
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Technical Memorandum 33-493 

Flexible Spacecraft Control System Design Procedures
 

Utilizing Hybrid Coordinates
 

P. W. Likins 

E. L. Marsh 

6, E. Fleischer 

g (AC-CFSION.NU.WERI -(THRU) . . . 

(NASA- RTMX RAD UABER) (CATEGORt 

JET PROPULSION LABORATORY
 

CALIFORNIA INSTITUTE OF TECHNOLOGY
 

PASADENA, CALIFORNIA
 

September 15, 1971 

REPROpUCED BY 
NATIONAL TECHNICAL 

INFORMATION SERVICE 
U.S DEPARTMENT OF COMMERCE 

SPRINGFIELD, VA22161 __ 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Technical Memorandum 33-493 

Flexible Spacecraft Control System Design Procedures
 
Utilizing Hybrid Coordinates
 

P. W. LIkins 

E. L. Marsh 

G. E. Fleischer 

JET PROPULSION LABORATORY 

CALIFORNIA INSTITUTE OF TECHNOLOGY
 

PASADENA, CALI'EORNIA
 

September 15, 1971 



Prepared Under Contract No NAS 7-100
 
National Aeronautics and Space .Administration
 



PREFACE
 

The work described in this report was performed by the Guidance 
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ABSTRACT:
 

Procedures for the practical implementation of the hybrid coordinate
 

methods of dynamic analysis of flexible spacecraft in application to
 

vehicles of realistic complexity are briefly documented, with supporting
 

examples.
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INTRODUCTION:
 

Reference 1 provides a detailed derivation of equations representing
 

the dynamic behavior of spacecraft idealized as collections of rigid bodies
 

and flexible appendages; these equations employ a hybrid system of co­

ordinates, including discrete coordinates for rigid bodies and distributed
 

or modal coordinates for elastic appendages. The objective of Reference 1
 

is the development and dissemination of a body of theory, with only minimal
 

consideration being given to the ways in which this material might be used.
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In the period following the preparation of Reference 1, serious
 

attention has been given at JPL to the development of the practical
 

utility of the hybrid coordinate method by exploration of the various
 

-ways in which it can be used in the practical design of attitude control
 

systems for flexible spacecraft. The application of hybrid coordinate
 

design procedures to specific spacecraft has been described in separate
 

papers as these methods have evolved (References 2,3); the present report is a
 

compilation and documentation of the present status of this continuing
 

process of developing and refining design tools which have become available
 

only with the introduction of the hybrid coordinate method of Reference 1.
 

It may be remarked that the hybrid coordinate method has been widely
 

adopted outside of JPL, and in project applications design procedures have
 

evolved in other organizations. This Memorandum is however largely con­

fined to those design methods developed and applied within JPL.
 

Detailed technical material is reserved in this Memorandum for three
 

appendices, each treating a specific example. The emphasis in the body
 

of this report is on the qualitative description of design procedures
 

and the comprehensive strategy of approaching the task of attitude control
 

system design for spacecraft with large flexible components.
 

DESIGN PROCEDURES:
 

A feature of the hybrid coordinate formulation of equations of motion
 

which distinguishes them from.those obtained by the vehicle normal mode
 

method is the retention in the former of explicit attitude variables for
 

that rigid portion of the vehicle for which attitude control must be
 

maintained. Because these variables (perhaps a set of three attitude
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angles) remain explicitly in the equations, it is a simple matter-when
 

the equations are linearized to obtain a transfer function relating the
 

transforms of these attitude variables to transformed control system torques,
 

autopilot gimbal angles, or whatever measure of control system actuation
 

is most convenient. The influence of vehicle flexibility, as reflected
 

in the response of any number of flexible appendage modal coordinates, is
 

manifested in the transfer functions for the attitude variables. Thus the
 

hybrid coordinate method is particularly well-adapted to the many control
 

system design procedures which employ transfer functions.
 

At JPL, transfer functions have in the past been used primarily in
 

the form of scalar (single-axis) transfer functions for the generation of
 

root locus plots. A computer program developed by E. Kopf and R. Mankovitz 

permits rapid and inexpensive construction of root locus plots, which have
 

proven to be extremely useful for preliminary design of flexible vehicle
 

control systems (see Appendices A, B, C).
 

'Other organizations (e.g. Hughes Aircraft Company) have used Reference 1 

to obtain transfer functions which they have employed in generating phase­

gain plots, and any of the other conventional alternatives to root-locus 

plots can equally well be utilized. 

For a rigid body, the assumption of uncoupled single-axis response is
 

* 
This is not to say that transfer functions cannot be obtained from equations
 
employing either exclusively discrete coordinates or exclusively modal co­
ordinates, since any linear set of equations will suffice. If one requires
 
transfer functions only for the vehicle attitude variables however, with
 
deformation variables occupying a secondary importance, then transfer
 
functions obtained from hybrid coordinate equations are both conceptually
 
simpler and easier to calculate.
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jeopardized only by the existence of products of inertia for the control
 

axes or the presence of stored angular momentum normal to the control axis.
 

For a flexible S/C, one must add to these considerations the likelihood
 

that any given mode of vibration of a flexible appendage will also cause
 

cross-axis coupling. Except for the simplest of idealized S/C (such as
 

that in Appendix A), it must be expected that single-axis response studies
 

for flexible S/C will be less valid in predicting vehicle response than
 

has been the case with the nominally rigid S/C of the past. Whereas it
 

has been a common past practice in S/C control system design to proceed
 

directly from linearized, single-axis response studies using root locus
 

plots to digital simulation of coupled, nonlinear equations, it is recom­

mended that an intermediate step be inserted when vehicle flexibility is
 

expected to introduce cross-axis coupling. This step involves the analysis
 

of coupled equations for which the approximations of linearization have
 

been retained.
 

The use of transfer functions does not preclude the incorporation of
 

cross-axis coupling, but such coupling does complicate their use as a
 

design tool. One can select one of the three axes (say axis 1), and
 

establish a control law for the torque T1 about this axis to maintain
 

control of the corresponding attitude angle @1; and then proceed to the
 

second axis and devise a control law for T2 with the recognition that
 

@2 is influenced not only by T2 but also by T1 , which is introduced ac­

cording to the control law as a consequence of the 9l induced by T2. By
 

the time one faces the prospect of choosing a control law for T3 to control
 

Q3 o and T2
the influences on 93 of T1 (available as a function of 91) 
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(available as a function of @2) greatly complicate the design task, and
 

the designer may wonder if his job would have been easier had he started
 

with the 3-axis; but there are no conceptual obstacles to this approach.
 

At JPL the problem of analyzing coupled linear equations has been 

confronted directly with a digital computer program for the determination 

of eigenvalues and eigenvectors, eschewing coupled-axis transfer functions. 

After the investment of some effort in obtaining a suitable eigenvalue­

eigenvector program and acquiring the necessary skills in its use , this 

has become a useful design tool for flexible vehicle attitude control 

systems. In Appendix C the results of eigenvalue studies for the TOPS 

vehicle are presented, and compared with preliminary conclusions based on 

single-axis response root locus studies. 

The final analytical and computational step in control system design 

is a computer simulation of the systen of coupled, nonlinear equations of 

motion; at JPL this step has been taken via digital computer numerical 

integration (see Appendices B and C). 

Thus at JPL the design of attitude control systems for complex flexible
 

spacecraft has evolved into a three-stage process: (1) Linearized single­

axis response studies using computer-generated root locus plots, (2) Linear­

ized coupled system equation studies using an eigenvalue-eigenvector
 

computer program, and (3) Nonlinear coupled system simulations via digital
 

computer.
 

* The program EVPEVT with error bound print-out was finally adopted, with 
the pracrice of normalizing variables to improve the conditioning of the
 
input matrix until acceptable error-bounds were attained.
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In each stage of analysis, appendage flexibility is represented in 

the hybrid coordinate approach by means of modal coordinates, and this 

would appear to require an extensive modal analysis of all flexible 

structure. This is a substantial mathematical modeling and computing 

task, involving the personnel and computer programs of a structures group. 

In the early phases of control system design, the structural design is 

generally also in a preliminary phase, and detailed modeling is unwarranted. 

