given spin orbitals then one speaks of complete CI; other-
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wige one speaks of incomplete CL. In this connection it is important
to keep in mind that even with a modest number of spin orbitals the
complete CI problem, though finite, may become impractically large.

For example if one has 10 electrons and 20 spin orbitals one can form

_EEL ~ /M, TISh

te) o}
Slater determinants! Of course probably for reasons of symmetry not
all of these need be used but still the numbers can become enormous.
Thus partial CI, involving a selection of (hopefully) the most impor-

tant "configurations" aPk becomes the practical alternative when

one deals with even moderately complicated systems.B

VIL, LINEAR SPACES AND EXCITED STA'I.’ESl

We have by now mentioned several times that all the i%k‘ fur-
nished by the linear wvariation method have bounding properties. We
new want to prove this. More generally we will show that whenever the
set of trial functions form a linear space (having a definite symmetry
if symmétry considerations are applicable) then the successive é%wb
are upper bounds to the corresponding sucecessive bound state.eigenvalues
of K (of that symmetry).A

To prove this we first note that from (VI-9) and (VI-10) the

M
o <
average energy in a state described by W= L b P is

M ™ k=t
T 7 b (o

% — U=y Lat

M 58

7 )" &

- = ka) (VIi-1)
Z Z oo, i) Z "

W=y L=} eat
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and therefore is not greater than %!«;; where k—l is the largest

W for which ‘o + v . Further we note that there is at

least one linear combination of the fivst N % which is orxthogonal

to the lowest (N-1) eigenfunctions of a1 (having the same symmetry).
Frem what we have just proven the average energy for this function

will be less than or equal ®o éj\l while from [6] of Sec. II it is
certainly not less than & I\ the N'th smallest eigenvalue of 3

(of that symmetry), Thus we have, as announced, that

A
=
e N (VII-2)

We will now show further rhat the bounds (2) are improvable bounds
in that if we are dealing with a finite spate, then enlarging the space
will improve or at any rate not worsen them. Thus as already mentioned
in Sec. III, the iinear variation method provides a soundly based method
for approximating the higher eigenvalues of H.

We start with a basis set of M functions. Let us note this
explicitly by writing i‘%!« {(M>  instead of Ek » Thus in parcvi-
eular (VI-10) becomes

A
(e, 1 ‘?’\-) = e'ch) St (VII-3)

Suppose now that we add one more function Ci'? to our basis set.

We may assume without.loss of generality that 4” ig normalized and
A

orthogonal to all the Chg , and hence orthogonal to all the W

.
(=]

(& &) =\ (& $) = (VII-4)
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and of course we continue to have

(\s‘k\ ) = Ow (VII-5)

Let us write our new optimal-trial funerion as

M
& A ~ noo
v E o Yo i (VII-6)
P
where, for convenience, we will use the “M¢  instead of the C"k .
AN A
If we now insert S¥= 5\5"”1—‘%— +ob with Sﬁl.. and b

arbitrary, into (V-3) and use (3), (4) and (5), the following equations

result:

& o~ ™ A
( B ony—8) by -+ ($g, B L=p

(VII-7)
and
™ : o At ‘ .
v C@,H“?w._) by + L(gue) ~&lb =D (VII-8)
L)
From (7) we then have
A ~ %N / A~
v L= (.\)'L}}}‘fii)b (r_:_... IEL.CI"D)
s
which when inserted into (8), yields an equarion for &
A > ) (e, ndo)T
B - (@%f) = Z il = (2 (VII-9)

L=l E - G_L-CM)
= $
If the ., lm) are all distinect and if none of the (@,H vy
vanishes (we will shortly remove these restrictions) then {2 as a

A
function of E ebviously has the following properties: It has
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N A~
simple poles at B = & (W) SV es # Yt is negarive immediately
to the left of the poles and positive to the right of the poles. 1Lt
Ve
goes to zero through positive (negative) values when 8 tends to
positive (negative) infinity.
~ .
The solutions of (9), let us denote them by E. (MY, are then the
= A

intersections of &  with the straight line &~ (& vd) . The

situation is shown graphically below for M = 4,

o @-ﬂh
\d ]

“=
<

. — _--—mﬁf-—-— J—

3
.

Evidently we have (in general) the “separation theorem'.

+

A A a
B () & B i & Bl (VII-10)

and hence in particular

~ A
B Gan). & Fulm) (VII-11)

which is what we wanted to prove (for a more elegant proof see Appendix

4.



30

A
Turning now to the case of degeneracy among the BwW) |, the
qualitative picture isn't changed since one can consider ‘degeneracy as
a limiting .case of non—degeneracy.2 Graphically what happens is that the

[A NG|
appropriate’ , Y\ ) segments becomes steeper and steeper as-successive
‘ .

% u.U’A) come closer together, and in the limit becomé wvertical
lines. In particular them if (say) Ealdc ®& N =& then E iT)
will again equal & » though in general there would be no more
degeneracy; or more generally that if there istan o - fold degen—
eracy among the /E\u.{m) at the value & , then the ék_ tratad
will have at least an n-1 fold degeneracy, also at the value & .
However in anv case (10) still holds.

Finally let us consider the possibility that one, or more, of

0
the (.391 9 ~PL) vanish. Buppose in particular that in our
example ( &, 1—}5}:1,) becomes very small. This will mean that the
N
sections \1 on either side of the verticml assymptote at

g= E-.._,Lu) will hug the vertical assymptote more and more closely

since the strength of the pole is being diminished. Thus we will

have
t
i .
!
_~ | X
\ ‘
{
) A
In the limit then as (MW ) becomes very small we will evidently
find ‘&3 &)= E’l—‘("")- ] and in general the vanishing of
(d’z\:} L"[E,__) means: that gl_ ) remains an @K*Uv\as) as one goes on

to the next stage; however Eq. (10) still holds.



31

Although it is primarily of theoretical interest, we will now
compare the excited state bound one gets using only linear variatiom
parame:ters, to what one would get iIf one used linear va_r'iation para-
meters, and in addition could also impose orthogonality to lower states
as discussed in [6], Sec. IT. As might be expected, the latter pro-
cedure, if it can be carried out, will generally yield a better bound.
Consider the £irst excited state. Then suppose that instead of simply

using an (M+1l) dimensional basis set and trial functions of the form

LS ~ Py
E a. @ we further require that E G (& @) =b  , yhere
2

J( is the lowest eigenfunction of Ik “(with appropriate symmetry)..
Thus we can use this last equation to determine one of the EL
for‘which (‘?L &) Ho , in terms of the others. Let t‘h-is one be
SCM'H . Eliminating a:m-\ in this way then we see that this

procedure is equivalent to using as trial functions the set

oo M
§ o L 8] & - tm }E ra
) L=y {%, Ryt b=

Thus. this procedure corresponds to using the linear variation method
with the M funetions "I:(__ as .the basis set. We now note
that if we adjoin the function %y,  to the funetions K  we
will effectively recover our original M+l dimensional basis set and

therefore it follows from (1) with k = 2 that, .in obvious' notation,.

A A
E\ m) 4 =, (m+))
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—

On the other hand we also know from [6] of Sec. IL that if Ea is

the lst excited eigenvalue of I » then
A
B, ¢ B, Ww)

so we have

A A
B, % E, (m) & B4

Y

(Vii-12)

A,
which shows as expected that E‘,‘ (M) , if we could calculate it,

A
would be a better approximation to E.- than is EL[MH) . Another

proof of this theorem and of its generalization to higher states is
given in Appendix A.

The results which we have- found in this section hold for any given
choice of the (bk . Iy practice one'often imbeds parameters
("non-linear parameters') din the APK and varies them as well.

The reason for introducing non-linear parameters is that they are
usually-very effective in that one non~linear parameter can often do

=~
the work of many linear parameters. Thus a single parameter ™  can

v
~& ¥
produce an optimal exponent in &€ whereas it will in general take
several terms to do as well by linearly superposing for example
-t ~ ot
e o7 A4Te
) ) )
non-linear parameters (see for example the paper by Handler and Joy

ete. However the difficulties of dealing with

cited in reference 7) coupled with the increasing power of modern

computing machinery often swings the balance in favor of more linear
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paraﬁeters, i.e. more basis functions. When non-linear parameters
"
are used one usually chooses the parameters in each %’k g0 as to-
N .
minimize each Ew separately. This.in -general will medn different
S
parameter values in each Y , ‘however from what we have just
said, the bounds are still valid though one has to be aware of the
possibility of "curve crossing" as shown in the graphs below.

No. crossing . .5 . Crossing

oy

Non linear parameter Non linear parameter

Thus in the curve crossing case illustrated if one used the two mini-
mum values, one actually gets two guaranteed upper bounds to &y
rather than guaranteed upper bounds to B, and B, . Such pos-
sibilities aside, one price ome pays for having different parameters
in. different i;q 45 of course that (V;:Q) to (VI-10) no longer
hold. for WL, and so, to this extent the ':-{."\F: are less

like eigenfunctions of ¥} ' than before.

* VIII. SELF CONSISTENT FIEI:.D METHODS -~ INTRODUCTION

Tn dealing with systems in which many particles move gbout at not
too high densities and interact by means of long rangé forces, a

natural, and one would expect quite accurate, approximation is to re-
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place the detailed interactions acting on any one particle by a

smooth field in which the particle is then assumed to move independently
of the others, the smooth field representing the averaged effect of

all the other particles calculated in some self consistent way (particle
motions + fields ~ particle motions). Such self consistent field (SCF)
models; and various approximations thereto, have been widely used to
approximate the behavior of nuclei,A atoms, molecules, solids, liquids,
plasmas, galaxies., etc., so much;tﬁat they together with the linear
variation method comprise the bulk of the approximation methods used

for atoms and molecules.

In quantum mechanics the self consistent field idea is made precise
by using the variation method to determine the smooth fields. Most
simply let Y be a fixed nucleus Hamiltonian for the atom, molecule,
or solid under consideration se that we need consider only the electroms.
Then in accord with the above ideas we associate a single spin orbital
with each electron and use trial functions of the form
ig\: \ Q§ )Q; e :Fﬂ \ r
the use of a Slater determinant rather than a simple independent par-
ticle product being required by the Pauli principle. The optimal spin
orbitals (5‘; are then determined by the variation method. This
procedure is known as the unrestricted Hartree-Fock procedure (UHF),
and we will discuss it in detail in the next two sections.

From such simple ideas however SCF methods have been developed in

many forms and varieties. Without attempting a complete review let
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us note some of the reasons for this, TFor a more detalled summary and
references to the literature we refer the reader to recent papers by
Kaldor and Harrisy by Kaldor¢ and by Larsson.1

(1) As we will discuss in Section X, for open shell states which
on simple one particle models would be described by single
determinants made up of spin orbitals of appropriate symmetry, UHF often
fails to yield <p of proper symmetry, (total spin, angular momen-—
tum, ete.). To ensure proper symmetry oneAmay then further restrict
the Q& in some way, for example in atoms one can require that
the self consistent fields be effectiéely a central field which is the
game for all the orbitals. Algo, if the syﬁmétry req;ires it, one may
have to superpose several determinants (vettor coupling) formed from
such restricted spin orbitals. To put the matter morehphysically -
already the Pauli principle which requires the use of determinantal
wave functions, rather than simple products, is to some extent in
conflict with the original independent particle picture. It is there-
fore not surprising that requiring further "cooperation" among the
particles in order to ensure proper overall symmetryqféquire further
concessions. ‘We should however point out that in making these remarks
we have in fact inverted history. 'The restricted schemes were developed
first., Later (for a brief review see Larsson's paper) there were
reasons, both formal and physical, for relaxing the restrictions on

~

the ¥: s total relaxation yielding UHF, but various intermediate

stages have also been discussed and wused.
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(ii) The- physical reasons for relaxing the restrictions, and
therefore the symmetry requirements, often had to do with the fact that,
say for open shell atoms in a simple central field model, the closed
shells are quite inert, particularly as regards magnetic properties,
thereby yielding poor agreement with experiment. However since the
symmetry properties (spin, angular momentum, etc.) are equally well
experimental facts, it is matural that in addition to the restricted

schemes, other SCF type methods have been developed which do meet the

N
symmetry requirements, however not by further restrictions on Y
~ .
but rather by making & more flexible. In addition many of

these schemes (for a review of the-spin symmetxy problem see:thé
papers by Kaldor and Harris, and by Kaldo;l) stick fairly close to
the original physical picture in that they still are basged on spin
orbitals, and most importantly for the physical picture, the number
of orbitals (though not necessarily the number of spin orbitals) in-
volved is no greater than N so0 that one can still make some
correspondence between electrons and "states of motion".

For example in some schemes of this type (Vextended Hartree-Fock'),

~J
dn the ¢ but'multiplied by appropriate projection operators

the trial functioni ire‘of the form (1) with possibly some restrictions
to enforce the desired symmetry.2 In such schemes then there are

still only N spin orbitals. An example in which there are more
than N spin orbitals but still only N orbitals is to be

found in the use of "open shell" wave functions of the form

{ e:d.f§£[$\ + \?Ezﬁxqz\ﬁ\
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~ o~
where R\ And R are radial functions and & awd /5 are spin

functions, to describe the ground state of helium. These are 2S
furctions but since they involve two radial functions they are more

flexible than the restricted form
N A
l e« &pl

(which in this case is equivalent to UHF - see Sec. X) and can therefore
~ A A
vield a lower B (one does find that &, 4 W2, ). However one ¢an

N
still speak of one electron being in the orbital R and the other

o
in ﬁ'\, .

(iii) The departures from the simple form (1) deseribed in (i)
and (ii) all stayed rather close to the original physical picrure.
The: third large class of departures (multi configuration SCF theorems
or MC SCF)S_, fhough there is really no sharp distinction between these
and those.of (ii) except possibly in spirit, tend te start with the
more formal view that in UHF one seeks fﬁe best single determinant
approximation, and generalizes this by seeking the best sum of two,
three, ... determinants (perhaps subject to a pEiori restrictions of
one kind or another on the gpin orbitals). Indeed MC SCF theories
can probably best be viewed as an economical CI in that one attempts
to fully optimize a few configuratinns, hoping thereby to do the work
of many more fixed configurations chosen more or legs arbitrarily.3

Tn the next two sections we will discuss UHF in some detail. It

ig formally the simplest of the SCF schemes, but it serves to illustrate
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most of the general features of these methods; and further it has been
widely used. In Sec. X we will briefly devedop another more restricted,
but still rather general, SCF scheme, which is also of practical impor-
tance, and which will illustrate some further formal points.

One final note: In general the sum of two Qgterminants is not
a determinant. Therefore in UHF and the like we are not dealing with
a linear .space. Nevertheless there is still sufficient linearity

in that

Pl P LYy = la "
(SN VN Q:u‘\ + “Pui,te.,,,”»‘\aul

does equal
R 0y
\\e’ﬂ-ql P \{—‘,_ ‘)""‘"\?ﬂl

o~
so that in some circumstances one can assert that certain higher ©

provided by the method furnish upper bounds to certain excited states

of w + For details we refer to the original paper of Perkins.5

IX, THE UNRESTRICTED HARTREE~FOCK APPROXTMATION

As we discussed in the previous section UHF is formally the
simplest of the SCF schemes in that in this approximation one uses
only a single determinant with no further restrictions. Thus one

r~ (274
caleulates €& for Y a single determinant

o~ A o~ ~
\l" = \6“ Ny, ene Yy 1 (IX-1)
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with H typically of the form
. N L Z7Z 9
- 2 (&) + 4
" S= Yosay (Ix-2)
A

where g(st) = g(ts), and then determines the 0, in such 2 way

N
that SE=~1 . (We are here taking the straightforward approach

to the variational method as discussed at the beginning of Sec. IV.)
Now - in calculating E one gets simple formulae ("Slater's rules")

if the q\-‘ are orthonormal.l We will now show that there is no

loss in generality in assuming this. First, however, we will prave a

more general theorem: Consider any linear transformation of the spin

orbitals

(PC”} -QZ A'LJ \93 (IX-3)

-
where the A“':J are any set of numbers. It then follows that

{\?‘l,"" rq:u\: \A\ \'(;5]..,., Ci-Ul (IX-4)

" where Uf\r\ i§ the determinant of the matrix (<) . Proof: Let
us write out the left hand side of (4) in more detail, using (3) and

explicitly introducing the particle labels. Thus

T Ay - Z Ay

]
o M A
lV\‘”"LPN.‘ - ?

‘%’ ANJ \Pai") - T -
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which will be recognized as the determinant of the product of the

two "matrices" A‘O and Y,18) . Equation (4) then follows from

the standard theorem that the determinant of a product of matrices is

equal to the product of the determinants of the separate matrices.
Turning now to the question at hand, we first note that there

are many linear transformations of the type (3), for example the well

known Schmidt procedure, which, starting from a given linearly inde-

il
pendent set of Q:: (and the Y¢ must be linearly independent
oW
to start with or else ¥ 20 } will produce an orthogonal set of
J ~
@é .2 From (4) then we have that b is proportional to

Ny 7
the Slater determinant formed from the ¢ , and since the pro-

portionality constant \R\ will simply cancel out in calculating
-~ -~/
E , we have the desired result. Notice however that the ‘Pc

are certainly not unique since given one orthonormal set any unitary
transformation will produce another set, and from the theorem which we
have just proven, this new set will yield essentially the same e\:'
Assuming then that the ‘(é:.‘. are orthonormal. . we will now derive
the equations which determine the {Et , the optimal spin orbitals.

