
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



X-640-71-396
PREPRINT

B L i 3o i e T!A X-

AVERAGING METHOD FOR THE.
SOLUTION OF NONLINEAR DtFFERENTIAI

EQUATIONS WITH PERIODIC

NONHARMONIC SOLUTIONS

FERDFNAND r. CAF

SEPTEMBER 1971	 f	 ,.
ff

,f f w r

•	 _' . ^"^ ire„ ^	 = ,; J

..	 SS 3 	
'^^iib^^

----- GODDARD SPACE FLIGHT CENTER
1GREENBELT, MARYLAND

-,^
_	

0	 (ACCESsio	 ER)	
jTHRUz	 )

Q	 (PAGES)	 E) --
?

(NASA :R OR X OR AD NUMBER)A^Ok Y) —

::.- - — ,: ^': 	.^ .. _•^^.:1,.^?.^,,. '.c'r^^ -^+'-.. - + tee'. ^ s .^ ,r ^:.



X-640-71-396

I

AVERAGING METHOD FOR THE SOLUTION

OF NONLINEAR DIFFERENTIAL EQUATIONS

WITH PERIODIC NONHARMONIC SOLUTIONS

Ferdinand F. Cap
Theoretical Studies Branch

September 1971

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland
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OF NONLINEAR DIFFERENTIAL EQUATIONS
WITH PERIODIC NONHARMONIC SOLUTIONS

Ferdinand F. Cap*
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ABSTRACT

While Krylov and Bogolyubov used harmonic functions in their averaging
method for the approximate solution of weak nonlinear differential equa-
tions with oscillatory solution, we apply a similar averaging technique
using Jacobi elliptic functions. These functions are also periodic and
are exact solutions of strong nonlinear differential equations. The
method is used to solve nonlinear differential equations with linear and
nonlinear small dissipative terms and/or with time dependent parame-
ters. It is also shown that quite general dissipative terms can be
transformed into time-dependent parameters.

As a special example, the Langevin (collisional) equation of motion of
electrons in a neutralizing ion background under the influence of a time
and space-dependent electric field is presented. The method may also
be used for nonlinear control theory, dynamic and parametric stabiliza-
tion of nonlinear oscillations in plasma physics, etc.

*On leave of absence Institute for Theoretical Physics, University of Innsbruck,
Innsbruck, Austria.



AVERAGING METHOD FOR THE SOLUTION
OF NONLINEAR DIFFERENTIAL EQUATIONS
WITH PERIODIC NONHARMONIC SOLUTIONS

1. INTRODUCTION

In these days, nonlinear differential equations are solved mainly numerically by
using digital computers. This is an efficient and well-paved way to obtain a
particular solution. However, if the system of differential equations is the
Lagrange subsidiary system of characteristic equations for a first - order partial
differential equation such as the Vlasov equation or another more sophisticated
kinetic equation (in which the author was originally interested in connection with
collisional Landau damping and the saturation of the two-stream instability) or
if the influence of the parameters of tho equatioi: and/or of the initial or boundary
conditions on the solution are of interest, the computer solution can be very ex-
pensive or even impossible if the computing time exceeds reasonable time
intervals.

	

Actually, some authors have recently proposed analytic methods for the solution 	 u
of nonlinear, but nearly linear, differential equations. Krylov and Bogolyubov [ 1]
[ 2] investigated equations of the type

z + 60 2 x = E F(x, x)	 (1)

where E is a small parameter. The methods starts from the so-calledeg ner-
ating solution

x = A sin (cot + (p),	 x = A co cos (cot + (p)	 (2)

which satisfies (1) exactly in zero order (E = 0).

In order to solve (1), it is assumed that the constants of integration A and (P de-
pend on time, so that in (2) A - A (t), (p - cp (t). Expressing 1 (x, x) into a Fourier
series in cp and assuming that the parameter E is small, so that amplitude A and
phase m change eery slowly during one period of the oscillation; i.e., that

A/A << w,	 ^/(P << w	 (3)

one obtains in first order of E by averaging over one period
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e
dt
	 E 1	 2+r

=- 	Z f F(A sin (P, A co cos (p) cos (p d (p	 (4)
 o

/d (p\	 E 1	 2n

d t>	 pli, Z,r fo F (A sin (p, A w cos cp) sin (p d cp	 (g)

where A and m are assumed to be time independent under the integrals. Also
higher order solutions can be obtained [ 22] .	 -

This method which is, however, restricted to equations of the type (1) (i.e., to
nearly linear equations) has been used extensively in plasma physics, theory of
oscillations, control theory, etc., [ 3] to [ 7] . The method was also used to solve
partial differential equations, [ 31 and [ 4] .