This obstacle to efficient system design has been neatly circumvented by 

the development of an appreciation of the physical significance of certain 

matrices which embody the influence of appendage flexibility on control 

system design. Specifically, it has been noted that the influence of a 

flexible appendage in a given mode of vibration on control system operation 

can be characterized by a frequency a, a damping ratio C, and the contribution 

of the mode to a matrix defined in Reference 1 at 6T6. This matrix has 

the units of moment of inertia, and represents (in a certain sense) the 

contribution of the flexible appendage to the vehicle inertia matrix. 

Although one must have a rough appreciation of the mode shape for a
 

particular mode of vibration in order to estimate the contribution of that
 

mode to 8T8, this estimate can be made in many cases without actually
 

performing the modal analysis. For preliminary design pruposes it is there­

fore often possible simply to guess values of a, C, and 68 for an
 

hypothesized mode of appendage vibration. While such a guess will often
 

require substantial revision as the vehicle design firms up and digital
 

computer modal analysis becomes appropriate, this alternative is apt to
 

be far preferable to the old practice of basing preliminary design on the
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idealization of the vehicle as a rigid body.
 

As the design process converges, and fairly accurate characteristics
 

of control system and structure can be ascertained, it becomes increasingly
 

important that simulations incorporate those modes of appendage vibration
 

which influence the control system. At the same time, there is ample
 

motivation to exclude as many nodes of vibration as possible from the
 

simulation, due- in general to the cost in computer running time of each
 

additional coordinate, and in particular to the inordinately high cost in
 

running time and computer accuracy of retaining high frequency nodes of
 

vibration.
 

In addition to the usual procedure of truncating modal coordinates
 

by means of a frequency criterion, retaining only those modes with frequencies
 

in the control system band-width, two more techniques have been developed
 

at JPL for guiding truncation.
 

As noted previously, the contribution of a given mode to 8T8 is a
 

measure of its influence on the attitude control system. This matrix
 

should therefore be computed and printed out as part of the modal analysis
 

task undertaken by the structural mechanics experts. It then becomes
 

possible simply by inspection of the elements of a 3 x 3 matrix for each
 

mode to determine the extent of its influence on control about a given
 

control axis, and the degree to which it causes cross-axis coupling.
 

The final criterion for modal coordinate truncation in advance of
 

digital computer numerical integration is the influence of an individual
 

mode on system eigenvalues. It is much cheaper to explore the consequences
 

of various alternative coordinate truncations with an eigenvalue program
 

JPL Technical Memorandum 33-493 7 



than with a numerical integration routine. 

It should be noted explicitly in this Memorandum that the hybrid
 

coordinate method relies heavily upon the cooperative interaction of
 

personnel in control systems and structural mechanics organizations. Not
 

only are the structures people and their computer programs essential to
 

the detailed task of appendage modal analysis, they also are invaluable
 

in helping to formulate the rough estimates of a, C, and 6T6 that go into
 

preliminary control system design. At JPL there is a strong emphasis on
 

promoting technical communication at the working level between individuals
 

in Structural Mechanics (Division 35) and Guidance and Control (Division 3h)
 

and it is very important that this kind of joint effort be encouraged else­

where. Larger aerospace organizations have on occasion been handicapped
 

in their attempts to exploit the advantages of hybrid coordinate analysis
 

by apparent difficulties in fostering continuing cooperative technical
 

interaction between structures and controls groups.
 

APPENDIX A -- AN IDEALIZED TEST VEHICLE:
 

In order that the development of methods of control system design not
 

be obscured by the mechanical complexity of the object being controlled,
 

a simple, idealized test vehicle (Figure 1) has been devised to permit
 

physically meaningful interpretation of all phases of the analysis. Figure 1
 

shous four elastic members attached to a rigid body B which may also con­

tain a rigid, symmetric rotor. The elastic bodies are massless except
 

for a tip mass on each, normalized to unity (weight .4541tg) The central 

body B (including its rotor) weighs (LKbhg) so the vehicle mass is distributed
 

equally between the rigid part and the four flexible attachments, which
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ROTOR £ 
m 

2 L 

BODY . 
^ A eb2 

Figure 1. Idealized test vehicle 

together comprise what will be called a single appendage. The tip masses
 

are particles, and the central body is inertially spherical, with weight
 

moment of inertia (.758 U1-1 2 ) and dimensions small relative to beam
 

lengths L and A, chosen as (1.2m) and (.6m), respectively. Beam stiffnesses
 

are chosen to make the long beams have natural frequencies of 0.90 and 1.81 Hz,
 

respectively, in the 1-2 and 1-3 planes of the vehicle when attached to
 

a stationary base B. The corresponding "cantilever mode" natural frequencies
 

of the short beams are 2.71 and 4.52 Hz in the 1-2 and 2-3 planes, re­

spectively. For the investigations reported in this appendix, all beams
 

are assumed longitudinally inextensible.
 

The modal coordinates in the matrix 1of Eqs. (224) and (216) of
 

R6ference 1 are not the cantilever modal coordinates of the individual
 

beams, nor are they normal-mode coordinates of the total vehicle. (The
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presence of the rotor makes the vehicle normal-modes complex, and these 

modes are not used here in order to confine the analysis to real numbers.) 

The coordinates,in 1 establish the response of the appendage in modes in 

which they would vibrate freely if the rigid body was free in translation 

but constrained against rotation. With this interpretation, it becomes 

evident that there must be eight coordinates in the'column matrix f, and 

for this simple system one can almosL guess the mode shapes. 

Using established digital computer eigenvalue-eigenvector routines,
 

one can determine the eight natural frequencies and mode shapes quite
 
* 

accurately. Results are presented schematically in Figure 2, and quantita­

tively in Table i. In the latter, node numbers and numbers associated
 

with "d.o.f." (degree of freedom) are to be obtained from the first diagram
 

of Figure 2.
 

For purposes of preliminary design, it may be desirable to make 

exploratory transfer function calculations before the appendage is fully 

defined and subjected to modal analysis. Examination of the matrix transfer 

function in Eq. (292) of Reference 1 reveals that of the appendage 

properties only the matrices a, , and T are required. The autopilot 

transfer function does involve other appendage properties (see Reference 3), 

but in the first approximation Equation (292) will suffice for autopilot 

control also. Since C is actually assigned and not calculated, only a 

and T must be calculated for application of the transfer function in 

this equation.
 
* 
Appreciation is expressed to Mr. John Garba of JPL, Division 35, who
 
actually performed these computer operations, using the SAMIS program.
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FREEDOM 

2) .04Hz 

3) 1.81 Hz 

Figure 2. Mode shapes for test vehicle 
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Table 1. Mode shapes and frequencies 

Mode 
Node/d. o. f. 

M1 MZ M3 M4 -M8 

1/2 0. 707 -0. 817 0 0 0 

1/3 . 0 0 0.707- -0. 799 0.335 

I/5 0 0 0. 022 -0.025 0.010 

1/6 -0 022 0.026 0 0 0 

2/2 -0. 707 -0. 817 0 0 0 

2/3 0 0 -0. 707 -0. 799 0.335 

2/5 0 0 0.022 0. 025 -0 010 

2/6 -0.022 -0. 026 0 0 0 

M4 M5 ,- M6 M7 M8 

3/1 0 -0. 707 -0. 817 0 0 

3/3 0. 050 0 0 0. 707 0. 865 

3/4 0.003 0 0 0.044 0.054 

3/6 0 0. 044 0. 051 0 0 

4/1 0 0.707 -0.817 0 0 

4/3 0. 050 0 0 -0. 707 0. 865 

4/4 -­ 0. 003 0 0 0.044 -0. 054 

4/6 0 0. 044 -0. 051 0 0 
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For this simple system one can readily estimate al --0.9 Hz, since
 

this is the input cantilever mode natural frequency of the longest beams. 

Furthermore, one can utilize the-physical interpretation of 8 T offered 

in the previous section, and guess that in the first mode only the long 

beams will participate (as in Figure 2); 838j should therefore be given 

by 2(.h541g)(l.n) - (l.35Kg-m2 ), since this figure represents the con­

tribution to 13 of the two long beams. One might for this simple system
 

easily guess as well the third, fifth, and seventh mode frequencies and
 

contributions to 6 8, since these are asymmetric modes which have 

frequencies corresponding to the known cantilever mode frequencies. The 

physical interpretation of 8T6 tells us that the symmetric modes (modes
 

2, 4, 6, and 8 in Figure 2) contribute nothing to this matrix, so they can
 

be completely ignored.
 
