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FOREWORD
 

This report was prepared by Lockheed Missiles and Space Company (LMSC) for The
 

Manned Spacecraft Center, National Aeronautics and Space Administration,
 

Houston, Texas, under Contract NAS 9-10412. This report covers the portion of
 

the study pertaining to a review of cryogenic refrigeration systems. The study
 

is being conducted under the direction of Thomas L. Davies, Propulsion and
 

Power Division. Major contributors to this report were H. L. Jensen, Project
 

Manager, T. C. Nast, Thermophysics and A. P. M. Glassford, Thermophysics.
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SUMARY 

This Systems Review Report is the product of the first part of a study entitled
 
"An Investigation of External Refrigeration Systems for Long-Term Cryogenic
 

Storage Systems" being performed by Lockheed Missiles and Space Co. for The
 

NASA, Manned Spacecraft Center. The objective of the study is to perform re

frigeration systems review, technical analyses, and parametric studies that
 

will yield design trade-off information that may be used for external refrig

eration system selection and optimization for a variety of space applicable
 

cryogenic tankage.
 

The refrigeration capacity of interest is between 5 and 100 watts at tempera

tures from 20°K to 1100K. Application of the refrigeration systems will be
 

for single and double walled cryogenic tanks ranging in size from 20 to 200
 

cubic feet. The mission durations of interest are from 6 to 24 months and the
 

heat rejection sink temperatures range from 20 K to 110 K.
 

The goal of the first part of the study was to review the data and material
 

available on existing and prototype cryogenic refrigeration systems that would
 

have applicability to this study and to present this data in a Systems Review
 

Report.
 

The data contained in this report are to form a part of a refrigeration system
 

Design Reference Manual that will be completed at the end of the study. This
 

Systems Review Report is not intended to be used as a refrigerator selection
 

guide in itself, since developed refrigeration systems for space applications
 

simply are not generally available. Rather, it is intended to provide some
 

guidance to the spacecraft systems designer as to overall state of refrigera

.tion technology so that he may define the shortest, and most appropriate re

frigerator development program for his particular task.
 

This report provides some introductory material in Sections I through 4 that
 

is intended to help clarify and identify the various thermodynamic processes
 

and refrigeration cycles that are employed by most of the manufacturers currently
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producing cryogenic refrigerators. Section 5 gives data on existing refriger

ators (including prototype models) of interest to this study. Section 6 pro

vides considerations of maintenance and lifetime and Section 7 gives a brief
 

overall summary.
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1.0 INTRODUCTION
 

The purpose of this report is to summarize the current available information
 

on small refrigerator systems that are applicable to in-space cryogenic cool

ing operations. Most of the data is applicable to cooling loads of 1 to 100
 

watts and cooling temperatures of 200K to 1100K. To date no closed cycle re

frigeration system has been used in space,'although a few elementary short life
 

open cycle systems have been flown and a few programs presently underway will
 

place closed cycle refrigerators in space in the near future. Consequently,
 

such systems must be developed and proven for space use, and the content of
 

this report necessarily relates as much to assessing developmental potential
 

based upon current information, as to reporting actual performance. The as

sessment of the suitability of a refrigerator for a given cooling task in this
 

context depends upon the current performance, development potential and pecul

4 aitics of the task4
 

The current state of refrigerator technology is governed largely by a combin

ation of technical performance limitations and prevailing economic market.
 

For discussion purposes the interaction of these influences may be divided
 

into three categories. In the first would be those purely technical limita

tions imposed by an incomplete understanding of the basic process, or by fun

damental limits of the processes themselves. Refrigerator designs are based
 

on the best available heat transfer, fluid flow and material property data
 

and an upper limit as thermodynamic performance will be set by the adequacy of
 

these data, the methods of handling the data for design purposes, and the tech

niques for obtaining the performance of actual machines. These limitations
 

are discussed in detail in the following sections describing particular con

figuration systems. In a second category of influences would be the influence
 

of the market along on refrigerator technology. In this category would be
 

placed the simple observation that one of the reasons that spaceborne refrig

ot. are not available is that there has been no demand for them. This deerators 


.ficiency can be remedied by support of the refrigerator market by research and
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development programs such as those funded by the Defense Department. These
 

programs effectively permit systems of limited economic appeal to be developed
 

to their full technical capabilities. This aspect is discussed further in
 

Section 2. In the. third category are those limitations placed by an interac

tion between market requirements, mechanical design and refrigerator perform

ance. For example, the required maintenance intervals of many commercially
 

available refrigerators are currently optimized with respect to cost, and could
 

be.extended considerably if the customer were prepared to pay the increased
 

cost of larger maintenance intervals.
 

From a knowledge of the current state of technology one may select a suitable
 

refrigerator system, define a program leading to the design or development of
 

a satisfactory hardware from existing technology, or define a program of re

search and development on one or more new types of refrigeration systems. The
 

selection process must be based upon a complete specification of the total
 

spacecraft environment in which the refrigerator must operate. Such a speci

fication must include the following parameters:
 

o 	Magnitudes and temperature levels of cooling loads
 

o 	Interface requirements between load and refrigerator such as permissible
 

vibration; whether the refrigerator can be integrated with the cooling
 

load or whether the refrigeration must be fransferred by heat pipe,
 

convective loop or other thermal link from a remote location; duty cy

cle; heat flux and temperature level control requirements, etc.
 

_o, Nature of spacecraft power supply, particularly as defined in terms of
 

system penalties for both primary thermal power and generated electri

cal power, since both electrically and thermally powered refrigerators
 

exist.
 

o 	Interface requirements between power source and refrigerator. For
 

electrically powered systems this requirement would be quite simple.
 

For thermally powered systems it must be decided whether the source can
 

be integrated with the load or should be located remotely and linked by
 

heat pipe, convective loop or other thermal link.
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o 	Interface requirements between refrigerator and spacecraft heat rejection
 

systems. Heat must be rejected from the refrigerator at temperatures in
 

the general range of- earth ambient temperatures. It.must be transported
 

from the refrigerator to the radiator by heat pipe, convective loop or
 

other thermal link.
 

o 	Maintenance possibilities. Depending upon the particular mission, this
 

will range from zero maintenance to a maximum valui considerably less
 

than that permissible for ground and airborne units.
 

o 	Required operational lifetime.
 

It can be seen from the foregoing remarks that this report is not intended to
 

be used as a refrigerator selection guide in itself, since developed refriger

ation systems are simply not generally available for space. Rather, it is in

tended to provide some guidance to the spacecraft systems designer as to the
 

overall state of refrigerator technology so that he may define the shortest and
 

most approptiate refrigerator' development program for his particular task. It
 

is possible, of course, that, in certain particular applications existing sys

tems may be suitable, but this situation is not expected to occur often.
 

Since the primary objective of this report is to present a summary of the cur

rent type of refrigeration systems that can be applied to space operations, a
 

major portion of the report is deVoted to describing existing (including proto

type) cryogenic refrigerators. This information is contained in Section 5 and
 

consists of tables and curves giving coefficient of performance, weight, size,
 

and other performance parameters. However, prior to Section 5 some introduc

tory material on factors influencing refrigerator technology (Section 2), basic
 

refrigeration cycles (Section 3), and refrigerator components (Section 4) is.
 

presented in order to provide some continuity and understanding of the differ

ent cycles and processes as applied to practical refrigerators.
 

2.0 FACTORS INFLUENCING REFRIGERATOR TECHNOLOGY
 

During the nineteenth century, the principal interest in attaining very low
 

temperatures was to attempt to liquify the so-called permanent gases,
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culminating in the liquification of hydrogen in 1898 and helium in 1908. Early
I
 

very low temperature refrigeration was achieved by a relatively inefficient cy

cle involving one or more stages of compression, heat exchange and throttling,
 

known as the Linde or Joule-Thomson cycle.
 

After this first liquification of helium considerable research was performed
 

on the behavior of helium and other substances at the newly-attainable low
 

temperatures in apparatuses which included integral liquifiers or in the very
 

small numbers of laboratories in the world which possessed a self-contained but
 

These early low temperature
inevitably tempermental and inefficient liquifier. 


experiments gradually revealed the vast possibilities of basic research at very
 

low temperatures and the demand for liquid-helium as a basic laboratory utility
 

In the late 1940's, Arthur D. Little, Inc., began marketing
rapidly increased. 


a commercial version of a significantly more efficient and practical helium li

quifier using expansion engines and operating on a modified Claude cycle which
 

was developed by Dr'. S. C. Collins.
 

Several hundred units of this refrigerator/liquifier have been built to date
 

and its introduction, in retrospect, marked the beginning of the commercial
 

low temperature refrigerator market. During the 1950's, a small number of other
 

laboratory model refrigerators appeared on the market and several large scale
 

gas liquifiers were built. These all worked on basically similar Claude or
 

Brayton cycles, or the simple Joule-Thomsen cycle. A second most significant
 

event in the development of practical very low temperature refrigerators was
 

the introduction in the late 1940's and early-1950's ofa Stirling-cycle-based
 

This Stirling cycle refrigerator
refrigerator by Phillips Electrical Company. 


developed into a-highly successful commercial product. The most significant
 

feature of this cycle is the use of regenerative rather than counterflow heat
 

exchangers. Since that time many types of refrigerators have been built which
 

use regenerative heat exchangers which are, in general, derived from this cycle.
 

From the late 1950's to the present day several new fields of application for
 

refrigerators and liquifiers developed whose influence is almost entirely re

sponsible for the present shape of technology. With the development of the
 

space program, liquid fueled ballistic missiles, and the large scale use of
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liquified natural gas came a demand for very large scale liquification plants.
 

At the same time there was a growing interest in the field of very low temper

ature electronics which led to a demand for convenient laboratory-type refrig

erators for basic research, and for small flight weight units for airborne de

tection systems. Although many other particular applications could be noted,
 

it is ih these three areas that the greatest amount of design effort, cumula

tive experience and reliable hardware can be found.
 

In general, these existing refrigerators are not immediately suitable for space
 

flight use and a substantial number of research and development programs have
 

been pursued by the U. S. Government in order to reduce or eliminate these in

adequacies. Some of the programs have been general in nature and have been
 

intended to raise the overall level of technology. Others have aimed at pro

curing a refrigerator for a particular mission. This research and development
 

activity is sufficiently intense to be considered as part of the current state
 

of technology.
 

3.0 BASIC REFRIGERATION CYCLES
 

3.1 General Theory
 

A refrigerator is a device which absorbs heat at one temperature and rejects
 

it at a higher temperature. In order to perform this operation, an expendi

ture of mechanical work is required, as shown in rig. 3-1. According to the
 

second law of thermodynamics, this operation must result in a zero or positive
 

production of entropy. In terms of the quantities shown in Figure 3-1
 

q a > qc (3-1) 

T T 
a c 

According to the First La of Thermodynamics
 

qa =q + W (3-2)
 
a c
 

Thus, W> qc a - c (3-3) 

c 
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TEMPERATURE Ta-

HEAT REJECTION 

MECHANICAL WORK 
SMECHANICAL T > T 

a oREFRIGERATOR 

HEAT ABSORPTION 

TEMPERATURE Tc 

Figure 3-1 Mechanically-Powered Refrigerator Operation 
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TOTAL HEAT REJECTION 
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HEAT SOURCE AT HEAT SOURCE AT 
TEMPERATURE Th TEMPERATURE T0 

Figure 3-2 Heat-Powered Refrigerator Operation 
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Eq. 3-1, 3-2 and 3-3 relate to a system of heat source, heat sink, mechanical,
/ 
refrigerator and mechanical work source. It is sometimes desirable to include
 

the work source in the definition of the refrigerator, in which case the sit

uation shown in Fig. 3-2 applies. In this case the work input required by the
 

refrigerator is generated by an engine, which takes heat from a high tempera

ture source, rejects heat to a lower temperature sink and produces work. For
 

the whole system the operation must produce a zero or positive production of
 

entropy. If both engine and refrigerator share a common sink then
 

qa > qh + qc
 + (3-4)
 
Ta Th Tc
 

According to the First Law of Thermodynamics
 

qa = qh + qc (3-5)
 

thus,
 

q >qC _h -ac] (3-6 
T T T 

c h a 

There is no input of mechanical work to the system. Energy is supplied as heat
 

and the whole system may be called a heat powered refrigerator. The performance
 

of a refrigerator nh customarily expressed by its "coefficient of performance"
 

"c.o.p."
 

c.o.p. = refrigerative effect
 
power supplied
 

This function is a satisfactory basis for comparison if all systems are of the
 

type of Fig. 3-1. For most mechanical refrigerators the source of power will
 

be electrical energy converted to mechanical power via an electric motor. -The
 

electrical energy will originally have been produced by some process whose op

eration is completely independent of the refrigerator and its influence may be
 

neglected for comparison purposes. In the case of heat pow6red refrigerators
 

the coefficient of performance is of less value as a standard. Some heat
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powered refrigerators operate by electrical resistance heating, while others
 

operate on heat input from a primary source, such as radioisotope or solar col

lector. If the heat input, qh' in Eq. 3-6 were to be provided by an electrical
 

heater then based upon electrical power consumption, qh' would clearly be
 

greater than W in Eq. 3-3 and the refrigerator of Figure3-1 would be always su

perior in efficieny. If, however, the means of obtaining heat and electric
 

power are included in the assessment of p6wer required, then a different con

clusion may possibly be reached. It was not intended that generalized expres

sions for the behavior of power sources be included in this report; however,
 

one should consider the power source to obtain the proper perspective on re

frigerator systems.
 

The heat and work interactions implied by the devices shown in Fig. 3-1 and
 

3-2 are produced by circulating a fluid through the system and causing it to
 

undergo appropriate processes at the heat source and sink. The First Law of
 

Thermodynamics can be written for working fluid in a given process as follows:
 

heat addition, [increase in internal energy1 + [work performed, 
to the fluid = of the fluid Lby the fluid 

Heat may be transferred from the load to the fluid by causing the latter to
 

perform expansion work and replacing this energy with heat from the load either
 

during or after expansion. Heat may be transferied from the fluid to the sink
 

by performing work on the fluid by compressing it and rejecting this energy to
 

the heat sink during or after compression. In either case, the system requires
 

a compressor and sink heat exchanger, and an expander and load heat exchanger.
 

The device of Fig. 3-1 will require a source of mechanical work which may be
 

provided by some type of separate motor. The device of Fig. 3-2 produces the
 

necessary mechanical work .by incorporating a heat engine within the system. A
 

heat engine is a reversed refrigerator so this system will require an expander
 

and source heat exchanger and a compressor and heat sink exchanger in addition
 

to the refrigerator components. These components are essential to all refriger

ators. Very low temperature refrigerators are distinguished from other refrig

erators by the use of a heat exchanger between the load and sink temperatures.
 

Working fluid flowing from the compressor to the expander is pre-cooled by fluid
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returning to the compressor from the expander. This process permits operation
 

of the refrigerAtor over a much greater temperature differential than could be
 

obtained by a single expansion.
 

3.2 Thermodynamic Cycles
 

It is desirable to keep the values of W and qh in Eq. 3-3 and 3-6, respective

ly, as small as possible with respect to qe. Their values will be a minimum
 

when all cycle processes are reversible, i.e., they produce no overall increase
 

in entropy. Cycles based upon reversible processes can be achieved but are
 

difficult to execute. In fact, practical refrigeration cycles are notable for
 

-their very high degree of irreversibility, and successful practical cycles are
 

usually based on expeditious juggling of the many sources of performance loss.
 

This characteristic highly irreversible behavior is traceable to the basic ex

pression for entropy change, dq/T. It is apparent that the entropy changes as

sociated with a given quantity-of transferred heat is very much greater at low
 

temperature than at high temperatures. Much more emphasis must, therefore, be
 

placed upon cold end performance than hot end performance and the resulting
 

practical cycles frequently bear little resemblance to textbook ideal cycles.
 

Nevertheless, it is useful to review the basic ideal cycles in order to obtain
 

a better understanding of their faults and to indicate why the variations shown
 

in the practical cycles of the next section are necessary.
 

The darnot Cycle is the best known reversible cycle, shown on the temperature
 

entropy diagram of Fig. 3-3. The compression/cooling and expansion/heating
 

process are accomplished isothermally. The heat transfer processes during these
 

phases are effected over negligibly small temperature differences, resulting in
 

no overall increase in entropy. The fluid is cooled and heated between these
 

temperatures by isentropic expansion and compression, respectively. In practice,
 

the isothermal processes require an infinitdly long duration if finite quantities
 

of heat are to be transferred across infinitesimal temperature difference. It
 

is necessary to run practical machines at relatively high speeds and compression
 

is generally accomplished so fast that the process is adiabatic and the working
 

fluid temperature rises. The heat of compression would thus be rejected to the
 

sink after compression and across a finite temperature-difference. The same
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Fig. 3-3 The Carnot RefrigerationCycle 
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Fig. 3-4 The Stirling Refrigeration Cycle 

3-6 

LOCKHEED MISSILES & SPACE COMPANY 



LMSC/A903162
 

comment applies to the expander and the heat from the cooling load. Another
 

serious limitation of the Carnot cycle is that the ratio of the minimum sink
 

temperature to the load temperature-is governed by the pressure ratio used in
 

the compression and expansion processes.
 

U-i
T 

(" ) (3-7)
 

This places a severe restriction upon the practical temperature range.
 

A second reversible cycle is The Stirling Cycle, shown in Fig. 3-4 on a temper

ature-entropy diagram. Compression and expansion are performed isothermally,
 

as in the Carnot cycle and the same comments apply. However, heating and cool

ins is accomplished at constant pressure in a heat exchanger. If the exchanger
 

is 100 percent efficient, which is to say that the temperature difference between
 

the working fluid and exchanger is zero at all points, the cycle is reversible.
 