Kruskal [ 8] extended the Krylov-Bogolvubov method to solve equations of the
type

X = F(x E) _	
E° rd" F x, E11	 (6)

n L	 d E" J
n = 0	 E=0

or

x = F (x, X, c)

The solutions of these fully nonlinear equations are based on recurrent solutions
and are given in the form of power series of the smallness parameter E.

In this paper, we are investigating an averaging method for the solution of equa-
tions of the type

z + w2 f (x) = E F(x, z)	 (7)

using elliptic functions. We are starting with the exact solution of the fully non-
linear equation (unperturbed equation)

z + w2 f (x) = 4	 (8)

I

without developing f (x) into a power series with respect to the smallness
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parameter E. Actually, one could bring (7) into the form (8) and apply KruskalIs
method. This paper may therefore be considered as a special example of
Kruskal's theory, using not a transformation technique but a direct Krylov-
Bogolyubov type technique, averaging over one period of elliptic functions and
giving concrete examples. Furthermore, a generalization to time dependent
parameters is given.

2. ELLIPTIC FUNCTIONS AS PERIODIC NONHARMONIC SOLUTIONS
OF NONLINEAR DIFFERENTIAL EQUATIONS

The Krylov-Bogolyubov technique is based on harmonic solutions. If, e.g., one
considers Duffing ' s equation

X + CO 2 X = E X 3 	(9)

or Einstein 's equation for the perihelion shift

x + w2 x = E x2 + a	 (10)

then the Krylov-Bogolyubov technique starts from (2) and is valid ^Rjy for E < < 1.
One obtains from (4) the result A = const and the frequency modification ("ampli-
tide dispersion") is contained in (5). It is, however, possible to solve (9) exactly
and any other equation of type (8) for any E. By multiplying (8) by x and inte-
grating twice, one obtains

fX
t-t 0 =

0

dx

2 fox f (x) dx - 2E
(11)

where t 0 and E are integration constants. If f (x) is a polynomial of degree up to
three or a simple harmonic function like sin f x, then (11) is an elliptic integral
and its inverse function may be expressed by a Jacobi elliptic function [ 9] to [ 12] .

We are now going to consider the Langevin equation of motion of electrons in a
periodic space-dependent electric field [ 13] . This equation is of importance in
plasma physics, in kinetic theory (as Lagrange characteristic equation of colli-
sional kinetic equations), etc., but also as a form of the Froude equation for
rolling ships or the damped pendulum. It reads (m, 1, a are given constants)
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z + w2 • sin 2 x = e F (x, x)	 (12)

where e is a collision frequency (e.g., electrons in a neutralizing ion background).
The solution for E = 0 (unperturbed equation, generating solution in the sense of
Krylov-Bogolyubov) is

x(t) = Q aresin [k sn(fP,k)	 (13)

where sn = the Jacobi elliptic sine function, 4 = wt + (p and k, the modulus of
the elliptic function (amplitude of the oscillation), and cp are integration constants.

3. AVERAGING METHOD WITH ELLIPTIC FUNCTIONS

In order to solve (12), we now replace according to Krylov-Bogolyubov [ 1]

k — k(t), (p -- q)(t)	 (14)

and set up as generating solution (13) and

2k^=
z = ^ cn(y^ w,k)	 (15)

which may be obtained by deriving (13) with k and ^p kept constant and then ap-
plying (14). Also the relations

a sn
1 - k 2 sn 2 = dn 2 ,	 _ ;j ° cn do	 (16)

were used [ 9] . Differentiating now (13) and observing (14), then equating it to
(15) gives

k sn+k k
dsn

q = - k	
- -	 - --	 (17)cn do

Since P _ cp (k) for Jacobi functions [ 9] , we have to use the total derivative with
respect to k when using d / dt. Equation (17) is independent of the form of F (x, x).
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Differentiating (15) and substituting into (12), we obtain

k cn - k fe- sn do	 + k k dk = - 
E2 ►

C F(x,k).	 (18)

Here we used

acn	 Px	 Px
77
	 Y sndn and sin P x = 2 sin 2 cos 2 =

(19)

2k sncos aresin [ ] = 2k sn cos arccos V-,-- [ ]

and (16).