Applying Slater's rules one finds™
E = Z C'\E:)\«{‘;) s '}{_ ZZT V(%Y ;%‘93{;"1:-) - @;‘ﬂ:)‘a‘;’ﬁ?ﬂ (1%-5)

0o
We now vary the spin orbitals and set < £=0 |, Then after a bit

of rearranging we find

AN
O = Zj [La{'\.))'{'%gl) +‘(£¢3) &1?3')] (IX-6)
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A
where the operator ’S’ ig.the so called "Hartree-Fock single

particle Hamiltonian' and is-defined by its action on an arbitrary

spin orbital according to

Lo x@= kO +Z ¢, %.Gj‘)ﬁllS) -£¢3)§7L) ¢, ) @)

. ?’ R 2 . @ .
It is then easy to show that (¥,%¥)=(f3;¥), i.e. that § is
Hermitian.
~
In deriving (5) and (6) we have assumed that the ‘£4 are

orthonormal, Thus we need not require that (6)rbe true for all 3‘?5
(in fact it would be in general impossible to find non-zero {’1‘}9'
which satisfy, . this). but rather we need only require it to be true
for all 3@3 , which also satisfy the further conditions
5LGs, §50 =0 , i
(s6c, $5) r(Ce, 8D =0 )
To take account of these constraints we introduce Lagrange multipliers

G _.(see Appendix B) and replace (6) and (8) by

L [ (A1 la}
Q = .g- ngag (';\H) + ('@\P-;) SY3Y)
= 1

-2z £ Ly\'}iy{:ﬁ) * (\(}395";C)‘j gi

or, rearranging a bit

N g} ' a An _
0= ?JI[ (685, $9,-7¢ie) 4 (£9,-2&¢5,,5pp)]

¢ W o)
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which is (see Appendix B) to be true for all §,1‘?5

We now note that the right hand side of .(9) may be complex and
hence its real and imaginary parts must vanish separately. In parti-
cular then since 21,’('(59;) 5}‘{;5‘) + (E’\Q”é&f’) is obviously real s
meang that - |

o =T & L G865 ,90) 65 + (Gp 505) ey

L)

t 3
which, after some rearranging, becomes

A % .0 '
Q= ¢ % I (67 Gu-enyv:) (CGL,_ef\,J\?;)é\?;{.) (1x-10)

A
Since this is to be satisfied for all S‘Vj » it must in particular

be satisfied by

* n
5\?37_ 1,-%; Cék‘“mél‘k )\tak :):L

=20 IEL

where ‘1, is a small pure imaginary number. Inserting this in

(10) then yields

; N .
0 = ( %: Cen_ e ) P E Cém_d.eLff)t\ou)

&

which implies that

% (4%
Z—7 CC“"\&'\_..— e'l..h) Qeu =0
73

"
er, since the VY w are supposed to be linearly independent

- .
SuL — B =p (IX-11)
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i.e. the Lagrange multipliers must form & Hermitiah matrix, and clearly

this is not only a mecessary condition:to wsatisfy (10), it is also
sufficient.

.

Assuming (11) then, (9) becomes ’ - T
n 4 a 5 & '_,‘ y -\rL N Y
o< Z [ Gy, 3,27 te-\,éw) + CéTvJa e, 55

from which, following what should by now bé a2 famildiar pattern, we

are led to
o N A ’ .
5 ¥, = Zb €L & (IX-12)

where the \'3 are to be determined in such 2 way as to ensure

. N, .
the orthonormality of the i . _ - ‘
. N .
We now note that, conversely, if the Y ¢ are ~orthonormal,

then: (11) will automatically be satisfied, since then from (12)

" nn - o (IX~
. Q W e Ra
which since - f§ is Hermitian, equals ( ‘P;, 4%¢) which in turn
% . J
<

is Jv . Further we note that'éne choice of the Lagrange multi-
pliérs which Wi;'_l guarantee orthogonality is to put 6\3 =4 for
{43 , since then the é}{, will all be-eigenfunctions of the same
Hermitian -o{;:erator namely —? . The diagonal elements of &g

then remaim to be used to enforce normalization: - Using just a single

subseript for the 'd:i.a.gona:'l elements themw, the equations

N
'?\(;*3 = 6 ¥ (IX-14)
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. define the "canonical" UHF spin-orbitals; and glearly from the form of.

2? as given in Eq. (7), these equations do conform.to. the physical
picture of Sec. VIII though admittedly the exchange terms, the terms
with the minus sign and s#ﬁ, in £ , do not admit of a simple
physical interpretation.

Tt should be pointed out.however that the canonical spin orbitals
are not nécessarily the most usefully ones physically. Other sets of
spin érbitals derived from these by a unitary transformation may have
more desirable properties, for example they may be better localized.B
Also it has been suggested that certain non-orthogonal sets may also
be useful. We will not pursug 'these matters further here,3 except to
note that considerations of this sort are not limited to UHF, they can
be applied to-the spin orbitals of any Slater determinant.

Equations (14), when'they can be solved at all (see.below), are

usually solved.by an iterative process. One first "guesses" a set of
i

orthonormal- spin orbitals, call them %3 . From them one con—
a
structs, in an.obvious way, a first approximation to ﬂ; , call it
1

_"} . One then proceeds to solve

v\ " W

S_C:-GC\:

\fz— ’

which- 1§ an ordinary eigenvalue problem for e . ‘Thus the solutions

are-automatically orthogonal if there is no degeneracy, and if there

is- degeneracy they can be chosen orthogonal.  Alsé they can be normalized.
a.
One then proceeds to calculate 5- ete, ete, stopping when (hope-

fully) a sufficient degree of self consistency has been reached, that
N N

is when ‘the <f£ are sufficiently similar to ‘the ?g .
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@ &
Since !} involves all the S£§ ., (14) is really a set of

coupled non-linear integro-partial-differential equations. For real
atems and molecules it does not seem possible to exhibit closed form
s0lutions, so other approaches mugt‘be used. . Tf one can reduce the
equations to coupled equations in one variable theh a direct iterative
numerical attack is possible.A In particular if ¥} is the non-
relativigtic Hamiltonian for an isolated atom in the fixed nucleus
approximation then, as we shall discuss in the next section, ‘onz can
often find solutions of (1l4) in which the €Ea have the spin and
angular dependence ‘that one expects 'on the basis of the centréi field
model of the atom, with only the .radial dependence rsmaining to be
determined from (14).C However even for the simplest of molecules,
"that is diatomic.molecules, the most that one can hope to get 'for
free" is the dependence of the <éﬂ s on the azimuthal angle around
the internuclear axis, and therefore one .dis still left with two inde-
pendent variables to deal with.

To get a finite problem the standard procedure5 is to further
restrict the ‘$O » by requiring that they may be expandable in
finite basis sets (which may contain non linear parameters, however
we will not coensider -them explicitly:)6 Tﬁe optimal values of the
expansion coefficients are then determined from (92). We will refer
to this procedure as analytic unrestricted ﬁartree—Fock (AUHE) .

Similar analytic approximations can be, and regularly are, made to

other SCF and MCSCF type approximations., Thus we write
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5T Cu W
Po= W (1x-15)

%'\?3-—- 2 58&3 Lo

n
where to avoid notational complexity we have required that each ¥ J

. . 8
be expandable in the same . finite basis set. (Note however that this

AI
still permits different Y3 to have different symmetry: one
includes among the “Lg functions of various symmetries so that if
s
n
the appropriate C+a turn out to vanish, Y3 will have a

definite symmetry). Then (9) becomes

. 3 A 5 0 o
0= ZT% ? $Cq [ 0w, 5008y ~ 7 Ty er* ez,

. ~ (1x-186)
rT%7 [Bps G0 =2 0 e, €188,
where now-
- 2 %A
(Yo f%\‘F/D: V) 4 E ;i % Cov Con L (1X~17)

[ (g, 5t — OWl 4 B
At this point it is helpful to introduce some matrix notation.
Thus we introduce.thé M x M Hermitian matrix ‘:f‘ whose elements
' Al
are C'\&a\,%ql/s) and the M x M positive definite Hermitian "overlap
matrix" S t;vhose elements are C’Y-a) "}LA) » and finally we intro-

A

i
duce N , M element column vectors '“t‘.':’o whose elements are C"”:)

In terms of these quantities then (15) can be written
A A n A A
- [ . o~ BP"" o
0= % 19T/ F T~z stisy ] €2 1F T -2 s6e 5T ) (xan)

where { Vj ¥ Q}\Ig} means the usual scalar product of two complax

vectors
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.
Ivy,0 ViY 2 }fz Vrs Oup Vpt

(1%-19)
Also in this same notation the orthonormality requirement
A RN
- e Y-
CLPL) qa)“ N2 _ (1%-20)

becomes

L -

J e Se T =5 T (1x-21)

From this -p'oint on the argument proceeds much as before. Indeed the

steps are identical if we introduce the wvectors 85 and the
o
Hermitian matrix % defined by

A A
£- g

so that (15) and (21) become s -

(IX-22)

L™

0= % -{ 8%5 \% 60‘— ?.:65 6{3}"*? i fjf%a»—%gtéﬁ)éﬁg}

 and s
{Dc, D5t = 8G

which have precisely the same structure as (9) and-(20). Thus we are

> 7

again led to (11) and instead of (14) we have ~

A

4 . Fat
% D{: = 6{ D{,
or from (22)

-ff_ €2 6: 37T (1%-23)
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Incidently, recalling th& discussion in Sec. V, note that these same
equations can also be derived by taking "moments" of (14). That is
if we substitute for the E;K from (15) into (14) (inciduding j? )
and take the scalar product of the.resulting "equation' with Wgﬁ
one arrives at (23).

The equations (23), with (17) constitute a set of non-linear

A

algebraic equations for the Ej Again the usual svolution procedures

~-
-

.
' +
are iterative. One chooses some 'ea , computes . solves

@

3 Q. P
o Le, s 65T CoL (IX-24)
2

as an ordinary algebraic eigenvalue problem, calculates 4? etc.,
ete. For the details of -practical procedures for doing this for atoms
as well as a discussion of a treatment of non-linear parameters we
refer the reader to the article by Roothaan ang Bagus.9 For moleculés,
especially for large molecules, this procedure may still not be
practical at all, or it may only be practical only using the largest

of computers, because of th sheer number of integrals which must be
calculated to evaluate fﬁ and often, depending on the nature of

the ¥,  because of difficulty in calculating them. These difficul-
ties, in addition to spawning large literatures on the choiée of the

7£oi » and on integral evaluation,lo have also led to the development.
- AN

of many methods which further approximate 35 in some way or otﬁer,
however we will not attempt to review these methods Hére.ll
A
Thus far we have not looked at & , and that it has not emerged

. v
automatically is of course a consequence of the fact that our Y all
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had a fixed scale: C\}r‘} ‘?"7 = N]. ., Clearly it would be nice, and
would yield a simple physical interpretation of the & if é

weré to equal 'Ze: 12N . However this is mnot the case sinece from (5)
[

we have
- 0 A n n - a
P cgtjt\{,}ﬁ) Yy 7\:{ i; { Ceg g, 14 WY, v(\?,,@,,}\pﬁ t?&)'l (IX~25)
or
T C\?c)lm’l;{,) J"Z;-% = b ]

A
. . . . . 48 A
In this form the first line will be recognized as -{Qgh ,g— v s
which therefore from (14) and the faet thzat the QC are normalized, -
does equal 2 63 . However there is still the second line which
-
is &learly just the negative of the average of the two .body interaction

L LZ Qist) .. Therefore we have

2 §¢t
N [\ % < Fy -
£= 2 6 — Gy ;\/%’Etg.\sb)\(}) /[ ) (IX-27)
T R
so that, as we said, E’- is not just the sum of the &% (an

"analogous result holds in A.UHE‘)‘. The- physical basis for this result

is of course the fact that Zéi counts each electronr~elzctron

A
jnteraction twice. Thus one cannot immediately ascribe physical
significance to the &f as "one electron energies”. However there

is a good empirical correlation between the &, and ionization

energies, a correlation that is supperted by the following theoretical
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13 . .
result known as Koopman's theorem: Suppose that as an approximation

to the optimal UHF function for the N-l electron ionized system one
A

uses the determinant gotten from “ by deleting the k'th spin orbi-
o~
tal. Then the & for the N-1 particle system will differ from

e

™
in (25) by the removal of all terms involving Y . However

these terms are precisely
N a AN
Ae= t’\?“;, L\{/\k) "’J'L ? Et?k¥3)%§“-v?)’(\?“-}‘3) ';l’g‘}g'?u)]

[ no G (1 )
$Z U 8, 6w, 94, ¥ (9, $u, 0¥ PyO)
or
AE = Qi) + T Ly, 4948 8 .0 A A
=, M7 T 3 w Y )"gym.’v;\-— [MKVQ )g VDF}M‘-):)
or fipally
a T oa
A= G v = 6%
Thus in this approximation £ is. precisely the ionization
energy.D 0Of course this kind of trial function for the N-l.particle
system with so to spedk "frozen orbitals" would not seem to be a very
good approximation, especially if inner shell electrons are being
ionized; presumably it would be better to do 2 complete UHF caleulation
for the N-1 particle system.E Nevertheless the result does give some

feeling for the empirical situat:f.on.l

X. RESTRICTED HARTREE FOCK AND OHF

if for an isolated atom or molecule, simple one particle models
predict that single determinant closed shell states are possible then
one can show that the UHF equations do have solutions of the expected

symmety .1 A Thus for two electron atoms (with ?% the nonrelativistic,
AT
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fixed nucleus, spin free Hamiltanian) one can find solutions of the
form P
~ o

liea v pl : (x~1)
and similarly for ten electrom atoms one can find solutions of the
form

AO n . A -1 A
\ |CALS R’P Y%-;,Dl R‘L[S - - \(\ LU \‘(‘ R.g[}\

However when one goes.to open shedls the situation changes in that,
considering atoms to be definite, even though a simple central field
model would allow the state to be described by a single determinant
(i.e. no vector coupling needed), still as we mentioned in See. VIII,
UHF will not-in general have solutions of the expected symmetry.
Thus, confining ourselves for the moment to s-orbitals, for two electron

systems we can find solutions of the form

| R d 2y «l (x-2)

which is a member of a spin triplet. However for three electron
systems it is easy to see by trying that though there are pure quartet

A ~
solutions Wl.;,d. ﬁ—;_,ot Rzl there are no pure doublets

LR o fax) -

but rather there are solutions of the form

VRa fpfaal (%-4)

which is a linear combination of doublet and quartet.
A similay situation exists with respect to orbital angular momentum

when one investigates what would normally be single determinant open
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shell states involving orbitals of non zero angular momentum 3 for
Avstend )

example U)?"’LJ() 2.9 for three electrons. One finds' solutions which are
eigenfunctions of L.%- but not of t?n . Further, although the
orbitals are eigenfunctions of JQ%‘ , the component of one parEicle
angular momentum, they are not eigenfunctions of an. .zsﬁf%:ééc. VITY
we briefly sketched and gave references to the responses Wﬁich have
been made to this situation. Here we want to pursue the restricted
Hartree~Fock approach in more detail;

Applied to closed shells, and to be specific“let.us consider the

two electron atomic.example, it would consist in restricting the

v
\% to be of the form
iTa ®pl
A~
from the outset, and then determining jra from the variation

method. Since as we have said, UHF does have solutions of this
type it follows that for closed shells the testricte& Hartree~Fock
functions satisfy the UHF equation. We mention this because this theq
implies that the RHF functions for closed shells will also satisfy
the many interesting épecial theorems wﬁich are satisfied by UHF
functions, theorems which we will be discussing in Sec. XII.

Turning now to open shells, consider again the three electron
doublet example. There one would use trial functions of the form

%, & & p =4l

More generally let us consider, trial ﬁqnctiﬁﬁs of the form

195 a W v 2l
) \ [S“ 5
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where we do not restrict the form of the orbitals \rg , i.e. they

A
need not be simply radial functions. Sinece adding a multiple of W)

o

to Uy will not change the value of the determinant we may assume
~~ Lo

that W and V% are orthogoral and of course we may assume

that each is normalized. Then if h and g are spin indepéndent

one readily finds from (IX~5) that

[ s [ % N [ ~
g2 2 W+ 05 klk) + (G R, §1F) * LA o &)
v Tae s W
(N %, g "W

~
e = 0 subject to the conditions Cﬁi) \?;)._-._'5.;3 then leads to

"

N a AL A o~ -~ A ~ I
DAV R 20759 & vy VR = (0 3B R= 6V, r el ¢

and
fa)

hvy * v ((\:‘1 \da,'{!l,)- fJ\‘:v —_ (,1’)",)04'9“1,)3‘, = 61?, G‘, * Gw‘l?’p
There are now two main points which we want to make?
(i) Wit;hout trying to write these equations in very‘ elegant

form it should be clear that we cannot ensure the orthogonality of

A o A

VA and V% by simply putting Erve. =0  sincé Y] -and
(\\I*.v will not then be eigenfunctions of a common Hamiltonian. Rather
one must deal with the off diagonal Lagrange multipliers exp‘licit«ly)
and this is ageeral feature of restricted open shell SCF calculation$
Various procedures have been devised to do this .and we will simply
refer the interested reader to the original literature on the Subjects-

Also direct search procedures, such as we mentiored at the outset of

Sec. IV, which effectively bypass the equations, have been 1.15&3&.4
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(Such procedures are. anyway almost invariably used to find the optimal
values of non linear parameters).

