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ABSTRACT

A technique for calculating the near fields qf reflector
antennas using the geometrical theory of diffraction is
developed, Computed patterns for two antennas are compared
with patterns obtained by other techniques and experimental
data. The GID is proved to be a useful tool in obtaining

near field patterns of antennas,
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I. Introduction

The study of the near fields of antennas has several
practical applications, Siting high power radars demands a
knowledge of the near field pattern of the system so that
hazards to personnel and flammable or explosive material may
be calculated and satisfactory safety margins establisﬂed.
Since a radome is, almost exclusively, located in the necar
field of the antenna it houses, its effect on the pointing
accuracy and beam shape of the antenna depends on the near
field distribution at the surface of the radome, Thus a de-
sign minimizing pointing errors and pattern degradation must
be based on a knowledge of the near fields of the antenna,

With the advent of millimeter wave experiments (16 GHz - 90 GHz)
the near field of an antenna may extend a large distance from
the antenna. For example, the Fresnel zone of a thirty-foot
.diameter antenna operating at 32 Gllz extends to 58,000 feet

as obtained from the far field condition %gg. Thus atmos=-
pheric disturbances affect ground to satellite communication
entirely through interaction with the near field of the

antenna, The simplifying approximations to the radiation
integrals which enable simple calculation of the far field
patterns of large antennas are not applicable in the near field,
Solution of the exact radiation integrals in the near field re-
quires a sizeable investment of computation time and machinery
for all but the smallest antennas., The computation time and

the size of the machine required increases sharply with the
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size of the antenna, The geometrical theory of diffraction
provides an attractive alternative to the classical theory for
the solution of near field problems, The techniques used in
this study reduce the area intesgration required in the exact
method io, at worst, a line integration and, at best a sum-
mation of a few discrete terms,

The problem is restricted here to the determination of
the forward near fields of reflector antennas in a c¢ylindrical
region with diameter twice the antenna diameter using the
geometrical theory of diffraction., This region is treated
since it represents the portion of the task that is not clearly
included in previous solutions, The geometrical theory of
diffraction is a logical extension of the theory of geometrical
optics; it introduces a class of rays generated by the inter-
action of the incident field with a discontinuity of the bound-
ary (in our case a sharp gdge.) An intuitive analysis of the
effects of the edre shows that the diffraction products act
to remove the discontinuity in the fields at the boundary be-
tween the illuminated, and shadowed, regions of both the
incident and reflected fields, This theory has been applied
to the study of two-dimensional aperture antennas by Clark for
near zone scattering,l Lysher used Babinet's principal to
obtain the near zone fields in the rear hemisphere of a re-
flector antenna by analyzing the fields of an aperture.2 In
the aperture modél, a plane wave, or in Lysher's case, a

spherical wave, illuminates an opaque screen with an aperture,
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The antenna beam is represented by the portion of the wave
passing through the aperture, Clearly, this model énly repre-
sents one shadow boundary properly. Reflector antennas use a
shaped reflector to focus the diverging rearward directed field
of a feed into a collimated forward directed beam,° Two
shadow boundaries are associated with this geometry, one the
incident shadow boundary caused by the reflector shadowing the
feed field, and the second, or reflection, shadow boundary
between the reflected, focused, beam and the surrounding
shadow, Note that the incident shadow boundary is improperly
positioned in aperture models of reflector antennas. Ratnasiri,
Kouyoumjian and Pathak have applied the geometrical theory of

diffraction to the study of the wide angle side lobes of re-

flector antennas in the far field.4



IX¥, The Near Fields of Three~Dimensional Reflector Antennas

The analysis of a three-dimensional problem by the geo-
metrical theory of diffraction is an extension of two-dimensional
diffraqtion_theory. The third dimension of the problem is
introduced using either of two methods. First, if the field
point is not near a causiic, the concepts of edge diffraction
may be used. If the field point is near a caustic, the usual
edge diffraction concept may be extended by use of an equivalent
current technique. If the geometry involves a shadow boundary
near the caustic, the equivalent current method yields the

correct result only in the near half of the Fresnel zone.

The general method used in this paper.is to model the
radiated field of the antenna by the geometrical optics field
and the diffraction fields associated with the shadow boundaries
of the geometrical optics field. The diffraction fields of the
antenna will be calculated from the position of the shadow
boundaries, and these fields will be summed with the geometrical

optics fields to obtain the total Fresnel zone fields,

A, Basic Concenpnts

1. Review of Half-Plane Diffraction Mechanisms

Figure 1" illustrates the various diffraction regions when
a point source illuminates a semi-infinite, planar, opaque,
reflecting screen, For the point P in region I, the field at
P is composed of a direct ray from S. and a ray reflected from.

the plane., In going from region I to region II, the reflection
shadow boundary is crossed and now only the direct ray illumi-
nates P, Finally going to region IIXI, we cross the incident

by
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Figure 1: Point Source Illuminating a Half Plane

shadow boundary; and P is in the geometrical optics shadow of
the half plane, In addition to the geometrical optics rays,
there exist a class of rays caused by edge scattering.
Sommerfeld5 first solved the scattering or diffraction
problem for a source digtance of infinity or plane wave inci-
dence, Pathak and Kouyoumjian6 recently obtained an asymptotic
solution for a finite sou;ce distance, The special case of °
their solution for illuminafion normal to the edge will be
used in the present analysis,.