The Stirling cycle has the desirable quality of being able to span large temper

ature differences. It would undoubtedly be the most popular refrigeration cycle
 

were it possible to perform reversible heat transfer in all the components. In
 

practical machines the compression and expansion processes are performed so rap

idly that they are closer to being adiabatic than'isothermal. The Stirling cy

cle then more closely resembles the non-reversible Brayton cycle, shown in Fig.
 

3-5. The Brayton cycle is basically a Stirling cycle operated too rapidly. It
 

deserves its own name because recognition of this speed of operation requires
 

separate heat exchangers downstream of the compressor and expanders for trans

ferring the heat that in the Stirling cycle would have been transferred inside
 

these components. It is a reasonable generalization that most refrigeration cy

cles are modifications or variations of this Brayton cycle. The principal var

iations are the use of differing types of compressors, heat exchangers and ex

panders, and the use of varying numbers of these components to exploit the bene

fits or avoid the problems of non-ideal behavior of the working fluid and the
 

components themselves.
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Fig. 3-5 The Brayton Refrigeration Cycle 

PRESSURE P2 --V /-T 

ABOVE THIS LINE THE
 
FIGURE DESCRIBES A PRESUR P
 
THERMAL PRSSUE P
 
COMPRESSOR I
 ' S3 

Ta
 

- To 

ENTROPY S
 

Fig. 3-6 The Heat Powered Brayton Refrigeration Cycle 

3-8 

LOCKHEED MISSILES & SPACE COMPANY 



LMSC/A903162
 

So far the discussion of cycles has been confined to systems consuming mechan

ical work. Fig. 3-6 shows the cycle which would be followed by a heat powered
 

system such as'that shown in Fig. 3-2. It is composed of-a coupled engine and
 

refrigerator which both operate on the Brayton cycle. The compressor handles
 

working fluid for both the refrigerator and the engine. The power produced
 

by the engine is equal to the power required by the refrigerator. This power
 

may be transmitted directly through the fluid or may be transmitted from com

ponent to component by mechanical linkages.
 

4.0 BASIC REFRICERATOR COMPONENTS (THEORY AND DATA)
 

The basic components of a refrigerator are compressor, expander or expansion
 

device, and heat exchangers. Some practical refrigerators exist in which some
 

or all of these components are incorporated in the same mechanical device, for
 

example, the Stirling and Vuilleumier refrigerators. Others represent a sys

tem comprised of separable components which may be studied and selected inde

pendently. In this section, A brief survey is given of the state of develop

ment of thdse three types of components.
 

4.1 Compressors
 

General Consideration: The compressor is the component in which most or all
 

of the power required for refrigeration is supplied to the working fluid. It
 

can be seen from Equation 3-3 for very low temperature refrigeration that even
 

in the ideal case the compressive work will be many times the cooling capacity
 

and he compressor is therefore usually the largest and is always the most
 

heavily stressed component in the system. For many terrestrial refrigeration
 

applications the compressor can be located remotely from the heat exchanger,
 

and, has not been subjected to much weight and volume optimization. The most
 

important requirements of a stationary compressor are that it should be reliable
 

and that it should not contaminate the working fluid. To this end, extensive
 

development work has been performed on solid lubricated seals made of carbon
 

or impregnated teflon to eliminate the need for oil.
 

For terrestrial applications there are two broad types of solid lubricated re

ciprocating compressors on the market. There are many high capacity process
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plant compressors which have been designed for high reliability and low overall
/ 
operating cost, but whose weight and volume have not been optimized. There is
 

also a family of lightweight portable compressors of about 1 horsepower and be

low,whose operating pressures range up to about 150 psig. These compressors
 

would probably need to be strengthened slightly to take the pressures required
 

by most refrigeration systems, but they do provide an excellent indication of
 

the order 6f unit weight that can be achieved with-moderate design effort.
 

An alternative approach to providing oil-free compressed gas is to use a con

ventionally lubricated compressor and apply-the design effort to removing the
 

oil from the high pressure discharge stream. If this approach is acceptable,
 

it is possible to use hermetically sealed freon compressors, whose weight is
 

relatively low. The overall operational weight would have to include the weight
 

of the oil separation equipment, however. All other things being equal, the so

lid lubricated system should show a lighter weight, at the expense of a possibly
 

shorter lifetime.
 

The possibility of using welded metal bellows to seal the space between piston
 

and cylinder has always been considered an attractive concept but until recently
 

bellows technology has not been able to provide the lifetime necessary to permit
 

design of a competitive unit. At the present time, however, there are several
 

small capacity bellows compressors on the market'which have demonstrated im

pressive lifetimes,and low unit weight. This type of compressor is not yet
 

fully proven nor have all its possibilities been adequately explored, and it
 

is thus deserving.of greater attention.
 

For relatively high flow rates, rotary dynamic machines are generally found to
 

be more suitable than reciprocating machines in that the system size and weight
 

can be reduced considerably for a given throughput. Dynamic compressors raise
 

fluid pressure by jncreasing the kinetic energy of the flow stream and thus con

verting the kinetic energy to pressure head. This can be achieved by a varie

ty of machine configuations. Generally speaking, rotary dynamic compressors do
 

not provide as much pressure rise per stage as reciprocating positive displace

ment machines and it is thus found that those rotary machines which provide the
 

highest pressure ratio per stage are the first to become attractive as flow rates
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are increased and reciprocating compressors become less attractive. With in

creasing flow rates first the regenerative or drag compressor, then centrifu

gal compressors, then axial compressors would be considered. The compression
 

efficiency of the regenerative compressor is quite low, that of the centrifu

gal compressor is somewhat better while the axial flow compressor has the
 

highest efficiency of dynamic compressors.. Normally, drag and centrifugal
 

compressors are not attractive by comparison with positive displacement and
 

axial compressors from the point of view of efficiency. They are, however,
 

compatible with gas bearings and retain considerable appeal because of this
 

feature.
 

Between the fields of application of reciprocating positive displacement and
 

rotary dynamic compressors are rotary positive displacement compressors. This
 

type of compressor can attain compression ratios and efficiencies comparable
 

to those obtained in reciprocating compressors, but at higher flow rates. They
 

are, like the reciprocating compressor, quite heavy, and are not likely candi

dates for spaceborne refrigeration systems, since at the higher flow rates gas
 

bearing dynamic compressors will be more attractive.
 

In recent years, more attention has been given to lightweight long-life, con

taminant-free compressors suitable for aircraft and spacecraft use. A number
 

.of experimental compressors exist in the relatively small size range which
 

eliminate solid seals, bearings or crank shaft. Among these are high speed
 

rotary compressors using gas bearings; a reciprocating compressor operated by
 

linear actuator and metallic spring, and using clearance seals; a reciprocating
 

compressor with linear actuation, gas springs, clearance seals and rotary mo

tion for centralization and valve port alignment; and an electrodynamically
 

operated free piston compressor. These compressors are all in the early de

velopment stage.
 

Work on heat-powered compressors is iff a very early stage of development. Such
 

compressors may be defined as a single device which compresses a fluid while
 

accepting heat from a high temperature source and is ejecting it to a lower
 

temperature sink but which does not consume or produce mechanical work. Such
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systems may be rotary or reciprocating in action. They would effectively con

stitute the upper portion of Fig. 3-6, in that the thermal compressor consti

tutes a Brayton cycle engine whose output is exactly sufficient to compress
 

the working fluid of the refrigerator. Also, the working fluid is common to
 

both the engine and the refrigerator.
 

Performance of Practical Compressors: The minimum amount of power required to
 

compress unit mass of a fluid from a'pressure P1 to a pressure P2 is that re

quired by the isothermal process and is equal to RT ln (P2/P). The actual
 

work required is increased by power losses in transmitting energy from the
 

power supply to the working fluid, such as motor losses and friction losses at
 

bearing and seal surfaces. If the compressor has valves then the flow pressure
 

losses through these valves will require the fluid in the compressor to be com

pressed from a lower to a higher pressure than the corresponding fluid pressures
 

in the outside circuit, and hence increasing the power requirement. During the
 

compression process some heat.will be transferred from the fluid to the walls
 

of the compressor, but it will invariably be insufficient to prevent the fluid
 

temperature rising and the process will thus not be reversible and will require
 

more power than isothermal compression. Also during compression there will be
 

.turbulence within the compression spaces which will result in further heating
 

of the fluid by internal friction, and hence further deviation fro the iso

thermal process. Finally, not all the fluid compressed will'be available in
 

the refrigeration cycle because there will be leakage from high to low pres

sure sides through clearance spaces, and in the case of gas bearing systems a
 

portion of the flow will be required by the bearings.
 

In the case of the thermal compresssor the losses associated with the valves,
 

leakage, and non-isothermal compression will still be present. The bearing
 

and seal losses will usually be much less since there will be no moving boun

dary to the device through which mechanical work must be transmitted. Since
 

the thermal compressor is an integrated heat engine and compressor there will
 

be heat losses associated with the heat engine fuction as well as the com

pressor function.
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The thermodynamic performance of a compressor takes into account all effects
 
/
 

internal to the compressor and is usually expressed by the isentropic effi

ciency, qad' or the isothermal efficiency, is
 

1ad = actual work required for compression (4-1) 
isentropic work, W.ie 

nis = actual work required for comnression (4-2)
isothermal work, W.
 

is
 

Wad = RT y4( 21 (4-3)

S y-1 L l
 

Wis = RT1 In (P2/1P) (4-4)
 

The theoretical isentropic work of single stage, compressor is shown on Fig.
 

4-1. The actual work of compression is obtained using equation 4-1 and a known
 

value for isentropic efficiency nis. The value of nis varies with the type
 

of compressor, fluid and operating conditions, and cannot be presented in a
 

convenient graphical or tabular form but representative values may be quoted
 

for good typical designs. For reciprocating compressors an adiabatic effi

ciency of 0.85 to 0.90 may be assumed. For centrifugal compressors qis can
 

range from 0.50 and lower for very small units, up to about 0.82 for well de

signed high capacity machines. Drag or regenerative compressors have nis fig

ures characteristically less than 0.50. In calculating the required motor
 

size allowance must be made for motor efficiency, mechanical efficiency, leak

age or loss of compressed fluid, etc.
 

Having determined the required motor input power Figures 4-2 and 4-3 may be
 

consulted to obtain compressor weight and volume, respectively. These figures
 

were obtained by plotting data for comparatively low weight electrically dri

ven compressors for terrestrial applications. The data are plotted against
 

input power because a substantial portion of the weight is that of the elec

tric motor. The weight of the compression components will also vary with num

ber of compression stages and operating pressure, but the variations due to
 

4-5 

LOCKHEED MISSILES & SPACE COMPANY 



0.175 -I _ _ 1."17 
1.6 

0. 150 
r0 
0 

S0.120 

U) 1125f O. 

r 0I O.100t t 
1 

"' 0.075 

O.LL I< 111025 tI.I H 

C) .31 

0 1. 262 3 4 56 

COMPRESSION RATIO 64 

Fig. 4-1 F.Theoretical Isentropic Work fo igeStage Compressor 4ap 



----- 

- -
-

-
-
 

L
M

S
C

-A
903162
 

If 
I-T

 
It 

U .
.
 

.
.
 

iii 
j 

i41---
t

F
F

5I 
7

7
 

-
.-

--


-7 
.
.
 



.
.
.
.
.
. ;



v 
'

I 
~* 

I 
~ 

I 
.
 

-
I 

'
:
 
-
-
.
.
.
.
.
 

'
_
_
.
 



_
_

I 
II 

!I 
I 

I 
H .

k .
. 

I
I 

,
.
 

I ,
 

I
i
i

III 
i
*
,
I
 

In
I 

I
I
 



1*1i_'m
, 

I I I 
I
 

I 
I
-

r 
, 

7 . 
,
_
i
:
 
-
F
 

I
 

tittt• l H
 T

-ai . -
- 

.
.
.
..
I
 

.
.
.
.
 

t 
1
:
.
I
 

L
i1

 
.
. .
.
.
.

•
 
-
_

K
 jr'4*.V~ f1

I] 
4-_-

11-
-1

 
_
 

V
 

V
 

t
r
.
.
.
 



.
 

-
- "
-
:
-
-
-


_
 
1
 ;
-
I
-
I
n
"
 



.
-


-i 

l
.
c


' -
1
E
 



L
O

C -''"
H

EE -
M

I. 
A
,
S
O

I
"
 



-
_
.
, ,
 
_
-
a
;



-
'
L
I
l
 

"I



t-_1--

I 

_
_
_
i
 
.
-
.

.
.
.
.
.


 

a_
m

Io
K

H
 

I~
J/a 

I 
_ 

i
-
I -

I 
-
C
 

.
.
.
.
.


 

I-,i.. 

-



*
I
i
-

I
:
r
i
 

,
I



'
'
I
1 "
-



I
 

1 'jK hmn 
'
-
;
i
)

'



P 
,' '

K
-
l
 

I 
P

r,t 

i
i
/
"
V
 

IiIi 

7
4
-
7


 

1 
P
A
E
C
O
P
N

LOCHE 
M
I
S
L
E
 





L
M

SC
-A

903162 

C
4 

-
-
-
'--.-

-
I
-
T
-



.
.
.
.
 

-
-
-
-

F



r 
K
H
 :f: 



--
--

.. [jr. 
.
-
-


.2

;:; 
F
-4 

P
 

-
i
I
 

I
-
-

4
1
_
 
_
 .

I 
.I 

.
.
 

:
,
I
. , 

I
- _
_
_
_
-
_
-
:


'
i
,
,

_
1
-
I _
 

I .
.
:
-
i
 I
-
'
-
I 1 I

I
.
_''i.l.,... . .

. '
= .

.
:
 

--

7--I 
' 

-


'
 

114: 
I 

1I 
I 

~
 

4 
I
H
1
.
,
.
-
.
,
-
-
.
,
p
j
i
 

I
H
 
/
 
l
i
 l
 
l
 
,



_
]' 
.

_
 
I
l
, l

m
 _ .
,
.
, ,

.'I _
' , I

 
i
.
l .
_
,
 
, . _
,
,
_ .
_
 
_
.
 
-

.
 
,
.
 



i,--
ir 

I
-
4
-

I 
-

-0
 

-
-
,
 

'
 

'
'
 

r
 

,
, I
,
,
 

,
 
I
,
,

,
,
 

i
 

.
.
.
.

I
C
-
-

"
I
 L
 

-
-
-
.
 
.
.
.
. "
-
-
-
'
 

I 
"0 

-
,
 
-'
-
-
.

"
.
.
.
.
_
_ :
=
 
_ .
.


 

I
-
-
-
-


'
|
' -
'
"
 



,
-
:
 



.
-

:
"
,
'
 



.
 

a 
ill 

J
'
.
.
.
 

,
 
_

,
t
 



I
-
--
,
 
I_I


.
.
.
.
 ' 

-
i
 

_
I
.
I
.
 
.
 

-
1
 

i
 

.
 
.
.
 

"
"
 -
]
I

!.-'"",-_-----__1-;--:---- -


-
:
,
 .
- -

_-_--

-
, .
.
.
.

.....-
=:v , -

_
-



-
=
 

,_0 
.



, :
-

,l-l :
 
:
:
:
,
-

1-t~fi 
-"*--. -

-
-
,
-
.
:
-



'
'
-
. 'U-:'-'-, 

'
'
/
 

.
-
-
-
.
 
-
l
 
'
l



'
 

J -
,
;
. .
 

-
-

-L
 

.
.
.
 L 1

.
' 1" . . .

.
.
.
 

:
 

i
_
 

,
 
I
.
-
,
:
;
:
-
I



I,,!, I
-
r
-

- I~q 
-

:
,
' 1 .
.
 
I
-
-
_

-
.
-
- _
 -0
-
- 1 

-
' 
,
-
4
"
 

H
,
.
'
.
.
,
g
 

hl ,
 
:
:

LO
KHD--

M
IS

S
IL

E
S

 
&

 
S

A
E

C
M

N
.

...... ,
- '
:
i


-
- ..
.
.
.
.
.
 

-

0
4
 

7



1
"
-
,
_
,
 

-
-

,
-

_
 
,
;
.
 
.


 

T
 

i-
I
T
 

,
,
l
 

.
.
 

.

' - ,
 

, '
"
 

-
.
.
 
,
,
.
, '.~ l :

l
-
h
I
-
T



,
,
,
 



J
Ila 

1
"
-
-
'
.
.
.
 

.
.
.

