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Chapter One
 

INTRODUCTION TO LASER PLASMA BEATING
 

In recent ybars the need has become apparent for a new
 

source of power generation. The conventional sources of
 

power are either being depleted (coal, petroleum) or else
 

require careful disposal of dangerous waste products (nuclear).
 

If controlled thermonuclear reactions can be generated and
 

made economically competitive, then there should be no dan

gerous waste products. The fuel is deuterium (D) and tritium
 

T), isotopes of hydrogen. Deuterium is found in water in
 

a concentration of one part in six thousand and thus is
 

available in limitless quantity. Tritium is not actually
 

found in nature but can be produced by using the neutrons
 

generated in the D-T reaction to bombard Li6 . 1,2
 

The products of D-T and D-D reactions are clean. Ener

getic neutrons are produced but these need not lead to radio

active wastes if the proper shielding substance is used. One
 

of the products of the reaction is a large amount of energy,
 

in the million electron volt range. Then even if only a few
 

reactions are produced, a large amount of energy can be released.
 

The difficulty in producing a thermonuclear reaction
 

is the coulomb force barrier that surrounds any charged
 

particle. Coulomb forces are very strong so that the two
 

reactants must hit each other at very high speed and pretty
 

close to dead center to cause the fusion reaction. -Thus very
 

high atomic velocities--and hence temperatures--must be present
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before a significant'reaction takes place. For a D-T plasma,
 

the temperature must be in the KeY range before significant
 

thermonuclear energy is released. For a D-f plasma, the
 

requirement is higher by a factor of three.
 

There are two examples of power producing thermonuclear
 

reactions that have been observed. One is the hydrogen bomb,
 

where the necessary temperatures are achieved by a triggering
 

nuclear fission reaction. This is an uncontrolled thermonu

clear reaction and is not likely as a good source of commercial
 

power. The other example is the sun (or any star) which is
 

an astronomical thermonuclear reaction. It is in a sense
 

controlled since it persists continuously. The goal is to
 

produce a small "sun" in a controlled manner so that the
 

released thermonuclear energy can be harvested and used for
 

other needs.
 

In conventional energy release, such as fire, it is a
 

simple matter to maintain a continuous reaction. This is
 

highly unlikely with a thermonuclear reactor. The contain

meat of a continuous reaction at 10 KeV temperatures and huge 

pressures is a frightening thought. For this reason, most 

studies have been directed toward producing a pulsed type 

reactor where each pulse is short enough so that containment
 

is possible. A very simple requirement has been calculated
 

stating the conditions necessary to achieve gain in a pulsed
 

thermonuclear reactor. This is called Lawson's criterion.3
 

Its simplest expression is that the temperature of the reac

tants must exceed 10 Key, and the product of the number
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.
density and the confinement time must exceed 1014 sec/cm 3
 

This criterion is based upon the principle that more energy
 

must be reaped from the reaction than is required to prepare
 

the next reaction. Thus the problem at hand is to heat a
 

D-T plasma to a very high temperature, and to maintain it
 

for a certain length of time.
 

Significant efforts have been made in several countries
 

for more than a decade to achieve a controlled thermonuclear
 

reaction. This length of time spent proves the difficulty
 

in achieving the very difficult conditions of Lawson's cri

terion. A number of devices using various principles and
 

geometries have been suggested and tried in search of the
 

goal. Most of these devices have two things in common; very
 

strong electric currents and magnetic fields which are used to
 

heat and contain the plasma. Significant progress has been
 

made in this direction--especially in the Soviet Union with
 
4 

the Tokaxnak device. Yet, even this, the most successful
 

device to date falls one to two orders of magnitude short of
 

both requirements of Lawson's criterion. The Tokamak has
 

not been fully exploited yet, but it is still wise to find
 

other approaches that may be better. One attractive approach
 

that has come to the front in the last three or four years
 

'6'7
 is the use of lasers to htat the reactants.
5
 

Ten years ago, the thought of using a laser to heat any

-thing would have seemed unrealistic since laser power outputs
 

were typically very low, on the order of milliwatts. But
 

since then, laser technology has advanced at an incredible
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rate and powerful lasers have become available. Of most inter

est to fusion is the development of the so called giant pulse,
 

and mode-locked lasers. Giant pulse lasers produce a burst of
 

light of microsecond to nanosecond duration. As much as 500
 

to 1600 Joules have been produced in this kind of a pulse.
 

Mode-locked lasers produce pulse lengths on the order of pico-


As much as 80 Joules have been released in this
seconds. 


kind of a pulse. Thus, the laser is an excellent way to
 

rapidly deliver energy. This is essential or else the heated
 

plasma will expand and cool before all the energy is delivered.
 

Another advantage of the laser is its ability to get
 

energy into a magnetic container. Magnetic pressures have
 

long been suggested as a means of containing a thermonuclear
 

plasma. Some approaches have used the MD system (including
 

both currents and magnetic fields) to both heat and contain
 

the plasma. This requires a great deal of versatility of the
 

magnetic field and the currents. However, now the heating
 

may be left up to the laser so the magnetic field can concen

trate on the containment.
 

A thermonuclear plasma may also be confined inertially,
 

The large mass of
.i.e., within a jacket of very heavy atoms. 


the atoms would restrict the expansion of the plasma. This
 

approach is essentially a small explosion and the products
 

must be "contained which may be difficult in that the size of
 

the explosion may be significant for a positive yield.
 

Several difficulties-have been previously found in the
 

laser heating of a plasma. The first difficulty is due to
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This puts
the limited confining ability of a magnetic field. 


a limit on the density that can be contained. But lower den

sities lead to very long absorption lengths-some 
even as high
 

as many miles. This difficulty has been reduced with the
 

advent of powerful gas lasers which are characterized 
by long
 

The long wave lengths lead to shorter absorpwave lengths. 


tion lengths.
 

that typical estimates of energies
Another difficulty is 


Joules
 
required to satisfy the Lawson criterion 

are 105 to 10
9 


This is two or more orders of magnitude greater
 per pulse. 


than present lasers.
 

A third difficulty arises out of the nature 
of inverse
 

Inverse bremsstrahlung is a three
 bremsstrahlung absorption. 


-

body collision between an ion, an electron 

and a photon where 


Thus only

by the electron gains the energy of the photon. 


The deuterium and tritium
 the electrons are heated directly. 


ions-must be heated by collisions with the 
hot electrons.
 

This equilibration process may well be painfully 
slow-espec

ially for lower densities, and may not even 
occur before the
 

-dynamics dissipates the plasma.
/ 

The purpose of this work is to examine in detail 
some of
 

the phenomena in laser heating to thermonuclear 
temperatures.
 

Much of the work in this field has been confined 
to estimates.
 

Most previous solutions have relied on complex 
numerical calcu

lations which typically leave a dearth in 
understanding of the
 

This study seeks
 
physical process that produced the results. 


simple analytic solutions wherever possible and 
avoids the
 

computer code approach.
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'Standard procedures of analysis begin with the simple
 

and once the simple is understood, the more complex is
 

attacked. Accordingly, the first study is of a staictly one

dimensional plasma heated by a laser. Only stationary heat

ing is considered since maximum temperatures are produced if
 

the plasma remains stationary throughout the laser pulse.
 

Assuming the two temperature continuum equations, analytic 

solutions have been found for all stationary regimes for a
 

plasma with arbitrary density profile.
 

One among, several heating regimes may appear. One is 

the stationary-frozen-nonconducting regime (where conduction 

will always refer to thermal conduction unless otherwise 

noted), The heating is sufficiently rapid that the ions 

remain frozen at their initial temperature and little ihermal 

conduction occurs. This regime is characterized by two parts. 

For optically thin plasmas, the entire irradiated part of the 

plasma is heated simultaneously, producing a highly nonuniform 

temperature distribution. An extreme hot spot appears at the 

point of farthest penetration of the radiation (the critical 

density point). For optically thick plasmas, the plasma is 

opaque so that the radiation bores its way into the plasma. 

This phenomena is called a bleaching wave since the plasma 

behind the wave is made transparent by the heating. Conse

quently, the temperature profiles present a wave like character, 

the heated region advancing deeper into the plasma with time. 

.. The stationary-frozen-conducting regime arises for less 

thitL plasmas. in this regime, thermal conduction is very strong 

so that the temperature is nearly uniform. Even the plasma
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beyond the light reflection point (critical density) may be
 

heated in this case--by thermal conduction.
 

The equilibrium counterparts of these two regimes will
\
 

arise for the lower laser energy inputs and for the longer
 

pulse lengths. -In these regimes, the electrons and ions
 

remain in equilibrium during the heating. The solutions in
 

these regimes are essentially the same as those for their
 

"frozen" counterparts.
 

Of critical importance is the dynamics that follow the
 

stationary heating. This process appears primarily in two
 

regimes. The frozen-conducting regime is characterized by
 

cold ions and isothermal plasma motion. This regime is
 

unacceptable in that the ions never are heated to thermonu

clear temperatures before the motion dissipates the plasma.
 

The equilibrium-nonconducting regime is characterized by 

electron-ion equilibrium and no thermal conduction. This is
 

the desired regime for the achievement of a thermonuclear
 

reaction,
 

The classical threshold for the achievement of gain in 

a thermonuclear reactor is the Lawson criterion. Lawson's 

criterion requires the containment of the plasma for a 

certain length of time at a temperature of 10 KeV. Attaining 

this requires fairly large energy depositions, more than is
 

available today, but probably in reach of future lasers.
 

Also required are fairly long plasma lengths unless some
 

means of-enhancement of the confinement time is found.
 

Following the initial step of understanding a simple
 

geometry comes the analysis of a more complex one. A geometry
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which seems appropriate for a magnetically confined,laser heated
 

.plasma is a long cylindrical shape, the laser being fired into
 

the end of the column. The one dimensional results would apply
 

to this shape if conditions across the column were uniform.
 

This of course will never happen. In fact the density varia

tion across the cylinder will cause gradients in the index of
 

refraction, so that the beam will be refracted.
 

Refraction is a major problem as demonstrated by failures
 
8
 

in attempts to propagate a laser beam 
down a plasma column.


is that the usual density profile in a magnetically
The reason 


confined plasma (maximum density in the center) is unfavorable
 

Calculations
--the beam is refracted out of the plasma column. 


are made of the refraction of the beam in a plasma column with
 

a typical density profile. It is found that the beam is essen

tially refracted out of the column after moving only a few
 

column diameters. Appropriate focusing of the beam helps by
 

roughly a factor of three.
 

However, if it is possible to generate a plasma column
 

with a favorable density profile (a density minimum in the
 

center), then the picture is the reverse: the beam is trapped
 

Not only that, but-the effective absorption length
perfectly. 


is enhanced due to the peculiar refractive effects. Some
 

The ray paths are sinusunusual features arise in this case. 


soidal functions, oscillating back and forth across the column.
 

Caustics are formed from the locus of points where the rays
 

Oreflect" back toward the axis."
 

The theoretical results on refraction in a favorable 

density profile are useless if it is impossible to create the 
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This type of profile can be created--and in
favorable profile. 


several different ways. One way is to catch the plasma in its
 

formation stage. Characteristic of the formation of pinch
 

devices are collapsing and reflecting shock waves. These
 

shock waves generate--for very short times--density profiles
 

that are favorable.
 

Another approach is to change an unfavorable density pro

file to a favorable one by selective heating. This technique
 

is called "density tailoring". A laser (called the pre-laser)
 

is used for the density tailoring. It is usually advantageous
 

to have a shorter wave length for the pre-laser than for the
 

main laser pulse. Analysis of the lateral dynamics of a plasma
 

column reveals that the motion will fall into one 
of two regimes.
 

There is the conducting regime which is dominated by thermal
 

conduction and the nonconducting regime. Several density
 

tailoring techniques are suggested and studied. Most of them
 

can be used in either regime, but in the conducting regime the 

favorable profiles produced will disappear rapidly when the
 

pre-laser pulse ends.
 

Oftentimes in the analysis of a particular physical pro

blem, the solution is seen to resemble solutions to other
 

physical problems. This is a clue to mathematical similarities
 

in the governing equations. Occasionally however, the resem

blance is not due simply to chance mathematical resemblance,
 

but rather to a principle of physics in which both problems
 

are rooted. An apparent chance resemblance is seen between
 

the bleaching wave and nonlinear thermal conduction phenomena
 

(thermal waves). Further examination reveals that these two
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phenomena are actually the same but in opposite limits. Both
 

'belong to'a large class of nonlinear diffusion phenomena that
 

demonstrate wave like characteristics. The bleaching wave is
 

diffusion in the "coherent" limit, and the thermal wave is 

diffusion in the "equilibrium" limit. Two other physical
 

phenomena are identified as diffusion in the coherent limit:
 

laser irradiation of a two level substance, and the laser
 

induced breakdown wave. Numerous examples are presented of
 

diffusion in both limits.
 

Understanding wave diffusion suggests the possibility of
 

laser heating of a very dense plasma by thermal waves. A
 

plasma at solid density may have laser energy added at its
 

edge by anomalous absorption, and the overdense portion would
 

be heated by a thermal wave. Such high densities would require
 

inertial confinement, but the problems of electron-ion equili

bration may be overcome by those high densities. Also, the
 

high density may permit heating by absorption of a-particles
 

from the thermonuclear reaction.
 



chapter Two
 

LASER HEATING OF A ONE-DIMENSIONAL STATIONARY PLASbM
 

An important limitation on the maximum temperature 

that can be created in a laser heated plasma arises from the 

plasma motion. During the laser pulse the plasma may begin 

to expand and much of the thermal energy would be converted
 

to directed kinetic energy of the plasma motion, as 
was first
 

5 However, the recent development
6 

noted by Basov and Dawson.


of powerful sub-nanosecond Q-switched lasers and mode-locked
 

picosecond lasers makes it possible to overcome the problem
 

For appropriately
of expansion during the heating process. 


short laser pulses, the plasma can be heated to thermonuclear
 

temperatures before significant macroscopic fluid 
motion begins.
 

The irradiation of a plasma by these short laser pulses 
then
 

becomes a stationary heating problem.
 

A study has been made of the stationary heating of 
a one

dimensional plasma with an arbitrary density profile. 
The
 

purpose of the study was to determine the fine details 
of the
 

heating process as well as the overall features. The spatial
 

distribution of temperature is one detail of interest which
 

will hold the key to the plasma motion that will follow 
the
 

Another detail of interest is the fraction
heating process. 


of laser energy that is lost by reflection'from the nonuniform
 

plasma.
 

Several theoretical investigations of laser plasma heat

ing have been made; but most models have neglected the 
fine
 

details and concentrated on over-all results, e.g., the tem
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perature achieved. Previous investigations have also used
 

time scales in which plasma motion is significant.
9t
 

A study by Fader9 considered the expansion of a spher

ically symmetric plasma subject to Q-switchcd laser radiation.
 

The expansion of the plasma was found to be a major limitation
 

on the temperatures achieved according to both numerical and
 

analytical calculation. This study assumed spatially uniform
 

absorption throughout the plasma.
 

A study by Kidderl
0 also considered the motion of a spher

ically symmetric plasma but with irradiation by a radially
 

convergent light pulse. His numerical study also showed the
 

limitation of expansion on the temperatures achieved.
 

Dawson, et.alwj11 studied the over-all absorption char

acteristics of a one-dimensional nonuniform overdense plasma.
 

Without studying the details of absorption, they found the
 

length of plasma necessary to adequately absorb the radiation.
 

The critical density is the plasma density at which electro

magnetic waves cannot propagate, i.e., the plasma frequency.
 

Underdense and overdense refer to densities less than and
 

greater than the critical density.
 

This study also considers a one-dimensional nonuniform
 

plasma and examines the heating process for time scales suffi

ciently short that plasma motion can be neglected. The
 

results indicate that for a thick underdense region, a
 

bleaching wave propagates into the plasma, heating it in
 

the process. For a thin underdense region, the heating is
 

simultaneous--with an extreme hot spot appearing at the critical
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density. For a very thin underdense region, thermal conduction
 

dominates the heating so that nearly uniform 
temperatures appear
 

in the underdense region and thermal conduction 
carries energy
 

to the overdense region of the plasma by 
means of a thermal
 

The thermal wave phenomena has been mentioned 
by several
 

wave. 

seen to appear
The bleaching wave was 
writers (see chapter IV). 


I0 and the analytical studies
 
in the numerical studies of Kidder,


12
 
of Rehmo

Another result is that maximum temperatures 
or other 

optimizing conditions can be achieved by 
proper tailoring of
 

The idea of tailor
the initial density profile and plasma 

size. 


first suggested by
 
ing the piasma to optimize the results 

was 

3
 

and later in another scheme 
by Lubin.1
 

et. al.,7Daiber, 
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A.' EQUATIONS AND PARAMETERS
 

1. Model
 

The plasma is taken to be a one-dimensional nonuniform
 

fully ionized gas being irradiated by a laser of wave length
 

X0 at normal incidence. Figure I is a diagram of the config-


The initial density and temperature profiles are
uration. 


arbitrary to the extent that a fully ionized gas 
is a valid
 

assumption. The plasma is assumed to be a dense ideal gas
 

mixture of electrons and ions such that there is charge
 

neutrality at every point for all times.
 

The one-dimensional two-temperature continuum equations
 

will be used with the addition of terms accounting 
for radi

ative energy addition. The electromagnetic force will be
 

neglected since its effect is small compared with the 
effect
 

of thermal forces for regimes of interest. The effect of
 

electromagnetic forces is studied in the first appendix 
to
 

Also, a form of the radiative transfer equation
this chapter. 


is added which neglects line, free-bound, and bremsstrahlung
 

The radiative transfer equation is simplified to
radiation. 


account only for the laser radiation entering the plasma
 

(+ x direction) and does not take into account the reflection
 

of radiation that would occur if the plasma is overdense. 
If
 

the laser radiation does penetrate to the critical density then
 

appropriate calculations must be made to account for 
the
 

The absorption coefficient used is that of
reflected light. 


inverse bremsstrahlung.
 



density 
P 

critical 

density 

0A0 

distance 

Figure L. Plasma configuration 
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a. Nondimensionalization Scheme
 

R . If the plasma is overdense7
The length scale used is 


will define the point at which the critical denthen x = R 


If the plasma is not overdense at any
sity PC occurs. 


gives the rear edge of the plasma. The

point, then x = R 


time scale is the laser pulse length tp since only the heat-


Hence, the indepen
ing process is considered in this study. 


dent variables, dimensionless distance and time, 
will always
 

be of order one or less. The temperature scale used for both
 

T and is defined as the
 electron and ion temperature is 


temperature change that would arise if all the 
energy in the
 

laser pulse were added uniformly to a critical 
density plasma
 

of thickness R . Then,
 

TTo / A (2-1) 

03k R 
*T ec 

is the energy contained in the laser pulse per
where J0 /A 


is the Boltzmann constant, and nec
unit area of plasma, k 


is the critical electron number density given 
by
 

2 2 
nec e 0 

is the mass
 
where C. " is the permittivity in a vacuum, me 


is the speed of light in a vacuum, and
 of an electron, co 


for the
 
e" is the charge on an electron. The scaling factor 

density is the critical density which is 
related to the criti

= minec/Z . mi is the 
cal electron number density by Pc 
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mass of the ion, and Z is the charge on the ion. The pressure
 

scale po is the pressure that would arise in a perfect gas at
 

temperature T0 and density PC . The velocity scale is the
 

acoustic speed for a perfect gas at p and PC 'i.e.,
 

a = 5Po/3Dc . The electron and ion entropies are scaled using 

the constant volume specific heat. The radiation intensity
 

scale is the average laser intensity during the pulse, I0
 

Jo/Atp . The absorption coefficient, electron-ion equilibration 

-time , and the electron thermal conduction coefficient are 

taken from Spitzer.14  These are based upon a scale using a
 

density PC and a temperature T0
 

9
KO = 1.13 x 10 n /T3/2 - 6.81 x 0 

t = 3.17 x 107T3/2W/n Z(I Z= 5.26 x 10-26T /2W2/Q0 Z
2 (l+Z)eC+ 

eqo 0 


T/2'_ Joule/sec-m-eV .sa
 Ke = 7.40 x 10 
0 /
 

for nec . cm- 3 Otherwise, MKS-eV units are used everywhere. 

The Columbic logarithm, InA = 10 everywhere. Henceforth;,the
 

ionic charge Z , and the atomic weight W are taken as one and
 

two respectively as for deuterium. The radiation intensity scale
 

is the average laser intensity during the pulse, Io = J0/Atp 

The dimensionless variables are: distance, y = x/R 

time, T = t/tp ; density, C = P/p pressure, H = P/P 0 

electron temperature, Ae = Te/T0 ; ion temperature, qi = 

Ti/T° ; absorption coefficient, K = / fluid velocity, 

U = u/a ; electron entropy, ae Se/Cv ; ion Entropy, i=
 

s./C ; and intensity, i = I/I
Lv 0
 

b. Parameters
 

Using the nondimensionalization scheme described, five
 

http:Spitzer.14
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parameters arise Which control the plasma behavior. The first is
 

= 0atp/R 
 (2-2) 

Where * is the ratio of the laser pulse time to the time for 

an electron acoustic wave to traverse the underdense region. 

It is called the dynamics paramter. If < 1I , then the 

pulse length is so short that essentially no plasma motion 

occurs.- If e 0(1) , then significant motion occurs before 

the pulse ends.
 

a = KsR . (2-3) 

is the ratio of the thickness of the underdense region to 

the absorption length scale. It is called the thickness para

meter since it is a measure of the optical thickness of the 

-irradiated plasma. The absorption length is the reciprocal of 

the absorption coefficient. If a < 1 then the plasma is 

nearly transparent to the radiation. If the plasma is over

dense, then the radiation will be reflected and the reflected 

beam will be negligibly reduce in intensity. The result will be 

to effectively double the absorption coefficient. If a 1 

then the plasma is nearly opaque to the radiation. 

St/teq0 

x is the ratio of the pulse time to the electron-ion equili

bration time and is called the equilibration parameter. If 

x << 1 , then the electrons will tend to be heated by inverse 
bremsstrahlung; but the ions will remain nearly frozen during 
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the laser pulse. If X >> 1 , then the electron and ion tem

peratures will be the same.
 

SK /PC R2 (2-5) 

where n. is the time for significant thermal conduction to 

traverse the underdense region. It is called the thermal con

duction parameter. Then, for example, if «e<< 1 , there will
 

be very little thermal conduction by the electrons during the
 

laser pulse. If Tie >> I , the thermal conduction will be
 

strong, tending to equalize the temperature of the plasma.
 

c. Equations
 

The governing equations in dimensionless form are:
 

+ C t1= 0 (2-6) 
Oiy 

+ C+F bU 1 = 0 (2-7) 
6 Lb y 5 Cby J 

b207/2
- 0 -.1bee bee 

by2 (2-8)07 - 7x--0 e1 1 +Tebr - e 7 8e 8e 

-L7b207/2-.
i + b 24T y 732 2/7 60y i (2-9)b+3+ e-8i 

b + Ki = 0 (2-10) 

3 2 
 (2-11)
 

e (1-0) 
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3(0G8 + 1 0i (2-12)
 

(2-13)
ae = 2/3exp( e) 


2/3exp(i) (2-14)
 

The equation for the absorption coefficient (2-11) breaks down
 

= 1) . There
for densities very near the critical density (C 


is actually an extremely high value of the absorption coeffi

cient at that point, but not an infinity. Hence, solutions
 

that are found will probably-have a singularity at that point
 

This singuand thus cannot be trusted for C very near one. 

larity will turn out to be integrable so that integrations 

with respect to y over the singularity will describe the
 

actual case fairly accurately.
 

The initial conditions will be an initial temperature and
 

an initial density profile. The boundary conditions will be
 

on the intensity; the intensity entering the plasma will be
 

dVdT where 4 is the fraction of the laser energy delivered
 

up to time T
 

=1 at T = 1 (the end of so that § = 0 at T = and 


the pulse).
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2. Preliminary Study of Parameters
 

The size of the parameters c , Xl,,i will determine
 

the character of the plasma heating and the important parts of
 

the governing equations.' One of the factors determining these
 

parameters is the size and density of the plasma. For this
 

discussion, the plasma is assumed to be overdense (i.e, the
 

plasma frequency at the point of highest density is greater
 

than the laser frequency). Furthermore, to simulate a typical
 

-nonuniform plasma, the density is assumed to rise linearly
 

from zero at the edge of the plasma and remain linear at least
 

to the critical density point.
 

a. Dynamics Parameter 

From (2-2), e = aot P/R . R depends on both the electron
 

density gradient and the critical density (which depends on the
 

laser frequency). 