If u‘(f,éq is the field of the incident scalar wave at

the edge, the diffracted fields are given by
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and(i) . ¢/, S, and S' are shown in Figurel  F(klLat) is a
correction factor that is needed only near the respective
shadow boundary. When kLa% )10, F(kLat} can be replaced by
unity.

| The following coordinate transformations make the notation
more compact and reinforce the concept that the diffraction
fields are intimately related to the location of the shadow
boundaries, The first term in (2)véan be associated with the
incident shadow boundary and the second with the reflection

shadow boundary. We can relate these terms to the angular
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distance from the shadow boundary,.
P-4 =6

-¢' =o'y (6)
¢-+qr= et+ 1Y (7)

Where Gi, e“ arc the angles from the field point to the inci-
dent and reflection shadow boundary, respectively, 8 is
positive in the shadow region., The diffraction coefficient

is separated into the incident and reflected components, which

may be expressed as

vk SIN _2_"_‘ (8)

! 3
ak = sin =, (9)
From (2) and (8) we see
_ koAt - R
s (9,4 =0" (&) 3D%(6Y.
(10)
Kouyoumjian and Pathak have constructed a simple dyadic

diffraction coefficient for wvector fields using the soft and

hard boundary scalar diffraction coefficients,

5(4’, ¢) XA ACKD) +33 $ Du (0, ()‘), (11)

where

? is the unit vector tangent to the edge,



A

ﬁ = ¢ x I where 1 is the unit vector in
the direction of incidence, and

pd = € x d where d is the unit vector in
the dircction of diffraction,

Using the dyadic diffraction cocfficient, one finds

E &(5;{)\) : :D(¢)4)') * E'i' (S',Qﬁs S(i"*S') e-.shs. (12)

To find the diffraction fields of a parabolic reflector, the

above results must be extended to include the effect of a
curved screen with a curved edge.

2. DEffect of Surface Curvature

The diffraction fields act to eliminate the discontinuity
at the shadow boundary. On the shadow boundary sufficiently
removed from the edge, the diffracted field is exactly half
the difference between the geometrical optics fields on the
illuminated and shadow sides of the boundary, The diffracted
fields at the shadow boundary of a half plane illuminated by
a point source are given by (12) and the incident geometric
fields on the shadow boundary by

o i s

EV(s,4m) -4 (5,4) 335 (13)

Since on the shadow boundary sufficiently removed from the edge

‘E &( S, é;w’:‘r)\ =(_§ i (ZS', ?'*"") L (14)

then
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The last term in (15) is obtained by solving (8) for a = O,

L is forced to depend on the source and observation distances
to properly match the decay of the diffracted wave with dis-
tance to the decay of the gzeometrical optics wave,

The key point is that L is determined by the divergence
of the geometrical optics component. The divergence of the
geometrical optics component at the incident shadow boundary
is determingd solely by the actual source and observation
point distances. The divergence of the reflected field,
however, depends on the curvature of the reflecting surface
as well as the source and observation point distances. This
effect of surface curvature can be included by determining
the location of the image of the séurce and computing the di-
vergence of the reflected ray using the image distance. Since
the parameter L depends on the divergence of the associated
geometrical optics field, L also depends on the image distance.
Thus L will be different for the incident and reflection dif-
fraction coeffidients if the screen is curved, Fdr the para-
bolic dish with the feed at the focus, s' for the reflection
diffraction coefficient will be infinity because the reflected
geometrical optics field is that of a plane wave,

3. Effect of Edege Curvature

One of the basic concepts in geometrical optices is the

—9—



power conservation in a tube of rays. The assertién is since
power flows only along rays and not transverse to them, the
power flux in a region bounded by rays is a constant. Thus
the power and the fields at two points can be related to the

cross section of the ray tube at these points,

Figure 2: Astigmatic Ray Tube

Given the astigmatic ray tube shown in Figure 2 the ratios of

the areas of the surfaces A, B may be expressed

=(S’»+n)€(‘§*~*ﬂ)/ e
2

Since the power'flux is constant, the power density is inversely

A
B

proportional to thé_area, and the field intensity is. inversely

proportional to the square root of the area,

. fi P
uﬁ-u%@‘m) v ) | (17)

Lines 1 and 2 in Figure 2 are referred to as caustics of the ray

1o



tube, and f, ’ l’zare their associated caustic distances.,

In the diffraction nroblem the diffracting edre is one
caustic of the ray tube, The other caustic is determined by
the zeometry of the edre. A new formula for the second caus=-
tic distance haé been developed using differential geometry.7

-
;o A(T-4)

- ) (18)

f -T fe SIﬂ‘.ﬁ

y is the caustic distance,
1 is the distance from the diffracting point
on the edre to the source,

is the radius of curvature of the edge,

o>

are the unit vectors normal and tangent

to the edge,

>

A
s d are unit vectors in the direction of the
incident and diffracted rays, and

N
F? is the angle between I and 3.

Applying (18) to a disc with source on the axis, one finds
that the position of the caustic of the diffracted rays is the
disc axis.