(i) It is easy to see that the equations do admit solutioms of
the ferm (3). Thus the restricted Hartree-Fock function for this case
will share the general properties of solutions of (7). More.generally
we will denote (for no particular reason) by OHF the procedure, in

which one deals with trial functions of the form

[a ™ [y (AW v ~ ~ ~ —
ALEN ﬁF‘ Vadk Upp e U & Ve p Ugn & Vs ~—— Y4 \
which areVéigenfunctions of g with eigenvalue N:;: and of

'3?” with eigenvalue‘(Nggp)CM_ 3 our discussion above
then being for the special case N=3 ‘C_-z.\ . One can then show
that restricted Hartree-Fock functions for atoms and molecules de-
scribing closed shells plus a spatially closed shell with all spins
aligned will satisfy the OHF equations, and therefore will also
satisfy the theorems for OHF which will be discussed in Sec. XII.
However since no essentially new points of principle arise we will

not write out the detailed equations for general CHF and AOHF.

XI. THE GENERALIZED BRILLOUIN THEOREM

. A
In general whatever sort of trial functions one uses, any kP

will almost certainly be only an approximation to an eigenfunction
of %% » and so the question naturally arises, how can we improve
on..the -approximation? One approach of course is simply to enlarge

the set of trial functions in some way. Another would be to use
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Rayleigh—Schroedinger perturbation theory, and it is this .approach
which we want to discuss in this section.
In order to use RS perturbation theory we must introduce a zero

. . A
order Hamiltonian Ho which has \%"' " as an eigenfunction:

I p ‘
o &= E W (XI-1)
. A .
where b5 , the eigenvalue, may or may not equal & . Having
chosen[ H‘U one now treats Q-—\}p as a perturbation. The first
o .
- order correction to ¢ is therefore (we will assume that X is

non—degenerate and as usual will use a discrete notation; also we will
Vol

assume that “V iz normalized)

. ‘ .
C‘;\ﬂf_’.— — é @d. ged }C‘-}’-F"#)\'PP (XI—2)

Eu— &

.where the Q‘),{ are the other orthonormal eigenfunctions of Uc .

~and where the Eﬂ are the gorresponding -elgenvalues. Finally
A
using (1) and the fact that the G.,g are orthogonal to ¥
we can write (2) as
. > r~
$= = ,é,;' & C S w) (X1-3)
E.-C

Note however that this perturbation'scheme involves a great deal of

arbitrariness sinece if we write )

Hox ERERI # 27 BN (R4

then (1) will be satisfied whatever we choose for the E« and

A
the @,c so long as the latter are orthogonal to . However
different choices of the tEn{ and the 6@( can make profound

B
changes in \ .
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We now note that as a consequence of the variation method,
f . :
certain C@d) Y ) may vanish so that the corresponding G)a(
() ) )
will not occur in q;) though of course they may appear in Y ; @P- —3

ete. Namely suppose that with &% an infinitesimal, but other-

wise arbitrary complex number,

s1 (O« (RT-5)
o~
is among the variations of Y possible within the set of tyrial
functions. Then it follows from (V-3) and the orthogonality of @)al

and ‘-{-\‘-‘ that

(&, vE)=0 (X1-6)

which from (3) tells us that G§$ will not appear in Ciﬁ) . In
the context of UHF where as we will see the Géw satisfying (6)
are one-electron excitations of “V , this is known as Brillouin'e
theorem.l (In our earlier discussion of UHF we did not specifically
invoke Eq. (V-3). However it clearly must be satisfied since in UHF
one imposes no a priori reality restrictions). Therefore we will
call it the generalized Brillouin theorem. More precisely, and quite
apart from its application to perturbation theory, the generalized

/
Brillouin theorem is the following: Tet S$1 % with &7 an infinite-

/
simal but otherwise arbitrary complex number, and with b orthogonal
r‘ - (\ -
to % , be a possible variation of ¥ within the set of

trial functions, then it follows from (V-3) that

(L{'{) ¥ 4$) =o VI-7)
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In many ways then the generalized Brillouin theorem is really not a
new result but merely a restatement of the variation method and is so
used by many authors.2

(' Returning to perturbation thee:.;y, let us in particular consider

UHF. Then a natural choice for W, is 3;4

A
Ho = F = %—\ £s) ‘ (IX-8)

Since F is a one electron operator this means that the @4 are
’ ~
single determinants involving 1, 2, ..N electron excitations of o

(For ground states of neutral systems these @q " are usually in the

continuum) .4 We will now show that the one electron exciéi;ations do
- ;

not appear in W ‘(and therefore do not affect the energy till

fourth order). Proof:

FAN
For '*-P we have
R ¢
——— N (XT-9)
- m Y > 1 -
where .the Q'L . are orthonormal spin orbitals, and where we have

A
-included the factor \[\ﬁ;} so that e will be normalized.

: a
Therefore the most general S . ds of the form
& ) 0 &
$¢= ~ T\ G, mee Y e ) (XI-10)
Yot 3 :
where the ;-{g‘ 8 are arbitrary. If in particular we choose the

ra
3"$5 to be ortheogonal to the ¢ but otherwise arbitrary,

M~
then (10) is an arbitrary sum of one-electron excitations of <

which proves the point.
/

Similarly for OHF the 5 which satisfy the generalized

Brillouin theorem are a genéral superposition of two types: One
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electron excitation of the singly occupied orbitals without change in
spin, and paired excitatdions of the doubly occupied orbitals, again

without change in spin. Thus for the example (X-5) these types are

\G‘\v&ﬁ:p $&y =

and
n " A n
| 5%, & \p vl LV« 8y; pvs ol
N
where for orthogonality to ¥ we need
A A A
(6%, 80 = (BT =0

The second type of excitation may then be further classified according
A A

to whether or not oV is orthogonal to Y3 . We will discuss

the linear variation method later.

Returning now to UHF, the fact that with the choice L%o aﬁ?L s

Mny
\‘)

. 9 . .
ing consequence: there are no first order corrections to the average

. ‘s AL,
contains no one electron excitations of b has an interest-

value of any one electron operator; or equivalently there are no first
order corrections to the one-electron density matrix (Indeed the one-
electron density matrix is itself the expectation value of 2 one
electron operator), and hence to its eigenvalues, and to its eigen-
functions the natural spin orbitals. Proof: Let W  be a one-electron
operator. Then the first order correction to its expectation value
is

G wd o+ G wdm)

or
(\3}«')) W \Q) )4- (\Uﬁ}‘\?’\ \QW\)

(s 0
which, ‘since from (3) ¥ is orthogonal to , can be written
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C$9) Lw~ et 16D+ (Duie sbuwrd 1, $) (x-12)

However if W is a one~electron operator thenm, either from Slater’s

rules or from

v

W "?’"" Z; [{E,-:» Wﬁ—--“{zm]

one readily sees that
. R .
EW ~ L\/.‘;;‘NJ"\i‘)S ¥ and [_ \”a'\- C"QJ W’} ¢) 3:9"

involve only one-electron execitations of {\P - so that (12) vanishes
as claimed.

Because of the freedom in the choice of W, this result.
though intert‘-:-sting, Is rather more formal than physical. Thus for
UHF wé could certainly choose- the @d and hence. -\>~]v so that
none of the ®0L " was a pure onerelectron exeitation. In such a

- case then Brillouin's theorem would have no especially interesting

consequences for UHF. For UHF applied to atoms a more physical result
can be derived as follows:

We want to consider an isoelectronic sequence in the limit that
nuclear chargedi.‘"‘% o |, Therefore to keep things under control we
will, as usual, use scaled coordinates--%” £ and medsure all

2z
energies and Hamiltonians in "units" of & For ¥ we take the
. ) P \ L
usual fixed nucleus. Hamiltonian (divided by%—- ) possibly including
%,
" external fields, and for .3' Hp we will again use = . Then
sincé H‘ and Ho + differ only in their treatment. of the Coulomb
interacétion between the electrons, and since in scaled coordinates,

A
&he .Coulomb interaction is of order 4/ 'ﬁ, it follows that
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\_%/i; (4 —¥o) = O L‘%—) (XI-13)

and that therefore, if we denote by “V the normalized eigenfunction

A
of H to which ‘{’ is an approximation and write
Yo G kA (RI-14)
Y
then A is at least of order /4%, . Further since C\{altﬂ =
Ty = we have

(¢, &) =

C‘?’, é) + Cz’7'\?") + CA) A') =0 (X1~15)

i.e. (\?7.&) 4 C-G;‘;) is at least of order (1/2)2.

Now consider any operator O such that in scaled coordinates

/
Lim O = O, +0O (XI-16)
"L a
where O\ is a one—electron operator and where €] is at least

of order 1/% with respect to O . (Thus ¥ itself is an example

-

of such an operator). Then correct through terms of relative order

1/%. the exact average of O is
(vow)= ($0%) + o3 04) +04,0 $)

which to the same order can be written

. o
thoiz Gfod) +( Lof- w$of )] &, ) (a, L"n"f‘%oﬁiﬂ‘; ) -
since as noted above
A A A é a
((%,6 536,84 (B, (F0H9) = (F0$)[ H2) +(8,$5]
+ is of relative order 1/23. But now O[ and OT are one-electron

operators and since from our previous formal result we know that to
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first order in ( L}_.Hp ), and therefore at least through first
T. . N
order in 1/%4, JAN contains no one-electron excitationsof *?

the last two terms in (9) vanish to this order. Thus we have

(Yow= ($,09)[1+0(d R

A .
That is averages calculated using a UHF Y- for any operator
safisfying (16), and hence in particular for any one electron operator,
are acecurate through terms of relative order 1/Z. Since,'as we haye

noted, %ﬂ satisfies (8) it then follows that, if we reinstate the

factor f&? and write
o F. ~ .
CaZiey (& b L
. . A

and if we write the corresponding eigenvalue in a similar way

R A N

0N s .
. then = o and &:a- but L4l . Thus the correlgtlon

energy Euﬁﬂg is in first approximation independent of :ZL » Note
also that these results for UHF are true in arbitrary extern;i fields
and therefore.hold for all manner of polarizabilities, susceptibili-
ties, etc. (For calculations which, among other things, illustrate
these points we refer the interested reader to.a series of papers by
A.-Dalgarno and collsborators, notably M. Cohen, which have been
published mainly in Proc. Roy. -Soc. and Proc. Phys. Soc. starting
around 1960).

Having said all this in great detail we now want to make two
further poiéts one major and one minor. TFirst the minor point.

2

Having understood the derivation in detail it is clearly possible to
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(1.
simplify it drastically: In the ole~> 04 limit T differs from

‘{“ by terms of relative order 1/Z, Therefore for any operator

O which in theli%"‘m limit becomes a one-electron operator, it
follows from our earlier formal result that the 1/% correction to
its UHF expectation value vanishes identically, which of course yields
(18). TFor 0= H , (18) can also be inferred directly from the
variation prineciple, i.e. (E involves only a second order
error. In Sec. XVI we will give another derivation of these results,
a derivation which will show that (18) also holds for OHF provided
that H\ and O. are both spin free.

Now for the major point. This is that the preceding arguments
contain a flaw, and are not completely valid! The reason is connected
with the peculiar degeneracy of hydrogenic energy levels. Thus for
example consider the ground state of the Be atom in tha absence of

A
external fields. In the A limit ' which is a single de-

21s

terminant, becomes the function (13)2(25) . On the other hand the

correct result is a certain linear combination of the degenerate

pair (18)2(25)2 s ana (13)2(21))2 18.6 Thus something is wrong with
A
our argumest since and ¥ don't agree even in zero order!

Incidently note that the MCSCF schemes can avoid this difficulty)
and indeed to some extent the MCSCF method was first introduced to

deal with this pn:'oblem.7 The difficulty is of course that our

AL
estimate of the order of ‘Y is incorrect since as A ﬁ?)
. f* \n)
there is an energy denominator in "f’ which yinstead of being
()
of order 1 is of order 1/ like the numerator, thus making \P

A
actually of order 1 rather than of order 1/%, and similarly for ‘*{’[@

ete.
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0On the other hand for an isolated Lithium atom the (15-)2(28)27'8
and (13)2 (2p)22P degeneracy causes no problem since they have quite
different symmetry, but in external fields Li becomes a case in point
ag well.8 However it should ba noted that in any case our earlier
formal argument is still generally walid. More precisely if we in-

troduce an order parameter N and write

HtM= B+ 2G-w)
then correctiong of order to one-electron properties do wvanish
without exception. Hewever in cases like Be the terms of order ST
are not also of order (1/25% .
Well what can one learn from all this as regards the accufacy
of UHF? Since none of the arguments applies to two, three, ate.

electron operators one expects, and one'findfithat expectation values

!
of one electron operators or more generally operators like H  which
satisfy (18) are given more accurately by UHF than' expectation values
of two electron operators. However the arguments about the order
of accuracy are a bit ghaky. We have already noted the formal
character of our first argument and the 1/Z statements for atoms
strictly apply only in thed::-"""’o limit and therefore not to neutral
or near neutral atoms. Nevertheless as a general rule UHF does quite
well as regards one-electron propert:i.es,9 however there is definite
evidence that for some one-electron properties of molecules, second

‘and higher order corrections are not negligible and)in particular

‘A 1
that one electron excitations of “§ which, as we have seen, don't

L) -
appear in Y ' with the choice of HbaF s but -which can appear in
G 10

etc., can have a non—negligiblé effect.
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o 0o
Turning briefly to another case, let L be a \h‘ of the

linear variation method. Then a natural choice for ‘:-}-D is Y
or some linear combination of W and ({-V§ ) & (%7 ). With
A

this choice, all the ‘?Lﬁ are eigenfunctions of ‘}g

- and therefore from (Vi-9) and (VI~10) (i.e. the
)

generalized Brillouin theorem) it follows that the Yo with Lk

. R ) .

will not appear in by . Finally let us note that a common

(\

means for improving a Y is to do a further linear variation

A
calculation with the basis set C\R‘ consisting of ¥  and

some other functions 'lco{ . The generalized Brillouin theorem

then tells us that if a f« satisfies the conditions of the theorem
P

then it will not be direcily coupled to b in the secular equation.

Also if, as is becoming increasingly popular,ll one solves the linear

variation problem by a perturbation technique then, with appropriate

choice of H'g s 10{ will not appear in Y and will not affect
2t
the energy till & ) .

XIT. BSPECIAL THEOREMS SATIS¥IED BY OPTIMAIL TRIAL FUNCTIONS - INTRODUCTION

Eigenfunctions of ‘* satisfy warious physically interesting
and useful special theorems ~- Hypervirial theorems, generalized
Hellmann—Feynman theorems, etc. and may have certain symmetries., In
this section we will show how one can choose the set of trial functions
, a &
in such a way as to be sure & priori that the optimal trial functions &
will have analogous properties. These theorems, when applicable,

.
can then provide physiecal insight into the nature of the v and
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N

E

actual eigenfunctions and eigenvalues. Also if one cannot determine

) and the degree to which they approximare the behavior of

4; and E% exactly, the extent to which the applicable theorems
are satisfied by th-e approximate- ‘q* and % can give one an
indication of how accurate the approximation is; for example how
accurately an AUHF calculation approximates UHF.

Of course one approach to symmetxries is the one which we have
mentioned repeatedly - constrain the G; so that each has the
desired symmetry. Also in the last few years there has developed
a considerable literature in which, usually through the use of
Lagrange multiplier techniques, the Qi atre constrained to have
various properties and satisfy wvarious theorems.l However in what
follows we will be interested in more general possibilities in which
the symmetries and/or theorems are satisfied "naturally".

In all cases we will give oﬁly sufficient conﬁitions, and it
seems that one can hardly do better than this in any useful way

P
because any set of might contai?}as one unigue member, an eigen-

2
function which had all the desired properties. However it is
empirically an excellent rule of thumb that if the sufficient con-
ditions we giwve are not met, then it is wvery likely that the‘i/
won't have the desired properties. Presumably this is the case

because the sufficient conditions which we will give are rather

natural ones.
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XLII. REALITY

If, in the representation in which one is working, H is
explicitly real themn, as is well known, if an eigenvalues is non
degenerate, the corresponding eigenfunction will automatically be
essentially real (i.e. \%’fi‘i ol \}’9% where o{ ig some constant)
while if the eigenvalue is degenerate the eigenfunctions may be
chosen to be real, an arbitrary degenerate eigenfunction then being
some linear combination of the real‘ones. ‘

We will now show that if b is real, and if the set of trial

A
functions is invariant to complex conjugation,
. o - 4
then if & is non degenerate, . will be essentially real.
We first note that since
N .
E  is anyway real, the assumption that H ig real implies
that
A n [ ~ %
= GH W9 | (9T L (R ¢
€ 0 = N0 - 2 (RIII-1)
n
G$ ) 3,9 TNy
N L N
Thus P and - yield the same energy. However under our
. o
assumption both @ and LA)) are ¢ in the set of

) ~n
trial functions, and therefore if £ is non degenerate it follows

that @ and @5“ must be proportiondl to one another as we
wanted to prove. UHF and OHF and the linear variastion method if

/ ww!w:v
the 3?;& can be chosen real, are examples sets of trial functions

which are invariant to complex conjugation.
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if & is degenerate there does not seem to be a simple
general theorem unless one has a situation in which the trial functions
can be labelled in such a way that they are complex only because

certain linear variational parameters and/or functions can be com—
1 o
plex. Then we can show _that the J are either automatically
CF fhees & oppnnec
essentially real or¥can be chesen real, an arbitrary degenerate
N A
g then being some linear combination of the real \é'»’ .