--ec=e F 2 c eo 1 n (2-15) 
Ve2 2 

4Tonee 

The acoustic speed scale a depends in the usual way on the 

temperature scale T. I A deuterium plasma is assumed in cal

culating the acoustic speed. Applying (2-5) T becomes,
0 

)4XVne(J/A) 

Comes
o
 

Then, e can be written,
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c = 1.04 10-4 (Jo/A)1/24 (Vn)3/2t 

with Jo/A in Joules per square meter, X. in microns, Vne 
in electrons per meter to the fourth, and t in seconds. 

p 

b. Equilibration Parameter
 

Using Spitzer's electron-ion equilibration time,14 with
 

(2-4) 

1066 (Jo/Ay3/2 (VneT3/2X-tp8X = 5.78 x 

c. Thermal Concuction Parameter 

Using Spitzer's14 electron thermal conduction coefficient,
 

the conduction parameter (2-5) becomes
 

e )9/ 2 o1 6tp
 1e = 4.55 x 10-148 W o/A ) 5/2(Vn 

Then, the pulse time tp , laser energy per unit area 

T
j , laser wave length X , and electron density gradient 
0 0 

Vne arise as the key parameters of the problem. With a par

ticular laser pulse length t and wave length X. the var

ious regimes can be shown graphically as a function of Jo/A
 

and Vne . rigures 2, 3, 4, and 5 show when e , X , and e 
0-9 0-12 

are large or small for the cases tp = 109, 10 sec for 
- 9 


= 1.06p and tp = 10 6 , 10 - sec for 1 ° = 0.6. 

The various lines in figures 2-5 separate the different
 

regimes from each other. Each regime is characterized by a
 

specific combination of large and/or small parameters. Where
 

these regimes are distinct, they have been labeled with the
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Figure 3. Heating regimes for a picosecond
 

pulse from a Nd glass laser
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names, "stationary-equilibrium-nonconducting", "stationary

frozen-nonconducting", "stationary-frozen-conducting", and 

nonstationary. Conduction will always refer to thermal con

duction unless otherwise noted. Since the purpose of this 

chapter is to study stationary heating, the nonstationary 

regime is not divided into specific regimes relating to 

conduction or equilibrium. 

Supposedly in a particular regime, each effect is either
 

present or not at all. For example in the stationary-frozen

nonconducting regime, one expects that there is no thermal
 

conduction, no plasma motion, no ion heating, and only the
 

electrons are'heated by the laser. Thus in a particular
 

regime, the neglect of certain effects requires that the appro

priate parameters be much less than one (or much greater as
 

the case may be) rather than just less than one (or greater
 

than one). Hence the approximate solution found will probably
 

fail near the lines bounding the various regions in figures 2-5.
 

It is not always enough for the parameters to be small.
 

The frozen ion condition may break down while X is small.
 

If the electron temperature is much greater than the ion tem

perature, then XO e/ i (which appears in (2-9) ) is not neces

sarily small even though X may be small. Also, if the non

dimensional temperature at some local point has a first or
 

second derivative not of order one, then the solution may
 

not be valid at that local point. For example, in the sta

tionary-frozen nonconducting solution, there may be a large
 

temperature gradient in some regions of the plasma. Signifi

cant thermal conduction may occur at those points even though
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the remainder of the plasma is nonconducting.
 

d. Thickness Parameter
 

At this point it is of interest to calculate the thickness
 

parameter . a . The solution may take on a widely differing 

character for different values of a . From (2-3), 

I 0 
1088 (Jx/A3/2(7ne[5/2Xa = 2.35 x 

In considering the three stationary regimes, assumptions will
 

be made--neglecting certain terms depending on the regime.
 

be neglected so that a willHowever, terms in a will never 

Thus, in a sense a isappear in every stationary solution. 


a free parameter governing the solution, a parameter that may
 

be large or small.
 

Once having solved for a particular regime, it will be
 

necessary to re-examine the various regimes of validity. This 

is fo be expected since the temperature depends on a , and 

thus its order of magnitude may be large or small compared 

to one.
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B. STATIONARY-FROZEN-NONCONDUCTING pLASMAS 

1. Equations
 

For very rapid energy addition, the plasma may absorb,a
 

large amount of energy before the random thermal energy 
begins
 

to change to ordered fluid motion. The heating may be rapid
 

enough so that the diffusing effect of thermal conductivity
 

Also, with very rapid heating, the equiliwill be negligible. 


bration processes whereby the heated electrons transfer 
their
 

energy to the ions will not have proceeded to any significant
 

extent.
 

The problem studied here is the case where all of these
 

Then, the heating is essenconditions appear simultaneously. 


tiallyastationary, nonconducting process whereby energy 
is
 

transferred from a beam of light to the electrons in the
 

plasma. No energy is transferred between electrons by thermal
 

conduction, and no energy is transferred to the ions, either
 

by electron-ion equilibration or by ordered plasma motion.
 

The requirement for a stationary plasma is that the dyna

mics parameter c << 1 . For a nonconducting plasma the
 

e,i 1
 
requirement is that the thermal conduction parameter 

Also, for a plasma in which the electron and ion temperatures 

X << 1.; and, if are uncoupled, the equilibration parameter 


the electron temperature is large compared with the ion 
tem

is required.
perature, then kXe/O i << 1 

, ne,i 4 0 , the governing
For the limit e , e/Xi 

equations simplify considerably. The continuity equation (2-6) 

that the density profile remainsbecomes 6C/bT = 0 so 
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stationary C = (Y) . The momentum equation (2-7) becomes 

bU/bT = 0 so that the velocity remains zero throughout the 

process. The electron entropy equation (2-8) becomes 

b0e R i (2-16)
b 
 O
e
 

The radiative transfer equation (2-10) remains the same, as
 

does the absorption coefficient (2-11) and all three equations
 

of state (2-12, 13, 14). The electron entropy equation (2-16)
 

plus the radiative transfer equation (2-10), the absorption
 

coefficient (2-11), and one equation of state (2-13) form a
 

complete set of four equations in four unknowns.
 

These can be reduced to a single equation for electron 

temperature. Solving (2-13) for ae , taking the time deriva

tive and eliminating ie /bT using (2-16) yields 

bee = xt (2-17)
 
)T C
 

'Then solving for i and using (2-11),
 

2 
1 /2 6O5/2-C 


(2-1)5 T 

Differentiating with respect to y 

__ 2 1-w 2 "e
 

aa c bybT 5 2( /2 dy OT
 
ac(-) 

Combining this equation with (2-18) using (2-10) to eliminate 

i and (2-11) to eliminate K yields 
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b5/ 2 
eb26 1 - id 5/2 + b

F ~6yr l- C~ e~' (2-19)~= 5 dy bT (i_ /2 7T0 ybj (-) 

T to givewhich can immediately be integrated once on 


1 1e8/2 

e e = e 21-C d e=f(Yf(y) . (2-20)5 by !- U e.17 

T and isf(y) arises out of integrating with respect to 


determined by the initial conditions. If the initial condi

tion is e (y,0) = 00(y) , then (2-20) becomes 

5 / 2 
25/2 _ oS/2 2 - .dC e - 5/a ] 

-0 5 y e - e5- T -C y e - e 

+2 (2-21) 
eU-0 


This is the equation governing electron temperature for a
 

stationary-frozen-nonconducting plasma.
 

It is noteworthy that although the dependent variable oe
 

r , (2-21) is essentially an
is a function of both y , and 


in that only the partial
ordinary differential equation in 0e 


y appears. The only precaution
derivative with respect to 


in considering (2-21) as an ordinary differential equation 
is
 

arise instead
that in the solution, arbitrary functions of T 


(as in the case of a real ordinary differential
of constants 


equation).
 

In order to formulate a well posed problem, appropriate
 

boundary and initial conditions must accompany the governing
 

The initial condition is
equation (2-21). 
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(2-22)0"OCy 0) = 6(y) 

e ()(e 

remains the same throughout the
The density profile C(y) 


the initial denstationary process, and hence is the same as 


sity profile.
 

The basic boundary condition is that the intensity 
at the
 

outer edge of the plasma equals the intensity 
delivered by the
 

laser,
 

i(O,T) = d§/d-

But a boundary condition on temperature ee must be developed.
 

(2-18) is rewritten as
 

e 5 aC 

and the boundary condition is
 

toe5/21 5 aC( d& '(2-23) 

, then the appropriate bounif C(y) is such that C(O) = b 


dary condition is on the first derivative with respect 
to y
 

26 5/2 5dC d(5 - d(2-24)dI 

dC/dy[y=0 o . It is necessary to resortfor C(O) = 0 , and 


to the derivative in this case because (2-23) will turn out to
 

be satisfied automatically when C(O) = 0 . The same basic
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boundary condition on the intensity governs both cases. Equa

tion (2-24) could also be found by combining (2-18) and (2-19)
 

at the edge of the plasma. (2-22) and (2-23) or (2-24) together
 

with the governing differential equation (2-21) form a well
 

posed problem.
 

2. Analytic Solution
 

A study of the governing equations shows that the nature
 

of the heating depends on the size of the thickness parameter
 

large corresponds to Vne sufficiently small such that
a . a 

the underdense portion of the plasma is optically thick. The
 

result is a "bleaching wave" process whereby successive layers
 

are heated until they become nearly transparent, allowing the
 

beam to penetrate to a deeper layer. a small corresponds
 

to Vne sufficiently large such that the underdense portion
 

of the plasma is optically thin. Then, the whole underdense
 

region is heated simultaneously. If a is sufficiently small,
 

the laser will have only a very small heating effect on the
 

plasma and would be ineffective in the production of a thermo

nuclear plasma.
 

if the initial temperature of the plasma is much less
 

than T then another small parameter can be defined,
a
 

0* (y) = v'g(y) (2-25) 

where .the maximum value of g(y) is chosen to be one and p
 

is the small parameter. g is called the initial temperature
 

parameter since it is a measure of the initial temperature.
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The governing equation is now
 

54by 0~~~~~6 /_5252-~ 2 by 7 aC e95Cl-5/2 95/2.o ~ ~ l-' d 5/2 

(2-26)
+ C2 (6e-g) 


If the final electron temperature is in the neighborhood of
 

T , then 8 will be of order one. Hence, during the hotter
 

stages of heating, the terms in V will be relatively small.
 

If only terms of order one are considered, (2-26) becomes
 

o - e3 e 
-
2 1 -- 7C d( a 5/2 + -C 6ee + 0(P)

e' by (1 C) dy e J 
(2-27)
 

This is designated the "hot equation" since it corresponds to
 

the hotter stages of the heating.
 

. In the initial stages of the heating, 0e will be near
 

0 which is of order V . For this case e must bee e
 

rescaled; 6e = JIB where OP is of order one. Then,
 

(2-26) becomes
 

e 


2 C~ dy (e 25g/2)0=4.b ( 5/2_95/2) 1 

C2 

(+ -g) (2-28)
 

This is designated the "cold equation" since it corresponds to
 

the colder stages of the heating.
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Solving the problem for 0 << 1 involves solving (2-27) 

and (2-28) separately and then appropriately matching the two 

solutions to the boundary conditions, initial conditions, and 

to each other. Solving such a problem where different parts 

of the solution must be matched with each other requires the
 

method of matched asymptotic expansions such as described in
 

detail by Cole.15
 

a. Solution to the Cold Equation
 

A significant parameter a/p3/ 2 appears in the cold
 

or small. There are two
equation (2-28) which may be large 


, a thicker; or
important cases, a >> 3/2 or a << 3/2 


a thinner plasma, respectively.
 

-For a thinner plasma a << P3/2, (2-28) becomes
 

2-g/ 2, - (9 p /_g /2) + 0(a/P3/2) 
o O.P -( /y2 -25 zC) dyo = / 

Rearranging this equation gives
 

b l ( 5/2 5/2 Llog C _ + 0(/i3/2)w7 log- 7 og# 

which is integrated
 

0 /2 I)C 2/53/ 
g /2 +-) I + 0 (cL/P3) (2-29)9LL j--c -1 

L(T) is an arbitrary function of T that arises in the
 

is found by applying
integration with respect to y . J(T) 

(2-23) or (2-24). The resultisthe boundary condition, which is 
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at 5 a a 
drF2 TT6 

which is integrable
 

1. ( +a)+/ 

a can be evaluated
is the constant of integration,
where a 

by applying the initial condition (2-22). Since (0) = 0 

0 also, and with (2-25), (2-29) becomes
a = 

5/2( 5 a )5/22 0(L/13/2) , (2-30)gs/2+ 
g -/ 

a <</2 . Physically,the solution to the cold equation when 


this corresponds to the case where the 
entire underdense region
 

of the plasma is simultaneously heated from the very beginning
 

of the laser pulse.
 

For a thicker plasma a >> 3/2, (2-28) becomes 

0 _2 (5/2 g5/2) +..C.2._(0g)
 

3/2
2 U~ 7c ac 5/2_ 5/2 

. (2-31)-gT)5 a (( - CC dy (-
-

Since the derivative term is multiplied by 
the small parameter
 

3/2* 3/2/a , the method of singular perturbations 
must be used for
 

(2-31) is composed of an
Thus, the solution to
the soluti6n. 


where terms of order p3/2/a can be
 ,outer solution, ®o 


I where the temperature
neglected, and an inner solution, 0i 


changes rapidly in a very short distance.
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The outer solution is to order one,
 

0= g + O(p3/2/C) (2-32) 

Physically this represents the unheated parts of the thick 

plasma. 

Finding the inner solution requires expanding the scale 

of y 

Y ti3//
 

=
where y. y (T) gives the location uf the "transition layer". 

The other functions in (2-31), g(y) and C(y) , will be constant 

to order one in the scale of y . For example, 

C(Y) C=*(+ -0. C(yod + a-y-IYyo+ 0o(P /a-'C/+3/2P 3/2 _C 3 2 

Then to order one, the inner equation is
 

3/2 )
o . i C2(yo (Sie) 3/2 

which can be integrated
 

3/2 dNi C20) - '3/2 
Sm(T) "s + 0 w /a). (2-33) 

m(r) is the function of time that arises in the integration
 

with respect to
 



38 
The integral on the left side of (2-33) can be evaluated
 

using ordinary methods of integration. Conducting the integra

tion, (2-33) becomes
 e1/2
 

8 3/2 0. 1/2 ()g ' -1 

2 ( 2 + log 
i 1/2 

(-) +1 

[ ~i3-7  (
T) 0 ) j +-+ (P3/ 2 /a) (2-34)

2 (Y
-Egq (y 11 c7y 

(2-34) can be
The complicated expression on the left side 

expanded for limiting values of Gi/g 

near one, (2-34) can be solved as an expansionFor Gi/g 


for 6./g 

ir 8C2(y 0 ) _
 
m(- 1 -CY-L ... 

+ 
m() . + ei g[l + 4 exp- [g (yo)3/ - 83/+3 (y+) 

+ 0(11 3/2/a) 

which is valid for 8i/g - 1 << 1 

As 7 goes to positive infinity, Bi is seen to reduce 

g ;shich is just the outer solution (2-32).
exponentially fast to 


Thus, the inner solution (2-34) correctly matches the outer
 

solution on the positive y side of the transition layer.
 

For Gi/g much larger than one, (2-34) can again be
 

solved as an expansion,
 

-(yd2 1 2/3+ o(W3/2/e) , (2-35) 
L2c2 2 y J 
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which is valid for Oi/g >> 1 . 8i is seen to grow very large 

if j becomes large negative. Hence, for large negative y 

(2-35) must be made to match the solution to the hot equation. 

This inner solution corresponds physically to the front of a
 

bleaching wave where the temperature begins to rise signifi

cantly above its initial value.
 

b. Solution to the Hot Equation
 

When the energy in the laser pulse is large compared with
 

the initial internal energy of the plasma, then generally
 

In this case (0e)final is essentially
(e) /8 >> 1 . fiae final e 

independent of 00(y) . The "hot equation" (2-27) governs this 

case. Dividing (2-27) by 0 e gives a linear first order equa
e 

tion in e3/ 

2
 
,e 3 - aC
 
by 5 C(l - ) dy e 2
 

be321 


which can easily be solved to give
 

2 5
2/5 33/ y 2/3 

e 1/5 (C() - C 5 5 + 0() 

respectThe-function c(T) that arises in the integration with 

to y is determined by applying the boundary condition (2-23)
 

or (2-24) 

a [C(T)l5/3 a d6 
o 5 =2 dT 

or = CAI + b /C(T) 3/ 
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is the constant of integration and will be determined 
by the
 

matching with the cold solution. Hence,
 

3/5 3 2/5 C7/5dY 2/3
 

b 


2/52/5 5 

= + b) a/1/53/+ 0 (P)
S )15 U(1-) 

(2-36) 

The expression (2-36) is only physically realistic 
when the term
 

It is seen that
 in brackets is greater than or equal to zero. 

given a T , this term is positive for y less than a certain 

value. 

seen
The physical impossibility of its being negative is 


if the resulting expression for i(y,T) is written using (2-18),
 

d--
T
 
i ( +b) 3/5- -:3 2 /5a5dj5/ C -5/3 5y )/ 5Y 

The term in brackets becoming negative corresponds 
to the inten

sity becoming negative which is impossible. The hot solution
 

is only valid for positive values of the term 
in brackets. The
 

cold solution must be used elsewhere. Physically, (2-36) des

cribes the temperatures behind the bleaching wave.
 

f a2/5 << 1 , (36) can be expanded with a2/5 as the
 

small parameter,
 

02 + b)2/5 4/5

1/ 5  a ) (2-37)


= 2 

e (1-C) (s
 

This limit corresponds to the physical case of thin 
plasmas
 

when the entire underdense region is heated simultaneously.
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c. Matching Hot and Cold Solutions
 

In the various expressions that compose the solution
 

(2-30), (2-32), (2-34), and (2-36), various~unknowns arose:
 

b, m(T), and y0 (T) . These unknowns will be determined by
 

matching the different components with each other for'the
 

possible ranges of the parameter a
 

M << p5/2 

This limit corresponds to a very thin plasma. The cold
 

,solution is given by (2-30). The first term in the paren

theses is of order one and the second term is of order
 

a/5/2 and is relatively small. Then, (2-30) can be expanded
 

about g(y) (where g is non-vanishing) giving
 

1all g + + o /pV/2) - (2-38) 
p9 

It is immediately seen that at the end of the heating (§=) 

the term in a/i5/2 is still small compared with g ind thus 

there is no need to seek a hot regime. The temperature 0e 

remains in the cold regime throughout the laser pulse and is
 

governed by (2-38)
 

Physically, this means that very little of the laser energy
 

is actually absorbed by the plasma. The whole underdense region
 

is penetrated by the beam so that a reflected light wave will
 

arise. Since the intensity of the reflected light will be imper

ceptibly diminished due to weak absorption, its effect will be
 

to roughly double the heating due to the incident light, i.e.,
 

the term in a/" is doubled.
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Neglecting the effect of the reflected wave, the tempera

ture produced is
 

90() + a + O(ca/I/2) 
e = Ceeo(y)J 3 / 2 *-

This is shown schematically in Figure 6 for a linear density
 

gradient, a constant initial temperature, and for a/ 5/2 = 1/10.
 

5/2 <- a << 3/2
 

This limit corresponds to a plasma sufficiently thick
 

that significant heating occurs, but thin enough that the 

heating is done simultaneously even at the beginning. 

The cold solution is again given by (2-30), but now the 

term in "/15/ 2 dominates the term of order one. Expanding 

about the term in a (where , C are nbn-vanishing) gives 

2 "5 2/5a/5 -C l(1
(iC)i/5 + 0(.) (2-39) 

This must match with the small a limit of the hot solution
 

(2-37). The matching requires that the constant b in (2-37)
 

be zero. Once again the entire underdense region is heated
 

and a reflected light wave will arise whose intensity has very
 

little attenuation since a is small. The effect of the
 

reflected wave then is to double the temperature in (2-39).
 

Neglecting the effect of the reflected wave, a composite
 

solution can be constructed which possesses the features of
 

the hot solution (2-37) and cold solution (2-30),
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Figure 6. Temperature distribution for
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2)
)2/5 + o(Q/gl'. 85/2+ 5 

/
< os3/2 


This limit corresponds to a plasma that is heated 
at the
 

The cold solution is given by
beginning by a bleaching wave. 


an outer solution (2-32) and a transition layer solution 
(2-34).
 

y0( ) )

As was seen before, the transition layer (iocated 

at 


Now (2-34)
 
was matched qith the outer solution for y > y0 ( ) . 

(2-36). The asymptotic
must be matched with the hot solution 


limit for 8i large is given by (2-35). The limit of 0e
 

small in the hot solution must be calculated. 
This matching
 

in
 
problem is demonstrated schematically in Figure 

7. De 


(2-36) achieves small values near the point where 
the term in
 

the term in brackets vanishes
brackets vanishes. Given T , 

y -in the neighborat some YW Yw(T) . Expand the scale of 


hood of Yw
 

Y-YwYv =--V

is a small parameter to be determined in the matchwhere v 


ing. Then (2-36) becomes
 
2 2/3
 

o aF V 2 yw) (-y) 2/ + o() 

v = 3/2/M, I(T) = 0 , andThis can be matched to (2-35) if 


= 

y0() = yw(T) , in which case yv Y
 

cannot be written
A composite solution valid over all y 


in this case but the components can be summarized,
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Figure 7. Vatching of the hot solution,
 

transition layer and the cold solution
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2/5 2/5 (5 3/5 3 2/5 y( 15 + 0(p) (2-40) 

e= i) 2 - -- 2/ -y l/5 ]2/3. o10 

for y < yw(T) 

= Beo + O(P5/2/A) for y > yw() , (2-41) 

0 3/2 2r, 8. 3/2 r e nl/2 
Le(yw)_ L w + 2 Lw7nI 

Eee brvle yw)
 

_ e 1/2
 

log ly- I + O1P/a) (2-42) 

=for y-yw 0 (3/2/a). 

A bleaching wave is seen to arise which separates hot parts
 

of the plasma from cold parts. The location of the wave,
 

yW(T) is given implicitly by 
(') (53/5 3 2/5 Y:w c'/'dy
 
CL (2-43) 

As 0 increases from zero, Yw is seen to increase monoton

ically with 4 . The velocity of the bleaching wave can be
 

found by taking the implicit derivative of (2-43),
 

= 5 -2/5 fyw(yy// 

For a,-laser pulse with i - T , V - T1/ .for a constant den

sity. A positive density gradient has the effect of limiting 
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the maximum velocity of the wave and eventually causing it to
 

decrease.
 

if a is very small, the wave speed approaches the speed
 

of light and reaches the critical density very early in the
 

laser pulse. From that time on, the laser heats the entire
 

underdense portion of the plasma simultaneously and the tem

perature profile produced is
 

2/5 

S( + o(a 4 /(2-44) 

t
A "hot spo " is generated near C = I I the critical density. 

of course, the original expression for absorption coefficient 

(2-11) breaks down very near = 1 and remains finite at the 

critical density. Nevertheless, a hot spot is produced in this 

region. This limit is called the "simultaneous heating case". 

In this case the actual temperature produced will be roughly 

twice that given in (2-36) since the light wave is reflected 

at the critical density and travels backwards through the 

region with very little intensity attenuation (see 2-10) ). 

Hence, most of the laser radiation is lost to reflection. 

If the thickness parameter a is larger than a certain 

value %, the wave travels much more slowly and does not even 

reach the critical density by the end of the laser pulse. me 

is a critical value of a that depends on the density profile, 

but is always of order one. Hence, in this case there is no
 

isolated hot spot as for a small. This limit can be termed
 

tbelbleaohing wave case" since a bleaching wave continues to
 

move into the plasma throughout the laser pulse. The heating
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is by no means tsimultaneous". In this case all of the laser
 

energy is absorbed.
 

In summary, stationary-frozen-nonconducting heating of a
 

cool plasma will occur in one of four regimes depending.on 
the
 

sizes of the thickness parameter a and the initial temperature
 

V . 5/2 , then the plasma is only slightlyparameter If a << 


A weak hot spot occurs
heated and the heating is simultaneous. 


at the critical density and nearly all the laser energy 
is lost
 

to reflection. If p5/2 << << 3/2 , the plasma is heated to
 

temperatures much hotter than the initial temperature but still
 

most of the laser energy is lost to reflection. The heating is
 

If 3/2 <<

simultaneous and a stronger hot spot appears. 


a very rapid bleaching wave traverses the underdense
< ac , 

After that the heating is simultaregion early in the pulse. 


neous and a significant hot spot appears at the critical 
density.
 

During the simultaneous heating stage, a significant part of
 

the laser energy is lost to reflection but not as much as 
in
 

a > ac , a much slower bleaching wavethe previous cases. If 


propagates into the plasma and the wave does not penetrate 
all
 

No hot spot or reflected
the way to the critical density. 


wave appears, and all of the laser energy is absorbed.
 

3. Application to a Linear Density Profile
 

The solutions given in the last section can easily be 

= yy . These resultscalculated for a linear density profile, 


for three different values of the parameter 
a are shown in
 

For a linear density profile, ac 5.2
= .

Figures 8, 9, 10. 


http:depending.on
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Figure 8. Temperature distribution for a
 

linear density gradient with oc= 1000
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Figure 8 clearly demonstrates the bleaching wave moving
 

= 1000) corresponding to an
 into the plasma. In this case (a 


optically thick plasma, the bleaching wave only 
propagates
 

about halfway across the underdense portion 
of the plasma by
 

In Figure 9 (a = 4) corresponding
the end of the laser pulse. 


to a medium thickness plasma, the bleaching wave 
reaches the
 

critical density just before the end of the laser 
pulse, and
 

In
 
a weak hot spot is generated at the critical 

density. 


Figure 10 (a << 1) corresponding to an optically thin plasma,
 

the bleaching wave travels almost infinitely 
fast in traver-


A strong

sing the underdense region and hence is not shown. 


hot spot arises at the critical density.
 