Since.the geometry is symmetrical about the z axis, one
can choose any plane througﬁ the z axis, When the field point
P is'in the yz plane,

m =§5, (19)
A

I =3-—f—~$-}l’-, and (20)
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Figure 3; Geometry Used to Find Caustic Distance
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1 = ‘*3 S\NY “'%f.osx, (21)
where
y,z are the coordinates of the field point,
A is the radius of the disc,
b is the normal distance from the disc to
the source, and

A
\/ is the angle between d and the z axis.

From (18) the caustic’distance p,%hown in Fig. 3 is

Ab
PRI Y (L5 & ke
] X A
] ] | SMIY
—-5;-= f;" T *Ta (23)

or:

A
g 2 P (24)
SINY -
Thus‘f is the distance on a line passing through the edge, P,
and the z axis, from the edge to the z axis,

From similar triangles,

5’+S ‘ 4 l . (25)

In this equation y is negative if the caustic -and P lie on the
same side of the edge. Substituting this result into (1) with -

St = Y » We obtain

EX (s, 0) =B (s,4) BOME 1| o %],

13-

(26)



The term in the brackets provides for the I phase jump en-

r4
countered on passing through the caustic. It is included
only if the caustic lies between the edge and P,

B, E<Plane Analysis

1. Review of the Two-Point Technique

Keller8 developed an extension to Fermat's principle
which relates the angle of diffraction to the angle of inci=-
dence, This extension states that a ray striking an edge ex-
cites a family of diffracted rays which form a cone of half
angle equal to the angle between the incident ray and the edge.
Thus, for all field points not on a caustic of the edge, one
can construct a finite number of edre diffracted rays which
reach that field point., For the straight edge, only one ray
fits this condition, while for the circular disc two rays

are sufficient to describe the diffraction effects,

f’cﬂui) }t

e
L) .Q"-
Figure 4: Diffracted Ray Geometry in the E-Plane

(Front View)



The fields will be calculated in the region y >0, z % O,
Pattern symmetry allows these results to be reflected in the

2z axis to obtain the complete pattern. In the E-plane from

A

Figure 4, the two points Ql' Qz lie on the y axis and e e,

19
A A

are +x, =-x respectively, The field point is at y, z; the

subscript n identifies the diffracting point; and the super-

scripts i, r associate the term with the incident or reflection

shadow boundary. Since © is positive in the shadow region,

and £* is contained in the yz plane, equation (25) reduces to

moa . "t * Conet ~
£4(5,0)+- (V3 e p, ) <4 A%

(27)

Using (10) to resolve D, into its components and (6) and

(7) to relate b R b', ©"~na 6"we find

E 4 ("3 ) =(- 'y\ é\»\ Ei(Qw“.DL (el'“\ ) DN( e:ﬂ *

: 1
A _\RSm, 5(“"‘) “
X —_—'35"‘ ALY

)
(28)

where sn,e g, 6:‘1 are obtained from the c¢cordinates of the

field point using the following transformation and Figure 5

© = - ArcTan A (ﬂ)mna' .
" ‘ 2 (29)
8" =0 -+
m (30)
The sign of © must be carefully preserved.
2
S\ = (31)
co.se”\
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Fiecure 5: Geometry of Two-Point E~Plane Analysis
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L
& is shown in Figure '

-~

Resolving E  into axial and transverse components

éﬁ‘,(")m'ﬁ ¢S O = 25N O, (32)

Thus

edy 3? A TR G TR K
xe_}ksme-g(m-‘)?;z s e:) | .

and .

s;‘(»gehé el (eo' L) + 0 ( ez)t\g‘l;x

. "
_tksa 3("‘" 2 n
e s e Cos (e,,,)’ (34)

2. Review of the Fquivalent Current Technigue

When the field point is on or near the axis (corresponding
to a caustic) the two-point method fails, For péints in the
vicinity of the axis, a method based on equivalent current
flowing on the rim of the dish is available,

The diffraction field of a half plane may be represented
by equivalent currents flowing on the edge of the plane, To
derive these currents consider the diffraction field when the

electric field is parallel to the edge

E&(P)=E£(&)D (@) &"Sks (
s = 35)

-17-



and when the magnetic field is parallel to the edge,
4 ‘ erks
_— =
H(r)= H(Q) Dy (&) Gk (36)

These fields can be considered to be due to currents of elec-

tricity and magnetism flowing along the edge,
1 2
3 g%
E (P z-k2,
( ) W—S— I (37)

:
7
. m
T9mhs (38)

In the general case one must take the component of the field

H% (P) =-ky,

tangent to the edge, then equating (35) with (37) and (36)

with (38)
A =i : 17
3 Q -4
I=-QE()DS(Q)8’—'Ie"*, (39)
2 k

(40)
A standard radiation integral can now be used to find the
fields due to these currents,

In the present problem these currents flow on the edge of
a circular disc so that the vector and scalar products in (39)
and (40) simplify to trigonometric functions. The field of the
feed is assumed to be constant around the edge of the antenna,
i.e, the feed E-plgne and H-plane patterns are identical,

- The electric field due to the electric and magnetic currents

i 18-



are given by the following integrals:

- 'kna:\ Q-..A‘M Aa diag
EQ:vW. o TIRE A, (a1)
S
o ghn (R
E"“.—.Tﬂ—;—.- T‘m(é)/\.x b -
8

The above interrals assume that the field point is in the far
field of the incremental sources even though it is in the near
field of the totality of sources. As long as the incremental
source to field point distance is greater than 1.5 wavelengths,
this is a valid approximation.9 Substituting (39) and (40)

in (41) and (42) gives

7,'Y
_.& CEC e J_rzn e E(Cb) 3\&/\.