T 

Confirmation of these estimates for frequencies and 8j 8 contributions
 

comes from the computer-generated value of 8, using the definition in
 

Eq. (287) of Reference 1. The results for 8 and 8 6 (with no truncation) 

are given by 

8 = 

0 

0 

0 

0 

0 

0 

0 

0 

2a 

0 

0 
0 

-2a 

0 

0 

0 

a 
0 

68 = 

b 

0 

0 

0 

4b 

0 

0 

0 

5b 

a 0 0 

O 0 0 
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where a = (.01 Yg-m 2 ); b = (.3h Kg-m 2 ); and computer generated numbers 

below d9)have been replaced by zeros. (For unit consistency it must be 

noted that 6T8 is actually E-18, with E a unit inertia matrix.) For this 

simple system, the estimated values are entirely correct. (The predicted 

131 = (1.35 Yg-m 2 ) checks (-1.16) squared, and the calculated 6T8 is 

precisely the contribution of the appendage masses to the vehicle inertia 

matrix. Furthermore, the even-numbered rows of 6 are null, so these modes 

do not contribute to 8T.) 

Having obtained, by estimation or calculation, the necessary param­

eters of the flexible vehicle, the control system designer can begin the 

sequence of response analyses required for selection of a control system. 

In general, the first step might be the rapid construction of a number of 

root-locus plots for single-axis response, the second step might then be 

a series of eigenvalue studies for a smaller range of preliminary control
 

system designs, and the final step would be a numerical integration of the
 

most general system of equations of motion, to confirm the final control
 

system design. For the simple test vehicle treated in this section, how­

ever, each appendage modal vibration contributes to the vehicle response
 

about one axis only, so the three scalar equations of vehicle motion
 

(Eq. 224 of Reference 1) are coupled only by the "gyroscopic coupling" of
 

the rotor. Furthermore, response 03 about the b axis (See Figure 1)
 
A 

is completely uncoupled from responses 01 and @2 about axes AZ2and2,
 

so root locus plots for this axis must indicate precisely the same response
 

that would be obtained from eigenvalue calculations or numerical integrations.
 

The purposes of this paper are best served by restricting the test vehicle
 

JPL Technical Memorandum 33-493 
14 



analysis results to the presentation of root locus plots for "3. In the
 

next two appendices eigenvalue analyses 'and integration results are
 

presented for space vehicles of realistic complexity.
 

Figures 3-6 portray root-locus plots for 93 response of the test vehicle,
 

under various assumptions. The dashed-line loci on Figures 3-5 are based
 

on the assumption that the vehicle is rigid, so they provide for three
 

simple control systems a basis for evaluating the influence of flexibility.
 

Figures 3-6 introduce flexibility in the first mode of vibration (see
 

Figure 2 and Table 1). In this mode the normalized reduced inertia
 

R 'is 1 - (63t/13 ) = 1 - [1.35/( .76 + 1.68)] = 0.45. The natural 

frequency a1 is 0.90 Hz, although in the plots this value is normalized
 

to unity. The damping ratio C, is assumed to be 0.05 (a relatively high
 

figure is chosen to improve the visual impact of the root locus plot).
 

From Eq. (298) of Reference 1, the poles and zeros of the open-loop
 

transfer function G3 (s) may be obtained. With a normalized to unity,
 

these roots become
 

F1,2 = 0,0 z1,2 = 0.05 L i
 

P3,4 = 0.111 ± i 1.49
 

For Figure 3 the controller (feedback) transfer function H3 (s)has a
 

pair of complex poles, a real zero and a real pole of larger magnitude
 

(so it might be called a lead-lag system with complex poles). The influence
 

of flexibility on the locus is not surprising, but the "crossover gain"
 

which marks the transition to instability is drastically reduced by the
 

flexible appendage. Whereas a rigid vehicle would become unstable when
 

the gain reaches 0.13, Figure 3 shows instability to result when the gain 
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becomes 0.05. This is a reduction for the flexible vehicle to 38% of
 

the cross-over gain for the rigid vehicle.
 

Parenthetically, it may be noted that the gain K employed in these
 

root locus plots is related to the gain K' which appears as a factor in
 

the feedback transfer function by a factor which is uninfluenced by the
 

flexibility of a single mode. Thus changes in root locus plot gain K
 

due to flexibility can be interpreted directly as changes in the actual
 

feedback controller gain K'.
 

Figure 4 is, like Figure 3, based on a lead-lag control system with
 

a pair of complex poles. The poles of H (s) in Figure 4 are somewhat
 

closer to the original than in the previous example. The cross-over gain
 

for the flexible vehicle appears to be 20% higher than for the rigid
 

vehicle, whereas this gain is 62% lower when the complex pole of H(s)
 

matches the structural frequency, as in Figure 3. Thus generalizations
 

regarding the influence of appendage flexibility on control system
 

stability would appear to be dangerous, and superficial physical interpreta­

tions unwise.
 

Figure 5 portrays the rigid vehicle response to a "lead-lag-lag" con­

troller, with a negative real zero and two more remote negative poles (one
 

of which is off the plot at -2.0). The cross-over gain is K = 0.31.
 

Figure 5 illustrates the influence of the first mode flexibility of the
 

appendage, which reduces the cross-over gain to 0.13, 42% of its original
 

value. Figure 6 indicates the influence of the first and second modes of
 

appendage vibration in combination.
 

For a "pure gain" direct feedback control, root-locus plots (not shown)
 

can be deduced by inspection. It can be established by use of the Routhian
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array that such control systems cannot be destabilized by appendage
 

flexibility. (See Ref. 1, pp. 72-74 for details.)
 

For this idealized test vehicle there were generated 35 root locus
 

plots, of which those preceding are typical. With a standardized program 

(written by E. H. Kopf and R. Mankovitz), each plot required only 10 to 

40 see of IBM 7094 tine, depending on the number of plots requested in 

a given run. For the single-axis linear response of a vehicle as simple 

as this test vehicle, the conclusions are quantitatively precise. For a
 

vehicle of realistic complexity (as treated in subsequent appendices), root
 

locus plots may lose quantitative validity, while preserving the qualitative
 

significance normally sought in preliminary design studies.
 

APPENDIX B -- THE TOPS AUTOPILOT: 

The Thermoelectric Outer Planet Spacecraft (TOPS) configuration (Figure 

7) is dominated by a(4.27m) diam parabolic communications antenna and a 

bank of radioisotope thermoelectric generators (RT~s). In addition, a 

pair of telescoping booms are required to provide separation for sensitive 

instruments (magnetometers, plasma wave detector, etc.). Much of the 

remaining scientific instrumentation has been provided viewing area (around 

the antenna) and separation from RTG radiation by mounting it on a large 

foldout structure opposite the RTG foldout boom. Finally, central to the 

craft is an electronic equipment compartment carrying the autopilot's 

attitude sensors (high-gain gyros) and actuator (gimbaled engine). It is 

this portion of the vehicle that will be considered the rigid body to which 

the flexible appendages (RTG, science, and magnetometer booms; antenna) 

are attached.
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While the hybrid coordinate formulation is also the ideal approach
 

for the TOPS cruise attitude control system because of the use of momentum
 

wheels, the discussion here is limited to initial investigations of the
 

autopilot which maintains vehicle attitude during the trajectory correction
 

motor's thrusting periods. The gimbaled engine provides attitude control
 

about the pitch and yaw axes, while roll control is maintained by the
 

roll gas jets, which, in the cruise control mode, are normally used to
 

desaturate the roll wheels. Pitch, yaw, and roll momentum wheels are
 

switched out during the trajectory correction phase along with their respective
 

cruise optical sensors. Rate and position sensing is provided in all
 

three axes by high-gain, rate-integrating gyros.
 

