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THE EFFECT OF GALACTIC MAGNETIC FIELD LINE WANDERING 
ON COSMIC-RAY PARAMETERS 

Frank C. Jones 

Theoretical Studies Branch 
NASA Goddard Space Flight Center 

Greenbelt, Maryland 20771, USA 

Abstract 

The local configuration of the galactic magnetic field is an 

important factor in determining local cosmic-ray parameters such as 

density, mean age and streaming velocity. According to the theory 

of Jokipii and Park~r the flux tube that confines the cosmic rays 

seen at earth undergoes a random wandering about the average field 

direction. It continues this wandering until it reaches a distance 

sufficiently far from the central plane of the galaxy such that the 

bubble blowing instability occurs and it thus comes to an end as a 

container of cosmic rays. In a previous paper we have calculated a 

probability density for the end points of the flux tube passing 

through the earth employing the theory of Gaussian processes. We 

have now used this result to calculate the probability densities of 

the above mentioned cosmic-ray parameters based on a smoothed out 

source, one dimensional diffusion model. It is seen that these 

parameters have a very wide range of fluctuation but that even 

when the mean age is confined to a narrow range the mean and most 

probable value of the streaming velocity is zero . From this it is 

argued that a very small observed value for the cosmic-ray anisotropy 

requires no special explanation any more than would sny: other value 

compatible with the probability distribution. 

Paper OG-~ 12th International Conference on Cosmic Rays, Hobart, 
1971, Conference Papers (University of Tasmania), !, 396 . 



The Effect of Galactic Magnetic Field Line 

Wandering On Cosmic Ray Par ameters 

Frank C. Jones 

It has long been realized that the strength and configuration of 

the magnetic field of the galaxy is of great importance in determining 

many of the parameters of galactic cosmic rays. Since the cyclotron 

radius of a typical (100 GeV) cosmic ray particle in the galactic field 

( ~3~ gauss) is approximately 3 x 10-5 pc the particles are very strongly 

constrained to follow the field lines from their source to the point 

where they escape from the galaxy. Thus it is not hard to see that such 

cosmic ray parameters as density, mean lifetim9 and streaming veloc ity 

are profoundly affected by the galactic magnetic field. 

Until recently, however, attention has been paid only to the aver age 

effects of the field. Average trapping times for the galaxy as a whole 

have been deduced from assumed diffusive properti es of the field combined 

with an overall regular field of one form or another. However, i n recent 

years it has been realized that if the local galactic field departs in a 

significant way from the average galactic field the cosmic ray parameters 

that we observe at the earth may have little or no relat i on to average 

values computed for the galaxy as a whole. In other words the usual 

treatment of the galacti c field i n theoretical cosmic-ray research has 

concentrated its att ention on averages and ignored (for the most part) 

fluctuations, insofar as our very local observations are 

concerned the fluctuations may be of utmost importance. 
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The major treatment of the deviation of the galactic magnetic field 

from its average configuration is that of Jokipii and P2.rker (1969a,b) 

in t~eir development of the ergodic field line picture. In this picture 

a given field line, or flux tube, does not follow the smooth average 

configuration of the field but rather, due to the turbulent motion of 

the i onized gas in the galaxy, it wonders in a random manner about this 

average configuration such that it resemb16s a position versus time plot 

of a Brownian particle. 

The important aspoct of this picture, insofa~ as cosmic rays are 

concerned, is that when a field line wanders sufficiently far from the 

central plane of the galaxy an instability, the bubble blowing instability 

(Parker 1965), can occur and at this point the cosmic rays that are 

trapped on this field line or flux tube can esc ape the galaxy. Therefore, 

according to this picture the two points, on either side of the earth, 

where the flux tube that passes through the earth wanders to the "edge" 

of the galactic disk and allows the cosmic rays to escape define the 

trapping volume of the cosmic ra~rs that we see here on earth. Such 

parameters of the cosmic rays as the density, mean age and streaming 

velocity will be determined by, among other things, the total length of 

this tube and the position of the earth with respect to the ends. 

Figure 1 illustrates a possible configuration. 

Unfortunately we do not know the configuration of our local flux 

t ube. We are therefore forced to approach the problem probabilisticly. 

In a previous paper (Jones 1971) the author has derived a probability 

density function for the effective "end points" of the flux tube passing 

through the earth. This derivation was based on the theory of Gaussian 
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processes rather than on a diffus i on or Fokker-Planck approach because 

the micro- and macroscopic scale lengths (which must be clear l y separ ated 

if a di ffus i on type equat i on i s to be vali d) are here both char act er ized 

by the correlation length L of the underlying gas motions . 

The results of this derivat i on are shown in Fi gure 2 f or various 

values of Zlthe hei ght above (and below) the cent ral plane of t he 

instability level or "edge" of the disk. In this figure 6 is proport i onal 

to Zlin units of L (tane ) RMS where e i s the angle a t ypi cal fie ld l i ne 

makes with respect to the direct i on of the average f i eld. L(tan e )RMS 

is thus related to the RMS distance a typical field line wand~rs away 

from its average position. The distance X is just proport i onal to the 

distance down the mean field direction in units of the correlation length L. 