While Figures 8, 9, and 10 give the analytical 
features
 

of the solutions, they are given in terms of dimensionless
 

quantities and do not show clearly the temperatures 
and other
 

Figures 11 and 12 are summary
conditions that are attained. 


plots for laser wave lengths X '.06p and 10.61 , respec
o 

tively. The "maximum temperatures" given are the maximum
 

Naturally, when a hot
 temperatures without the hot spot. 


spot appears, there will be a much hotter temperature 
in a
 

very localized region. In the simultaneous heating part, 

a2/5To . in the bleaching wave the temperature is of order 


since smaller densities are
 part, it is of order a /3To 


heated. The expressions 
for the maximum temperature are,
 

2/5
 
<

eV for P << , 5. 2 
T"ma x emax 1.08 (J 0A)0 
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. (2-45) 
T =1.64 X 0-6 (J /A)1/2(Vne)1/6X02/3 for 

a.> 5.2 
0
 max 0 

The "plasma length" is defined as the thickness 
of the
 

plasma that is irradiated by the laser. This thickness will
 

be R for the simultaneous heating case, but will be of 
order
 

cL-/6R for the bleaching wave case,
 

L = R = 1.12 x 10
2 7(7ne)-k0.

2 for p << , < 5.2 

(2-46) 

-
L.53R = 3.18 x 1012(J0/A)1/ 

4 (Vne)-7/12X0 1/3 for a > 5.2 L 16 


where L is in meters.
 

The maximum density heated is equal to the dimensionless
 

length heated for the case of a linear density 
gradient. Then
 

the maximum density heated is one for the simultaneous part,
 

" These are not
for the bleaching wave part.
and'l.53u 1/6 

shown on the summary figures.
 

It is noted that the 10.6p radiation heats in 
the simul

taneous heating regime for much smaller electron 
density
 

gradients than does the 1.06p radiation, i.e., a relatively
 

long plasma may be in the simultaneous heating 
regime under
 

10.6 radiation but in the bleaching wave regime under 
1.06V
 

radiation. By comparing Figures 11 and 12, it is also seen
 

that the temperatures achieved are independent 
of the laser
 

wave length in the simultaneous heating regime." 
However, the
 

longer wave length heating produces higher 
temperatures in
 

the bleaching wave regime.
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It has been previously noted that not 
all the radiation
 

is absorbed in the simultaneous heating case but 
that much is
 

lost to reflection. It is important to know what fraction 
of
 

energy is absorbed--both from the standpoint 
of efficiency and
 

from the fact that reflected radiation 
may damage the laser.
 

(2-44) for the thickness parameter
Integrating the temperature 


over the width of the underdense region, 
the fraction
 

a << 1 


of energy absorbed can be calculated. 
This fraction is doubled
 

to take into account the absorption 
of reflected light, and
 

the result is
 

2/5 1 C7/5dy
Sabs - ~ - = O a) f -7j7'g/7 

which for a linear density profile reduces 
to
 

Jabs = 1:72 2/5 

0 

For a > 5.2. there is
 
These results are shown in Figure 13. 


a << 1 the absorption is given by
total absorption and for 


a are represented

the above equation. Intermediate values of 


by the dashed line which is an interpolation.
 

It has been shown recently that another 
effect may nearly
 

eliminatethe reflected light for 
sufficiently high intensities.
 

This is the anomalous absorption effect 
that occurs near the
 

This effect was studied theoretically 
by


critical density. 


1 6 and is confirmed by an earlier experiment 
by
 

Kruer et.al.,

1 7
 

Gekker and Sizukhiln.
 



57
 

eats 	 ioo% 

.1
 

-r 	 I
 

1 10
0- o1-5 10-	 10-3 102 10-1 


c = K0R
 

Figure 13. Fraction of laser energy absorbed
 

for a linear density profile plesma
 



sa 
4. Summary 

Analytic solutions have been developed for the laser heat-,
 

ing of a one-dimensional plasma under the assumption that the
 

plasma is stationary, non-thermally conducting, and that only
 

the electrons are heated (the ions being frozen at their
 

initial temperature). assumptions were found to be
-These 


reasonable formany cases of interest. In these cases, the
 

laser pulse is sufficiently short so that the processes of
 

plasma motion, thermal conduction, and electron-ion equili

bration do not have time to make a significant effect. These
 

assumptions reduce the problem (aside from equations of state)
 

to a pair of equations: a radiative transfer equation and an 

equation for the temperature containing an energy source term.' 

These equations were combined and solved for all ranges of 

the thickness parameter a by the method of matched asymptotic 

expansions.
 

The use of a one-dimensional plasma was motivated by the 

need to make the mathematics tractable. No real plasma is 

strictly one-dimensional but many plasma geometries of interest 

are nearly one-dimensional and the analytic results of this 

study can he applied to such plasmas with reasonable accuracy. 

An example of thermonuclear interest is the longitudinal beat

ing of a column of plasma that has a uniform density*across 

the column, such as might be found in a plasma focus or a 

theta pinch. Another example is the radial heating of such a 

column which is quasi-one-dimensional if the absorption length
 

I/ is less than the radius of the column. Such a plasma
 
0 

with a number density of 101 9/cm3 heated by a longitudinally
 



59 

aimed laser of wave length 10.
6u to a temperature of 10 KeV 

could be contained with a magnetic field 'of 3 MG (as might be 

developed in a plasma focus). For plasmas that are not nearly 

one-dimensional, the results of this study are still valuable 

in understanding qualitative results. 

The analytic solution shows markedly different behavior 

for different ranges of the thickness parameter a . For 

thick plasmas (corresponding to a large) the response is 

characterized by a bleaching wave proceeding into the plasma. 

Behind the wave is a hot nearly transparent plasma being irrad

iated by the laser. Ahead of the wave is an unheated opaque
 

plasma. Physically, the motion of the wave corresponds to
 

the heating of successive layers of opaque plasma to tempera

tures at which they become transparent and allow the radiation
 

to pass on-to deeper layers. For a greater than a certain
 

which depends on the density profile, the
distinct value a0 

bleaching wave fails to penetrate to the critical density by
 

the end of the laser pulse. Then none of the radiation is
 

reflected back at the critical density. 

For a less than a I the bleaching wave reaches the 

critical density before the laser pulse ends. At that time,
 

reflection occurs at the critical density and some of the light
 

is reflected. Although the heating is simultaneous once the
 

bleaching wave traverses the underdense region, it is by no
 

means uniform--an extreme hot spot is created at the critical
 

density point. For relatively thin plasmas (a somewhat less
 

than one) the bleaching wave traverses the underdense region
 

extremely fast and all but the earliest stages of the heating
 

are "simultaneous".
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For the thickness-parameter" a smaller than the small
 

, the entire heating process is simultaneous
parameter p3/2 


is the initial temperature
with no bleaching wave at all. p 


parameter. The efficiency of the heating drops further as
 

more'of the laser energy is lost to reflection. For a even
 

so ineffective that
smaller (less than P5/2), the heating is 


the temperature is scarcely changed at all.
 

It is clear that in the preparation of the plasma to be
 

heated, the temperatures (or other conditions sought) can be
 

thickness parameter a .
optimized by proper choice of the 


For a given laser energy per unit area and wave length, a
 

depends on the density gradient. Hence, proper tailoring of
 

the density gradient beforehand will give the best results,
 

whether that be maximum temperature or maximum yield from a
 

thermonuclear reaction.
 

The solution found in this section is only for a stationary, 

But the solutions for anonconducting, frozen ion plasma. 


stationary-frozen-conducting plasma, and a stationary-equili-


In the stabrium-nonconducting plasma are closely related. 


tionary-frozen-conducting regime, the effect of conduction will
 

simply be to smooth out the nonuniformities in temperature that
 

.are produced. This case is studied in more detail in the next
 

section. in the stationary-equilibrium-nonconducting regime,
 

the effect of the equilibration will be to divide the energy
 

equally between the electrons and ions. in this case, the
 

result is almost identical to the frozen ion solution presented
 

in this section.
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C. STATIONARY-FROZEN-CONDOCTING PLASMAS 

For sufficiently thin plasmas, thermal-conduction effects
 

When thermal conduction is strong enough to
 

smooth out major temperature nonuniformities, then one has 
the
 

This reqime is similar
 

become important. 


stationary-frozen-conducting regime. 


to that studied in the last section except that thermal con

duction effects are dominant. In this section, a simple solu

tion is developed for the stationary-frozen-conducting regime.
 

It is not intended that this solution be as rigorous as that
 

of section B since it is desired only to demonstrate its
 

major features.
 

I. 	Equations
 

e << I , X << 1
The requirements for this regime are 


as before, but now a different condition Tie. >> 1
Xe/ei << 1 

is always small compared to electron
Ion conductivity ni 


It is assumed that c , X
conductivity and is neglected. 


X9e/0i are actually zero, and e >> 1 . Then as before,
 

the solutions to the continuity and momentum equations 
are
 

C"= C(y) and U = 	 0 , respectively. The electron entropy 

equation (2-8) becomes
 

e __.K.__ + TJ 2 	 b27/._e_e.
2 

a_ 

b C 6e ese by 

This can be combined with an equation of state (2-13) to
 

eliminate the electron entropy,
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b2a7/2
be 

bT 
= ax 

7 ne 

Using the absorption coefficient (2-11) this becomes,
 

2 2 b2 7/2 
be 2 7 e y2OT 0/2 (1_01/2/2 1-. i+ 2 e (2-47) 

In the stationary-frozen-conducting regime, the thickness
 

parameter a is always small (see figures 2-5). The sta

tionary-frozen-nonconducting solution has the temperature 0e
 

of order a2/5, as seen in the last section (in the simulta

neous part of the regime). Since the primary effect of thermal
 

conduction will be to smooth temperature nonuniformities, it
 

is reasonable that the same temperature scale would appear in
 

= 

the adjacent conducting regime. Taking a a2/50 , (2-47) 

becomes 

• 2 7/2 
baC2 2 __ (2-48) 

Tr e3/2(l-0 WA 7 -e b 

If an « 1 the conduction term is negiigible and the solu-

If ane > 1 thention is stationary-frozen-nonconducting. 

thermal conduction is dominant and the solution is stationary-

Thus it is seen that ane (not ne) is thefrozen-conducting. 


important parameter that determines whether the plasma is 

thermally conducting or not. This will doubtless shift the 

boundary between these two regimes as will be discussed in 

section D.
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Two unknowns remain in (2-48); 0 and i . But in the 

stationary-frozen-conducting regime, a << 1 so the laser 

intensity is only weakly diminished in passing through the 

+ O(a2/ 5 )]plasma. The intensity is i = §'(r)Ei as seen by 

comparing the radiative transfer equation (2-10) and the absorp

tion coefficient (2-11). In view of this fact (2-48) becomes, 

7 / 2°2= 2 2/5) 
.0 4an77e-_e 3/2 121k o ) (2-49)- D 

Still needed to form a well posed problem are the boundary
 

and initial conditions. It is not the intent of this discus

sion to include the details of finite initial temperature as
 

done in section B for the nonconducting solution, so the initial
 

condition is taken to be a (y,0) = 0 . The boundary conditions
 

are on the-thermal conduction at both ends of the plasma. since
 

there is a vacuum at the front end, y = 0 there can be no
 

thermal conduction, so bO/byly=O---O . The same condition
 

would apply at the rear edge of the plasma.
 

2. Analytic Solution 

Consider the asymptotic expansion, 0 = 8 + e + 
Then (2-49) becomes 

0o ane 1 . 

20 b2 7/ 2 + 1 1-b 0/21 8 
o 1 bzoS/2b 

7 by 2 atle .L y,2 

+312(.c)1 + 2/5 , __ 

?7 / (ane)
o0 
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2 and has solutions
The equation to order one is b27/2/by = 0 

8o =faal(r)y + a 2 (t) 2 /7 where a1 and a2 are the arbitrary 

that arise in the integration with respect to
functions of T 


y = 0 requires that
 y . The adiabatic boundary condition at 


a1 (T) = 0 so that 80 becomes purely a function of T . The
 

equation to order I/aT e then becomes,
 

20 b8o
*/ b,

0 = 0 5/2 6- 32 12
0 by 8b(1-y) 

y = 0
Integrating once and applying the boundary condition at 


to order l/al e yields,
 

b bo90 y
0 = 05/2 / 2
 

by 7 J C y (-C)T 
0 

Integrating again and solving for 01 yields,
 

b00.0 Y YC 0- 2 

, Uy 2~cId iro C737--1
 

where a3 (T) is the arbitrary function of time that arises in
 

the integration with respect to y Then,
 

- YI (Y 2 d y 

T)+ -723,32_~ 2 c
*(.
0 nO 

+ a3 (T)I+ 0(a%T67 ( i7 
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a. Underdense Plasmas
 

First suppose that there is no thermal conduction through
 

This is the case where the plasma doesn't
the point y = 1 .
 

achieve critical density anywhere and y = 1 is the rear
 

edge. Then the rear boundary condition is 6 a/byIy== 0
 

The order
This is satisfied automatically to order one. 


I/r e equation gives,
 

I d-1

8 (T
0.3/2~ ~ 2d 

Integrating with respect to time, and applying the initial con

dition of zero temperature,
 

0 1 CI2 d 1 Cdy- . (2-51) 

Thus it is seen that applying the rear boundary condition
 
6o(T) in
to order 1/ane determines the unknown function 


the term to order one. Applying the rear boundary condition
 

to the next higher order would determine the unknown function
 

a3(T ) in the term to order 1/a e 

b. Overdense Plasmas 

Suppose that the plasma does achieve critical density and
 

that the portion beyond the critical density (the dark part)
 

is heated by thermal conduction from the irradiated portion
 

which is heated by absorption. This is shown schematically in
 

If the mass of the dark part is of the same order
figure 14. 


of the light part, then the presenceof magnitude as the mass 
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Figure 14. Laser heating of an overdense plasma
 

In the stationary-frozen-conducting regime
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of the dark part will not alter the basic character of the
 

solution, i.e., that it is dominated by thermal conduction.
 

However, the temperature produced will be less since a
 

greater mass of plasma is being heated.
 

To construct the solution in this case, one must solve
 

(2-46) for both the light part, 9aL , and dark part 0ad
 

separately. Then the two solutions are matched at the point
 

with the condition that thermal conduction at the
y = 1 

Thus (OZ- ad) ly=l= 0 andjunction is the same for both. 


= 
0 . The dark form of (2-49) is
(b8 1 /by - b6nd/by) 1y=l 

the same as the light form except that the absorption term 

) is missing in the dark equation.(that containing 4'(r) 


The order one dark equation is the same as that for the
2
 
b2e7/2/,y
 

light equation; o0d/oy = 0 , and its solution is
 

aod 1 .[bI(T)y + b2(r)37/2 Applying the adiabatic boundary
 

L) of the plasma, b,/byly=L= 0
condition at the rear edge (y = 


= 0 so that 6od = 9od(T) . Matching
requires that bI() 


this to the light solution to order one requires that
 

eod(T) = OL(T) = 00(7) . The order I/ae equation is,
 

0 = 05/2 2
 

by2
 

and applying the boundary
Integrating with respect to y 


condition at y = L gives,
 

by- a5 2 bT y y 



68 

integrating again gives,
 

+
bT
Id 

0 

b 3(T) is the arbitrary function 
arising in the integrawhere 


01d(1,T) = 
tion. Matching to the light solution (2-50), 


the two unknownmerely forms a relation betweenOIL(1,T) 

But the matching of
 a3 (T) and b 3 (T)
functions of time 

the first derivatives b8ld/bYlyj=l bO,/byly= gives, 

dy _-'d 1F boo Cdx']1_ r=L 0 Cdy- §,/ VL2 
= 

1 o 


Hence 03/2 bo A 26y_5 Mo2(_ 1
 
('0 (1-0 {/. 

T and applying the zero initial
 Integrating with respect to 


temperature condition,
 

C-L2 dy'<_ / 50o:[/o2I c2 [l 5v f0 
0 (1-0)1 0 

the solution to the previously solved
 which is the same as 


case except for the different range of integration 
in the
 

(over the whole plasma).
denominator 


Then the usual nondimensional electron temperature is,
 

S1-212/5 2/5 N 

eO (1-C0 C 0 .CdxI + 
r~e 

(2-52) 
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Thus, for the stationary-frozen-conducting plasma, the
 

temperature.is seen to rise--uniformly--with the two-fifths
 

power of the laser energy released (as measured by 0. This
 

agrees with the fact that thermal conduction dominates and
 

also with the fact that as the plasma heats up, it becomes
 

more and more transparent to the radiation, thus heating
 

more and more slowly. The fall off in the rate of heating
 

is clearly seen in figure 15 which is the time history of the
 

electron temperature for a plasma with a parabolic den-
Oe 

sity profile, C = I y2 , heated by a constant intensity 

laser pulse for which 4 = . This solution is based on the 

assumption that the masses of the light and dark parts of the 

plasma are of the same order.
 

Suppose that the dark part of the plasma is much larger
 

than the light part. Then, even though the light part is
 

dominated by thermal conduction and has a nearly uniform tem

perature, the dark part may be quite nonuniform. Ifthe dark
 

part is large enough, then it will have a nonuniform tempera

ture profile diffusing with time into the dark part. Since
 

the thermal conduction coefficient of a fully ionized plasma
 

is proportional to the five-halves power of the temperature,
 

the thermal diffusion is nonlinear. It will proceed into the
 

cold dark part as a "thermal wave" resembling the "bleaching
 

wave' found in the stationary-frozen-nonconducting regime.
 

The close relation of these two phenomena is discussed in 

detail in chapter IV.
 

http:temperature.is
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D. RE-EXAMINATION OF HEATING REGIMES
 

As was previously mentioned, it is necessary to take any 

solution found and reconsider the regimes in which it is valid. 

This is especially true in this study since the dimensionless 

0 varies over many orders of magnitude.electron temperature e 


is of order a2/5 in the stationary-frozen-conducting
ae 


regime and in the simultaneous heating part of the stationary-


For the bleaching wave portion
frozen-nonconducting regime. 


e - 1/3regime

of the stationary-frozen-nonconducting 


a is a parameter that may either be much larger or much
 

smaller than one.
 

in 0e or its
Any locally extreme values that may occur 


Indeed such a
derivatives may also invalidate the solutions. 


occur in the neighborhood of the critical
singularity does 


density where a temperature singularity does occur (in 
the
 

However, it is not
stationery-frozen-nonconducting regime). 


th purpose of this discussion to probe the fine points of
 

local phenomena--such as that very near the critical density.
 

Rather it is intended to re-examine the overall behavior 
and
 

to find the correct boundaries of the various regimes 
since
 

is not of order one.
ee 


1. Onset of Motion
 

The original estimate of the plasma regimes (section A 3)
 

indicated that the onset of motion occurs toward the upper
 

right corner of the summary charts (figures 2-5), i.e., for
 

and J0 /A . A study of the governing
higher values of Vne 
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equations with cognizance of the correct temperature 
scale
 

reveals that the original estimate is too conservative, and
 

that the onset of motion occurs for even higher Vne
 

The appropriate criterion to determine the onset of 
motion
 

is the conditions for which the plasma motion begins to sig-


Consider
nificantly 'affect the temperature that is produced. 


the asymptotic expansions,
 

+S v0 (a)C Vl( ,c)C 1 + -

.U =I(M,¢)UI1 +.

e= Xo(a)0.+ X (ae)e 1 + .. o (2-53) 

i± 610.,)i 1 + 

y R= 

are the orders of magnitude of the
where X (a) and v (a) 

p is the
'temperature and density for the stationary solution. 


They are to be determined by the
appropriate length scale. 


nature of the stationary solution. The terms of order Vi',
 

1 , XL, 61 contain the lowest order effect of motion.
 

The terms of order one , V. and Xo give the stationary
 

solution. The object of this discussion is to find X1 /X ° 

which is the ratio of motion induced temperature change to the 

stationary temperature.
 

Applying the expansions (2-53) to the momentum equation
 

(2-7) together with the equation of state(2-12) gives
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A0 C3 ( 1' . = 0. (2-54)4c%.. 

Zn this and in vubsoequnt equations, the first bracketed
 

term represents the stationary terms and the second represents
 

the lowest order effect of motion.
 

Applying the expansions (2-53) to the continuity equation
 

(2-6) gives
 

s Vr bce, -C
Lyon- +[ V(1 -- ++fj , + .. 0 . (2-.55) 

Applying the expansions (2-53) to the radiative transfer
 

equation (2-10) with the absorption coefficient (2-11) gives
 

23 2 V2 2.
bi v& CO2o bi1 61 V2C i1 + 

- 6vC.. o 1
AO 


2 2. vovIL2CCli0 v0 Alat3Co0 O1
 
.3/T 0 '-5/ a~2 *0. 0 (2-56)
 

Note that the radical /1 - vO0o+... was not expanded. This 

factor becomes important only if the plasma becomes overdense 

at some point. 

The electron energy equation is found by combining (2-8) 

with (2-11) and (2-13), 

bea 20-< + 20 + thermale 

-Se 8e. conduction
 

3 OT 3 by) and equili
bration terms
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The thermal conduction term is not written out since its only
 

effect is to smooth out thermal nonuniformities. The equili

bration term is not written since it can only affect the
 

electron temperature by a factor of two. Applying the ex

pansions (2-53) to the electron energy equation gives
 

2 2. 
- 2 b<o' V. c. CO Lo

2 . + 
- O -- )+ V 2 e3/ 1 - v

VoAo(C o r[ be b1 b 0CO4L) t 

6VO9+(C0 +^ - 2ax' 

5

-' ",. 

b 

91OAe-9 2 bcc. v~vla 2~C Cic 

by 10w Ag' 003/ 

IoAo£/. 80 +
 

2 2. 2 2.
 
V0 81 . col VOAlao3CJi.O
 

.. =5 

The most general equations are found when all terms
 

within a pair of brackets are the same order of magnitude.
 

Then from the stationary terms, one can conclude that
 

AO 3/2
 

Ac5/ 2 C (2-58) 

From the motion t&rms, one can conclude that
 

AO 
91 -RC
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VoAo 2 

2A0 

AO2Si = -:

-2 
AO 2 (2-59)
pI-

(2-58) and (2-59) are now examined for various cases to
 

determine the appropriate variables for the onset of motion.
 

For a linear gradient plasma in the bleaching wave 
-/6 1/3 (rmscinC 

p = a and A. M1 (from section C)regime, v. = 


which is ionsistent with (2-58). Then (2-59) leads to
 

1/2 =1/2s2 = 2/3s 2 and A= a 2 

C ,adA L 
a C , e , 

Thus A1/A0 = a2/3C2 is the parameter determining the onset 

of motion in this regime.
 

For a linear gradient plasma in the simultaneous heat

=
 = 
 This is consistent
ing regime, v. = p I and Ao 2/5 


with the second equation in (2-58) but not the first. The
 

reason is that the characteristic length scale predicted by
 

the radiative transfer equation is the absorption length,
 

which is erroneous in this case since the characteristic
 

length is the distance to the critical density where the heat

g, = O2/5C 1 V1 = a2/5s2
 
ing ends. Then (2-59) leads to 


a2/52 A1 a4/5s2 Then A/A 2/52 is the
 

parameter determining the onset of motion in this regime.
 

For a uniform plasma, vo is the specified scale of the
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density (which is constant). Then (2-58) leads to =A0

(mvo0Y2/5 , =-2/5v -7/
 

I - /-7/5 Thus (2-59) leads to I
 
4/5vo9/5 - a6/5V21/5v c2 , 

6/5 o16/5 2
a v"a 1 e , and
 

A = C / 18/5 02 Then A!/A a6/5VO1/582 is the para

meter determining the onset of motion for a uniform plasma.
 

In a linear gradient plasma, the onset of motion will
 

occur in the simultaneous heating regime for cases of interest.
 

In this regime the important parameter is
 

2/ 42 . 2.42 x 10-47(JoA)2/s(vn e) 2 x (2-60)2 


If e2 2/5 << I , then there is no motion during the laser 

2 2/ 5 pulse. If >> I , significant motion occurs.
 

in a uniform plasma, the important parameter is
 

6/5 16/5 2 - o24 -4/5 16/5 -4 2 
= "o = 1.,20 x 10 (J0/A) (2-61) 

where C has replaced v. since they are identical for a 

uniform plasma. (2-61) fails very near = 1 since the 

radical J1 - v0 o + ... becomes very small in that case, 

2. Onset of Thermal Conduction
 

In developing the stationary-frozen-conducting solution
 

for a < 5.2 (section C), it was found -that ae is the 

parameter Theasuring the thermal conduction. However, thermal 

conduction will first become dominant in regions where a > 5.2 

and a different parameter is required to determine the onset 

of thermal conduction. 

The energy equation including thermal conduction but not
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.themotion or equilibration terms, is
 

C i 
 7/2
be b2b20 + 2 I ae 
= 
 e/ -
Cbr - 3 / 2 p..-C 7 e b 

This was found by combining (2-8), (2-11) , and (2-13). With 

,y
the scaling c = v.o 8e = A0o , Y = , the energy 

equation becomes 

2 5/2 27/2 
beo vOa 0i 5o fe. 2 o 

0a 7 e2.,i + A,72,e, 
- A, vO0 V 

if the parameter vC/A 
5/  

- 15 
The scaled are consistent 

Then onset of thermal conduction occurs when the parameter 

Ao5/2'e/2Vo exceeds one. Eliminating v0 , the key para

2 
meter is me/2 .
 