Proonf: 1Tn such a case since, for fixed values of the non linear
quantities, the real functions (¥ + 3:':1) and T C"?S-—N#)

also belong to the set, it follows that as far as wvarying the linear
quantities 4g concerned we can deal with a real basis set. For
fixed values of the non linear quantities, the optimal trial functions
are thus eigenfunctions of a real g . Therefore if there is
no degeneracy at this stage, th:e optimal function is real and hence,
under our assumptiogs, will stay real as one determines the opt_imal
values of the non linear gquantities. On the other hand if there is
degeneracy at the linear stage then we can anyway write our trial
functions at this stage as a linear combination of say D real

h%4
functions “y  which, from (VI-9) and (VI-10) satisfy

v \J v i v
C‘{’d,‘-)’gﬂ; S@F C‘{’A, b “}‘ﬁ') = E &dﬁ} ng:'l--nj) (XLLI-2)
W’ v
and where & and the “%’gg depend on the non linear quantities.

But now going on to vary the non linear quantities one sees that a

s D ~ N
general s which will now have the form Eto‘d\\'ﬂ , vields
o o
the energy & whatever the values of the @Q.d since from

(2) we have i
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~om Y
e s AN
e AR
o~ a
Therefore the degeneracy persists and the Qd are left undeter-

nined by variation of the non linear quantities. Thus an atbitrary
N )
degenerate W will be some linear combination of the real ‘?g; s
which completes the proof.
5%
One final note: Whether or not ‘%’ wasg in the
set of trial functions, one can in any case produce optimal real

o
functions by doing a further linear variation calculation with ¥

and (\\{’% as the basis set. Proof: Instead of using C}’ and@'
as the basgis for this further calculation we may equally well use
the real basis set 'K[B\‘H’@ and Yoz 11\9‘-"?”5‘) . Therefore it
follows from the above discussion that the result will be two real
(orthogonal) linear combinations of 2 and ¥,. , and of course,
as a bonus, at least one of these combinations will have an energy
less than (or at least not greater than) the original % . Indeed
even without a further detailed calculation one can see that one or
the other of the real functions "%, or ¥ will themselves
yield a lower energy, or at least an energy which is no higher than
é u Proof: From (1) and the fact that C¢, ‘-?’)2 c{;ﬁ;@’”) one

can easily wverify that

E 21{%, 810 + 1wyl / Cov 2, + (]

which is certainly not less than the smaller of C¥%i,W¥,D/ (%,%.) and
(L2 3% ’w’w'}"f) - However in general neither X, noxr A, will
be optimal functions in the sense of this paragraph. We will discuss

this point further imn Section KY¥ below.
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X1V, TUNITARY INVARIANCE

The eigenvalues of Y are invariant to a unitary transformation
of Y™ . Let \J be a unitary operator, and suppose that one
uses the same set of trial funections in the variation calculation for
U+HU as one uses in the caleculation for H . Then we can show

that if the set of trial functions is invariant to the

4] »
transformation J Hhay the € ane ivyea.1e-ta

.+ The proof is as follows: To
A
find the © we look for the stationary values of

(l::-’ = ('¢) Y ‘?}") I (‘?";{)\")

(4
as ¥ ranges through the set. To find wariational approximations
+

to the eigenvalues of VT we look for the stationary wvalues of

VO o e

EY = (& uw®) [($,9)
which, since U is unitary, we can write as

~ f;’ ;“ 1" N

U o Lol we ) Mo G,ue

I -

If now the set of UW ig the same as the set of P

~\ ~7
it is clear that the stationary values of © and © will be

the same, which proves the point. Note that if the set is -

invariant to ) then 1t is alse invariant to all powers
-\

of U and to \ 2U+ .

In particular a spatial translatfon is a unitary transformation,

- -
the operator U being 2A4p © e P where O~ is the amount of
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—
the translation and G) is the momentum operator for the particle

or particles being tra.nslated.l Thus if the set of trial functiomns is

‘imvariant to a rigid translation of the electronic coordinates then one

2
Pa)
will get the same Y= whether one uses %ﬁ as given or whether
-r -5 - —p
in ¥t one replaces the te by T T K where G- is a

constant vector, leaving everything else unchanged. Similar remarks

. o2 o 4
apply to rotations where N2 &8pAaA G+ T with G the angle
-y
(and axis) of rotation and ¥ " the angular momentum of the rotated
particle or particlesgl and to inversion where WF is the product

of inversions applied to each particle separately.

Since the operator T for a rigid translation)or rotatiog)or

inversion of all the electrons takes the form
:
U= W )
S=) ( )

they transform a Slater determimant into a Slater determinant:

- o
T‘— W) \ rc\é" ik f\?'”] = \ 4):\\5} «'@l\- - ’Mﬂ»{n}l
o=

Therefore UHF is invariant to rigid rotations, translations and in-
versions, and to any other U of this type. Further if we consider
only spatial rotations, i.e. we don't rotate the spins, then since the
U's for such rotations, and for translations,and inversion are spin
independent it follows that OHF is also invariant to such rotations
and to translations and inversions. The situation with respect to
analytic approximations depends of course on the nature of the basis

sets.
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Another interesting U having the structure {(3) is that of a
gauge t_ra.nsformation.l Thus we have the result that UHF is gauge in-
variant and further, since the appropriate Uts) is spin independent

we can assert that OHF is also gauge invariant with again the .prop-

)
erties of AUHF etc. depending on the nature of the basis se¢t¥.

. As a final example of a.unitary transformation.consider the trans-
formation from the coordinate representation to the momentum representa-
tion. Tn the abstract operator approach we have been using if o=

WU, - 5 ) then U"\;Ug Y (..75’.;’_, T and UT" & ’cg (K-
where E; is the Fourier transform of W) .  (Here and in what
‘ follows we will suppress spin labels unless needed)., That is if in
momentum space we co_ntinue to use- the symbol ? to denote the inde-.
pendent variable, then momentum is represented by ey angl c,~oo;e.'om@.
by ,j%;’ = ‘? . Thus for invariance the set of ?P’{'f“"’) shovld l“-"
the same as the set of ‘Srlf.“l“‘:‘”) . Since here too U is a product of
spin independent traﬁsformations of each particle separatelyf;it.follows that
the UHF and OHF are invariant, i.e. the Fourien transformaticja’n of o
Slater determinant: is a Slater determinant. Also sgince orbital
angular'momentum is symmetric in coordinate and moment;mi it.should be
no surprise that the Fourier transform of a.sphgrical harmonic is a
spherical harmonic and therefore that most RHF approximations for atoms
are invariant to transformation. to momentum space.2
In many interesting cases a transformation U of the dynamical

variables is equivalent to a change in some.pardmeter(s) g= in the

Hamiltondian:
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W e = Hio) s ola fie) _ . baw-2)

The-eigenvai‘lues' of H are therefore ipvariant to the transformation

g~ —> r?\.ﬂ"‘) ,- and evidently H is im}ariant to the combined t¥ans-—

formations \J- and ,-&-UJ“) —% 0~ . Ve will now show that the
% will be invariant to the, transf;armétioh 6"——‘9-}\0‘) if the-
" get -of trial functions is ©  invariant to the cowbined trans-
formations © \JT and ) — o— ) ’
Proof: .

e = ($leY) | wied G}‘lw))/ Fietd, Frob) -
which from (2) can be written as ‘
‘ £ o= (WHFeH wes v Flo) e o Floh , uFes).
Therefore if the set UW¥lod) is ¢ , the same as “the set Fo) .

the EeY) - will be the same as the & (&) , ‘which proves the-

ey

point. In particular if the set is « - independent of @& ‘then
the - % will be invariant to o -» fig-) if the set of trial
functions is : ; invariant to the transformation T .

The 'spedial case U = 1 is also of interest.’ Thus éuppose that

H. is invariant to some transformation 'O°®#Ao)" .| Then we have the

result.that if the set of trial functions is ¢ * - invariant to
P
the, transformation, then the © will :  be invariant.

CS&ME)

XV. SYMMETRY

If H commutes with a unitary operator U ‘then there are certain
consaquences which we now want to discuss. However first we must settle

a point of notation: Tf H commutes with a Hermitian -operator T then
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it commutes with -the whole et of unitary operators Lfp ta™T where
&, 1is a real parameter, and conversely if it commutes with the set
it commutes with T . In such a case " we will uie the symbol
) to represent the whole set, so that for example the statement
that a wave function is an eigenfunction of U will therefore also
mean that it is an eigenfunction of T .

If H commutes with U then if an eigenvalue of H is nondegen-
erate, the corresponding eigenfunction is automatically an eigenfunction
of U while if the eigenvalue is degenerate one can find a set of
functions which are simultaneous eigenfunctions of H and ’U and éu;h
that an arbitrary degenerate eigenfunction is some linear 'combination-
ﬁf'the members of this set.

We' will now show that if H commutes with U, and if the set of
trial functions is » invariant-to U , thén if gé is non-
-degenerate, the corresponding Is an eigenfunction of TU. The
proof follows a pattern similar to that in 'Sec. XITI. We observe that

if H commutes with U then
A

. ty L fuss
Bo 0588 = (HUNEUD = LU, 8v)
D) g, v ) Cu, us)

n )
Thus both é; and YWV yield the same energy. Therefore since

both are - in the set it follows that if @i is nondegen-—
0
erate, then ¥ and 'vt$ must be proportional which is what}wg

want to prove,
P - v asualiv
We now turn to the degenerate case. Eipenvalues of ¥ are degen—
erate because there exist U's which commute with H but not with each

other. Such degeneracies however can always be removed by applying
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suitable extra external fields so that in the fields all the U's which
commute with H do commute with one another. If in addition such
external fields serve to remove the degeneracy in the variational cal-
culation, then we know from the discussion of the previous paragraph
that the is’ in the fields will automatically be eigenfunctions of
those U's which commute with H in the fields, and which leave the

_set invariant. If now we let the fields tend to zero, but

continue to use the same set of trial functionsk it follows that when the

external fields have been reduced to zero the'w will still be eigenfunctions

of these U's (we are of course assuming that the-U's are. independent of the

external fields). Since different external fields single out different

U's we therefore have the result that - ) g if

A
there is degeneracy then, among the degenerate W » will be eigen-—

functions of any set of U's which commute with Y\ and with each .
other, and which leave the set of trial functionsJ : invariant.
However whether or not an arbitrary degenerate &’ can be written as
a linear combination of the degenerate \(g’ which are also eigenfunctions
of a particular set of U's will depend on how much linearity there is
in the set of trial functions.

The above discussion, though quite general, contains the qualifi-
cation that all degeneracies in the wvariational caleulation should be
removable if one would only apply suitable external fields. Therefore
its applicability to actual calculations is not immediately evident.
Nevertheless it is clearly consistent with the results discussed in

La T

Lot
Section X for atomic UHF. Thus 2° and € and the U
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for parity are all products of gsingle . particle operations and therefore

g(; e v ANV

leave the set of invariant while & and &€ are

not. Therefore the present discussion would correctly suggest that
P ~
for a given B , UIF Y can be found which are eigenfunctions
- -
of parity, of a component of L, and of a component of 9 , but
N
that in general one will not find eigenfunctions of either \. or
an
S . Also consistent with this point of view is the fact that in
. . . . . 2 5>
those cases in which one does find eigenfunctions of L and
this is usually forced by the behavior with respeet to L-g. and S .
Thus for example a closed shell state is a simultaneous eigenfunction
- >
of all components of L and S with eigenvalues zero and there-
. . L’!’- A
fore must be an eigenfunction of and S with eigenvalues
zero., Also the function mentioned before.(X-3) is a quartet function
"because" it has the maximum 2 possible for the given N .
Less problematical but more specialized is the following theorem
which is similar to one in Sec. XIII (a special case of ‘this theorem
A
.was discussed in footnote A, Sec. VII): one can find J which
A
are eigenfunctions of U }and such that an arbitrary degenerate -V
is some linear combination of these eigenfunctions of V , if the
set of trial functions isg - invariant to U din such a way
that U dinduces changes only in linear parameters and/or functions;
~ ~
that is if U involves the same non linear quantities as W
but possibly different linear ones. The proof follows from the fact
that under these conditions the b appropriate to the linear part

p—

of the calculation will commute with U and therefore so will H .



76

The pattern of the proof is then identical to the proof of the analo-
gous theorem in Sec. XIII.
Also, again analogously to the discussion in Sec. XIII, whether
N LB 20 A . .
or not the functions ‘-}’) Uv,u \}\.-.U Y., all of which ydeld the
same energy, are all in the set, one can in.any case pro-
duce an cptimal set of functions which are eigenfunctions of U, by
vty
doing a linear variation calculation in the space spanned by these
functions . - ( U here could represent a complete commuting set. of
operators)a That this will produce eigenfunctions of U is guaranteed
by the fact that this linear space is obviously invariant to the action
—
of U , and therefore the -‘\ appropriate to it will commute with
"U. Indeed it is easy to see what the result of this calculation will
A

be. WNamely we can expand in normalized eigenfunctions of U

belonging to different eigenvalues, thus
F= L Aw T (xv-1)
'™

where the sum may be infinite, though hopefully it is only finite. Then
since U™ S" and U‘%‘m‘?’ are simply linear cowmbinations of these
same functions with different coeffiecients, it is clear that the
functions 3'4\_’ involved. in the sum span the linear space formed

o~
from \P;U‘$"” . Further since

(B0, Sur) =Sadest (32, § Sud=o 4{*«"‘ -2)

it follow from the "converse theorem' (V) of Sec. VI that the ?m.f
N
will be the ‘“yx which would result from the linear variation calcu-

lation. Thus instead of doing the linear variation calculation we can
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A
simply project out,of g the warious symmetry components which

it contains. This procedure, and approximations to ii; have been
extensively applied to UNF functions, particularly to produce functions
- ) N

of a definite total spin S (this is a case in which U\T’} V™% ge-~ don't
belong to the original set simce, as noted earlier SV is not a one
particle operator). Of course in general one can do even better if, as
mentioned in Sec. VIII, one projects before carrying out the original
variation caleulation.

There are certain similarities between the procedure we have just
discussed and that in Sec. XIII. However there are also cert;ain dif-

férences and we would now like to draw attention to these in more

detail. If we write 7 in the notation of Sec. XIIT
on — ¢
&a "’i— r,;l .;._ C.L'Iz-)

then we have written {1\} as a linear combination of (unnormalized)
eigenfunctions of the complex conjugation operator K belonging to dif-

ferent eigenvalues:

l-"\ ~

v-.rv-‘ = '-,.‘ K (t—fg‘\—) = (_a ‘Y,_)

So here we have a certain simiELarity with (1). However as we remarked
in Sec. XIII, "% and Y,  are in general not the functions which
result from the further linear variation calculation and this is to

be contrasted with the result of the present section, that the ?Mf
are the functions which result from a further linear variation calcula-
tion. The difference arises because while U ig a-linear operator of
the familiar sort, X is not. Rather it is what is called anti~linear:
Cad = (Y = ot FF if &  is a number, and thus is neither

Hermitian nor unitary. Rather one hag
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(2, k6 = (1% < O ¥ = (%, x0%
In particular then, from W% = A and & Q@¥Y =~ (B2
one concludes, not that "% and &% are orthogonal but oaly
that (%, L%.) ig pure imaginary, which is anyway obvious: Thus
following the canonical pattern
(')‘1, EiPe) = — (B, tB)
but also
Cery kEP) = (Y, L F = (F, tr)?
vhich completes the proof. Note also that although <k, and tE..
belong to different eigenvalues of K LA ¥ and . helong
to the same eigenvalue. Similarly from the fact that W=\ one can
not conclude that ('\"\—7 Y In) =0 . Finally let us note that in
a certain sense "t and V.. are not very well defined, since,
if A is a number, & md¢5§d$ are physically equi-

/7 /
valent yet LY and Yo are quite different from % and oo .