-
~
 

I
"
 

.
.
.
. .


~~~~~~cHd
,
 
!
 

'
.
.
,
.
, ,
 ,
"
'



'-: -
:
 

;,: 4"-'8 
"

'
 

,



4-84 

.
.
. H E

 
ILE 

,,MPAN 
.
Y :
;



,
~

~.
 

OC 
MIS___, 

.
. &

SP C
 
C
O
,
,
 



LMSC/A903162
 

these effects are less than those between different design concepts. The data
 

shown for Zefex (1) and Gast (2)compressors are typical of commercially avail

able lightweight, oil-free, solid lubricated compressors. Their range of ap

plication, as dictated by the market rather than technology, is up to 1 to 2
 

HP for compression from 14.7 psia to 35-175 psia. They consist of little
 

more than lightweight compression cylinders- attached to conventional low cost
 

electric motors. The extent to which their weight could be reduced would be 

dependent mainly on possible motor lightening and to a much lesser extent on 

compression piston and cylinder lightening. Data are also shown for Tecum

seh ( 3 ) and Bendix-Westinghouse 4 ) hermetically sealed oil-lubricated freon com

pressors. The weights shown are for the bare compressor, excluding the oil
 

separation components that would be needed for a low temperature refrigeration
 

application. The data are significant in that some attention has been given
 

to reducing the weight of this type of compressor*. The electric motor is in2
 

tegrated with the compression cylinders in these designs. They are known to
 

be strong enough to operate as helium compressors at pressure levels up to 350
 

psig and are offered as part of many split component rafrigerators. Their po

wer range is generally up to about 3 HP. Also plotted on Figures 4-2 and 4-3
 

are data for Copeland hermetically sealed freon compressors (5 ) . These compres

sors are not weight optimized and are built in the more conventional manner of
 

detachable motor and compression cylinders. Howeyer, Copeland makes a range of
 

similarly designed compressors from HP to 35 HP and a plot of the weight and
 

volume data for these compressors is helpful in showing trends. The Copeland
 

data show two linear relationships reflecting air cooling for lower powers and
 

water cooling for the higher powers.
 

Meaningful data on the prototype systems mentioned earlier are difficult to
 

obtain but an indication of the performance of gas bearing compressors can be
 

obtained from the following figures. Maddocks(6 ) reports a gas-bearing six

stage centrifugal compressor of approximately 163 lbs. and 9600 watts input,
 

giving a weight of 13 lbs./HP at 12.4 HP. Breckenridge (7 ) reports a gas

bearing two-stage rotary-reciprocating compressor design of about 72 lbs and
 

746 watts input, giving a weight of 77 lbs/HP at 0.93 HP.
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4.2 Expanders
 

Configurations: An expander is a device in which a fluid may perform work 

against the environment which, in the context of refrigeration system, means 

the environment outside the refrigerator. Two principal types of expanders 

are commonly used - reciprocating position displacement and rotary dynamic. 

The work produced by these expanders can be transmitted to the environment 

mechanically or, in the case of the'rotary expander, by generating electricity 

at the low temperature and dissipating it in the environment. 

The reciprocating expander is much like an increased reciprocating compressor
 

in operation. Fluid is admitted to an expansion cylinder at high pressure,
 

is expanded against a piston and is then discharged from the cylinder at low
 

pressure. Rotary dynamic expanders, or turbines, can be constructed in a
 

variety of ways. For lower flow rates radial impulse turbines are generally
 

used. For higher flow rates axial impulse and radial reaction turbines may
 

be considered. A survey of individual applications (8 ) suggests that the range
 

of flow rates and cooling loads covered by this report is best handled by rad

ial impulse machines. The flow rates usually encountered in relatively small
 

capacity turbines are usually so low that even with radial impulse turbines
 

partial admission must be used. In a pure impulse turbine the pressure head
 

•of-the working fluid is converted entirely to kinetic energy in the inlet
 

nozzles and the turbine wheel operates essentially like a Pelton wheel to re

move the kinetic energy. Reaction turbines require a static pressure differ

ential across the wheel since part of the expansion is performed in the wheel
 

passages. As size is reduced it becomes increasingly difficult to maintain
 

this pressure head. The axial turbines,'both impulse and reaction, have a
 

generally higher flow capacity than radial turbines and are thus to be found
 

in high flow applications.
 

Performance of Practical Expanders: Representative unit data for expander
 

weight- and volume are difficult to obtain since few have been built by com

parison with compressors. However, practical refrigerator systems show values
 

of coefficient of performance of about 1/20 at 1000K to 1/200 dt 200K so that
 

the expander power will be between 5 and 0.5% of the compressor power. Thus
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its unit weight and volume need not be known to as high a degree of accuracy as
/ 
those for the compressors. In order to obtain a conservative estimate of the
 

order of magnitude of size of expanders it is suggested that the following ap

proximations be made. Compressors and expanders are both power transmission
 

devices and it is proposed that the assumption be made that the system size
 

per unit power transmitted are the same for both types of devices at a given
 

value of transmitted power. Expander weight and volume should thus be estimated
 

from Figures 4-2 and 4-3, in which case the abscissa will refer to expander
 

power rather than compressor power.
 

It is important to know the isentropic efficiency of the expander in order to
 

perform a cycle analysis because the efficiency of the expander will have a
 

great bearing on the overall system size and weight. The remarks and equations
 

relating to compressor work and efficiency apply to the expansion process. The
 

loss mechanisms are the same, with one important exception. In the compressor,
 

heat transfer from the hot fluid to the compressor walls during compression will
 

tend to increase compression efficiency. In the expander the walls will be
 

warmer than the fluid and heat transfer from them to the expanding fluid wtll
 

tend to decrease expansion efficiency. Data for isentropic efficiency of re

ciprocating expansion engines and overall efficiency (including electric gen

erator) for radial impulse turbines are shown in-Figures 4-4 and 4-5. The data
 

are to be regarded as showing the rough order of magnitude and the trends, ra

ther than exact infdrmation, since each expander is designed for a different
 

application. Efficiency is not a function of pressure ratio or output primar

ily and these parameters have been selected only for graphic convenience.
 

4.3 Heat Exchangers
 

General Consideration: There are three principal types of heat exchangers in
 

a refrigerator system - the compressor after-cooler, the cooling load exchang

er and the main heat exchanger in which heat is exchanged between the working
 

fluid streams passing to and from the expander. The performance of these
 

three types of exchangers influences refrigeration systems in differing ways.
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The most important heat exchanger is the main exchanger because it must oper

ate over the relatively large temperature range of load temperature to sink
 

temperature. The two principal configurations used for this exchanger are
 

shown schematically in Figures 4-6 and 4-7. In the counterflow heat exchanger
 

er, Figure 4-6, the high pressure and low pressure fluid streams pass contin

uously througb separate flow channels which are in thermal contact. Heat is
 

transferred from the warm high pressure fluid through the channel walls to the
 

cooler low pressure fluid. At each point in the exchanger the properties and
 

parameters of the fluid flows are constant with time. In the regenerative heat
 

exchanger, Figure 4-7, the warmer high pressure stream and the cooler low pres

sure stream flow alternately in opposite directions through the sane flow chan

nel. Initially, the warm high pressure fluid flows through the exchanger giv

ing up its heat to the exchanger walls. After a period of time the high pres

sure flow is then temporarily discontinued and cold low pressure fluid is
 

passed through the exchanger in the opposite direction, picking up heat from
 

the exchanger walls. After a similar period the low pressure flow is stopped
 

and the high pressure flow resumes. This type of exchanger thus achieves its
 

heat transfer by temporary heat storage on the exchanger walls rather than heat
 

transfer through the walls of the flow channels. The heat transfer area per
 

unit volume can be increased considerably if the transfer area has no structu

ral.responsibility such as maintaining separation of the flows. Materials such
 

as fine screen or small spheres can be used to pack the regenerator to provide
 

heat storage capacity. At low temperatures the specific heat of solids falls
 

off very markedly, however, and the thermal storage capacity of practical re

generators becomes very small. Refrigerators using regenerative exchangers cur

rently have a lower limit of operation of about 70K, with poor performance due
 

to this effect appearing below about 200K. The intermittent nature of the flow
 

in the regenerator tends to reduce the chances of heat exchanger fouling. A
 

disadvantage of the regenerator is that its operating pressure must vary cycli

cally and losses are introduced because this process cannot be performed. For
 

this reason, regenerative exchangers are best applied to systems in which the
 

exchanger is in constant communication-with the expander and, in some cases,
 

the compressor, so that the cyclic pressure variation is at least accomplished
 

smoothly. Alternatively, the flow reversal would have to b.e performed by valve
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operation, resulting in large losses due to sudden expansion of either the in

flowing high pressure stream or the outflowing regenerator contents.
 

The counterflow heat exchanger has the disadvantage that fluid containment and
 

heat transfer are accomplished in the same channels. This leads to inefficient
 

use of materials of construction and increased weight per unit heat transfer
 

area. Miniaturization is difficult for this reason. The counterflow exchan

ger does not, however, depend upon the specific heat of the walls for its op

eration and thus can operate at all temperatures. It is also considerably
 

easier to design, since its performance is not time dependent.
 

Heat Exchanger Design: It is impossible to present generalized heat exchanger
 

performance data in the manner that is possible for compressors and expanders.
 

This is because heat exchanger performance is not limited by natural phenomena
 

so much as by system optimization criteria. Heat exchangers can be built to
 

any desired degree of efficiency as long as the weight, volume and pressure
 

drop penalties can be paid. There is a virtual infinity of possible heat trans

fer surfaces, each with its own heat transfer and pressure drop characteristics
 

and, many materials of construction may be considered. The following sections
 

are thus brief surveys of possible analytical approaches. For actual design
 

data the literature must be consulted, for example Kays and London, "Compact
 

Heat Exchangers" (McGraw Hill, 1954).
 

The above remarks relate principally to counterflow heat exchangers. Regener

ative heat exchangers are somewhat simpler to characterize because the heat
 

transfer surfaces for low temperature exchangers have been confined to screens
 

or spheres. Also, it is noted that regenerative exchangers are usually used
 

in machines using reciprocating expanders and in a broad category of machines
 

the exchangers and expanders comprise an integrated unit. For these systems
 

a rough plot can be made of practical expander-exchanger performance, and this
 

"has been done in the appropriate following section.
 

Counterflow Heat Exchangers: Figure 4-6 shows a schematic of a counterflow
 

heat exchanger. The high and low pressure mass flow rate and entering temper

atures are m., m\, Th, T, respectively. The object of a design analysis is
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to determine the fluid exit temperatures Th and T in terms of the given en

tering conditions, the heat exchanger geomeiry, and the fluid properties. A
 

heat balance for a cross'section of the heat exchanger of length dx gives the
 

following equations, ignoring longitudinal conduction:
 

-ih. 	dhn dx= dh . dx (4-5) 

dx 
dx
 

; £kdhZ dx (US) 
 (Th - T ) dx (4-6)
dx 

Here 	(US) is the overall heat transfer conductance, given by
 

I= I tw 1 
+ kS + 1 	 (4-7)

S Uzww 
 UhSh
 

Sy, Sh and 'SW are the areas per unit length for heat transfer. Uk and Uh are
 

the heat transfer coefficients between low pressure and high pressure fluid
 

streams, respectively, and k and t are the thermal conductivity and wall
 w w 

thickness for the wall separating the two flows.
 

Th& heat transfer coefficients can be found from empirical data reported in
 

.the literature in the general forfi
 

Nu = f (Re, P) 	 (4-8)
 

where Nu = UDe (4-9)
 

k
 

Re = 	%De (4-10) 

Af v 

=Pr Cp 	 (4-11)
k 
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D and Af are the flow channel hydraulic diameter and flow area, respectively.

e f 

k, Cp and p are the thermal conductivity, specific heat, and viscosity of the 

working fluid, respectively.
 

--A typical empirical expression in the form of equation is the following,
 
(appropriate for flow inside round tubes):
 

Nu = 0.023 R 0.08 0.4 (4-12)
 
a r 

For flow outside round tubes there are many 'eometric possibilities leading to
 

many heat transfer correlations and the literature should be consulted for par

ticular data. A more commonly occuring situation is flow perpendicular to
 

round tubes, for which the following correlation is prepared:
 

Nu C . R 0.8 p 0.33 (4-13) 
e r 

C is 0.26 for in-line tubes and 0.33 for staggered tubes. Here R is based
e 

upon the tube diameter and the minimum fl6w area past the tubes.
 

In general, Cp, k and p and hence U, are temperature dependent, and are thus
 

functions of x. Also, at the temperatures existing in very low temperature
 

refrigerators the working fluids do not behave as ideal gases and thus the ex

pression Cp dT cannot be substituted for dh in Equations 4-5 and 4-6. Equa

tions 4-5 and 4-6 must therefore be integrated by numerical methods since the
 

non-ideal gas behavior and temperature dependence of Cp, k and V cannot be ex

pressed in simple analytical forms which permit direct integration of the
 

equations.
 

As a result of a numerical integration the outlet temperatures T and T
 

may be determined.
 

It is customary to express the performance of a heat exchanger in terms of its
 

effectiveness, c, defined as
 

e = actual heat transfer 
maximum theoretical heat transfer (4-14) 
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Using this definition and assuming a constant specific heat for the working
 

fluid through the high and low pressure sides of the heat exchanger, it is
 

possible to derive an expression for heat exchanger effectiveness in terms of
 

the geometry, mass flow rates and fluid specific heats from which outlet tem

peratures can be found for specified inlet temperatures. This approach is of
 

great general utility in exchanger design but is not recommended for the de

sign of exchangers for very low temperature refrigerators, where property 

changes are too severe to be successfully accounted for by average values. In 

this case the effectiveness must be found from the temperatures calculated by 

the numerical solution and therefore E is a somewhat redundant quantity if the 

recommended rigorous temperature solution is employed.
 

For those cases where an approximate analysis of the exchangers is desired,
 

the following widely-employed expressions may be used for counterflow heat ex

changers
 

C T Th 
[h1 - h2] 
 (4-15) 
Cmin [Thl- Th ] 

where Ch and C£ are the averaged quantities (mCp)b and (mCp)z respectively and
 

Cmin is the smaller of Ch and C9.
 

The effectiveness is expressed analytically by
 

1 - exp [-N(-Cmin/Cmax (4-16)
 

I - (CMin/Cmax) exp [-N(l-Cmin/Cmax)]
 

N is the number of transfer units, given by
 

N = USL -(4-17) 
C .
 
min
 

L is the heat exchanger length and U is the averaged heat transfer coefficient.
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For a given application C . will be specified. The heat transfet area, SL,
 

will depend upon the type of heat exchanger geometry selected. The heat trans

fer coefficient, U, will be given by an equation of the form of 4-7 whose con

stant and exponents have been determined experimentally. From these quantities
 

and either question 4-15 or a numerical solution for e, the relationship between
 

weight, volume and effectiveness can be obtained for a particular geometry and
 

flow rate.
 

Flow through heat exchanger passages is accompanied by pressure losses which may
 

be calculated using well-known standard analyses.
 

For an element of heat exchanger passage in either flow path the pressure drop
 

can be expressed as
 

2 

dP = m d + 4Ai f dx (4-18) 

Af x -pf + 2Af p De 

-0.32 
and f = 0.00140 + 0.125 R (4-19)e 

As with the heat transfer calculation, it is recommended that a numerical inte

gration be made along the flow path so as to account for property variations
 

with temperature.
 

If an approximate expression is required for conditions under which (r/A) is
 

constant, the fluid properties are constant, and perfect gas behavior exists,
 

equations 4-18 and 4-19 can be integrated to give
 

2 2 - f2 p 
=P P 2lRT In T2 + 4 fL (4-20)

f 
 P2TI 2 De
 

and T are mean values of friction factor-and temperature respectively.
 

The preceding remarks apply strictly to load, main and after-cooler heat ex

changers. In the case of the load and'after-cooler exchangers the assumption
 

of constant fluid properties is more usually acceptable and use of the simple
 

equation (4-16) would therefore be more reasonable.
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Regenerative Heat Exchangers: The analysis of a regenerative heat exchanger
 
/ 

is basically similar to'that of the counterflow exchanger. The differences
 

are that the fluid and surface temperatures vary with time as well as position.
 

The heat balance equations, ignoring longitudinal conduction, for a section
 

of heat exchanger of length dx is thus:
 

M dx "ahM US [T-T ] dx (4-21) 
g m
at 


US [Tg-TmI dx h a(pgug)
a(mghg)dx 

-uma g + Afdx gg (4-22)
 

ax at
 

The subscripts refer to gas and metal temperatures and M refers to the heat
 

exchanger mass per unit length. These equations are obviously more complex
 

