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SUMMARY

Methods are developed for predicting the behavior of hingeless rotors
with gtiff blades, at high advance ratios and low rotor speeds. The
methods ere simple and expository in nature, and are developed for the
purposes of (1) providing insight into the influences of various rotor and
control parameters on rotor system behavior, (2) examining the suitability
of existing methods which contain more comprehensive analybic descriptions
for predicting behavior of hingeless rotors at high advance ratios at low
rotor speeds, and (3) to provide analysis techniques which are flexible

encugh to be useful in preliminary design studies.

Cyclic angles required to trim rotor hub and swashplate moments are
caleculated and compared with experimental data. Longitudinal cyeclic angles
agree well over the advance ratic and rotor speed ranges studied, Lateral
cyelic angles do not agree well, but the discrepancy is systematic, sug-
gesting a lack in the thecory.

The deﬁendence of hub moment, thrust, and swashplate moment on cyclic
angles, collective angles, and rotor angle of attack was investigated both
analytically and experimentally at robtor spéeds ranging from 8.5 to 90 per-
cent of nominal and at forward speeds ranging from 50 to 120 knotg. Theoret-
ical predictions based on a simple analytical description of aerodynamics

agree well with experiment.

The control system used in the analyses and tests included a constant
speed gyroscope to stabilize the rotor. Robor moments were controlled by
applying moments to the swashplate. The system wag degigngd such that the
swashplate was not restrained by the control-force servos while in the

normal operating mode.

Theoretical estimates of hub moments produced by unit moments applied to
the swashplate show a trend toward very small changes in amplitude and phase

over large ranges of advance ratio and rotor speed. The trend toward



constancy in control effectiveness was verified by wind tunnel tests.

Stability of the gyro-stabilized cyclic feathering system was examined
éxperimentally by applying "step" control meoments at the swashplate and-
observing the decay of induced oseillations. Frequencies, damping, and
precessive direction noted in the experiments compared well with values

predicted -y theory.

A description of the theoretical development, a summary of measured

data, and some comparative evaluations are presented in this report.
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TWTRODUCTION

In the search for higher cruising speeds and lower drag in helicopters,
it became apparent that relieving the rotor of its propulsive ‘task (employ-
ing auwxiliary propeller or fanjet propulsion) would reduce retreating blade
stall and permit a higher cruising speed. If, in addition, the rotor did not
have to support the weight of the vehicle, that function being performed
by wings, then the effects of retreating blade stall couvld bhe virtually
eliminated (except in maneuvers) and a much grester speed atbained. However,
increasing flight speed, while maintaining a relatively constant rotor
rotational speed brings on another limitation: +the tips of the rotor blades
on the advancing side encounter Mach number difficulties. It becomes desirable,
therefore, to slow the rotor speed as forward flight speed is increased.
Finally, if the rotor were completely eliminated, i.e., stowed away, the speed

and cruise efficiency of conventional Jet aircraft could be attained.

It becomes of interest to investigate slowing and stopping rotors in
flight, and from a technological point of view, to develop knowledge and
analytical tools that would be prerequisites to developing slowed-rotor or
composite aircraft. Although industry has already developed analytic tech-
niques for studying helicopters, many questions arise as to their suitability
for predicting the behavior of rotors at high advance ratios and the high
flight speeds expected to be encountered in the operation of slowed-rotor or
stoppable-robor aircrafi. Therefore, the study reported here was undertaken
to investigate the behavior of, and develop analytic design tools for,

slowed/stopped rotors.

It was recognized that a rotor with very stiff blades would be required
for in-flight stops, so a full-scale rotary—wiyg alrcraft wind tunpel model,
which had previously been used to demonstrate the feasibility of in-flight
stops (in the NASA-Ames 40 x 80 £t wind tunnel), was selected as a baseline

vehicle for this investigation.



The requirements for stiffness of rotor blades for slowed-rotor aircraft
are not yet established. Since it is possible that blades may be stiffer than
thoge used in conventional helicopters, and since wind tunnel tests of the
stoppable rotor would span a complete range of advance ratios, from very low
to infinity, it was decided that the same model would be used as a baseline
vehicle for the slowed-rotor studies. Therefore, analytical methods are
developed which describe the behavior of the rotor system over a complete
range of rotor speeds, from nominal (for conventional helicopters) to zero;
and data measured in wind tunnel tests of the baseline vehicle are used to

corroborate the analyses.

Development of VIOL aireraft with hingeless rotors has progressed from a
helicopter through jet-propelled and propeller-driven compound helicopters.
Good handling qualities have been demonstrated in the helicopter, and greatly
increased speed has been demonstrated in the compound helicopter. The next
step in the direction of speed increase appears to be the development of the
slowed-rotor compound helicopter. A 100-knot increase in flight speed appears
to be realizable with a 50-percent reduction in rotor speed. This wiil
extend the range of operating advance ratio to ¥ = 1.5. Conbtrol system
stability, damping of in-plane resonance, and blade stresses due to reduced

centrifugal stiffness are areas that nust be investigated.

A horizontally stoppable, retractable rotor aireraft could follow the
development of the slowed-rotor compound. Its problems would be associated
with extreme advance ratios, to infinity, and with alleviation of periodic

forces at low rotor speeds due to gust response.

The research reported herein complements investigations made over the
last ten years into the effects of: high advance ratio, blade dynamics,
gyroscope stabilization, low rotor speed operation, and blade loads on a
rotor stopped in flight. Some of these investigations employed the rotor

used in this work.

A main purpose of the present investigation was the development of an

understanding of the- physics of low rotor speed, high advance ratio, gyro-



stabilized rotor operation, with an aim toward facilitating the rational

degign of high-speed, high-efficiency, VIOL aircraft.

Since the objective of this study was primarily an understanding of the
behavior of a gystem, rather than precise numerical vesults, simplified
"expository" methods based on key physical aspects were derived. The results
of the approximate calculations are compared with experimental data. Exposi-

tory methods were derived to determine the following:

e Stability of the fixed-shaft rotor-gyro system (representing the model

in the wind tunnel)

© Stability of a free-flying vehlcle with the same rotor-gyro system
» Aeroelastic derivatives of the fixed-shaft rotor
e Cyclic pitch angles required to trim the rotor

¢ Control effectiwveness

All but the free-flight vehiele stability were checked experimentally by wind

tunnel festing.

Although experimental data contained shaft vibration moments and blade
harmonic loads, only the consequences of mean rotor coefficients were analyzed
theoretically and are reported in this report. It is plamned to reduce the

vibration data and correlate it with theory at a later date.



SYMBOLS

{A] Aerodynamic stiffness matrix (rotating axes)

[4,] Aerodynamic damping matrix (rotating axes)

AR Agpect ratio of wing

b Number of blades

b Wing span, %

bm Blade root bending moment, £t 1b

B Tip loss factor

[B] Aerodynamic stiffness matrix (stationary axes)

[Br] Aerodynamic damping matrix (stationary axes)

d Blade chord, ft

Cp Rotating damping (feathering friction), £t 1b/rad/sec
Cq Stationary damping (swashplate damping), ft lbl/rad./sec
7 Wing mean aerodynamic chord, f¢

cﬂczt Pailplane 1ift curve slope

Cm Hub pitching moment coefficient, M/qw RS

CJl Hub rolling moment coefficient, ]'_,/qu3

cmgp Swashplate pitching moment coefficient, Mg /qﬂ-33
Cysp  Swashplate rolling moment coefficient, M4/a TR
Cr, Lift coefficient, L/qmR"

Cy Drag coefficient, D/q_wR2

¢/ C,  Fraction of critical damping
(CF,1 Blade centrifugal force matrix
D Drag, lb

[Damp] Damping matrix



Transformation matrix - rotor to blade

Base of Naperian logarithms

Blade feathering moment , £t 1b

Vector of rotor generalized forces

Vector of blade generalized forces

Blade parabolic flapping generalized force , 1b
Collective flapping generalized force , 1b

Pitch flapping generalized force , 1b

Roll flapping generalized force , 1lb

Blade linear flapping moment of inertia , slugs fte
Gyroscope diametral moment of inertia , slugs Tt
Feathering moment of inertia of rotor , slugs ftg
Blade moment of inertia about c/b , slugs ft2
Body pitching moment of inertia, slugs ft2

Body rolling moment of inertia, slugs ft2

Rotor inertia matrix

Blade inertis matrix

Mechanical advantage; gyro tilt: cyclic pitch ratio
Rotating spring constant, £t lb/rad

Stationary spring constant, ft 1b/rad

Tail length, 7t

Hub rolling moment, £t 1b

b 4 St
£P§r~

Body aerocdynamic coefficient {damping in roll), C
Mass, slugs

Hub pitching moment, £t 1b



Alrframe mass, slugs

Body aerodynamic coefficient (damping in piteh), Co c_ gSc
q 2V_
Body aerodynamic coefficient (static stability), Cmclqﬁc

TL
2

[T}

Body aerodynamic coefficient (plunge damping), Cmég_ gSc
2v

Swashplate pitching moment,'ft 1b

Swashplaté rolling moment, £t 1b

Tip mass, slugs

Blade flapping generalized mass, slugs
Generalized mass (subseripts denote coupling)
The pth blade

Per revolution

Power, £t 1b/sec

Dynemic pressure, PV2/2, 1b/ft2

Distance from center of rotation, ft

Rotor radius, %

Tail plane area, ft2

Wing area, ft2

T g s £t°

Structural matrix

Thrust, 1b

Time to half amplitude, sec

Transformation matrix, between sets of rotating axes
Matrix transpose operation

Airspeed, ft/sec

Blade root shear, 1b

10



Roll axis (rotating)

Roll axis (stationary)
Piteh axis (rotating)
Pitch axis (stationary)
Vertical displacement, ft

Vertical axis

Body aerodynamic derivative (Lift curve slope), o aS,1b/rad

Angle of attack, deg or rad

Blade Llinear flapping angle, deg or rad
Rotor precone angle, deg or rad

Vector of degree-of-freedom displacements
Structural damping, fraction of critical

Blade parabolic flapping displacement, ft

Collective flapping displacement of the rotor, Tt

Pitch flapping displacement of -the rotor, ft
Roll flapping displacement of the rotor, r¢
Downwash angle of tail plane, rad

Vector of blade displacements

Swashplate pitch angle, deg or rad

Blade feathering angle, deg or rad

Blade twist rate, deg/ft or rad/f

Rotor collective angle (measured at root), deg,or rad

Rotor collective angle (measured at 3/4 radius), deg or rad

0, deg or rad

H

Cyclic pitch, nose-up at ¥

Cyclic pitch, nose up at = 90°, deg or rad

1L



] Rotor pitch angle, rad

A Root of characteristic equation

A Sweep angle between c/lt and feathering axis, rad
B Advance ratio T%ﬁ

P Air density, slugs/ft3

c Solidity

z ) Summation sign

® Swashplate roll angle, rad

% Rotor roll angle, rad

V; Azimuth angle measured counterclockwise from

positive X axis (aft), rad

Cant angle , deg or rad

EO'G-.

Natural frequency 1/sec

Q Rotor rotation speed, rpm or rad/sec

QG Gyroscope rotation speed, rpm or rad/sec
[ ]—1 Reciprocal of matrix

. First time derivative

.e Second Gtime derivative

Subscripts

i, 2, 3 Blade numbers
th .. .
n The n'™ wvibration mode
60, 66’ 6¢ Used to denote flapping degree-~of-freedom

12



THEORETICAT, DEVELOPMENT

The stability, fixed-shaft control effectiveness, and cyelic piteh required
to trim a stiffened rotor, stabilized by a high-speed gyroscope system, while
operating at high advance ratios were gtudied. The effects of operating

at low rotor speeds were also studied.

An important aspect of the theoretical investigation was a determination
to keep the analysis as elementary as possible consistent with explaining the
behavior observed in experiments. Althbugh elegant methods employing com-
prehensive mechanical descriptions for precise analysis were available, and
were used for checking purposes, these methods were not expected to shed
adequate light on the fundamental physical processes at work in the system.
These more elaborate methods solve comprehensive differential equations in
step-by-step procedures, either around the szimuth or vs time, and often

require checking againgt desired conditions and iterating to a solution.

Elementary or "Expository" methods, in closed form where possible, are
adopted for the purpose of gaining insight to the causes and effects of design
variables, to the interrelated behavicr of the robtor, control system, and the
airframe, Expository methods alsc offer the possibility of becoming prelim-
inary design tools for the design of new vehicles. Rapid solubion to design
parameter variations is a goal of the expository methods. Also, the character
of the expository method makes it a good communication medium for use among

technical people.

The expository methods are designed to open physical situations for view-
ing. An example is the capability to calculate the dynamié nmodes of an aeroc-
mechanical system., Any Iinear system without periodically varying coefficients
is simply analyzed for its dynamic properties, the time constant or the period
and damping of its transient modes. They may be divergent or damped, and the
vector of degress of freedom which describes the mode generally shows clearly

the important elements of that mode of motion.



Equations of Motion

During its development, the expository method was assembled in three
stages, enlarging the magnitude of description in each successive stage. At
each stage, an understanding of the system behavior based on fundamentals was
obtained before the next stage was abttempted. In this way the effects of
increasing the size of description of the system could be seen. Rationale
for development of the method is discussed here. Details of the mathematical

derivation are given in Appendices A and B.

The first stage of the expository method contained only two degrees of
freedom: gyro pitch and gyro roll., Even with this extreme simplicity the
fixed-shaft stability boundary was predictable, and the experimentally observed
effects of feathering damping and swashplate damping on control mode stability
were indicated up to rotor speeds of approximately 30-percent rpm (where
nominal operating speed of the rotor, in a helicopter mode, is considered to
be 100-percent rpm). Above 30-percent rpm, the fact that the blade flapping
mode was not included in the analysis made the control mode appear to be
unrealistically unstable, The calculated robor hub moment response to
cyclic pitch was largely in error at rotor speeds above 10-percent rpm. It is
important, however, that the simple wversion showed the limiting physical case
for extremely stiff cantilever blades, and so became a foundation for develop-

ment of the second stage.