Solving (17) and (18) for and m, we receive

k = 
E2^	 t,F(x,k) cn(T,k)	 (20)

Here use has been made of

2
sn 2 + cn 2 = 1, sn d sn = d sn	

(21)dk	 dk 2

Furthermore, we have

E F(x, z)	 d sn
2w do (sn+ k dk)	 (22)

Since the Jacobi functions sn, cn, and do are periodic with the period 4 K where
the quarter period [ 91

r./2
de9K(k) _	 ( 	

(23)

0	 1 - k 2 sin e $
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is the complete elliptic integral of the first kind, we may average (20) and (21)
without any Fourier series expansion. Defining u =VT (p and

4K

fo

we now calculate < k> and < ro > in analogous manner to (4) and (5). We then have
from (20)

In k>	 E	 1 fU
dtgK  F ( sn u, cn u) cn u du	 (24)

0

where again (p and k are considered to be constant under the integral. Further-
more, from (22)

49	 d sn
sn u + k

(dt> 	

dk
F (sn u, cn u)	

do u 	 du.	 (25)

We consider now some special cases.

a. F (x, x) = F (x) = F (sn u)

This case is of no interest, since (12) is then of the form (8) and can be integrated
exactly. (See (11).) from (24), we actually get k = 0, since cn u du = d sn u/ do u
or with sn u = y, using (16) we have

f
F (Y) dy1 	 = O(MU) IU = k (m 4K) - <k (m 0) = 0	 (26)

Y^	
o

b. F (x, x) = F ()i) = F (cn u)

We then have from (25) using cn u = y and

L4 n 2	 k2) k2 cn2,	
du	 dcnu	 27In 	 snudn2u

6

0"



/d,p\	 E 1 *4K

8K
Jo G(y) dy -: 0	 (28)

so that the theorem by Krylov and Bogolyubov that dissipative terms in first
order do not modify the phase (frequency) is also valid here.

4. SOME SPECIAL EXAMPLES

We now present some applications of the method.

a. Linear Damping

We have

F(k)	
2 k	

(u, k)	 (29)

Then < ^ > = 0 from (28) and (25) (24) give 9

I	

d In	 4K

cn 2 udu =	 6	 [E(k) - (I - O/K(k)) (30)
-	dt	 4 YE 

0	
YE k2

where

E(k)	
f	

d 0 	(31)
0

is the complete elliptic integral of the second kind. Using the identity [ 9]

d
k K = j-k [E(k) - (I - k2) K (k) 	 H' (k)	 (32)

we then have

^
(t to)	

H(k))
 dk	 In [E(k)	 (I k2) K(k)]	 (33)

which gives k k

7
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b. Quadratic Damping

We have

2 2
'-	 F(z) _ - x2 s _ 4 k e 

w Cn 2 	 (34)

and from (24) we get k = 0. This is understandable because, from physical con-
=	 siderations, the damping function should be an odd function of x; e.g., F (x) = I A 31.

See also [ 2j or F = x + x 2. However, variable damping is of more interest.

c. Vander Pol Damping

We generalize the Van der Pol equation

	

z+x-E(1-x 2 )x = 0	 (35)

to the form (12); i.e.,

	

x + (02 Sin Q x = - E (x2 - 1) x	 E F	 (36)

This wood represent, for example, a bounded inhomogeneous plasma model. See
Lashinsky [3).

From (24), we again get exactly (30) and (33).

A warning might be useful: Before applying the method described here, one has
to determine if (8) has a periodic solution at all. There are cases with "big" E

in which (8) has a periodic solution, but (7) does riot have. An example is equa-
tion [ 14]

z-

	

ax +  c x3 -- E z	 (36)

For E = 0, an elliptic function is the solutf on. For E 2 < 8 a, we have a stable
focus and a damped oscillation and the method of Section 3 con be applied. For
E 2 > 8 a, we have a stable node and no cscillation at all.
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5. GENERALIZATION FOR NONELLIPTIC PERIODIC FUNCTIONS
AND FOR TIME-DEPENDENT PARAMETERS

If f (x) in (7) is such that the solution of (8) is not an elliptic function (it could be
a hyperelliptic or an Abelian function with more than four periods), then a similar
method can be devised if, and only if, x (t) is periodic.

In some other cases, the parameter w in (12) is time dependent; e.g., in the in-
vestigation of nonlinear Landau damping [ 15] and [ 161. On the other hand, a
dissipative equation of the type (7) in the special form x

X + w2 f (x) = E g(z) h(x)	 (37)

(here w is constant) with generalized Rayleigh damping

g ( X ) = a x3 + a z2 + y z + S	 (38)

and arbitrary h (x), x = x (s ), (?) can be transformed (see Appendix) into

1

	

+ T Z 
P ('t ) = 0	 (39)

so that even nonlinear and variable dissipation terms and therefore in special
cases (7) and (12) can also be reduced to a "dissipationless" nonlinear oscilla-
tion equation with time-dependent parameter of the form

	

x + w2 (t)H(x) = 0.	 (40)

It does not appear to be possible to solve this equation exactly by quadratures
[23].

f (x) of (37) is now no more restricted to a polynomial of 3rd degree and w (t) is
given either by the physical problem (e.g., [ 151 to [ 16]) or from the transforma-
tion (e.g., w = t-1).