than those governing counterflow exchangers. Unless many simplifying assump

tions are made the equations cannot be solved in closed form. In low temper

ature applications these simplifications, such as assumption of infite speci

fic heat of the matrix, zero heat storage in the fluid and constant fluid pro

perties, are invalid.
 

Regenerative exchanger efficiency must therefore be found using numerical anal

ysis or by consulting published tables of solutions. The weight and volume of
 

regenerati-e exchangers will be found from a knowledge of the geometry and the
 

material of construction.
 

It was noted earlier that regenerative heat exchangers are often used in sys

tems in which the expander and heat exchanger are built as a unit. A system
 

employing such an expander-exchanger combination requires only a compressor
 

to form a complete refrigeration system.
 

Some weight and volume data for practical exchanger-expanders are presented in
 

Figures 4-8 and 4-9. They refer to'several different types of expansion pro

cess but a degree of correlation which is satisfactory for the present purposes
 

is apparent. Figures 4-8 and 4-9 show clearly the rapid rise in weight and
 

volume with decreasing operating temperature. Figure 4-10 is a less satisfac

tory correlation of weight against cooling power for various temperatures.
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These curves may be used to estimate the weight of split component systems.
 

For a given load temperature the coefficient of performance gives the required
 

compressor power per watt of cooling. The size of the complete system is then
 

obtained by adding the component size from this section and. section 4.1.
 

5.0 EXISTING REFRIGERATOR SYSTEMS
 

This section describes practical refrigeration cycles which use the thermody

namic principles and the components described in the -previous sections. Al

though most cycles are basically related to the Brayton cycle, their practical
 

execution has led to a wide variety of configurations. Most refrigeration sys

tems can, however, be placed into one of a small number of subgroups whose mem

bers are closely related. The cycles selected for discussion were limited to
 

those which it was felt had potential for satisfying the requirements of this
 

study, i.e., potential for long term operation, low weight and volume and high
 

thermal efficiency. The data on operating characteristics of the various units
 

has been obtained from an extensive search of the literature and from contacts
 

and discussions.with the companies and agencies engaged in the production and
 

development of the units.
 

These systems can be divided into two broad groups; one employing counterflow
 

-heat exchangers and another employing regenerativ& heat exchangers (see Fig.
 

5-1). If counterflow exchangers are used then the working fluid flow rate at
 

any point in the refrigeration system is constant with time. The working fluid
 

flows at constant rate and direction through-all the system components. These
 

components can hence be designed for continuous steady state operation at pre

scribable conditions. This category includes Claude, Joule-Thomson, and orth

odox Brayton cycle systems. On the other hand those systems which employ re

generative heat exchangers must make some provision for intermittently rever

sing the direction of flow and alternately compressing and decompressing the
 

working fluid in the regenerator. This can be performed in a refrigerator in
 

which the cycle processes are executed successively in different regions of the
 

same component. The working fluid is compressed while it occupies the warm end
 

and the regenerator spaces, and is expanded while it occupies the cold end and
 

regenerator spaces. 51
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The first heat engine to use regenerators was built by Robert Stirling and an
 

important distinction should be made here between the Stirling cycle and what
 

are commonly known as Stirling engines or refrigerators. The ideal Stirling
 

cycle could be executed with a counterflow heat exchanger just as well as a
 

regenerative heat exchanger. On the other hand, practical so-called Stirling
 

devices actually operate on a Brayton cycle because the working spaces do not
 

operate isothermally and the heats of compression and expansion are transferred
 

in separate heat exchangers. Since the expression "Stirling refrigerator" is
 

in common use it will be used in this report, but the above remarks should be
 

noted. In the Stirling refrigerator compression and expansion is effected
 

mechanically by movement of a single piston. The Vuilleumier refrigerator which
 

also uses regenerative heat exchangers is essentially a beat powered version of
 

the Stirling refrigerator in which the compression and expansion of the working
 

fluid is effected thermally by movement of a part of the fluid between hot and
 

ambient spaces.
 

Regenerative exchangers are also used by another subgroup of refrigerators known
 

variously under such names as modified Solvay, modified Taconis, or Gifford-


McMahan refrigerators. These refrigerators are essentially Stirling refriger

ators in which compression and expansion of the working fluid is affected by
 

successively operating inlet and exhaust valves to admit and release high pres

sure gas. The presence of valves permits the use of a separate compressor,
 

which could be of any configuration.
 

Systems using .regenerative exchangers cannot be analyzed assuming steady state
 

conditions since the pressure, fluid content and temperature of all components
 

varies cyclically with time as well as position, and complex numerical methods
 

are needed. The relationship among the cycles which will be described in this
 

section is shown in Fig. 5-1.
 

In the following subsections single stage compression, expansion and heat ex

change are assumed in all cases for the sake of clarity. It is noted, however,
 

that the work of compression can always be reduced by multistaging in those
 

systems which use separate compressors. The efficiency of expansion can simi

larly be improved by multistage expansion. The efficiency of heat exchange may
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be improved by what might be referred to as multistage heat exchange by split

ting the exchanger into sections to reduce the temperature range. Between heat
 

exchange stages the temperatures of the two streams are brought together by
 

supplying refrigeration at this point by means of an intermediate expansion
 

engine.
 

5.1 The Stirling Cycle Refrigerator
 

It was noted earlier that these refrigerators which are commonly called Stir

ling refrigerators, do not in practice operate on the ideal Stirling cycle.
 

Due to the speed of operation heat cannot be transferred to and from the work

ing spaces fast enough to permit isothermal compression and expansion. As a
 

result, these processes are carried out under conditions closer to adiabatic
 

and the necessary heat transfer is effected in separate heat exchangers. This
 

operation is more characteristic of the Brayton cycle. The truly characteris

tic feature of the practical so-called Stirling refrigerator and its derivatives
 

is the use of regenerative heat exchangers.
 

In the refrigeration application heat exchangers are used to exchange heat be

tween high and low pressure gas streams meaning that the single flow passage
 

in the regenerator must be alternately pressurized and depressurized. This
 

could be achieved by using a continuously operating compressor and expander,
 

ballast tanks or dual regenerators, and reversing valves between compressor
 

and regenerator and expander and compressor. Such a system would incur substan

tial losses due to irreversible sudden compression and expansion when the valves
 

were switched and due to the pressure drop through the valves. The practical
 

Stirling refrigerator avoids these losses because the regenerator is in commun

ication with the expander and compressor at all times, resulting in smooth and
 

therefore less irreversible pressure cycling in the regenerator and elimination
 

of flow losses through the valves.
 

5.1.1 Operation
 

The operation of a Stirling refrigerator is shown in Figure 5-2.
 

In position 1 the working fluid occupies the ambient space, after-cooler and
 

regenerator. From 1 to 2 the fluid is compressed by inward motion of the
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compression piston. From 2 to 3 the compressed.fluid is transferred from the
/ 

ambient end to the cold end at constant overall volume by equal increment of
 

both pistons. During this transfer heat of compression is rejected to the af

ter cooler and the temperature is reduced to the cold end temperature in the
 

regenerator., With'the fluid now occupying the cold space, load heat exchangers,
 

and regenerator the fluid is expanded by outward movement of the expander pis

ton, 3 to 4 . The fluid is returned from the cold end to the ambient end
 

at constant volume by equal increment of both pistons. During this transfer
 

the lost energy of expansion is replaced in the load exchanger and the temper

ature is raised to the ambient temperature in the regenerator.
 

This cycle can equally well be executed using just one piston to perform both
 

expansion and compression processes, and using a passive displacer to move the
 

fluid from one space to another. This configuration of refrigerator is shown
 

in Figure 5-3.
 

In practice, it is not practical to move either the twb pistons or the piston
 

and displacer in the intermittent manner shown. It is customery to drive both
 

components from the same crank shaft for practical convenience. Both components
 

are thus continually in motion but the cycle can be satisfactorily executed by
 

phasing the piston or displacer motions such that compression occurs with most
 

of the fluid in the warm space and expansion occurs with most of the fluid in
 

the cold space.
 

Because of the cyclic operation of the practical Stirling refrigerator and the
 

fact that working fluid will be distributed through several temperature regimes
 

during compression and expansion, it is impossible to show the steady state
 

cycle processes on a temperature entropy diagram in the conventional way. It
 

is consequently very difficult to perform a reliable thermal analyses of this
 

type of system without resort to quite complex digital and/or analog computa

tional techniques. For approximate engineering analysis purposes simplified
 

representation of the processes can be made which provide a mbre accessible,
 

if less reliable, method.
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The detailed analysis of a practical Stirling refrigerator requires that the
 

processes occurring in the various locations of the machine be characterized
 

by a set of partial differential equations. There are five major locations.
 

The compression space, after-cooler, regenerator, load exchanger, and expan

sion space. Within these regions there will be property variations which can
 

be allowed for by averaging or by subdivision of the region. Equations are
 

written to characterize the mass and beat flow rates into these regions and
 

subdivisions in terms of pressure and temperature differentials, fluid proper

ties and system geometry. The equations are then solved for the boundary con

ditions of total mass conservation, given load and after-cooler temperature
 

and given compressor and expander displacement, speed and phase relationship.
 
Such a system of equations can only be solved by numerical techniques on a di

gital computer, or by analog methods. It has been found that solution by these
 

methods is quite difficult because of the length of time required both to write
 

a program and then to solve the problem on the computer. As time progresses
 

it is likely that improved numerical techniques will be found to reduce the
 

amount of machine time, but currently this exact analysis approach is often
 

rejected in favor of the more convenient approximate approach.
 

In the approximate analysis the performance of the refrigerator is assessed by
 

writing the cooling capacity of the machine, q as
 

qc = Fdv - Z losses
 

Here % Pdv is the gross work performed by the cold end of the
c 
refrigerator, equal to the gross cooling capacity. The losses due to the vari

ous undersirable mechanisms which introduce heat from the environment to the
 

cold end and reduce the effective cooling capacity are considered to be analy

tically separable effects. The work input to the ambient end, W, is
 

W = Pdv 
a 

The terms 0 Pdv and §S Pdv can be evaluated by writing mass and energy conc a 
servation equations for the working spaces. In the simplest case these equations
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can be solved by assuming/isothermal conditions in the spaces and modifying the
 

answer by means of an empirical constant to allow for non-isothermal behavior.
 

This so-called Schmidt analysis permits analytic expressions to be written for
 

the integrals. The integrals can also be evaluated for adiabatic conditions
 

using a relatively simple numerical solution as shown by Rios (14). Rios,
 

method can be modified quite simply to include the effect of heat transfer with
 

the walls of the working spaces to obtain a quite accurate evaluation of q Pdv
C 

and 	9S Pdv. The separable loss mechanisms are generally accepted to be as fola 

lows:
 

a) 	Heat conduction from ambient to cold end by conduction through
 

the structural members.
 

b) 	Heat transfer by radiation and convection from the ambient en

vironment.
 

c) 	Heat transfer from the ambient end to the cold end due to the
 

relative motion of the displacer or expander and.cylinder walls.
 

d) 	Heat flux into the cold space due to regenerator inefficiency.
 

e) 	Heat loss due to cyclical pressurization and depressurization
 

of the clearance spaces.
 

f) 	Non-ideal heat transfer in the load and after-cooler exchangers.
 

These losses can be assessed by performing simple individual engineering analy

ses of the mechanisms, assuming that they are decoupled from each other. Gen

eralized expression for these loss mechanisms cannot be written because the
 

most appropriate analytical model may be different from one case to another.
 

The 	analysis based upon decoupled loss mechanisms is a great deal easier to use
 

than the complex analysis but it cannot allow for the strong interaction that
 

may occur between the loss mechanisms, particularly a), c), e) and heat trans

fer within the working spaces. This method will continue to'be used until the
 

complex analysis can be made more available and less costly in computer time.
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5.1.2 Companies Engaged in Production and Deveiopment of Stirling Refrigerators
 

The following companies are presently engaged in production and development of
 

Stirling cycle refrigeration systems:
 

U.S. Philips Corporation
 

Malaker Corporation
 

Hughes Aircraft Corporation
 

U. S. Phillips: Phillips was the pioneer in development of the Stirling
 

refrigerator, having built their first machine in 1954 for the purpose of
 

air liquification. Initial research on the Stirling cycle as a refriger

ation device was initiated in 1945 by Phillips, and in 1950 the first
 

drops of liquid air were obtained from a Stirling-cycle refrigerator.
 

Additional history on the development of the Stirling refrigerator at
 

Phillips is given in Refs. 9 to 12.
 

Presently, Phillips produces a variety of Stirling cycle machines for
 

laboratory and industrial use as well as miniature units for aircraft
 

use. The miniature flight units designated "Cryogem" include models
 

42100 and 42151 which are two stage units which provide cooling in the
 

range of I watt at 25°K and 2 watts at 30°K. These units are intended
 

primarily for aircraft usage in cooling'infra-red detectors and as such
 

provide lower refrigeration capability than required for this study.
 

Of particular interest for long-term cryogenic storage requirements is
 

Phillips Model A-20 "cryogenerator". This unit appears to be the only
 

one which provides 200K refrigeration at levels near 100 watts, other
 

available production units generally providing 1-10 watts of refriger

ation at that.temperature, followed by very large, heavy industrial units.
 

The unit is a two-stage machine based on the Phillips-Stirling cycle and
 

provides refrigeration at two temperature levels, one over the 60-90°K
 

range and the second stage between 15 and 300K. This unit, then has the
 

potential of cooling two different cryogens at the two temperature levels.
 

Conceivably all two-stage Stirling cycles have this capability, however,
 

development along these lines has not been pursued in many units. Various
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arrangements of the A-20 cryogenerator have been selected by Phillips for
 
various usages including gas liquification and cooling of experiments.
 

Malaker: Malaker laboratories has been engaged in the development of
 
Stirling cycle refrigeration since the 1950's. The majority of their
 
research and development has gone into the Stirling cycle and has been
 
concentrated on small units. Malaker has produced units with very high
 
thermal efficiencies, and is actively engaged in additional development
 
and modification of theiir units. 
 Some of their earlier work under con
tract to WPAFB is reported in Ref. 17. Recent work of interest here has
 
been devoted to the modification of one of their units to make it adapt
able to space operation. (Designated Model SS-I). The primary modifica
tion consists of providing an all welded case around the units to allow
 
larger temperature excursion during operation without freezing up the
 

existing O-ring seals and leaking the working gas. 
 A Malaker unit has
 
been successfully tested in vacuum in the laboratory. 
Vacuum operation
 
would not appear to present a problem for the Stirling units since they
 
are hermetically sealed as are the Phillips machines. 
Malaker has con
centrated on miniature units for laboratory use, for aircraft support
 
and various field uses. 
 They have not built large industrial units such
 
as Phillips. 
 Units are available for cooling down to approximately 150K
 

in two stages and to 
near 60 K in a single stage. Production units are
 
available and fall within the requirement of this study; 10-100 watts at
 

20 to 110'K.
 

Hughes Aircraft Corporation: Hughes -Aircraft Corporation produces Stir
ling cycle machines for various uses. The majority of their units manu
factured to date are for IR cooling on aircraft. Refrigeration units are
 
not commercially available from HAC but essentially provide a support
 

function for in-house activities.
 

One of the prototype models (13) provides 15W @80 K and therefore falls
 
within the study range, while the other units provide only a few watts.
 