For a linear gradient plasma in the bleaching wave regime
 

S=' -1/6 and 	the onset of thermal conduction is determined 

by the parameter

(2-62)
4/3 3.07 x 1-30(Jo/A)l/2(Vne)7/6Xo8/3tp 


If ,4/311e 1 there is no-thermal conduction, and if
 

4/3
 

, thermal conduction is dominant.
C4/3ne 1 


For a uniform plasma, consideration of (2-40) indicates
 

ymax = 1.13 a-2/5C-7/5
that the plasma length heated is 


Then 0 = -2/5 C-7/5 is the
valid for C less than one. 


appropriate choice and the thermal conduction parameter is
 

CL9/5 e14/5 	 = 5.51 x 1011 (Jo/A)-1/514/52t . (2-63) 
m~0 op 
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3. onset of Electron-Ion Equilibration 

The electron and ion energy equations including equilibra

tion but not thermal conduction and motion terms, are
 

O8e I C2i C2 

C-e-/=aB X 3 a(6e-8i)73 
e~2 (2-64) 

Cb-- + %-37-2(ee 6i)
e 

= 

With the scaling C =voO Be A08o , i AoSoi , Y = Py 

(2-64) becomes voX/A3/2
the scale of the equilibration terms in 


which is the proper scaling when the ion temperature is of the
 

same order as the electron temperature. If however, the ions
 

.are very cold (at the initial temperature) then p is the
 

proper scale for . In this case the coefficient of the
0i 

1/2


equilibration term in the ion energy equation becomes -v0 X/A
 

which determines the ion beating.
 
* _. 3/2 

.-The parameter Xeq v0 VA0 determines the bounds of 

the equilibrium regime. If Xeq >> 1 there is electron-ion 

the electron and ion temperaturesequilibrium. If Xeq << 1 

eq 1/2
 

are not in equilibrium.- The parameter Xfr = vOX/A0 P
 

If fr >> 1determines the bounds of the frozen regime. 


some ion heating takes place, though equilibrium is not assured.
 

if Xfr << 1 the ions remain frozen at their initial temper

ature throughout the heating.
 

Before calculating these parameters it is necessary to
 

know the expression for 'the small temperature parameter
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0 =TZ/T O .Using (2-I), 

3.o x 1035 (Jo/A)-
1 (Vn)-1Xo-4 0= 0 Te (2-65) 

where Te is in eV and the other terms are in the usual units.
 

In a linear gradient plasma, in the bleaching wave regime
 

AO = a so that the equilibration parameter is
 

Xeq 7.pxx4 eI21 0.
-/q 2/3 = 7.05 x 107CJo/A)-/2(Vn)/6 X 4 / 3 t 

for a > 5.2 , (2-66) 

2/5

= aIn the simultaneous heating regime where Ao 


1:q = X/' = 5.48 x 10 (Jo/A)-352t for a < 5.2eq 
 o o( p (2-67)
 

The freezing parameter in the bleaching wave regime is
 

% - X/a='3i = 67.2 (Vn)1/X/3TO t for a > 5.2
(2-68)
 

In the simultaneous heating regime the freezing parameter is
 

=
fr 4.0 0/!~p
XLfr = X/a = 4.08 x 101 3 (J/A)-1 / 5 X 2 Tt-It 

for a < 5.2 (2-69) 

In a uniform plasma v. = c and X = (aC) 2 /5 and the 

equilibration parameter is 

% = 5.s0x lol3(Jo/A)-3/ 2/5Xt , (2-70)
eq o p
 

and the freezing parameter is
 

X 4.09 1013(Jo/A) -
1 /5C4/5"X- 2T -1t (2-71)fo 0eT p
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4. Summary
 

The results of calculating the various parameters are
 

shown in figures 16,'17, 18, 19 for a linear gradient plasma,
 

and figures 20, 21, 22, 23 for a uniform plasma. The lines
 

bounding the regimes are extended on into the conducting
 

regime as dashed lines even though these parameters were
 

calculated from the nonconducting point of view.
 

The heating of a linear gradient plasma falls conveniently
 

,into several regimes. For short plasmas (high Vne ) the
 

;heating is nonstationary. For slightly lower values of Vn
 
e. 

the heating is stationary and conducting. For even lower Vne
 

(longer plasmas) the heating becomes stationary and noncon

ducting. Equilibration effects depend primarily on the energy
 

deposition and the pulse time rather than on Vne . The
 

solution of section S applies in the stationary-frozen

conducting regime, and the solution of section C applies to
 

the parts of the stationary-frozen regime above the line
 

a = 5.2 

These solutions can also be applied to the regions where
 

some; or complete equilibration occurs. This fact is easily
 

seen by observing the stationary energy equations for electrons
 

"and ions, (2-64). For the frozen case, the electron energy
 

equation governs the heating as studied in sections B and C.
 

For equilibrium regimes, Oe = i and the two equations combine 

to give, 2
 
bBT = a, Ci
 

Ctr IAIZE 
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Figure 16., Re-examined heating regimes for a
 

nanosecond pulse from a Nd+ glass laser
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Figure 17. Re-examined heating regimes for a 

picosecond pulse from a Nd+ glass laser 
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Figure 20. Heating regimes with a uniform plasma
 

for a nanosecond pulse from a Rd+ glass laser
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Figure 21. Heating regimes with a uniform plasma
 

for a picosecond pulse from a Nd
+ glass laser
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Figure 23. Heating regimes with a uniform plasma
 

for a nanosecond pulse from a C02 gas laser
 



89 

This is the same as the previous electron energy equation
 

except that a/2 has replaced a as the absorption parameter.
 

Hence, the equilibrium solution is the same as the frozen
 

solution except a is replaced by a/2 . If there is partial
 

equilibration, the absorption parameter will be between a/2
 

and a . A similar calculation including the thermal conduc

tion term in the electron energy equation shows that in an
 

equilibrium regime, the thermal conducting parameter is reduced
 

by one half. Thus the solutions found in sections B and C
 

apply to essentially all the nonstationary regimes.
 

The heating of a uniform plasma falls into the same basic
 

regimes. For a uniform plasma, larger values of C corres-. 

pond to shorter plasmas and vice versa. The length of the 

plasma is just the length that is heated. One noticeable 

difference of the uniform plasma from the linear gradient 

plasma is that even for large energy deposition, the heating 

may still be in an equilibrium regime for the longer pulse 

lengths. 

As before, the solution found in section B applies in
 

the stationary-nonconductlng regimes whether equilibrium, frozen
 

or somewhere -in between. The solution of section C does not
 

apply in the conducting regimes because there is no critical
 

density point to cut off the radiation and limit its penetration.
 

No solution was developed for those conducting regimes
 

where the critical density does not appear (such as in the
 

uniform plasma) or where the critical density region may not
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be irradiated (such as in the part of the 
stationary-conduc

a = line for the linear gradient
ting regimes below the 5.2 


plasma). It is expected that a wave like heating will occur
 

in these regimes also, and the reasoning behind 
this is
 

The thermal conduction will tend to move
 explained following. 


Behind the wave is a hot transparent plasma, 
and
 

as a wave. 


a cold opaque plasma. Then the laser
 
ahead of the wave is 


beam will tend to penetrate the transparent 
hot region and
 

Thus, even though
be absorbed near the front of the wave. 


thermal conduction is strong, it is expected 
that the speed
 

of the "wave" will be governed primarily by 
the absorption
 

in the bleaching wave.
 of radiation in its front, i.e. as 


Hence it is expected that the solution in 
this regime will be
 

very similar to the stationary-frozen-nonconducting 
solution

both insofar as the temperatures achieved and 
the lengths
 

Of course, detailed phenomena of the two solutions
heated. 


may differ. Thus the extension of the lines for the onset 
of
 

motion, freezing, and equilibration into the 
conducting regime
 

in figures 17-23 is apparently justified.
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E. POST-HEATING DYNAMICS
 

One objective of laser plasma heating is to achieve gain 

in a thermonucledr reaction. The general criterion for gain
 

is governed by Lawson's criterion which is discussed in 

Appendix 2. Lawson's criterion requires that the product of 

the number density of the reactants (deuterium and tritium
 
3
 

ions) and the time of confinement must exceed 1014 sec/cm


and the temperature must exceed 10 KleV. A certain minimum
 

confinement time is required simply to get enough energy out
 

of the reaction. For a CO2 gas laser, the appropriate density
 

would be on the order of the critical density, 1019/cm3 . This
 

calls for a confinement time of 10 psec. For a Nd+ glass
 

laser, the appropriate density would be 1021/cm3 . This calls
 

for a confinement time of i00 nsec. Thus, the plasma must
 

be contained for times significantly longer than the laser
 

pulse that would heat it in a stationary regime. Hence, what
 

happens to the plasma after the pulse is of critical importance.
 

1. Post-Heating Dynamics for a Linear Gradient
 

For a thermonuclear reaction to proceed at all, one con

dition must be met. The electrons must equilibrate with the
 

ions before the plasma motion reduces the electron temperature
 

and the densities. This is critically important because the
 

thermonuclear reaction rate is strongly temperature dependent. 

Thus it it essential to find two time scales, the time scale 

for electron-ion equilibration, teq" , and the time scale for 

significant plasma motion to arise, ta . A third scale of
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interest is the time scale for significant thermal conduction,
 

tth 

An examination of these time scales indicates that the
 

post-heating dynamics falls into two regimes for conditions
 

of interest. One regime is characterized by frozen-conducting
 

dynamics, and the other by equilibrium-conducting dynamics.
 

a. Acoustic Time
 

The acoustic time is the time for an acoustic wave to
 

traverse the heated region. The thickness of the heated region
 

YmaxRi , and the maximum electron temperature, Te (which 

determines the acoustic speed using a = 6.36 x 103 Te1/2 m/sec
 

for Tr are given in section B.
e in eV), Then the acoustic
 

time is
 

ta = 2.54 x 1011(ne)-2/3 sc . (2-72) 

This is for the bleaching wave part, a > 5.2 since it is in
 

this regime that the three effects motion, equilibration and
 

conduction, Will compete.
 

b. Electron-Ion Equilibration Time
 

The correct electron-ion equilibration time corresponding
 

to the maximum temperature and density in a linear gradient
 

plasma is given by t t A (in the bleaching wave regime)
 

where x X=%a' is the equilibration parameter calculated 

in section D. Then, 

teq = 1.42 x 10-8 (J/A)i-1/2(Vne)1/6X 4/3 sec . (2-73)
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c. Thermal Conduction Time
 

The thermal conduction time is the time for significant
 

the thickness of the
thermal conduction to diffuse acceoss 


laser heated region and is given by
 

ttth maxvKYmaxR 2 (2-74)
e
 

where K is the electron thermal conductivity given by
 e 

Spitzer.14  Applying the maximum temperature and density found
 

in section B 3,
 

3 

tth.= 3.26 x 1029(JO/A)-/2(Vn ) - 7/6 xo8/ sec (2-75)

e 0 

tp/(C4/3

The same result would be attained by 

taking tth = 

where 4/3 is the thermal conduction parameter found in 

section D. 

d. Summary
 

The results of these calculations are presented in figures
 

a Nd4 gas laser respec24, and 25, for glass laser and a Co2 

tively. It is seen that post-heating behavior falls mainly 

into two regimes: the equilibrium-nonconducting regime where 

teq << ta << tth and the frozen-conducting regime for which , 


tth << ta << teq - In the former regime, nonconducting
 

dynamics will occur and in the latter the dynamics will be iso

thermal, based on the isothermal speed of sound.
 

-In the equilibrium-nonconducting regime, after the pulse, 


the temperatures equilibrate, and the subsequent motion is of
 

an equilibrium nonconducting plasma. Thermal conduction never
 

http:Spitzer.14
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Figure 24. Post-heating dynamics for a linear density 

-- A4.,n4 IARMR irradiated by a Nd+ glass laser 
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occurs.
 

In the frozen-conducting regime, after the end of the
 

heating, strong thermal conduction smooths the nonuniformities
 

Very
Then the isothermal motion begins. 


little electron-ion equilibration occurs before the motion
 

cools the'plasma. At some'point in the cooling, the equili

gets short enough that the ions equilibrate
 

in the temperature. 


bration time 


with the electrons--but at a much lower temperature than 
the
 

original electron temperature.
 

Thus the issue is clear, for a thermonuclear reaction to
 

occur during the confinement time of the plasma, the plasma
 

must be in the equilibrium-nonconducting regime. Otherwise the
 

ions never get heated to the temperatures required for 
a ther

monuclear reaction. This criterion requires thicker plasmas
 

(lower Vn) , and the requirement is more stringent for grea

ter laser energy (larger J /A). 

2. -Post-Heating Dynamics for a Uniform Plasma
 

In this geometry as well as the linear density gradient,
 

the relative sizes of the equilibration and acoustic times 
are
 

These and the thermal conduction time from
all.important. 


(2-74) can be easily calculated using the maximum temperature
 

The same results
a uniform laser heated plasma. 


would be found by taking teq = tp/xeq and tth =t
 

The time scales are,
 

and density in 


x /A)2/5c-8/5k sectta 8.66 10- 1 3 (J o2 se 
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1.82 X 10-14(0 /A)3/5-2/5 12teq = sea 

tth = 1.82 (/A)C/5C-14/5Xo 2 sec (2-76) 

The relative sizes of these time scales are presented in
 

figure 26, along with the maximum temperature achieved (which
 

is found by applying (2-40) to a uniform plasma). Also shown
 

is the length of plasma heated, L corresponding to a l0,6 i 

CO2 gas laser, The lengths for a 1.06' Rd+ glass laser are 

smaller by a factor of 100. The chart uses J /A and 

1/2 
C/(-C /2as the independent variables. A nonlinear scale 

1 / 2  for C is shown side by side with that for C/fl-) As 

with the linear density gradient, the post-heating behavior
 

falls basically into two regimes: the same tvo in fact- Given 

a constant JoA , higher densities lead to frozen-conducting 

motion, and lower densities lead to equilibrium-nonconducting 

motion. This is the opposite of the natural tendency for t eq 

to decrease with increasing density. The reason for this
 

behavior is that for higher densities, the temperature is
 

higher which tends to increase teq (teq I Te /2/ne) " The
 

temperature increase is greater than the density increase,
 

hence the equilibriation time will be greater.
 

a. Wave Diagrams for a Uniform Plasma
 

it is appropriate to calculate a wave diagram for the
 

motion that occurs in a uniform plasma, This calculation has
 

been performed for a plasma in the equilibrium-nonconducting
 

regime. This is the regime of interest for achieving a fusion
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reaction, so this calculation will be applicable. To simplify
 

the calculation, several assumptions were made: 1) neither
 

thermonuclear energy release not bremsstrahlun;.alters the
 

dynamics, 2) the temperature profile produced by laser heating
 

was taken to be uniform at the average heated value, Y . The
 

initial temperature was taken to be 1/100'of Y . The results
 

of this calculation are presented in figure 27 which is the
 

wave diagram, and figure 28 which shows the temperature
 

profiles for successive times.
 

It is seen that the plasma expands freely into the vacuum
 

at the plasma edge. A shock tube like phenomena occurs at
 

the inner edge of the heated region. An expansion wave moves
 

into the hot plasma and a shock wave moves into the unheated
 

plasma. The shock wave heats the cold plasma to only 121 of
 

the temperature of the laser heated region.
 

A similar calculation was performed for a uniform plasma
 

with a solid wall at the inner edge of the heated region.
 

Physically this corresponds to a plasma heated from both ends,
 

designed so that the bleaching waves just meet in the center
 

at the end of the laser pulse. The wave diagram for this case
 

is shown in figure 29.
 

b. Release of Thermonuclear Energy
 

The usual estimate of thermonuclear energy release is to
 

assume the plasma reacts at its initial temperature for exactly
 

one acoustic time. Of course this is not the case because
 

the temperature begins to reduce from the very beginning, and
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it does not cool abruptly at exactly one acoustic time. It
 

is worthwhile then to use the solutions of motion in figures
 

27 and 29 to compare the actual release of thermonuclear energy
 

to the estimate.
 

This calculation was performed assuming the results of
 

the wave diagrams. The result is shown in figure 30. The ratio 

of the actual energy released by the D-T reaction per unit cross 

sectional area, EDT , to the estimate of the same, (EDT)O 

is plotted versus the mean temperature to which the plasma is
 

heated, T . The actual energy release is lower than the
 

estimate by only by 50r at 10 KeV (or 2T/ for the case of a
 

confining wall at the inner edge of the heated region).
 

4. Summary 

An examination has been conducted of the plasma dynamics 

following-laser heating in a stationary regime. Post heating 

dynamics will appear in one of two regimes. Frozen-conducting 

dynamics will occur for denser plasmas (since higher densities
 

lead to higher temperatures). In this regime, the electrons
 

never equilibrate with the ions before motion dissipates and
 

cools the plasma. No thermonuclear energy is released in this
 

regime. For lower plasma densities, equilibrium-nonconducting
 

dynamics occur. Here, the electrons equilibrate with the ions
 

before the motion and thermonuclear energy is released if the
 

initial temperature is high enough. The-usual estimates of
 

thermonuclear energy released are accurate to within a factor
 

of two or better for 10 KeV temperatures.
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F. APPENDICES
 

Appendix 1
 

Effect of Electromagnetic Forces
 

The primary thrust of this chapter is laser beating of a
 

stationary plasma. Hence the effect of forces on the plasma
 

does not appear in the solutions. Nevertheless, the size of
 

the forces will affect the regime of validity of a stationary
 

solution. The object of this section is to consider the size
 

of the electromagnetic force that was included in neither the
 

original equations, nor in any discussion of the regimes of
 

validity.
 

Electromagnetic forces are proportional to the intensity
 

of radiation. Thermal forces (pressure) are proportional to
 

the time integral of the intensity since absorption builds the
 

temperature and pressure with time. Thus it is possible with
 

a sufficiently high intensity to have an electromagnetic force
 

larger than the thermal force. But even a large force may
 

have little effect if it operates for only a very short time.
 

The largest electromagnetic forces will arise in picosecond
 

laser pulses--which have the shortest duration as well. Thus
 

the ratio of the two forces does not determine their relative 

importance. One must find the.actual effect on the plasma 

motion. Previous investigations of electromagnetic forces have 

19 
been made. Hora1 8 , discussed the electromagnetic forces
 

associated with the radiation and drew some conclusions relat

ing to its effect on'plasma motion. Lindl and Kaw2 0 studied
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the effects of these forces when the radiation is not neces

sarily normal to the surface of the plasma. However, these
 

two papers do not determine the relative effects of electro

magnetic and thermal forces for typical laser produced plasmas.
 

In this appendix, it is shown that electromagnetic forces have
 

little effect on plasma jnotion in the stationary heating regimes
 

with one exception, the case of a picosecond pulse with a CO2
 

gas laser.
 

a. Calculation of Electromagnetic Forces
 

The dispersion relation for electromagnetic radiation
 

subject to inverse-bremsstrahlung abosrption is,
 

2 22 n-n ik=L 2--r
 
w + 1/2 W + 1/t
 

where n is the complex index of refraction, w and wp are
 

the laser and plasma frequencies respectively, and T is the
 

electron-ion collision time. For a sufficiently slow variation
 

in the index of refraction, the approximation of geometrical
 
2 1
 

optics can be used.


The Lorentz force density can be written in terms of the
 

tensor and the Poynting vector. Following Hora,
Maxwell stress 


this force is,
 

1 6
f 'Al 2 2 
fm = -ixjjj(CE +uH --j-E xH, 

c
 

for a one-dimensional plasma with a density variation in the
 

direction with a plane electromagnetic wave traveling in the
 x 
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+ x direction.
 

Only the time averaged value (over a few oscillations)
 

of the force density is considered. Also, the time average
 

of the Poynting term will be negligible for laser pulses
 

much longer than the period of the wave. Then the time
 

averaged force is,
 

2
 
-k e ni-2)2f = i 

em 1 4 x te 

+ (Re -1/2)2 + ( --1/2)2 + (Im I/2)21 

where k represents the damping of the wave, 

- x 

and F, is the amplitude of the electric field of the radi

ation entering the plasma. 1/w will be small for plasmas 

irradiated with a laser beam in the visible or longer wave 

lengths for a temperature greater than about 20 eV. The 

amplitude of the electric field is simply related to the 

intensity--and to the terminology introduced in section A, 

2 
68, JO/A 

2 c ctp 

where = d /dT . Moreover, the solution to the radiative 

transfer equation (10) is, 
i
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Hence, the magnitude of the time averaged 
electromagnetic
 

force is,
 

J- / 3- " (1/n + n) + 

Tem 2RctPb
 

where
 

2n " (1-/) I / + O )212/(w (2-77) 

In the stationary-frozen-conducting regime, in which
 

i = V 1+o(2/ 5 )3 

J0 /A , (2-78) 
fem - 4Rctp (1_) 3/2 dy 

The apparent singularity at the critical density 
is not a real
 

index refraction (2-77) 
one since -the expression used for the of 

fails near that point. The stationary-frozen-conductingregime
 

is presented since it is in that regime, if 
at all, that elec

tromagnetic forces may be important.
 

b. Calculation of Thermal Forces
 

The thermal force density is simply the pressure 
gradient
 

Vp . Assuming the contribution of the cold ions to 
the pres

sure is negligible, the thermal force is,
 

7pl . (n kT) =2 J (C
 

(2-52),
In the statjonary-frozen-conducting solution from 


•3 J0o/A= (25--.2/SIvpl 



109
 

where the ratio of the two integrals in (2-52) was left out
 

.for brevity. This ratio is of order one if the dark part of
 

the plasma is roughly the same size as the light part.
 

c. 	Comparison of Thermal and Electromagnetic Forces
 

The ratio of the forces is,
 

• 3 

L pA i a j 2-7-5LC2/5 (,_C)3/10°(7-2C)J 

The first part of the expression, R/ctp(5/2 a)2/5 , gives the
 

The second part, ,/§2/5

order of magnitude of the ratio. 


gives the time.variation and is generally of order one or less.
 

The third part, a complex function of C , gives the spatial
 

variation, and it is of order one except near the critical
 

density, C = 1 , where there is an apparent singularity. This
 

is not a real singularity of course since the expressions used
 

to derive (2-79) breakdown near the critical density. It is
 

clearly seen that--holding other things constant--it is possi

ble to make em/IVpl as large as one wants if the pulse time
 

tp is made small enough.
 

The first factor is in the usual terminology,
 

=1.15 x 10-
1 7 (J/A)3/5X2tR/Ct(. a)

2/ 5 


is larger than a certain
Given X0 , t , then when Jo/A 

value, the factor will exceed one. This gives the approximate 

size of J /A for which electromagnetic forces exceed thermal 
0
 

forces. The table below shows these values of Jo/A for
 

typical pulses and wave lengths.
 



1.6 X 1081.6 x 1013.6 

7.4 x 104 
7.4 x 109
10.6 i 

joules/m
 

Clearly then, the electromagnetic forces will 
exceed the thermal
 

well within the range of interest
J /A
forces for values of 

0 

to laser plasma heating.
 

it is established then that electromagnetic forces 
may
 

But this does not mean that they
well exceed thermal forces. 


will have a major effect on the plasma motion, 
especially
 

since the iargest electromagnetic forces occur 
in the pulses
 

of shortest duration. The real measure of their effect must
 

be based on the total motion they generate.
 

The Overall Effect of Electromagnetic Forces
d. 


When a force acts on an object for a 
certain length of
 

time, the object attains a certain velocity. 
Then the effect
 

of electromagnetic forces is to impart a certain velocity to
 

If that velocity is small
 individual particles of the plasma. 


a 
, then the effect of
 compared to the local acoustic speed, 


If
 
electromagnetic forces on the subsequent 

motion is small. 


a , then
 
that velocity is of the'same order or larger than 


the electromagnetic fordes strongly affect 
the motion.
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A calculation is made of the velocity, Vem , generated
 

in a nonuniform plasma by electromagnetic forces. For simpli

city, it is assumed that only electromagnetic forces operate,
 

and that each individual particle is accelerated by the force
 

for the time tp . The effect of any motion during the laser
 

pulse on fem is neglected. The calculation uses as the
 

equation of motion,
 

(2-80)P f 


Integrating (2-80) from t = 0 to t = tp using fem from 

(2-78) and an acoustic speed based on the stationary-frozen

conducting solution, the ratio of the electromagnetic to the 

acoustic velocity is found,
 

V - JO/A 1
 
2 / 5
em __4minec_______) I . ) (2-81)

a- 2 J dy 7/51/5
 
icneca (02) ~ (-)
 

where a -is the acoustic speed based on the temperature T.
 

The size of V. /a is roughly the size of the term in brackets 

and is given in figures 31 and 32 for a Nd+ glass laser and a 

CO2 gas laser respectively. 