If, however, w = w (t) is given and dissipation is present (e.g., in the Langevin
equation, see [ 13] , [ 17] and Section 6), then we have instead of (7), (12) resp
(40), the more general equation

9



z + c,! (t) f (x) = e F(x, z)

which cannot be transformed into (40). (See Appendix.)

In order to solve (41), we first solve (8) for w = const. Let the solution be

x(t) = y(^, k)
	 (42)

where

^ (t ) = a, t + ^P	 (43)

and where (p and k are integration constants. Using (14), we then set up as gen-
erating solution

	

x(t) = y (,, t, k(t) , k(t))	 (44)

	

z(t) - w(t} 
d	

w(t} YO	 (45)

Since the argument ^ of Jacobi functions defends on k, we have to assume
a / d k ^ 0 also in the more general case. Equating (45) with d x / d t of (44)
gives w analogous to (17i. Differentiation of (45) and substitution into (41)
K. Solving for ^ and k gives

d_
d k (e F - y^ ^,)

	

wN
	 — c t

y,, ( E F - yo w)
k = -	 w 

where

N	 Y04, yk - yP ypk

Using the identity

10
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d 	 d 	 dyo^
d k	 Y PO k d k YO d k	 (49)

and differentiating y, ,, + f = 0 with respect to 4, respective with respect to k
and subtracting, one may show that d N /d = 0 (i.e., N is independent of ^, so
that it can be put before the integral J . , d q.)

We now assume that the time-dependent parameter w varies slowly with time in
(41). For (40), this assumption cannot be made if w (t) stems from dissipative
terms. As a measure of this slowness, we introduce another small parameter µ

and define [ 181 as a stretched time variable

$ = µ t'	 ``' = d t = µ d 'O	 (50)

so that two scales defined by E andµ are now involved.

Assuming

^( 0 ) ti (T),	 « T'	 k « T'	 w d$ « µ1T	 (51)

where T is the smallest period of the periodic function (42), we now average (46)
and (47) over one period assuming that cp, 0, k, co remain constant during T. We
then have

T

<^>	 wN ,^ dk F(Y,T	 Y) dcG,	 <^/i> _	 +

	

T	 T
<k> _ - wNT 

fo
F (Y,Y) dy + wNT fo

Y^, d

 

i

which are the equivalents of (25) and (24). In the derivation, the relations

dy = yp d^,	 t = `^w

11
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where (p, are constant under the integral and

T dY	 _ d fT 	_ d	 T
JO dk dY	 dk JO Y dY	 dk [H (Y)]o = 0

were used. For F (y, y) = F (y), the first r.h.s. term in (53) vanishes. For
F (y, y) = F (y), no general conclusion could be reached.

Sometimes the integrals in (52) and (53) are difficult to obtain. It might then be
useful to start with the differential equations for the function t (x), which is the
inverse function of the function x (t) solving (41). Before the averaging process,
it is necessary to return to the original functions.

6. THE LANGEVIN EQUATION OF MOTION

We are now applying the method described on the Langevin equation of motion of
an electron. The equation reads [ 131

X + a)2 (t) sin e x = - E is
	 (54)

Here, w (t) is given from either the Maxwell equations or from the energy trans-
fer rate between electrons and the electromagnetic field, [ 151 to [ 161. Using
(13) and (29) as generating solution, we get from (52) and (53) the equations

< cp > = w	 (55)

	

<k> _ — 
^E 

+ r'1 k cn
2 (r P, k )	 (56)

Cu

so that

w(t) [E(k) - K(k) (1 - k 2 )] = const. a-6 '	 (58)

determines now k (t). With this result, Denavit ' s calculations on the collisionless
Landau damping [ 6] could be extended to collisional damping [ 191 to [ 20] .

t

12
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APPENDIX

We are presenting here the transformation of (37) into (39). The method is due
to Abel and may be found in Kamke [ 21). The consecutive transformations are

z(t) = u(t) = u(x),	 x = u' (x) • u(x),	 u ' = du	 1

	

dx'	 u = V (59)

which give

- v' + V 3 w2 f (x) - e S ( v ) h ( x ) 0	 (60)

where g (v) is given by (38). Equation (60) is an Abelian equation. Using

V(x) = w(x) • 77(6),	 ^(x) = - f w(x) e yh(x) dx,
(61)

w(x) = exp [- f e,8h(x) dx],

we obtain for a = 0 (for a ^ 0 see Kamke [ 21] for a more general transforma-
tion into anot,"er equation than (39)) the Abel equation in standard form

	

d-6 _ - 7l3 P ( ) + 77'	 (62)

where P (x (6) ) is given by

P(x) = 
602 f (x) - e S h(x) e_EpJh(x)dx

E yh(x)

x (6) is given by (61). Using then

de	 1

which defines r, we obtain (39).

(63)

(64)
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