HAC is extensively engaged in research and development on the Vuilleumier
 
cycle unit and these activities are discussed in another section (5.2.2).
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5.1.3 Analysis of Stirling Cycle Data

/ 

Data has been assembled on the characteristics of the following Stirling re

frigerators:
 

Malaker Corporation
 

Mark VII-C
 

XIV-A
 

VII-R
 

XX
 

U. S. Phillips Corporation
 

A-20
 

N. V. Phillips Gloeilampenfabrieken
 

X-20 (prototype)
 

Hughes Aircraft Company
 

Hughes prototype
 

These four companies make many additional units as wellj however, they fall out

side the range of the cooling requirements for this study, and were not includ

ed in the data correlations, since sufficient data was available on units of
 

the required capacity (5-100 watts).
 

The parameters of the various units are tabulated in Table 5-1 for the seven
 

units. The tabulation also includes the calculations which were made to pro

vide the basis of the curves which are plotted.
 

Figures 5-4 through 5-8 present the cooling capacity as a function of the tem

perature for the individual units. Also included is the power input vs. tem

perature where available. The Phillips A-20 unit provides cooling at two tem

peratures corresponding to the first nd second stage of the machine, and the
 

performance of both stages is included. This feature is an attractive consi

deration for application to cooling both the fuel and oxidizer of a vehicle sys

tem using cryogenic propellants. The other Stirling cycle units are not ar

ranged so that net cooling is available at the 1st stage, although this might
 

be accomplished with a substantial redesign of the systems. Other cycles pre

sented in this study also provide cooling at two stages.
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Table 5-i 

EXISTING ST I RLING CXCLE 
COOLING AT 20 TO 110 K AV 

Manufacturer. Malaker. Corp. Malaker Corp. Malaker Corp. 

Trade Name Cryonite Cryomite Cryomite 

Model Mark VII-C Mark ViV-A Mark VII-R 

I.D. Number 1 2 3 

Refrigeration Range 17.5 - 80I 44 - 100°K 40- 125 0 K 

Cycle Stirling Stirling Stirling 

Working Fluid Helium Helium Helium 

High Pressure NI NI N' 

Low Pressure 17 atim. Fill NI NI 

Minimum Temp. 17.5 0 K 44 0 K 40'E: 

Cool-Down Time 8 min. 7 min. 3.8 min, 

Expander RPM NI NI NI 

Volts - Phase - Frequency 208 - 3/4 - 400/60 208 - 3 - 400 208 - 3 - 400 

Cooling Means Air or Water Air Air 

Ambient Tdmp. Reqmts. 

Required Attitude Any Any Any-

Cryostat Dimensions 4.8" D x 11.5" L 2.9" D x 13" L 6 1/2" D x 23 1/2" L 1 

Compressor Dimensions 

System Volume 209 in.3 86 in.3 781 in. 3 

System Weight 15.5 lb 5.5 lb 40 lb 

M'TBF 40,000 hr 40,000 hr 40,000 hr 4 

Maintenance Interval 1, 000 hr 1, 000 hr 1, 000 hr 1 

System Cost $5,195 $9,000 $17,500 

Refrigeration 1 watt 0 0 

Power Input 700 w 

COP 
% Carnot Eff. 

.00143 
2.0% 

lb/watt 15.5 

in.3/watt 209 

Refrigeration 15 w 2.8 w 60 w 

Power Input 640 w 108 w 1,220 W 

770K COP .0234 .0259 .0492 

% Carnot 6.8% 7.5% 14.3% 

lb/watt 1.03 1.97 0.667 

in.3/watt 13.9 30.8 13.0 

Refrigeration 23 w 5 w 90 w 

Power Input 560 96 w 1,220 w 

110 K COP .0411 .0522 .0738 

% Carnot 6.5% 8.25% 11,7% 

lb/watt 0.674 1.10 0.445 

n.3/watt 9.1 17.2 8.7 

AMDOUT FRAM 1
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LE REFRIGERATORS 
K AT 5 TO 100 WATTS 

Malker Corp Phillips Laboratory Phillips Laboratory Hughes Aircraft 

Cryomite None Prototype Prototype 

Mark XX A-20 X-20 

4 5 6 7 

40 - 1200K 12-300OK 12 - 300°K 450 K up 

Stirling Stirling Stirling Stirling 

Helium Helium Helium Helium 

NI 427 psia NI NI 

NI NI NI 

400 K 12°K 120K 45°K 

.4mm. 40 mnn. 15 min. 3min. 

NI 1450 - 1750 1750 l\I 

208- 3-400 400-3-50/60 2000VA-3-50/60 115-3-400 

Air or Liquid 198 gal/hr. H20 Air or Liquid Air or Liquid 

-55 40710 C 

Any Any (g = 0) Any 

"1 l9"x 18" x 15 1/2" 43.5"x37.4"x19.7" 4' D x 7.5" L 8"sx" x G" 

18.5" x 13.8" x 13" 

1500 in. 
3 

65 lb 660 lb 112 lb 10 lb 

40, 000 hr NI KI 

1,000 hr 500 hr 4, OO0 hr 500 hr 

$24,000 NI NII 

0 100 w 10 w 

8,300w 1,750 w 

.0121 .00572 

17% 8% 

6.60 11.2 

110 w 36 w 14 w 

1,990 1,750 w 500 w 

0553 .0206 .0280 

-6% 6% 8.1% 

0.591 3.12 0.715 

13.6 

164 w NI 

1,860 w 

.0883 

14% 

0.396 

9.15 
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Figure 5-9 presents the coefficient of performance (C.O.P.) of the units as a
 

function 'of net refrigeration provided. The data is presented at three temp

eratures of interest: 200K (LHI- and 110 0K.
2), 77oK (LN2) The 200K and 1100K 

temperatures represent the lower and upper limits of the study and the 770K 

point is a convenient intermediate temperature at which operating data is com

monly reported. The data at the three temperatures was curve fit as shown on 

Figure 5-9. In general, the curve fitting was done so that the curve repre

sented maximum performance (highest value of C.O.P.). A notable exception is 

the Malaker Mark XIV - (I.D. No. 2) which falls considerably above the curve 

fit at 110 K. A curve fit through this point would give twice the C.O.P. of 

the curve fit. 

Figure 5-10 presents the C.O.P. as a function of temperature. The Carnot
 

efficiency is also shown for comparison, and represents the theoretical per

formance of the Stirling cycle. Curve fits are also shown for 100 watt and 5
 

watt capacity, and were obtained from the previous figure. The figures, as
 

expected, show a pronounced effect of both temperature and capacity. It is
 

interesting to note that the slope of the 5 and 100 wactocurves are parallel
 

to the slope of the Carnot C.O.P. vs. temperature, although they were curve
 

fit independently of the Carnot curve.
 

Figdre 5-11 shows the percent Carnot efficiency which the units have achieved
 

.as a function of refrigeration capacity. The units provided from 6 to a maxi

mum of 20% of the theoretical efficiency, and this is the best performance of
 

any of the cycles as will be seen in later sections.
 

Figure 5-12 presents the specific weight of the systems as a function of cool

ing capacity. The data are fitted with lines at 200K, 770K and 1100K as for
 

the C.O.P. data.
 

Figure 5-13 shows the data points plotted as specific weight vs. temperature,
 

with line at 5 watt and 100 watt capacity. The capacity lines were obtained
 

by cross-plotting the result of the previous plot. The results show the ex

pected strong dependence on both capacityand temperature.
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Figure 5-14 shows the specific volume of the various units vs. cooling capa

city at the three temperatures selected.
 

5.2 The Vuilleumier Refrigerator
 

5.2.1 Operation
 

The Vuilleumier refrigerator is in essence a practical Stirling refrigerator
 

in which compresssion and expansion of the working fluid is effected thermal

ly instead of mechanically. This modification is best illustrated in connec

tion with the Stirling refrigerator configuration of Figure 5-3. The working
 

piston is removed and is replaced by a thermal compressor/expander consisting
 

of a hot space, ambient space regenerative heat exchanger and displacer. The
 

cycle of operations, shown in Figure 5-15 closely parallels that of the Stir

ling refrigerator. In position 1, the fluid is all in the ambient space.
 

From 1 to 2, the compressor displacer moves from hot to ambient end, causing
 

fluid to move from ambient to hot spaces as constant volume, resulting in an
 

increase in system pressure and hence compression of the fluid remaining in
 

the ambient space. From 2 to 3 the expander displacer is moved to displace
 

this remaining fluid to the cold end. From 3 to 4 the pressure is reduced by
 

displacing fluid from the hot space back to the ambient space, thereby expand

ing the fluid in the cold space. From 1 to 2 the cold gas is returned to the
 

ambient space by movement of the expander displacer. The heat interactions
 

in the exchangers are similar to those in the Stirling refrigerator. In ad

dition to the load and after-cooler heat exchangers, however, there is also
 

a power heat exchanger required at the hot end through which the energy re

quired to compress the fluid is supplied. As noted in Section 3, this ener

gy will be higher than the actual work of compression since the device is in
 

essence a combined engine and compressor, and thus the supplied energy must
 

also include the necessary rejection heat -esides thecompressive work.
 

In practice the intermittent movement of the displhcers is achieved by driv

ing both of them from the same crankshaft but displaced in phase such that
 

during compression most of the fluid is in the ambient space, and during ex

pansion most of the fluid is in the cold space.
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Thermal analysis of the VM refrigerator is very similar to that of the Stirling
 

refrigerator and all comments made in Section 5-1 on this subject apply. Two
 

analytical approaches are possible as in the Stirling case. The ViM refriger

ator is a constant volume device whereas the Stirling refrigerator changes
 

overall volume at a-prescribed rate. Otherwise the same general approach is
 

employed.
 

In the case of the approximate analysis exactly the same approach is followed
 

in analyzing the cold end, in that the effective cooling capacity is equal to
 

the gross work performed at the cold end less the heat leakage into the cold
 

end. In the WrM refrigerator power is supplied as thermal rather than mechani

cal energy. This required thermal energy, q., is given by
 

qh = 
 h Pdv + Elosses
 

Here, 0h Pdv is the gross work performed at the hot end and the losses repre

sent the additional beat which has to be supplied to make good the heat lost
 

by various mechanisms to the environment. The loss mechanisms are qualitative

ly identical to those occuring in the cold end and listed in Section 5-1.
 

Strictly speaking a practical Stirling refrigerator using separate compression,
 

heat exchanger and expansion components could be successfully operated, but
 

dual drive mechanisms would be needed, the movement of the compressor piston
 

and displacer or expander piston would have to be accurately synchronized, and
 

the separation of the components would introduce undesirable void volume. The
 

requirement that the compressor and expander motors be synchronized in effect
 

requires that system to be designed and operated as a single unit even though
 

the components are in fact separately located.
 

5.2.2 Companies Engaged in the Development of Vuilleumier Refrigerators
 

At the present time no companies are known to be engaged in the development of
 

Vuilleumier (VM) refrigerators in the range required for this study (5-100
 

watts). Several companies are engaged in the development of miniature units
 

in the range of 0.1 to 2 watts, however, and several prototype units have been
 

built and tested. Many of these units are being developed with the express
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goal of long term orbital operation. The VM cycle has certain advantages over
 

other cycles considered which make it sufficiently interesting to explore for
 

this application, even though units do not exist in the 5-100 watt range. The
 

following list summarizes the development efforts known to be currently under

way:
 

Hughes Aircraft Company: Hughes has been actively engaged in the development
 

of the VM cycle for at least 3 years.- Their activities include the fabrication
 

and testing of five prototype units. HAC is preparing to put one of their VM
 

prototype units in space for extended orbital use in the near future. Some of'
 

the prototype models developed were under contract to Air Force Flight Dynam

ics Laboratory, WPAFB, during the period March 1967 to April 1968 (Contract
 
(19)


F33615-67-C-1532)
 

Phillips Laboratories: Phillips Laboratories has built two small prototype
 

units recently and has successfully tested these. The units have been built
 

with the application of military infrared systems in mind, utilizing their
 

quiet operation to advantage.
 

Garrett Air Research: Garrett Air Research presently is engaged in a contract
 

(NAS 5-21096) with Goddard to develop and test a VM cryogenic refrigerator for
 

approximately 5W cooling at 750K for space-flight usage. The lifetime goal of
 

the system is 2 yr. to 5 yr. Work on this contract was recently initiated.
 

Submarine Systems (Division of Sterling Electronics): Submarine Systems has
 

recently entered the VM development area. The principle man responsible for
 

the refrigeration work is Kenneth Cowans, formerly with Hughes Aircraft Company.
 

Work on VM units includes programs under contract to WPAFB for development of
 

a space flight unit and Ft. Belvoir in the area of night vision, Contracts
 

F 33615-70-C-I130 and DAAK 02-70-C-0436, respectively. These contracts call
 

for development, fabrication and testing of VM units.
 

5.2.3 Analysis of Data on Units
 

Data on prototype units from Hughes and Phillips were the only information
 

found on this recently developed unit. The data for five Hughes prototype
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units and two Phillips prototv E jJIts is presented in Table 5-2.
 

The coefficient of performance c 
 these units is plotted as a function of re
frigeration capacity in Figure c-J. 
 As shown, the cooling capacity only goes
 

to two watts, substantially bela*:
i he requirements of this study. Figure 5-17'
 

presents the C.O.P. as a funcriarn-of the refrigeration temperature, and Figure
 
5-18 presents the % Carnot effide'ncy, as a function of refrigeration capacity,
 

showing efficiencies in the ran-eofi 
to 4% for the small prototype units.
 

Figures 5-19 through 5-21 present the data on specific weight and specific vol
ume for the VM system. Curve £s are made at 77 0K only where four'data points
 

are available on the protot:es.
 

It should be anticipated that- e the units 
are prototype and the development
 

history is quite limited that sz:?tantial improvements may be forthcoming in
 
the performance of units ba 
 6,t this cycle. The comparison between the per

formance of this cycle and o h-
 is discussed in Section 7.
 

5.3 The Joule-Thomson Refriger&tor
 

5.3.1 Operation
 

A practical Joule-Thomson ±--srator is shown in Figure 5-21a, The cycle is
 

identical to the Brayton 
 c'?f Figure 5-41 except for one important modifi
cation. The expansion prccss, 1j to 5, is accomplished by isenthalpic expan

sion through a throttling --- rather than by expansion in a work producing
 

device. Since no'expansit - is produced, no heat addition is required in
 
the load exchanger to replezsi ghe lost internal energy of the working fluid.
 
The cycle produces refrige--=_igs 
 by virtue of a useful side effect of non-ideal
 

behavior at the sink telnz-r, The cooling effect is given by
 

A heat balance on the m ra,_- at 4xchanger yields
 

h1I - h& 7N - N 
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Table 5-2 
EXISTING VUILLEUMIER PROTOTYPE flE 

Manufacture Hughes Aircraft Hughes Aircraft Hughes Aircraft Hughes Aircraft Hughes Airc 

Trade Name Prototype 

Model Prototype Prototype Prototype Prototype X447550-10 

I.D. Number 11 12 13 14 15 

Refrigeration Range 770K -77°K 15 K to 75°K 25 - 75 0K 30- 75 0K ' 

Cycle Vuifleumier Vuilleumier Vuilleumier Vuilleumier Vuilleumicr 

Working Fluid Helium Helium Helium Helium Helium 

High Pressure 600 psi 400 psi 

Low Pressure 

Minimnum Temp 160I 

Cool-Down Time 30 rain. 10 rain. 30 mn. 30 min. 30 rain. 

Expander RPM 600 240 

Volts - Phase - Frequency 28 VDC 28 VDC 28 VDC 115 - 3 -400 28 VDC 

Cooling Means Air Air Liquid Liquid Liquid 

Ambient Temp. Reqmts. -55°C to 710c 

Required Attitude Any Any Any Any Any 

Cryostat Dimensions 7.15x 7.15x8 6.5x5.7n5,! 10.5 x 13.6 x 7.8 7.5x 9.5 x10" 10,5 x 13,6 

Compressor Dimensions 

System Volume 410 in. 3 190 in.3 1, 110 in. 3 712 in.3 1,110 in. 3 

System Weight 5.75 lb 181 lb 

MTBF 5, 000 hr goal 

Maintenance Interval 3, 000 hr goal 1, 000 hr 10,000 hr goal 1, 000 hr 10,000 hr gc 

Refrigeration 0.15 w at 15 0K 2 w at 250 0.5 w at 3 

Power Input 370 w 1,200 w 550 w 

Near COP .000405 .00167 .00091 
20°K % Carnot 0.77% 1.84 0.82% 

lb/watt 36 

in. 3/watt 16,700 365 2,220 

(1st Stage) 

Refrigeration 0.6 w 1.5 w 6 w 

Power Input 60 w 200 w 500 w 

77oI COP .01 .0075 

% Carnot 2.9% 2.2%" 

lb/watt 3.83 

in. 3 /watt 683 127 

(1) Same Units at two different operating conditions 
(2) Based on 350 0 K Ambient 

9%DQLkUT FRAMIE
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REFRIGERATORS (SMALL UNITS)
 

Aircraft Phillips Laboratory Phillips Laboratory Phillips Laboratory 

le 
-100 Prototype Prototype (1) Prototype(1 ) 

16 17 18 

K 77 - 2000 K -77 0 K 77 0 K 
nier Vuilleumier Vuilleurnier Vuilleuiniier 

Helium Helium Helium 

38 atn 30 atm 40 atm 

28 atm 
0O 

700 

9 min. 

750 600 600 

Air Air Air 

Any Any Any 

.. 6 x 7.8" 12x x6. 16.5x 7.1x 7.1" 16.5x 7.1x 7.1 

3 3580 in. 820 in.' 820 in. 

81 lb 15 lb 15 lb 

irgoal 

300K 

0.5w 1w 2w 

70 w 120 w 191 w 

.00715 .00833 .0105 

2.07% 2.9%(2) 37%(2) 

16 15 7.5 

1,160 820 410 

EO-POUT FRAME 5-30 
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Fig. 5-21 Specific Volume Versus Refrigeration Capacity (Vuilleumier Cycle)
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COMPRESSOR WORK 

--- HEAT REJECTION 

(2) QR. 
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(4) 

(6) (5) 

ACOOLING LOAD 

h3h 
 3 h1 

H4 

H .6 

5 h5, h4 

ENTROPY S.
 

Fig. 5-21a Joule-Thomson Cycle
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Hence
 

q = m [h, - h3] 

For q to be positive (3h/ap)T3 must be negative.
 

With a 100 percent efficient main heat exchanger
 

Ti = T3 and the maximum value of q is given by
 

qc=(max) = [h(PIT 3) - h(P2,T3) ] 

With less than 100 percent efficiency, qc is given by
 

qe = f [h(P1,Tl) - h(P2,T 3)] 

As T, is reduced due to less efficient heat exchange, h (PIT 2) will decrease
 

and qc will eventually become zero. The performance of a Joule-Thomson system
 

is therefore limited by the sign and magnitude of (ah/aP)T3 and by the ability
 

of the main heat exchanger to permit utilization of this effect.
 

For the present application only nitrogen has both a negative value of (h/aP)T3
 

at normal ambient temperatures and is still a vapor in the temperature range
 

of interest. Those'fluids which condense at temperatures lower than nitrogen
 

- neon, hydrogen and helium - can be used for very low temperature Joule-


Thomson refrigerat6rs if T 3 is reduced to a point where (h/aP)T3 is negative.
 

This can be done by precooling the fluid using another type of refrigeration
 

system. Thus, Joule-Thomson systems can be used in double or triple cascade
 

to obtain cooling in the range of liquid hydrogen or liquid helium temperatures,
 

as shown in Figure 5-22.
 

The cooling capacity, qe, of a single stage Joule-Thomson system is given by
 

equation
 

qc = i (hl-h 3) 
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AFTER COOLERS 

COMPRESSOR 
BANK -

HELIUM CIRCUIT NITROGEN 