It is recognized that the spatial variation given by the 

term in parenthesis may be much larger than one in two places, 

near the plasma edge, C= 0 , and near the critical density 

C = 1 . The motion near = 0 will be dominated by the dyna

mics of the adjacent denser parts of the plasma. The electro

magnetic force does seem to have a significant effect near 
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= though, but the presence of anomalous absorption effects
 

in this neighborhood will likewise generate high thermal forces
 

which may well be more important. The anomalous absorption
 

16 

effect has been studied theoretically by Kruer et al. and
 

was seen to appear in an earlier experiment by Gekker and
 

1 7
 

Sizukhin.
 

The comparison of figures 31 and 32 with figures 16, 17,
 

18, and 19, the re-examined regime charts shows the regimes
 

It is seen
in which electromagnetic forces become important. 


that Vem/a becomes of order one only in a heating regime
 

that is already nonstationary and hence not of interest to
 

the problem of stationary laser plasma heating. The one excep

tion is a picosecond pulse with a CO2 laser where electromag

netic forces become important at the edge of the stationary-


But even then the nonstationary
frozen-conducting regime. 


regime is only extended slightly.
 

Appendix 2
 

The Lawson Criterion for Heating a Uniform Plasma
 

The focus of laser plasma heating as described in this
 

work is to achieve a thermonuclear reaction that releases more
 

energy than required to generate it, i.e., the achievement of
 

gain. Thus it is appropriate to conclude this chapter with
 

pertinent statements regarding the achievement of gain.
 

The standard requirement for gain in a pulsed reactor is
 

known as the Lawson criterion.
3 The.Lawson criterion is that
 

the product of the number density of the reactants (equal
 

parts Deuterium and Tritium) and the confinement time must
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exceed 1014 sec/cm3, and that the temperature of the 
reactants
 

exceed 10 KeV,
 

nt > 1014 sec/cm
3 (2-82)
 

(2-83)
> 10 KeV
Ti 


physically this means that a sufficiently dense D-T plasma
 

must react for a long enough time at a high enough temperature
 

in order to release more energy than went into heating 
the
 

The beauty of the Lawson criterion is seen by 
-its very


plasma. 


simplicity--and by its applicability to most 
any scheme or
 

Of course, when the design stage is approached, 
a
 

geometry. 


more exacting criterion will be needed to take 
into account
 

For the analysis of
 the details of the thermonuclear reactor. 

a laser heated plasma the confinement time t is taken to 

, from (2-76). The number 
be the ordinary acoustic time, ta 


2 
 /cm3 
= n = 1.116 x 1021 c/X

density of the reactants is 
ni 


Thus the first part, (2-82) of Lawson's criterion becomes, 

3/2
3/2
 
X 1012 

/A > 3.60 

The second part, (2-83), of Lawson's criterion is that the ion
 

This is true if the electron temtemperature exceed 10 KeV. 


perature exceeds 10 KeV, and if there is electron-ion equili

brium, t > teq , (2-70). These are presented in figure 33
 

where the various requirements are.plotted 
against laser
 

j /A , and the density, C
energy per unit area, 
 0 
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The first part of Lawson's criterionrequires C to be 

below the line nt = 1014. The second part requires C to 

be below the line ta = teq and above the line Te > 10 KeV. 

Lines are also shown supposing that the confinement time is 

ten acoustic times.
 
2
 

The minimum energy for achieving gain is 101 Joules/m


large but probably feasible for future lasers. The corres

ponding density is 0.1nec and the plasma length is 60 m. For
 

1s -3-3
 
a CO2 gas laser this corresponds to ne = 10 cm . A mag

netic field of about a megagauss would be required to contain
 

such a plasma. This is a large magnetic field, but not
 

beyond possibility for the future. A 60 m length for such
 

a magnetic field is a major engineering project to be sure.
 

If it were possible by some technique to confine the
 

plasma for ten acoustic times (by a magnetic mirror effect
 

possibly), then the minimum energy needed reduces to about
 

i0 0 Joules/m2 , corresponding to a density of 5 x 1018 for a
 

CO2 gas laser. The confining magnetic field needed is only
 

increased by a factor of two, and the plasma length is a very
 

reasonable 60-cm. This is an attractive possibility if the
 

2 MG magnetic field together with the enhanced confinement 

can be attained.
 

Appendix 3
 

Effect of Z-Doping on Lawson's Criterion
 

One of the characteristics of laser heating with a long
 

wave length laser (such as the 10.6p co2 gas laser) is a
 

fairly long absorption length. A long absorption length
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requires that the plasma volume be large and thus the laser
 

energy required will also be large.
 

A possible solution to the problem of unwieldy absorption
 

22 

lengths has been suggested by Dawson, and that is to dope
 

the D-T plasma with an impurity having a high atomic 
number.
 

The presence of the "high Z" impurity will increase 
the elec

trons significantly and thus increase the electron-ion 
collision
 

T shortens the absorption length.
time T . Increasing 
1/72/ 

5
 

Specifically, the absorption 
length is proportional to 


where Z is the effective atomic number of the ions. Z 1
 

for a pure D-T plasma. It is appropriate then to examine the
 

Z-doping approach in the light of achieving gain in a 
thermo

nuclear reaction.
 

First of all, the temperature will go up--simply because
 

a shorter length of plasma is being heated. Raising the tem

perature will also raise the pressure. Now if the plasma is
 

inertially confined, then an increase of pressure 
may be of
 

no consequence.. But in a magnetically confined 
plasma, only
 

so much pressure can be contained. Thus the plasma must be
 

initially at a lower density so that the higher 
pressure can
 

But reducing the density
be contained by the magnetic field. 


to keep the pressure fixed increases the 
absorption length
 

and the net effect is that the absorption length is not
 

Thus, Z-doping is of no value in a magnetically
reduced at all! 


confined plasma.
 

Subsequent discussion assumes that the electron 
number
 

density is held constant since it determines 
the refractive"
 

Then
 
properties of the plasma (when reflection 

occurs, etc.). 
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the length of the plasma is reduced. This will immediately 

reduce the confinement time, which is detrimental with respect 

to achieving gain. Moreover, doping with an impurity (holding 

ne constant) reduces the number density of the reactants-

and hence the thermonuclear energy release. Also, bremsstrah

lung losses will increase due to the increased ratio of elec

trons to ions.
 

A measure of the effect of-Z-doping on gain has been made. 

There is a certain fixed amount of energy that must be added 

to a pure D-T plasma of a given electron density to raise its 

temperature to 10 KeV. A minimum nt is then needed to 

achieve gain from the reaction that follows. Suppose that 

exactly .the same amount of energy is added to a doped D-T
 

plasma which has the same electron density. Then a
 

for the doped plasma can be calculated using
new minimum nt 


the D-T reaction and the bremsstrahlung power densities,
 

2 1 9.94
PDT =2.59x 10-24 n F exp - a1 watt/cm
3 

29*= ~ T 2 "_ T 

3 1 n2T 1/2 . a2 watt/cm3
Pbr = 5.35 x 10


is the number density in /cm
3 of all particles, and
where n 

T is the temperature in KeV. An equilibrium plasma is assumed. 

and are factors depending on the doping,a1 a2 


[I + f(A-l)1(l + f(A -1)1 
a £1 + f(A-1))2 
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a l+ 31f(A-1)]Fl -2 f12 

A is the atomic
f is the impurity fraction of the ions and 


number of the impurity (assumed fully ionized). Then Lawson's
 

criterion is
 

1 71 'DT pbr (2-84) 

n-t 1-n 3n2kT 3n- kT( 

is the efficiency of conversion of released energy into 

heating the next slug of plasma to thermonuclear temperatures. 

n = 1/3 after Lawson. Using theThis calculation takes 

for gain (i.e., satisfying
above equations, the required net 


the inequality.(
2 -84) was calculated and is plotted in figur
 

n = a3ne where
34. Used in the calculation was 


- 1.- f 
a 3 =T-+f(A-) 

T = a4T where T is the temperature that is Also used was 


achieved in the doped plasma with 'the same amount of 
energy
 

that produces the temperature TO in the pure plasma. a4
 

is given by
 

[I + f(A-1) 3/S 

a4 = +' f(A-1) 

It is clearly seen that Z-doping always makes the 
Lawson
 

criterion more difficult to attain, i.e., the minimum net
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is always raised. Moreover, z-doping does not improve the
 

electron-ion equilibration time. In fact it raises teq
 

ne is held constant.
(2-76), since Te is increased, and 


Thus the conclusion is obvious; Z-doping is to be discarded
 

insofar as the goal of a thermonuclear reactor is concerned.
 



Chapter Three
 

LASER REFRACTiON IN CYLIDRICAL PLASMAS 

A. REFRACTION IN A STATIONARY PLASMA COLUMN
 

1. Introduction
 

One of the-promising geometries for the production of a
 

thermonuclear reaction is a long cylindrical plasma column.
 

Such a column might be contained on the sides by a magnetic 

field which could be generated in several ways. But magnetic
 

fields can only hold so much pressure, th"us the plasma density 

must be made low enough so that the pressure at 10 KeV can be 

contained. Previously this was an impossible drawback to the 

laser heating of magnetically confined plasmas since the cur

rently available magnetic fields (ca. 300 XG) could only con

tain a plasma density of ca. 101/cm3 . The absorption length 

for a bld+ glass laser in a 1017/cm3 , 10 KeV plasma is an 

incredible 450 miles!
 

However, the advent of powerful long wve length lasers
 

has made a dramatic change in this situation. Dawson, Kidder,
 

and Hertzberg2 3 have proposed the use of a long wave length
 

gas laser to heat such a magnetically confined plasma. Recent
 

developments of high power pulsed CO2 lasers
24 ,25, 26 with
 

=
.), 10.6u show that gas laser development is becoming compet

itive with the solid state lasers in the production of high
 

energy pulses. The significant advantage in using the long
 

wave length, as first noted by Dawson, is that the laser energy 

can e better absorbed by plasmas at densities which can be 

confined in the magnetic fields that are currently feasible. 
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The mechanisms of absorption (with the exception of the
 

recently discovered anomalous absorption1 6 ) are fairly well
 

understood. The primary mechanism is inverse bremsstrab

28
 lung14 027 . In addition, nonlinear 18 and resonance phenom

! I
 ena ,2 9 have been examined. The actual character of'the
 

beating has also been studied (see references cited in Chapter
 

XI). But with one exception, nothing has been said about
 

Vlases and Ahlstrom
30
 

refractive effects in a columnar plasma: 


studied the thermodynamic, absorption, and-refraction problems
 

associated with heating a magnetically confined plasma column 

with a long wave length laser.
 

This lack of previous work is not to indicate that refrac

tion is not a problem. On the contrary, an attempt has been
 

made to propagate a laser down a typical magnetically confined
 

plasma (A-pinch). The result was that the beam was refracted
 

out of the column to the extent that no signal penetrated to
 

the far end of the plasmas. Thus the refraction may play a
 

very significant role in plasmas of this geometry. if it is
 

not possible to keep the laser beam in the plasma column, then
 

all the advantages of long wave length heating are lost, and
 

it is critically important to study the refraction problem.
 

a. General Refraction Problem
 

When the geometry of a particular scheme is investigated
 

it becomes obvious that refraction effects can play a dominant
 

-role. The density gradients in the plasma may refract the
 

radiation out of the plasma before it has traveled far enough
 

to be absorbed. The equation for the index of refraction in a
 

gas composed of atoms, ions, and electrons is
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n= 1 + (I +l 2 ) n , + (K.+K -22 2

i% )i - . 1 % 

where n, e,± cm and X.c, microns. This equation
 

,applies when the frequency w is much greater than the plasma
 

frequency WP and the cyclotron frequency. For X0 > 0.54 

and a typical gas the contributions due to the atoms and the
 

ions can be combined so that
 

I + 1)-23(n.+n ) - 4.5 x I07 2 2n 2 

0 5
Thus it is clear that for Xs > . u and ionization greater 

than 10% that - 1 < 0 whereas for an un-ionized gas 

- 1 > 0 . Therefore in an un-ionized gas the refraction 

deflects the beam towards the higher density but in a fully 

ionized plasma the index of refraction decreases with increas

ing density so the refraction deflects the beam towards the 

lower density. Since all plasmas have ne - 0 at their 

boundaries, refraction could play a dominant role in the
 

application of laser radiation to the production of CTR,
 

The simple equation relating the radius of curvature of
 

a ray, R , to the index of refraction gradient is
 

1,I sint
 
R= S n Igrad n 

where 4 is the angle between the ray and the direction of 

grad n i R 0It is particularly interesting to note" that 

at the plasma critical density, i.e., where the laser fre

quency equals the plasma frequency. For laser heated plasmas,
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the maximum density pmax , may be greater or equal 'to the 

critical density, p 0 . 

In this study only the problem of a cylindrical plasma
 

with azimuthal symmetry irradiated in the axial direction is 

discussed. The results developed here indicate effects that
 

would be important in other geometries as well, and the general
 

trends can be carried over.
 

b. Unfavorable Density Profile 

The most obvious geometry, where p(r) is parabolic with 

Pmax at r = 0 , is considered first. The refraction effects 

are detrimental because of the unfavorable density gradient,
 

It is shown that heating this type of plasma is very difficult
 

due to the refraction losses.
 

If the incident laser beam is focused then it is shown
 

that there exists a solution where the laser beam can be made
 

to propagate indefinitely even in an unfavorable density
 

gradient., Realistically some deviation from the ideal case
 

would occur in practice. when a realistic deviation is allowed 

then it is shown that the propagation distance is improved by
 

a factor of approximately three over the unfocused case.
 

c. Favorable Density Profile
 

The other possibility which exists is that the laser beam
 

is propagated in a regioh where the density gradient is favor

able, i.e., leads to self focusing. It is shown that for a
 

favorable density variation a parallel incident beam is trapped
 

as in a light pipe. Solutions for the wave fronts in a para-,
 

bolic density profile are presented. These solutions based on
 

geometrical optics show that the wave fronts are a family of
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cusped curves that extend down.the column, alternately collaps

ing and expanding. During this process envelopes of the wave 

fronts, caustics, are formed at the locus of points of the end 

of the cusps. 

It is also shown that in a light pipe configuration of the 

plasma, the effective absorption length of the plasma can be 

reduced by as much as an order of magnitude. 

2. Defocusing in a Parabolic Density Profile
 

a. Unfocused Laser Beam
 

The geometry considered is a long cylindrical plasma
 

column with azimuthal symmetry and a density maximum on the
 

axis with a monotonic decrease of the density in the radial
 

direction. A laser beam is incident on the plasma column in
 

the axial direction where it is assumed that'the diffraction
 

effects can be neglected and the laser beam is in the TEM00
 

mode with the intensity distribution approximated.by a para

bola. The general configuration is shown in figure 35. It
 

is accurate to use geometrical optics as long as the plasma 

density is less than the critical density and caustics are
 

not generated. The equations for the intensity and the
 

abosrption must be modified near the critical density and
 

caustics if the details are desired in these localized regions.
 

The Eikonal equation for a cylindrically symmetric geome

try is
 

I u2 + ( )2 
a
c 2(r) 

where u corresponds to time and c is the phase velocity. 

This equation can be reduced to a differential equation for the 

http:approximated.by
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(3_4)
rays - dr 2 dc 
= 01d~~~r + 

dxk x/l 

where the two boundary conditions are that
 

r(O) = ro 

(3-2)
 

dr
d--K0 = 0 

(3-1) leads to the ray equation
The integration of 


(3-3)r cdr 2 ]2.ro)-_cSro [ 

The phase velocity is given by
 

c = %(1C) 
2 

a vacuum and c 2 
is the speed of light in - 

where c o 

to the critical density

the ratio of the density of the plasma 


Thus (3-3) becomes
 
for the particular laser wave length. 


r dr (3-4)
 

Co C(ro) and C = C(r) 

Now in order to evaluate the integral 
in (3-4), a para

where = 

bolic density variation is assumed,
 

•" r 2
 

(35)

= 0 a rC 

C =0 at the edge of the plasma r = b 
r 1 corresponds to 
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and r < 1 corresponds to C = (l-I)i 	 at, r = b . Thus for 

shown in figure 36.r < 1 the-density profile is flatter as 


The ray equation, (3-4), using (3-5) reduces to
 

r = {j - C r 	 (3-6) 

(3-6) can then be used to determine the distance that the
 

laser beam propagates along the column. A measure of this
 

distance is the value of x for which one half the laser beam
 

energy has left the plasma column, x . Figure 37 shows the
 

.
variation of x /b with r for three values of Cm For 

each of the values of Cm a value of the absorption length 

for X0 = 10.6u and Te = 10 KeV is also given. It is clear 

that the radius of the plasma .wouldhave to be very large for 

any significant portion of the energy to be absorbed at 10 Key 

and that r should be very small. 

It should also be pointed out that the case r < i could 

P = 1 , withbe considered as a full parabolic plasma profile, 


a smaller radius laser beam rb . For example if b is the
 

=1 	 or j1orsodn 
plasma radius then rb/b = 3 corresponds to 0 and 

rb/b zj0 corresponds to F A=1 . As long as the character

istic thermal conduction time in the lateral direction is much 

less than the longitudinal acoustic time, the whole plasma 

column would be heated.
 

Finally for this case it is straightforward to make a per

turbation calculation of the percentage of the energy absorbed
 

at any-given temperature. Figure 38 shows that for a CO2 laser
 

and temperatures greater than 100 eV a significant fraction of
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10 KeV the percentage
the energy is not absorbed and at 


These calculations were done for
 absorbed is negligible. 


For larger plasma diameters and
 and r = 0.10 .b = 1.0 cm 

r the picture would of course be more smaller values of 


favorable.
 

b. Focused Laser Beam
 

Now suppose for the parabolic 
density profile, the
 

incident laser beam is focused by 
a lens such that in the
 

x = h as
 
absence of the plasma the focal point would be at 


Before solving this case two limits are
 
shown in figure 39-


then this is the unfocused case 
dis-


If 2 - 
bb
 

obvious. 

then the radiation
If S- 0 


cussed in the previous section. 


will traverse the plasma column 
and go out the other side.
 

should give increased
h/b

Solutions for finite values of 


in fact it would seem reasonable 
to
 

propagation distances: 


search for a solution such that 
the radiation is trapped.
 

The boundary conditions are npw
 

r(O) = r.3, 
(3-7) 

dr g()= rr 

- > 0 (3-8)
r - sinh bl] for 2 

- Ytsinl 


= bi for 2 = 0, (3-9)
y (In - iIn 



i eh 

Figure 39. Focused beam configuration
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-
 b--8 fo < 0 (3-10)

- r " y[cosh- ri cosh 1 or
= yfcoshsh 

where 

h 22 =" Ir TM -z ) hb 2

ro
 

and
 

2
 
2 r0 1 r0 

Y +ro2 m b2 

h2 

the ray paths are overfocused so that they 
cross
 

For 02> 0 


For
 
over the axis and exit from the plasma on the 

other side. 


(as showa in figure 35).

the ray paths are underfocused
02 < 0 


For 02 = 0 all the ray paths'approach the axis asymptoti

cally. This condition requires
 

b2 =. (_L-_l) . (3-11) 

it should be noted that in heating a plasma, this type of solu

tion would only be useful if the characteristic 
thermal conduc

than the longition time in the lateral direction is much less 


tudinal acoustic time so that the whole plasma is heated.
 

As a practical matter it would be impossible to satisfy
 

Thus it is of interest to examine the effect

(3-11) exactly. 


of an error in e.g., r . (3-8) and (3-10) give
 

const.
 
SinFr--r-7 ,
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where rc is the correct value for (3-11) to be satisfied.
 

It is easily seen that only a small error in specifying r
 

those obtained in the unfocused
leads to values b close to 

case. Figure 40 shows the variation of bb vs r for r - r c = 

It is seen that x /b is improved
O.10r e and O.011 c .
 

over the unfocused case by roughly factors of three and nine
 

for r - c =0.10 c and 0.01 respectively. 

3. Refraction in a Favorable Density Profile
 

It is clear that if the density profile has a minimum the
 

rays will be refracted into this region. It may even be pos

sible to trap the rays in a minimum density region. The con

is same exceptfiguration considered the as that of SectionA 2 

now it is assumed that a density minimum exists. In this case
 

it is both convenient and interesting to use the equations in
 

"
 their characteristic form so that 


drdro) + 2 - (rr) (3-12) 

ds C- ccr)] 

and
 

-2 ( - (ro) (3-13)
ds -c 0 

Consider the density variation shown in figure 41. From 

(3-12) it is clear that any ray entering the column with
 

1 s; : and dx"r r 0 r 2 dr(0) = 0 will be trapped in this minimum 

region. Such a configuration could then be called a "light 

pipe" since the light is trapped in the plasma column. 

In order to study the behavior of the radiation in a
 

minimum region in more detail, it is instructive to assume a
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Fimure 41. Density Variation with a general mlnimum
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,p acific density profile and solve (3-12) and (3-13) for thn
 

ray paths and the wave fronts. The density variation chosen in
 

2 
(3-14)C (r) = Cm + (1-M) rt) 

This is a parabolic curve with minimum density Cm at r = 0 

and C = 1.0 or P =PC at r = b . The radius of the laser 

beam is again assumed to be equal to b -

The equation for the rays is then
 

r = r. cosf- X/h 
r(1 r_ /2 . (3-15) 

The wave fronts are given parametrically by the equations 

S (2ICmC (3-16) 

=s 2t2F -%±s+t)2[ s2 1 j 7 
2i(t4LT 2cob .2.)] 

a and t are two parametric variables. The wave fronts arise
 

for constant values of the time variable, u
 

The general proof has already shown that all the rays vnold 

be trapped and is confirmed by (3-15). For this parabolic 

density profile all the rays are cosine functions where the wave 

length of the oscillating rays goes to zero as ro - b 

Physically, this means that those rays entering the column near
 

the critical density point are bent the most sharply and
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oscillate back and forth across* the column with a very short
 

wave length. Those rays that enter the column near the center
 

are only weakly deflected and oscillate back and forth very
 

slowly. The ray that enters the column right on the axis will
 

proceed along the axis without oscillation.
 

They are
A series of wave fronts are shown in figure 42 . 

a series of cusped curves that alternately collapse to the 

axis and then expand. This behavior leads to a series of 

or caustics at the points of reflection, i.e., whereenvelopes 

the wave front turns around and heads back toward the axis. 

Several caustics are shown in figure 4 3 . 

areThese solutions have infinities on the caustics which 

due to the geometrical optics approximation. The behavior
 

discussed in the first appendix. The axial near a caustic is 

symmetry also leads to a singularity at the axis. The behavior 

near the axis is also discussed in appendix one.
 

4. Absorption Length with a Favorable Density Profile
 

It is of interest to compare the absorption length in a 

uniform plasma to the absorption length in' the plasma with a
 

Naturally, the absorption length
favorable density profile. 


not a clearly defined quantity. Thein the "light pipe" is 

rays of the laser beam that enter the central region where the 

density is lowest will experience weaker absorption than those 

rays which enter near the periphery--at a higher density. 

at the density minimumFurthermore, all rays which do not enter 

they move
will oscillate back and forth across the plasma as 


Thus, at any point in the column one finds a
down its length. 


strange conglomeration of rays, whose intensity has been 
damped
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by Widely varying amounts, and whose position seems to have 
no
 

relationship to the origin of the rays.
 

The appropriate way to measure an "effective" absorption
 

.length for such a plasma is to calculate how the overall 
laser
 

the plasma column. The approachpower diminishes in moving down 

is to find first how each bundle of rays has diminished 
in
 

intensity. Consider an annular bundle of rays of equal inten

sity,
 

dW(x,r 0 ) = I(ro) 2irdr exp{-J'rK[r(x,ro)]ds} 

power at x of the radiation thatWhere dw(x,ro) is the 

entered the plasma between the circles r = re and
 

r = re + dro . I(ro) is the intensity profile of the laser; 

K(r) is the absorption coefficient, and ds is an incremental
 

at . The total power
distance along the ray which began r0 

x is found by integrating dw over
in the cross section at 


all r.
 

W(x) = 2v S I (re) expI-f Kds]r~dr, . (3-17) 

can be calculated by performing
The effective absorption length 


Weak
 
the integral (3-17) for a particular density profile. 


W(x) but

oscillatory terms will arise in the calculation of 

W(x) . The effective absorpthese should be neglected giving 


tion length is then given by
 

&eff = (- (x)/ dxV /=0 (3-18) 
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Calculation of "eff /Co Tei was performed for the favorable
 

parabolic density profile (3-14) using two different intensity 
profiles; I(r) - 1 - (rib)2 which approximates the TEM00 

mode, and I(r) - (r/b)2l-(r/b)2 ] which approximates the 

TEM 00+01 mode. c. is the speed of light in a vacuum and Tei 

is the electron-ion collision time. The results are presented
 

in figure 44 where they are compiared to the absorption length
 

in a uniform plasma at a density equal to the minimum density
 

of the favorable profile. It is seen that there is significant
 

enhancement of the absorption length. In fact there is an
 

actual maximum absorption length which occurs approximately
 

when the minimum density is half the critical density. There
 

is at least an order of magnitude decrease in the absorption
 

length for all densities less than about 0.4 of the critical
 

density.
 

Thus, it is seen that the light pipe not only traps the 

laser radiation, but reduces the absorption lengths considerably
 

from the often inconveniently long lengths which arise in a
 

uniform density plasma.
 