Preliminary efforts have attempted to determine the feasibility of
 

using an autopilot control loop originally designed for a Mars orbital
 

vehicle on TOPS as well. A linearized and simplified version of the pro­

posed autopilot yaw axis (or pitch) loop is shown in Figure 8. Among the
 

assumptions made to develop the simple, single-axis system model was that
 

gimbaled engine reaction torques on the craft would not be considered, i.e.,
 

the engine is assumed massless. Also, as discussed previously, the influence
 

on 0 (pitch or yaw) of constant thrust along the vehicle roll axis is ignored;
 

only the effects of the torque applied by the gimbaled motor and the resulting
 

rigid-flexible body interactions are included.
 

Of course, the three-stage design process to be executed for the TOPS
 

autopilot system must be based on the existence of a detailed hybrid coordi­

nate structural model of the craft pictured in Figure 7. Such a model was
 

developed relatively quickly (2weeks) using 20 discrete sub-bodies to
 

Thanks must go to Messrs. Robert Bamford and Craig Helberg of Division 35
 
who modeled the structure and performed the necessary computer calculations.
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approximate the flexible members. The result of computer calculations to
 

transform the discretized structural model into hybrid coordinate modal
 

data is summarized, in part, in Table 2. Shown are the first ten modal
 

frequencies obtained and corresponding elements of the matrices 6 and
 

Tmy-o. Approximately 30 modes were available in all from the computer
 

generated data.
 

It is at this stage that one must begin to weigh the importance of 

the modes and, tentatively at least, truncate the modal data. The first 

five modes, grouped near 1 Hz may be traced to the antenna and magnetometer 

booms. One can see from the size of coefficients in 8 that pitch and yaw 

axes are predominantly affected by modes'l and 4 while roll largely sees
 

modes 2, 3, and 5. Based on very simple modeling of the craft as a rigid
 

body hinged to two rigid booms, natural frequencies of vibration above
 

4 Hz were shown to have little effect on autopilot stability. Therefore
 

modes beyond 5 were removed from the dynamic model for all phases of the
 

analysis including the detailed computer simulation. An additional excuse
 

for deleting the significantly higher frequency modes is the dramatic
 

improvement in numerical integration speed if digital simulation is employed.
 

Equation (298) of Reference 1 can now be of use in examining the
 

linearized, single-axis control loop- For both pitch and yaw, modes 1 and
 

4 appear to dominate in the 6 matrix, so that 9 and x could be approximated
 

by equations of the form
 

41
449y(s) 2 s4 y y 66y­

= - yyJ Te + hnic +en) s +ndcn + a 
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Table 2. TOPS hybrid-coordinate structural model data 

Mode 

i 

il 
Hz 

T 
ME 

(kg-m) 6(kg-m2 ) 

y z x y z 

o 

0 

1 
2 

4 

5 

6 

7 

8 

9 
I0 

1-31 
LI 

0.74 

0.75 

0.76 

0.76 

1.16 

3.85 

5.02 

5.66 

5.66 
5.69 

0.2839 E-3 0.3557 E-3 

0.1392 EO1I 0.1565 E01 

0.1319 E01 -0.1610 E0I 

-0.1766 E-3 -0.2151 E-3 

0.1235 EGO 0.5553 E-2 

-0.1216 E02 -0.13365 E0 

0.1782 E0I 0.1965 E0O 

-0.2009 E-1 -0.1075 E-1 

0.9229 E0O 0.7903 EGO 
-0.7921 E-1 0.4353 E-1 

1544.9 

2.29 

2.76 

0.1820 E01 

-0.6839 E-3 

-0.4712 E-4 

0.2348 E01 

0.6532 E-2 

-0.6915 E-2 

0.1079 EDO 

-0.8343 EDO 

-0.3320 E-1 
0.1075 E01 

- 2.29 

471.9 

- 34.9 

-0.9479 E 1 

-0.5334 E0O 

0.5523 EGO 

-0.1216 E02 

-0.2891 E-1 

0.2269 EDO 

-0.8941 EDO 

0.1163 E01 

-0.1688 E0O 
-0.1492 E0I 

- 2.76 

- 34.9 

1714.4 

-0.1559 E02 

0.4858 E00 

0.4553 EQO 

0.1172 E02 

0.1992 E-1 

0.8294 EO 

0.5455 E01 

0.2636 E0I 

0.3133 EGO 
0.2003 E01 

kg - 2, = 

0.5230 E-2 

0.1802 E02 

0.1700 E02 

-0.1953 E-3 

0.6242 E01 

-0.3575 E02 

0.1501 E0I 

-0.,9897 E-1 

0.3625 E01 

-0.2894 EO 

562.6 kg 

'0 



(The equation for ox(s)/Tx(s) is identical in form).
 

1 1 4 4
 
With the substitutions Ixx' l, ax' S , x =(1544.9, 471.9, -L5.6, 

= 4.65 and-9.479,11.722, and - 12.16 Kg-m 2, respectively, and al, a4 


4.76 rad/sec, respectively, and C,, C4 = 0.005, the resulting transfer
 

functions for yaw and pitch are
 

=_ (s2 + O.0465s + 21.62)(s2 + O.0476s + 22.8) 
y(s) 1139s2o.405s4 + 066s3 + 31.1s2 + 2.09s + 4931 

s ) 2 

__x (S + c.O465s + 21.62)(s 2 + 0.O1476s + 22.8) 
9(s) 2 43 2 

X 1139s o.887s + 0.089s + 41.9s + 2.09s + 493] 

The open-loop poles and zeros of the linearized, single-axis autopilot
 

system of Figure 7 may now be plotted as shown in Figures 9 and 10. The
 

dashed lines on Figures 9 and 10 indicate the closed-loop root locations
 

under the ideal, totally rigid spacecraft condition where the control
 

parameters are nominally specified as: TG = 1.77 sec, TF = 0,111 sec,
 

=
CC 0.35, Kp = 2.2, wG = 88.0 rad/sec, Cs = 3.47, T = 20.0 sec, and
 

WS = 138.2 rad/sec; gimbal servo poles: -938.66, -20.35; gyro poles:
 

-30.8 k82.4 i; autopilot poles: -9.12, +0.059; gyro zero: -0.565; and
 

path guidance zero: -0.05.
 

Loop gain (DC or Bode gain) at the point of marginal stability is
 

10.0. On the other hand, in Figure 9 the yaw axis loop with approximated
 

flexible spacecraft dynamics shows a drastically changed root locus with
 

a critical gain reduced to 2.9. While the pitch-axis root locus for the
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flexible case also departs significantly from the rigid case, critical
 

gain reduction is only to 8.5. The fact that the total pitch axis moment
 

of inertia is about 3.3 times as great as yaw's obviously was responsible
 

for the difference in location of the flexible appendage pole-zero contri­

butions to each axis and the effect on critical loop gain values.
 

An examination of the rigid-body autopilot system reveals closed-loop
 

bandwidths of about 0.3 and 0.8 Hz corresponding to DC loop gains of
 

1.0 (0 dB) and 3.16 (10 dB), respectively. It is clear that the first
 

four appendage modes have already entered the control bandwidth at the
 

latter gain level and, in the case of yaw, caused instability.
 

One might expect that, if additional modes are used in the initial 

single-axis root locus analyses, critical gain values would decrease even 

more. Further, the fact that interaxis coupling might require even more 

substantial loop gain reductions to maintain stability suggests an 

eigenvalue analysis of the ccmplete system. The TOPS autopilot may be 

arranged into state variable form to give a 30 x 30 system state matrix 

including pitch, yaw, and roll angles, five flexible appendage modes, and 

the various control dynamics. Figure 11 shows that when the detailed, 

coupled case is considered, yaw loop stability deteriorates further and 

essentially controls the stability of the entire system. 

A digital simulation was programmed and included nonlinearities due
 

to (1) gimbal servo drive amplifier saturation, (2) the saturation
 

characteristic built into the compensation block to prevent reaching
 

mechanical gimbal stops, and (3) the roll axis bang-bang control loop.
 