CIRCUIT CIRCUIT 

MULTICHANNEL 
HEAT EXCHANGER 

EXPANSION VALVES 

COOLING LOAD
 
HEAT EXCHANGER
 

Fig. 5-22 A Three-Fluid Cascaded Joule-Thomson Refrigerator 
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the power required, W, is given by
 

W = m [h2-h3.] 

The significant parameters for assessing the performance of a Joule-Thomson
 

refrigerator are the compression ratio, the gas properties at the warm end and
 

the heat exchanger effectiveness. Dean and Mann(20) present values of W/q
 

as a function of these quantities for Joule-Thomson refrigerators using nitro

gen, hydrogen and helium as working fluid. Available data on closed cycle
 

systems is sparse and generally limited to a few watts of cooling. The para

meters of larger J-T units, in the range of this study, may be obtained by com

bining the data from this study with the physical dimensions, capacity and ef

ficiency of practical compressors, and heat exchangers, from Section 4.
 

5.3.2 Manufacturers of Joule-Thomson Refrigerators
 

The following companies are presently.engaged in production and development bf
 

J-T refrigeration systems.
 

Air Products and Chemicals, Inc.
 

Garrett Corporation
 

Santa Barbara Research
 

Hymatic Engineering Company
 

The majority of J-T units produced by these companies are open cycle systems,
 

in which the working fluid is supplied by a high pressure stored gas source.
 

In this usage only relatively short cooling periods are available. J-T units
 

have been used in space in various applications, but their principal advantage
 

is in providing short term cooling (i.e.,*minutes or hours) after extended
 

durations in space. For example, a two-stage J-T unit was supplied by Air
 

Products for cooling of an infra-red system on the Mariner missions.
 

Data on existing closed cycle J-T units is quite sparse and there appears to
 

be no production models-available which meet the refrigeration requirements
 

of this study. The performance of the closed cycle J-T system is keyed to the
 

compressor, and data in Section 4 can be utilized to make fairly close esti

mates of the performance which would be expected from closed cycle J-T systems
 

in the range of 5-100 watts. 5-40
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Garrett AiResearch Manufacturing: Garrett Corporation makes several
 

closed cycle units primarily for use in aircraft. These units use N2 as
 

the working fluid and are therefore limited to a lower temperature of
 

75 K. These units provide cooling up to 5 watts.
 

Air Products and Chemicals: Air Products and Chemicals produces a wide
 

variety of open cycle J-T units. In addition they produce two closed
 

cycle J-T units, one a single stage unit to provide 2W at 77 K and a sec

ond stage unit which supplies 0.35W at 230 K. Air Products has recently
 

developed a modified Solvay unit for commercial and military application,
 

and they feel that the potential of this unit for long term closed cycle
 

application is superior to the J-T unit.
 

Santa Barbara Research: Santa Barbara Research has produced a variety
 

of open cycle J-T refrigerator and also has produced a single, closed
 

cycle J-T unit for aircraft use. It is believed that they are not active
 

in the development of closed cycle J-T systems at this time.
 

Hymatic Engineering Co., Ltd: Hymatic Engineering Company specializes
 

in open cycle type J-T coolers for infrared detectors. Hymatic has been
 

engaged to a small degree in closed cycle J-T systems.
 

Hughes Aircraft Company: Hughes has produced several units in the past
 

for cooling systems on aircraft, but is not now engaged in development of
 

J-T units, and does not produce a unit which is generally available to
 

industry.
 

5.3.3 Discussion of Data on J-T Units
 

Characteristics of Existing Joule-Thomson Refrigerators: Data has been
 

assembled on the characteristics of closed-cycle J-T systems made by four
 

companies. None of these unitg produces the degree of refrigeration re

quired in this study, however, the data is useful in assessing the rela

tive performance of units. Data from the following units has been as

sembled.
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Garrett AiResearch
 

Model 133488
 

144406
 

Air Products
 

Model J-80-1000
 

J-30-3500
 

Santa Barbara Research
 

Prototype unit
 

Hughes Aircraft Company
 

Prototype Unit
 

These data are not complete and primarily cover the near 77 K temperature range
 

where a single stage unit with N2 as the working fluid can be used. One excep

tion to this is the two stage unit produced by Air Products which provides
 

cooling to approximately 23 K. 
The largest cooling capacity of the units are
 

12 watts.
 

The data on the closed cycle systems is tabulated in Table 5-3. The C.O.P. of
 

existing closed cycle units is presented in Figs. 5-23 and 5-24. The ideal per

formance of a J-T unit operating at near optimum pressure (2400 psi) is also
 

shown for comparison at 75 to 950K. The system which provides the highest
 

thermodynamic performance (No. 26) delivers about 25% of the ideal performance
 

of the J-T cycle.
 

A curve fit of the data points was made only at 770K, and is shown on Fig. 5

24.
 

Although the maximum theoretical performance of the J-T system is not given by
 

the Carnot efficiency, the % Carnot efficiency vs. refrigeration capacity is
 

9hown in Fig. 5-25 so that it may be compared with the other cycles on the same
 

basis. The plot shows that the J-T systems considered produce approximately
 

2% of the Carnot efficiency. A considerable improvement should be experienced
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CLOSED CYCLEC't,, 

Manufacturer 

Trade Name 

Model 	 it& 

1, 	 tumber 21 
Refrigeration Range I 7
 

Cycle JT
 

Wordng fluid S,
 
fligh Pressure 155
 
Low Pressure I attn
 

Mininuin. Temperalure 75al-


Cool-Down Time 12 a.
 
Compressor RPM
 

Volts - Phase - Frequency I
 

Coolhg Means Air
 
Ambient Temp. flajjmts. -40 t
 

Required Attitude Any
 

Cryostat Dimensions
 

Compressor Dimensions G5" 1 A s,
 

Cryo tat Wt. (2-E'ri
 

Compressor Wt.
 

System W. 21. , ,
 

Compressor Volume
 

Cryostat Volume
 

System Volume .1. 5
 

MTB3F ,C0b
 

Maniena ce Interval 30o *5
 

System CosL $S, 5a'l
rRefrigeration
Power Input 
COP
 

% Carnot
 

lb/watt
 

in. 3!/watt


5
IRefrigeration
Power Input GSL.t 

. ' 77 K "	C OP 

% C~rot -,i

,I1-ill.3/watt 

FOLDOUT FRAME
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te 5-3 

)N REFRIGERATORS (SMALL UNITS) 
/ 

rrett AiResearch 

4406 

7X 

Air Products 

NeNone 
J-0-1000 

23
77 K 

Air Products 

NoneJ-30-3500 

2423° K 

Santa Barbara 
Research Center 

None 

25790 

Hughes Aircraft 

PrototyrPe 

26 
77°K 

6 atm 

itm 

5 *5 

5/208 - 3 - 400 

r 

to 71o0 

J-T 

N2 

75OK 
rain. 

3,50 

Air 

J-T 

N2 and Ile 

3,850 

Air 

J-T 

N2 

75°K5 rain . 

Air 

J-T 

N2 

75°K 
5ra in , 

y 

. 5lb 

5" x Sx 12" 
(2-stage) 

18 b 

71t Dx 12.5' 

16I b 

L 

4 0 1b 

5 ft8 

hres 500 hr 500 r 500 hr 

000 $9,000 $10,000 

0.35 w (23 K) 

1, 050 w 

6.000333 

0.4% 

w 

67 

2w 

600 w 

.00333 

0.9% 

9-

2w 

326 w 

.00614 

1.8% 

8 

12w 

750 w 

0.016 
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for units of greater capacity, however, data was not available for large closed
 

cycle units..
 

Figure 5-26 shows the specific weight of the units as a function of refriger

ation capacity at 770K only. Figure 5-27 presents the specific volume of two
 

units for which system volume was available. The available data does not per

mit curve fitting; the trend from the two.points is obviously wrong, since it
 

indicates the specific volume of the systems would increase with capacity.
 

5.4 	 Independent Component Regenerator Refrigerators (Gifford-McMahan, $olvay,
 
and Taconis)
 

The practical Stirling and VM refrigerators achieve compression, expansion and
 

heat transfer processes in a single mechanical unit however refrigerators can
 

be built which use regenerative exchangers in which the compression, expansion
 

and heat exchange components are completely separate, if switching valves and
 

surge volumes are used to isolate the time-dependent operation of the exchan

ger from the operation of the compressor and expander.. Valving introduces ir

,reversibilitywhich cause more harm to system efficiency if they occur at the
 

cold end than at the ambient end. It is therefore possible to conceive a re

frigeration system in which the main regenerative heat exchanger, load exchan

ger and expander operate as one unit and the compressor as another. Such a
 

system has many practical advantages in that separation of components is
 

achieved but no low.temperature valving is required. Valves and surge tanks
 

are used only at the ambient end. Such an arrangement permits many areas of
 

design freedom compared to the Stirling or VM refrigerator. The compressor
 

and heat exchanger-expander interface requirements are confined to working
 

fluid flow rates and pressures. The type of compressor used to supply the
 

working fluid at these rates and pressure can be selected optimally from all
 

possible types - dynamic, positive displacement or thermal.
 

The exchanger-expander unit will be very similar to the cold end of a Stirling
 

or a VM refrigerator. With separation, however, there is greater freedom of
 

choice of displacer drive and means of extracting expansion work. By changing
 

the valve timing the shape of the Pv diagram can be influenced to some degree.
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In recent years, this split component system has gained a great deal of popu

larity. By separating the expander from the compressor, it is possible to
 

construct a system consisting of a simple lightweight, compact cooling unit
 

which can be more easily integrated with the load, and a compressor which can
 

be located remotely and connected to the expander with long flexible lines
 

carrying the high and low pressure working fluid. Because of this remote lo

cation the compressor design can be optimized for convenience and reliability
 

rather than compactness. Because of the use of valves the fluid flow is uni

directional in the lines, oil separators a4d filters can be inserted in the
 

lines, permitting the use of reliable and proven oil-lubricated compressors
 

instead of solid lubricated compressors.
 

It was noted above that this type of refrigerator permits many design varia

tions to be considered within the same basic concept. Because of this char

acteristic and the commercial attractiveness of the system there are many
 

varities of split component refrigerators on the market. These systems are
 

basically the same in that they nearly all use modified hermetically sealed
 

freon compressors, so that the system variations are confined to the method
 

of operating the exchanger expander unit. However, for reasons of commercial
 

advertising and patent justification plus a certain amount of pedantry, a
 

profusion of names has been applied to the individual expander modifications.
 

They include, Taconis, Solvay, and Gifford-McMahon, with and without the ad

jective "modified". There seems to be some justification for crediting Ta

conis with first appreciating the full possibilities of this type of exchanger

expander, although many persons have proposed devices using regenerators all
 

the way back to Robert Stirling and possibly earlier. It is outside the scope
 

of this report to establish the correct name for this family of devices and
 

they will be referred to simply as exchanger-expanders. However, there is a
 

tendency to refer to different expansion processes incorrectly, as different
 

thermodynamic cycles. In this report the distinction between cycles and pro

cesses will be kept.
 

5.4.1 Operation
 

There are two major techniques for operating expander displacers. One tech

nique is exemplified by the basic Solvay process. In Figure 5-28 the expander
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consists of an expansion piston connected to the working fluid and the inlet
 

and exhaust valves through a.regenerator. In position I the inlet valve is
 

open and the exhaust closed. The regenerator and other vbid volumes are
 

filled to the higher pressure. From 1 to 2, the piston moves outward and work

ing fluid enters the cylinder after first being cooled in the regenerator. At
 

point 2, the.inlet valve is closed and the fluid pressure falls until the pis

ton reaches its outermost position. At position 3, the exhaust valve is
 

opened and the fluid in the system expands irreversibly to the valve at 4.
 

From 4 to 5, the piston moves inward, expelling the cold working fluid from
 

the system after first being warmed in the regenerator. At 5, the exhaust
 

valve is closed and the piston continues to move until it reaches the inner

most position at 6. At position 6, the inlet valve is opened and the fluid
 

in the system is compressed irreversibly from 6 to 1. The valve timing points
 

2 and 5 can be selected such that compressi6n and expansion are reversible,
 

i.e., position 3 and 4, and 6 and I are identical. Alternately, the valve
 

timing can be chosen so that 2 and 3, and 5 and 6 are identical maximizing the
 

area of the Pv diagram.
 

In the solvay process the work of expansion can be extracted mechanically by
 

connecting the piston to a crank mechanism. Alternately, the opposite end
 

of the expansion piston can be operated as a compression piston which dissi

pates the expansion work either quasi-reversibly as work of compression, or
 

irreversibly in the form of heat by causing fluid'to pass through a,throttle
 

valve and heat exchanger.
 

The other significant expansion technique is exemplified by the basic Taconis
 

process (Fig. 5-29). The system consists'of a cylinder containing a movable
 

displacer. Working fluid can be introduced or rejected from the system via
 

inlet and exhaust valves which communicate directly with the ambient tempera

ture end of the cylinder, and with the cold end through a regenerative heat
 

exchanger. In position I, the inlet valve is open, the exhaust valve is
 

closed, and the displacer is at the cold end. The ambient space and the re

generator contain high pressure working fluid. From 1 to 2, the displacer is
 

moved from the cold end to the ambient end and the cold space fills with high
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pressure fluid. At point 2, the inlet valve closes and the displacer continues
 

moving until it reaches the ambient end at 3. The pressure at 3 is lower than
 

at 2 by virtue of the cooling whichoccurs when fluid is transferred from am

bient to cold spaces. At 3, the exhaust valve is opened and the fluid expands
 

irreversibly to 4. At point 4, the displacer is moved back towards the cold
 

end, expelling low pressure fluid, until the exhaust valve is closed at 5.
 

From 5 to 6, the fluid is compressed by displacement from cold to ambient
 

spaces. At 6, the displacer is at the cold' end and the inlet valve is opened,
 

compressing the gas in the ambient space irreversibly to point 1. As in the'
 

case of the Solvay cycle the valve timing points 2 and 5 can be varied to
 

maximize either cycle efficiency or unit performance.
 

In the Taconis cycle the work of expansion is extracted from the system by a 

somewhat devious route. When the inlet valve is opened the working fluid per

forms work as it flows into the expander to compress the fluid in the ambient 

space. When this fluid is displaced to the cold end, the heat of compression 

is deposited in the regenerator. During the exhaust phase this heat is picked 

up by the exhausting'fluid and removed from the system. 

The variations upon the Solvay and Taconis process usually involve valve tim

ing, method of operation of displacer or piston and geometric configuration.
 

The thermal analysis of the Taconis process is very similar to that of the
 

Stirling and VM refrigerator in that remarks relating to the complex and sim

plified analysis approaches outlined in Section 3 apply.
 

In the case of the Taconis expander the boundary conditions differ in that the
 

system is open and the condition of constant mass is replaced by the valve
 

flow rate equations and the specified inlet and exhaust fluid pressures. The
 

work required by the overall cycle comprising compressor and exchanger

expander is equal to the work needed to compress the fluid consumed by the
 

expander.
 

In the case of the Solvay process, the analyses is somewhat simpler because
 

one is concerned with events in only one working space, but this space is
 

nevertheless connected to a regenerator, whose behavior is time-dependent.
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Though the complexity is diminished, the analysis of the Solvay process at very
 

low temperatures should still preferably be made by the complex method. The
 

boundary conditions for the complex method for the Solvay process analysis will
 

be the motion of the working piston, as governed by the crank mechanism or the
 

dynamics of the free piston-compressor arrangement, and the inlet and exhaust
 

valve timings and fluid pressures.
 

5.4.2 Manufacturers of Systems
 

The following companies are engaged in the manufacture and development of sys

tems which incorporate separate expanders and compressors in conjunction with
 

regenerators.
 

Cryogenic Technology, Inc.
 

Cryomech Inc.
 

Air Products and Chemicals
 

British Oxygen Co., Ltd..
 

The Welch Scientific Company
 

Cryogenic Technology, Inc: Cryogenic Technology, Inc., evolved from Arthur D.
 

Little, Inc., originally. In 1967, an outgrowth of the activity of ADL was
 

established as 500 Incorporated, a subsidiary of ADL, whose purpose was to
 

produce and market low-temperature equipment. The company name was later
 

changed to Cryogenic Technology, Inc., and established and operated as a sep

arate company. CTI did the pioneering work in the development of units of
 

this type. Their units have been used since 1959 to provide cooling for ampli

fiers. Several hundred units of this type have been placed in use and CTI has
 

the largest backlog of experience in this area. CTI produces a standard line
 

of approximately 15 units based on the Gifford-McMahan cycle, which provide
 

cooling from approximately 100K to 1500K at capacities of from 1 to 100 watts.
 

As with the other manufacturers they utilize freon compressors which have been
 

developed for aircraft service. Many of their units see service in aircraft,
 

and these are lightweight, compact units. Extensive data on the system per

formance is available from CTI, primarily due to their long operating history
 

and this data is readily available.
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Cryomech, Inc: Cryomech, Inc. is a small company which was started in 1964 by
 

Professor W. E. Gifford./ Dr. Gifford is a well known, recognized authority in
 

the field of cryogenic refrigeration and did much of the early development of
 

the system which bears his name. Cryomech has a standard line of seven Gifford-