5. Summary
 

The problem of propagating a laser beam along a long cylin

drically symmetrical column of fully ionized plasmas has been
 

considered using geometrical optics. For the case where the
 

density has a maximum on the axis and decreases monotonically
 

in the radial direction the ray paths are refracted out of the
 

plasma column. The solutions show that it is very difficult
 

t" heat a long plasma column with this unfavorable density
 

profile. By focusing the incident laser beam it is theoretically 
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possible to keep the light from being refracted out of the
 

plasma column. However, this solution can be compared to
 

finding a neutral stability point in the middle of an unstable
 

region. So that any deviation leads to a very rapid refraction
 

of the laser beam out of the plasma.
 

A "light pipe" effect is found if there is a density
 

minimum. For the general case of a density minimum it is 

shown that a parallel incident beam is trapped by the plasma 

column. A special case where the density variation is para

bolic is considered, and the solution shows that the wave
 

fronts are a family of cusped curves which alternately collapse
 

to the axis and then expand until reflected back along acaustic.
 

is the inten-
The intensity along the caustics is very large as 


sity along the axis. Geometrical optics fails in these local

ized regions (see appendix one).
 

Finally it is shown that for the "light pipe" solutions
 

there is a significant decrease in the effective absorption
 

length due to the rays oscillating back and forth across the
 

plasma. it is clear from these solutions that there are very
 

significant advantages to the light pipe configuration for the
 

production of a thermonuclear plasma.
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B.. DYNAMIC GENERATION OF FAVORABLE DENSITY PROFILES
 

I. Introduction
 

Since the plasma density profiles generally encountered
 

are unfavorable with respect to refraction (such as in the
 

it is important to look for
 quasi-steady stage of a 0-pinch), 


There are basically
ways of creating a favorable profile. 


The first approach is to catch
 two approaches to this problem. 


the plasma during its formative stage when the density 
may not
 

The second

have settled down to its steady "unfavorable" state. 


approach is to take the quasi-steady unfavorable profile 
and
 

change it to a favorable one, i.e., density profile tailoring.
 

The first approach can be applied to a pinch device. 
Dur

ing the formation of the pinch, an axially symmetric 
shock wave
 

Across the shock the density rises. So
 
collapses to the axis. 


at any instant of time during the collapse, a favorable 
density
 

a lower density on the axis than'
profile is seen to appear: 


The density profile during the "collapse phase"
farther out. 


would resemble the solid line in figure 45.
 

After the collapse phase comes the "bounce phase' 
when the
 

shock wave reflects from the axis. 'Due to the nature 
of the gas
 

_dynamics, a favorable density profile 
is left behind the reflec

ted shock. The density profile corresponding to the bounce
 

phase is the dashed line in figure 45.
 

If laser heating during the collapse phase is used, 
the
 

laser pulse must be shorter than the time for the imploding
 

shock to collapse through a distance equal to the radius 
of
 

the beam. Likewise, for the bounce phase, the pulse must be
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shorter than the lifetime of the favorable density profile.
 

All subsequent discussion will deal with the second approach,
 

that of changing an unfavorable density profile into a favor

able one. The basic method here might be called "selective
 

heating" whereby the region near the axis is heated with a small
 

laser, the "pre-laser". The added energy would produce a,pres

sure imbalance causing redistribution of the plasma and possi

bly a favorable density profile for trapping the beam from the
 

main laser.
 

This approach offers a great deal of flexibility in achiev

ing the desired'result. The pulse lengths, the wave lengths,
 

and the energy of each pulse can be treated as independent
 

to prepare a
parameters. For example, suppose the intent is 


plasma for heating by a powerful CO2 laser. Then the plasma
 

length would correspond roughly to the absorption length of
 

10.6p radiation at 10 KeV. But the absorption length at,
 

say; 100 eV is only 1/1000 of its value at t0 KeV. Hence, a
 

CO2 pre-laser could not be used to heat the 
plasma longitu

dinally. Only a small fraction of the lengt would get heated.
 

But a Nd glass laser which has a longer absorption length may
 

be used.
 

Another advantage of using a shorter wavelength for the
 

pre-laser is the refractive improvement. Figure 37 shows that
 
=5xl18 /c3an
 

x = /cmif the initial plasma column has ne 5 x 10 and
 

F = 0.I0 , then for a CO2 gas laser, o:,e half the laser beam
 

would have left the column in three plasma radii., However if
 

X0 = 1.06p corresponding to a Nd
+ glass laser, then X.c 100. 
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X. = 1.06V1 
Figure 46 (which is the same as figure 38 except 


I cm , 80% of the energy
Nd+ glass laser) shows that if b = 


would be absorbed.
 

A second consideration is that the pre-laser 
preparation
 

of a favorable density profile need not be a 
high efficiency
 

For example, if the initial temperature is 
100 eV
 

process. 


then this represents only 1% of the energy 
required to achieve
 

10 Key. If the heating from 100 eV to 200 eV were 
done in a
 

way that produces a favorable density profile, 
then the remain

der of the heating (to 10 KeV) could be done very efficiently,
 

since there would be no refraction losses. 
Inefficiencies in
 

the heating to 200 eV could be tolerated 
since this represents
 

only 1% of the total energy required.
 

it is also interesting to note that once a 
favorable den

sity profile has been produced the additional 
energy absorp

tion due to an incident Gaussian lasrr beam 
will continue to
 

ie beam. This problem

push~mass towards the outer edge of 
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is very similar to the thermal blooming 
problem ,32 which is
 

experienced in the propagation of a laser 
beam through the
 

atmosphere. The fundamental and convenient difference 
is that
 

in the case of a fully ionized plasma 
the laser beam is trapped
 

-ne
because n 

2: Governing Parameters
 

Before considering the methods of density 
tailoring, it
 

is necessary to calculate the various parameters 
that govern
 

Rather than set up the full equation, 
it is
 

the dynamics. 


sufficient at this point to examine the 
scale-of the parameters.
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where rb is the radius of the laser
The length scale is 2rb 


rb will be less than or equal to
beam entering the plasma. 

the plasma radius, b . The density and teiaperature scales 

are the maximum density and temperature respectively in the 

unheated plasma column.
 

There are several time scales of interest. There is the
 

which is the time in which the temperaheating time scale th 


ture would double if the plasma were held stationary. Then
 

T T I Kv W_ 
b2

t /= =-dtC T/ 

where T is the initial temperature, Cv is the constant
 

volume specific heat, KV is the absorption coefficient, "
 

is the laser power. Then th becomes
is the density, and W 


= th 7.40 x 10lr25/2 WXn sec (3-19) 

where rb is in cm , T in eV, X in microns , W in 

watts , and n e in cm-3 

The acoustic time scale ta is defined in the usual way 

as the quotient of the length scale and the acoustic speed.
 

Then
 

6 rb T-/2 sec (3-20)= 1.80 X i0t a 

The thermal conduction time tth is defined as the time
 

for significant thermal conduction to traverse a distance 2rb
 

tth = pCv (2rb)2 Ke
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is the electron thermal conduction coefficient.
where K e 


Then
 

T- 5 2

1.29 x 10-20rb2n sec (3-21)
tth = 


Figures 47 and 48 compare the acoustic and thermal conduc

tion time scales to the heating time for X0 = 1.06p and 

10.6g , respectively. Figure 49 compares the acoustic time to 

the thermal conduction time. The interpretation of the various
 

limits will depend on the particular method of density tailor

ing, but a general comment can be made. If the thermal con

duction time is shorter than the characteristic time of the
 

particular method, then thermal conduction will tend to wipe
 

out any favorable density profile that might be generated.
 

This conducting regime poses a major difficulty. A nonconduc

ting regime occurs if the thermal conduction time is longer
 

than the characteristic time of the particular method, then
 

favorable density profiles generated will endure at least for
 

that characteristic time. Several schemes for density tailor

ing are presented below for both conducting and nonconducting
 

regimes.
 

One more time scale must be introduced, the magnetic
 

diffusion time, which will be important in determining the
 

The magnetic diffucharacteristics of the conducting 'gime. 


, is the time in which a significant amount
sion time, t3 


of the magnetic field diffuses through one characteristic
 

length. it is found by an examination of Maxwell's equations,
 

tB V a(2rb)2
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Figure 47. Comparison of acoustic and thermal conduction 

time scales with the heating time scale for a Nd+ glass laser 
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where p is the permeability, and a is the electrical con

ductivity. Using electrical conductivity from Spitzer,14 tB
 

becomes
 

-53/ 2
 
= 7 x 1075 T

3/ 2 r b sec (3-22) 

The magnetic diffusion time
for temperatures in the eV range. 


is plotted versus temperature in figure 50.
 

3. Density Tailoring in the Nonconducting Regime
 

If tth is much longer than the characteristic time of the
 

process, no thermal conduction occurs. In this regime it is
 

relatively easy to change an unfavorable density profile to a
 

The central part of the plasma is heated, it
favorable one. 


expands and the density drops to a relative minimum on the axis.
 

no thermal conduction to smooth out the temperature
There is 


profile and consequently the density. Moreover, fairly modest
 

energies are required to make a significant density minimum in
 

a plasma.
 

can be made using the
The simplest estimate of the behavior 


33 on laser focusing and defocusing in atmospheric
work of Raizer


air. This can be applied exactly to weak laser heating of an
 

unconfined nonconducting plasma slab so long as the correct
 

Applying Raizer's results, it can
absorption length is used. 


be shown that for laser pulses longer than the time for an 
acous

tic wave to traverse the beam, the density change is given by,
 

-
60 = 1.73 x10 5 TeS/-- max 

je a
0 
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Fimure 50. Magnetic diffusion time in a fully ionized plasma
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where I(r) is the beam intensity profile, and I is the
 

maximum intensity. Here it has been assumed that the absorp

tion length is long compared to the radius of the beam, and
 

linearized fluid mechanics is used to evaluate the motion.
 

Physically, it is seen that the heating produces a "hollow"
 

in the density with the same shape as the beam intensity
 

profile. As an example, the density profile that would be
 

produced by a laser beam with a parabolic intensity profile
 

is shown in figure 51. For practical values, e.g., J, - 20 

2
Joules at 1.06p , A = 3 mm , C = 1/2 , and Te , 102 ev 

then 6p/p0 = 0(1) . This calculation is valuable only as an 

order of magnitude estimate but it does indicate that a
 

sizeable density hollow can be produced by a modest laser pulse.
 

a. Longitudinal Boring
 

Suppose the pre-laser is fired down the length of the
 

plasma, then the technique might be called "longitudinal
 

boring" since a hollow is being "bored" into the column in
 

a longitudinal manner.
 

There are basically two ways that a plasma can be bored
 

longitudinally. The first way could be used if the plasma
 

length is comparable to the absorption length of an available
 

pre-laser. The laser beam could be made very narrow by a
 

couple of lenses (beam shrinking). In this case the entire
 

length of the plasma could be heated simultaneously with a
 

very short pulse. The subsequent motion of the plasma
 

would produce a density minimum along the axis where most
 

of the radiation had passed. For this method the character

istic time is not the pulse length, but the acoustic time-
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Figure 51. Density produced by week
 

laser heating of a uniform plasma
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which is the time in which the dynamics will produce a favor

able density profile. Then to be in the nonconducting regime 

one must be below the correct t = tth line in figure 49. 

This corresponds to lower plasma temperatures or higher plasma
 

densities.
 

Beam shrinking corresponds to a reduction in the parameter
 
V 

r r = (rb/b)2" Small values of r allow the beam to be 

trapped for much longer lengths as seen from figures 37 and 

40. of course the smallness of the beam is limited by diffrac

tion effects so that there is a limit on the length that a
 

beam can be contained by beam shrinking. The diffraction
 

limit for a Nd4 glass laser is shown in figure 52 where the
 

focused laser results of figure 40 are also plotted. For
 

example, at ne = 1010 /cm3 (Cm = 0.001) with b = 1 cm and
 

rb/b = .25 , a column of plasma - 0 meters long can be irrad

iated. The absorption length at 100 eV of 7.2 m is compara

ble. So an Nd4 glass laser could be used to prepare such a
 

plasma for later heating by the main laser.
 

A second approach to longitudinal boring uses the favor

able effects of plasma motion that arise during longer laser
 

pulses. The physical process that will ensue is described
 

briefly. When the laser pulse begins, the beam is refracted
 

out of the column in a few diameters. But the absorption and
 

the higher intensity in the center of the beam tends to heat
 

the central portion more strongly. It expands and a very
 

weak density hollow is formed right at the end of the column.
 

As soon as it is formed, the refraction losses cease at the
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hollow, so the beam can travel a few 
more diameters down the
 

column before being refracted out. Stronger heating of the
 

central region of the plasma beyond 
the density hollow occurs.
 

It then expands and extends the hollow 
farther down the column.
 

The process continues with the hollow-formation 
region moving
 

Behind the hollow
on down the plasma column much like 

a wave. 


a trapped beam in a favorable density 
pro

formation region is 


Ahead of the follow-formation region 
is a rapidly diver

file. 


The "laser drill"
 
ging beam in an unfavorable density 

profile. 


So
 
as it might be called is shown schematically 

in figure 53. 


then a curious coupling of the refraction 
and the dynamics pro

duces a phenomenon whereby the laser 
actually "drills" out a
 

The column is then pre
density hollow in the plasma column. 


pared for the main laser whose beam 
will propagate down the
 

column without refraction loss.
 

It is clear that the laser drill will 
work in the noncon-


But it is not certain that it will 
work when
 

ducting regime. 


thermal conduction effects become 
important--for they tend to
 

The possibility of a
 
prevent the formation of density hollows. 


laser drill in the isothermal regime 
is discussed in section B 4.
 

The velocity of the laser drill 
is an interesting calcula-


This cannot be calculated exactly 
without solving
 

tion to make. 


the complete problem in which dynamics 
and refraction are
 

coupled,but a suitable estimate can 
be made.
 

The length of the hollow-formation 
region is roughly the
 

out of the unfavorableis refractedlength in which the beam 

Then the velocity of the drill
 x
density region, i.e., 
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'Figure 53. The laser drill 
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divided by the acoustic time.
 must be on the order of x 


Otherwise the drill would be moving faster 
than the plasma can
 

move to establish a favorable profile--which 
is impossible.
 

Bence the governing condition is
 

drillax/ 2rb a 
t- a k ar

Vrin iX 

So the drill
 
is the acoustic speed in the plasma.
where a 


x 2rb 
velocity exceeds the acoustic speed by a factor 

of 


If the drill
 
This condition is necessary for another 

reason. 


velocity does not significantly exceed the acoustic 
speed,
 

-then the plasma will squirt out 
the ends of the column before
 

the drill gets moving.
 

b. 	Lateral Boring
 

may be
 
There is another technique whereby 

a plasma colum 


selectively heated from the sides 
to produce a favorable den

if a laser were fired into the column 
from the
 

sity profile. 


side, then the denser parts of the 
plasma would absorb more
 

But in an unfavorable profile, the 
highest density
 

energy. 


Hece, if one is in the nonconducting
is in the center. 


regime, the hotter center region 
will expand to produce a
 

The requirement for
 
density minimum, a favorable profile. 


< tth , i.e. below the appropriate
this regime is simply ta 


line in figure 49, except now 
the characteristic distance is
 

This merely involves identifying 
the
2rb .
 

rb . A possible
 
2b instead of 


b instead of
lines in figure 49 with 


geometry for lateral boring is shown 
in figure 54.
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Density Tailoring in the Conducting Regime
4. 


The conducting regime is dominated by thermal conduction
 

This is a majc
so that temperature nonuniformities 

are small. 


problem in a plasma with an unfavorable 
density profile since
 

there must be a higher relative 
temperature near the axis to
 

achieve a density minimum.
 

a. Unconfined plasmas
 

The problem can be amply illustrated 
by solving a simple
 

case--weak laser irradiation of 
an infinite plasma slab in the
 

Assume small perturbations in temperature
 isothermal regime. 


is the temperature

T/TQ = 1 + 8' , with 8' « 1 , here T0 


Let the dimensionless distance and
 of the unheated plasma. 


Suppose the
T = t/tp , respectively.
I and
time be R = r/rb 


heating is slow enough that pressure equilibrium 
is maintained,
 

Then the energy equation is
 .i.e., ta << t 


y+l be', I L-1R b"L)=,' i(R) 
MY T- RR M 

The thermal conduc
is the ratio of specific heats.
where y 


is large in the isothermal regime.
n' = tp/tth
tion parameter, 


is small for weak heating.
a' = t/th
The absorption parameter 


The density is assumed to be less than 
the critical density.
 

i(R) is the quotient

The dimensionless intensity profile 


of the intensity at a point in the beam 
and maximum intensity.
 

This equation can be solved using 
Hankel'transforms and
 

has the solution,
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' (R,i) = -- (R) 0 T T SJ (sr)dslY+l 

(3-23)
 

where i(s) is the Hankel transform of i(R) and J. is the
 

Bessel function of order zero. Since the pressure is constant,
 

the density perturbation C, (p - Po)/pc is related to the
 

temperature by C' = - 0' * Examination of (3-23) reveals 

that the initially uniform density profile decays in roughly
 

the time t'T = 1 (taeca = tti) to a steady state profile 

with a hollow the exact shape of the intensity profile- Thus, 

RT) -; m l i) + 0( (3-24) 

for V'T >> I . The resulting density profile resembles that
 

shown 31. The depth of the density hollow is
 

- AP/p = yt /(y+l) t h 

Thus, it would seem that even in an isothermal plasma,
 

density hollows can be produced. But, as soon as the pulse
 

dnds, thermal conduction will fill in the hollow in a time of
 

order tth $ so one cannot delay firing the main laser into
 

the favorable density profile.
 

b. Magnetically Confined Plasmas
 

The conclusion is a bit optimistic when the reality of a
 

Instead of making
nonuniform initial density profile is faced. 


a density hollow in a uniform density profile, one must make a
 

density hollow out of what begins as a density "hump". This is
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a more difficult problem. complicating the problem is the fact
 

seen from figure 50.
 
that the-magnetic field is nondiffusive 

as 


The magnetic diffusion time is very 
slow compared to times of
 

interest, so the magnetic lines of flux 
remain fixed to the
 

fluid particles. The disadvantage of this is that the 
plasma
 

'memory", it remembers its initial density 
profile and
 

Thus, as
 
has a 


is inclined to retain a profile of similar 
shape. 


soon as the laser pulse ends, the nonuniform 
temperature decays
 

and a density profile resembling the 
ori

away in a time tth 

ginal one is assumed.
 

A discussion of the problem of heating 
an isothermal plasma
 

column contained by a nondiffusive 
magnetic field is given in
 

There it is seen that it is impossible 
to change
 

appendix two. 


density hump to a density hollow in 
an isothermal plasma
 

a 

contained by a nondiffusive magnetic 
field.
 

Thus, the question of making a favorable profile out of
 

an unfavorable one is simply a matter 
of making the hollow of
 

(3-24) deep enough to over power at 
least the center of the
 

hump in the density profile. An approximate expression for
 

of (3-24) and
 
the net density profile would be 

simply the sum 


the initial profile. This is reasonably accurate under 
the
 

It disregards the effect that the 
over

assumptions of (3-24). 


all temperature of the plasma will 
increase slightly due to
 

the heating.
 

It becomes even easier to make a density 
hollow if the
 

radius of the laser beam is somewhat 
less than the radius of
 

Then the adverse curvature of the density 
profile


the column. 
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will seem much flatter relative to the narrower beam. This
 

effect is demonstrated in figure 55 for a parabolic density
 

piofile and a laser pulse of 22 joules, a column radius
 

1 , for various beam
h = I cm, ne = 5 x 0 s/C, = l.OE 

seen that the smaller beam radii produce deeperradii. It is 


but narrower density hollows. The larger beam radii produce
 

no density hollows at all.
 

Then it is possible to generate a favorable density pro

file in a conducting plasma. It is done by continuous energy
 

addition to a localized region in the center of the column.
 

This is made possible by the fact that when there is continuous
 

energy addition, the temperature really isn't spatially uniform
 

but may have a density hollow. Therefore there is a possibi

lity of having a laser drill in an isothermal plasma column,
 

if the absorption length is less than the length of the column.
 

It is also possible to use the beam shrinking approach in the
 

conducting regime, except the pulse must be long enough for
 

-the ensuing dynamics to create a density hollow.
 

5. Summary
 

There are many varied approaches to achieving a plasma
 

One is to catch the
column with a favorable density profile. 


plasma during its formation when it may have a favorable profile
 

The other is to
due to collapsing or reflecting shock waves. 


operate on the quasi-steady plasma column in such a way as to
 

produce a favorable profile.
 

The -laserwhich is used in the operation need not have the
 

In fact the low temperatures
same wave length as the main laser. 
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Figure 55, Density hollow boring
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to demand a shorter wave length for the pre-laser,seem 

- Laser irradiation of a plasma column falls generally into 

one of two regimes. The nonconducting regime has no thermal 

conduction and will arise for lower temperatures. The con

ducting regime is dominated by thermal conduction and occurs 

for higher temperatures.
 

If the plasma column is about as long as the absorption
 

length of the pre-laser, then the whole column can be bored out
 

in the center by beam shrinking, making the laser beam narrow
 

enough to travel the entire length without being refracted out.
 

If beam-shrinking doesn't work, then the laser drill can be
 

used whereby the shape of the intensity profile actually drills
 

The plasma column can
out a density'hollow along the axis. 


also be bored by heating from the side (in the nonconducting
 

regime).
 

There are certain peculiarities of the conducting regime.
 

It is possible to generate a density hollow but it persists
 

only as long as the laser pulse. After the pulse ends, the
 

"memory" of the nondiffusive magnetic field returns the plasma
 

to an unfavorable profile much like it had in the beginning.
 



174
 

C. APPENDICES
 

Appendix 1
 

Behavior Near the Axis and Near Caustics
 

Applying directly the results of geometrical optics leads
 

to infinite electric fields at both caustics and at the axis.
 

They arise at caustics since the rays envelope. They arise
 

at the axis simply due to the cylindrical symmetry, a wave
 

collapsing to the axis will generate a singularity in the
 

But singularities
intensity (at least in the linear case). 


in nature and thus there must
in electric fields do not occur 


be an effect that limits the magnitude of the electric field.
 

The failure of geometrical optics can reasonably be expected-

one cannot apply it to phenomena occuring in lengths shorter
 

than a wave length.
 

The study of these singularities begins with an examina

tion of the full linear equations. Eliminating the magnetic
 

field intensity from Maxwell's equations, an equation for the
 

electric field can be found,
 

(3-25)0 1vX(VxE) +p + a 

E is the electric field intensity and J is the current
where 


Consider only the current due to electrons, J = -eneve
density. 


is the mean electron velocity which is governed by
where ve 


an electron momentum equation,
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bYe - my~ 

me e -eE - ee (3-26)
Tei-


The last term in (3-26) is the electron-ion collision term.
 

It assumes the electrons lose their ordered oscillatory motion
 

to random motion due to collisions in a time Tei. Te is 

the electron-ion collision time. Considering only oscillatory
 

-

fields, E = E(r,z)e , then-all time derivatives can be 

replaced by the factor -iw . Then (3-25) and (3-26) combine.
 

to yield
 
2 -. 0 (3-27) 

V - V(V.E) + E=O 

where k is the magnitude of the wave vector
 

- P22
k _2_ 

O w +/r 

which depends only on r
 

If attention is confined to the case where the electric
 

field is in the azimuthal'direction, then (3-27) becomes
 

= 
b2E + ILb( r bE )+ k2 E 0 (3-28) 
O2 

Suppose now that in addition to k being independent of z
 

that E is also independent of z except for periodic spatial
 

oscillations. This assumption is not exactly true in a real
 

plasma column irradiated from the end by a laser. In that case,
 

rays entering the column at different points will trace 
some-


This model has all rays tracing
what different shaped paths. 
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the same paths--so will only be locally valid. In other words,
 

the behavior of a particular ray in the real case is being simu

lated by a solution in which all rays trace, the same shaped
 

path as that particular ray.
 

Then one can take E = F(r) exp[±k(r) sinG(r) z] where
 

r axis.
O(r) is the angle between the wave vector and the 


z
Then (3-28) becomes,'eliminating the dependence on 


(3-dr 22I d 2 ( 
F (r_ -) + [k (r) -k 0 sin2 8(r)]F = 0 (3-29) 

r 


and
 

(3-30)
k(r)sinG(r) = kosin80o 


is its angle
where k. is the wave vector at r = 0 and 0 

(3-30) is the condition thatwith the r axis at r = 0 .
 

must be satisfied to eliminate the dependence of F on z
 

(3-30) also gives the angle of the rays at a particular r
 

and gives the "turning point" where a ray is reflected. Figure
 

56 plots the radial position of the turning point versus 
the
 

of

angle of the ray as it emanates from the axis for the case 


Cm = 0.1
the parabolic density profile (3-14) with 


The turning point in this approximate model corresponds to
 

the point where a ray borders the caustic in the real problem.
 

In the real problem the ray touches the caustic a short 
distance
 

after achieving the maximum distance from the axis--not 
right
 

at the maximum point.
 