XVI. GENERALIZED HELLMANN ~ FEYNMAN THEOREM

Suppose.that H contains a real parameter T . Then by

differentiating

($, - Ey¥$) =o
with respect to G~ we find
(2, 0-09) »,m-2)28 )
&—C\F,@%}_-%%_)u?) =0

where in carrying out the differentiations we have of course kept

(XVI-1)

the integration variables fixed. 1In this commection it should be
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especially noted that if one changes variable then in general Myaq"
will change if the change of variable is \"an dependent. Also.'we
have assumed that the volume element in the integration does not
depend on G . TFor many cases of interest in which the volume
element does depend on T the dependence is only multiplicative
and hence cancels out.l

We will now show that if the set cf trial functions is invariant
td changes in the value of O then the first line of Eq. (1) will

be separately equal to zero so that we will have

( J)f'\; (%’}_:_‘_, ;—\—E:)&) = (XVI-2)
which is the variatiomal.version of the generalized Hellmann-Feynman
theorem for’ & A The proef is as follows:

Though as a whole the set of trial functions is, by assumption,
indépendent of T s still which particular members of the set are
selected by the variational method as optimal trial functions will in
general depend on the value of O~ ', Therefore lek ‘{\: = ‘?(%t‘w';)'
be an optimal trial func’tion when V=0, , and let @(‘U‘t *’.5_0.")
be the corresponding optimal trial function for a slightly different
value of o (we are assuming that the dependence on 0 is
contimious). Now by our assumption {FL@*) and W\o, #50%) both
belong to the set from which *%L¢’) was selected. Therefore
&C@, +$7)  was one of the neighboring functions which was examined
in testing for the stationarity of 'E’:(-@") . This in turn implie.é

that
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vy s,
[
nust be a 59} satisfying (IV-3); that is, cancelling the factor &5‘)

we must have

( 3 | By $) + (8, -8 .
0y 20,

which, since Q7 could be any value of T , proves the peoint,

The theorem which we have just proven, is in its essentials due to
Hl.u."lea},r,2 and we would like fo emphasize its simpli‘city and its generality
since this does not seem to be widely enough appreciated. In particular
there are in the literature (subsequent to Hurley's work) many ve;y
detailed derivations of special Hellmann-Feynman theorems (i.e. special
choices of Q7 ) for partiecular variational approximations; deriva-
tions which are quite unnecessary since the results are immediate
consequences of Hurley's theorem.

Obvious examples of sets of trial functions which are invariant
to changes in o~ are (i) the trial functions of most SCF (UHE,
OHF, restricted AF ete. ete) type approximations since there are
usually(no‘z'priori requirements as to how the spin orbitals should
depend on possible < like nuclear charge, nuclear configuration,
strength of external fields, ete. (ii) the trial functions of analytic
_ SCF approximations if the basis set is independent of o~ , (iii)
linear spaces in which the basis set is independent of o~ .

In the latter two cases, if the basis set 1s fixed, invariance
requires either that the individual basis functions don't involve U~

at all or more generally that M \o~35) is a linear combination of the
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P ) -  However if the basis functions also imvolve non linear
parameters (thus not- really a linear space) then more flexibility is
possibile, .

As an application of the generalized Hellmann-Feynman theprem we
will use it to derive, and extend, some of tht; results found in Sec. XI.
In the spirit of double E)erturbation theory let us includeﬁ in‘ the
"Hamiltonian! an add;‘utiva term of the form /A. & where /JU . is a
real-parameter and where we will be interested in the limi't./,t. -0
If the set of trial functions is invariant to changes in /A then

we will have

A o & 2 |
(%, 0¥t ¢) = %E,u . (XVI-3)

Now suppose tl}itt in the limit ~6‘ =z 0 » Where \6\ is some other
parameter, v becomes an eiéénfurrction of the "Hamiltonian™: 'Then
barring problems with degéﬁeracy the error in ‘:[3 must be of order
"6&% Jliw) where /3' .is some constant, and therefore the error in
%: ‘will be of order “61£\+ﬁjﬂ')q’. But now if \‘(J is the eigen-
. AN

funetion to which \1) approximates, and if E is thes edrresponding

eigenvalue then

(% 0¥ /(hy = %—; PSSR

. Comparing (3) and (4) we see that the erxox in the expectation value
of @ is the same as the eyror in &%!"" which from. the .above is
*™ in ene
of order in the limdit /l,\. -0 .
" This result then evidently includes that of Sec. XI for UHF as a

speclal case 1f we identify —6 with 1/%. Also for OHF we see that,
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with the further qualification that ©' | and Hl be spin indepen-
dent, we have a similar result since in the “Z-—woo limit the "Hamiltonian"
‘;—\--{-)/‘-8’ Awill be a spin free onerelggtron-epayator and hence wild -

have the LlJ " of the OHF as eigenfunctions.3

XVII. HYPERVIRIAL THEOREMS — GENERAL

Let }3 be & Hermitian operator and suppoge that among the. .
Al
variations of-. W  which are possible within the set. of trial functions
is

A
& N Y (XVII-1)

where 80~— ig a small real parameter. Then (IV-3) must be satisfied

A
with Y given by (1). Thus we have

Ceso-nd, (4—E2F) + ($H~B) Ese b P (ar1-2)
which immediately simplifies to

of, om0 ) =0 (s

A .
and we have the result that under the given conditions,. \.P satisfies

the hypervirial theorem for )3 .l
We now note that (1) is the term of first order in Som in the

expression

t&‘&% N A .
v - ¢ : - (XVIT~4)
From this observation it then follows that a sufficient condition for
o . )j .
N4 to satisfy the hypervirial theorem for is that the set

of trial functions be invariant with respect to all unitary transforma-
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tions U=Qh  where ¢ is an arbitrary real number. Proof:
If the set is invariant to such transformations then the first term on
the left hand side of (4) will be a2 funetion near to \{l: in the set.
and therefore.(l) will be a possible variation of :"’\ within the
set, whence the result follows.

It should be clear that this condition is only sufficient and not
necessary. Thus we really need only that (1) be a possible variation

ot
for one real value of 5&, . Also under our conditions 'T»S&—)ﬁ v

Y
is :a possible variation of any W within the set, whereas we need
A
this to be true only for P .
As an application of these results let us .consider UHF. If )'3 .

is a one particle operator

N
5 - Zaw
» S=q o
then: £-% takes the form Sj\ WUN) . Thus it follows from the

discussion in Sec. XII-B that UHF satisfies the hypervirial.theorem for
any one-particle )’3 (Hermitian or not, since the hypervirial. theorem
is linear in % and any one-particle operator @ can be written
as a linear combination of two one+particlé Herm:}.tian operators, for
exampleL@*”@‘\’) and ¢ L@' "®+ ). Correspondingly wéaker
statements hgld fc-ar restricted HF schemes. Thus consider OHF. Then
clearly we have the result that the optimal trial fuﬁctions will satisf;}
(3) for any spin independent one electron operator )3 .

In our discussion so far we have insisted that Sc~ be real. . How-
ever UHF is formally invariant to transformation by 'Q-Ld):\ whether

or not ol is real so long as -}3 is a one-particle operator.
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Returning then to (2) and assuming Seu to be pure imaginary and

P
/}3 Hermitian one then £inds that the VY of UHF will also satisfy

(4, Ce My amy$) = 28 OF) »v) (XVII-5)

or, combining (3) and (5)

L, W) = & CHAd) = of, o) (RVII-6)

Similar results of course also apply to OHF with ,)j any spin inde~
pendent Hermitian one-particle operator. Since however, non unitary
transformations are often not pleasant to deal .with (they may transform
a normalizable function into an unnormalizable one), the following
derivation of (6) for UHF and OHF based directly on the variation
method may be more convinecing. \

With _)ﬁ a Hermitian one-particle operator it follows from the

consideration of Sec. XTI that for UHF (and for OHF if /}j is -also

spin independent) that if we write

> Y
= HAE - ©
b A
L $)
then Gp satisfies the conditions of Brillouin's theorem. Thus we

have

0= (® uf)=a4Fed) - CHAEIE nH LD
= (o) ~ B8NP
which is the right hand side equality in (6). The left hand side
equality then follows by compléx conjugation.
Turning now to situations in which the set of tyrial functions forms

a linear space let us return to (1)} and write it as
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Q&
Ciy ede b $ ~ & (XVII-7)

Then we see that if )3 applied to Q’ vields a function in the
space,.then (1), with no restriction on &o~ , will certainly be a
possible variation of 3\/ within the space since, by linearity, the
first term in (7) is a neighboring function in the space. Therefore |,
as a sufficient condition we can say that if the set of trial functions
forms a linear space then (6) and hence (3), will be satisfied if)‘ﬂ
applied to any function iIn the space yields a function in the spage,
Note however that this sufficient condition, though stated a bit differ-~
ently, is formally equivalent to our general sufficient condition applied
LA
to this case: <first of all it implies that & with « an
arbitrary complex number applied to any function in the space yields a

function in the space, since if )3 :’{\,f is in the space so is }ﬂl$) )dg"’?

ete. and therefore by linearity so is a‘""*)’ é}\f . Conversely if ¢ U‘)O*l;

is in the space then by linearity so is l;,&h»:?b (Qw)j A;-TJ-—- @;)/tn{.: .)3$
The following direct .derivation of (1l1) for the linear case is also

o~ =
of interest: Since b is an eigenfunction of W we have

CE B b)) = Buthe,d S =080, 25 $u)
But 7 $p = \Qk . and if )3‘9‘( is in the space TH P = )ﬂ‘@w.
so that we can replace W by H which yields (11).

We have now seen two distinct consequences of the invariance of a
set of trial functions to unitary transformations (i) invariance of
the optimal energies, and (ii) hypervirial theorems. We now want to
bring these two results together with the help of the generalized

Hellmann—Feynman theorem. Introducing a real parameter 3 we define
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.
Py _asA
H {3 = 2 e
with Y  ang- ('3) the corresponding optimal trial functions
and energies for H-('?) . Now suppose that the set of trial funct_iéns

2“%'93 for all % . Then

is invariant to transformation by
~

from the results of Sec:; XII-B it follows that the ©& are in faet

independent .of © S . Further since changing '3 to S+8%  simply

replaces one transformation by another we see that the set of trial

functions is invariant to changes in S . Therefore from Sec., XII-D
' I

and the result just found, that & doesn't depend on % s We

have- that

= (£, 383 Ly
o= ( ) 0% $)

However
3 oo (HA-—29U)
13
'Ehus, putting 3:0 equal. to zero, we have rederived the result
o .
that satisfies the hypervirial theorem for A

We will now consider some specific hypervirial theorems of physical
interest. For H we will always use the non-relativistic fixed nucleus
electrostatic (i.e. no magnetic fields) Hamiltonian. Also we will work

almost entirely in the coordinate representation.

XVIII. MOMENTUM THEOREMS

Let }3 be a component of

N
-
™ = E}} * (XVIII-1)
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Then one readily finds that ECHDK-—&«\‘})‘S z: A1 is the corres-—
— 0Ps1e
ponding component .of P the operator for total electronic momentum
N
T = Z
= (XVIiI-2)
P =&t

Thus if the hypervirial theorem for this )j is satisfied then the
¥ A
average of the corresponding component of p caleulated using +

will vanish. We will call this a momentum theorem.

— .

Since the components of T are spinless one electron operators

A .
we then know that the W of UIF and of OHF will satisfy all momentum

theorems. One way to produce a set which is invariant to the trans-

. -
féormations generated by D is to explicitly introduce real
= A
variational parameters K according to
=, 7 ‘
~ JED Y
L= R & (XVIII-3)

o~
where the (O are \independent of K . That this works then follows .

from the observation that such a set of trial functions will be in-

. . . oo P .
variant to the unitary transforxmation 4 since
—y oy e N *.‘-"\";’/_.:“?
T L 2D A P R7FD

L ©= e G =

However having made these remarks it is very dmportant to point

out' that often the momentum theorems will be satisfied simply for

B -y
reasons of symmetry of one kind or another. For example since £ is
a pure imaginary Hermitian operator its average will automatically

o~
vanish if is real. Prdof:

- ka2 % oo a4 A=A
C\{\’\)g\?'-)"—’C\C)’P‘-?’) :—_(\?,)'13? N2 ).‘-__.,_.,(_\l_,}?g))>
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and therefore C\% T’q ‘3\') ={) , More generally if H is real the hypervirial
. - A
thecrem for any real Hermitian _ﬂi will be satisfied if & dis real
since t (WA-.2Y ) is then a pure imaginary Hermitian operator.1

Another example is provided by an isolated atom. Then, reality

VY
aside, if, as is generally the case, ¥ has a definite parity under
xR
inversion through the nucleus then N is invariant to inversion

<> A = oA
while P obviously changes sign. Therefore (Y ) P ‘-§') will

vanicsh. Or consider a diatomic moleculé (or an atom in Field which is
invariant to rotation about an axis through the nucleus). If ff,\/
has a definite component of angular momentum along the internuclear
axis, then Ci-'% ‘—(}\‘ will be invariant to 2 rotation of 180° about the
internuclear .axis while the components of .E? perpaendicular to the
axis will change sign. Therefore :':Lve.rages of these components will
automatically vanish. Also they will wvanish if the molecule, instead
of having a definite component of angular momentum, has a definite
parity for reflection in any plane containing the internuclear axis.
The vanishing of the component along the internuclear axis is -then
guaranteed (by an adaptation of the earlier reality argument) if, as is

S
often the case, N2 is complex only becaunse it contains an angular

factor on which the component of %f along the axis does not act.
Also for a homonuclear diatomic molecule one will ﬁsually arrange for
the it’ to have a definite parity with respect to reflection in a
plane perpendicular to’ the axis and through the mid-—point and this will

alsc ensure the variation of the average momentum along the internuclear

axis.
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XTX. TFORCE THEOREMS

Let ,}b be a component of the operator for total electroniec
—

- ot
momentum {2 . Then one readily finds that (¥ R.- Pu_\q)—:_*-;z B-'i;ug

e
is the corresponding component of B s the operator for the total
-
force on the electrons. F is of course the sum-of the forces
due to the nucleus and the forces due to whatever external fields may

be present, the electron-electron forces cancelling, Thus for a mole-

cule in the absence of external fields
- -
Be 27 Zn (Ra—%)
S A R I'@, (XIX-1)
[ﬂe""‘-‘ -
where HEE A is the charge on the A'th nucleus and Ra ig its
position vector. (Incidently the reader should keep in mind that this
result and various others which we have been and are stating in the
language of atoms and molecules and solids, are of course either quite'
general and do not depend on the detailed nature of the force laws ox
- can be easily generalized). Thus if the hypervirial theorem for this

,93 is satisfied then the average of the corresponding component

g .
of ¥ calculated using W will vanish. This we will call a force
theorem.
-—p

Since the components of P are sﬁinless one electron operators we
then know that the 'G; of UHF dnd of OHF satisfy all force theérems.
Further since a cemponent of E; generates a rigi& traﬁslat;on of the
electrons in the corresponding direction wé know that in general if the

set of trial functions is invariant to rigid translation in a particular

direction, then the corresponding force theorem will be satisfidd by
N

the ‘%’
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One way to produce a set of trial functions which is invariant to
all translations is to explicitly introduce real variational parameters

Y| attached in an additive way to each electron coordinate:

Oor

- ~ o = g >
Cif-3) = @ (v, RV e Tar @) (XTX-2)

o ‘s .

G5 may of course involve other variation parameters and/or functions
and may also depend on non variational parameters 1like nuclear coordinates,
charges, etc. However here, and in analogous situations later, we will
not indicate such dependencies explicitly unless they are relevant to
the discussion (we have followed the same policy all along with respect

to spin coordinates). That this works then follows from the observa-

i d s
tion that a rigid tramslation Te —® g +ov is equivalent to

I & - . .
™99 + o i.e. simply produces another member of the set.

Indeed (2) formally has the same structure as (XVIII-3) since evidently

we can write (2) as
- 4
ot "ULL.

$C :?L"“:i‘?o) = & @ C’?: ~e- :?g) (X1X-3)

Also (XVIII-3) transformed to momentum space takes the form

N~ Y -~ b d
¢ = ‘ﬁa (_Frl"'“) —-——— '% '_f)
~

—

O\
where "X is the Fourier transform of (® » i.e. D  generates
translations in momentum space.
—
However, just as with P s this elaborate machinery may be un-

necessary in-that force theorems can often be satisfied simply by reason

—
of symmetry. Thus consider again an isolated atom. Since = is

= A
odd under inversion through the nucleus, (& F +) will vanish
A
if Y has a definite parity under inversion through the nucleus.
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Also for a diatomic molecule (or an atom in an external field that is
axially symmetric) force theorems perpendicular to the internuclear
axis can be satisfied under the same conditions as the corresponding
momentum theorems of the preceding section. Also this same symmetxy
will insure that the average net force on each nucleus separately will
have only an.axial component. HOW;Ver along the axis, symmetry is
usually of no help except in the case of a2 homonuclear diatomic
molecule. Hence to satisfy the force theorem along the axis usually
requires the use of a set of trial functions which is explicitly
invariant te translations along the axis.