McMahon refrigerators which provide cooling from 7.50K (minimum temperature)
 

to 200 K at rates from approximately to 100 watts. The system uses a stan

dard oil lubricated compressor (Tecumseh.Model AJTl5).
 

Air Products and Chemicals: Air Products who specialize in Joule-Thomson sys

tems, has recently introduced a new cryogenic refrigerator system based on the
 

modified Solvay cycle. Air Products manufacturers two units at present, and
 

state that they will soon have a militarized version available using a dry
 

lube compressor. Their two units provide cooling of 1 to 30 watts over a tem

perature range from 120K to 2000 K. They have recently introduced a third
 

small-scale unit.
 

British Oxygen Co., Ltd.: British Oxygen manufacturers a Taconis cycle unit
 

which has a capacity of 1.5 watts at 16 K. In general most of the company
 

effort is concerned with large capacity systems at a temperature near 4 K.
 

The Welch Scientific Company: Welch Scientific Company makes a Gifford-


McMahon cycle unit which uses compressed air as the working fluid. The unit
 

is not applicable to requirements here since it is open cycle and does not
 

provide low enough temperature using air as the working fluid.
 

5.4.3 Discussion of Data on Units
 

The parameters and operating data for cryogenic refrigerators based on the
 

Gifford-McMahon, modified Solvay and modified Taconis cycles are tabulated in
 

Table 5-4. The units selected for tabulation and analysis were limited pri

marily to those which provide cooling in the .range of 5 to 100 watts. A sub

stantial number of other smaller units are available.
 

Figures 5-30 through 5-34 present net refrigeration capacity vs. temperature
 

for the individual units. Most of the units provide additional cooling on the
 

first stage at approximately 77°K and this feature is particularly attractive
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Table 

EXISTING GIFFORD-Drie 
-COOLING AT 20-11. 

Cryomech, Inc. 
None 
ALO 
31 
23 - 80°K 
G-M 
He 
24 atm 
10 a2t 

230 K 
25 ain 
144 
220 - 1 - 50/60 
Air 
NI 
Cryostat any 
5 x5 x 18 
29W x 19x27 B 
15,250 
175 lb 
25 lb 
300 lb 
5000 

3000/1500 
$10,290 


75 W 
3000 W 
:025
 
7.2%
2.67
 

89 -V 
3000 W 
.0297 
4.7% 
2.2 
172 

Cryomech, Inc. 
None 
GB02 
32 
7.5 to 200 K 
G-M 
He
24 am 
10 atm 

7.5 0K 
25 min 
144 
220 - 1 - 50/60 
Air 
NI 
Cryostat any 
5 x xS 15x 
29.x 19 x 2 7 
15,420 
175 lb 
25 lb 
200 lb 
5000 

3000/1000 
$13,200 

5.5 W 
3000 W 

.00/84
2.57% 
36.4 
2800 

Cryomech, Inc. 
None 
G0112 
33 
9 to 250 K 
G-M 
Ile24 am
10 am 

90 K 
35 min 
144 
220 - 1 - 50/60 
Air 
NI 
Cryostat any 

5 x24 
29 x19 x27 
15,500 
175 lb 
25 lb 
200 lb 
5000 

3000/1500 
$13,200 

8 W 
3000 W 
.00267 
3.7% 

25 

1940 

CTI 
C ryodyne 
350 
34
 
15 to 770K
 
G-M
 
'He185 psi
65 si 

15oK 
45 mm 
72 t 
200/300 - 1 - 50/6( 
Air 
-25 0 F to +125 0 F 
Cryostat any 
19 x 5x9 

"28x 17 x 16 
8,460 
175 lb 
22 lb 
229 lb( 2) 
10,000
 
3000/3000/6000 
$13,000
 
3W (2nd Stage)
 
2100 W
 
.00143
 
2%
 
76 
2820
 
5 W (1st Stage)
 
2100 W
 

Manufacturer 

Trade ame 

Model 

I.D. Number 

Refrigeration Range 

Cycle 

Worldng Fluid 

High Pressure 

Low Pressure 
Minimum Temp 
Cool-Down Time 
Expander RPM 
Volts-Phase-Frequency 
Cooling Means 
Ambient Temp Req 
Required Attitude 

" Cryostat Dim. (in.) 
Compressor Dim. (iV.) 
System Volume (in.) 
Compressor Wt 
Cryostat Wt 
System Wt 
MTBF 
Maintenance Interval(1) 
System Cost 

Refrigeration 

Power Input 


200 K % Carnot 
Lb/Watt 
In. 3/WVatt 
Refrigeration 
Power Input 

"70K COP 
% Carnot

Lb/Watt 
In. 3/Watt 
Refrigeration 
Power Input 

100 0K COP 
j% Garnot 

3LbWatt 
/n.3/Watt 

Cryomech, Inc. 
Nonle 
AL01 
30 
32 - 800K 
G-M 
He 
24 atm 
10 atm 

230 K 
12 min 
144 
110/220 - 1 - 5/60 
Air 
NI 
Cryostat any 
2.5 x 2.5x 14.5 

125 lb 
5 lb 
130 lb 
5000 

3000/5000 
$8,610 


18 W 
900 W 
.020 

5.8%
7.22 


29 
100 
.0322 
5.08% 
4.5 

(1) Cryostat/Compressor oil filter/compressor 
(2) Total weight excludes instrument panel 

FOLDOUT FRAME
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oMAHON REFRIGERATORS 
100 K AT 5-100 WATTS 

_ 	CTI CTI CTI Air Products 
Cryodyne Cryo yne (ryodyne Display 
355 1020 . 10077 CS-102 
35 86 38 38 
15 to 770 K 13 to 770 K 30 to 770K 30 to 2000 K 
G-M G-M G-M Mod. Solray 
He He He He 
275 psi 275 psi 300 psir 320 psig

7 5 175 psi ps 100 psi 115 psig 
13 K 250K 30 0K 

in 50 min 30 min 20 min 
82 82 144 

'60 8/440- 3- 50/60 208/400 - 3 - 40/60 208/440 - 3 - 50/60 208/440 - 3 - 60 
Air Air Air Air 
-25 0 F to 125OF -250F to 125 0F -25°F to +125 0F 40 - 1100F 
Styostat any Cryostat any Cryostat any Cryostat any 
18x10x6 20x13x8 16.5x13 x8 4DxI9L 
41x27 x26 4 1 x27 x26 41x27 x26 22x17x15 
29,900 30,880 30,500 5,600 
425 lb 425 lb 425 lb 150 lb 
22 lb 33 lb 30 lb 10.6 lb 
4681b(2 ) 488 lb(2 ) 480 ib(2) 161 lb 
10,000 13,000 14,000 3000 - 5000 est 
3000/3000/6000 3000/2000/6000 3000/3000/6000 3000/6ooo
 
$16,000 $17,000 $18,000 $7,000
 
5W (2nd Stage) 11 W (2nd Stage)
 
5600 W 5600 W
 
.00089 .00197 "
 
1.2% 2.7%
 
93 44
 
5980 2810
 
5 NV (ist Stage) 10 W (istStage) 	 i0 w 17 W 
5600 W - 5600 W 	 5600 W 1700 W 

.0179 .01 
5.2% • 2.9% 
4.8 	 9.5 
205 	 330
 

22 W 
1700 W
 
.013
 
2%
 
7.3
 
255
 

FOLDOUT FRAME 2
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for application to vehicle systems which utilize fuel and oxidizer that re

quire cooling at two temperatures. Data on first stage refrigeration are pre

sented where available. .In most cases the first stage cooling exceeds the
 

second stage (lower temperature) cooling. Most manufacturers do not include
 

data on the coupling between first and second stage cooling rates. Second
 

stage cooling rates are reduced as heat loads are introduced on the first
 

stage. This effect is shown in Fig. 5-32 which presents data for Cryomech
 

GB02.
 

The coefficient of performance of the various machines are presented in Figs..
 

5-35 and 5-36 vs. refrigeration and temperature. The data are curve fit us

ing the technique as described for the Stirling-cycle. The highest values
 

for C.O.P. are shown by the Cryomech Units. The minimum temperature achieved
 

by the various units is approximately 70K. The machines which provide the
 

data on C.O.P. represent a substantial amount of experience, and it is not
 

expected that large improvements in performance will be forthcoming in the
 

near future, although some improvements will almost certainly evolve.
 

Figures 5-37 and 5-38 present the system weight per refrigeration (specific
 

weight) vs. temperature and cooling capacity. The data clearly shows the ef

fect of both cooling capacity and temperature level. As in the other cycles
 

the curve fits were made through the "best" points (i.e., highest G.O.P. and
 

minimum specific weight).
 

Unlike the C.O.P. data it is expected that substantial weight reduction could
 

be made in the systems by selecting compressor units which are optimized for
 

minimum weight. Section 4.1 discusses the various compressors available and
 

indicates the relative weight gains which appear obtainable in the compressor
 

unit. As previously discussed in Section 4, the compress6r is a large frac

tion of the total system weight.
 

Figure 5-39 presents the specific volume of the systems (In /Watt) and the
 

curve fits at the three temperatures. It is expected that large reductions in
 

the specific volume of the units would be achieved by optimization of the com

pressor for space use.
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A further comment which should be noted is that none of the units would be
 

capable of space usage since their oil separation systems would not operate
 

in zero gravity conditions.
 

The percent Carnot efficiency is presented in Figure 5-40 and shows that the
 

units provide from I to 7% Carnot efficiency, which is substantially below
 

that achieved with the most efficient cycle consideredhere, the Stirling cy

cle, which provides from 6 to 20% ir the same operating range.
 

In spite of this shortcoming the G-M and similar cycles provide a high degree
 

of flexibility due to the separable components and more importantly currently
 

provide the longest unattended lifetime for the refrigerators which fall
 

within this study.
 

5.5 Brayton/Claude Cycles
 

5.5.1 Operation
 

Brayton Refrigerator: A practical Brayton cycle refrigerator is shown
 

in Figure 5-41. Gas is compressed with some increase in entropy from 1
 

to 2. The heat of compression is rejected to the ambient temperature
 

heat sink in an after-cooler from 2 to 3. The high pressure fluid is
 

cooled from 3 to 4 in the main heat exchanger. The pressure at 4 is
 

slightly less than at 2 due.to the flow losses in the two heat exchan

gers. The fluid is expanded from 4 to 5 with some entropy increase, and
 

is then warmed to 6 by passage through the load heat exchanger. The
 

fluid is warmed from 6 to I in the main heat exchanger as it returns to
 

the inlet side of the compressor. The pressure at 4 is slightly higher
 

than at 1 because of pressure losses in the heat exchangers.
 

Analysis of the cycle is performed by selecting high and low fluid pres

sures, load and sink temperatures, and either choosing mass flow rates
 

and component dimensions from which efficiencies can be determined (as
 

described in Section 4), or assuming efficiencies from which required
 

component dimensions may be found in a separate calculatien (as described
 

in Section 3). The analysis begins by assuming a value for T, and hence,
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h2 is found from the assumed or calculated compressor isentropic efficiency,
 

h (P2 ,S1 ) - h,-is = c 


h2-h 1
 

T2 is found from h2 and PC.
 

T = T (P2 ,h2)2 


P3 is found from the assumed or calculated after-cooler loss
 

coefficient K
 
a 

P3 =P2 - P2 + P3 Ka
 

2
 

h3 is found from the assumed or calculated after cooler effectiveness ea, T2 ,
 

and the sink temperature T
a 

Ea h2 - h3
 

h2 - h (P3 ,Ta)
 

T 3 is found from the fluid equation of state
 

T = T (P3, H 3 )
3 


h 4 is found from the assumed or calculated main heat exchanger
 

effectiveness, e
 

em = -h4h 3 


h 3 - h 6
 

P 4 is found from the assumed or calculated main heat -exchanger high pressure
 

side pressure loss coefficient, Kh
 

P 4 = P 3 - (P2+ P4) Kmh
 
2 m
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T4 is found from the fluiI equation of state
 

T4 = T(H4, P4)
 

P0 is found from the assumed or calculated load heat exchanger
 

pressure loss coefficient, KL
 

o =P 
 _o + Ps] KL2 

h 5 is found from the assumed or calculated expander isentropid 

efficiency, isc. 

Tis. h4 - hS 

h - h (P 5 , S4) 

T5 is found from the fluid equation of state, 

T5 = T (B5 , h ) 

h6 is found from the assumed or -calculated load heat exchanger
 

efficiency, e
 

e = h6 - h5
 

h(P , Te)-h5
 

T6 is found from the fluid equation of state
 

T6 =T(Po , h6)
 

P1 is found from the, assumed or calculated main heat exchanger
 

low pressure side loss coefficient, K
me
 

P= P6- [P'1 + G5]k 
me
2 
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h, is found from the assumed or calculated main heat exchanger effectiveness
 

E.m 

h
em , - h 6
 

h 3 - h6
 

T1 is found from the fluid equation of state
 

T 1 = T (PI, h1 )
 

The calculated values of P1 and T1 will not, in general, agree with the as

sumed values. Adjustments are made in the assumed expander pressure ratio and
 

the cycle is recalculated using the new T1 . The process is repeated until a
 

consistent set of figures is obtained. If component efficiencies rather than
 

dimensions were assumed then the component sizes and flow rates required to
 

provide this performance must then be determined.
 

The cooling capacity of the refrigerator, q, is the heat absorbed by the load
 

heat exchanger.
 

qc r [ho - hs]
 

The power required by the refrigerator, W, is the work of compression
 

W = [h2 - h1]
 

It is apparent that the analysis of continuous flow Brayton Cycle refrigerators
 

is relatively straightforward. Performance data can be prepared quite readily
 

as a function of component efficiencies and the results of two extensive para
(21)(22) 

metric studiesare reported in the literature . Muhlenhaupt and Stro

bridge present calculated values of W/qc for a wide range of expander and ex

changer efficiencies and helium, hydrogen and nitrogen working fluids. A total
 

of 66 charts are presented for W/qc as a function of P2 , each presented for a
 

range'of three other cycle parameters. Wilson and D'Arbeloff 23 ) present a
 

similar range of calculated performance data with component efficiencies as
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parameters. These data are calculated for helium, hydrogen, andneon as work

ing fluids. The effects of multiple stage compression, multiple stage expan

sions and the use of intermediate temperature expansion stages to improve ap

parent effectiveness are shown.
 

The dimensions and performance characteristics of a practical Brayton cycle
 

refrigerators may thus be determined by combining the parametric system per

formance data of these two studies with the physical dimensions, capacity, and
 

efficiency of practical compressors, heat exchangers and expanders.
 

The Claude Refrigeration Cycle: As the operating temperature of the Brayton
 

refrigerator is lowered point 5 (Fig. 5-41) will enter the two-phase region of
 

the working fluid, and the fluid will leave the expander as a two-phase mixture.
 

Up to the present time, it has not been considered good engineering practice
 

to permit expanders to operate in the two phase region because of possible
 

mechanical damage to the expander. For refrigeration at temperatures within
 

the two-phase region of the working fluid it has therefore become accepted
 

practice to perform the expansion process isenthalpically through a throttle
 

valve as in the Joule-Thomson cycle, rather than in an expansion engine.
 

As explained in Section 5.3, this process will not produce net refrigeration
 

unless the value of (ahiaP) is negative at the effective sink temperature.
 

For helium, hydrogen and neon this means that the effective sink temperature
 

must be reduced by use of an auxiliary heat exchanger. The Claude cycle is
 

effectively a Joule-Thomson cycle in which the effective sink temperature is
 

lowered by a Brayton cycle refrigerator. It is designed so that the two sys

tems share the same working fluids.
 

Figure 5-42 shows a practical Claude cycle. The cycle closely resembles the
 

Brayton and Joule-Thomson cycles, Figures 5-41 and 5-21, and the cycle des

cription is similar. The difference is that upon reaching point 4 the flow
 

divides and a portion of the flow is expanded as in a Brayton refrigerator
 

and is returned to the compressor via a combined load and precooling exchan

ger, and the main exchangers. The remaining portion of the stream at 4 is
 

passed through the other side of the load/precooling refrigerator and is cooled
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to T4a. The system 4-4 a-4 =5 a-5 b-5-6 is a standard Joule-Thomson refrigerator 

and functions like the system 3-4-5-6-1 in Figure 5-21. The fluid is cooled
 

in the main Joule-Thomson heat exchanger, 4a to 4b, after which it is expanded
 

isenthalpically to 5a. From 5a to 5b, the fluid is warmed in the Joule-


Thomson load heat exchanger and then is reheated in the main exchanger to
 

point 5 where the two flows are united and pass back to the compressqr via the
 

load/precooling exchanger and main exchanger.
 

It can be seen that the Claude cycle is essentially more complex and less ef

ficient than the Brayton cycle inasmuch as a Joule-Thomson refrigerator has
 

been added and that because of this the cooling effect at the load-is produced
 

by isenthalpic expansion, which produces a greater increase in entropy than
 

even the most inefficient expander. These implications are considered desir

able if a two-phase mixture in the expander is to be avoided. Recently a re

ciprocating expander has been operated successfully in the two-phase region(24).
 

-If 
 it proves possible to develop expander technology to the point where such
 

expanders become generally available, the technical advantage of the Claude
 

cycle would be eliminated.
 

The Claude cycle can be analyzed in a manner analogous to the Brayton cycle
 

and Joule-Thomson cycle analyses. For the temperature range of interest to
 

this program, 200K - 1000K, the possible working fluids are helium, neon, hy

drogen and nitrogen. Because of the low condensation temperature of helium,
 

there is no necessity for adding a Joule-Thomson stage to a helium Brayton re

frigerator. Neon or hydrogen Claude systems.would be appropriate for the 20 K
 

- 30°K range. A Claude system using nitrogen could be used in the 75 K to
 

850K range, where its efficiency would be higher than that of a single stage
 

Joule-Thomson system.
 

An extensive parametric study of a helium Claude cycle refrigerator for use
 

in the temperature range of 420K is presented by Muhlenhaupt and Strobridge(22)
 

The temperature range of this refrigerator is below the range of current in

terest and although the technique of analysis would be applicable to hydrogen,
 

neon or nitrogen system, the data are of no direct interest. However, the
 

data do show that the efficiency passes through a maximum with increasing
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magnitude at high pressure, and that the optimum pressure is higher than that
 

found for Brayton cycle systems (22).
 

5.5.2 Companies Engaged in Brayton/Claude Cycle Refrigerator Development
 

The following companies have been engaged in research and development activi

ties associated with a miniature Brayton cycle refrigerator:
 

General Electric Company, Schenectady, New York
 

AiResearch Manufacturing Company (A Division of the Garrett
 
Corporation) Los Angeles, California
 

Arthur D. Little, Inc., Cambridge, Massachusetts
 

llymatic Engineering Co., Ltd.
 

In addition to these companies, whose activities have been directed toward
 

miniature units for aircraft and space usage, the following companies have
 

built large capacity industrial units, using the Claude and Brayton cycle:
 

Natidnal Bureau of Standards
 

L'Air Liquide
 

British Oxygen Cryoproducts
 

CVI Corporation
 

Sulzer Brothers Limited
 

Garrett AiResearch: Garrett AiRe~earch began activities on the design and de

velopment of a miniature'non-reciprocating closed-cycle cryogenic cooler in
 

1962 under contract to WPAFB (AF 04(695)-313), and AF 04(695)-146. The object

ive of this contract was to develop a refrigerator with a cooling capacity of
 

approximately 2 watts at 77 K which would'be suitable for use with space-based
 

infrared sensor devices. The work conducted on this system resulted in the
 
fabrication of a non-reciprocating system based on the Brayton cycle and using
 

nitrogen as the working fluid. The systeri.parameters for this unit are shown
 

in Table 5-5 (No. 40).
 