)([D 5(5‘)(7{1\2 xlé') ¢os ‘V*Du (_ﬁ ﬁtlj)' SN E‘J | b

On the axis of the antenna the above integral simplifies

considerably, The slant range, r, is a constant and the vector

products reduce to
A A 1, 4
A N
P RNEQ' = ‘4)"-‘%9&!4)‘-:3@5&) (44)

(45)



Substitutineg these results in the radiation integral and per-

forming the integration, one obhtains for the axial case

. : -'{hn*@7§
E&L«#\Iiﬂrh z\h \ X%Dhm\-\)smﬂ.

J

The fiélds in the transition zone near the axis where the

(46)

two-point method gives questionable results may be calculated
using an extension of the technique used on the axis., We can
cbmpute the fields using the radiation integrals, inserting

the actual incremental .source to field point distance in the

integrals to account for the new location of the field point

It

off the axis,

—_— A

P@;FD

Figure 6: Determination of * Near z Axis

From Figure ¢ for a pattern in the yz plane

A -:j z‘-r(Acgg:g‘)‘+ (‘;_*“5'“ ﬂf s (47)

=20~



A Agosb' Al ' A2
A% —C *Bh——‘—;‘i‘fﬂ-t%';" (48)

A

4)‘ = =% SV ¢'f%°°s¢' . (49)

For field points close to the axis D_{(Q) is relatively constant,

B

We can take D_{(Q) constant at its value for the on axis case

R

D; (@)« o' (6) 307(8"); (50
where 8 . ©"are obtained from (30, (31). for y = O,

The equivalent current method will fail in the far field
when a shadow boundary and a caustic of the diffracted rays
are parallel,

In the case of back scatter from the two-diménsional strip,
one can show that the geometrical theory of diffraction pro-
vides proper transition to the far field behavior; and the
same is true of a three-dimensional problem with diverging
shadow boundaries,

For the strip, consider Figure 7, With the electric

field parallel to the strip edge, the diffracted fields are

. : -ik
E',‘? = E‘(‘*’,?ﬂ DH(Q’:}QEQ J s, (51)

since 4)':"2 s 8' = 0o for a plane wave at normal incidence.
The reflected fields are
-3hs

£ =-E1 (o )"‘97_ R (52)

-21-~
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Figure 7: Conducting Strip Illuminated by a Plane Wave

Referring to (2), (3) when s' =0 and L =

ARG l
ou (& /l)- ZWK Cos -0 +

Z

. [ ]
‘!SG.*

+ él* hsa+ € 'Qﬁimﬂjht
E-t- 33"’(“5 g%y) m ) (53)

As we go to the far field on the axis

r" v 2
5-’35 ks XE
b= 2w ?
-~
and the second term in’Dh predominates

(54)
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(ﬂ’ +h s)
21

X S Q:a Tz&'é Sa.m(cos (X);&) »
Moy

o\(s ‘M sE-t.

(55)
Now
» *
- 't' * 3% St
SQA I—:Z-Q.“-Se‘&'t,
* . (56)
F‘or4 hA' small, the second term in (55) can be represented as
x5
(R Rt
E R

Q,é?&’t~ F_Rl,

(57)

ks
E',:Q —-E"‘ eé +§E - Q&ﬁ“‘s\]S%m cas ) (58)

When the diffracted fields from the two edges interact with
the geometrical optics field, the first term in (58) just
cancels the geometrical optics field and we are left with

I A %\u) |
/Y.E Z ’ (59)

ET(s)=}E

which is the expected result,

23



Now for the three-dimensional case with diverging shadow

boundaries consider Figure 8.

» T
F P("y%)

Figure 8: Disc Illuminated by Source at Finite Distance

A source located at F illuminates a disc giving rise to the
shadow boundaries, Bl’ Bz.

As P recedes to the far fie1d¢ goes to the limit of Q;L.

Thus eventually kLa will be greater than 10, and the approxi-

mate form

A% u
b (Q Q\ z cos Q;_Q‘ ’ (60)
may be used. |
From (39) and (60)
£ e*‘ § woe 3 E*

I T 'E..yz 2t h cos ﬁ*‘b' éi “lcosM (61)
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Insertine (61) into the radiation inteecral

.ki_z?f .
pes ikR2, ¢ £ '
T 4w Lok cos :_b (62)
°
Finally ~xh%
e
E¢E - — .
4re (63)

The result is correct to within a constant factor. The correct
constant would be obtained if the magnetic current had also
been included.