As an interesting application of the force theorems, consider a
molecule, first in an external electric ﬁield. The net‘forceA on all
the nuclei is then the sum of the forces on the nuclei due to the elec-
trons, and the forces on the nuclei due to the external field, the
nucleus—nucleus foreces cancelling. Thus

Net force on nuclei = Force on nuclei due to electrons +

(XIX~4)
Force on nuclei due to external field
On the other hand the net force on the electrons is the sum of the
forces on thie electrons due to the nuclei plus the forces on-the electrons
due to the external field, and if the force theorems are satisfied these
two cont?ibutions cancel. Thus

0 = Force on electron due to nuclei +

) (XIX-5)
Force on electron due to external f£ield

However

Force on electrons due to nuclei = - Force on nuclei

(XIX-86)
due to electrons
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Therefore combining (4), (5), and (6) we have the result
Net force on nuclei = PForce on nuclei due to external field +
Force on electrons due to external field (&Ix-7)
from which we can draw several interesting conclusions.
(1) Suppose that the molecule contains only one nucleus, i.e. is

[

an atom. Then if we are dealing with a uniform external electric field
"é? 5 the force on the nucleus due to the external field is simply
- ? while the force on the electrons due to the field is
s% 8, 2¢°)I(¢,¢)= -'!U?f . Therefore if the force theorems are sat-
isfied so that (18) applies we have the ':; independent result
Net force om nucleus = (3£ - n ')"2 = % (A~ %) Z? (X1X-8)
N/Z is called the dipole shielding factor and evidently ¥/Z is its
exact value.l
(ii) 1If for an isolated atom the force theorems are satisfied
then the force on the nucleus calculated from C[: s will vanish.

(iii) Returning to molecules, if there is no external field,

then if the force theorems are satisfied so that (7) applies, we have

that

Net force on nuclei = 0 (Xix-9)
In particular then, in a diatomic molecule the force on one nucleus
calculated from \ji> will be equal and opposite to the force on

the other.

X¥. TORQUE THEOREMS

-7
Let )‘l be a component of L the eperator for the total

electronic orbital angular momentum
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i
e
2 3 A
D (Xx-1)

-

(I

Then one readily finds that T (Hby, LulH) is the corresponding com-
ponent of the operator for the net torque on the elecirons, this net
torque being provided by the nucleil and whatever external fields may
be present, the electron-electron contributions cancelling. ’Thus if

the hypervirial theorem for this 993 is satisfied then the average
A

of the corresponding component of the net torque caleculated using W

will vanish. This we will call a torque theorem,

-
Since the components of - are spinless one-electron operators
A
we then know that the ¥ of UHF and of OHF satisfy all torque

—
theorems. Further since a component of 9 generates a rigid rotatilon

of the electrons about the corresponding axis we know that in general
if the set of trial functions ie invariant to rigid rotationg about a

particular axis then the corresponding torgue theorem will be satisfied
A

by the W .

The angular momentum and torgque which we have been talking about
are calculated about the origin of coordinate system. Tf more generally
we calculate the angular momentum and torque about another point we

-3
will usually get a different answer. That is if we replace the e
~ =

by Mt o then the average angular momentum changes by

-7 AT~ B

a%LWJ>+)ﬂ¢ﬁ)
while the average torque changes by

—4
oz O B 9Y/e

Therefore only if the momentum theorems are satisfied is the average

angular momentum independent of origin, and only if the force theorems

are satisfied are the average torques independent of origin,
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We now note.that for an iseolated atom the operator for the torque
about the nucleus vanishes identically (JEZ about the nucleus is con=
served) so that if the force theorems are satisfied all torque theorems
about an arbitrary origin will be sarisfied. Also for a diatomic mole-
cule the torque theorem for torques about one of the nuclei will usually
be satisfied simply by symmetry, and therefore if the force theorems
are satisfied, the torque theorems abeut an arbitrary axis will be
satisfied. Proof: About nucleus 1 the net torque on the electrons is

due only to the other nucleus, the torque operator being proportional

to ]
N b 4 -
= 7 -~ = (f-2)/I1T-RP
S=y
N o - —_ Y e -
P BB A B BT BT 2 U (R~ RY)
T sm

-3 ey
Now the components of N~ which are perpendicular to (-R1 ) change

sign if we rotate by 180° about the internuclear axis i?,,—ﬁﬁ.,, .
Therefore if S( has a definite component of angular momentum along
the internuclear axis (or a definite parity for reflection in any
plane containing the internuclear axis) it follows that the average

—
of these components of \  will vanish. Therefore we may effectively
- = =5 P
replace ¥ by its component along ;-T2 whence JC  is ef-

fectively zero, which completes the proof.

XXI. VIRIAL THEOREMS

Let )l be the operator

Yo s
opy — 3%
Y = SZ:’ 2tk T (XXI-1)
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the addition of =3vE ensuring that \N° is Hermitian. However it
o

clearly plays no role in the hypervirial theorem fox N . Then omne

finds that 0,"& Uy~ Pn) equals
{ VIR ca Y
2% ¢ - Th) (XXI-2)

5V,
where T=e&% Proof: Xze¢ ‘3’ can also be defined by

L X = X ;X‘;‘(?i Whim em0 (XXI~3)
L

d\@)

o
It is then easy to verify that (2.7 satisfies (3).

Thus Y produces a poasitive scaling of the electronic coordin-
ates, the factor of T}N}V which arises from the -%3¥/2. ensuring
that the normalization of the sqaled function is the same as that of
"Q" , as befits a unitary transformation. Since however this factor
will cancel out in caleulating energies we therefore have the result
that if the set of trial functions is effectively invariant to such

A

scaling then the s will satisfy the hypervirial theorem for ' A
(we will discuss the content of this theorem in a moment). In particular
since W is a spinless one-electron operator the \{r: of UHF and
of OHF will satisfy the: theorem. One common way to ensure that a set
of trial functions will be invariant to positive scaling is to explicitly
inelude a coordinate scaling parameter as a variational parameter., That
is one uses trial functiens of the form

:¥ = 'ng”}'vg C%V “7‘:7 -om % ?a}) (XXT-4)

. e _ Y L
with 5 a real variational parameter, the facter of T being

optional., That such a set of invariant to positive scaling then follows

from the observation that replacing the T by T¥ 4in ¥ is
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o

equivalent to leaving the §§ alone and replacing $ by ng and
therefore effectively produces another member of the set. Moreover such
a set is obviously invariant not only to positive scaling but also
loid ~

negative scaling(ﬁ:<0) and hence in particular to inversion T2 —7¥% |
Evidently UHF and OHF also have this property. In general when a set
is invariant to both positive and negative scaling we will say simply
that it is invariant to scaling.

The hypervirial theorem for 0\{“ is essentially the virial theorem

which is so often used in discussions of chemical binding, force con-

stants, etec. To show this we first note that we can calculate

ATl B) quite generally as

. A - P TR
LR N~ VR ) = %\‘(%}: P 3 b*'ﬁ) (XXI~5)

Now let us specialize to an isolated molecula. Then
H=T+V (XX1-6)

where T , the kinetic energy operater, is a hemogeneous function of
%

degree 2 in the fu s+ while V , the potential energy operator, which
A
we will take to include the nuclear repulsions so the E is the total
o~
molecular emergy, is a homogeneous funcrion of degree {(~1) in the +s

c—?
and the oy . Thus from Euler's theorem on homogeneous functions

we find
e = 277
f; (XXI-7)

and

(XX1-8Y



97

Therefore the hypervirial theorem for S\ becomes

-
A~ A —% -
TTX V- 2 Ry Fy =0 (xKT-9)
A o~
where is the average kinetic energy of the eleetrons, V the

A

—

average potential energy of the electrons and nuclei, and Fp is the

average force on nucleus A :

F= (5T /e,y 5 v = 08 ud) g, 5%9 =—(~3)7i\i;¢)ﬁ£,~9) (XXI-10)
BR4

-

Aw) where
N
-0 %-?A = 7%, 'M"RA) r X
-;33)- S:) ‘ﬁ‘:ﬁﬁ‘g %A\% % UZ,J} R‘ﬁ) (XXI ll)

\Ba el

We will eall (9) the generalized wvirial theorem. To reduce it to more
familiar form suppose. that :L s in addition to satisfyiné the
hypervirial theorem for W » also satisfies the generalized Hellmann—
Feynman theorems in 'I'L_g coordinates for < equal to the

components of the RA . That is suppose that

B% (3 3“ ‘”/Cw, $) (XXT~12)
A .

Then (9) yields

2T+V+z RA ,@ e

— (XX1-13)
O Ra
A
Finally let us suppose that ‘} was derived from a set of trial
functions which is - invariant to translations and

rotations of the electrons. Then since a translation or rotation of the

electrons is equivalent, as far as H is concerned, to leaving the

electrons alone and tramnslating and rotating the nuclei the other way,
q—?

and since our set is already assumed to be independent of the P’A in

w5
order to satisfy the generalized Hellmann-Feynman theorems for 0 =Rj
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it follows from Sec. XIV that Eé can depend only on translationally
4
and rotationally invariant quantities like bond lengths Rw_-o?- \R-A.—Eg]
— ~h } Lage]
and bond angles cos™ (Ry~y) * (R Rp) . Since the latter are homo-

Wom B 1\ & ) ) YR
geneous functions of degree zero in the Q4 and since _.:-,fatdﬂ’—‘-";-; bb)

. T P13
one then readily finds that under these conditions (13) can be written
v, B
as
N -~ ? ‘6_
2530 + 2 Ry 2E (XXT-14)
L5
Ry
For a diatomic molecule this becomes the familiar
a A
27 ¥ G + & ‘ig =D (XXT-15)
Jd ¥

where R is the internuclear separation, and for an isolated atom

(R = 0) is the equally familar

A A
T+ V =0 (XXT-16)

Eq. (l4), or its specializations (15) and (lﬁr), is what is usually
called the virial theorem.C

Thus if one uses a set of trial functions which is invariant to
positive scaling of the electronic coordinates, is invariant to changes
in the nuclear ceordinates, and is invariant to translations and rota-

—-F o~

tions of the s , then the ~¥ will satisfy (9), (13), and
(14)}. 1In addition we know from previous sections that these conditions
will also guarantee that the net force on the electrons and the,ne{:
torque on the electrons caleculated from C[, will Eoth vanish, and
that therefore the sum of the forces on all the nuclei as caleulated
from ‘Ci-’ will vanish. Also the forces on the nuclei in a diatomic

Y
mblecule will be only along the-axis since ifi~ & ig a function

— —y
only of R=1#,~ Ryl = (R1 then
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, o S
—-"_9__@." ~x26 _ Rk & (XXI-17)
W 2% Wl oan

This then will also mean that the average net torque on the nucleiywill
vanish.D

Y As we have seen UHF and OHF satisfy all these conditions. For
other sorts of trial functions one often explicitly introéucés variation
parameters to &o the job. Since there are various ways of doing this
it will help to avoid notational,confusion to consider a simple example —-
a one-dlectron diatomic molecule in a simple LCAC type approximation
invelving two ls atemic.orbitals. Generalizations should be obvious.

v
A first choice (Heitler - London) for the set of might be the

functions

- = ;
24 E] ~ 'z.'\?” k) "
— sealp N
e v o4+ € ‘ (XXI-18)
i N . L] I ¥ ) [}
where € is a variational parameter. However this set has fione of

 the properties we want. It is not invariant to scaling, it depends
g [
explicitly en 1B, and ~ and is not invariant to either rotation
or translation of the electron's coordinates. To take care of all these
N = - ~ =

deficiencies, but still keep the same sort of W , it is then quite

- & * . s N
natural to introduce two real positive variational parameters ¢

~ X Ly
and ‘p and two real vector variational parameters and ft
and use the set of trial functions
ST~ 3\ PITT- )
- V-3  a,.- - - (XXT=19)
This set is then obviously invariant to changes in ®y  and R since

each member of the set is separately invariant. Also it is obviously

invariant ‘to scaling. Further the set is invariant to translations '
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o
g = i . . bond
sinece replacing o by # ha is equivalent to repldcing :W
I N oy g % i
and F by ¥ - 3 o and Fﬂ“?& + Finally the set is invariant
. > e .
to rotation since replacing by @Y where (. is a rotation
~4 - —1 _r_vb
dyadic is equivalent to replacing EE and ff by ® ¥  and

Q"R . ereor: | Q3T -Flala(3¥-¢' ¥ %
since the length of a vector, in this CAS, i r Ty 11
is invariant to rotation;E "(As we said, we Wroté'down (19) by analogy'”
Wwith (18)7 Howéver it should be noted that eithet term in thé sum (19)
would yield a-set with the.same invariance properties.)

Thus far our discussion has been quite general, with a view toward
application to a general polyatomic molecule. However for atoms and
diatomic molecules for example, one has special symmetries which ére

usually taken advantage of in any variational calculation. TFirst let

us consider an atom. Then (14) becomes

4,

ty N
2_% 4_(\\; — R, B, =0 - (XXI-20)

which is equivalent to the virial theorem if the force fheoremé are
satisfied, and we have seen that this will usually be the case for
reasons of symmetry. However we can also derive the virial theorem from
(20) simply by using the nucleus as the origin of coordinates so that

ﬁa =4 3 and this one.would:almost certainly de in any practical
calculation. Thus if one chooses the nucleus as the coordinate origin
then the virial theorem will be guaranteed simply by having the set of
trial funetions be invariant to positive scaling of electronic .coordinates.
Further, with this origin of coordinates we see that most restricted

Hartree-Fock, methods for .atoms will also satisfy the wvirial theorem
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gsince positive scaling does not affect angles, i.e. only radial co-
ordinates need be scaled.
Also for atoms, and with the origin of coordinates at the nucleus,

the following alternative derivation of the virial theorem ag a conse-

. . . . . 2
quence of invariance to scaling is of interest. Suppose that we

r\' A
calculate E‘L;QD using the trial functdon (4). Then by changing

N ’ oo

variahles in the integrals from the +q to the S ¢ and using
the homogenéity properties of T and V it-is easy te show that, in

obvious notation

~ I-\"'V‘ [ ~ e
g3l IO M TV (XXT-21)
NS
where to be definite we have assumed that % is positive, Re-

quiring that |

eE) /3320

A
2 % T +N M =o

then vields

N
or, multiplying through by %
A A
2T &V =0
which is the virial theorem agadin.
Turning now to diatomic molecules, here one'would almost certainly
put the origin of coordinates on the internuclear axis and use the
internuclear axis as one of the coordinate: axes, say the x' axis. ‘Under

these circumstances V will he -a homogeneous function of degree -1

‘:F / 4 ~

in the 5 and the,X;iI go that if we use a set of \JH which fs
=y

invariant to positive scaling of the ‘1:5. we will find instead: of

VA
(9), that 4/ satisfies

2,
P o~ . -
T Xp (79 QY (XXI-22)
2T +V ¥ &Z::1 £, = CC)/ $,4)
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Al
If further the ¥ satisfy the generalized Hellmamnn-Feynman theorem
/
for O"= X4 in the '“-Fs/ coordinates:
2E
< N
€ Lo, D) e (xx1-23)
3% WA

then (22) yields

—
n !
Q_%%-V A—I;Z; Xpr ;’M . (XKI~24)
= A

. o
Eq. (24) will then be equivalent to the virial theorem if E depends

fiv>

)

only on the internuclear separation R={ 'X: “'Xfa:l . Since translation
of the electrons aleong the x' axis and inversion of the electrons
(strictly we need consider only X;-‘P—-X; ) is, as far as H is con-
c.erned » equivalent to leaving the electrons alone and translating and
inverting the nuclei it follows frem Sec. XIV that if the set of trial

/
funetions, in addition to being invariant to changes in the X A s ‘is Also

)

invariant to such translations and inversions of the =electrons)then
/\::—" will depend only on the translation and inversion invariant
quantity R .