We now consider essentially the same situation as that treated by 

Kulsrud and Pearce(1969) namely a flux tube running from -Yl to +Y2 

with cosmic rays undergoing one dimensional diffusion with coeffic i ent D 

along this flux tube. At the end points -Yl' and +Y2 the particles freely 

escape and hence the density must be zero here. Furthermore, as a first 

approach to this problem we shall consider the cosmic ray parti cles t o 

be injected uniformly in space and time with strength S. We hereby i gnore 

all of the complications that I discussed at the last meeting in this 

series in Budapest (Jone~ 1970 a) namely that, in fact, the sources of 

cosmic rays are very l i kely random discrete avents in space and time 

(supernovae)andthis fact itself implies a stochastic aspect of cosmic 

ray parameters (Ramaty et al 1970; Jones 1970 b). This cumpl ication 

will have to wait for later. 
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I n this model the above cosmic ray parameters have essentially 

simple expressions (Kulsrud and Pearce 1969). Introducing X == y/L 

we have 

p = (SL2/2JJ) (X1X2) = P (X1X2) 

(D/L) ( ~ - ~ ) = v (~ - 1 v = Xl X2 Xl X2 

T = (L2/12JJ) (X1
2 + X22 + 3X1S2) = T (X 1

2 + X22 + 3X1Xc2) 

where in each case we have explicitly separated the dimentionless 

variahlEsXl and X2 from the characteristic dimen&ioned quantities 

p, v and T. 

We have chosen values of Xl and X2 at random from the distribution 

shown in Figure 2 with 0 = 0.8 the corresponding values of pIP, v{V 

and TIT.were computod and a relative frequency distribution was 

obtained for a sample size of 105 • The relative frequency distributions 

for Plo, v{Vand TIT are shown in Figure 3. 

The important point to be noted here is the fact tha. t the s treaming 

velocity distribution is strongly peaked about zero. Thus in this model 

a small observed value of the streaming velocity is no more in need of 

a special explanation than is any other . The scale velocity is v = D/L = 
c 13L where A is the mean free path for cosmic ray diffusion and since 

for diffusion to be valid at all we must have A<<L we see that v«c . 

Also since the anisotropy ~.5 vic (Forman 1970) an .~bserved value of 

o = 10-4 (Elliot et al. 1970) implies -2.2 x 10-s < vic < 2.2xl0-s • If 

·we choose ~Opc we have v = c 130 and hence re quire I v fV1 ::§. 7xlO - 4 • 
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This is an extremely narrow slice of the disbribution and this fact ha s 

led many to consider it extremely unlikely that this value could have 

arisen by chance. It is however !!£ ~ unlikely than any other value 

defined with equal precision. In fact it is more likely than any other 

equally precise value. One may therefore not rule out a chance origin 

of the small observed anisotropy. 

One might well ask, however, whether adding information might not 

change this picture. For example we know the mean age of cosmic rays 

near the earth to within say ! 50~, might not adding this fact to the 

problem affect the streaming velocity distribution? 

A glance at Figure 4 should help to allay this suspicion. What 

we see here are the relative frequency plots for another 105 cases 

'T/"" where we have specified that 235 s 'T s 315. We see that although the 

distribution of pIP is profoundly affected the distribution of v/V is 

changed only slightly and i n fact i s more peaked than before. 

The reason for this i s straightforward. The streaming velocity 

depends strongly on the poi nt of observation relative to the end point 

whereas the density and espec ially th~ partlcl e age i s f ar less sensitive 

to the observation point be ing more dependant on tL1~ overal l l ength of 

the flux tube. Thiq statement i s not in cc~tradiction ~o previous 

remarks that have been made concerning the l eakage lif e time of particl es 

and its dependance on position (Jokipl1 and Meyer 1968; Jones1970c). 'I'he 

leakage lifetime of previous discuss ions is actually a 'life expectancy" 

for the particles whereas tbe pr esent concept i s an ~ctual age relat ed to 

the past of a particl e rather than its future • 
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We s~e, therefore, that specifying the age in no way changes the 

picture that we have discussed. In any statistical system that is not 

~ priori asymetric zero will be the !2!! E:obable value of the streaming 

velocity and it should not b e considered impossible that its observation 

is due to chance. 

Future work along these lines should take into account the random, 

discreet nature of the cosmic ray sources as well as the possibility 

that the propagation of the particles is by some mode other than diffusion. 

Furthermore some account should be taken of the fact that the true 

length of a flux tube is not the distance y along the mean field that 

we employed here but rather the integral J(dy2 + dz2 )i. Also the 

variables Xl and X2 are not completely independant but are slightly 

correlated by the ballistic propagation of initial conditions that Was 

discussed in the previous paper (Jones 1971). 
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Figure Captions 

Figure 1. Schematic representation of a possible configuration of 

the magnetic flux tube that passes through the earth. The 

"edge" of the galactic disk is to be taken to mean only 

that distance sufficiently far from the central plane such 

that the bubble blowing instability takes place. 

Figure 2. Outward first crossing rate of field line at Zl. Pr~bability 

t density per unit x - C TT) y/'2L tor three values ot 6 - CZt!L) 

CTT/8)'I(tan e)RMS. 

Figure 3. Relative frequency plot. for cosmic-ray parameters for lOS 

cases. Rel&t1..w frequency is in arbitrary units and the 

parameters are p{P, v{Vand 'rff. 

Figure 4. Relative frequency plots for cosmic-ray parameters for 105 

cases with the constraint 235 S TIT S 315. Relative frequency 

is in arbitrary units and the parameters are p{P, v{Vand 

'r ff. 
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