The second stage in the development of the expository method consisted
of adding three rotor first flapping modes: pitch, roll and collective
Flapping of the tip path plane; thus increasing the degrees of freedom in
the program from two to five, Again the rotor shaft was fixed. The five
degree of freedom model calculated control mode stability well over the com-
plete range of rotor speeds, except for an unexplained excessive damping
which occurred at an intermediate rotor speed. The hub moment aeroelastic
response to cyclic angles was predicted well at all rotor speeds. Trends of
cyclic angles required to trim rotor hub moments were correctly calculated.
The cyclic angle els (called longitudinal cyclic for its effect on articulated
rotors, but with very stiff blades such as used in this study, this angle

1h



produces more rolling than pitéhing moment ) was very closely predicted.

The measured values of lateral cyclic trim angle elc deviated considerably
from those predicted, and in a sense suggested that some important contribu-
tion to nose up pitching moment had been omitbed in the analysis; reasons for
this are suspected but. have not yet been checked. The methed also predicted
control effectiveness trends well, The effects of flapping on stability and

on aeroelastic derivatives agreed well with the test measurements,

The third stage in the development of the method involved the addition
of hub (and body) pitch, roll and plunge degrees of freedom. The resulting
eight degree-of -freedom model was used to evaluate the feasibility and use-
fulness of testing the model mounted on gimbals in the wind tunnel (this eval-
nation was requested as part of an investigation into the possibility of
performing tests with the model free to pitch and roll in the wind tunnel).
The stability modes, frequenices, and dampings of the gimballed model were
compared with those of a hypothetical free-flight version of the model.

Results cf this comparison are given later in this report.

The fundamental concepts involved in the derivation of the egquations are
few and are easily grasped. There are three rotational states in the total
system: Those associated with the gyroscope, the rotor, and the airframe,
Only small motions of mass elements in each rotating state, relative to the
appropriate set of axes which rotétes with each of the rotational states,
need be considered in developing the equations of motion. This feature is the
key to the simplifications included in the expository method. {The most com-
plex parts of the method have to do with transferring equations among various
sets of axes, and they are not difficult.) The fundamental concepts used are

discussed in the following paragraphs.

Fundamental concept number 1. - Because mobtlions of elements in a given

state are small (in fact perturbational) the calculation of forces due to
the motions is very simple, The forces may be inertial, centrifigual, aero-
dynamic, structural, or due to springs and dashpots. The forece due to unit
displacement or velocity may be independent of azimuth, or may vary pericdi-

cally with azimuth (the fact that they're viewed in rotating axes permits

15



the simplification). Appendix A discusses calculation of all but the aero-

dynamic forces. Reference (1) discusses calculation of aerodynamic forces.

Fundamental concept mmber 2. - Small displacements relative to a set of

axes can be expressed relative to anobher set of axes by a simple time depen-
dent transformation which relates the positions of the two sets of axes. 1In
the present work it was necessary only to consider displacements normal to
the (X, ¥) plane (% direction), These displacements are organized into pitch,
roll, and plunge motions. They may be transformed from one axis system to
another (from set (L) to set (@) by the transformation

[ @) -cos(sz®— Q®)t —sin(sz® - .Q.@)t 0 [@‘
{@} = sin($z®- Q®)t cos(g@) - Q®)t ol{ @)

;ZJ@ C 0 1 ~.ZJ®
or in more compact form,
Py = [T] Py
Fundamental concept number 3. - This concept is a corollary to number

two in that the generalized forces relative to one axis system may be trans-

formed relative to ancther by the transpose of the above transform,

\ T,C) L T;()

The two concepts enable the complete transformation of coefficients in

the differential equations from one rotating state to another. To transform



time derivatives of displacements it is important to note that she time

derivatives of the transform are as follows:

Po

It

[7] 6, + (2] 8,

5, = (1§ +2[@p +[fp

For example, terms in one axis system:
m B, + [Damp] B, + [8] B,
may be btransformed to another rotating system by:
[ G {0 B, + 2 [E) 6, + (3] py
+ " [pamp] {111 6, + B 6, )+ " @ e,

Fundamental concept nuwber 4. - The centrifugal forces in a rotating

state may be thought of as radial forces externally applied to each mass
element and resisted by tension in the structure. The normal components of
the resisting tensile forces may then be used to calculate moments and gen-
eralized forces on the various degrees of freedom. The transformation of

cenbrifugally induced forces to sbtabtionary axes produces gyroscopic terms.

-

Fundamental concept nurber 5. - The kinematic and dynamic relationships

between degrees of freedom of the entire rotor in rotating coordinates and
of individuval blade motlons are easily expressed. In the rotor rotating
state, corregpondence can be deduced by inspection; this is shown in Appendix

A. Couched in matrix form it is stabed

in} =

blade motions [D] {ﬁ} Rotor degrees of freedom
in rotating coordinates

17



The velocity and accelerations are related thus

fit
{ii}

(0] {8}
o) {8}

]

With generalized forces on the blades easily calculable, be they inertial,
centrifugal, or aerodynamic, the generalized forces on the degrees of freedom
due to motiocns of the degrees of freedom can be obtained by noting that they
are related to the blade generalized forces by

{GF]g - [D] : {GF} blades

The rotor generalized forces {GF} in terms of rotor motions is

blade force due to
1) {e}

{GF}p = [p] T

blade motions

and the rotor derivations are obtained in terms of blade forces

[D] T [blade forces due to] [D]

blade motions

Summary of the procedure. - Based on the preceding concepis, the equa-

tions of motion are derived in Appendix A as follows:

(1) Motions of the isolated gyroscope, in pitch and roll, are considered
relative to axes which rotate with the gyroscope. The pitch and
roll eguations are not coupled.,

(2) Ecuations for the isolated gyroscope are transformed to axes which

rotate at rotor speed.

18



(3)

(%)
(5)
(6)
(1)

(8)

Equations of motion of the rotor, in terms of motions of individual
blades, are derived relative to axes which rotate with the rotor,
and are added to the transformed gyroscope terms, Blade forces are
inertial, centrifugal, structural damping, and aerodynamic.
Rotating spring.and rotating damping terms (terms involving rotating
friction about the blade feathering axis) are added.

A1l terms are transformed to stationary or earth-fixed axes.,

Terms representing swashplate damping and springs are added.

Body inertia and aerodynamic derivative terms are added to the
piteh, roll and plunge equations.

The following forcing terms are added to the right hand side (RHS)

of the squations:

e aerodynamic terms due to precone, twist, and collective angles

e aerodynamic terms due to gust angle of attack

e terms representing control moments which are applied to the
swashplate

e a term representing the centrifugal flattening of the precone

Aerodynamics

Aerodynemics used in these investigations is organized into derivative

form, or coefficients in the differential eguations. Simple aerodynamic

premises which are shown to be valid for high advance ratic and low rotor

thrust are used., The derivatives, analogous to rigid-body derivatives for

fixed wing airersft, relate rotor forces, moments, and generalized forces

to displacements and velocities in various degrees of freedom of the rotor.

The derivatives are used relative to an earth-fixed axis system, but are

derived from blade forces due to blade motlons in rotabing axes.

Aerodynamic derivatives as used in this study are of two types:

(1)
(2)

response derivatives

forcing derivatives

19



Response derivatives represent aerodynamic forces produced by motions of

the degrees of freedom. The response derivatives are comprised of changes in

e thrust
e hub and swashplate moments

e rotor-flapping generalized forces
due to unit changes in the displacements and velocities of

e robor pitch, roll, and plunge rigid body motion
e swashplabe pitch and roll
e rotor (flapping) degrees of freedom.

Foreing derivatives represent those aerodynamic forces produced external

to the dynamic system by

o gust angle of attack

e rotor precone

e blades twist

e swashplate collective (not considered a degree of freedom in this

analysis)

The main difference between aerodynamic derivatives of fixed-wing and
robary-wing aircraft is that the rotary wing derivatives possess parts which
vary periodically with time (azimuth) as well as mean parts. The forcing
derivatives merely add steady oscillating forces to steady-state conditions.
The periodic parts of the response derivatives, however, alter the basic

mathematics of the differential equations.

The stationary axis derivatives consist of a mean value, lndependent of
azimuth, and harmonic components at frequencies of 3, 6, 9..... times the
rotor rotation rate. The 3P component is enocugh larger than the others to
make it the only one of significance. The phase or relative magnitude of
its sine and coslue components, is seen to remain unchanged over a large

range of advance ratios.

S8ince the application congidered in the analytical portion of this
study involves winged aircraft, where the wing is expected to unlcad the

rotor at appropriately high £flight speeds, the rotor is considered to pro-
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vide little lifting force. The lightly loaded rotor must traverse the
advance rabtio spectrum from p = 0.3 to infinity during en in-flight start/
stop operation. In the case of a slowed-roctor compound helicopter, the rotor
is also lightly loaded, bubt its advance ratio is not expected to exceed

p= 1.5. Since the aerodynamic and vehicle behavior studies reported herein
are exploratory in nature (high advance ratios and very stiff blades are in-
volved), the simplest concepts which yield approximately correct answers are
used. It is therefore of interest Lo discuss some ramifications of advance

ratio K .

The parameter is fundemental to rotary wing aerodynamics. It is the
ratio of forward speed to rotor tip speed, and it in effect controls the
geometry of air flow relative to the rotor blades. A combination of forward
(flight) speed and rotor local velocity (rotational speed) gives the velocity
and direction of flow relative to the blades. The flow pattern varies over
the disk from the purely rotational flow at p = 0 to the purely rectilinear
at b= w.

v 2.0v

R
reverse
for velocity po= E¥§ = 0.5
Rectilinear + Rotational _
Flow Flow T Flow relative to blades



For rotors with infinitely stiff blades, similar geometries and common
angles of attack, collective pitch and cyclic pitch; the aerodynamic forces are

functions only of advance ratio, free stream dynamic pressure and size.

Tn a fundemental sense, advance ratio can also be considered to control
the geometry of vortices shed by the blades; see Figure 1. At Jow advance
ratio, the vortex structure and attendant downwash from many blade passages
accumulate over the rotor disk and drift downstream causing large induced dowm-
wash over the digk especially toward its aft edge. At high advance ratio,
on the other hand the tip vortices move straight downstream from the blade
tips so that dowmwash camnot accumulate. Induced downwash at high advance

ratios can therefore be considered negligible.

At any forward speed a reverse flow region exists just to the left of the
rotor mast, where the net air flow moves over the blades from the trailing to
the leading edge. This reverse velocity region can also be represented as a
Punction of advance ratio: The region is very small at low advance ratios
and approaches 50 percent of the disk area as the advance ratio approaches

infinity; see Figure 1.

Assumptions used in formulating aerodynamics representation. - Since the

nominal robor 1lift of interest in this study is swall, blade angles of attack
are well below stall limits, even in the reverse flow reglon. Also, over
most of the flight speed region of interest, tip speeds are well below the
speed of sound. These two factors permit the use of linearized aerodynamics.
Analyses and tests were limited to conditions which do not violate aerody-
namic linearity. Fundamentally, linearity allows the use of procedures in
which the effects of changing one angle at a time are determined; therefore,
coefficients analogous to fixed wing aircraft derivatives can be used, and

the superposition of these effects results in a good approximation.

In the calculation of a derivatiwve, the effects of varying one degree of
freedom at a time are considered. In the wind tunnel, however, flapping
motions are not suppressed, so the measured derivatives are aeroelastic

derivatives.
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The differential equation coefficients vary with the azimuthal position

of the rotor.

Consishent with the expository approach, the most simple formulation of
aerodynamics which will yield results approximating reality are used. The

following are the gimplifications used, and thelr justifications:

(1) Induced downwash is ignored. At high advance ratios, if induced down-
wash is assumed uniform, it is small enough to be neglected.

(2) Spanwise induction effects are approximated. The most significant
effect of spanwise induction is loss of 1ift near the blade tip.
This effect depends on the aspect ratlio of the lifting surface.

For the blades of the wind tunnel model (AR=12) in uniform flow,

the tip effect is hardly noticeable inboard of 80 percent of the
blade radius. This effect is approximately accounted for by assum-
ing the blade radius to be slightly smaller than it actunally is, by
a factor B = 0.97. The 1ift at any section can therefore be
assumed to depend only on local dynamic pressure normal to the lead-
ing edge and on the normal angle of attack at the section.

(3) Blade sweep effects are ignored. At azimuth locations remote from
90 and 270 degrees, at high advance ratios, the flow approaches the
blade obliguely. In the aft semicircle of the disk, The flow meets
the blade flowing obliguely outboard, whereas in the forward gemi-
circle it meeds the blade flowing obliguely inboard. Wind tunnel
tests have shown that resolving the flow into components parallel
and normal to the blade and ignoring spanwise components yields a
good approximation of the pressure distribution and 1ift, Reference 1.
Recent tests have shown that the primary effect of sweep is to inw
crease the maximum 1ift before stall, but not to change the 1ift-

curve slope or the linearity, Reference 2.
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(4) Unsteady aerodynemics are ignored. The primary effect of unsteady
aerodynamics can be seen by examining the growth of 1ift after a
sudden change in angle of attack. Lift growth is given by Wagner
in terms of mumbers of chords travelled, Reference 3. Lift starts
almost immediately at 50 percent of maximum and grows to 90 percent
within 6 chords of travel. TIn the tested rotor, where the blade
chord is small (the chord of the blade of the wind tunnel model is
1.17 £%) the 1ift becomes 90 percent of steady-state in 7 ft of
travel. At the rotor tip the perimeter is 104 ft. Therefore, in
effect steady-state conditicns are reached within 7 percent of total
azimuth travel when the forward spesd is zero. At high advance ratio,
the tip velocity on the advancing side is greater than QR, so the
1ift would grow to steady state within a smaller azimuth displacement.
On the retreating side, however, the opposite is true and longer
azimuthel travel would be required to attain e near steady-state
condition. Therefore, unsteady effects would cause some deviation
from results baged on steady aercdynamics. However, since the de-
viation is mosgt significant in the reverse flow region where the low
dynamic pressure makes 1ift sensitivity small, the effect is assumed
to be lost in the total aercdynamic derivative. The net effect of
unsteady aerodynamics is not expected to reduce the effective blade
section lift-curve slope by more than a few percent; therefore, the
assumption to neglect unsteady aerodynamics is not expected to

change the basic characteristics of solutions in this study.