(It did not include gimbal actuator stiction.) The level of detail was
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such as to include effects of gimbal mounting errors and center-of-mass
 

displacements due to appendage deformations, and the hybrid coordinate
 

formulation represented by Eqs. (224) and (216) of Reference 1 was
 

implemented in detail, yaw-axis response is shown for three cases in
 

Figures 12 and 13 to illustrate the computer simulation results. In each
 

case, the autopilot controller and spacecraft are responding to the engine 

turn-on transient ( 445 N ) under the conditions of an initial pitch 

axis center-of-mass offset of (.05 cn) Five flexible modes are used in 

each case in Figure 13; for gains of 2.2 the flexible vehicle proves
 

to be unstable (Figure 13a) as the eigenvalue analysis predicted. Reduction
 

of Kx'y to 1.0 results in a stable response (Figure 13b), which also
 

agrees with eigenvalue predictions.
 

APPENDIX C -- THE ATTITUDE CONTROL OF A FLEXIBLE SOLAR ELECTRIC SPACECRAFT:
 

Introduction:
 

During the cruise-low thrust phase of the mission of the solar electric
 

spacecraft illustrated in Figure 14, one means of providing three axis at­

titude control is the combination of translation and gimballing of the
 

electric propulsion engines. This concept will be analyzed in the sequel.
 

Inclusion of the elastic effects of the flexible solar arrays was ac­

complished by utilization of the hybrid coordinate procedures described
 

in Reference 1.
 

Figure 14 shows the spacecraft to be analyzed. It is composed of a
 

rigid central body B1 to which are attached two flexible roll out solar
 

arrays A, and an engine cluster E. Unit vectors b b and b are fixed
 
-'1' -72 -3
 

in B1 . Figure 15 shows E in more detail. The engine cluster consists
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of a large plate to which are attached three electric propulsion engines
 

and a unit containing translating mechanisms. Two of the engines, B3 and
 

B4, can rotate about the diagonal passing through the b1 - b quadrant.
 

The plate and the remaining engine are denoted B2. E can translate
 

parallel to the b direction and B2 can translate parallel to the b
 

direction. Figure 15b shows the cluster in an arbitrary configuration.
 

Point 0 is the mass center of the entire spacecraft for the case of no
 

engine translation or gimballing.
 

During the cruise low-thrust phase, when E translates parallel to b
 

a control moment parallel to b is exerted on the spacecraft. Translation
 
of B2 parallel to b will produce a moment parallel to b1 . Third axis
 

control is provided by the gimballing of engines B3 and B4 This generates
 

a moment parallel to b3.
 

Figure 16 shows E in even greater detail. In addition to B2, B3, and
 

B4, bodies B55 B6 and B7 are shown. These are associated with the mechanisms
 

which translate E. B5 and B6 are drums with axes fixed in the translating
 

mechanism unit. Two tapes are wrapped about B5. Each has one end attached 

to B . The remaining ends are fixed in BI. Hence, when B5 rotates, one 

tape winds up on the drum while the other unwinds. Consequently, E 

translates along the shafts parallel to b1 . A second assembly consisting
 

of B and two tapes accounts for translation parallel to b except that
6 z-2 etta 

the tapes are attached to B2, instead of B1 . B7 is the unit containing 

B5> B6 and the motors which drive them. 

Differential equations of motion for the entire vehicle, the appendages 

A, and the rigid bodies B , ..., B7 will be stated. 
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Vehicle Equations:
 

For the assembly of bodies shown in Figures 14 and 16 the vehicle
 

equation is, from Reference 1,
 

0 	 00Da 

T+= I .w + .W [c +2wx c+Wx 	 + 

Jd
 

where
 

T - torque applied to vehicle.
 

I - vehicle inertia dyadic.
 

- angular velocity of B1 in inertial space. 

- total vehicle mass. 

c - mass center shift vector. 

J - an inertial reference frame. 

- position vector of a generic point of the vehicle with respect 

to 0. 

dm - differential element of mass. 

() - derivative of a vector or dyadic in b, or the derivative of a 

scalar. 

(0) - derivative of a vector or dyadic in b, a reference frame in which 

the unit vectors b1, 2' b3 are fixed.
 

In more detail, the matrix form of the vehicle equation is
 

* 7 -ir* T i 
T 	= [I + E -Mip p + TTIiTi)]6
 

i=2
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I 7 ,-i* iT i i 
+ wET + r (-M.p p + T IIT )]w

1i=2 


+ [(MOR + p)T TM TooT t tT 

o 'qMR - p (Mg)T2(FEO q-q 

t t T 
- (Mg) p "- OqZ - Mq)EOEI)& 

7 • -_* i* i*.T
 

+f-. sMJi p +( M T 
i=2 

S TI w++ 'c t w 

i=2 I~
 

+ (iiiii + T+It)(iTII)+2 a(+, + T)~a 

7 [M( *..i* + i* i*) 
+ E MI p#Y~+. .*1*1* 

i=2
 

+ ( iTi + iTi+i TiTIiT) WI + TIiTw } 

(M)O~q +R, r$ E1 4qg +SEpMq 

T T T 
40J Tcna eoOM+randum33-49 
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T T 

rEO(PFd)M EW F"O w+8 T O 

TOOEIA hE+ 2[ oR + P)]mq 

RqT1TI O" TOMq R - pt(Mi')tT - (MqtptT3m-

(PEM(%r +FT R TM4 T~ T . T 

- t(NSST - (APlT tT1 W (2) 

where 

T - applied torque matrix.
 

I - inertia matrix for B1 and A in the undeformed state.
 

14. - mass of B..1- 1 
*i * 

p - position vector of Pi, the mass center of Bi. with respect zo 0. 

Ti 
- transformation matrix from principal axes of B. to principal 

axes of B1 . 

- inertia matrix for B. 

w - angular velocity of B1 in U.
 

M - the nxn mass matrix for A where n is the number of sub-bodies
 

comprising the model which approximates A.
 

R - position vector of a point Q on the appendage - B1 interface
 

with respect to 0. 
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o - position vector of the mass center of a sub-body of A with 

respect to Q. 

q - deformation coordinate vector for A. 

FO - the matrix EEOEO.. .EO]T of size 6nx3 where E is the 3x3 identity 

matrix. 

T7 - the matrix [OE...OE]

OB
 

c - mass center shift vector.
 

- when applied to a 3 x 1 vector, v = [VV 2v3], v means
 

0 -v3 v2
 

0 -v Iv3 

-v 2 VI C 

when applied to the 3 x 6n matrix v [v Ov20.. vn0 ], where v
1 is a 3 x 1
 

vector, V means
 

471
 

0 

V 2 

0 

0 
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)T_ the transpose of a matrix.
 

( ) - if v= [v1Ov20...vno]T,then
 

+I 1 2 n
v =[Vov0...v0]. 

An expression for c is 

-Ft-1 ,T q+ 7 ((3)c (7 

i=2
 

where 8 is the displacement vector for B i
.
 

If engines B2, B3, and B4 are thrusting at the constant magnitude F,
 

and there are no disturbance torques exerted on the vehicle other than from
 

the thrust, then
 

(p2 +T = - [( m)r ' -m)r2 

T~ f*q 3*0 -M~o I 

0 0Mq] + (p + j [Ti - m)r 1 

FsF 

+ (t- r2 - -Fs 

+ (P*0 TL M)r1 + (TN - M-)r2+1 -

Fs 4 ­

72 -J3- (4) 

P hemc
4 
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where 

i*O * 
p - position vector of PV,the mass center of Bi, with respect 

to 0 for the nominal state. 
7 

m - 3 M..
 
i=2 I
 

m + AY± 14.
 
T
1 [-ra5 00
 

2 T
 

r2 [0 -r 8 o] 

C. - the angle through which Bi turns relative to B1 . 

si - sin ai, i=2,...,7. 

CI COS Q , i=2,...,7.
 

r - the rcdus of B, c:I 6
.
 

Appendage Equations:
 

The appendage equation is taken directly from Eqs. (94) and (95) of
 

Reference 1.
 

IM(E - rETOM/Th )tI+ j2M (20M ) - TEOmrEOm/n 

~ + M(7 0 i) + (OEw)-H - [MIOEw + D')4 

" [M(EOEJ) (MFOEb)"- (roe)~(WOEw) 

+ (FoEw) (EEW) + M[ 0 ) -ro oMl3 

JPL Technical Memorandum 33-493 44 



-F+ ME(rEw) (OY) rwr4 0 m/ I +Xq 

_ r OE - (toEW)M(OEW) - M;E(G 

(R + lu)& + e - 2 w + W&)(R + e)J 

()7o) (7-0) P) + X () 

where the nevJ symbols mean
 

S - damping matrix.
 