When computing the field near the shadow boundary, the
equivalent current concept fails since the diffracted fields
do not have the appropriate ;éz dependence for the two-
dimensional geometry, and hence these diffracted fields cannot

be equated to the fields of an infinite current source,

111, Near Fields of a Uniform Antenna

In this section, the near fields of a uniformly illuminated
antenna 10 wavelengths in diameter will be calculated. The
near fields will be calculated for both the aperture model and
the reflector geometry. Recall that the aperture model con-
siders only the shadow boundary associated with the main beam,
while the reflector geom;;ry also includes the effeét of the
shadow of the reflector in the feed pattern. Direct feed
radiation and aperture blockage effects will not be considered.

The equations developed in Section II were programmed in
Fortran IV and run on the IBM 360-75 of the IRCC, The electric
field was computed for planes 2, 10, 20>and‘40 wavelengths in

=25«



front of the antenna using the two-point method off the axis
and the equivalent current method on the axis., The results
are compared with similar data calculated by W&“{ using plane
wave spectrum concept and also aperture integration., Two
results are presented for each distance, one including the
effects of the incident shadow boundary and one neglecting it,

The agreement between the diffraction theory results and
the plane wave spectrum-aperture integration is very good.
Resolution of the slight difference between the results would
require resorting to more elegant methods of field analysis.
The plane wave spectrum and aperture integration techniques
both use the physical optics approximations to the actual
‘field in the aperture, The assumption that the field is con-
stant across the aperture neélects the interaction of the
aperture edges with the field, An exact analysis using én
integral equation or eigenfunction technique would resolve
the question.

Figure 9 compares the GTD and aperture integration
results at a range of 2 wavelengths from the antenna, The
equivalent current technique was used to obtain field values
for points out to one wavelength on either side of the axis.,
At this range, the two-point method and the equivalent current
method agreed to within 0.2 )\ of the axis. In all the figures
the erroneous two-point data near the axis is shown by the

dotted lines, Figure 10 comﬁéres the GTD and aperture

-26-



integration results 10 wavelencths from the antenna, Again
the equivalent current techniaue agreed with the two-point
method beyond 0,2 A from the axis.. Note that the GTD solu-
tion shows that the ficld on the axis is less at 10 A than at
both 2 N and 20 )\ « TIiguresll and 12 show the GTD results
for distances of 20 and 40 wavelengths respectively. At 20 A
the two-point wmethod began to show some error O.S.X from the
axis and got worse closer to the axial caustic. The error
was apprgciably greater than in the 2 N and 10 }\ cases. At
40 >\ the two-point method began to fail 1 A\ from the axial
caustic, At this range the two-point method error near the
axis was greater than in any of the smaller ranges,

Figure 13 shows the field on the axis as a function of
range. The parameter z is the ratio of the distance to the
far field criterion, Note the oscillatory behavior of the
field near the antenna. The field reaches the furthest
maximum at 22 wavelengths and then should show % decay. The
failure of the equivalent current method is clearly seen in
this figure. Note the increasing field with distance beyond
160 wavelengths,

Agrecment between the GTD and aperture intesration re-
sults is quite good. Reference to Tables I - IV will reveal
that the effect of the incident shadow boundary is strongest
at the greatest transverse distances where the reflection

shadow boundary term is small,
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TABLE I

NEAR FIZLD OF UNIFCRM CIRCULAR ANTENNA ON A PLAN®

SUKIPACE 2 WAVLELENGTES FROM THE ANTENNA *

Transverse Geometric Theory Plane wave Aperture
Distance of Diffraction Spectrum Interration
RSB ISB + RSB

0.0 1.3420 1.,3101 1,3356
0.5 9290 «8912 « 9186 9170
1.0 1.0470 1.0710 1.,0547 1.0640
1.5 09732 «9612 «9679 . 9670
2,0 «9993 9986 1.0022 09963
2,5 1.0500 1.0770 1.0566 1,0663
3.0 +8875 « 8387 «8771 8666
3.5 1,1290 1.1750 1.1379 1,1447
4,0 1.1020 1.1430 1.,1066 1.1083
4.5 «8073 «8049 «8102 8115
5,0 4930 « 4420 «4765 «4751
5.5 «2921 «2312 2833 .2911
6.0 .1699 «1030 «1713 01756
6.5 .1020 +0364 »1060 1093
7.0 .,0686 ,0115 « 0737 0771
75 .0511 0061 .0569 .0602
8.0 «0403 »0034 »0457 .0493
845 .0326 .0044 «0373 .0411
9,0 »0269 »0055 .0313 0346
9.5 0245 * «0065 «0260 0293

* Data and curves show GTD equivalent current results for

the first wavelengzth from the axis, and two point method
results for the remainder of the plane.