~ It 1s not the point of the foregoing discussion to suggest that crude
éssumptions are adequate for all rotor analyses. For example, helicopiers
to be efficient, must operate at high enough blade loading so that the blades
on the retreating side are well inbto the stall region. Downwash can affect
both loads and stability, and unsteady aerodynamic; can damp or aggravate

flutter,
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Aerodynamic calculations are made to provide response and forcing
aerodynamic coefficients (derivatives) for the differential equations of
motion of a free-flying (slowed or stoppable rotor) airecraft. The differential
equations contain two types of response derivatives: those due to displace-
ments of the degrees of freedom, and those due to time rates of change of dis-

placement (i.e., displacement and velocity derivatives).

Motions of the system considered in the analyses are those which produce
vertical displacements of elements of mass of the rotor, gyroscope, and body.
They are all either tilt or plunge motions, Fore and aft, lateral, and yaw-
ing degrees of freedom, and in-plane motions of the rotor blades are not con-
sidered, FEach motion of the blades produces a unique spanwise and chordwise
distribution of aerodynamic 1ift. The distribution depends only on advance
ratio and azimuth position. The magnitude depends on dynamic pressure due
to forward flight. In these analyses the effects of Mach number and Reynolds

number are considered to be negligible.

Iift distributions are integrated to produce blade forces. The blade

forces used in these analyses are:

e blade root bending moment, bm
® blade root shear, V
e feathering moment, fm

o generalized force in the first blade flap mode, H

Forces due to blade motions corresponding to the motion of any one
degree of freedom of the rotor, existing at any rotor azimuth position,
are combined to give overall or generalized forces to all the degrees of
freedom of the rotor., That is, any motion, displacement or velocity, or any
fixed geometry setting produces a distribution of aerodynamic 1ift over the
blades which are integrated to form generalized forces in all modes of vehicle

motion,
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Aeroelastic Derivatives of the Rotor

The concept of aercelastic derivatives is borrowed from fixed wing
aircraft technology. Aeroelastic derivatives include the influences of
structural deflections which occur as a result of eguilibris of aerodynamic
and shaift forces. Therefore, calculated derivatives which include asro-
elagtic effects are more appropriately compared with data derived from wind

tunnel measurements.

Caution must be exercised in applying aerocelastic derivetives to heli-
copter analyses. Uses parallel to those of alrplanes are not always valid
due to lower rotor "structural' frequencies. For example, in computing flight
motlons of a fixed-wing aircraft, often only rigid-body motions are admitted
as specific degrees of freedom. As long as the periods of the structural
vibrations are short compared with those of the vehicle flight modes and rates
of applying controls are slow, the air forces produced by the elastic deflec-
tions may be put into equilibrium with rigid body inertia forces. The effects
of elastic distortion of the airframe are not, therefore, ignored. The
static distortion of the body is calculated and the aercdynamic forces so
produced are Included with those due to an angle displacement to give
a static aercelastic derivative, which may be used in stuaying the aircraft
dynamics and in calculating trimmed flight conditions. In the motions of a
rotary-wing aircraft, however, the natural flapping frequencies of the rotor
can be of the same order as the vehicle modes. It, therefore, seems inappli-
cable to compute helicopter stability by the use of aeroelastic derivatives
as done with fixed wirg aircraft. It is, however, valid to compute triwmmed
conditions for helicopters using aseroelastic derivatives, since they are a

consequence of & steady state.

As well as being useful for calculating rotor steady state conditions,
such ag trim, calculated rotor aerocelastic derivatives may be compared directly
with derivatives measured in the wind tunnel. In wind tunnel testing elastic
degrees of freedom are not under the direct control of the experimenter but
take up deflections in response tc an equilibrium of zerodynamic forces

and structural forces due to the displacement of one of the parameters {or
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degrees of freedom) under direct comtrol. The rotor aercelastic derivabives

therefore parallel the aeroelastic derivatives calculated for airplanes.

In making a unit change in omne of the directly controlled parameters,
airloads are created due to both the rigld geometry change and the resulting
deflection shape change of the blades. The sum of all airloads due to the

change yields the aeroelastic derivatives.

The parameters (or degrees of freedom) under the direct control of the
experimenter were cyclic and collective pitch and angle of attack. The changes
in lift, hub moment, and swashplate moment due to unit changes in these
parameters were found experimentally and compared with theoretically calcu-

lated wvalues.

In order to calculate the cyclic angles reguired to trim hub moments or
swashplate moments to zero, it was convenient to calculate the aerocelastic

derivatives due to twist and precone.

In summary the asroelastic derivatives calculated were:

oy, L, T, Yy M)
8(8, ¢, B, %, 6, 8,)

The aercelastic derivatives were calculated using the eight degree-of-
freedom equations shown in Appendix A. The forcing derivatives are not set
to zero, as in computing the system stability, but are retained for the

computation of aeroelastic derivatives.

The vrigid aerodynamic derivatives calculated in Reference 1 contain a
mean part and harmonic components, the most gignificant of which are the 3F
components. Only the mean sercelastic derivatives are calculated in this
investigation and they are compar ed to the mean experimental derivatives.
The harmonic components are important from a blade loads and shaft vibration

point of view and could form the subject of a separate study.

In calculating the aerocelastic derivatives for the fixed-shaft case it

may be noted that in stationary axes and steady operation the accelerations
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and velocities of all degrees of freedom are zero. Therefore, the inertia
"[I] and velocity matrices [é [z} [E] + [Damp]] and [ﬁr need no longer be con-

gidered and the system in steady state equilibrium is represented as follows:

[Mech stiffness] [St???gess_ ’B 3
. o
o A ~
Balanci N | i % L
[Fgrggglng]+[[:1[ﬁ] Dol + [s1] p - (1 p =[5t | o [omg |1 e,
L LZ

In the fixed-shaft case the shaft deflections ®, &, and z are zerc and

the swashplate tilt angles 6 and ¢ are specified (i.e., they are no longer
5. .
8’ &

In calculating the aeroelastic derivatives one of the angles - swashplate

free). The only free motions are the three flapping deflections 50, &

cyclic or collective, angle of attack, precone or twist - is made equal to
unity and the rest are made zero. Under the influence of this specified unit
angle the rotor flapping deflections are found. A second step then allows
hub moments, 1lift,and swashplate moments to be found due to all airloads.

These form the aeroelastic derivatives.

Blade structural damping and swashplate stationary damping are assumed
to be zero. Rotating (fea%hering) damping is retained. The basic equation

mey then be written:

£ " ™ -~ ~ — b
M 0
L 0 .
m 'S 3
FORCING B,
Mg 6 AFRO
e
M MECH AERO ¢ 10 ° L
Vet [STIFENESS] - l:STIFFNESS]W O T 1 (1)
H6 ) FU I
) © opl 1 2
5 |
bg 6 [ 1
P
H 1o
\ 6¢U | _ g6¢1 L | ! | B
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In the balancing forces matrix, the left hand column mabtrix, the robor
generalized flapping terms are set equal to zero. In turn, one of the values
of 8, ¢, BO, 0, 8, and z (2/V is rotor angle of attack) is set equal to
unity and the rest set to zero. The unknowns in the matrix equation then

become the hub and swashplate aercelastic derivatives M, L, T, M, and M¢

8
and the rotor generalized flapping displacements 60, 68 and 6¢. Eguation (1)

may then be rewritten (and partitioned):

pu - — —

M Tamez | [ (aEmo [ (PORCTNG |
L STIFFNESS ) STIFFNESS) F AERO) o
¢}
T MS1 AS1 AF1 Ps
: $
M 8
[¢] 5 o
v [* - { 0o} = tg t———(2)
b ‘. t
——— ———————| == 8| |—~——— A
0 | ' +
[ : 6 CF . r
Ms2! M3 AS2| AS3 [ ¢ ) AF?2
| 1
S d L I - - _

Note that the (6,1) element of the forcing aero matrix contains the non-

aercdynamic part of the centrifugal force collective flapping term.

At this point it may be noted that the hub and swashplate unknown forces
are not found in the last three algebraic eguations. This allows the rotor

flapping deflections to be solved for independently.

In the calculation procedure, the values for 60, 69 and 6¢ must first

be found. This is carried out as follows:

-+CF131 E ﬁow

6o e

4] o
I:MSE]-—I:ASE:I[}+[MS3:|-|:AS3] 69 = AF2 te 1
¢ 5 - t

¢ 3
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Therefore:

-1 i 'ﬁo \ |
60 | +CF11 eo
o Lot | et L LT
t A
Q¢ . )

r 3 = —1r N g ~

M 6 @O

L ol 90

T )
¢ ) = [M81]~[A.Sl]< ok-z—[AFl] {9 ——————————= (&)
- M t

6 bg
Mcb 6¢ Z

A unit value of one of BO, Go, Bt, Z, 8 or ¢ is substituted in equations
(3) with zero for the others. The set of rotor flapping deflections cbtained
is then substituted in equations (4) along with the unit value of the chosen
angle. The column matrix of hub and swashplate forces becomes the aeroelastic

derivatives for the angle.

The above derivatives are dimensional, i.e., hub and swashplate moments
in £t 1b and thrust (the same as 1ift for small angles) in lb.

It is convenient to display the moment and force derivatives in a non-
dimensional form. The moments are divided by dynamic pressure due to forward
speed, disk area and radius qTrR3 and the forces by dynamic pressure and
disk area q1rR2. The convenience is due to the fact that the basic aerodynamic
derivatives upon which the calculation of the aeroelastic derivatives are
based are functions only.of advance ratio when so non-dimensionalized (for

a given rotor geometry).
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When the effects of blade flapping are included, for a given mass and
stiffness distributbtion in the blades, the aeroelastic derivatives become a
function of flapping frequency (P) and air density (Lock No.) and advance
ratio. The aerocelastic derivatives are displayed in nondimensional form
versus advance ratiopand flapping frequency (P) for the Loeck No. correspond-
ing to nominal sea level air density. The variation with Lock No. is not

shown, since tests were performed only at the one air density.

Lock No. is an index as to the ratio of air forces to mass forces on a
root-hinged, articulated rotor blade. It serves approximately the same
function for hingeless rotors. It is, perhaps, more properly thoﬁght of as
a density relationship; the ratio of air density to blade density (for a

given lift curve slope). It is defined as follows (Reference ley:

c a Rh
Lock No. = T
1
L
_ 1.17(.002378) .95(2m)(16.5)
268
= ly.57
where:
¢ = blade chord
P = air density
a = 1lift curve slope
R = rotor radius
Il = blade moment of inertia in linear flapping

Tock No. = 4.57 in all tegts.

Figure 2 shows an example of the theoretical variation of nondimensional
derivatives with advance ratio and flap frequency ratio at sea level air
density. Lines of congtant forward speed are also shown to facilitate the
comparigson of the experimental data gathered along lines of constant speed

with theoretical. The figures show the variation of hub moment coefficients
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with the e¢yclic pitch components 81 and 81 .  Hub moment is shown as a vector
e s
with its tail at the origin and head in the pitch-roll moment field. The right

hand rule indicates its azimuth, viewed from above. The great reduction in
the coefficients with increasing advance ratio is apparent and the change in
azimuth due to increased flapping due to the rpm increase associated with

increased forward speed is also apparent.

Moment Trim Using Cyelic Pitch

Two bagie trim conditions are considered: hub mean moments trimmed to
zero and swaghplate (or gyro) mean moments trimmed to zero. These are referred

to in this report as the hub trimmed or swashplate trimmed conditions.

Control of helicopters is accomplished through piteh and roll moments
applied to the ailrframe by the rotor. These moments are produced primarily
through blade cyclic pitch angles which have limited maximum amplitudes. The
fraction of the available cyelic angles used in trimming rotor hub moments to
zero is therefore very important since the angles remaining may seriously

limit the woments which may be applied in some azimuth.

Cyclic angles can be applied to nullify the moments produced by blade
geometry and flight operating condition. Rotor precone tends to apply a

nose-up pitching moment to stiff bladed cantilever rotors and negative
lateral eyclic piteh 67, (80 ealled for its effect on articulated rotors) is
required to compensate it. Angle of attack, collective pitch and blade twist
tend to apply rolling moments which can be cancelled by longitudinal cyclic

pitch 81_-

It is important to note that this study considers only the mean moments
applied to the shaft and not the moments that occur periodically relative %o
rotor azimuth position. At low rpm these moments may be cancelled by judicious
use of cyclic and collective pitch varying with azimuth. Trimmed conditions,
being steady state, are well suited for computation by the use of aercelastic

derivatives. Hub moment trim is easily calculated using hub moment aero-
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elastic derivatives. The cyclic angles required to trim hub moments to zero

may be found by considering only the aeroelastic balance of hub moments.
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and the cyclic angles may be found directly:
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The cyclic angles required to trim the swashplate moments to zero are
found in identically the same way. The effects of rotating damping (feather-
ing friction) CR must be included in the calculation of the aercelasbic

derivatives.

Swashplate moment trim is important for gyro controlied.feathering moment
feedback rotors because the gyroscope responds to moments applied to the swash-
plate and trims them automatically to zero in the absence of pilot applied
control moments. This also trims hub moments to zero up to an advance ratio
of approximately | = 0.8, where the swashplate momentsare more or less propor-
tional to hub moments; but above this (p>0.8), increasingly larger hub moments
occur with zero swashplate moments due to the reverse velocity over the re-
treating blades and to feathering friction effects on the large cyelic angles.
The cyelic angles to trim the swashplate, therefore, tend o increasingly
disagree with those reguired to trim the rotor as the advance ratic increases.
The hub moments due to swashplate trim, as calculated from equations (5) and

(2) below, therefore, represent the free-gyro condition.
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Rearranging equations (2) and (3) after setting the left hand sides equal

to zero:
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H = - [AMSl] [AMSE] I E R (5)
¢ 0,

Swashplate Trim

The hub moment trimmed swashplate angles and corresponding swashplate moments
are obtained by using equations (L) and (3) respectively. Similarly, the
swashplate trimmed angles‘and hub moments are determined by employing equa-
tions (5) and (2). The swashplate angles may be transformed to blade cyclic

angles by the sine cosine transformation:
By -.13h7 L7530 | @

N +.7530 Lh3hT ¢

(The effect of mechanical advantage k is also included. It gives the gyro

an increased tilt per unit cyclic angle applied.)