Thus if the set of Si: is invariant to secaling of the Q"l/ s
is invariant to changes in the X p,/ 5 and is invariant to translation
of the Ti?: along the internuclear axis then the ‘g will satisfy
(22}, (23), and (24) and (15). Also the forece theorem will be satisfied
along the internuclear axis. UHF and OHF of course, have all these
properties. Returning to our one electron diatomic molecule, a set of
trial functions with these properties would be )

“n(‘éf e (XXI-25)

e
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and again, as with (19) 3 either term in the sum yvields a set with the
same invariance properties.
If (22) 1is satisfied one may ask whether or nct the more general
(9) is also satisfied. The Cartesian coordinates in (9) are arbitrary,
differing therefere from the x'y'z' coordinates by a rotation about
. ’ . o, s ,
the origin plus some translation. Now ¥ A is the x' component

of

ﬂ-ﬂﬂ

2 . 5%, us Ra) o Z ‘2 e (Fa- hs)
PA . g --t&' L

A W&

which, if we were to delete the ' would be precisely F’A . There~

!
fore since Y4 & .%-,A =0 ir readily follows that if we write

-
@ Chy 3) and Pw":‘@.CEA '?-j) where (3 is a rotation
s.+
dyadic and A a translatlon then
B%a

Therefore we can write (22) referred to general coordinates (but with

the same \?, ) as -~

A A
I —Sp e 4
A A 5 Ry FP. O\ T bp = e ®)
T NV 2 A # (XXI-26)
—
where & is the vector connecting the origin of the x'y'z' coordin-

ates te the origin of the x y z-coordinates. Thus if all force theorems
——

are satisfied so that gFA =0 , (22) will imply (9). As we have

discussed before, the force theorems perpendicular to the intermuclear

axis will usually be satisfied by symmetry, and for example such is the

case with the functions (25) since they are individually invariant to

rotation zbout the internuclear axis, and therefore have zero angular

/ —
momentum abput the internuclear axis. Therefore if is perpendicular



104

to the internuclear axis (22) and (9) can be made equivalent simply
—
by symmetry., If A has a component along the internuclear axis
then one also needs to explieitly satisfy the force theorem along the
axis in order to have equivalence. ‘
Returning to the x" y! z' coordinates, often they are chosen in
such a way that whatever the nuclear separdtion, the coordinate origin

is a fixed fractional distance along the internuclear axis, thus at a

point
—> '/ —’
L= <R + pRy (XX1-26)

=<4 f>

Introducing coordinates referred to this origin

=l |
T = T "cfﬁ

we find
’ / f";11 —5 '....u'
P PR LD e T € = PR y TR "*3”5__9
T P YT %, ! D;;ﬁ wyp  (XXL-27)
FP
where R is the vector separation of the nuclei
I
S~ L
= Re~ By (XXI-28)
—

Thus since R  has only one component, czll it (2 , in these

coordinates we see that V is a homogeneous function of degree -1

—_— N
in the T and B and therefore if the set of ‘- is
n
3
invariant to positive scaling of the Y& we will have

t

253 Ur R G B\% \5‘,)[& ) (XXI-29)

where
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n
—"C‘Q) %W)/[-.P}m&) e _ﬁ (average axial component of force on nucleus 1)
. o3
= 4t (average axial component of force on nucleus .?)
P
(IXT-30) -
If further the generalized Hellmann-Feynman theorem for ¢ = (0 w. ?‘1“

coordinates is satisfied

I

& s
%@g OFy e ) /Q¢J¢) (XX1-31)

then we will have

AL @ JE ;
2 £V + R Je _ (XXT-32)
T ‘%L,.fo

=4
This equation will then be equivalenuv to the virial theorem if- &

depends only on R={®\ . Since as far as H is concerned

n » . )
5’& -—9._4'_1 ¢ is equivalent to R —» —R (strictly all we need
is %O —» —AJ ) it follows from the discussion in See. XIV that

if the set of trial functions (which we have assumed to be independent
t - A
of & } is alse invarlant to negative scaling B will depend

only on R and so we will have the virial theorem. However these

. oy B ¥
devices albne; invariance. to scaling of <& and invariance in e
coordinates o changes in @-« » will mot in gemeral ensure that

either (22), (23) or the axial force tﬁeorem are-satisfied. Of course
if the axial foree theorem is satisfied then, from (42) and (43) and

assuming that OL~>D y we will have
— 3%/ g

average axial component of force on nucleus 2

il

—~ average axial component of force on nucleus 1.

if R is < the signs on the right are reversed.
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1"
Along these same lines it is of interest to note that LowdinF
has given a simple preseription which leads directly to.the virial

theorem., The prescription is to use trial functions of the form

A G I 4 ,Te) (XXI-33)

b

and the proof is most easily given following the pattern centering
~yv ~— % .
around Eq. (21). Thus introducing the § 7. as integration wvariables,

i

cne readily finds that in obvious notation

T - TVTOLIT FTNO,TR)

Then A
e 0
vields
Y Gty +3 A 0ED L0 se
23 T, 2e) 4V 0,5R St 2 °® g
>E€
or Na 4 sy %)
~ A A A o) &’fg\' MO, @,BQC\‘) =D
. Y =NV (LT ®) + R AT,
25 50,58 +V O, > o I
Multiplying through by ﬁ; then yields (32) :
" TAd
25 (£, %80 + 3 (5 T8 ~ 62.%_2—:0

However-since H 1is invariant to a simultaneous change in sign of the
7$: and of (R and since our set of trial functions has the same
property (the transformation is equivalent to Q;‘*-—%; ) it follows
from Sec. XIV that the 1% do not depend on the sign of O , and
so we have the virial theorem, However unless the individual (ﬁ'

don't depend on © §& at all, or involve @R only in conjunction
with another variational parameter (see below) such a set is in general
not invariant to positive gcaling and is not invariant to changes in

fa
& since neither separately is equivalent to a change in k5


http:invariant.to
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. r .
Therefore although ¥ will satisfy the virial theorem it will not,
in general, satisfy either (255) or (31). Also it will not in general
satisfy the axial force theorem without further variational flexibility.
g O oD o~
On the other hand any set of the form (T, ponn VT R) , sinece it
- e T Favs
is separately invariant to scaling of the (equivalent to T—>
v o~ A ~
|23 , US> TN ) and changes in (R (equivalent to ?*VC\*%D ))
will yield \(5:, which will satisfy (41) and (43) and (29). If further

e ——

the variables occur in the combination d (T -7 &)+ (SyrTHT &y

then eone will also have invariance to translation along the internuclear
Aaxis ( X?:ﬂ’“-‘:"f'?{? o~  equivalent to V-3 c'ﬁ'-g:__ )} and therefore the

&:, - will also satisfy the axial force theorem. Indeed the two terms
in (25) are each of this type, though in a slightly different notation,

. ™~ e~
ie. with ¥  and |~ instead of TIYR
An inte.resting specialization of (33) is provided by trial functions

of the form
9

N by ~
Vv C Loy T 3 T @) (XXI-34)
. ® -
Such a set then has the additional property that for fixed values of
the -
— .
= Js/
'?3 z @
- ~\
it is independent of (R . Therefore such a set will yield \.}J 's
which satisfy the generalized Hellmann-Feynman thecrem for G =02 in
o .
9& coordinates, and hence in any coordinates derived from the
by an & -independent transformation, for example the often used
orthogonal confocal elliptic coordinates (iqith the nuclei at the foci).

We will now show3 that the generalized Hellmann-Feynman theorem. for
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G =06 in such coordinates is precisely the virial theorem. Proof:
s 4
In 9, coordinates H takes the form
= &t 4
® ™

where we have assumed that QU is positive and where t and v are
independent of ® . Therefore the generalized Hellmann-Feynman
theorem in these coordinates yields (the factor of @:3’ in the volume

element cancels out)
7 2 (8,6 o a8
€ o 2 YHET 2 )
7 0 == TS e
Multiplying through by. 02  we therefore have (32) again.

%7__ *"-VR-: and is therefore indepeﬁdent of
s (")
the sign of & . Therefore since for fixed % the set of V¥

However in general H“=

is independent of the sign of & ( R~ ~ /A equivalent to T )
it follows . Sec. XIV that g will depend only .on R and hence we
have the,virial theorem. Thus to satisfy the wvirial theorem it is
sufficient to use a set of trial functions which in @j type co-
ordinates is independent of &R .

As another exe;:'cise in scaling we will state the following with-
out detailed proof: Consider a general molecule in general coordinates,

and following Hurley,a let us refer the nuclear configuration to a

similay configuration according to

-y
Ry st - "
A= G0y 5 sawe S fer all A, S >0 (XXI-35)

Using the pattern of Egq. (33) et seq. it is then easy to show that if

we use trial functions of the form
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Cha r\,c,\ o r\.Y b :
¥ L Y, T Yy '""JPI R"n'} g Ra M (XX1-36)
A 4 " '
the \P will satisfy Hurley's form of the virial theorem

2%%— QH‘ soE - (XXI-37)

XXIY. ORTHOGONALITY AND RELATED THEOREMS

Eigenfunctions belonging to different eigenvalues of H are
automatically orthogonal. As we will see in a moment, it is.easy
Al Y
enough to give sufficient conditions such that ‘{/o‘ and \}Jlo will
. . a .
be automatically ortheogonal if E’e.-”f: é}‘o . However it must be
stated that so far, the only known way of realizing these conditions
~ . . Qs o !
a priori is to draw “p,  and Y., from a common linear space,
and for this case we have already discussed the orthogonality properties
A .
of the \\"& in Sec. XI. Also there are various other theorems of
a similar type for which the same situation prevails. To put the
o\
matter another way round, if the ‘}»  involve non linear parameters
and/or functions as in UHF and OHF and CI with non linear parameters,
then we do not expect the theorems to be satisfied, and this is in
agreement with e:mperience.A
A
To cover all the theorems at once let q"‘c;\, be an optimal trial
o~ .
function for a Hamiltonian Feo » and let |, be an optimal trial
function for a Hamiltonian H\@ . Then suppose that among the vari-
AV .
ations of \l/ef_, which were possible in the set from which it was drawn,.
"N
_was s Yy where o is a small but otherwise arbitrary complex

number and )3 is a Hermitian operator. Then from (V-3) applied
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to H-,:..H% we f£ind, with obvious changes in notatiom

A A [
( W, AW %o )= E.. G, A TS (XXII~1)
A (N
Similarly if Se Ao was a possible variation of W, then from

the complex conjugate of (V-3) applied to B=Y, we find

(6o, oy Fer= Eu ofy, HE) (XXTT-2)

Subtracting these then we have

06, (B b= (BB A,y (XXTI-3)

Various special cases are now of interest:
* A"

) A213% Wo-lo=1l. Then Eq. (3) tells us that if B, ¢
o A
E‘o) Hotan Yo will be orthogonal to \?\)b . Howewver as we noted at
the outset of the section, the one way we know to implement the suf-

' &
ficient condition in an ?priori manner is vo draw e~ and ‘?ﬁ,
from a common-linear space.
A
- A

(ii))ic[:l} Woo= by =8, For E:e.-?': &w Eg. (3) is the vari-
ational version of the so-called off diaponal hypervirial theorem
for )j . The one way we know to implement the sufficient condition

~ A} A
in an & priori manner is to draw Y., and Yl from a common linear
space whiech is invariant to the action of }3 .l However in such a
case we can derive the theorem more directly as follows:

FAY - —t A

( %y, (AW~ EPY) 45,_,,_),___ (& B) (P 2 $.)
a

But 'ﬁ'¢¢,_= \?L—)"T “‘e\o’—‘- ‘F‘t:. 5 'ﬁ"):\"!‘a—:-.)'-‘*‘?"s- sl THh ¢\,‘=- . Therefore

f—
we can replace W by H and we have the theorem.
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(iidi) }la\) Y 4y . Eq. (3) is now the variational version
of the integral Hellmann—Feynman-theorem.z' The one way known to imple—
ment the sufficient condition in an ?priori manner is to draw k{[E'L
and i.(ﬁ\/% from & common linear space'.3 However in such a case we can
derive the theorem directly as follows:

($o >0~ TG 2 (Bim B0 Ohy Pu)
But U \{‘;,-,c. \-?,. and T Cho-: \P\.,, (ncte that under our assump-
tion the same ‘|  is involved in ‘%_:,, and Wh ) so that we may
replace '\?M and @\Q by He and h, thereby derxiving the
desired theorem. _

@ﬂ_ﬁ#}xg%¢gb . We leave it to the reader to name

and discuss this case.
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APPENDIX A: THE MAX-MIN THEOREM

From [6] of Sec. II, we can characterize Tw , the k'th

smallest eigenvalue of H by

ST Nsé" "?; H‘-}’N)/C'%“?) )M’:’,‘)\T{)zo' Yo~ U\ (AL)
where the ‘-‘(’K are the eigenfunctions of H associated with the
lower elgenvalues. That 1s one minimizes %,: subject to the constraint
that the (\‘\F be orthogonal to the lower eigenfunctions. We now
want to point out that there exists another variation approach, the
so called "Max-Min Theorem", which does not require explicit informa-
tion about lower states. Namely one can show that

Bre Hax M ¥, H‘T")/CAS‘»',~S-‘) LWC,‘?)‘AO,&-\",\A,_\ (A2)
arf wy
where the “Wj, are k - 1 arbitrary functions. In words one first
fixes the /{ and determines the minimum of Eg subject to the con-
~
straint that 5( be orthogonal to the ™/¢ . This minimum
is then a functional of the ¢ . To find Eiu one then maximizes
with respecr to the ¢ . We will now give a brief proof that these
two definitions of Ew are equivalent. A more detailed proof with

references and historical comment can be found in 8, H. Gould, Varia-

tional Methods for Eigenvalue Problems , Second Edition (Oxford, 1966)

Sec. I1.6.

We first note that whatever functions one chooses for the *« .
they span a space which is at most k - 1 dimensional, and that therefore
there is at leas;t one linear combination of the \\'r,.. Y. vwhich is

. o~
orthogonal to all the 2y and therefore is a suitable 4( for
{
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. K
~
(2). However for this ¥ we have, writing it as $=> ?’ YRS

W

that -

{:: - L‘?ﬂ;\"rg) =
&5 T

Therefore.we have: the result« that whatever functions are chosen for the

o "’;ﬁb the maximum of the minima in (2) cannot exceed Ew . ' On the: other

e

hand if we choose the V¢ to be equal to the ‘-‘Q} L21-~--¥-1 then
from (1) it follows that the minimum for this choice of the WL is
precisely w , hence (2) follows.

Wer will now use (2) to give an elegant derivation of some of the

results in Sec. VII. First we will derive the separation theorem

——
——

(VII~10). Let { be the projection of H onto the M + 1 dimensional

space. spanned by the q’k and- ¢ «- Then

M

Cu tamyz Mo i () B e S (95§20, T et
AT -

. = DN A Mo

(e, &r=0
» ‘\o'.:‘ - P O TEYnm W
Gy oy = Max P W05y bavg $ap Sem e
% it (3,1 =7

where the & are selected from the M + 1 dimensional space.
Comparing E&_‘W\) and- gkmn) we ser-; that the prescriptions
are similar except that for %utm\) s Ve is permitted to vaxzy
while in @ue, (M) it is in effect Fixed at & . Thus the Max in
the latter case can't be higher than in the former case and we have

A A
B, O & By (May)


http:Therefore.we
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Now let us compare g.,g_ (oA) and'%\d-i”\) . As far as the W/ are,
concerned the prescriptions are the same. However im the latter case

Y
3 is more restricted so that the Min can't be lower and we have

EK(me') & %kLM)

‘which completes the derivation of (VI‘I-.‘LO).‘.

Now following Perkins, J Chem. Phys. 45, 2156 (1966), we will
derive the analog of (VII-12) for an arbifrary excited state. (This
paper also contains some numerical examples) If ,—I? is the projection
of H onte the M + 1 dimensic;nal space spanied by the Qk then

the two procedutes can be characterized by

Culine) = Hox pedn @‘?)lﬁ\"?;@)} (wg, $20

W t.‘-'—-\--— l/-f"l
and by
. e [N
(E\' - M{___,w (‘S’)H ‘9')/[*-?)&1) ; MC){F)Z'D PR P Y
A Yy
respectively., Thug Whether or not the ‘s’{. are eigenfunctions

of H , we have

~ A~
£, 2 B, (me)

However the d(‘: are the eigenfunctions of H associated with
the lower eigenvalues so we.also know that

Bw ¢ €&
so that we have

Ew 2% @, -‘.’. /‘E‘:\,_LM’I“'@D

which is the desired generalization of (VIT-12).
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APPENDI}-{ B: LAGRANGE MULTTIPLIERS

. We wish to find the consequences of

fa
. SB >0
in a situation in which the parameters and/or functions which label
A + Ll + - =
- satisfy certain equations of constraint
. PR G T (81)

To be specific, and since it 1§ the most easily visualized case,

. g A A
suppose that depends on M .real parameters GLl s = = Buwm »
The diréeect approach is first to use the eﬁuations (1) to extract an

A AT
independent set of parameters, say CK1 e v Qe in terms of which
all the others may be expressed. MNext one.writes g ‘in terms of

~
these i'nde‘pendént parameters, and, denoting the result by T s
calculates SC from
P
D
SE = Z & 5% - (B2)
D0.C .
Then since the 38p ) et R are aribtrary, © €av yields
N P . .
?E ' (B3)

D — =D
>b¢

as the equations to be solved. i

Another approach ig the method of Lagrange multipliers. Here the

prescription is to first require

HA 4 S
- \ )e, _
. :E':' ( 'D"&‘ * o= ” bﬁ‘. 3 =0 ', (B4)
- J

’ A
without regard to the lack of ind_ependence cf the 3&5 s that is
G

one solves
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?JE Z_ Yo 08y
‘0&3 *21 a&,‘

where the \d. » the Lagrange multipliers, are, for the moment,

unknown parameters., The solutions of (5) will depend on the %0{
and the latter are then to be chosen so that the equations (1) are
satisfied.

We now want to show that these two procedures are equivalent.

The point is simply that if the equations (1) are satisfied so that .

A A
we can use them to determine O"YZM -— —— Ou,4 in terms ofjf:
P~ A
) -- — QR thep the equations (1) will also imply. that
é‘ed
z 25 o €21 ~o (86)
5”‘4 Y-\ b‘o,\_
Therefore, multlplylng (5) by Bg‘-" and summing over Jj , we
yEL
flnd
WA A N
E I
Z L: LA b= oo R (87)

which clearly is the same as (3) since the left hand side is just
bé/ b/c\alf with the understanding that we have used the constraints

to express Okp_,h —— e &:M in terms of é:’ -.-.0.p_) Lo, T
= gust %E/BG\"

A
*Equations (1) and (5) are equivalent to 5 L =0 without con-
. -&‘ = % + T dCy
straint where - o ) ¢ variation of 8\‘5 yields

(5) while variation of g yields (1).
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FOOTNOTES

II

Sec.

A,

e
If one works in configuration space the existence of L\P,N&)

requires among other things that @ be twice differntiable.