=29~



los -
Iy
‘.‘ GTD
w 0o O O APERTURE
o INTEGRATION
2 10— — === GTD 2POINT
S METHOD
Q.
=
<
Y
> 05—
g
.|
w
[1 4 . R .
olL2 | | | 18 1. | &
~10 -8 =6 -4 =2 ) 2 4 6 8 10

“TRANSVERSE DISTANCE ( WAVELENGTHS)

Figure 10: Electric Field on a Plane 10 Wavelengths

From a Uniformly Illuminated Antenna

-30=



TABLE II

NEAR FiELD OF UNIFORM CIRCULAR ANTENNA ON A PLANE

SURFACE 10 WAVELENGTHS IFFROM THE ANTENNA

Transverse Geometric Theory Plane VWave Aperture
Distance of Diffraction Spectrum Interration
RSB ISB + RSB
0.0 . « 9550 1,0212 1.0302
0.5 «8642 .8827 +83843 «8873
1.0 " +9863 1.0090 .9815 » 9837
L1eD 1.0910 1.1180 1,0879 1.0902
2.0 1.1500 1.1620 1.1468 1.1470
2.5 1.2830 1,3430 1.2978 1,3032
3.0 1,1070 1.1350 1.1293 1.1308
3.9 «8655 +8556 .8817 «8780
4.0 « 7853 « 7963 +8008 .8011
4,5 .6207 «6093 .6138 .6145
5.0 .4611 .4242 4244 +4234
5.5 «3995 «3843 « 3836 3880
6.0 «3151 «2964 « 3030 3063
6.5 «2044 .1658 .1954 «1931
7.0 .1785 « 1527 «1770 <1773
7.5 1714 .1549 «1733 .1763
8.0 «1261 »1023 «1259 .1283
8,5 .0829 .0481 .,0811 ,0812
9.0 0830 .0601 .0845 .0850
9,5 .0893 « 0726 .0927 «0946
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TABLE IIX

NiZAR FISLD OF UNIFORM CIRCULAR ANTENNA ON A PLANE

SURFACE 20 WAVELENGTHS FROM THE APLRTURLE

Transverse Geometric Theory . Plane Viave Aperture
Distance of Diffraction Spectrum Integration
RSB ISB + RSB
0.0 1.8500 1.8419 1.8472
0.5 1.,7650 1,8770 1.717¢8 1.7226
1.0 1.4030 1.4550 1.4220 1.,4242
1.5 1,1260 1.1310 1,1528 1.1527
2.0 1.0440 1.0510 1,0769 1.0768
2.5 1,0550 1,0840 1.0950 1.0975
3.0 " »9909 1,0200 1.,0282 1.,0305
3.5 .8119 « 8197 «3335 «8370
4,0 +86049 «5843 +6069 .6064
4,5 «4930 « 4641 «4757 «4741
5.0 +4983 <4866 «4586 +4581
545 .4618 +4600 «4346 <4352
6,0 +3716 03633 3497 «3500
645 2532 «2312 . «2380 02372
7.0 1862 <1559 «1773 +1765
7.5 .1916 .1768 .1897 <1907
8.0 1989 «1922 «1983 «2004
8.5 «1710 «1624 <1694 01712
5,0 .1189 «1023 +«1160 «1167
9,5 0781 +0512 .0758 0749
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TABLE 1V

NEAR FIELD OF A UNIFORM CIRCULAR ANTENNA ON A PLANE

SURFACE 40 WAVELENGTHS FROM THE APERTURE

Transverse Geometric Theory Plane YWave Aperture
Distance of Diffraction Snectrum Integraticn
RSB ISB + RSB

0,0 1.5000 1.6528 1.6536
0.5 1,8520 1.4570 1.6209 1.6224
1.0 1.,4630 1.3940 1,5304 1,5315
1.5 1,3040 1.3480 1.,3878 1.3891
2,0 1.1320 1,1620 1.2071 1.2080
2.5 « 9502 « 9651 1.0040 1.0048
3.0 « 7714 «7718 « 7987 « 7992
3.5 «6121 «95%94 .6131 «6135
4,0 «4913 .4689 «4721 .4721
4,5 4274 +3026 3947 + 3946
5.0 «4234 «4046 e 3754 « 3754
5.5 «4085 «3991 «3811 +3314
6,0 «4012 « 39835 +3815 « 3820
6,5 3824 « 3820 « 3625 « 3631
7.0 « 3404 e 3391 03222 3228
7.5 2825 «2779 + 2658 «2661
8.0 «2169 «2071 «2020 « 2020
8.5 +1550 ‘ <1388 «1433 »1427
9.0 «1132 «.0918 +1067 - «1058
9.5 <1058 -0886 «1054 «1046
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IV, Near Fields of an Actual Antenna

The near zone fields of an actual parabolic antenna were
computed and compared with measured results, The antenna
studied was a 24-inch diameter 8-inch focal length spun alu-
minum dish with sharp edges. The antenna was fed with a
section of open ended wave guide with a plain flange. The
feed was supported on a triped constructed of 3/8-inch dia-
meter polystyréne rods., The rods were fastened to the dish
abontﬂ2 inches from the edge to reduce interaction with dif-
fra¢£i§§ effects. Feed patterns are presented in Figure 1l4:
The antenna was driven by a Sylvania Model 3200 avalanche
diode oscillator mounted on the feed.