Theoretical cyelie pitch angles required to trim hub moments to zero
are shown in Figure 3 and to trim swashplate moments to zero in Figure U.

The conditions were as follows:
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6.5 = 127
etR = _9')'!'30
Bo = 2.25°

The variation of the eyclic pitch vector is shown with regpect to advance

ratic and forward speed. The ranges of each were:

0.b < p< ko

0< V< 120 Kts.

From the curves it may be seen that 6 is & function only of advance ratio,

1
s

but Bl varies according to both advance ratio and forward speed, or more pre-
<}
cigely, according to advance ratio and flap freguency ratio.
It is interesting to note that over the advance ratio range from p= 0.4
almost to B = 0.8 the cyclic pitch angles to trim both hub and swashplate
moments to zero are almost the same. Rotating damping (feathering friction)

was agssumed to be zero.

Control Effectiveness

As used in this report, the term "control effectiveness" refers to the
moments produced at the rotor hub by the application of unit control moments
to the swashplate. The ghaft is prevented from pitching or rolling both in
the tests and in the analyses. In a free flying aircraft, control moments
result in steady rates of roll and normal accelerations with somewhat 4if-
ferent aerodynamic forces on the rotor, so the definition of "control effec-

tiveness" is different in that case.

In the fixed-ghaft case the free-gyroscope control system affords a
simple method of applying hub moments to the rotor. The control system, in
the gbsence of operator applied swashplate control moments, aubomatically

trims hub moments to near zero. Then, as the operator applies control
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moments through the free-floating swashplate, hub moments are produced as

balancing feathering momenbs bulld up.

Feathering moments are proportiomal to root bending moments, and in the
advancing flow region, the factor of proportionality is the blade sweep angle
A. TIn the reverse flow region, the factor reverses sign and becomes variable
with azimuth and advance ratio. Therefore, as long as effects of the reverse
velocity region remain small relative to the effects of the advancing flow
(at advance ratios less than, say, &= 0.8), the swashplate moments are
approximately equal to hub moments factored by A (with unit mechanical

advantage).

The mechanical advantage is the ratio of swashplate tilt to cyeclic pitch
and is denoted by "k". The ratio of swashplate moment to hub moment with

zero cant angle therefore, becomes-%—at modest advance ratio.

For purposes of flight stability, the feathering linkage is designed to
rotate the swashplate moments in azimuth through the cant angleﬂg. This effect

may be seen in the control effectiveness resulis.

Because the azimuth and amplitude of the reacting hub moment remain
feirly constant the cyclic angles are forced to take on large azimuth and

amplitude changes as the rpm and advance ratio change.

If a servo control moment is applied rapidly, the control mode (indicated
by an advancing precessive motion of the gyroscope) will be excited. It ig
well damped down to a low rpm and then becomes unstable with further rpm re-
duction. The control effectiveness discussed here is a measure of the in-
cremental hub moments remaining after the transient motions and forces have
damped out for the stable system.

The contyrol effectiveness ratios are easily evaluated using the aero-
elastic derivatives. The steady-state moment equilibrium equation may be

written as follows where the partitioned 4x6 matrix consists of aeroelagtic
derivatives:
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If the rotor parameters in the right hand bxd matrix are held constant, then

equation (2) may be rewritten:
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Combining (4) with (6) to eliminate the swashplate angles:
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And the control effectiveness ratios can be defined as:
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Fixed~Shaft, Robor-Gyroscope Stability

The stability of a rotor-gyroscope system with the rotor shaft mounted
so that it could not pitch, roll, or plunge (as was tested in the wind tunnel),
is more simply predictable than a system mounted in a free-fiying aircraft.

The differences are discussed in detail in a later section.

The equations of motion of the robor-gyroscope-body, which are derived
in Appendix A for a free-flying aircrafi, are easily reduced to the fixed-
shaft case since piteh, roll, and plunge displacements and velocities in the
fixed-shaft case are zero. All forces due to these motions are zero, which

permits the first three columns and the first three rows of all matrices 1o

be deleted. Therefore, the fixed-shaft equations of motion are obtalned from
the free-flying equations of mobtion by exbracting the lower right 5x5 terms
from the 8x8 matrices, thereby reducing the size of the mathematical repre-

sentation from eight degrees-of-freedom to five degreeg-of-freedom.

The stability of the five degree-of-freedom linear system cam be assessed
from the roots of the characteristic equation of the system (as long as the
periodic components of the differential equation coefficients are ignored).
The rootg occur in pairs that indicate either damped or unstable oscillation,
or they occur singly indicating subsidence or divergence. Since the equations
are second order and five in number, the total mmber of roots is 10 (the

product of the order and the number of equations).

For the free gyro case, the roots generally consist of five oscillating
roots over a large range of rotor speeds. At some low value of rpm, as rotor
speed is reduced, one mode will gplit into two real roots, one subsident and

the other divergent or unstable.

Each of the modes of motion corresponding to the roots consists of comb-
inations of degrees of freedom in ratioc to the one of maximum value. The
.ratios of displacements are complex for oscillatory modes and real for
aperiodic modes. The modes are named so as to describe their most prominent
features. A typical example is shown (Figure 5, 6 and 7) in which the rpm is
reduced from 100 percent to zero at 100 knots. The swashplate is free of spring
regtraint and the rotating (feathering) damping CR = 7 £t 1b/rad/sec and the
swashplate damping Cq = 80 ft 1b/rad/sec.
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Theory. ~ The five degree-of-freedom equations shown in Appendix C

wmay be written in abbreviated form as follows:

[x] 5 + [[D] + [Brﬂ B+ [[s] + [B]]p = 0

Where B is the vector of displacements of the degrees-of-freedom

Assuming that the motions of the system are expressible in exponential form,

their time derivatives bhecome:

t

B = B,
AG

b= np, ©

5 - kz po eht

and the differential equations become:

[xZ [1] + » [[D] - [Br]] +[s]+ [B]] B, = O

For non-trivial solutions the determinant of the equations must equal zero:

1l
o

A=

N [1]+ 2 [[D] + [Br]] + 8]+ [B]
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The values of A\ which cause this to occur are called the roots (sometimes
eigenvalues) and indicate the frequency and damping in each of the modes of

transient ogeillation. The roots are complex in general:

A= hr ilhi

The exponential decay or amplification and the frequency are determined as

follows. First note that

(xriihi)t PRI
B = By © = Bo © ¢

and
if Kr is negative, the cscillations subside;

it Kr is positive, the oscillations diverge and are unstable.

The freguency in radians/sec ig given by Ki and this is the damped

= wdamped
natural frequency. The undamped natural frequency is given by:

mn = A, + A
undamped

The time requlred for the oscillation or subsidence to reduce to half the
original amplitude may be found as follows:

-1

N
T

the time %o subside %o i amplitude T
e 1/e

and from this the time to subside to half the original amplitude

Tl/2 = log 2 Tl/e
= |693 Tl/e

.693

Ty = - x_
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and the reciprocal of time to half amplitude is used as an index to stability

in these analyses.
Tl_' = - l-}-l—li'g )\.I_
1/2

The critical damping ratio of a mode is given by:

The modes of motion corresponding Lo the roots of the equations (some-
times called eigenvectors) are determined by substituting the value of the
ath rootlhn for ) and then evaluating the nondimensionalized vecbor of
displacements for the nth root. The modal vector divided by one of its

displacements could be as follows:

(e/8 ) (L)
¢/0 $/6

Let [ﬁn] = 4 6o/8 ro= 4 6o/9 >
8g/© 5g/8

[ 64/8 | %

and the equation becomes

[xf [1] + 2 [[n] : [Br]] - [5]+ [B]] [5] - o

In the product of the square matrix and the mode vector, the first

column will have no unknown quantities, in this example, as follows:
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a1+ ap, /0 + 25 ao/e + = 0
8,y 1+ an, ¢/6 + 21 50/9 + = 0
85y 1o+ ag, /6 + 833 60/9 + = 0

The equations may then be solved for the four unknown ratios by dis-
carding any one of the five equations and the transferring the constant column

to the right hand side

T A, 23 . .W b/ (891

- 5,/0 %21

< > = { r

a32 a33 . . 6¢/9 a3l

‘e . - . * LSB/BJ \ * P

Then

r - -l

¢/ 8o 3 T (2]

5,/@ Gpp  B8p3 82

4 > o= < ;

65/8 83 853 . . a5

\%/91 | . . . N

The modal vector then would consist of unit real gyro pitch angle and
complex ratios of the other displacements to the unit pitch displacement, in
the case of an oscillatory root. Modes with real roots have real modal

vectors.
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Tn the case of an oscillatory mode the projections in the real axis of
the components of the vector represent the actual motion. All components
maintain the same amplitude and phase, in the imaginary plane, relative to
each other but rotate as time passes making one complete resolubtion in each

period of oscillation, counterclockwise.

T+ should also be noted that the modes are orthogonal to each other;
i.e., motions entirely in one mode do not create forces that disturd other

medes.

Modal vecbors may be nondimensionslized relative to any element of dis-

placement. In this example, they have been arbitrarily scaled relative to the

largest element.

Example: The variation of the roots and vectors of the characteristvic
equation over the rpm-range is shown in Figures 5, 6, and 7. The case
chosen for examination was fixed-shaft at an airspeed of 100 knots EAS with
a free {or unsprung) swashplate. The swashplate damping Cy was 80 £t 1v/
rad/sec and the rotating damping (or feathering friction) CR was T £t
lb/rad/sec.

Figure 5 shows four of the fivé oscillating roots of the system displayed
relative to real-imaginary axes. The real part of the root is displayed along
the abscissa (it is also the reciprocal of the time to l/e amplitude). The
imaginary part of the root is displayed along the ordinate and is the damped
natural frequency in radians/sec.

This way of displaying the variations of roots with rpm is particularly
useful since radial lines from the origin mark contours of.constant critical

damping ratio C/Cr and the stability of each root becomes immedlately apparent.

The four roots displayed are the rotor nutating, rotor collective, rotor
precessive and the gyro precessive. The gyro nutating mode is not shown

because it is very high frequency and lightly damped and doesn't change with
rotor rpm.
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Another way of displaying the voots ig shown in Figure 6. The damped
natural frequency in cycles per second and the reciprocal of the time to half
amplitude 1/T; are displayed versus rotor rpm. This method allows the stabllity

2

at any given rpm to be assessed at a glance.

Figure 7 shows the modes of oscillgtion. The vectors of degrees of
freedom (mode shapes) are shown at full rpm, 30 percent, and 0.1 percent rpm

(or essentially the stopped condition).

Analysis of transient motions of the rotor gyro mechanical system in
terms of mode shapes, frequencies, and decay times, required that the equations
be linear and without periodic coefficients. The linear mathematical model
discussed here was abstracted from the more complex mechanical system, which
contained nonlinearly coupled flap and in-plane modes, & spring-restrained
gyro, plunge degree of freedom, lack of precise inertial and geometric sym-

metry, and a shaft that was mounted on a spring-supported mass.

Had the nonlinear complicatiéns been considered, then modes, frequencies,
and damping could not have been found in closed form. The variations of the
degrees of freedom with time could only have been found through step-by-step

integration or electronic analog, and the stability inferred from this response.

Modelling only the principal aépects of the system allowed the basic

motlons, as discussed below, to be clearly seen.

The gyro precessive mode is characterized by a freguency lower than thoge
of the rotor modes. Examination of Figure 7 shows that motion in the mode
consists primarily of gyroscope, or swashplate precessive tilting. BSince the
physical motion of a mode is given by the projection of ity modal vector
components in the real, or horizontal, axis as it rotates counterclockwise at
the mode frequency, it may be seen that the modal precession is advancing (or
wobbling in the direction of rotation). Accompanying the gyro precessive
wobble is a much smaller precessive wobble of the disk plane, which diminishes

ag the rpm reduces.
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The rotor precessive mode frequency is somewhat higher Than the gyro
precessive frequency. but still much lower than the rotor rotation rate. From
full rpm down to less than 30-percent rpm, the mode is a regressive precession
(wobbling in the opposite direction to the rotor rotation), and the blade cyclic
pitch is approximately the same magnitude as blade flapping but opposite in
sign (but still regressive). At zero rpm, the mode degenerates to a negative
piteh flapping relative to the airstream combined with a negative collective
flapping.

Had the rotor blades been articulated and the aerodynamic forces been
zero, the rotor precesgive mode frequency would have been zero. Relative to
rotating coordinates, the blades would have cgeillated in flap at 1P. Any
blade root spring effect added to the articulated blades would cause them to
simulate hingeless rotor blades and would increase the flap freduency above
1P in rotating coordinates. This would result in a small frequency in station-

ary coordingtes, and the cyclic flapping would have a regressive wobble.

At full rpm, the cyelic pitch angle participation in the mode is equal
and opposite the flapping motion. When the rotor flaps down, the blades
feather nose-up in that region of the disk so that the aerodynsmics tend to
reinforce the structural and centrifugal stiffness again increasing the
frequency of the regressive flapping motion. At zero rpm the mode degenerates
to a negative pitch flapping relative to the airstream combined with a

negative collective flapping.

The robtor collective flapping mode is almost pure at full rpm. At zero
rpm, it degenerates to almost pure roll flapping mode relative to the air-
stream. TIts frequency is slightly higher than the rotor rotation rate due to

the root spring effect.

The rotor nubtating mode is characterized by a freguency slightly larger
than twice the rotor rotating rate and an advancing precessive motion of the
piteh and roll flapping degrees of freedom. The mode is similar to the nutabting

mode of a gyroscope, and derives its name from that fact.

As the rotor is stopped, the mode changes to a combined pitch flapping

and coning (collective flapping) motion.
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Wind Tunnel Simulation of Free-Flight

_ The most convenient way to test a rotor in the wind tunnel is with its
shaft fixed against pitching, rolling and plunging. The results of such tests
validly represent flight cases in which the shaft low frequency motions are
ingignificantly small. These cases include level flight of stable”systems and
should be valid for rotor performance, trimmed flight swashplate angles, and

Tluctuating loads provided that the vibrating shaft deflections are small.