Applying (3-29) to a parabolic density profile (3-14)
 

yields,
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Figure 56. Turning point of a ray 
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(r 
2 w2 (-m[O2o 

2 % -oL )3F = 0. (3-31)
l O
(r + r
 Tei
dr dr 


F in (3-31) becomes small
 
It is seen that the coefficient 

of 


r = b
it actually.vanishes, and near 
at to places; at -r = 0 


(the turning point) where the 
coefficient becomes small
 

Cos 8 


r = b cos o, the
 
Near the turning point,
(of order i/W). 


solutions are Bessel functions of one third 
order,
 

1/3 1 /3 (y) + J_1 /3(y)
P const y (J


with
 

s Coa3/2
2(1m)

2(-Cr 

_12 2 L (cosO0 - -) cos 2 8m+C sin20coS8+C sin2 


- r << b
where b cos 8 


This type of solution has been discussed 
by Ginzburg.
 

Physically it represents a standing 
wave pattern near the turn

ing point due to the superposition 
of the incoming and reflected
 

yl/3 JI1 /3 (y)

There is not a real singularity 

since 

rays. 


y 4 0 . The electric field
 
a constant value as
approaches 


intensity near the turning point 
will exceed that in nonsinga

-
(bwu/c) 1
/ 6
 

lar regions by a factor 
on the order of 


0 , (3-31) approaches Bessel's 
equation
 

Near the axis, r = 

r << b 
of zero order so that the solution 

will be for 


- + const YJF const J0 0 or 0 
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are the Bessel functions of zero order of
 where J. and Yo 


It is Y. that has
 
the first and second kinds respectively. 


i/r
 
an actual singularity. Geometrical optics predicts a 


1/r singularity in the
 singularity in the intensity or a 


For large values of the argument of Y,
electric field. 


5)\
2c 12~
/ 
 o)VCvrJP 


(aside from the oscillatory part) 
varies like I/r

which 


But geometrical optics
and agrees with geometrical optics. 


r,< c/w

fails for distances smaller than a wave length, 


i.e., when the argument of Y0 becomes small. Then,
 

y Wr J log vr ) 
00
 

which is a much weaker singularity--though nonetheless 
still
 

present. Physically this means that most of the wave 
is
 

reflected within a wave length of the axis and 
only a small
 

part ever converges all the way to the axis 
to generate a
 

singularity.
 

of course the axial singularity is not a 
real one. Non-


More
linear effects will stop the singularity at 

some point. 


over the significance of the singularity 
is doubtful anyway.
 

Only for small distances much less than 
a wave length) will
 

But the electron mean 
the electric field be very large. 
free
 

path (for collisions with ions)is never 
much less than the
 

laser wavelength for thermonuclear plasmas. There can be no
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heating without electron-ion collisions, hence the temperature
 

couldn't have a singularity even if the electric field 
did.
 

There is another effect that has been observed along the
 

axis of a laser beam. That is the collapse of part of the
 

beam into an intense filament.
34 This has been attributed to
 

3 5'

nonlinear effects of intensity on the 

index of refraction.


This effect--which is not well understood--may 
hold possibi

lities for the trapping of very narrow laser 
beams.
 

Appendix 2
 

Heating of Conducting Plasmas
 

Contained by Nondiffusive Magnetic Fields
 

A solution has been found for the heating and expansion 
of
 

a plasma column which is in the conducting regime. 
The heating
 

is slow enough that pressure equilibrium is maintained,
 

ta << th ,and the heating is conducting, tth << ta This
-

t = in
 
reguires a plasma temperature above the-line 1 ta 


ta = tth in figure 49.
figure 47 and above the line 


B
 
In a cylindrical magnetic field, the magnetic 

field, 


is related to the magnetic flux, B ,by
 

1 boB
 
B2itr Or
 

is fixed to the fluid
 
Since the field is nondiffusive, B 


The displacement function for
 particles and moves with them. 


where X is the location at time
 = 
a particle is r X(r0 ,t) , 


t of the particle that was at r0 when t = 0 . Then §B
 

http:filament.34
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is a function of r. alone, so that
 

dl /dro
 

S 0 

= B /2V becomesThen the magnetic pressure p3 

r 2 A bX (3-32)=p
p3 


where PBo(r 0) is the magnetic pressure profile before the
 

heating; t = 0
 

Nondimensionalizing the variables, the pressure scale 
is.
 

the total pressure before the heating. The temperature scale
 

is the initial temperature which is spatially uniform like
 

the pressure. The density scale is the maximum initial den-


Then the equation of state is the

sity which is on the axis. 


of the magnetic pressure nB
 
pressure, U ,equals the sum 

CO
and the thermodynamic pressure 


(3-33)

- "C + 1B 

"Initially, the equation of state is,
 

(3-34)
+11B
1 CO 


The Lagrangian continuity equation relates the 
density to its
 

initial value using the displacement function,
 

(3-35)
Cs ! 
0 

t = 0).is the initial density profile (at
where C (r ) 

0 0
 

35), an equation for X results,
Then, combining (3-32, 33; 34, 
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(X 2 or.2C.3-X36)flx.-- er-(x b (l-C.)r - 0 (3-36) 

Since n and 6 are spatially uniform and depend only on
 

time, (3-36) can be integrated exactly and has the solution
 

,c2 0 + ~ +cicnrdr r. 0 3-7HfE 

The density profile C can be written using (3-35) and (3-36), 

21 
-r (3-38) 

1+ , 
2 2
 

The pressure, n , and temperature, 6 , are functions of 

time which depend on the laser power and on the character of 

the confining magnetic field. 

Unfortunately, (3-38) gives C as a function of r, 

but one is interested in C(r) . It is then necessary to 

invert the displacement function found in (3-37); r = X- (rt), 

which probably cannot be found explicitly in most 

examples of interest. But at least the solution is available 

in quadrature form. 

The solution has been calculated for the case of a para

bolic initial density profile, Co = 1 - (ro/b)2 . The dis

placement function using dimensionless variables, y = r/b = 

x/b and x = r /b , is0 



rx2 18 
+- +l L- 

4- 2x2 +A+2I+Ax2+x 1 (3-3!
log A+2 J 

4 

A 4
where 


-Anapproximate expression for the density profile near
 

the axis is
 

H n2~42 +0( 4 ) (3-40) 

It is seen that it is impossible in an isothermal plasma to 

change an unfavorable density profile to a favorable one.
 

(3-40) shows that it is still unfavorable with maximum
 

on the axis. The only way then to get a favorable profile
 

*is'to have continuous localized laser heating as described
 

in section B 4. Then a small density hollow can be maintained
 

as long as the laser pulse lasts.
 



Chapter Four
 

DIFFUSION WAVE PHENOmENA
 

A. THE BLEACHING WAVE
 

One of the really interesting results of chapter 11 on
 

laser heating of a stationary plasma was the appearance 
of
 

the so called bleaching wave. This phenomenon differs signi

ficantly from the usual linear absorption. In the linear
 

absorption problem, light is attenuated by a substance 
whose
 

The result is that the
absorption coefficient is a constant. 


intensity decays in simple exporential fashion.
 

In the case of laser plasma heating, the absorption
 

coefficient is not a constant but decreases with increasing 

- / enerally, is quiteelectron temperature (KT / . 

large in the unheated plasma so that the radiation is 
atten

uated in a very short distance, i.e., the plasma is 
opaque
 

to the radiation. If the absorption coefficient is large,
 

then all the laser energy is added to a very thin layer of
 

The energy addition causes the temperature to increase
plasma. 


Thus, the
 
rapidly, so that K decreases--even more rapidly.
v 


layer becomes successively more transparent as time 
proceeds.
 

Then the overall behavior is characterized by the 
propa-


Successive layers
gation of a bleaching wave into the plasma. 


absorb the radiation and become transparent. In essence,
 

Behind the
the radiation bores its way into the plasma. 


wave, the plasma is highly excited and nearly transparent,
 

so that the radiation is only weakly attenuated. In the front
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of the wave is a region of rapid attenuation of the radiation
 

and consequently rapid "heating". Ahead of the wave is a
 

weak exponentially damped beam in a "cold" plasma, closely
 

resembling a linear absorption problem.
 

The term bleaching wave is an appropriate name for this
 

phenomenon. As the wave moves, it bleaches the opaque plasma,
 

making it transparent to the laser radiation.
 

It seems intuitive that any material having an absorp

tion coefficient that decreases under continuous radiation-

will exhibit a bleaching wave behavior. This is indeed true
 

and several illustrative examples are discussed. However,
 

first a presentation of a general example is given to demon

strate the bleaching wave.
 

The radiative transfer equation for radiation propaga

ting in the +x-direction and neglecting thermal radiation is
 

bI 
O= + KV (4-1)
 

where IV is the radiation intensity. The absorption coeffi

cient is some function of the temperature and the density, 
p
 

The energy equation for a stationary substance
KV = KVp,x) .
 

is
 

- -_ (4-2)
P= C 

where the right member represents the divergence of the energy
 

is the constant v61ume specific heat,
flux (intensity), Cv
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and p(x) is the density. The initial condition is the
 

spatial temperature distribution at time t = 0 ; T(x,0) = 

T (X . The boundary condition is the intensity entering 

(x = 0); Iv(0,t) = Ivo(t) which is
the substance at its edge 


the intensity delivered by the laser.
 

Combining (4-1) and (4-2) yields a second order partial
 

differential equation
 

0 (pT)] + ' (pT) (4-3) 

In general, the absorption coefficient is a function of 

p and T : KV =IK (p,T) This can also be expressed as a 

K*(p,pT) . Over any givenfunction of p and pT Kv = 

range of the variable pT , the anti-derivative of 

with respect to pT exists such that 

1/KV 

(pT) 

= 1 
K(ppT) 

(4-4) 

being the anti-derivative. The anti-derivative is not
 

unique because if any function of p is added, (4-4) is
 

Then one can say that L(p,pT) - Lo(p,pT)
still satisfied. 


is chosen as the principle anti-deriva+ r(p) , where L 


tive and F(p) is an arbitrary function.
 

Based on the existence of the anti-derivative, and 
the
 

on time, (4-3) can be rearranged to give,
independence of p 
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bt Lb 0L+ (4-5) 

Using the initial condition T(x,O) = T (x) , (4-5) can be
 

integrated with respect to time to yield,
 

a = 6 1L(p,pT) - L (p, pT0)] + pT - pT0 (4-6) 

Notice that the arbitrary function F(p) has disappeared in
 

the application of the initial conditions.
 

The boundary condition can be written as
 

VOot -Kv bt 
V (t) = CMbPT)
0
 

whichin turn can be integrated, applying the initial condition
 

to yield
 

t
 

&0 ptf) L0(P'oTO)1] O=t f Iv (t')dt' 

(4-7)
 

The first order partial differential equation (4-6) together
 

with the boundary condition (4-7) comprise a well posed pro

blem. These are the general equations governing temperature
 

in a one-dimensional medium irradiated by a laser.
 

If the absorption happens to be linear (KV independent 

of pT), then L is just PTA'V . Then the familiar 

exponential decay temperature profile will appear. For 



lea 

example, if the initial temperature is zero, density, laser 

intensity, and absorption coefficient are constant, then the 

tempeiature profiles are 

T = -"IV t e_1VPCv 

The temperature is exponentially damped as one moves into the
 

plasma, and rises with a uniform time factor as time moves on.
 

This illustrates the basic character of linear absorption.
 

There are two types of nonlinear absorption; X. decreas

ing or increasing with temperature. The former rarely occurs
 

in nature and does-not produce a bleaching wave except in
 

the case of a focused beam. The latter leads to the bleach

ing wave.
 

(4-6) cannot be integrated in general. Three physical
 

examples are presented for which solutions to (4-6) have been
 

found. Laser heating of a stationary plasma was presented in
 

chapter I. Laser irradiation of a resonant two level sub

stance, and the laser induced breakdown wave are presented
 

in this section.
 

1. Laser Irradiation of a Two Level Substance
 

Generally an atom or molecule has many discrete energy
 

levels in its internal structure. A molecule has one or more
 

vibrational modes, each with its own set of energy levels and
 

the corresponding quantum numbers. An atom also has a com

plex set-of energy levels and corresponding quantum numbers.
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Transitions by individual particles from one energy level to
 

another are made by several means. For example, a particle
 

in a lower energy state of energy E1 can be raised to a 

higher energy state E2 by the absorption of a photon of 

of exactly the right energy; hv = E2 -fl . Or, a particle 

in the higher energy state when bombarded by the same photon, 

will drop to the lower energy state, emitting a photon of the 

same energy--so that two identical photons result, which is 

I
called stimulated emission. 


consider a substance that has more particles in the lower 

energy state that is being irradiated by a laser of exactly 

the right wave length so that h, - E2-EI. Then, on the 

statistical average more photons are being absorbed than are 

being emitted by stimulated emission. This is simply because

more particles are in the "absorbing" state than are in the 

"emitting" state. But, as the beam is absorbed, more and 

more of the particles are raised to the upper level, so that 

the number in the upper level approaches the number in the 

lower level. Now, the absorption is much weaker since the 

ratio of absorbed to emitted photons is reduced to near one. 

Eventually, the numbers in the two levels will be equal 6o 

that there is no absorption at all, because the number being
 

emitted is equal to the number being absorbed.
 

It is immediately seen that this is exactly the same
 

phenomenon that occurs In the laser heating of a plasma. The
 

local absorption coefficient diminished with time under
 

continous irradiation.
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This sort of phenomena is known as saturable absorption,
 

a type of nonlinear absorption. It has been studied exten

sively since it is this sort of substance that makes a laser
 

or a laser amplifier. The only difference is that for a
 

laser, there are more particles in the upper energy state
 

than the lower so that a beam of the right wave length is
 

amplified rather than being attenuated.
 

The solution to this problem was first worked out inde
37 38
 

pendently by Bellman, et. al., by Frantz and Nodvik, and
 

by Schultz-Dubois.3 9 Each worked out the general time depen

dent solution in a two level substance. These papers neglected
 

spontaneous emission and thermal relaxation from the upper
 

energy level which is appropriate for short time scales.
 

Bellman, et. al., pointed out the appearance of a phenomena
 

whereby the radiation "bores" its way through the substance
 

with a certain velocity which is simply a bleaching wave.
 

Later, Siegmann4 0 worked out the solution neglecting the
 

transient term in the radiative transfer equation. He obtained
 

the same results as in the original studies but in a much
 

easier manner with more lucid results according to his claim.
 

Presented below is a simple solution of laser irradiation
 

of a two level substance. This calculation is similar to
 

the approach of Siegmann but it is instructive in that it
 

clearly demonstrates the bleaching wave.
 

The radiative transfer equation has the usual form (4-1).
 

For this problem the energy equation takes a slightly different
 

form,
 

http:Schultz-Dubois.39
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hv .- = _ O- (4-8) 

where nu is the number density of particles in the upper
 

state and is analogous to the temperature in (4-2). h is
 

Planck's constant and v is the frequency of the radiation.
 

Of course the sum of the number densities in the upper (nu,
 

and lower (n1 ) states in a constant (n)
 

In a two-level substance, the absorption coefficient is
 

(4-9)
XV = a,(n1 -n u) 

where a is the absorption cross section of the radiation.
 

The initial condition is
 

nu(x,O) = nu (x) (4-10)
 

The boundary condition is I (O,t) = I (t)t (4-8) and (4-91 

combine to yield, 

I/Kt has as its principle anti-derivative, -(l/ 2a,)log(n-2nu) 

so that (4-11) can be integrated with time. Performing the 

integration and applying the initial condition yields, 

o -- S tlog(n-2nu)-log(n-2n )3 + n (4-la,
2aVbx U 
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This is in the same form as (4-6) with pT replaced by nu
 

The boundary condition is
 
fthv 

hv Elog(n-2n )-log(n-2n u)1xj = r IVO(t')dt' (4-13) 

which is analogous to (4-7).
 

A particularly simple solution is available for the case
 

Solving (4-12) for this case gives the solution,
nuo= const. 


-0)] (4-14)
1=1 o + (l-Io)tl+tanh[(i-i)j 


where 2nu/n is the dimensionless measure of nu 

= x/Ax ,and T = t/At are dimensionless distance and time 

Ax = 2/oVn and the timerespectively. The length scale is 


being the average incident
scale is At = hv/2avYo , Y0 


a function of time
intensity. The position of the wave as 


is given by
 

TT 

' 


(T) 1 I d +log(l-exp[- IdT') 

IV,/,. The number density is seen to be a
where I = 


It raises 1 from q. ahead
hyperbolic tangent function. 


) to 1 behind the wave
of the bleaching wave (§>>9w () 


( (rw(T) When =
<< ) 1I , the substance is said to be 

"saturated".
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The expression for 9w(r) is composed of a steady state
 

term and a transient term. Considering only the steady state
 

term, the velocity of the bleaching wave is given by
 

2W(l-j)At
 

The velocity of the bleaching wave can also be found by using
 

the conservation of energy. This is done by requiring that the
 

energy flux delivered by the laser (energy per unit time per
 

unit area) must be equal to the energy required per unit
 

volume to bleach the substance times the velocity of the
 

bleaching wave. The calculation is made possible by the fact
 

that essentially all of the laser energy is added to a thin
 

region, the "front" of the bleaching wave. However, the con

servation of energy cannot be used to calculate the velocity
 

of the bleaching wave in a plasma. For this case the energy
 

continues to be added to the plasma far behind the actual
 

front of the bleaching wave. A plasma never saturates com

pletely as does a two level substance since an infinite plasma
 

temperature is required for perfect transparency.
 

The thickness of the bleaching wave is roughly the dis

tance in which the argument of the hyperbolic tangent makes
 

a change of one, so that
 

pax cAx
 

For the particular example of no= 0 (no molecules initially 
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in the upper state) and a uniform lasetpulse, i0 1 , the 

solution becomes 

I h[1 + tanh( -) 

-
St = 3 + In(l-e T) 

This example is shown graphically in figure 57. Also shown
 

in the same figure are temperature profiles for the heating
 

of a uniform stationary plasma by a uniform laser pulse. While
 

certain features differ between the two phenomena, a bleach

ing wave is seen to appear in both. Ahead of the wave there
 

or Se)
is apparently little radiation since the variable (n 


changes slowly. In the front of the wave, the variable rises
 

rapidly, due to strong irradiation and large absorption
 

coefficient. Behind the wave, the variable rises much more
 

slowly due to bleaching as the absorption coefficient goes
 

to zero.
 

2. Laser Induced Breakdown Wave
 

For many conditions, an un-ionized gas such as air is
 

essentially transparent to laser radiation. At least the
 

absorption lengths are quite long compared to absorption
 

lengths that arise in partially and fully ionized gases, or
 

from resonant line absorption (section A 1). Nevertheless,
 

an extremely intense laser beam can cause breakdown of the
 

gas. This phenomenon was first observed experimentally by
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laser irradiation of a two level substance
 

number density 
in unper state = 0 
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Fig'tre 57. Comparison of bleaching waves 
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4 2
 4 1

Damon and Tomlinson and by Meyerand and Haught.


Studies of the mechanism of laser induced breakdown show
 

that the breakdown begins with either stray free electrons in
 

the gas, or with electrons produced by the multiphoton effect.
 

The multiphoton effect is due to the simultaneous bombardment
 

of an atom by several quanta of light, with enough total energy
 

to free an electron. Once an electron is free, the large
 

oscillating electric field causes the electron to collide with
 

atoms and free more electrons. The cascading process pro

duces a large number ol electrons in a very short time. A
 

clearly defined threshold intensity chara6terizes this break

down. Several theoretical investigations of the breakdown
 
. 43,44,45,46,47
 

phenomena followed the experimental discovery.
 

The dynamical behavior following the initial breakdown
 

was-seen to exhibit unusual effects. The expansion of the
 

ionized region was not uniform in all directions. Rather,
 

it moves much more rapidly in the cone of the focused laser
 

beam. This phenomena was first explained by Ramsden and
 

Savic4 8 and was shown to be a'radiative detonation wave, that
 

is a detonation wave whose fuel is the energy absorbed from
 

the laser beam.
 

If the intensity of the laser beam appreciably exceeds
 

the threshold intensity for breakdown at the focus, then
 

another phenomena can occur. In this case the intensity will
 

also exceed the threshold over a certain length of the beam
 

and breakdown will occur at these points also. The gas in
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the breakdown region is stationary and the wave 
like propaga

tion of the region towards the laser source is 
due to the
 

breakdown limit being reached at successively 
longer times
 

The speed of this "breakfor points closer to the source. 


down wave" may exceed the speed of all 
of the possible gas
 

dynamical processes. The breakdown wave was studied by
 

4 9 and its speed was calculated by a phenomenological
Raizer


model.
 

It is shown here that the breakdown wave 
is governed by
 

The only

equations which give the bleaching wave 

solution. 


variation is due to the non-one-dimensional 
geometry which
 

causes the wave to move backwards, i.e., 
moving towards the
 

laser source as contrasted to the usual 
sense of a bleaching
 

wave moving away from the source. otherwise one sees all
 

on one side of the
 
the usual features of a bleaching wave. 


on the other side (ahead)
 wave (behind) is an opaque plasma. 


The heating of the gas is
 is a transparent un-ionized gas. 


done by absorption of the laser radiation--most 
of which
 

occurs very rapidly at the front of the 
wave.
 

The nature of the breakdown wave as 
a bleaching wave is
 

seen by considering a solution to a simple 
breakdown model.
 

is given in terms of the
 The radiative transfer equation 


power , W
 

(4-15)
- -M 0 


The opposite sign from the usual equation 
arises since the
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beam is assumed to travel in the -x direction as shown in
 

figure 58. Figure 58 also shows the geometry of the focal
 

region. At any point the intensity is related to the power
 

by I = W/A(x) , where A(x) is the cross sectional area
 

of the beam.
 

The energy equation is
 

-bx (4-16)
bT 


where pA(x) is analogous to the density in (4-2) and the
 

power W is analogous to the intensity. Combining (4-15)
 

and (4-16) yields, 

which is clearly analogous to (4-3).
 

This problem can be easily solved with the following two
 

assumptions. First the absorption coefficient is given by
 

K L H(ne-net) (4-17) 

where I is a short absorption length, net is the electron
 

number density for breakdown, and H( ) is the Heaviside
 

function. Thus there is no absorption for electron densities
 

below the threshold, and strong absorption above the threshold.
 



199
 

--- ----- focused 

f are laser 

Mx 
 beam 


focal area Af
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-49 

the second assumption is that theFollowing Raizer, 


electron number density grows at a rate proportional to the
 

intensity times the number density,
 

bn ne W 

-Et t*max A(x 

is the focal area, wmax is the maximum powerwhere Af 


and t* is the characteristic time of breakdown at the focal
 

area,
 

Since the absorption coefficient depends on the electron
 

density, it is easier to solve the problem in terms of n 

and then find the temperature.
 

(4-18) for W and applying to (4-15) to eliminateSolving 

W yields 

Ibn '419'n 
K bX k t e O) -

Applying the absorption coefficient (4-17) to (4-19)
 

yields
 

0 = b2 (A(x) log ne) - ne-net) b (A(x) log n 

(4-20) 

The initial conditions are
 

he(X,0) = ne' (4-21) 

T(XO) =T 
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is a small residual electron density due to chance
 where ne0 


free electrons in the gas, or due to electrons 
produced by
 

4 9 
 The boundary condition is
the multiphoton effect.


W(-,t) = wL(t) , (4-22) 

(4-20),

where WL(t) is the'time history of the laser power. 

(4-21), (4-22), plus (4-18) relating ne and W form a well 

for
posed problem. (4-20) can be solved in two parts; 


< nt and for n > net I and these two parts can be
 

ne < net 
so that the Heaviside
matched. First solve for 

Then (4-20) becomes b (A(x)fne)/Oxbt = 0 
function is zero. 


for which the solution is
 

(4-23)
A(x) log n e = a 1 (t) + b 1 (x) , 

and are arbitrary functions in t and x 
where aI b1 

Applying the initial condition (4-21) yields
respectively. 


But this can only be true if bl(x) is
 
0 = a1 (0) + b1 (x) .
 

Without loss of generality, this constant 
can
 

a constant. 


b1 (x) = 0 = a 1 (0)
be taken as zero so that 


Applying the boundary condition requires 
a little intui

ne < net there is no
 
tive thinking. Consider that for 


Consider also that the successive points of
 absorption. 


in the +x
= net) will have to movebreakdown (where -ne 


direction as time proceeds. Then, if at some point in time,
 

x , then it surely
breakdown has not occurred at a point 


x and the laser.
 
has not occurred at any place between 
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Then the intensity at x must be the undiminished intensity
 

delivered by the laser. So then the boundary condition (4-22)
 

actually becomes
 

W(x,t) = WL(t) , for ne < net 

Applying this to (4-18) using the solution (4-23) yields
 

daa net Af .-- )w .ct)
dt t*Wma x 

which integrated using a1 (0) = 0 becomes 

Af t 
al = ( t*Wmax ) S Wt)dt (4-24) 

0 

Then the electron number density is
 

Af 1 rn e t 
= exp tmax-AEIx- (ts)dt']W for ne<net (4-25)

6

c'eo 0 

Since the absorption coefficient is zero for ne < net, the
 

in this
temperature will not rise at all, but remains at TO 


region.
 

The location of the breakdown wave xw(t) is at the 

point where ne = net which using (4-25) is given implicitly 

by 

t 
2e 1 jwL(t)dt

t* logI w (2-26)ne A((t))A max 
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Of course this is precisely the point where the-solution
 

(4-25) becomes valid.
 