K' - stiffness matrix.
 

= GM - acceleration of 0T in P expressed in termis of (b) [-1-2-3] T 

X - forces and torques, other than from structural interactions which 

are applied to the sub-bodies. 

e - the mass center shift vector associated with Bi. i=2,...,7. This 

is the second term in the expression in Eq. (3)for c. 

Rigid Body Bi (i=2 ...7) Equations:
 

The units B2...B7 constitute the translator. Equations for the co­

ordinates associated with its translation and the gimballing of B3 and B4
 

are required. It appears as if use of Lagrange's equations provides the
 

most convenient means of determining these equations. The standard form
 

for these equations is
 

JPL Technical Memorandum 33-493 45 



d 	 BL) - L(6& (L 'Q i 	 (6) 

where L is the Lagrangian for the spacecraft, yi, is a generalized coordinate,
 

and Qi is the generalized force corresponding to y i" L is
 

L= K - P 	 (7)
 

where K and P are the kinetic and potential energies, respectively, of the
 

spacecraft. Equations (2) and (3) govern the behavior of w and q. In
 

using Eq. (6), then, ie will restrict attention to coordinates other than
 

w and q.
 

The following assumptions are made for The translator assembly (refer
 

to Figures 15 and 16):
 

1. 	 For the translator assemblies, shafts connecting either B5 or
 

B6 to the motors driving them have non-infinite stiffness.
 

2. 	 Non-infinite stiffness is associated only with the drive shafts
 

which cause B3 and B4 to gimbal.
 

3. 	 All drive shaft bearings are not smooth.
 

4. 	 The mass centers of B3 and B4 lie on their gimbal axes.
 

5. 	 The translation shaft bearings are not smooth.
 

The nonlinear equations of motion for a5 and c6 are
 

3
13 .. + 1 . +I 	 1 
1c13 	 +7 (c"L 2)] - - Ii)[7- c3 (WI -2) 

- s 3w3 )EA- s3( I - w2) + c3 w3- k3 (a0 l - a3) = -d 3 3 (8) 
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13. 131'[4 +-(1 +& (2] 3)3 1 : - 2 )72i04(ki U)

--	 S3]E '4(l - '2) + C4h3] - k4 (a 2 - cq4) = d4 (9) 

2 5. 1T ~ 5. 
(mr2 + 13)&5 - mrEiTGx _1216 + I3w3 

-	 mr2 (C +6 33&6 ) - (w2 + w3)mr 5 

-2 	 -2
+ 	mr wl 2?6 - 111W - mr W36 

- ir(E3T2 E2 w3 kCT T-)­-

m3 2. m- 2 
+ m 2. + -r2.. +# rTbk + ) ..A 

-2 5 + r6-. + 2 rV7( 6 + 3622	 1 

S.MrD. mi 2-36 	 m2r.1
 

+ 	 ArU .A -­

mr - mxw2 c 3 +
3	 2 ( m/m)r w3&6 

,.A 6A A .A, m m 2,. 
- IIar( 2c3 + 2 3 - 3c2 - 3 c2 ) + r (&6 3 	+ 06 3)
 

2A
mr,.CA + A A A wA)

* -2 3 +263- W3C 2 W3c2) 

S	 2mr T.+rm2 

2 E3TgQ)2(- w3E 2X + W + -r 6 
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+ r.rw3 (w3 c - wIC3) "mm 2 (wlc2 ­

2 2
2ma 2 2 m 3 m m 2 2 2 2 2+---rwc--w +-5+ , - -r 5 2-5[ Xfl1J3 ~rgft l 553 

- 2 2 2
 
mm2" 2"'J m .A' + m .A 2 m-r('"3eA I. uc3A )'3
-T-- -F 9'c 

- jj--_ww -- rw -r c3u 

Sm2r A A 2m3 2 2r3 2 2 
+ 7i (Wlc2 )w 2 

3 j 2r t 2w2 c C2'512

2- 2. 
-
2 2 (s3 + ds4)2r a 5 (±0) 

2 6 mr2T.2 - 6. 
+ 13 3

± - Wrflu; Qx +( r 

+ .r2( 3 , • 2 .*2 - 2 2
 
mr ++ 3 5 + 'w3 &5 ) - (w1 +') '6 mr 0 2 ' 5 

- ~~ 2 u3 - 3(E- E3Tu)@ + mr2 w3&5
 

-2 2­
mm 2.. m m2. 

- kl(Tl - %6 ) + -- r 06 + f--2r a5 

-2 
m m 2mrc A.. 2m 2. m ­

- rEr (t 3 " 3 5)+) + mm..A - .rA+-1
 
i -- +x~c
rwC
 

(3&5+ +35 2 ' 13
 

rc2 3
 

T3i le3
mr2 &- m m .A * A A m - - A+
 

m m 2, A m, A A •A
 

- .r (5(&3 + 53) + A + 1,3c1
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- + m+trt E1TQ* - wiE3 TQk) 

- mm. -- A + - , A A 
5 - r( - 2 mr( 1 ' 2 211 

nur -2
 
2 2 2 2 2
 m m2 +,r 2 m 

- ar f I + --2W3 + -r (Y60 + - 1 

mm A mmAr mrA A 
+T- 1r13 -F--rc30 1 + -- 23c2 

-2 -2(,m A 2 2mm 6 1
,, 2m mr
2C1l)' 1 -abW3lnrl 2 2 7 m b

r753 5Q dlra6 (ll)--,7 (3+ s4) -6 

where 

.
I - moment of inertia of B. for the axis parallel to b 
i I -j 

Wi - bi , i = 1,2,3. 

k. - spring constant associated with the translating or gimbaling1 

mechanisms.
 

d. - damping constant associated with the translating or gimbaling 

ne chanisms.
 

EIT E2T, E - [2 0 0], [0 1 0], [0 0 1]. 
A
 
c. - measure number of mass center shift due to flexibility. 

i*i~o i*O i
 
where p3 is the b component of p , the value of p
 

- EMiP
it - 3 is 3~ip3p
 
for the nominal state.
 

Ti - torque applied to B..
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UGi - gimbal drive shaft input angle.
 

&Ti - translating drive shaft input angle.
 

Linearized Equations of Motion:
 

It can be shown by substitution that
 

= =W ai aG1 = eG2 CTl = 'T2 0 

x x , 9 0 (12) 

q qo - K-'09o0o 

is a solution to Eqs. (2), (5), (8)-(ll). Determination of the linearized
 

variational equations associated with this solution and introduction of the
 

active control equations establishes the base for a stability analysis by
 

means of root locus procedures or eigenvalue analyses.
 

The variational equations are obtained by substitution of
 

(0= (0'
 

i i, 

q =q 

l Q! 0+ q'(3 

=
aGi
 a Gi eTi aTi
 

X +XX ­
0 

9 = 9 +9' 
0 
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into Eqs. (2), (5), (8)-(11) and linearizing in the primed variables.
 

X is set equal to zero.
 