On the other hand, the transient response of the system to sudden force
applications would not possess representative frequencies, dampings, and
influences of the degrees of freedom if the body in free flight would take on
large motiong following the foree application. In fact it is conceivable that
a conurol system that behaves well in the fixed-shaft condition could be
unstable in free £light. One parameter must be carefully optimized for free
flight stability but hag absolutely no effect on fixed-shaft rotor gyroscope
stability. It is the cant angle (45) between the gyro tilt axes and the

feathering displacement axes.

The difficulty and expense involved in mounting a model in the tunnel sc
as to be essentially free requires that a careful assessment be made of gains
obtainable by freeing the various rigid-body degrees of freedom:

e 7pitch and roll

e plunge

® yaw and sideslip

L ]

surge

The logic which led to the decision to test the fixed-shaft configuration
was as follows. The significant aspects of slowing and stopping a rotor were
assimed to be high advance ratie aerodynamics, effects of stiffened cantilever
blades, and high-speed gyro control. These aspects played important parts in
the:
automatic trimming of hub moments
effectiveness of the control system

stability of the rotor-gyro system

dynemic rotor loads and vibrations.
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The procedure adopted was to develop methods of predicting the behavior
of the fixed-shaft system - methods that adequately treated high adveance ratio
gerodynamics, very stiff blades, and a gyro-controlled feathering system. It
was presumed that to extend the metheds to include the effect of the rigid-body
degrees of freedom would be straightforward. This logic does depend on how
large an extrapolation is necessary to include the body degrees of freedom.
There is some risk that basic rules learned on one system might not apply
well, in extenso, to more complex gsituations. t is expected, however, that
verification of the fixed-shaft tests greatly increases the likelihood that

the free-flight analyses would be valid.

There is always the element of doubt which quasi-free-flight tunnel
tests would clear up. The question to be assessed at this time ig "Are

gimballed-model wind tunnel tests worth the additional difficulty and expense?”.

If gimballing a model in the tunnel is to represent an infligﬁt stoppable
rotor aircraft, the tests would be very difficult, because a full set of con-
ventional airplane controls, elevators and ailerons (perhaps flaps) would
have to be ingtalled on the model and a full rotor harmonic eyclic-collective
active swashplate control system would have to be developed. A pilot would
have to remotely "fly" the vehicle in the wind tunnel.

In the case of the slowed rotor compound helicopter, with a rotor slowed
to approximately 50 percent rpm, many of the expensive requirements vanish.
The rotor controls can be used to control the aircraft. The existing passive
high-speed gyro system might be adequate, at leagt for test purposes. In
addition, the possibility that limited free-flight freedoms (pitch and roll)
could yield a majority of the desired information leads to relatively simple

mechanization of the freedoms.

The differences between fixed-shaft and free flight can be resolved by

logic and the analyses discussed herein. Free flight involves:

e pitch and roll

s plunge

e yaw and sideslip
o surge.
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The surging or axial dégree of freedom involves the speeding up and
slowing down of the aireraft. Leaving it out of analyses prevents the cal-
culation of phugoid motion (of very long period) which involves the inter-
change of potential and kinetic energies of the airframe as a whole. The test
section size of a wind tunnel is too small to permit the perturbation in
position (from a mean) that would be necessary to include these motions. There
is some logic to the point that the motions do not really reflect highly
coupled rotor/airframe motions, because of the very long period, of the order
of 10 seconds, of the motion compared to the périods of other rotor/airframe
modes. Restraining the aircraft fore and aft motions is necessary for tunnel

operations and is not expected to materially affect rotor/airframe interactions.

Yaw and sideslip are important to yaw combrol and stability and the
effectiveness of the tail rotor. These modes are also of relatively long
period, or are aperiodie. The duteh roll-like modes could be expected to be of
the order of half the period of the phugoid-like modes, perhaps three to four
seconds, and also reflect the effects of gravitational atiraction. The
motions are a bit too large to stay within the confines of the wind tunnel
test section, but rotof sideslip derivatives are not fundamentally different
from rotor symmetric derivatives; the azimuth change of air approach to the
rotor in effect merely shifts the rotor reference axis. The motions are of
long enough periods so as to not intimately react with the rotor-gyroscope-

body motions.

Plunge is fundamental to the correct calculation of the short period
piteh mode. Pitch-plunge coupling is the essence of this mode and is expected
t0 couple with roll (due té the rotor in the system). 8o the pitch-roli-
plunge motions should be important to the fundamental rotor-gyro-body modes.
If the plunge mode is bto be suppressed in the wind tunnel, knowledge of
gimballed model representative rotor-gyro-body motions must first be obtained
by analysis. Eliminating the plunge degree of freedom by supporting the model
would simplify the suspension, and because the model is about twice as heavy
as a free-flight vehicle (for the size of the rotor), would allow the wing to
be properly loaded.
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The sgtudy reported herein, therefore, is devoted to answering the two

guestions:

1. What are the differences hebween free-flight and fixed-shaft
stability, and are the differences worth the expense of testing
by gimballing the model?

2. Does suppressing the plunge degree of freedom (and effectively
eliminating the overwelght condition) and suffering the oversize
pitch and roll inertiaé fundamentally change the behavior of

the gimballed model from free-flight behavior?

These questions are answered under "Topics Related to Wind Tunnel Tegts"
by finding the roots and stability mode vectorg of the characteristics egua-
tions of the rotor-gyroscope-body equations of Appendix A for both the free-
flight aircraft and the gimballed model and comparing them with those of the

fixed-shaft case.
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WIND TUNNEL MODEL

Description

The wind tunnel test model, shown in Figure 8, has a 3-bladed
33-foot diameter hingeless rotor, and a mechanical-hydraulic control system
incorporating a high-speed gyro. The pertinent vehicle geometry is presented
in Table I. Power is provided by a Pontiac engine, driving through a
torque converter, transmission, slip differential and sprocket and chain to
the rotor shaft. Slowing and stopping the rotor are accomplished by a hy-
draulically actuated brake. The support structure, engine and drive train are
enclosed in an aerodynamic fairing simulating a compound helicopter fuselage.
Wings are also available for the model, but both analysis and tests were per-
formed in the wing-off configuration, to more correctly approximate the con-

ditions of the aerodynamic analyses.

The complete model was rigidly mounted in the wind tunnel on two forward
struts at the sponsons, and one telescoping tail strut. Ball and socket
joints at the attachment points permitted swivel freedom for angle of attack
changes, which were accomplished by remotely varying the tail strut length.
The three support struts reacted through the wind-tunnel model balance system

to provide basic aerodynamic force and moment data.

Although the model has been designed specifically for the investigation
of slowed/stopped rotor behavior, the rotor should be considered as repre-
sentative rather than optimum. The rotor is specially stiffened to resist
blade bending divergence when stopped. Figures 9 through 13 show the
blade mass and stiffness radial distribution. A previous tunnel entry with
the model demonstrated the structural integrity of the blades in the stopping,

starting, folding and unfolding operations and is discussed in Reference 5,

Control System

A feature of the vehicle is the provision of two essentially different

control system modes, the primary or free swashplate mode, and the locked
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Figure 8.

Specially Stiffened 33 Ft. Rotor With High Speed
Gyro In The Ames 40 x 80 Ft. Wind Tunnel



TABLE T
MODEL PHYSICAT: PARAMETERS

Main Rotor

Number of blades

Radius

Chord

Airfoil

Solidity

Blade Area

Disc Ares

Blade pre-cone angle
Blade forward sweep
Blade twist (down at tip)

Blade twist axis
(passes through shaft CL)

Blade Feathering axis
Rotor 100% rpm

Tip speed

Mast angle (forward tilt)

Rotor polar inertia

Gyro

100% rpm
Gyro cant angle

Gyro polar inertia
(ring off)

3
16.5 feet

1.17 feet (14 inches)

‘NASA 632015

0.0675

57.7 £4°

855.3 47

2.25°

1.50°

9.43° (0.572%/£4)

27% chord

32.5% chord at R.S. 30.85 inches

355

613.4 ft/sec at 100% rpm
0°

8ig slug_ft2

10,000
60°

0.30 slug ft2
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swashplate mode, each having its own pair of cyclic comtrol sticks. A

schematie of the system is shown in Figure 1k.

In the primary mode the characteristics of the high-speed gyro are
utilized. Rotor control is achieved by use of pitch and roll servo-damper
actuators, each of which applies a force to the swashplate independent of the
position of the actuator piston in the cylinder. Motion of the control
stick directs the net force upon it. The force is then transmitted to
the gyro via the bellcrank, swashplate and control rods. For a stable
system the gyro, in response to this inpubt, will rapidly take up a position
dictated by equilibrium of the moments applied to it by the controller and
those fed back to it from the rotor,

At conversion speed, the rotor/gyro system is inherently stable at nor-
mal operating rpm, but stability deteriorates with decreasing rpm. At some
low rpm the system becomes unstable. Since operation in this condition is
ungeceptable the primary control mode is supplemented by an augmentation
spring at rpm less than 110, as indicated by an rpm sensing valve. The spring
force provided by this unit acts to assist the gyro in preventing blade
feathering divergence. Motion of the primary control stick will still r@sult
in a force output from the servo-damper actuator, but with the spring unit
engaged the net oubtput from the beil-crank will be significantly reduced, and
the primary control will be relatively ineffective. The augmentation spring

was not employed during these tests.

In the locked swashplate control mode, the locking function is performed
by the spring avgmentation unit. The gyro tilt angle is. commanded by the
position of the comtrol stick, via the position servo-actudtor within the
unit, the gyro is thus constrained from precessing and is isolated from the

centrol loop.

The spring augmentation unit serves an additional function in the Failure
Prevention System. When flapwise blade loads reach a pre-set value (approxi-
mately 50% of failure load), the unit is automatically locked, preventing

further control application in either mode until The system is disarmed.
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Because of the nature of the test program, remote control of collective
pitch was not considered essential. To preclude an incident due to leakage

in the collective servo-actuator, it was replaced by a solid, adjustable link.

Ground Tests

In preparation for tunnel entry, an extensive ground test program was
conducted to functionally check out the vehicle operation and determine
its strength and vibration characteristics. The fuselage shell was proof
tested to a load distribution representative of the limit wind tunnel
test condition for forebody loads, i.e., 180 KTS forward speed, and 1° shaft
angle of attack. The limit aft body load was considered to occur at a 50 vay
angle, at 180 KTS and this condition was simulated by loading the vertical fin.
The control system strength capability and stiffness characteristics were
examined by replacing the actuators by solid iinks, then proof testing to
represent both collective and eyclic loads. No evidence of structural failure
or permanent deformation was present. The effect of measured cyclic and col-
lective stiffness on the system aeroelastic stability was assessed analytically

and found to be small.

Shake tests on the rotor were performed to identify the important blade
flapwise and in-plane non-rotating natural frequencies and mode shapes. The
model structural framework was anchored to the ground, and the control actua-
tors were replaced by solid links. Figure 15 shows the test results,

and the calculated effect of rpm on the mode frequencies.

The rotor whirl test program served as s checkout of vehicle systems
operation, rotor stability and loads over 2 range of rpm, lift and body mo-
ments that encompassed the planned wind-tunnel test envelope. Based on this
program, improvements were made to control system hardware, and the procedures
for real-time monitoring of rotor and control system loads and stability were

evolved.
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A safety engineering analysis of the system, operating within the
rrescribed test envelope, was made in sufficient depth to assure maximum
safety consistent with operational requirements. The study encompassed the
model and its components, interfacing subsystems, equipment, instrumentation
and test crews. A Gross Hazard Analysis considered the probable nature and
impact of failures within the model's power and drive system, rotor control
system, hydraulic distribution system, electriecal distribution system, control
instruments and tunnel drive system. A4 Failure Mode and Effects Analysis
examined in greater detail the hydraulic and electrical components of the rotor

control system.

Instrumentation

Instrumentation was installed to provide a record of the rotor and control
system behavior during the test program, to facilitate control of the vehicle

and to permit real-time mopitoring of critical system loads.
A summary of the parameters measured is given in Table II.

Loads data were cbtained from foil type strain gages wired into bridge
circuits, and position data from angular or linear potentiometers. Blade
loads and rotating control system measurements were transmitted through shaft
mounted slip rings. Lift, pitch moment and roll moment were measured by load
cells mounted on longitudinal and lateral axes through the rotor center-line,
36 inches below the hub. As a consequence of this vertical location, the
piteh and roll moment outputs reflected the presence of in-plane forces at the
hub in addition to hub moments. The shaft bending bridges were located close
to the hub (11 inches) and this data, when transformed to stationary axes,

was preferred to the load cell output as an indication of hub moment.

Transducer sensitivities were measured by direct calibration over the
expected operating range, and the electrical equivalent load obtained by

inserting a shunt resistance on one leg of each bridge.

The parameters measured during the test program were recorded on three
data acquisition systéms, each tailored to a particular task. The basic

recording instrument, a CEC osecillograph with 28 active channels was in
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TABLE IT

INSTRUMENTATTON MEASUREMENTS

No. 1 No. 2 Tape
Ttem Measurement Osc, Osc. Recorder
1 Lift X *
2 Pitch Moment X X X
3 Roll Moment X X X
4 Shaft Bending at 0° X X
5 Shaft Bending at 90° X X
6 Colieetive Position X
T Swashplate Pitch Angle X X X
8 Swashplate Roll Angle X X X
9 Swashplate Pitch Moment X X X
10 Swashplate Roll Moment X X X
11 No. 1 Blade Angle X X
12 No. 2 Blade Angle X
13 No. 3 Blade Angle X
ik No. 2 Pitch Link Load X *
15 Swashplate to Gyro Rod Load X
16 Shaft Torque X
17 Shaft Iateral Vibration X
18 No. 2 Flap Bending at Station 10.7 X
19 No. 2 Flap Bending at Station 21.3 *
20 No. 2 Flap Bending at Station 43.0 X
21 No. 2 Flap Bending at Staticn £9.0 X
22 No. 2 Flap Bending at Station 118.0 X
23 No. 1 Flap Bending at Station 43.0 X
254 No. 3 Flap Bending at Station k3.0 X
25 No. 2 Chord Bending at Statiom 10.7 X
26 No. 2 Chord Bending at Station 69.0 X
27 Index Pip X X X
28 Strain Gage Voltage X
29 Time Code X X X

No data due to faulty amplifiers
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continuous operation throughout the tests, at high speed for data points and
envelope expansion, and at low speed elsewhere. Supplementing this for the
derivative and control effectiveness tests was a 1% channel FM tape recorder,
the first item in an automated data analysis system. Rotor/gyro response Lo
step control inputs was recorded on an additional oscillograph, with fewexr
channels for easier reading, and greater sensitivity for more accﬁrate data.
Time correlation of the three sets of data was achieved by recording time code

on each.