However.this condition can be relaxed. If one uses —(v ¥, v
instead of (&"ﬁ; VQW? then.one can show that the results which we
will derive in this section will still hold even if P  is only
once differentiable. (See E. Courant and D. Hilbert Methods in

[
Mathematical Physics 1 bottom of page 457). Alsgo even if P

is twice differentiable the =(w¥) \7‘9’) form is often more
convenient numerically, However we will continue to use the
expression (1) because it is much easier to deal with formally.

In this and succeeding sections (and in the preceding footnote)

we will use the language of molecular bound state quantum mechanics.
In particular we refer to H as the Hamiltonian having in mind

that it is the internal Hamiltonian (or some approximation there-
to) of a typical atom or molecule. However it should be kept in
mind as we proceed that many of our formal results hinge only on

H being a Hermitian operator - be it differential, integral or

" finite matrix - with a (at least partially) discrete spectrum.

o~
Since we have imposed no normalization requirements on <2 and

®
W s the size of x is not a true measure of the difference

o ?_ oy
between W and ¥  in that even if & is large they

- N K
may still be describing the same state - thus let = 7 % )

An accurate measure provided by Arftd, &y = S where
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A
(nY]
is that part of 2 which is orthogonal to ‘P « It is then

of some interest that with (6), Eq. (7) ecan be written as
e Er Ga cw-B8a)

D. If H ds a finite matrix (recall footnote B) or more generally
if its spectrum is bounded from above then clearly the largest
eigenvalue is an absolute maximum of %é .

Sec. IIT

A. Another approach to getting a bound on the difference is to fix
ohe member by experiment. However in this connection it should
be kept in mind that H is almost certainly an approkimate
Hamiltonian and.therefore further corrections must be applied to
the é% {or to the experimental data) in order that the two
numbers refer to the same physical (or mathematical) problem.

Sec. VI

A. Tn introducing the linear variation method in Sec. V we stated
that the A?K should be linearly independent. 'This require-
ment has played no real role until now, However if the P ard
not lineariy independent there will be less than M independent
equations in (V-12) and consequently the secular determinant will
vanish identically. Thus only if the dﬁ& are linearly inde-
pendent is (1) really an_equation for i; « In practice,
particularly when using large non orthogonal basis sets, near linear

dependence can often become a real numerical problem.
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The authors of the first of references 1 refer to their method as
the "method of moments'. Unhappily this game name has also long
been applied to a particular version of the linear variation method
in which cthe d’u, are taken to have the form
o= W e

where d?‘ in some given function. This particular choice of
the &, Thowever is of little use in molecular problems since
the integrals C@,)H‘- ) may well not exist for 1 larger
than 2 or so even with & very reasonable choice for d?\ . [In
the paper by C-Y Hu, Phys. Rev. 167, 112 (1968) it might appear
that the method of moments has been applied to the Helium Hamil-
tonian. However a careful reading of the paper shows that it is
actually being applied to a finite matrix approximation to that
Hamiltonian]. A detailed discussion, with bibliography, of this
nethod, can be found in the paper of J., B. Delos, S. M. Blinder,
J. Chem. Phys. 47, 2784 (1927). They also propose a method -

. which is a computationally practical combination of
the two methods of moments in which the Yk of Sec. V take
the form of a &-—function multiplying (n'ot multiplied by) various
powers of H . They refer to it as the " ¥ - method". It was
also proposed independently together with a related merhod by
H. 3ilverstone, M-L Yin, and R. L. Somarjai, J. Chem. Phys. 47,
4824 (1967), and some illustrative calculations have been made by
J. M. Rothstein, J. E. Welch, and H. J. Silverstone, J. Chem. Phys.

51, 2932 (1969).
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Sec, VIL

A

If the linear space contains functions of various symmetries but
in the form of a direct sum (that is the linear space can be de-

composed into linear subspaces each having a definite symmetry)
-

then since qﬁ’ will commute with E?J so will Vﬂ if H does.

) —
Therefore the Fhm , as eigenfunctions of j will auto-

2

matically have, or ean be chosen to have, definite symmetry. In

A
such a situation then the e and é;u: we are talking about

. . . . o e
in this section are the successive “t*= and Bw of a given

symmetry. Finally if H commutes with ﬁIJ but i; deoes not,
so that in general the {%k; won't have definite symmetry, then
all we will be able to say from the results of this section is
that the successive E;‘ are upper boﬁnds to the successive
eigenvalues of H ordered without regard to symmetzy.

If H has only M4M  bound state eigenvalues (of appropriate
symmetry) then for the @M\M . @M one will be able to conclude
only that they are all upper bounds to the highest bound state

of H . However in what-follows we will not consider this possi-
bility explicitly. Also we will not worry about such interesting
things as bound states and quasi bound states imbedded in continua
of the same symmetry. For a recent review of the application of
the linear variation method to such situations see H. 5. Taylor,

Advances in Chemical Physiecs 18 (1970), I. Priggogine and S. A. Rice

(ed.) (Interscience New York). Also A. U. Hazi and H. S. Taylor,

Phys. Rev. Al, 1109 (1970).
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If H 4is a finite matrix, or more generally an operator whose
highest eigenvalues are all discrete and bounded from above,

then one can clearly prove a theorem analogous to that of (6),
Sec. IT but with minimum replaced by maximum and smaller replaced
by larger (recall also footnote D, Sec. II). Correspondingly,

Y
since & in (1) is also larger than C‘L&" where W is the

smallest W value for which oy +v , one can show that
if H has dimension P % M then

A —

= Mo AN i = D= M= b P M1

Sec. VIII

A,

For nuclei the Pauli principle plays a large role in wvalidating
the independent particle picture. See for example V. F. Weisskopf,
Physics Today, July 1961, page 18.

IX

- Sec.

A,

B.

A-point of notation. In our general discussion the symbol

( . ) has denoted a scalar product in the N-particle
space. In the first sum in (5) ht_)wever we use the same symbol
for a scalar product in a one particle space and in the second
sum it is used for a scalar product in a two particle space. This
should cause no confusion if one keeps in mind always the nature
of the operators and furfctions involved. TFor example Eq. (7)
bel;aw contains (*é_‘,c ,g_QJf ) whieh is a scalar product over the
variables of “f¢ but which is still a function of the remaining
variables in g .

These other sets are readily shown to satisfy (12) with the e

the appropriate unitary transformation of the & . The-essential
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point is that sincé ,g, involves the spin orbirals only in the
form of a "scalar product” 3 %? B¢ Le) 3 it is invariant to such
a transformation of spin ofbitals. For a detailed discussion see
C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

However even with these one-dimensional equations the fact that

" the exchange terms involve an integral operator rather than being

a local potential often makes calcularion difficult, Therefore
there has been considerable investigation and use of local approxi-
mations to the exchange terms. The original suggestion was due -

to J{ C. Slater, Phys. Rev. 81, 385 (1951). Tor recent discussions
see T. M. Wilson, J. H. Wood, and J. C. Slater, Phys. Rev. A2,

620 (1970), and J. C; Slater and J. H. Wood, Int. J. Q. Chem. S4,

3 (1971).

The result which we have just proven is actually only a corrollary
of what is really Koopman's theorem: Let the Q& be some
orthonormal set of UHF spin orbitals, not necessarily the canonical
set. Then we delete one of them to yield a trial function for

the N - 1 particle system. We now fix the Qz i.,e., fix the
unitary transformation which relates them tvo the canoniecal spin
orbitals, by requiring thar they be such as to make the energy

of the N - 1 particle system stationary. Sinece the energy of the

N particle system is fixed this then means A E stationary and

clearly we still have

D E= f-Qk,@%)
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since in the discussion in the text we used the canonical nature
of the spin orbitals only in the final step. We now require that
HAEI20C , Since 8—,@&0 (see footnote B above) this
means

C&\?M) .g'\(;:u) '\"({;k)g &C’v.‘o:z-'ﬂ

o .
In addition we have constrained Y to be normalized so we
also have

LS'\?H) ‘?“-J A (‘?k7 g'{"'e-‘} =0

and thus we are led to

? P ufn
That is (and this is really Koopman's rheorem) the optimal ‘?’K
to remove when one uses trial functions of this sort for the N-1
particle system is precisely the canonical one. An analogous
theorem for excitation of the N parcvicle system has been dis-
cussed by W, J. Hunt and W, A. Goddard III, Chem. Phys. Lett. 3,
414 (1969).

E. The frozen spin orbital wave function would seem more appropriate
to describe the N-1 particle system immediately afrer the sudden
ionization of the N particle system (assuming that UHF gives

. an adequate description of the 'N particle system)}. For a dis-
cussion of the implications of DAE = 6w from rhis point of wview
see R. Manne and T, .?&berg, Chem. Phys. Lett. 7, 282 (1970).
Sec. X
A, In the case of ground states there is a large literature discussing

the question of whether or mnot such solutions, though they exist,
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represent an absolute minimum or indeed even a local minimum with—
in UHF. TFor a recent discussion and an extensive list of references
see for example J. Pauldus and J. Cizek, Phys. Rev. 2, 2268 (1970).

See also J. I, Mugher, Chem. Phys. Lett. 7, 397 (1970).

Sec. XL
=== . .
A. With this choice of o ) E‘-‘-’-;’E €4 € . Note however that
A~
quite generally, whatever » Yo and & that
T4 Em:(‘p) \99“9) +"-C"F) W-~Hy )= e . For some cases in which
. rather naturally equals % see K, H. Hansen, Theoret.

Chim. Acta 6, 87 (1966); G. Gliemann, Theoret. Chim. Acta 11,
75 (1‘968), and references therein. .

B. TFor some special properties of the choice E’}‘ G~ H (-=T0)
see W. H. Adams, J. Chem. Phys. 45, 3422 (1966). Note however
that except for the \?;L_ s the eigenfunctions of this operator
are by no means obvious. With the choice Qro -:':\:1-; all the

&4  which contri};ute to ¥  have Euap o Fherefore
completeness immediately yields the simple result
A
D C—“..___.._—"E «) ‘?\’k.
1=
See. X1
A. An interesting questio_n which we won't purgue: If the set

"almost" satisfies- the sufficient condition, then how nearly can

A
one expect the L% to have the desired property?
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Sec., XIIT

A. It would be sufficient for our purposes if the $@<%  was only
"effectively" invariant to compléx conjugation. That is if there
were some constant A , depending perhaps on §§ s éuch that
l§c§§% is in the set if SF is. Since F*Qy&% is physically
equivalent to S;%? the use of the word "effectively" is clearly
justified.

Also similar remarks could be made in later sections where
we will assume various other invariances i; order to derivé other
theorems. However the distinction between invariant and effectively
invariant is anyway overly pedaﬁtic since eclearly, without chénging
the results of the variational calculation in any way we can change
an effectively invariant set into an invariant one simply by making
the overali scale of the trial funections arbitrary. Thus here and
in the sections which follow we will, to.simplify the preseﬁtation,
require invariance to various operations, though effective invariance
would suffice.

Sec. XVIL

A, BSome discussion and references to the early history of this theorem
can be found in S. T. Epstein, Am. J. Phys. 22, 613 (1954), and in
J. L. Musher, Am. J. Phys. 34, 267 (1966). We will discuss the

Hellmann-Feynman theorem in footnote D, Sec. XXI.



B. In spite of our comments in the text about the simplicicy and

sufficiency of Hurley's theorem, the following derivation is

- o~
of interest for the linear case. Since %4 is an eigen-
o
function of H we have

baé’f = O, B0 [0,

But if the set is invariant to changes in a~ then

blT/ao._ = . Therefore

St - N
= w, T 8 g 8e) /g
do - [W ? Do 0 )/(\'}MJ\IE"»)

= Ohe 8 )/, )
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Sec. XVIIT
A. S. T. Epstein and J. 0. Hirschfelder, Phys. Rev. 123, 1495 (1967)

o O3
discuss the use of trial functions of the form e"“)ac:)" for more

general )j .
Sec. XIX
. . o
A. By average force on the nuclei we mean the average, using \p

of the familiar classical expression., See footnote D, Sec. XXI

for some comments on this definition in the case of molecules,

Sec. XXI
A, oY is the trace of the ''tensor virial operator"
N
’ + L and ‘;‘ w .
V= 2, P b, - W Oy
We have seen that by "isotropic scaling", i.e. by scaling all
)

components of the s equally we can satisfy the hypervirial
theorem for oV . Similarly by "anisotropic scaling" (scaling
each component of _:& separately one can guarantee the hyper-
virial theorem for the diagonal elements of %_.; (for an appli-
cation see W. J. Meath and J. 0. Hirschfelder, J. Chem. Phys. 39,
1135 (1963)). Finally by tensor scaling (D. Pandres, Phys. Rev.
131, 886 (1963)) one can simultaneously guarantee the theorem for
all components of %5 s However, as always, symmetry alone may
be enough to guarantee some of these theorems {or to guarantee-
some, given others).

B. Tor a polyatomic molecule the ()ZL{:) and the bond angles are not

-~
all independent. Thus & may be written in various ways as
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~

funcetions of these quantities, In (28) the sum rupns over those

particular bond lengths, independent or not, which one has chosen
=

to use in expressing = .

If one does not use a fixed nucleus approximation then it is easy

tp show that if the internal Hamiltonmian is writcen in terms of

. —
internal Cartesian coordinates %, and their canonically con-

-~ -~ ~»
jugate momenta Wy , then the hypervirial theorem for Z:»‘Ta" ¥a

M A P
is the statement that 2T + V = 0 where T now is the average
total (electronic and nuclear) internal kinetic energy and where
Pl
V dis the corresponding average potentizl energy. This theorem
Y
can be ensured by using a set of ¥  which is invariant to
—p
gscaling of the Ta .

‘Equation (26) is the variational versioh of the Hellmann-Feynman

theorem; H. Hellmann, Einfuhring in die Quanten Chemie (Franz

Denticke, Leipzig, 1937) p. 285, and R. P. Feymman, Phys. Rev. 56,
340 (1937). 1In woxrds it says that, as classically, one can

celculate the force on a nucleus by caleculating the negative

gradient of the energy with respect to nuclear coordinates. Actually
the theorem is often read the other way around. That is, because

of the use one makes of i% in the Born-Oppenheimer approximation,
the average force on nucleus 1l say is)Z‘priori)taken to be‘”bﬁ%ééz.
The- theorem then says that it can also be caleculated from the
electronic chargf@density as the average value of the classical

force operator = . ,(See for example P. Pulay, Mol. Phys. 17,

197 (1969) especially Sec. 3). Moreover the theorem often appears
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in other forms, forms which argall equivalent if various theorems
A

are satisfied (and if < is an eigenfunction they all are

satisfied). Thus consider a diatomic molecule. Then if the force

theorems are satisfied we can write the force on nucleus one more

generally as
NEACL RS DAL
W, »
vhere &~ and & are arbitrary numbers except that C&nis:l)
and various choices have 'be.enAused in the literature. Also if,
as is usually the case, the 'r-?A are purely axial one needs only
the axial component of this quanticy.
The atomic orbitals in (18) are centered on the nuclei and are
invariant to rotation about the internuclear axis. For reasons
of symmetry one might expect the latter also to be true of the
optimal orbitals derived from (19), i.e. that the points %
and ?% will be on the/-\ internuclear axis. However there is
no reason to.expect that ?/ g will equal Ea , and that
j?\” / § will equal '[EZ . That is, as a price one pays for
translational invariance (and hence the force theorem) with such
o
a simple set of ¢ 3 the atomic orbitals will have their cusps

™
*off the nuclei. Following Hurley (ref. 7) ¥  1like (19) are

often called '"floating wave functions". Eigenfunctions for this

. problem, of course, have cusps at the nuclei.

" 1t
P. 0. Lowdin, J. Mol. Spec. 3, 46 (1959). Lowdin does not mention
any particular coordinate system, However he assumes, without
v R,
comment, that W depends only on R and not on S, or

-3¢
R« separately.
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Sec. XXIT

A-.

We have already discussed orthogonal'ipy to some extent at the end
of Sec., VII. In some 5CF calculations, orthogonality, though not
exact, can however be wvery nearly realized. BSee for example

P. Bagus, Phys. Rev. 139, A619 (1965). See also M. Cohen and

A. Dalgarno, Rev. Mod. Phys. 35, 506 (1963). TFor a discussion of
the situation for off diagonal hypervirial theorems see the ref-
erences and discussions given in ref. 1. For the integrated
Hellmann-Feynman theorem see S. T. Epstein, A. C. Hurley, R. E.
Wyatt, and R. G. Parr, J. Chem. Phys. 47, 1275 (1967) and refer-
ences tcited there.

The way this is often done in practice is as follows. Let %E&{{;j
be a function derived in some way, usually by a variational
calculation for &4‘:—\%5, T_ng. Then one does new linear wvariational
calculelltions for Hg‘_ and W , in each case using (ba,. and cﬁ?‘@
as the basis set. If one wishes to savisfy a sequence of integral
Hellmann-Feynman theorems inveolving a sequence of Hamiltonians

B¢ ytarjp--. 5 then one does a new linear variational calculation
for each Wi using the same set of &9; as the basis. In
particular (A. C. Hurley, Int. J. Q. Chem. 13, 677 (1967)) if the
sequence Wi is continuous the linear variarional method leads

to homogeneous integral equations instead of zlgebraic equations.



