
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



X-551-71-398
PREPRINT

NASA Tu X 6 s'^^/

PLANETARY ORBITS IN THE EINSTEIN
UNIVERSE

ABOLGHASSEM GHAFFARI

SEPTEMBER 1971
	 OCT 6-'>

.us

v;^". JS'

•^^^f -o n

. 

41D
GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYI ems

wrl! "510 ^ M w
ACCE_	 (5

0 ^p E51 _^ - _^

AD Ni.'SrRI-- ^K 
v (NASA R R i MX O

- -- ;tHR^I

'CODE

-^ (CHIEGC Y

a



September 21, 1971

PLANETARY ORBITS IN THE EINSTEIN UNIVFRSE

Abolghassem C-11affari

ABSTRACT

The object of this note is to study the pianetary or test particle orbits in

the Einstein space-time. After discussing the geometrical properties of the

spherical space and its connection with the Einstein space-time, it is shown
1

that the orbits in the Einstein space-time are the great circles of the spherical

space, and are therefore periodics. It is also proved that the velocity of motion

along the great circles is constant.
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SUMMARY

There are several theories of gravitation that provide theories of models

of the universe. The investigation in this paper is limited to a model of the

universe based on general relativity. The main assumptions made are that the

model has constant space-time curvature, and is a zero-pressure static model

(the M.instein static model).

After a brief outline of relativistic model universes, the geometrical

properties of the spherical space and its connection with Einstein universe are

described. The variational principle, giving the ordinary geodesies of this

universe, is derived. It is shown that the crbits in this model universe are

the great circles of the spherical space and are therefore periodics. Finally it

is shown that the velocity of the motion along the great circles is constant.
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PLANETARY ORBITS IN THE EINSTEIN UN1V ERSE

1. INTRODUCTION

The field equations of general relativity indicate that a uniform cosmological

metric is produced by a perfect fluid which follows the fundamental world-

lines and has uniform proper density and uniform pressure. Mathematically

a uniform cosmological metric is defined by the space - time of canonical form:

ds 2 = dt 2 - S 2 (t) (dr 2 + 0- k 2 (r) dQ'I
	

(1)

where

dQ' = de l + sin2e Cj^62
	

(2)

and

sin r	 k = 1

ck (r) =	 r	 k = 0
	

(3)

sin hr	 k = -1

S(t) = R(t) /c, where R ( t ), called the scale -factor, is an unknown function of

the cosmic time, and c is the local speed of light. The behavior of the scale-

factor R(t) and its physical dimension in connection with the red-shift have

been discussed by McVittie [1, 21. Using the concept of metric automorphisms

in space-time Robertson and Noonan [3] showed that for space - time of

constant curvature K, the function S ( t ) satisfies the differential equation
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S 2 (t) + k + KS Z (t) = 0,	 (4)

dot indicates derivative with respect to time, k = 0 , or ±1 is the constant

Riemannian (spatial) curvature and K the constant Gaussian (space-time)

curvature which may be classified in the three categories K > q K = 0, and

K <0.

If §;' 0, then it follows from (4) that S = -KS .

If S = 0, then both k and K are zero. Equations (4) and (5) are the neces-

sar• and sufficient conditions that space-time have constant curvature [3] .

Translating the definition of a stationary universe into the concept of automorphism

Robertson [3] showed that only stationary universes satisfy the perfect

cosmological principle, and therefore they satisfy the following system of two

equations

S/S = const,

kS = 0
	 (6)

Equations (6) have the following four solutions [ 3 ]

(a) k =	 1 S	 =	 const.

(b) k =	 0, S	 -	 const.

(c) k =	 -1 S	 =	 const.

(d) k =	 0 S/S	 =	 const ;1 0

The cases (b) and (d) have been studied in details. In fact, the study of the

static Min_kovski universe (k = 0, S = 0 ) as well as that of the expanding

2



i

Minkovski universe (k = -1, K = 0 special case of Equation (4)) have been made

and can be found in most texts on general relativistic cosmology.

The de Sitter non-static universe (case d) is being discussed by McVittie

•	 [1, 21 in connection with the red-shift, and Robertson [31 studied in detail as

special simple cosmological model. The de Sitter static universe had been

found a long time ago by Chazy [ 41 .