WIND TUNNEL TESTS

PROCEDURES

When the detailed test plans were written, it was anticipated that rotor
instability or high structural loads might mske operation in some areas unsafe,
and that severe rotor resonance at a planned test point might introduce a
factor into the test data which had not been considered in the analysis, making
a direct comparison invelid. In recognition of these factors, the criteria
used in planning the test procedures were, first, assure the safebty of the

vehicle, then sequence the tests such that maximum useful data is obtained.

To obtain maximum useful data, the tests and theoretical work were con-
ducted s0 as to isoclate error. The experimental aercelastic derivatives
depended only on the slopes of the ingtrumentation calibration and were not
subject to calibration zero error. Each of the derivatives depended on the
variations of a restricted set of parameters, thus allowing errors to be
igolated. Verificabion of rotor derivatives by test eliminated them as a

gource of ervor in the stability analyses.

In order to estgblish a safe operating envelope, a series of Safety Tests
were performed at each forward speed prior to gathering technical data. TIn
the fixed swashplate control mode the rotor was demonstrated to be free from
low freguency instabilities by pulsing the cyclic control and cbserving the
response, over the test rpm range. Resconant modes in the rotor-body-support
strut system were located by making slow rpm sweeps, first at zero ftunnel

speed then with increasing forward speed.

Having established the "avoid" regions at each tunnel speed by the Safety

Tests, the Technical Tests were performed in the following order:

(1) Fixed swashplate derivative tests
(2) Free swashplate stability tests

(3) Free swashplate controls effectiveness tests
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Transition from fixed to free swashplate control mode was always accomplished
at 40 knots in these tests to minimize possible transient loads. When changing,
tunnel speed the rotor speed was set to 200 rpm where loads were generally

small.
Fixad swashplate derivative tests. - The plamed procedure called for the

operator to trim out hub moments, then apply an increment in swashplate pitch
angle holding roll angle constant, and vice versa, to give ?he var;gtion of
hub moment and 1ift due to each cyelic angle. Bowever due %o leakaée in the
servo-actuators, and air in the hydraulic lines, the aectuators were not com-
pletely effective in locking the swashplate. When applying an incremental
swashplate pitch angle from trim, for example, corrective action was necessary
to maintain the roll angle at its trim value. Thus the elimination of cross-
eoupling in control application was dependent on the accuracy and resolution of

the swashplate angle panel instruments.

Because of the vertical offsét of the moment load cells from the hub, the
panel moment indicators were not used to trim the rotor. An oscilloscope
display of shaft bending mément was provided, so that the operator, by zeroing
the 1P component, could achieve a satisfactory trim, except where harmonics

higher than 1P obscured the trace.

In order to o¢btain accurate derivatives, a minimum of four swashplate angle
increments from trim {two positive, two negative) were applied in each of
piteh and roll, the maximum input being dictated in most cases by The blade
Tlap-wise or chordwise strengbh relative to allowable endurance stresses. An
X-Y oscilloscope presenting blade chord and flap bending moments, was used to
monitor both blade loads and blade dynamic behavior. Robor strength limits
were rarely approached, and when high loads were experienced Failsafe System
sctuation prevented further control application. In such cases, the cause
of the high loads was determined, the system was then disarmed, and corrective

action taken.

To obtain the 1ift and moment derivatives with respect to angle of attack,
the test procedure followed was to trim the rotor at ap = OO, then increase @p
in 0.5 degree or 1.0 degree inecrements. As with the cyeclic derivative tests,
it was not possible to maintain the cyclic angles at the values for trim at

on = OO, s0 the data reflected the changes in these parameters in addition to
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the variation in angle of attack. Blade endurance loads dictated the maximum

angle of attack achieved in the tests.

The majority of the test points in the program were performed at a col-
lective angle setting of 60-T§R= 1.50. Time limitations prevented a thorough
investigation of the effects of collective angle changes. The adjustable link
in the collective control system was set to give a collective angle of
60.753 = 3 degrees, and data was recorded at nominal trim for a nuwiber of

test conditions.

Free swashplate stability tests. - With the gyro operating at its design
speed of 10,000 rpm, the rotor/gyro stability in the primary control mode was
cobtained by applying step moment inputs about the swashplate roll axis, start-

ing at 320 rpm and at gradually reduced rotor speeds. The stability and fre-
guency of the swashplate angular response were determined from the oscillo-
graph records after each test, The decay rate was plotted versus rotor rpm,
and the trend examined before testing at a lower rpm. In this manner the rpm
at which the system became neutrally stable was determined graphically. The

unstable region was never penetrated during testing.

Free swashplate control effectiveness tests. - The test method here was

similar to that employed in the fixed swashplate cyclic derivative tesis,
except that incremental swashplate moment, rather than angle, inputs were
made, by means of the primary control system. Once again a minimum of four

control increments from trim were applied in each axis, the other control

being left untouched.

The free swashplate test envelope was severely restricted, because of the
poor stability of the rotor/gyro system at low rpm and high advance ratio,

Wo control effectiveness tests were conducted near the sgtability boundary.
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Airspeed-RPM Envelope

The Wind Tunnel Test Plans called for testing at advance ratios between
0.4 and 4.0 at tunnel airspeeds in the range 60 to 120 knots. However, the
preliminary safety tests exposed areas where model operation was hazardous,
or where the model behavior was such as to preclude the gathering of useful
data. Figure 16 presents the overall test envelopes in the fixed énd free
swashplate modes, and Figure 17 shows the regions within these envelopes

which were avoided for continuous operation.

Continuous operation of the rotor was limited to a maximum of 320 rpm due
to an antieipated engine drive train heating problem. The rotor was demon-
strated to be free of flubtter and pitch instabilities within the test rpm
range. It should be noted that flutter checks made during the whirl tests
indicated a flutter-free rotor to at least 390 rpm.

75



9l

100

80

60
%
ROTOR
RPM
40
20
0

/////////M

FREE SWASHPLATE

AN
I

NN
-

LOC K[ED SWASHPLf\TE l

20 . 40 60 80 100
TUNNEL SPEED, KNOTS

Figure 16. Test Envelope

120

140



'
3504

NN

300 \\\\\
250 hk\

AN

\

AN AN NN
\§:§S N
\\\

%

o

Y/
7

FIRST CHORD 2P RESONANCE ?
BODY /
PITCH A NN ANOK NN
MODE é
200 } V4
L/
ROTOR BODY LATERAL MODE
RPM RNOSNNINNSSERESSRKERR N N
150 N N SN N N N N N Ny Y N N N N NN N a
TAIL STRUT RESONANCE i ;
pd
\\\\\\\\\\\\\\\\\> \9605']
BALANCE RESONANCE /
106 777 “
FREE SWASHPLATE _/ v
STABILITY BOUNDARY L/
v
50 == LOCKED SWASHPLATE CONTROL 7
DIFFICULT ABOVE 100 KTS DUE L/
TO RANDOM MOMENT FLUCTUATIONS—-= e
4
L , _ | -
0 0 20 40 60 80 100 120

TUNNEL SPEED KNOTS

Figure 17. Test ‘Avoid' Regions

i



Model resonance. - The model resonant modes that were potentially

pothersome and hence restricted the test envelope (Figure 17 were:

(1) Model lsteral mode at 160 rpr which was characterized by strong
1ateral response at 3P in the stationary system and chordwise 2P
response.

{2) Model pitch mode at 220 rpm which was charactérized by pitch load
cell 3P in the stationary system and strong chordwise response at
2P. This mode was not detected at tunnel speeds less than 90 KTS.

(3) Rotor blade first inplane 2P crossing at 280 rpm (at 1.5° collective
blade angle). Continuous testing was restricted between 250 and
310 rpm to preclude a 1P x 2P instability.

(4) A tunnel balance system resonance was observed at 1.8 CPS (108 rpm).

Control difficulties. - In the fixed swashplate control mode, the opera-

tors had difficulty holding steady conditions at the higher tunnel airspeeds.
The model behavior was characterized by a random load cell moment fluctuation
which increased in amplitude with increasing airspeed and rotor rpm to
£12,000 in 1b at 120 KTS, 320 rpm. As a conseguence no fixed swashplate tech-
nical tests were performed above 100 KT'S. Tt was thought that the problem
might be due to random blade feathering motion within the slop band of the
control system. However, examination of the oscillograph records of blade
angle did not substantiate this. It is postulated that the tumnel flow
straighteners in the return circuit were unable to remove all the swirl in the
airflov induced by the rotor. Since rotor contrel in the primary mode was
much steadier and the gyro took vp random oscillations it is felt that the
gyro was effective in overcoming the effects of these external aerodynamic

"gusts.”

Pest Condiftions

The fixed swashplate test conditions which were investigated in the
determination of derivatives with respect to cyclic pitch, collective pitch,
and angle of attack are summarized in Figures 18 and 19. The free swash-

plate control effectiveness test conditions are also shown.
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Rotor and swashplate derivatives, and control effectiveness data were
measured along lines of nominally constant advance ratio in order to simplify

the isolation of the aerodynamic and aercelastic effects.

Data Reduction and Analysis

The date of primary interest to the modification of theoretical methods
was recorded on tape as well as oscillograph. Tt consisted of instrument
output which yilelded cyclic pitch angles and hub and swashplate moments.

The analog data recorded in FM form on magnetic tape was chosen as the main
gource of information primarily because it lent itself to automatic dats

reduction with a minimum of manusl cperations. The test records were passed
through an analog-to-digital conversion process, which picked off data every
0.004 seconds, to make them acceptable to computer equipment, then stored in

digital form on magnetic tape.

The preliminary computer operations involved calibrating and smoothing
the data. Calibration was performed by recording pre-run resistance shunts
having known egquivalent loads. This gave the parameter sensitivities, from
which the conversion from data counts to engineering units were made. Elec-
trical noise and wild points in the data were eliminated by a three point
parabolic smoothing routine. The computer next recognized the rpm signal,
which was triggered whenever the No. 1 blade was aft (at ¢= 0°). The data
within the cycles of interest were interpolated to give T2 data points per

eycle.

In this form the data was suitable for the subsegquent analysis procedures

discussed below:

Shaft bending moment transformation. - As discussed in the Instrumenta-

tion section, the output of the O degree and 90 degrees shaft bending moment
gages was preferred to the load cell moment measurements, because of their
proximity to the robtor hub. In order to indicate pitch and roll moment, a
transformation from rotating to non-rotating coordinates was required. The
relationship at a particular instant, where the No. 1 blade is at an azimuth

of ¢ degrees, 1s given by
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M = S.B.O cos b — S.B.96 sin

= .B. in w+ .B.
L s.B o Siny S.B 96 cos P
By this conversion process, derived time histories of shaft pitch and roll
moment were gvailable.

Barmonic Analysis of Data. - If ¥y = f{x) is periodic, so that the value

of the function y is unaltered if the variable x is increased by any multiple
of the period, then the function can be expressed in the form of a Fourier

Series

o w0
y = A + A, cos jx + B, sin jx
o J=1>:J j=l):a

Given a set of observed values (xi, yi), i=1,2,3, ... N, where N is
the number of equally spaced input points in one eycle, it is desired to

approximate y(x) by a trigonometric polynominal

n n
y(x) = A + A, cos jx + B, sin jx

or, in the polar (emplitude - phase) form,

n
x) = A + ¢, cos {jx - 4.
Y( © n=1 Z J (J ¢J)
The required coefficients are:
i)
2
A = § . 273
i=
N
2 2(i-1) jﬁJ
A = =
3 N._ 2.9 cos [ N



D L
c. = (&, + B.2)2
d . d J
and
B,
$. = tan™t (r]—)
d
for
N
J < 5

Since N = T2 for the test data, the harmonic analysis is theoretically
good for harmonics from 1 to 35. However, only the first ten harmonics, plus

the mean, were calculated.

Tn the data analysis which follows, only the mean of rotor and swashplate
forces and moments, and the first harmonie of blade angle (giving the cyclic
control angles) were reguired. However, the digital format of the data made
the results amenable to harmonic analysis, and the dynamic behavior of the

rotor/gyro system within the aercdynamic enviromment was of interest for

future studies.

Method of least squares. - To cbtain the cyclic aeroelastic derivatives

and the control angles for trim, hub and swashplate force and moment data
were recorded for- various combinations of pitech and roll control angles. In
crder to separate the effects of the combined input, a least squares solution

of the equations for the rotor and swashplate moments was employed.

It has besn hypothesized that changes in robor and swashplate forces
and moments are linearly related to changes in swashplate angles, e.g.,

aM-9+QM..¢

M = M il
0=¢=0 * 3@ Y
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and similarly for

L, Mg, Mg, T

Alternatively, if the control positions are described by cyclic blade pitch,
then

oM oM
M = M + =22« g + « f
8. =6, =0 26 1 LTE) 1
s 1, M ¢ lg s

For convenience, the method will be discussed in terms of swashplate angles

only.