The appendage equation takes the form
 

M49 + D4 + K'q' = M(-SOE + FTEoR + ')-

M _ 7 
'2 7 -.1 

Pi=2
 (YO ±..+N'PEOF -(ar' 3 +a4 xmEO~ 

where
 

= M(E - nEO% OM/t ) 

In all of the following discussion, the primes will be omitted from the 

linearized system variables. If the modal coordinates Tnare defired by 

q = A where 0 is the matrix of eigenvectors for 

M14 + K'q = 0 

and if 7 and denote N x N truncated versions of 0 and I where N < n, and 

if F and A (hereafter referred to as the rigid-elastic coupling terms) are 

defined by
 

6- = - 91'(EoE - EEOR - or%) 

then the appendage equation becomes
 

- (m "" -- s -'" r2 4 -A J 
EPL Technial= ee+AF + 4) +3-(93+?
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where E is the N x N unit matrix, a is the N x N diagonal matrix of eigen­

values or mode frequencies, C is the N x N diagonal matrix of damping ratios, 
2F2 is the thrust vector for the center engine, and r and r are vectors
 

describing the b and b2 migrations of the translator from its nominal
 

position
 

O]T
r - 5 O, 0]T r2 = [0, -ra6 , 

It will be assumed that 4 -a3" Then, the appendage equation becomes
 

+.-.2
a-2 A1B'f+2Ca c +-(A-mr (14),I+X0 +m 


The torque T exerted on the vehicle may be expressed as
 

4 . i
 
T= " sF 

i=2 

where Fi is the thrust force supplied by B., i=2, 3, 4, and si is the position 

vector of the point of application of Fi with respect to the vehicle mass 

center. It can be shown that a more explicit non-linear expression for 

T is 

jr--
[p2*o + t- r - T 

_Fs
 

+ Ep*O +1nmr + - -:2 = 7-T MqJ7 -F 

/2Fc3
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+[4o ---1--rl +flm2 lT 1 
+ + [E + r -jjjql 7- -Fs 4
m! 
 ] 

[/2Fc 4 -


Linearization of this expression and of the right band side of Eq. (2)
 

about the solution of Eqs. (12) produces the following linearized vehicle
 

equation
 

I@ K + Kr + I ?+ I --a -6 

3*0 4*O)-2
 
- (p -p FFa 3
 

2
A-F UM m)r - 2 A1]3 	 -- + (M -)r -'i- (15) 

New symbols are defined as follows 

I - vehicle inertia dyadic for the nominal state
 

i*0 7 i*Op T_7MiP
 

i=2
 

j*O
 
VP" ,rM 	- =2,3,4 
ci 

Truncation of all but the first six modes vill be adhered to in the 

sequel. Thus 8 and Z are 6 x 3 matrices. A structural analysis of the 

entire vehicle reveals that only three of the elements of T and two of the 

elements of A are non-zero. In particular, 8 and A have the forms
 

= 	 0 812 0 K 0 0 0 

0 0 823 0 0 0 

0 0 0 0 0 A33 

0 0 0 0 A42 0 

651 0 0 0 0 0 

0 0 0 	 0 0 0 
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Substitution of these expressions and of those for r and r2 into Eq. (14)
 

produces the following six scalar equations of motion for the modal
 

coordinates
 

°
 
jjl + C, 2 

+ 2 jit+ a1 1j = 612'21 1 


2 + 1 + 212  = '2303
 

fl af 3 +2a1 3 0
3 + 2 3 = 

(16)
 

2 
14 + 2Cp4a4 + o414 =6=---42 

2955 + = 5 


qf + 2Ce 6 %j + a6 1 =0 

'whereci and Ci are the frequency and damping ratio respectively for the
 

ith mode.
 

Figure 17 shows the mode shapes and lists the frequencies corresponding
 
* 

to the first six modes.
 

The vehicle matrix equation (15) is then equivalent to the three scalar
 

equations
 

Provided by Dr. E. Weiner of Division 35, who modeled the structure and
 
made the necessary computer calculations.
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Figure 17.Solar Array Mode Shapes 
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-+- * ) 3FA42 

20 - K r&5 8121 =3'-rF 5 (18) 

2 3 5 - 1M) 

10. Kr 5n1 56± 

I3G93 (:-2r + 13 x;F5 _ (Kjr 13)F16 

- 6232 gf Pj1I (19)3 


where I. is the moment of inertia of the vehicle for b. and for the nominal
2--­

state, KI and i are the b. measure numbers of K and K, and F is the 

magnitude of the thrust force exerted by any of the three electric propulsion 

engines. 

The assumption that a4 = -a3 implies that the equation of motion for 

a4 may be ignored. The linearized forms of the remainder of Eqs. (8)-(11) 

are: 

I3 +j--(9 1 + ) + d3&3 k3 (aGl a3 ) 0 (20) 

5 2 m3 
2 2r2 + r 2d2&5 

( .5 + r Y+ d + 25+mr 

2­
+ r a 6 - (k2aT2 + - r)2 + 0 (21)
 

2 6
i+ r 2 T2 T 22 3,3 

+(136 +mr2 - - 2 --- r )&6 rd& 6 +kl 6 
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2-- 2mm .. 1mm
 
+ - C!5 -(ir mr)A 4 -4kll
 

-rr)*l + 13Q3 = 00 (22) 

Control :
 

The linear approximation to the control system block diagram for each
 

axis is shown in Figure 18. A celestial sensor detects the value of Q..
1 

The transfer function for the sensor is Ki/(s+l). A constant K%.
 

is the transfer function for a voltage controlled oscillator while the linear
 

approximation to a stepper motor has the transfer function KIi/. The
 

remaining part of the control system is the compensation network. The 

output from the stepper motor is the desired translation ra, 1or rT2 

or the desired gimbal angle G. The sign associated with VSi is determined 

by the sign associated with the translating or gimballing controlling term. 

A block diagram of the dynamics and control of the entire vehicle
 

is shown in Figure 19. Coupling between the three axes is indicated. 

Differential equations associated with the control system are obtainable
 

from Figure 19. They are
 

rsi si I Vsi KS 1 i i = lp 2, 3 (23) 

rK 1 jKI(2 VSlVF) 

=-T25 2 KV2(Vs2-VF2 ) (24) 
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18. Linear approximation to the control system block diagram 
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erG = I%3(Vs 3 -VF3-) 

-Kl Z±[l 1 + (±K 'r21Kv1-- 21  . K Tlll+K~ T21K 

F~2l 1T21 l )Fl 

(T1 KFi1,11KilI{aKrv 

-(1 + K 21 + FlS15, . V1 

-- Kr 2Kl 2 KM2KV2 r22 0 + S2 2)2
$T12T22 TS2 Z (1 "TS 2
~S2 (±+x22VF2 T11> 22 - 22)S 

+
+ 12T12 122 (25) 

" ( 2 KlA 222+IK 2 )VF2 

" (1 + ' 22 + KF2K12K. 2 K2 )vF2] 

V 13K3 M3 133 + 3 
"F3VF T±13 23Jj TTS3330333+ (1 + K23 ­

- (23 + TI3+ 23 ) F3 

1 V3)l33 
- (1+ K23 + VF3

] 

Stability Analysis: 

If the coupling and translator--gimbal dynamics are ignored in Figure 19,
 

then the block diagrams shown in Figures 20-22 result. The drawings at 

the bottom of each figure indicate the mode or modes which are excited by
 

rotation of the spacecraft about the axis to which the block diagram cor-
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responds. As indicated by Eqs. (16), the third and sixth modes of
 

structural vibration decouple from the remaining equations and consequently
 

have no effect on attitude motion, at least in the linear sense. Uncoupling
 

of the equations transforms the attitude control problem into one that is
 

amenable to root locus analysis.
 

The open loop transfer functions for the three axes are
 

2 5 4 3 s2G-GI 1 = - 3KsIKMKV(s + Ns+'N4s4+ N3s3+ Ns2 

s ++ N1 s + N)(S 21)( /Tl)/(Il 

312 34
 

651 )Tsls (s + D3 s3 +Ds 2 + DIs +Do)(S +
 

1/Sj ) tS 2 + 1 T1 1 + (1 + KlK Vll1l)21is 

+ 1 + Ki1KiaKVlKF (1 + K2) (26) 
T2 1TIj r'r21l 

G2H2 '3 2s+ 3SplF3 I](s + 

2s 2 )TK 32
 

I S22I22C 1 )s + 2 )(s +2 + 

12-12 12 - 612
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1 

T22t_25T2.2 (11 2 K2r3S
K 421 2K-2
'r212E 12 

+ + (1 + K22 )] (27)
"r22"r.2 "22r'.2
 

A 3*0F, 

<8 2&3K NS2
 
G3 1 3KM3 3s 2 + 2r20"2s + a2c)(S +
 

(I3 -623)3S3
 

/u23)(s+ 
 -/3)/s3(2 
 + - - -- + 32
3 623 13"623
 

(sI/T.3)(s+ + 23'r13 T1- K3K3lK3 )2]
 

+ I + K3K3K 33(1+K

T23T 3 T23Ti3 '3)(8 

where Gi is the forward loop transfer function and Hi is the feedback loop
 

transfer function. Expressions for N., i=O,...,5 and for D% o=G,...,3
 

are
 

N5 = 2((4 4 + Cfq5 ) 