The purpose of this paper is to consider the case (a): k = 1, S -::const.,

which is called the Einstein static universe (or Einstein cylindrical universe).

It is preposed first to study the goemetrical properties of this universe and

then to investigate the motion of planets in the same universe.

2. THE GEOMETRY OF EINSTEIN UNWEILISE

Let us consider the Einstein static universe, which is the case (a): k = +1 ,

S = const 7 0 or R = const , with the eosmieal constant A = S -2 > 0. This

universe is a zero-pressure static universe indicated by the space-time

ds 2 = dt 2 - S2 rCIW2 + sin 2 (,, (d6 2 + sin 2 9 d¢2)]	 (7)

One can notice at once a three-dimensional manifold with the line-element

(spatial) metric

dt2 = S2 [d,02 + sin 2 cu (d6 2 + sin 2,9 d,^2 )]	 (8)

immbeded in a four-dimensional Euclidean space. Let the four-dimensional

space be described by means of the carte sian coordinates X 1 , X 2 , X 3 , X 4 or
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the polar coordinates S, w, e and 0 given by

x  = S cos w

x2 = S sin w cos e
(9)

X 3 = S sin co sin 0 cos

x 4 =- S sin w sine sin o

where

0:5w5 77, 	 059 <_7,	 0 <_0 < 27

One deduces from (9)

x'2 + x2 	 x32 + x4 = S2	 (10)

which represents a hypersphere of radius S. The line-element in this space

is

d t2= dx 2 + dx 2 
2 + dx 

3 
2 + dx 

4 2 
= S 2 [dw 2 + sin 	 (d6 2 +I sin g e 41 )] (11)

1 

which has the form of the line-element on three-dimensional surface of a four-

dimensional sphere. This space is called Spherical Space of radius S. There-

fore there is a close connection between spherical space and Einstein
e

space-time (7).

Let us study the geodesics of the spherical space (8). These geodesics

are given by the condition:
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 S2L(

dw 2	 df^ z	 2

^) + sin ew ( S	 + sin e w sin 2 f^ (ds ] r;s = 0	 (12)

where s indicates the proper tinne.

The Euler-Lagrange equation for <f gives the first integral

sin ew sin26 -s = const.	 (13)

The section of spherical space by the surface 0 = 0 or hyperplane x 4 = 0 is

according to formulae (9) a sphere Y of radius S. On the sphere 17 the

condition (12) will be reduced to the condition

8
 L(

dwf	 l 2	 (dBl 2
ds 	 + sinew i ds / ] rls = 0	 (14)

which defines the geodesics i.e., the Great Circles. Therefore the geodesics

of the spherical space are the great circles of this space, each defined by the

two equations

't = 0,	 tan w cos d = const.

By a rotation of the axes x l , x 2 , and x 3 each great circle of the spherical

space may be defined by the two simple equations

0 = 0,	 e = 0.

Therefore the great circl^.s have the length 277S and the shortest distance

between two points on a spherical space is less than or equal to nS.

I
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3. ORBITS IN THE EINSTEIN SPACE-TIME

The motion of a particle whose mass is negligible with respect of the sun

is given by the equations of the ordinary geodesics of the space-time (7). These

equations, in terms of the proper time s, are given by

f^(.dt	 z 
	

z

8) z - 

S2 [(_S^L

s) + sine ^a8 

z
J + sin^c^ sin 2

9
 rd  I

	 c1s = 0 (15)

Euler-Lagrange equation for t gives the first integral

dt
Ts- 	 cons*_.	 (16)

Taking into account of the above first integral and the metric (7), the three

Euler-Lagrange equations for w, 6 and t give relations similar to the condition

(12) and the spatial metric (8). Therefore, the orbits in Einstein Universe are the

great circles of the spherical space.

The combination of the first integral (16) and the metric (7) gives the new

first integral

^at)2 
+ sin 2 w 

(d&
J z	 z+ sin 	 sin-'v Fat ) = const.	 (17)

Therefore, in Einstein Universe the velonity of each particle is constant, a property

which belongs to all geodesics of a static metric along which the metric is

	

positive or zero. One can conclude that a particle, in Einstein universe, moves 	 N	 i
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indefinitely along a great circle of the spherical space, that is to say, its motion

is periodic.

The motion of light rays in the same universe will be the subject of another

paper.
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