Now the solution for > net must be constructed.
ne 


Then (4-20) becomes
 

0 t ox (A(x) log ne) - (x) log ne) 

This equation can immediately be integrated with respect 

to time, resulting in a first order linear differential equa

tion in x for (A(x) log ne ) . Solving this equation 

yields 

log nea = a2 (t)A-x) ex/t + b2x) (4-27) 

At this point it is possible to go directly to an equa

tion for the temperature behind the wave rather than solving
 

for . Using (4-18) and (4-27), the laser power at a
ne 


point behind the wave is
 

4=~ al(t) eX/(*1? 


The boundary condition is W((t) ,t) = WL(t) so that 

a =-(t) ) L (tt 



2D4
 

and 

w -k (10 exp[ (xMx (t) ) (4-28) 

Then the temperature can be found by applying (4-28) to the 

energy equation (4-16) and integrating with respect to time,
 

1______ tn . 1 
))dt' + const
 

WL(t') exp[y (x-x (t')
PLC A(x) J 

is found by applying the condition thatThe constant 

the equation for
T(xw(t),t) =T . Evaluating the constant, 

the temperature can be written,
 

t 

+ p A(X) J H(xw(t')-x)WL(t') exp[-! (x-xw(t') ))dt'
'T = T 

0 (4-29) 

where xw (t) is given implicitly by (4-26). 

Another form of (4-29) which is more amenable to 
calcu

lation involves the inverse of the function Xw(t)
 

)3dt' , (4-30) 
= W+pCA w(%ti), expE- (xx(t') 

where tw(x) is given implicitly by
 

nelogn 1 t x) 

A % t logn-- 5 WL(t')dt' (4-31) 
x eo () L

fA 


(4-29) where the Heaviside
The wave motion is clearly seen in 


function in the integral implies there is no heating until 
the
 

wave arrives, at which time the temperature rises.
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The velocity of the breakdown wave can be found by taking
 

'the time derivative of (4-26),
 

Af WL(t) 

A t Wmaxxtt-log h-- a 

This velocity could also be calculated by applying conservation
 

of energy.
 

The wave is more clearly seen by calculating an example.
 

Consider a uniform laser pulse so that W = 1-01(t) , To = 0 
2 x 


and a focal region where A(x) = Af(l + r) , i.e., a conical 

beam shape, where rf is the radius of the focal area. For
 

this case the solution is
 

-(I x t) _T xw(t)-x)T a~ 2 [( + 
r eprfAfcV 2 

r }" (t[) - ( -)
l
 

These temperature profiles are plotted in figure 59. for various
 

times. The temperature profiles have the same wave character
 

as the laser heated plasma and the laser irradiation of a two
 

level substance. The only major difference is that the bleach

ing wave moves backwards. This is due to the geometry--the
 

focusing effect on the laser intensity.
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-Figure 59. Breakdown wave 
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Thus three examples of the bleiching wave have been pre

sented which bear similar characteristics. In the first two,
 

laser irradiation of a layer of substance in time produced
 

a significant decrease in the absorption coefficient. The
 

result was a boring effect of the laser beam into the sub

stance. In the third example, laser irradiation produced in
 

time a sharp increase in the absorption coefficient. This,
 

together with the focused geometry caused a reversed boring
 

effect to appear. The penetration of the beam diminished
 

with time; All three of these phenomena show similar pro

files in the dependent variable, as seen in figures 57 and
 

59. In the next section, another phenomenon will demonstrate
 

this same wave like behavior.
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B. TME T4E&NAt WAVE 

There is another class of phenomena which seems to have 

a different physical base than the bleaching wave but whose
 

solutions exhibit a very similar behavior. There are several
 

manifestations of this in physics as will be discussed in
 

section D, but in this section, the discussion will be con

fined to one example, thermal waves in media with nonlinear
 

thermal conduction.
 

in thermal conduction problems, one usually assumes a
 

constant coefficient of thermal conductivity. This is moti

vated by a desire to make the equations tractable--linear in
 

this case so that superposition and all the other techniques
 

associated with linear equations can be used. Yet, there is
 

no substance found in nature which has a constant thermal ,
 

conduction coefficient: it always depends on the temperature.
 

Only for small changes in temperature will linear analysis
 

apply--and then only approximately.
 

Most real diffusion problems are nonlinear and numerous
 

examples have been cited by Cole.
5 0 Some of these examples
 

will be mentioned in section D. A thorough review of the
 

51 
mathematics of nonlinear diffusion has been given by Crank.
 

The numerical approach to nonlinear diffusion problems has
 

been discussed by Richtmeyer.
52
 

A typical nonlinear theimal conduction problem is governed
 

by an equation of the form,
 

PC. (TX(T) hi) (4-32) 

http:Richtmeyer.52
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where T is temperature, K(T) is the coefficient of thermal
 

conduction, and Q is a source term if needed. Suppose that
 

at the edge of a substance, energy is being added. Then ther

mal conduction will transport the energy from the edge to deeper
 

layers of the substance. At any point in time, the temperature
 

profile will be monotonically decreasing with increasing dis

tance into the substance. If the thermal conduction coeffi

cient were constant (linear diffusion) then any temperature
 

profile would be an exponentially damped curve.
 

However, if the thermal conduction coefficient is greater
 

for higher temperature, then heat will conduct more easily
 

in hotter regions, i.e., nearer the edge. Thus the hotter
 

regions will require smaller temperature gradients to conduct
 

a certain amount of heat than cooler regions. Hence the
 

temperature profiles will exhibit the humped shape seen in
 

the laser heated plasma of figure 57.
 

This is clearly seen if a particular example is worked
 

out, that of a fully ionized plasma. In a fully ionized
 

plasma, the thermal conduction coefficient is proportional
 

to T5/2 .53 Suppose the source term in (4-32) corresponds
 

to a constant heat addition rate at the edge of the plasma,
 

Q = Q0 6(x) H(t) , where 6(x) is the delta function. If 

the initial condition is T(x,0) = 0 , and the boundary con

dition is T(=,t) = 0 , then (4-32) can be written as an
 

ordinary differential equation using similarity methods.
 

7

The similarity variable is l = x / t where x and t 
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are suitably chosen dimensionless distance and time, respec

tively. The dimensionless temperature is T = t f(1 ) 

f(l) is governed by 

df 7/2 df
 

dn
 

where IC is the dimensionless parameter representing the
 

thermal conductivity. The boundary conditions are ffc) = 0
 

dfT!2
 
and d- (0) = - 1 . Then for length and time scales for 

which the conductivity parameter is large, K 1 , an approx

imate solution can be calculated,
 

f(N (no - n0) / 

This solution becomes invalid for I-- I << 1 . For n > 

the solution is f = 0 , Near I = , a boundary layer 

approach is necessary to give the details of the solution. 

a constant which can be evaluated by integrating over
11 is 


x to get the total energy added, and equating this to the
 

time integral of the source term. Conducting the integrations
 

yields o = (9/7)7/9 . Then the temperature profiles are
 

17/9 - )2/7 

Several of these profiles are plotted in figure 60 for a
 

fully ionized plasma. The "boundary layer' at the front of
 

the wave is not shown.
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Figure 60. Nonlinear thermal conduction
 

in a uniform plasma slab
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The presence of wave like behavior is clearly seen. This
 

has been appropriately called a thermal wave by Zel'dovich
 

and Raizer.54 The resemblance is even more striking due to
 

the differing character of the governing equations. The thermal
 

wave is governed by an equation of the form of (4-32) which
 

is parabolic. The bleaching wave is governed by an equation
 

of the form of (4-3) which is hyperbolic. This resemblance
 

the linear case where laser irradiation
is carried over to 


and thermal conduction both produce exponential decays in the
 

temperatures produced.
 

The resemblance of the thermal wave to the bleaching wave
 

is not presented as a mere curiosity. Nor is it presented to
 

introduce a coincidental resemblance between two physical 

phenomena. Rather, the goal is to demonstrate that these two
 

of widely differing equations-phenomena--which arise out 

actually are due to two opposite limits of a physical process,
 

i.e., they both fit into a general class of "diffusion waves". 

There are many physical phenomena which exhibt these diffu

sion waves. This contention is presented and supported in 

the next section.
 

http:Raizer.54


213 

C. DIFFUSION WAVES, 

The bleaching wave and the thermal wave actually belong
 

to a single class of diffusion waves. These diffusion waves
 

appear since the rate of diffusion varies with the magnitude
 

of the property that is being diffused. Specifically, diffu

sion proceeds more rapidly for higher values of the property
 

being diffused. This process can be understood by examining
 

the character of diffusion processes.
 

A diffusion process is a transport process. Therefore
 

two things are required: something must be transported and
 

There are several examples of
there must be a transporter. 


energy which may be measured
things that can be transported: 


temperature, momentum which is essentially measured by velo

city, and mass such as the mass of a particular species which
 

There are four things that can
 

-by 


is measured by concentration. 


perform the transporting. This first three fall into one group
 

and are atoms, molecules and macroscopic particles. This
 

group is simply referred to as "particles". The last are
 

massless particles, photons.
 

Hence, one sees a curious wedding of two opposite view

points, the continuum viewpoint and the particle viewpoint.
 

Discrete particles transport--by their motion--continuum
 

properties. For example, electrons move and have a certain
 

energy. The continuum viewpoint measures the average energy
 

of the electrons in terms of temperature, a continuum con-


The random motion of the electrons transport energy
cept. 
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and the process is called thermal conduction.
 

Actually, any system always has both particles and photons
 

Thus both photon and particle transport will always
present. 


be present; however, one or the other may dominate.
 

1. Equilibrium
 

A system will always attempt to reach an equilibrium
 

to smooth out any macroscopic
state. That is, the tendency is 


nonuniformities that might exist. -Macroscopic nonuniformities
 

are smoothed out by either macroscopic or microscopic motion
 

or both. If by macroscopic motion, then a dynamical process
 

ensues. If by microscopic motion, then a diffusion process
 

ensues.
 

Thus a diffusion process is unidirectional, it always
 

This is just another statement
proceeds toward equilibrium. 


of the second law of thermodynamics which says that on the
 

average, a system of particles will always approach a more
 

random disorganized state.
 

a. Types of Equilibrium
 

There are four types of equilibrium that must be estab-


The most obvious
lished by diffusion or a dynamical process. 


For example,
is spatial equilibrium of a macroscopic property. 


diffusion processes attempt to smooth nonuniformities in 
the
 

temperature.
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The second kind is interspecies equilibrium. If there
 

is more than one kind of particle in a system, then there will
 

be an exchange between the two groups of particles to establish
 

equilibrium. For example a fully ionized plasma is a mixture
 

of electrons and ions. If the electrons and ions each have a
 

different temperature, then the system will seek to equalize
 

the two temperatures. Another example, any system is a mix

ture of particles and photons. If there is an imbalance of
 

energy between the photons and particles, then adjustments
 

will be made to create the correct balance between the two
 

systems.
 

The third kind is intraspecies equil.ibrium. There is a
 

certain kind of equilibrium that must be established between
 

the members of a certain species. For example, suppose all
 

of the members of a certain species were moving at the same
 

speed. This is certainly not a equilibrium situation. Such
 

a system would approach a state where all speeds are represent

ed. A few particles would be moving fast, and a few very slow
 

and most would be somewhere in between, i.e., in equilibrium
 

a "distribution" of speeds exists. An equilibrium system is
 

characterized by a certain statistical distribution of its
 

members. For example, there is a certain-statistical distri

bution of energies for a system of particles which is called
 

the Boltzmann distribution. This distribution function gives
 

-the probability of a particle having a certain energy in a
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system with intraspecies equilibrium. ,For particles in the
 

classical limit it is the Boltzmann distribution that a
 

particular particle species will approach within itself.
 

Another example: there is a certain statistical distribution
 

function characterizing photons which is the Planck function.
 

It 'gives the probability of a photon having a certain energy 

in an equilibrium system. 

The fourth kind is -directional equilibrium. A system of
 

particles will tend toward a state in which there is an 

equal number of particles moving in all directions with speeds 

independent of direction. This is the random component of 

velocity since macroscopic velocity always has a single direc

tion with a certain velocity. This equilibrium state is

called isotropy of particle velocities. Thus four types of
 

equilibrium are simultaneously being approached by the parti

cles in a system. of course, the rates of approach to the
 

various kinds of equilibrium are all different--but this is
 

one of the things that makes diffusion processes so interesting.
 

b. Approach to Equilibrium
 

If the particles of a system did not interact, then there
 

would be no means by which to approach an equilibrium state;
 

the particles would continue in their initial state forever.
 

But particles do interact by means of collisions. There are
 

four types of collisions that may occur between particles:
 

1) collisions between particles in which energy or momentum
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is shared; 2) collisions between a particle and a photon in
 

which the photon is deflected (Compton scattering); 3) colli

sions between a particle and a photon in which the photon is
 

extinguished (absorption); and 4) collisions between particles
 

in which a photon is emitted (emission).
 

In each type of collisions the quantity that is being
 

transported is shared between the colliding particles. On the
 

statistical average therefore, collisions tend to move the
 

system toward equilibrium. For example: 1) collisions between
 

particles tend to share energy and to promote isotropy of
 

particle motion; 2) collisions between particles and photons
 

promote isotropy of photon motion; 3) absorption and emission
 

share particle and photon energy.
 

2. Degrees of Equilibrium
 

Of the four kinds of equilibrium, the degree of intra

species and directional equilibrium are important in discussing 

thermal and bleaching waves. 

The tendency of a group of particles is to approach a
 

certain energy distribution function. A system with such an
 

equilibrium distribution can be said to be in energetic equili

btium. The most extreme nonequilibrim situation is when all 

the particles have exactly the same energy. This state is 

called isoenerpetic for particles and monochromatic for photons. 

An example of a system in energetic equilibrium is the interior 

of a perfect black body. An example of an-isoenergetic state
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is an electron beam, and an example of a monochromatic state
 

is a laser beam.
 

A group of particles will approach directional equilibrium.
 

Such an equilibrium is called isotropy. The extreme directional
 

nonequilibrium state is when all particles are moving in exactly
 

the same direction. This is called coherence. There is a
 

directional state that is somewhere in between these two that
 

might be called quasi-coherence. This is where all of the
 

particles have a positive velocity component in say, the x
 

direction, i.e., tend to be moving through the y z plane in
 

the same direction. The particles are not moving in exactly
 

the same direction, but in the same general direction. An
 

example of a coherent state is a laser beam" or an electron
 

beam. An example of a quasi-coherent state is the diffusion
 

of particles from a very hot substance into an adjoining cold
 

substance (such as the hot region behind a shock adjoining the
 

cold region ahead of it). Here, the vast majority of the
 

transport is crossing from the hot to the cold region.
 

3. 	Bleaching and Thermal Waves as Diffusion Processes 

Both thermal conduction and laser irradiation are diffu

sion processes. Clearly, thermal conduction is a diffusion 

process. The transporters are the particles themselves (pri

marily electrons in the case of a plasma). The quantity
 

being transported is energy, as measured by temperature.
 

Diffusion takes place as particles migrate and collide with
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other particles, thereby sharing their'energy. Thermal con

duction is usually characterized by a thermal conduction "
 

coefficient K and assuming that the energy flux vector
 

is given by the Fourier heat conduction law,
 

.4 
q -K V T
 

This law was derived assuming quasi-equilibrium in the energy
 

both spatially and locally. A typical derivation is given
 

by Vincenti and Kruger. 
55 

It is only valid when the spatial
 

variation in the temperature is small in a mean free path,
 

and when there is nearly an equilibrium distribution function.
 

Thus, thermal conduction when governed by the Fourier law
 

is diffusion in the equilibrium limit.
 

Laser irradiation is also a diffusion process. 
The trans

-porters are photons. The quantity being transported is energy
 

which may be measured by temperature, or by the number of mole

cules in the upper state of a two level system. Diffusion
 

takes place as the photons migrate, are absorbed, and stimulate
 

-the emission of other photons, thereby transporting energy into
 

This type of behavior which has not been identified
the system. 


as diffusion is governed by a radiative transfer equation,
 

bxSx + xvI = 0 

Where the absorption coefficient KV includes the net effect
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of absorption and stimulated emission. Then, laser irradiation
 

is diffusion in the extreme nonequilibrium limit, i.e.-, mono

chromatic particles moving in coherent fashion.
 

Hence, laser irradiation and thermal conduction are both
 

diffusion processes, which are merely at opposite ends of the
 

equilibrium spectrum. Then the fact that both exhibit similar
 

characteristics (bleachingwaves and thermal waves) is not
 

surprising. The character of equilibrium and coherent diffusion
 

operating side by side is demonstrated in the next section.
 

4. 	An Illustration of a Single Diffusion Process
 

in the Equilibrium and Coherent Limits
 

Consider the example of thermal radiation in a medium as 

discussed by Zelldovich and Raizet.
5 6 The radiative transfer 

equation in the steady state case for a particular direction 

can.be written as
 

d-r'-++ 	Xv = X Ivp (4-33)v
v ,
 

where 	Iv is the spectral intensity, Kv is the absorption
 

coefficient (taking into account stimulated emission). I
 

is the 	spectral intensity for radiative equilibrium and s
 

is the 	coordinate in the direction of interest. 
The solution
 

of (4-33) is
 

http:Raizet.56
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( exp ds + I exp EIds 

(4-34) 

where I is the constant of integration, and s is the
 
VO 0 

value of s at the edge of the system. The interpretation
 

of (4-34) reveals both equilibrium and coherent diffusion.
 

The first term is the radiation due to equilibrium processes.
 

This term is due to incoherent radiation, which is generated
 

and absorbed within the system. The second term describes the
 

coherent radiation coming from outside the system. If the
 

direction being considered is the same as the laser radiation,
 

then Vs is the laser intensity entering the system. In
 

any other direction, 1O is zero.
 

A quasi-coherent case would arise if the system was 

bounded by a much hotter black body. Then IVO would repre

sent the spectral intensity corresponding to the temperature 

of the hot black body. I\V1 would be nonzero for all direc

tions that pass through the boundary into the system. 

Examination of the governing equations in both the equili

brium and coherent limits shows that they'are similar in char

acter even though they seemed quite different in section B.
 

In either limit, the energy equation is 

bT y *C (4-35) 
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In the coherent limit, the intensity is given by
 

z=x. exp [-r K ds'] (4-36) 
s
o
 

The energy flux is the radiation intensity; I s where
 

4S
 
e is a unit vector in the direction of the laser beam.
 

In the equilibrium limit, the energy equation is the
 

same as (4-35) but the energy flux vector is different. The
 

spectral energy flux vector Sv is given by
 

AvcS =--- A VU (4-37) 

where A is the absorption length at frequency v , and
 

U is the equilibrium spectral radiant energy density (the
 

VP
 

Planck function). This equation, called the diffusion approx

imation comes from assuming quasi equilibrium locally and
 

spatially.5 But the total energy flux is needed and this
 

requires an integral of (4-37) over all frequencies v . The
 

integration yields the energy flux for the equilibrium limit,
 

S A 16 hAT 3 VT (4-38)
T3 

A is the Rosseland mean free path, an averaged value of LV 

58 
(with proper weighting). U is the radiant energy density
 

and is given by Up= 4aT4/c where a is the Stefan Boltzmann
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So then, in the equilibrium limit, the radiation
 

and absorption mechanism actually behaves like thermal energy,
 

diffusing with a conduction coefficient,
 

constant. 


K = k A a T3 (4-39)
 

This radiation process has been identified as a diffusion
 

phenomenon and shown to result in thermal waves by Zel'dovich
 

54
 

and Raizer.
 

The similarity of the energy flux in the coherent (4-34)
 

In the
and the equilibrium (4-38) limits ii easily seen. 


equilibrium limit consider a hot body bordering a cold body 

at x = 0 . The radiation from the hot body diffuses into 

the cold body. As the temperature of the cold body increases, 

(proportional
the coefficient of radiation thermal conduction 


to T 3 as seen in (4-39) ) increases greatly. So-a thermal
 

wave phenomenon will occur similar to that in section B.
 

In the coherent limit, consider a laser beam which enters
 

the cold body at x = 0. If the absorption coefficient Kv
 

decreases with increasing temperature (as with inverse brem

strahlung or any other bleachable type absorption), then the
 

bleaching wave phenomenon will arise.
 

Thus, these two limits of the same physical phenomenon
 

produce similar results. Granted, the details of the processes
 

may vary somewhat but the general character is the same. The
 

next section discusses a number of physical phenomena that
 

are governed by nonlinear diffusion. Among them are examples
 

in both the equilibrium and coherent limits.
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D. EXAMPLES OF DIFFUSION WAVE PHENOMENA
 

There are many physical examples of nonlinear diffusion
 

phenomena, and almost without exception the nonlinearity 
is
 

of the bleachable variety so that diffusion waves appear.
 

Several physical examples are discussed below. A chart sum

marizing these phenomena is given in figure 61.
 

1. Particle Diffusion
 

a. Diffusion of Mass or Species
 

The diffusion of a plasma through a magnetic field 
is
 

The property being diffused is mass
discussed by Kaufman.
5 9 


as measured by the number density of the particles. 
The
 

diffusion coefficient is proportional to the number density,
 

Kaufman presents a similarso this is bleachable diffusion. 


solution that clearly demonstrates the 
diffusion wave.
 

-ity 


This diffusion is the "equilibrium" variety since it is char

acterized by a diffusion coefficient.
 

The diffusion of lead chloride in solid silver chloride
 

The quantity being diffused is the
is studied by Wagner.
60 


concentramolecules of a certain species and is measured as 


The diffusion coefficient is proportional to the
tion. 


concentration, so then it is governed by the same equation as
 

the diffusion of a plasma in a magnetic field.
 

The diffusion of H20 in swelling membranes was studied
 

6 1 In this instance the diffusion
by Fatt and Goldstick.


coefficient decreases with increasing concentration so 
that
 

http:Wagner.60
http:Kaufman.59
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direc- energetic nature
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Figure 61. Examples of diffusion phenomena
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the diffusion is not the bleachable vaiiety. Then no diffu

sion wave appears. This wis the only instance found of a
 

nonbleachable diffusion mechanism although there are pro

bably other examples. This is diffusion in the equilibrim
 

limit since a diffusion coefficient is used.
 

b. Diffusion of Energy
 

The diffusion of thermal energy by nonlinear thermal
 

conduction has been demonstrated in the numerical studies of
 

Shearer,62 and in the analytic studies of Babuel-Peyrissac,
 

et. al.6 3 The phenomenon arose with the rapid laser heating
 

of an overdenso plasma. The laser radiation only penetrates
 

to the critical density, hence only heats the underdense
 

region directly. But the hot underdense region acts like an
 

energy source and rapidly conducts energy to the overdense
 

-region. The thermal conduction coefficient is proportional
 

to the five halves power of temperature, so is bleachable.
 

Thus, a diffusion wave moves into the overdense material.
 

Interestingly enough, in the calculation of Babuel-Peyrissac,
 

et. at., the thermal wave moved very fast at first then slowed
 

down, and was succeeded by a shock wave propagating into the
 

material. This illustrates that diffusion waves can move
 

faster 	than dynamical processes in some cases.
 

The preheating by thermal conduction in front of a strong
 

shock wave is discussed by Zel'dovich and Raiser.54 This is
 

a steady state diffusion phenomena so the temperature profiles
 

http:Raiser.54
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produced are stationary relative to the shock wave. Never

theless, the familiar humped shape i'the temperature profile
 

arises due to the bleachable diffusion. if the thermal con

duction were constant, then only the exponentially decaying
 

profile would be observed.
 

*Heating by an electron beam is suggested to be an example 

of coherent diffusion. This is conceptually the same as the 

heating by~a coherent monochromatic beam of photons, i.e., 

a laser- Some details may differ since electron beams generate 

streaming effects leading to the two stream instability, some

thing that may not have an analogy in photon beams.
 

2. photon Diffusion:" Diffusion of Energy
 

The laser heating of a stationary plasma has been studied
 

in bapter I. This is an example of coherent diffusion. The
 

diffusion is bleachable so the familiar bleaching wave appears.
 

Laser irradiation of a two level substance has also been
 

discussed in section A I. Et is obviously a bleachable
 

diffusion phenomenon so the bleaching wave appears. Any other
 

bleachable absorption mechanism, such as bound free absorption,
 

will also result in a bleaching wave.
 

The breakdown wave, an example of a backwards moving
 

bleaching wave (or an unbleaching wave) was also discussed
 

in section A 2. This is also coherent diffusion. The reverse
 

nature of the wave is due to the converging geometry of a
 

focused laser beam.
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The initial expanding fireball in an atomic explosion
 

64 as the diffusion of equilihas been explained by Marshak


In this example, the radiation diffuses
brium radiation. 


rapidly at first, then slows down and is succeeded by a shock
 

wave--in the same manner as in the study of Babuel-Peyrissac,
 

However in this instance it is equilibrium radiation
 et. al. 


So this is an example of equilibrium
that is diffusing. 


The equations governing this problem
diffusion by photons. 


(4-33) and (4-36).
were mentioned in section C 4: 


These are a few examples of nonlinear diffusion 
and
 

But it is clear that many
doubtless there are others. 


physical phenomena-- especially those characterized by high
 

temperatures-- are characterized by the diffusion wave.
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