PL =n M onda65 3Q-R)F+-9

4 +5 4 4 F W35F + M 
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-2 

3F T 

6 2i7c 5 T 3- (4C av Cf 

3m42C57 
N2 R-3?I2- a5 a5 (. ++ 4) 

22
3FiT4 2 a5 

2 2 

-Fn 
2 

R3 

N0 -
3(rt - m)Fa 2a2 

4 (29) 

W3X 

and 
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3 2 2(C1 
4 4 + C )-O 

~2 

2 2
 
i _ 2 2 	 5f,4 

D2 2 + + 4a4 5 4 a5 - __ 

- 51 

11 - 2 (C475 + C574) 
- 851 

22 

Do 425 (30)
 
1i-651
 

The values selected for the parameters in these expressions as well
 

as for the parameters in E 4s. (26)-(28) are 

Kli = (328 volt seconds/meter) i = 1, 2, 3 

K2i = 4.5 i = 1, 2, 3 

KFi = 	80 i = 1, 2, 3
 

=KM1 = 	 K2 (6.7 x 1O 5 meter/pulse
 

10- 4 
1% = radian/pulse i = 1, 2, 3 

KVi 40 pulses/volt second i = 1, 2, 3 

623 =f128.2 ig 2)
 

612 = 	 (128.3 Kg m2 ) 
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2 )
 851 = (9.609 Kg m

"42 = '(13.69 Kg m) 

r 3. 

"i = (-.006 Kg 2 m) 1=1, 2, 4, 5 

al = (.02479 x 2n Kg 2 m/second)
 

G2 = (.02493 x 2n Kg 2 m/second)
 

04 = (.02767 x 2T Kg2 m/second)
 

05 = (.03305 x 2-T Kg2 m/second) 

T11 
 = 103 seconds
 

T21 = 5 x 102 seconds
 

TSi = 1 second
 

F = (.09 Newton)
 
2 )
= (442.7 Kg m
I I 


12 = (12777.0 Kg m 2 )
 

2 )
13 = (12408.0 Kg m


= (600.0 Kg)
 

m = (54.41 Kg)
 

m . (45.35 Kg) 

k = (-41.47 Kg m) 

k3 = (-34.55 Kg m) 

The sensor gains KSi have not been specified and will serve as variable
 

parameters upon which the attitude stability depends.
 

The root locus for the b axis is shown in Figure 23. Open loop
 

poles and zeros corresponding to the b I axis case are listed. The poles and
 

zeros having non-zero imaginary parts are associated with the fourth and fifth
 

flexibility modes. A real zero at 0.084324 is due to the so-called "tail-
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'o 



vags-doc effect" or the term K3r 6 in Eq. (17). This is an inertia torque 

exerted on the vehicle when the engine cluster unit translates in the b
-2 

direction. Such translation activates fourth mode oscillations. Figure 

24 is an enlarged version of Figure 23 and shows detail near the origin. 

For very small gain, i.e., very small KSl' the locus emanating from the 

multiple pole at zero initially passes into the right half-plane. Thus, 

instability is implied. As KS1 is increased, the locus crosses back into 

the left half-plane and finally returns to the right half-plane for suf­

ficiently large K8 l" That part of the locus which corresponds to flexibility 

traces a path from the left half-plane into the right and then back to the 

left half-plane. The range of K.l for which all parts of the locus lie 

in the left half-plane is 0.50 < KS, < 23.0. For the case when flexibility 

is ignored and the vehicle is assumed to be rigid, the stability range for 

KS is 0.52 < KS, < 23.52. 

Figure 25 shows the root locus for the axis parallel to b . As before, 

the poles and zeros -not on the real axes are flexibility poles and zeros. 

Also, for very small gain, the locus traced rom the multiple pole at zero 

passes into the right half-plane. As KS2 is increased, the locus moves 

into the left half-plane, then to the right and finally to the left of the 

imaginary axis. A part of the locus associated with the flexibility pole 

begins in the left half-plane and soon moves to the right half-plane. 

Stability for the b axis is guaranteed for 15 < K2 < 201. For comparison, 
-2 S 

Figure 26 shows a root locus for the b axis when the vehicle is assumed

-2
 

to be rigid. The character of the locus in Figure 26 differs considerably
 

from that in Figure 27._ It was determined for the rigid model that the
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range of KS2 which will ensure stability is 16 < KS2 < 276. Thus, the
 

flexible nature of the solar array is detrimental to the attitude stability
 

of the b axis.
 -2
 

The final root locus corresponds to the axis parallel to b There
. 


is no "tail-wags-dog" term for this axis, and this is reflected in the
 

absence of a zero on the positive real axis. As in the case of the b
 --2 

axis, there is only one flexibility pole and one flexibility zero. Values 

of KS3 for which stable attitude motions are guaranteed are 11 < KS3 < 221 

for both the flexible spacecraft model and for the rigid model. 

Time histories of the attitude angles 9l1 ' and 03 appear in Figures 

28-33. The CSSL simulation language, developed through the support of the 

Guidance and Control Branch of the Office of Advanced Research and Technology,
 

was used in programming the linear equations for the UNIVAC 108 digital
 

computer. For the axis parallel to bI, the initial attitude angle rate
 

@ is 10 4 radian per second. This rate is considerably larger than those
 

expected to be encountered from disturbance torques for a deep space
 

mission. All other variables, i.e., @i, VS etc., have an
, initial value
 

of zero. Figures 28-30 show the attitude behavior for oases when KSi,
 

i = 1, 2, 3 is in the stable range stated earlier. In particular,
 

= 

= 20, 1%2 100, KS3 = 100. 

At approximately 100 seconds, 9l reaches its maximum amplitude of 6.4 

x 1O- 3 radian. For a time of 2800 seconds, the amplitude has diminished 

to nearly 7 x 10 4 radian or one-tenth the maximum aplitude. For @2 and 

03' the response curves are of a lower frequency than for l. This is 

probably a reflection of the small inertia 1 in comparison with 12 or 

13.
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Values for 1(l, KS2' and KS3 in Figures 31-33 are 50, 350, and 350
 

respectively. These fall outside of the stable ranges. The 9i responses
 

are then expected to be unstable. This is seen to be the case. However,
 

the curves are not reliable as true indicators of the behavior of 9. since
 

the linear equations are not really valid for large 9i 9i is indeed
 

unstable, but its time history probably departs markedly from the curves
 

of Figures 31-33.
 

Conclusions:
 

The work presented here has demonstrated the feasibility of using electric
 

propulsion engines for attitude control as well as for propulsion during
 

the low-thrust cruise phase of a deep space mission. In addition, it has
 

been shown that flexibility associated Vith large roll-out solar arrays
 

poses no great threat to the success of such missions. Furthermore, the
 

detrimental effects from torques due to "tail-wags-dog" terms can be offset.
 

Structural frequencies of the order of 0.025 cycles per second were 

encountered for the solar arrays. Only for the axis of maximum inertia, 

the one parallel to b2 , did the structural influence have a pronounced 

influence on the rigid body stability characteristics. There, the permis­

sable operating range for KS2 was reduced from 16 < KS2 < 276 to 15 < KS2 < 201. 

Little or no change in the rigid spacecraft stability ranges for Yil and 

3 was encountered from structural effects. This was the case despite
 

the fact that for the bi axis, two modes of flexible motion were activated.
 

For the unstable cases, the 92 response seemed to have a growth rate
 

far in excess of the 91 or 93 responses. A possible explanation for this
 

is that 12 is greater than either 1 or 13 and consequently, the control
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system is attempting to handle a large inertia torque -I2O2* Actually,
 

3 is very nearly the same as 12. However, in addition to the inertia
 

torque, the b control system must contend with the "tail-wags-dog" effect
 
-2
 

which is absent in the b dynamics. The b axis unstable response seems
 
3 b:a-Is
 

to be intermediate to the b and b axes responses. Even though I1 is quite
 
--2 -31 

small Then compared to 12 or I32 there is a "tail-wags-dog" effect for this
 

axis. Thus, it appears that outside of the stable operating ranges, the
 

"tail-ags-dog" influence is felt very strongly.
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