"Long term unattended operation, one of-the goals of this effort was not demon

strated, the actual testing of the unit being quite limited in duration. The
 

work on this unit terminated in March 1967. A second development contract
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carried on at Garrett was/begun in February 1964 and ended in December 1965.
 

This effort was funded by U. S. Army Satellite Communications Agency under
 

contract DA-36-039-AMC-30725. The program objective was the development of
 

a helium refrigerator system suitable for cooling low-noise amplifiers at 4.20 K.
 

The work accomplished under this contract consisted of component feasibility
 

studies. A working model was not built under this contract. (Reference 25)
 

A third effort by Garrett was funded by WPAFB during the period April 1964 to
 

October 1968. The objective was to develop a turbomachinery-type closed-cycle
 

refrigeration system to provide 1W of cooling at 3.6°K, for a continuous oper

ating period of 10,000 hr minimum in a space component environment., Fabrica

tion and testing was conducted during this contract; however, a complete pro

totype unit was not fabricated. (Reference 24). The work was done under Con

tract AF33(615)-1015..
 

Arthur fl. LittleInc: Arthur D. Little, Inc., began their activities on Bray

ton cycle systems in mid-1962. Their activities, like Garrett's, have been
 

funded by WPAFB and the objectives of their initial work twas the development 

of a refrigerator to provide 2 watts of cooling at 77°K in a space environment.
 

Work on this area was completed in May 1967 and resulted in the fabrication
 

and testing of a development model. In addition to this a lightweight model
 

was constructed but not tested. Further information on this development ef

fort is contained ih Reference 27.
 

Additional work was performed by A, D. Little under contract to WPAFB from
 
(28)
July 1966 to October 1968, on Brayton cycle refrigeration . The design 

objectives of this study were to provide 1 watt of refrigeration at 3.60K.
 

The system was to operate'in space and had an operating lifetime goal of
 

10,000 hours. The major components of the refrigerator system were built and
 

tested; however, a 'completeworking model of-the system was not built.
 

General Electric: General Electric has investigated small cryogenic refrig

eration units based on the Brayton cycle for a period of approximately 5 years.
 

These activities have been conducted using in-house funds aid more recently
 

under contract to WPAFB. Like Garrett and A. D. Little, two cryogenic
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refrigeration systems have been investigated. The first unit designed and
 

built was an 800K refrigerator. This.was a prototype unit which was tested.
 

Test data on this unit is not available. As a result of this testing a compact
 

77°K unit was designed.
 

In addition, a second unit for cooling at 4.40K was designed and various com

ponents were tested. General Electric has published various papers on their
 

development effort and presented operating data on components. Extensive test

ing of a complete refrigeration system was-not accomplished in these programs.
 

Hymatic Engineering: Hymatic Engineering has developed a prototype Brayton
 

cycle unit which produces 0.3w at 280 K. Additional information on their ac

tivities is not available at this time. The available parameters of their
 

prototype model are listed in Table 5-5 along with the other Brayton cycle
 

unitsi
 

Other companies produce large Brayton and Claude cycle units for much higher
 

refrigeration rates and at generally lower temperatures (=4 K), these compan

ies were included in the list and limited data on the parameters of these un

its can be found in Reference 29. Additional information on available minia

ture gas bearing cryogenic turbines with low to moderate flowrate is presented
 

in Reference 30 which include the results of a survey of these units.
 

5.5.3 Discussion of Data for Brayton/Claude Systems
 

Data has been assembled on the following prototype units which operate on the
 

Brayton cycle:
 

Garrett AiResearch Company
 

Prototype Unit (No. 40)
 

Hymatic Engineering
 

Prototype Unit (No. 42)
 

A. D. Little Company
 

Prototype Unit (No. 44)
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Table 5-5 

.PROTOTYPE BRAYTON Cy 

Manufacturer 

Trade Name 

Model 

I.D. Number 

Refrigeration Range 

Cycle 

Working Fluid 

High Pressure 

Low Pressure 

Minimum Temperature 

Cool-Down Time 

Expander RPM 

Volts-Plhase-Frequency 

Cooling Means 

Ambient'Temp Reqmt 

Required Att'tade 

Cryostat Dim, (in.) 

Compressor Dim. (in.) 

System Volume 

Compressor Wt 

Cryostat Wt 

System Wi 

Refrigeration 

a Power Input 
CO 

%%Carnot 

" Lb/Watt
In. 3/watt 

,Refrigeration 

- 'd Power Input 

PCOP 
< %SCarnot 

Lb/Watt 

In. 3/Watt 

Garrett 
AiResearch
 

None 

Prototype 

40 

80oK 

Brayton 

N2 

0.72 atm. 

0. 30 atm. 

s75 0 K 

n6 hr 

115 - 1 - 60 

Water 

NI 

1\1" 

8.5 x 10. 6 x 28.3 

15 1b 

151 lb 

2 W at 800K 

375 W 

.00533 

Hynatio 

None 

Prototype 

42 

19 - 28 0K 

Brayton 

He 

20 - 30 atm 

1 atm. 

19°K 

30 ain 

1500 

-40C to 700C 

NI 

6 x 4 x 15 

NI 

NI 

20 lb 

NI 

0.3 W at 280K 

(1) Excluding vacuum case. 
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4 CYCLE 	REFRIGERATORS 

A. D. Little 

None 

44 

Brayton 

4 He 

Radiative 
00 C 	 NI 

Ni 

8 Dx 60 L 

5.5 Dx 52 	L 

72 lb 

52 lb 

124 lb 

80 K 	 1 W at 3.6 0 K 

1310 W 

. 000763 
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All of these units are prototype units and a complete list of operating char

acteristics was not available, but available data is indicated in Table 5-5.
 

Figures 5-43 and 5-44 present the C.O.P. and specific weight data as a func

tion of refrigeration temperature. Since experimental data on these units is
 

severely limited, predicted performance data are also shown from two sources
 
(26) (32) 

6.0 LIFETIME AND MAINTENANCE CONSIDERATTONS
 

It is especially important in space application to distinguish between the
 

stated absolute lifetime of a practical device and its maintenance interval.
 

If the refrigerator must operate in a completely unattended fashion, then the
 

maintenance interval becomes synonymous with the lifetime and a long life sys

tem that requires relatively frequent but minor attention might have no advan

tage over a system which might require no maintenance but has a short lifetime.
 

At the present time refrigerators of the cooling capacity and load temperatures
 

of concern to this report are unable to operate for periods much longer than
 

3000 hours without some kind of attention. Most systems show some kind of de

terioratioh after a much shorter period than this, requiring anything from
 

minor component replacement to complete overhaul. Figure 6-1 shows a summary
 

of maintenance intervals claimed by various manufacturers, taken from data
 

presented in Section 5.
 

It is clear that for long term space missions an improvement must be made in
 

refrigerator technology. A result of this situation is that several develop

ment programs have been initiated by the U. S. Air Force, U. S. Army, and NASA
 

to explore promising techniques for extending coinponent lifetimes. It is ob

vious, therefore, that no data exist upon the reliability of long life space

borne refrigerators, per se. The lifetime potential of these developmental
 

refrigerators must be extrapolated from early test results, engineering back

ground information and experience with ground based units. Reliability data
 

for ground based units is again difficult to obtain since on the one hand, the
 

only large scale user is the Defense Department and on the other hand the re

frigerator manufacturers are not enthusiastic to divulge proprietary information.
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Several manufacturers claim to be able to build modified overdesigned versions
 

of existing short life refrigerators which would operate unattended in space
 

for as long as one year, but this has yet to be proved and the necessary weight
 

penalties may turn out to be excessive.
 

At this stage of the study it has been concluded that a definitive analysis of
 

refrigerator lifetimes and failure modes.cannot be made without further inves

tigative work. The kind of data needed for generalized lifetime prediction
 

will have to be generated by a program of detailed component analysis rather
 

than by questioning users or manufacturers. In this report it is possible only
 

to define the scope of such a program.
 

6.1 Sources of Failure or Performance Degradation
 

The performance of a-refrigerator can gradually deteriorate due to loss of
 

working fluid, contamination of working fluid, internal seal wear leading to
 

increased thermodynamic losses, and mechanical wear in the drive mechanism and
 

other external components. These effects tend to reduce the cooling capacity
 

and/or increase the power requirement. The performance of a refrigerator can
 

also deteriorate abruptly by sudden failure of a component, but it is quite
 

impossible to comment further on such a possibility at this stage.
 

The detailed manner in which the noted effects will cause the performance to
 

deteriorate are as follows:
 

6.1.1 Effect of Working Fluid Contamination
 

The working fluid can become contamihated in two ways. Particular matter can
 

enter the fluid as a result of wear or other source of breakdown of the con

struction materials. Considerable vapors can enter the fluid by desorption
 

from the construction materials or as an original impurity. In those systems
 

which use oil lubricated components; the fluid can become contaminated with
 

oil mist due to inadequate filtration. If the compressor operates at too high
 

a temperature the oil may effect the working of the refrigerator as follows:
 

o Condensing vapors or particulare matter may plug the heat exchanger
 

passages or low temperature throttle valves thereby raising the flow
 

resistance and reducing the cooling capacity.
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o Condensing vapors or particulate matter may plug the heat exchanger
 

thereby lowering the heat exchanger efficiency and reducing cooling
 

capacity.
 

o 	Condensing vapors or particulate matter may enter low temperature
 

clearance-spaces, causing increased friction, increased wear rates
 

or seizure; resulting in reduced aooling capacity and increased power
 

consumption.
 

o Particulate matter may cause abrasive wear in moving clearance spaces
 

such as in compression cylinders, gas bearings, valve mechanisms,
 

etc., causing increased power consumption.
 

o 	Particulate matter may cause excessive abrasive wear in moving seals,
 

causing increased input power consumption and/or fluid leakage and
 

loss of cooling power.
 

o 	Particulate matter may prevent proper closing of compressor check
 

valves, causing loss of cooling capacity and possible compressor over

heating.
 

6.1.2 Effect of Loss of Working Fluid
 

A'loss of working fluid will have only one major effect. The output of the
 

machine will be reduced due to the reduced circulation rate and pressure levels.
 

6.1.3 Effect of Internal Seal Wear
 

The wear of internal seals will permit working fluid to bypass process compon

ents. This will result in a loss of cooling capacity due to the following ef

fects:
 

o 	Leakage of fluid past the compressor piston or impeller from high to
 

low pressure regions will lower the delivery flow rate.
 

o 	Leakage of fluid from high to low pressure or sides of expansion
 

pressure valves will lower the available expansion pressure ratio and
 

cooling capacity.
 

6-4
 

LOCKHEED MISSILES & SPACE COMPANY 



LMSC/A903162
 

0 	 Leakage of fluid past displacer seals will cause ineffihient heat 

transfer and lower &ooling capacity. 

6.1.4 Effect of Mechanical Wear Outside the Working Spaces
 

This includes normal bearing wear, seal wear between working and drive mechan

ism spaces, valve mechanism wear, electric motor wear, etc. These wear sources
 

will have the following effects.
 

o Increased power loss in bearings due to surface deterioration or in

creased play, vibration, etc., resulting in an increased input power
 

requirement.
 

o 	Fluid leakage-from working to drive mechanism spaces, resulting in
 

loss of working fluid, decreased pressure ratio or lower suppl or
 

working fluid to the expander.
 

o 	Leakage of fluid from the high to low pressure sides of the valves.
 

o 	Increased play in the bearings can magnify stress levels and lead to
 

abrupt mechanical failure.
 

6.2 Possible Techniques for Extending Reliability
 

Based upon knowledge of the main causes of failure several areas of technology
 

should be investigated. The lifetime of a single unattended unit can be ex

tended by the following methods:
 

o 	Selection of materials of construction that can be thoroughly cleaned,
 

baked out and which produce no outgassing.
 

o 	Selection of materials which will produce a minimum of abrasive wear
 

particles.
 

o 	Development of continuous working fluid filtration techniques.
 

o 	Hermetically seal the apparatus by welding joints to minimize loss of
 

fluid. Allow for make up of working fluid from a reservoir, if ne

cessary.
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o 	Development of systems using only two lightly loaded dynamic seals,
 

such as constant volume heat-powered systems.
 

o 	Improve seal materials and design techniques and maintain very high
 

tolerances on machining and assembly to minimize static loading.
 

o 	Develop gas bearing systems.
 

o 	Design wear compensation into these parts which will lose material
 

with usage.
 

The reliability of a system can be extended by the following methods.
 

o 	Use of refrigerators serially to obtain extended refrigeration.
 

o 	Making provision for inflight maintenance such as by periodic purging,
 

warm-up, serial use of oil filters, etc.
 

7.0 SUMMARY
 

This report summarizes the results of an extensive review of the state of the
 

art of cryogenic refrigeration systems and components which have the potentil
 

for development for space usage. In conducting the survey and preparing the
 

data the studies were generally limited to the following parameters and cycles:
 

Cycles 	 Parameters
 

Brayton
 

Joule-Thomson 	 Refrigeration temperature 200K to 110°K
 

Stirling 	 Refrigeration capacity 5 watts to 100 watts
 

Vuilleumier
 

Gifford-McMahon
 

Modified Taconis
 

Modified Solvay
 

In cases where insufficient data were available for prototype units of inter

est, data were obtained outside the range of these parameters, primarily at
 

lower refrigeration capacity which are required for infrared detector cooling.
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The data contained within this report are to form a part of a refrigeration
 

to be used as a guide and source of data for refrigsystem handbook which is 


eration systems analysis as applied to cryogenic space storage.
 

The data accumulated in this study have been tabulated and graphed, and where.
 

the data permits a curve fit has been made which allows limited extrapolation
 

to various conditions, and which forms a basis for system performance studies.
 

The primary performance parameters which were graphed included the following:
 

Specific Weight (System weight per watt of refrigeration)
 

.. Specific Volume (System weight per watt of refrigeration)
 

Coefficient of Performance (Watts of refrigeration per watts of
 

power input)
 

System Unattended Operating Lifetime
 

Additional parameters were also tabulated and discussed in the tekt.
 

Figures 7-1 through 7-5 present these parameters as a function of temperature
 

The comparative performance parameters are
for the various cycles considered. 


presented at refrigeration levels of both 5 watts and 100 watts where possible.
 

The performance curves at 5 watts are well supported by data on operating units,
 

however,at 100 watts an extrapolation from smaller units is generally required.
 

For the Vuilleumier and Brayton cycle data are available on prototype units only
 

and extensive data on the Joule-Thomson cycle is ,only available at 77 OK for
 

closed cycle systems. It is felt that the data accumulated and reduced presents
 

the best available basis for performance trade-off studies of refrigeration sys

tems in this range. The data on the Stirling cycle units is extensive and es

sentially represents a baseline to which the other cycles and systems can be
 

Although the Stirling cycle shows the best performance in terms of
compared. 

efficiency, size and weight, the other cycles have advantages in other areas,
 

lifetime and ease of integration, which require careful consideration.
such as 


None of the units investigated presently has an unattended operating lifetime
 

as great as six months although substantial efforts to achieve longer lifetimes
 

However, long lifetimes
have been made in various Government sponsored studies. 


have not been demonstrated. Detailed data on failure modes of the systems is
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quite scarce and undoubtedly this is due in patt to the proprietary nature of
 

the machines. The.area of lifetime for the refrigeration units is a key item
 

in their development and much additional work will be required to devise ways
 

in which operating lifetime can be extended.
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LIST OF COMPANIES CONTACTED
 

From the beginning of the program to the present a comprehensive survey of re

frigerator development has been made. This has included establishing coimmuni

cation with the following specialist refrigerator manufacturers.
 

Arthur D. Little, Inc. U. S. Phillips Corporation 
520 Acorn Park Norelco Cryogenic D.v 
Cambridge 40, Mass. One Angell Road 
R. W. Breckenridge, Jr. Ashton, Rhode Island 02864 

J. A. Halloran 
Cryogenic Technology, Inc. 
Kelvin Park Cryomech 
266 Second Ave. 314 Ainsley Dr. 
Waltham, Mass. 02154 Jamesville, W. V. 13078 
John Sheppard W. E. Gifford 

The Malaker Corporation Sterling Electronics, Inc. 
West-Main St. (Sub-Marine Systems Div.) 
High Bridge, N.J. 08829 9174 DeSoto Ave. 
Jim Burr Chatsworth, Calif. 

Kenneth Cowans 
British Oxygen Company 
Cryoproducts Div. Air Products and Chemicals 
Deer Park Road Allentown, Pa. 18105 
London S.W. 19, L-gland R. F. Niehaus 
.J. B. Gardner J. V.'Galdieri. 

R. L. Rerig 
Garrett AiResearch Manufact.. Co. 
Cryogenic Systems Wright-Patterson AFB 
2525 West 190th St. (Flight Dynamics Lab) 
Torrance, Calif. 90509 AFFDL (FDFE) 
R. Hunt Wright-Patterson AFB 

Ohio 45433 
General Electric W. J. Uhl, Jr. 
Research and Development Center 
P. 0. Box 43 The Welch Scientific Company 
Schenectady, N. Y. 12301 840 Cherry St. 
R. B. Fleming San Carlos, Calif. 

Ted Crane 
Hymatic Engineering (Bendix Representative)
 
Hickory Grove Rd.
 

Davenport, Iowa 52808
 
B. F. Gerth
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