The problem is to determine the values of M6—¢=0’ aM/oe, aMﬁhb (denoted
N%, Me, M¢ hereafter) which will describe the best fit plane of M through @
andd . If Mi’ ei’ and ¢i are particular measured values, then the deviation

of this data from the best fit plane is given by the residual

s = nlzvi? . E(Mi—M)g
i=

i=1
then the best fit plane is defined by the requirement that S be minimum, i.e.,

85 _ 85 _ B8S
BM_ Mg B

or

n
i=1 2"
2N 6

i=

(n) n + (::1 Zei) Mg + (;12 q‘ai) Mg
(2, 2o (2 Do) (1, T

It

=1 i=1 i=1

n n

n n
(i=l Zq)i) Yo (j_:l Zeiq;i) Yo (i=l Zq,i?) i PN
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In matrix form this becomes

(1 + 1+ ..) (6, + 8, + ..) (¢ + &, + .. T T+, o0 ]
(6, + 6, + ..) (912 + 922 *ue) (89 +esh, v Mg M8y M8, + ..
(8 + 0y 0] (Byoy + 0y + 20) (87 + 0%+ ) [ g |10y + 0y + .
from which

-~ 41 - -
M (1+1+..) (el+92+..) (¢l+¢2+..) M, + M, o

Mg l= (e1 +e,+ ..)(812 + 922 + o..) (elc;»l + 60, t ..) M6, + M0, + ..

My (&1 * &+ o )O3 + 80, + ")(¢12 * ‘1’22 ) | Mty Moy oo

In the seme menner we can solve the remaining hub and swashplate

equations b

oL

L = Le=¢=o+a_e'e+a_¢'¢
= o . g, 9L,
T o= Toseo * 55 e+a¢ ¢
M = M + ?_.I‘E.S_.:E - 0 + a{IgE
SP SPgogeo 0O 3
L - G 4
SP Pyeo 00 84

Since the control inputs 6, ¢ are the same in each case, it is convenient

to combine the analysis into one matrix equation,
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M L T M
o o o

Mcb L¢, Tq, M

SP LSP
0 o}

s, sy

5Py USPy

Lsp,,

Lspy

I

SP¢

1. 17 8y ¢ -1
6, - o1 6, ¢
¢2 . ¢n-

}' 6, QE
1 1] 3%_ L, T MSPl
% Gt Ly To Mg,
% - %L .

fvln Ln Tn MSPn
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to give the derivatives of hub and swashplate force and moments with respect

to the swashplate pitch and roll angles.

The residuals (Mi - M), (Li - L) ete., for each test point, and the root
mean squares of the residuals for each set of test points, were then calcu-
lated. (See Appendix D.)} These were helpful in detecting errors in the data,
and also gave an indication of the suitability of the linear equations used
to describe the model behavior.

To determine swashplate angles for trim it should be noted that in the

foregoing analysis the following relationships have been determined

oM oM
M Yy 08 99 0
= +
oL oL
b Lo 56 5% ¢

For the hub moments to be trimmed, M = L = 0, hence the swashplate angles

required to trim the rotor will be‘given by

ou oM™ [
e 206 99 0
= -— ';
¢ I
96 o¢ o
Rotor
Trim

In a similar manner the swashplate angles required toc make the swash-

plate moments (control moments) go to zero are found to be

. [ory, oMy -
96 9¢ SP
& CADU: | .
. 96 98¢ 5P
S.P. Trim
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Rotor-gyroscope stability. - The stability of the free-gyroscope system

was determined experimentally by observing the period and time to decay of
transient oscillations of the control mode. The control mode was excited by
suddenly releasing a large steady-state moment applied to the swashplate.

The decaying oscillations were, therefore, centered about the zero moment
level. This procedure was used to ensure that large overshooting rotor forces

were not inadvertently applied.

The swaghplate pitch and roll angular displacements were recorded con-
tinvously on the oscillograph until the transient oscillations had died away.

Figure 20 shows a typical recording.

From the figure the frequency, the time to half amplitude and the type of
stability mode may be deduced. The frequency is obtained by taking the recip~
rocal of the time between successive peaks of oscillation. The time to half
amplitude is obtained by fitting a smooth curve through the peaks
and noting the time taken for the peak to peak displacement to reduce to half
its amplitude. It is generally more-~or-less independent of the starting time,

thereby indicating an exponential decay.

The direction of precession of the gyroscope and the circularity of the
mode is indicated by the phase and relative amplitude of the swashplate pitch
and roll displacements. Roll displacement leading the pitch displacement
indicates an advancing precessive motion. Egqual amplitude of pitch and roll
indicates a circular mode. The teetering motion is indicated if the amplitude

of one displacement is much larger than the other.

Some transient responses exhibited a slight tendency to pulse during the
decay and this impaired the precision of determination of period and time to
half amplitude. This could have been caused by proximity to another mode,

possibly the rotor precessive.
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THEORETICAL AND EXPERIMENTAL RESULTS

Aeroelastic Derivatives

Aeroelastic derivatives, which inelude the effects of structural deflec-
tions, are determined from wind tunnel data by the least squares method. The

test data are correlated with derivatives obtained from theory.

The derivatives which follow include the changes in hub moment, swash-
plate moment, and thrust resulting -from variations in blade cyclic and col-
lective pitch, or rotor angle of attack. All derivatives are nondimensional-
zied welative to angles in degrees. Data are given over a speed range of 50 to

120 knots and advance ratios range from about 0.k to 2.0.

Hub moment derivatives due to blade eyelic pitch. - A summary of the

theoretical hub moment derivative coefficients due to blade cyclic pitch is
shown in Figure 2. Rolling and pitching moment coefficients due to

either glc or els are plotted along the ordinates and abscissas respectively.
Intersecting curves for constant values of advance ratio "u" and flap frequency
ratio "P" are drawn for the value of Lock No. at nominal sea level air density.
If divided by solidity "¢ the curves would be generally applicable to all

motors.

The P =cocurve is a limlt case where there are no structural deflections.
Thus, points along this line represent aserodynamic derivative coefficients
applicable to a rigid blade. To aid in correlating test and theoretical data,

wind tunnel speed curves for the present tests are also plotted.

Relative phase and magnitude changes with forward speed and advance ratio
are indicated on the plots. The derivative coefficients grow in magpnitude
along lines of constant forward speed in the direction of decreasing advance
ratio, due to greater cyclic control effectivity resulting from both lower

advance ratio and higher rotor speed.

The aeroelastic derivative coefficients increasingly deviate from the

rigid blade condition along lines of constant forward speed in the direction

g0



of decreasing advance ratio. This phenomenon is primarily due to increasing
rotor rpm, whereby the ratio of rotor angular frequency to blade first natuwral

flap frequency-(l/P) increases, causing grester lag in blade response to inputs.

The theoretical derivative coefficients accompanied by the appropriate
test data are shown on Figures 21 through 27. Each figure gives .
data For one Torward speed. Test values of advance ratio approximate values
of 0.4, 0.5, 0.8, 1.1, and 2.0; not all of which are shown at each forward
speed. Tick lines on the theoretical curves relate to test values. The
experimental data was taken in both the free and locked swashplate modes of

operation.

Test and theory generally agree better at the lower forward speeds and
the higher advance ratios. Some of the assumptions in the theoretical method
(i.e., no downwash) are known to be inappropriate at low advance ratio. The
test data is less valid at higher forward speeds because of the higher model

vibration level.

Swashplate moment derivatives due to blade cyclic piteh. - The swash-

plate (or gyro) aeroelastic moment derivative coefficients due to either of
the blade cyclic angles 91c and 915 are presented in a manner parallel to the
corresponding hub derivative coefficients. The theoretical data are sum-

marized on Figure 28,

The swashplate coefficients reflect the cant angle; thus, they are

rotated about 60° relative to the hub coefficients, Figure 2.

The phase shifts and relative magnitude changes with velocity and advance
ratio are very similar to the parallel changes on the hub momenit plots. Swash-
plate moment sensitivities are increased with inereasing rotor rpm and decreas-
ing advance ratio, and the greater lag in blade response with inereasing rotor

speed is also reflected here,

The comparisons between theory and test are made on Figures 29
through 35. The figures display swashplate derivatives coeffielents
which are for the same conditions as the hub moment coefficients on Figures

21 through 27.
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The swashplate aeroelastic derivatives, in conjunction with the hub
moment aerocelastic derivatives, determine the control moment effort required
to apply pitch and roll moments and ultimately pitch and roll rates to the

airframe.

The swashrlate test data toints dizplay somewhat iess rsgularity than the
hub moment derivative data points, due in part to the smaller magnitude of the

loads. The correlation is better at higher advance ratios and lower forward

The eff=zcts of rotating damping ars not ineludsd in the theorstical
swashplate derivatives of Figures 29 through 35, even though each of the
four derivatives is influenced by rotating damping. However, if the deriva-
tives are written in terms of the swashplate piich and roll angles 6 and ¢ ,
rotating damping appears in just two of the derivatives. The relationship
betwesn devivativaes of swashplate tilt angles and derivatives of blade cyclic

gngles is:

p— — poer - - —

aC oC aC aoC
..:Sp .'{.s_p ...S_p msp aelc aelc
30 2X) 891c aelc 13 o6
ac 801 831 801 96 38, _
sp =p 3p £p ls 1s
] a6 a¢ | ! aelc 8915_ ] d8 B |
where:
" 56 96, | [ ]
le 1lc
- 3l L7530
36 59 34T 153
o6 a6
1s 1s
.T530 A3k
REC 5% I 53 3 T-

Damping appears in the resuliant off-diagonal derivatives, adding to
BCmSP/8¢ and subtracting from aclqp/ae.
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The swashplate derivative coefficients in terms of swashplate tilt angles
are shown on Figure 36 for the 80 knot forward speed condition. Curves
with no rotating damping (relatable to Figure 32) and with 20 ft-1b/
rad/sec of rotating damping are shown for illustrative purposes. The damping

value chosen as representative of the tunnel model is 7 ft-lb/rad/sec.

The small value of rotating damping applicable to the tunnel model has
little effect on the correlation between theory and test of the swashplate
derivatives, in addition to being difficult to determine precisely. For these
reasons, the rotating damping effect is ignored in the presentation of most of

the swashplate moment derivatives.

Tift derivatives due to blade cyclic pitch. - Analytically determined

1ift coefficients, due to changes in the blade cyclic angles elc and 9 and

1s?
plotted versus advance ratio and the square of its inverse, are shown in

Figure 37. Coefficient curves are shown for various forward speeds.

Theoretical and experimental values are shown on Figures 38 through
40 at forward speeds of 50, 7O, and 90 knois; alsc plotted as functioms of

advance ratio.

The test points tend to be slightly lower than the analytical curves for

both derivatives. The correlation is about the same at all advance ratios.

Derivatives due to blade collective pitch and rotor angle of atftack. -

Analytical nondimensionalized derivatives of hub moment, swashplate moment,
and thrust due to the collective blade angle are shown on Figures U4l

through 43. Corresponding derivatives due to rotor angle of attack are

given on Pigures~Uh tﬂrough 46. Derivatives along lines of either

congtant forward speed or advance ratio are indicated. The thrust derivatives
for various forward speeds are presented gs the dependent varisbles of advance

ratio and the square of its inverse.

Figure 4l shows analytical derivatives of hub rolling and pitching
moments due to the blade collective feathering angle. At high advance ratio,
collective angles produce mainly rolling moments. At the higher rotor speeds,

attendant to high forward speeds and low advance ratios, collective angles
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mainly influence hub pitching moments. This figure is similar to that part
of 2 which shows hub moments due to the blade cyclic angle als' At
high advance ratios, collective angle is more effective in controlling hub

rolling moments than is els'

The swashplate moment derivatives of blade ecllective angles are shown
in Figure 42. The figure is rotated 60° relative to the hub moment derivatives

plot (Figure 41) due to the cant angle ¥_ vhich rotates swashplete moments

relative to hub noments.

The derivative of 1ift due to collective pitch is shown in Pigure U43.
This derivative varies little with forward speed but strongly with advance
ratio. At advance ratios above about 1.0, the cyclic angle ka is more effec-
tive in producing 1ift than is the collective angle. Figure 37 shows 1ift
due to els'

Hub moments resulting from unit changes in rotor angle of attack are
shown on Figure 4i. The hub moments vary relatively little with advance
ratio and forward speed compared with the loads produced by changes in blade
feathering angles. Rolling moment is seen to increase with decreasing
advance ratio at low rotor speeds. However, at high rotor speeds, a decrease

in advance ratic lowers hub rolling moments.

The swashplate moments dépendent on unit changes in rotor angle of attack
are shown in Figure U45. Changes in moments with variations in forward
speed and advance ratio are small when compared with the moments resulting

from changes in blade feathering angles.

Lift produced by the rotor angle of attack is presented in Figure 46,
Chariges in forward speed have little effect on the nondimensionalized deriva-
tive. This derivative is similar to the 1lift derivative due to @

ure 37.

1s’ Fig-

Trim Cyclic Angles

The experimental trim angles presented here are based on conditions
attained during testing. .Since it was not practical to attain "flight trim"

conditions in the wind tunnel, test "trim points" are calculated from test
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data derivatives presented in preceding paragraphs in combination with cal-
culated moments on hub and swashplate corresponding to blade cyclic angles
equal to zero,

Hub trimmed cyvclic angles. - The blade cyclic pitch angles that are requir-

ed to produce zero mean hub moments during steady-state operation are defined
as the hub trimmed cyelic angles. The applicable test conditions were attained
in the locked-swashplate mode of operation, in which test control. operator

applied inputs necessary to determine a trimmed condition at the hub.

Analytically determined trim angles are shown in Figures 3, L7 and
48, fhe effect of varying forwsrd speed at constant advance ratio, is shown
on Figure 3 for a collective angle fixed at 1.5 degrees. Increage in forward
speed at constantladvance ratio causes reduction of the trim angle Blc with
little effect on Gls; this effect is due to robor centrifugal flattening. The

lateral cyeclic QIS is more a function of advance ratio.

Figure b illustrates the effect of the collective angle on the trim
ecyelic angles at a forward speed of 120 knots and a fixed rotor.angle of abiack.
Changes in collective angle at constant advance ratio mainly influences the

lateral trim angle 818, as wight be expected.

The effect on trim of changing rotor angle of attack is shown in Fig-
ure 48 , at 120 knots and at a collective feathering angle of O degrees.
Changes in angle of attack mainly change the els cyclic angle.

Analytical and theoretical trim angles are compared. in Figures 49 through
55, The figures show data for a forward speeds ranging from 50 to 120 knots.
The test trim angles are based on both locked- and free-swaéhplate data,
although the hub trim data used were obtained primarily in the locked mode of
operation. A zero rotor angle of attack and 1.5 degree of collective angle

are used.