Direct current was fed to the diode oscillator through a
miniature coaxial cable, The avalanche diode power source
was chosen to minimize the cross section of components in the
main beam of the antenna with the intent of minimizing spurious
pattern disturbances due to aperture blockage, The antenna
measurements were made in the Student Antenna Laboratory,
Room 731 in the Electronics Laboratory, This room occupies
two floors of the building providing a 20 x 20 x 40 foot
volume for antenna measurements, The room surfaces are con-
ventionally constructed with asphalt tile floor, plaster walls
and a suspended grid ceiling, ZEccosorb has been applied to a
six-foot square area of the side walls and one end wall to
reduce specular reflections, Facilities available include a
pattern recorder’for plbtting polar antenna patterns. This
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plotter was adapted to allow plotting strairht line scans,
The antenna was mounted on a 10-foot mast in the center of
the room, The probe consisted of an open-ended wave ruide
section mounted on a moveable carriace and coupled to a cry-
stal detector., Adequate signal level waé obtained at all
ranges.

The development of Section II must be modified to in-
clude the illumination taper introduced by the feed pattern.
Two corrections are required, one is that the field at the
reflector rim is reduced, and the second is that the geomet-
rical optics field must vary across the aperture. The re-
duced value of the field at the edee can be introduced by a
constant multiplicative factor in the calculations,

To find the geometrical optics field, we need to find
the power density in the aperture as a function of distance
from the axis, The power density gives the field in the
aperture, and'we can then use the principal of stationary
phase to assert that the zeometrical optics field can be
related t§ the field in the apérture at the stationary point.
The stationary phase'arguement that follows may be used to
derive (17).

The radiation integral is of the form

A 1 ¢( = 3%9
u-('))%)"'s F('}',O) e‘j L 9')' .

- A

(64)
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For the stationary phase principle to apply

)b
=0 )
7;51 ~§=o (65)

must be satisfied at some point Yor called the stationary

point. In our problem

¢y, 0= k(g g)ee = k"i“%(jiiy |

(66)

where

1Y > 3

kzk_‘l_l) > 3%,

2 (67)
in order that stationary phase concept be applicable,

'\t
AnD (_.\Ll) .((\

2 . (68)

This phase function fulfills (65) for Yo = Ve The essence of
the stationary phase arguement is that the limits of (64) can

be reduced so that only an elemental area about Y, is considered,
This is valid because the region where d) is slowly varying
contributes more to the intemral than de the regions where ¢

is varying rapidly. Once the rance of integration is restricted,
F(y*',0) can be considered constant and takem outside the inte-

gral; and (64} becomes

. _'h k
U (y,8)= F(y0) e ig Nk
b
40~

(69)



Due to the stationary process the value of the integral will
not change significantly when we let the limits of integration

go to infinity.

* . T
-{h2 _'k[ﬂ\)
(A.('\),i.)=F(~3,o) e J e é AR &,31
(70)
-y
The definite integral is easily evaluated, Thus we see that
the field depends on the forcing function at the stationary
point,
To find the aperture field, one must first find the
angle ?’ in Figure 15 use the far field pattern of the feed
to find a reference field at each value of the angle; and then
account for the ray tube spreading over the various distances
from the feed to the reflector, Since the parabola collimates
the diverging bundle of rays from the feed, there is no field
decay in the portion of the path from the reflector to the
aperture, Thus the power density in the apertﬁre is the same
as that at the reflector. The angle ¢ can be simply related

to the distance of the parallel ray from the axis and the

focal length of the reflector,

Y=2 RrcTAM 9 ;
r ) (71)

where y is one coordinate of the field point, and
-5 is the reflector focal length,

Since we know the far field pattern of the feed, one can use

—41=



-6 P(Y,Z)

Figure 15: Geometry Used to Find Aperture Field Strength

40



curve fitting techniques to obtain an analytic function for
the portion of the pattern illuminating the reflector., In

the E-plane, this function is

~_(3_g5‘x 105 ¢ + 137 *I‘fgq'“\

Sel¥)-e -

(72)
Since Sg is unity at\{l = 0, it 'is convenient t0 normalize the
field in terms of the field in the center of the aperture.
Thus Se(\l’) represents the magnitude of the field on a spher-
ical surface whose radius is the focal length and centered
on the feed., This surface is represented by the dotted circle
in Figure 15, The decay in power density as the ray travels
from the surface to the reflector may be found using power

conservation

(L,._ = U ‘§‘ ’
N (73)
where L, is the amplitude at the reflector,
(As is the amplitude on the surface,
5) r are shown in Figure 15,
/v may be found from simple geometry to be related to the dis-
placement of the reflecte.d ray.
M= S +i
45 (74)

These expressions may be combined to give the field in

the aperture as a function of the distance of the aperture

=4 3=



point from the z axis,

]

(75)
This expression for the geometrical optics component was summed
with (35) and (48) to give the total near fields at 16.6, 37.6,
74, 117,5 and 188 wavelengths. These distances were chosen
from Figure 16, a plot of the measured fields on the axis
versus distance from the antenra., The distances represent
maxima and minima in power density. Comparisons are shown

in Figures 17 through 21.

The agreement between measured and computed results is not
as good as one would have expected. Direct feed radiation and
feed aperture blockage were first suspected of causing the
discrepancy., The magnitude of feed radiation was estimated
using geometrical optics techniques. Since the worst case
radiation was of interest, it was assumed that the feed pattern
was uniform at the rear axial level over the interesting por-
tion of the rear hemisphere. Since the feed field at the
center of the reflector was normalized to one, the field at

any point is

JE*(5)] * 3 5= a§"

(76)
where 8 is the distance from the feed to the

field point in wavelengths,
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For aspects close to the axis
8 =Z- AQ ’
(77)
where 4 is the distance from the feed to
the aperture,
The results of the estimatién are shown in Table V,

To estimate aperture blockage, the blocking components
were conceptually replaced with an equivalent source, The
source is planar, equal in size to the projected size of the
blocking components and driven by fields equal in magnitude
but opposite in phase to the fields present in the plane of
the blocking components in the absence of the blocking com-
ponents, The blocking components are the metal waveguide
components and the polystyrene mount, This complex assembly
was modelled by a 2\  diameter disc, Since the disc is small,
the far field approximation is used to find its field, Again
being interested in the worst case, the scattering pattern was
assumed constant at its maximum level, Use the same notation

as for the feed radiation

e (o) 2% - 3

Comparing the results of the above estimates with the

(78)

diffracted fields in Table V, we see that aperture blockage _
dominates over feed radiation near the axis. At the smaller
‘ranges, aperture blocking is sufficiently strong to cause

errors, However the discrepancy at IBS‘X shown'in Figure 21
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TABLE V

COMPARISON OF FEED, APERTURE BLOCKAGE

AND DIFFRACTION FIELDS

Diffraction
Distance Feed Aperture 5
Wavelensths Radiation Blockace On Axis Outside SB

16,6 2045 270 «2929 .0384
23,3 .031 .170 .3525 .0356
3746 «018 «100 «4136 .0584
72,0 009 051 .4892 <0839
117.5 «005 028 «5563 .0589
118.0 «0036 .018 6311 «0925
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cannot be explained by this mechanism. The side lobe error is
especially severe,

At this point it was decided té calculate the expected
pattern by a second method, The pattern at 188 >\ was chosen
for comparison because it is well into the Fresnel zone, and
Lommel functions may be used to perform the radiation inte-
gration in closed form. The results of a hand calculation of
two points on the side lohe are shown in Figure 21. This cal-
culation was based on a uniformly illuminated aperture., The
results were modified to correspond with the GTD model for the
tapered aperture by reducing the uniform illumination in the
Lommel calculations to the same level as the edge illumination
in the GTD model. Since the GTD model does not include the
effects of the illumination taper at the edge, this is a valid
step, The Lommel results agree precisely with the GTD results
showing that the experimental data are faulty,

The experimental method was reviewed to determine the
source of the deviation. After considering room reflections
and plotter errors, it became apparent through repeated study
of the patterns that the 188 )\ pattern was characteristic of
a far field pattern, The null between the main lobe and the
first side lobe was especial;y strange since the distance in-
volved was about one quarter of the far field criterion, The
appearance of a far field pattern in the near zone brought to

mind the antenna focusing procedure. Since space was restricted
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in the laboratory and the location of the test anténna was

fixed to stabilize reflection, the antenna was focused with

the test antenna and the probe spaced by 188\ . The feed

was positioned for best gain and side lobe ratio. This results

in the far field pattern appearing in the Fresnel zone, It is

interesting to calculate the effect of this feed position,
Assuming that the feed position causes a phase taper in

the aperture which is the best fit to a spherical wave with

radius equal to the spacing between the test antenna and the

probe, the maximum phase change across the aperture is given
by
ad=2(1-cs ), (79)
where z is the distance between the test
antenna and the probe, and
S = 2 arc tan %_, the angle subtended
by the test antenna at the probe.
For a 19,1 A antenna focused at 188 ), , the phase taper is
880.. The feed position for this phase error may be calculated
by matching the phase shift for a central ray and an edge ray
with the required error. To match an 88® phase shift, the
feed must be displaced from the focal point of the reflector

by .S‘X or very nearly one centimeter., To check this result,

use the thin lens equation

Lol L,
s ( o (80)



where i is the imaze (probe) distance, and
O is the object (feed) distance.
Using this relation, the renuired displacement of the feed
is O.ZZ,K which agrees well with the results of phase taper
matching,

Thus, this antenna adjusted for best pattern at 188
exhibits sufficient phase taper to give strong disagreement
between measured results and computed results which assume
no phase taper. This pﬁase taper affects fhe patterns at
all distances and is considered to be the mechanism that
causes the disagreement between the computed and measured
data,

V. Conclusions

The geometrical theory of diffraction is an effective
method of calculating the near fields of reflector antennas,
This work extends the results of others to treat the forward
axial region by including the reflected field of the antenna
beam, The methods developed in this paper fail as the field
point moves into the far zone. This is not a major problem
because other geometrical theory of diffraction techniques
are available there.

Comparison of the results for a uniformly illuminated
antenna with data obtained by aperture integration and the
plane wave spectrum technique show that equivalent results are
obtainable with an expenditure of much less computer time,

These results prove that the geometrical theory of diffraction
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is applicable in the near zone of reflector antennas,

Since the phase characteristic of the antenna used to
gather experimental data did not match the model used in the
computation, the results for an antenna with tapered illumi-
nation cannot be completely verified, The technique for com-
puting fields for a tapered aperture should be improved using
the traveling wave concepts used in the GTD analysis of the
H-plane pattern of an open-ended rectangular wave guide. The
experiment should be reﬁeated using an antenna focused in the

far field,
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