The agreement between test and theory for the cyclic eLs is satisfactory.
However, the test data is consistently higher than the analytical results,
generally by about 2 to 3 degrees, for the elc cyclic angles., Several reasons
are suggested for the discrepancy. Blade spanwise flow was neglected in the

analysis; algo neglected was the deflection of the flow through the rotor caused
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by the fuselage. The inclusion of these factors in the analytical solution

would probably improve the trim correlation.

Swashplate trimmed cyclic angles. - The cyclic feathering angles that

produce zero mean swashplate moments are here referred to as the swashplate

(or gyro) trim angles. The swashplate is normally trimmed in steady-state
operation in the free—gyro mode in wind tunnel tests. This is in contrast to

the hub trimmed condition, which can generally be produced only by operator

manipulation of the comtrols.

It is important o note that the feathering moment feedback system operates
50 a8 to put the gyroscope into mean equilibrium. If the control moments
applied to the swashplate are zero, then the gyroscope precesses to the mean
steady position, which causes swashplate moment feedback from the robtor to

become zero. The gyroscope and swashplate become trinmed.

If the advance ratio is such that the mean vector sum of the blade root
bending moments also becomes Zero, then the hub moments are also trimmed,
4%t high sdvance ratio, swashplate trim is usually accompanied by small

unbalanced hub moments.

Theoretical swashplate trim cyclic angles at fixed collective and rotor
angle of attack at variocus forward speeds and advance ratios are shown in
Figure 4. Swashplate damping is not included in this figure, or in subsequent
figures, except where mentioned. This figure may be compared with Figure 3,
the corresponding hub trimmed solution. At low advance ratio, the two figures
agree Tairly well. In other words, at low advance ratio, with only a small
reverse veloclty region, hub moment is a linear function of swashplate moment,
i.e., with swashplate moment zero, the hub moment is zero. At the higher
values of advance ratio, say atp=.5, the reverse velocity region becomes
much greater in size, and the asrodynamic center shifts to the three-quarter
chord location. The feathering moment per unit blade root bending moment
changes sign. It is possible, therefore, that the net feathering moment
vector applied to the swashplate then could become zero even while the rotor
supports a significant hub moment. In this case, the cyclie pitch angles

required to trim the swashplate moments to zero would be different from those
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required to trim hub moments. Figure 3 and 4 show that at advance ratio less
than, say g = .5, the cyclic pitch angles required to trim both hub and swash-

plate moments to zero are approximately the same.

Figures 56 and 57 show the effect of changing collechive angle and rotor
angle of attack, respectively, at 120 knots. Comparisons with the hub trimmed
solutions of Figure 47 and 48 show the trim angles to be similar at low advance

ratio, but dissimilar elsewhere.

Comparisons between analytical and experimental trim are shown in Figures
58 through 63 at forward speeds ranging from 60 to 120 knots. Confidence
limits to the accuracy of the experimental data are not precisely known, but
it is expected that anomalies in the rotating friction, for example, which
would be more-or-less independent of the forward speed dynamic pressure, would
cause larger and larger errors in swashplate trim cyelic pitch angles as the
forward speed reduced at constant advance ratio. This may account for the
increasingly poor agreement at the higher advance ratios ag the forward speed

is reduced.

The effects of rotating damping are shown on Figure 61 at 80 knots. A
rotating damping value of 20 ft-1b/rad/sec is used for the data presented.
The actual value of the model was later determined to be about 7 ft-1b/rad/sec.
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Control Effectiveness

The change in hub moment resulting from a change in swashplate moment is
a measure of the control effectiveness of a rotor-gyro system. The control
effectiveness derivatives are determined from test data by the method outlined
in the preceding section. The theoretical method was described under

"Theoretical Development."

The test and analytical results are compared in Figure 64 through 66,
for forward speeds of 60, 80, and 120 knots. Rotating (feathering) damping is
not included in the theoretical results, except at 80 knots where the effect
of 20 £t-1b/rad/sec of rotating damping is shown. Rotating demping acts to
reduce the rotor response to swashplate moments slightly and to shift the

phase of the rotor response.

The control effectiveness test data appear to contain considerable scatter.
This is likely caused by the combination of error from the two sets of data
upon which it depends, namely the hub and swashplate moment cyclic pitch

aeroelastic derivatives.

There does appear to be a trend toward poorer agreement at low forward
speed and high advance ratio, l.e., low valves of advancing tip dynamic

pressure % (Q R+V)2.

Tt should be noted before leaving the subject, however, that the method
of plotting emphasizes the disagreement between experiment and theory. AL
the lower advance ratios, there ig rarely a phase angle discrepancy greater

than, say 5° or.an amplitude error of more that 20 percent.
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Rotor-Gyroscope System Stability

The theoretical determination of rotor-gyroscope system stability
characteristics (mode shape vectors, natural frequencies, and damping) and
the experimental determination of the precessive. character of the control
mode, its natural damped frequency and the reciprocal of its time to half
amplitude were discussed in preceding sections. This section displays the
experimental values of the natural frequency and 1/TL versus rotor speed on
the same page for purposes of comparison; ses Figureg 67 through 72. The
cal culated characteristics shown on the plots are based on values of rotating
damping (feathering friction) and stationary damping (swashplate dashpot)

determined experimentally.

If the swashplate is viewed from a set of axes which rotates with the
rotor, the feathering damping CR is defined as the swashplate moment reguired
to overcome blade feathering friction and aerodynamic feathering damping
moment per unit angular velocity of the swashplate. Viewed relative to the
earth fixed axis system, feathering damping becomes proportional to swashplate
position (as well as velocity) and so becomes important in calculating swash-

plate (or gyro) aeroelastic derivatives.

The swashplate moments due to swashplate displacement in earth fixed

axes may be shown by the matrix representation as:

M6 oM
ug) |56 (55@ + S'ZCR) ©
Mg, (%@ B QCR) g%@ 0

where the derivatives are aeroelastic.

An interesting observation is that the feathering damping only contri-
butes to the cross swashplate displacement derivatives and should not, there-
fore, be evident in the diagonal elements of the matrix of experimental data.

If good agreement between theoretical and experimental values of the on-diagonal

elements are achieved it might be assumed that the of f-diagonal elements due
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to aerodynamics are similarly accurately predicated and the difference between
theory and experiment would be the feathering damping. This technique was used
in the study and it was learned that the feathering damping was very small and,

therefore, could not be accurately determined.

The swashplate damping produced by the control forece servos was calcu-
lated and checked by (bench) tests. The spring avgmentation devices, which
are parallel to the conitrol servos, were also tested and modified to reduce
damping to an acceptable value., The total damping from the two sources was
deduced to be 53 £t 1b/rad/sec. Stationary axis damping contributions from
the bellcranks and links were expected to be negligibly smali, The swashplate
damping coefficient was also determined from the control moment sensor and
swashplate angle data recorded in the wind tunnel. Small harmonic motions
and some nonlinear action made interpretation difficult, bubt the general order
of the swashplate damping appeared to be between 50 and 120 ft-1b/rad/sec from

that experimental source.

The rotating damping CR (feathering friction) chosen as representative
was 7 ft-1b/rad/sec, much less than the value predicted earlier, 25 ft-1b/rad/
sec, but compatible with the value deduced by comparing theoretical and
experimental swashplate derivatives. The swashplate damping CS was
approximately 80 fit-lb/rad/sec, from inspection of experimentel stability data.
This was within the range expected from the bench and tunnel test data.

The frequency, in cps of the gyro advancing processive (or control mode
and the reciprocal of its time to half amplitude were calculated over the
entire rpm range at speeds of 60, 70, 80, 90, 100 and 120 knots, using best
estimates of rotating and stationary axis damping deduced above:

‘R

Cs

and the results are plotted in Figure 67 through 72 where they are compared

7 £t-1b/rad/sec

It

80 ft-1b/rad/sec

with experimental values.

The theoretical damped natural frequencies varied with rotor speed in

the same manner as the experimental values but were spproximately 30 percent
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greater. The experimental l/T% wag somewhat erratic but generally straddled
the theoretical values. There was a tendency for the system to be two to three

times more stable than predicted at 50 percent of the Tull rpm. The reason
for this is not yet understood.

The tests were performed under near sea level air density conditions,
and the results are compared with analyses using sea level air density. The
stability results should depend on air density, or Lock Number, bubt a
systematic investigation of the effects of densiity variation has not yet
be undertaken,
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TOPICS RELATED TO WIND
TUNNEL TESTS

Wind Tunnel Simulation of Free Flight

The stability of a fixed-shaft system during rotor starts/stops was exten=-
sively investigated theoretically and compared with test results; these are
discussed earlier in this veport. However, any of several body degrees of
freedom can couple with rotor and gyro motions; namely body piteh, roll, and
plunge. It is logical to question whether the stability of a free {lying
vehicle can be adequately represented by a fixed shaft system. Therefore, an
8 degree-of -freedom analysis was used to gain information about systems in

which body motion is included.

Three configurations are compared: The fixed-shaft system, a gimballed
inertia airframe suitable for tunnel testing, and a hypothetical airworthy
vehicle. The gimballed inertia airframe is similar to the fixed-shaft model,
except that body pitch and roll are permitted. The hypothetical airworthy
vehicle is aerodynamically similar to the gimballed inertia airframe, a body
Plunge motion is inciuded in addition to pitch and roll, and its mass and

moments of inertia are more appropriate.

The analysis of the airworthy vehicle does not contain all possible
motions. However, those omitted (body surge, sideslip, and yawing motions)
would have second order effects on the rotor and gyro compared with those
included. Thus, the 8 degree-of-freedom analysis is considered adequate

for investigating the rotor-gyro stability of the flight article.

The ginbailed inertia airframe is examined to determine whether it would

yield more representative stability data than a fixed shaft airframe.

Stability root plots for the fixed-shaft case, the gimballed airframe,
and the airworthy vehicle are shown or Figure 73 through 75 respectively. A
forward speed of 120 knots was chosen as representative of conversion flight.
(Conversion is the name applied to the operation of converting from a heli-
copter to an airplane in the case of a stoppable rotor composite aireraft.)

The path of each root is plotted as it varies with rotor speed. Shown
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are roots tor 10 rotor speeds from 355 rpm (100 percent normal rotor speed)
in equal 35.5 rpm increments, down to 35.5 rom; a root is also shown for
3.55 rpm. This range of rotor speeds covers that which the rotor would

encounter during conversion.

Figures 73 through 75 show roots for configuration using a free
gyro; no rotating or stationary mechanical stiffnesses are used. Rotating
and stationary swashplate damping values of 20 and 50 ft-1b/rad/sec respec-
tively are used, which do not differ greatly from the values determined for
the fixed shaft vehicle. The airframe inertias and aercdynamic derivatives
used here are those derived in Appendix A. The body aerodynamic derivatives
used are identical for the gimballed airframe and the airworthy vehicle. How-

ever, the body inertias are necessarily larger for the gimballed existing model.

The calculated roobts may be classified as belonging to rotor, gyro, or
body modes. The rotor and gyro both have precessive and nutating modes. The
rotor also has a collective mode. The pitch short period and the roll con-
vergence modes result from the body degrees-of-freedom. The modes are named
for the predominant motion they exhibit at either high or low rpm (low cr high
advance ratio respectively); the former for the rotor and gyro modes, and the
latter for the body modes. The modal content varies considerably with changes

in rotor speed.

The nutating and precessive natural freguencies of the classical free
gyroscope would be twice the angular velocity and zero respectively, as viewed
by a stationary observer. As the gyro and rotor (which is also a gyroscope)
are damped, interconnected, and have different angular velocities, their

natural frequencies are shifted from the above values.

The rotor modes display their least complicated behavior in & hover con-
dition. The rotor, when vibrating in the nutating mcde in hover, exhibits pure
advancing motion of slightly over 2P. The collective mode in hover consists
of a uwniform vertical oscillation of the rotor, with frequency very close to
that of the blade first natural flapping. The rotor flaps regressively in
hover when vibrating in the precessive mode, which has the lowest fredquency

of the rotor modes.
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At normal rotor speed { k= 0.33 at 120 knots), the rotor modal behavior
s displayed in hover predominates. Ag rotor speed drops and advance ratio
grows, the mode deviates from the relatively simple behavior it has in hover.

With the rotor almost stopped, the modes are nearly unrecognizable.

The rotor modes of the fixed-shaft vehicle, not complicated by body
motion, are easier to examine than corresponding modes of the other configura-
-tions. Rotor collective content increases with decreasing rotor speed in the
nutating and precessing modes. WNeaxr zero rotor speed, the nutating mode
degenerates to a combination of collective Flapping and longitudinal teetering
flapping. Up collective flapping colncides with pitch down teetering flapping.
The precessive mode is similax to the nubating mode at near stopped rotor
speeds, except that up collective flapping is coincident with pitch-up teeter-
ing g%apping. Regressive flapping in the collective modé increases with
decreasing rpm. At the lower rpm limit, the rotor mdtion in this mode is
composed of lgteral (rolling) teetering flapping with negligible collective
flapping. The freguencies of each of these three modes approach the blade
nonrotating first flap natural frequency at very low rpm. Gyro motion is

present in all of the rotor modes at all rotor speeds.

Body motions are included in the rotor modes of the gimballed and air-
worthy systems at all rotor speeds. The rotor motions in the rotor modes of
the ginballed model are similar to those of the fixed shaft system. How-~
ever, body motion is pronounced and the rotor modes are more affected in
the case of the flightworthy vehicle, with its attendant lower inertias and
plunge degree-of-freedom. The flight vehicle rotor modes differ in the fol-
lowing respects at very low rotor speeds: the collective mode is still
flapping regressively as well as collectively at 3.55 rpm, and the advancing

flapping in the nutaiing mode remains evident at this rotor speed.

Of 211 the modes, the gyro nutating mode is the least affected by changes
in the configuration or rotor speed, since it is of much higher freguency
than the other modes. This mode is virtually the same for all three con-
figurations. The frequency is about 810 rad/sec at full rotor speed and
decreases to about T60 rad/sec at zero rctor speed. The decay constant stays
at about -170/sec, or better than 20% of critical. It is an advancing mode.

The roots of this mode are not shown.
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Of more importance is the gyro precessive mode, which is the mode most
responsive to control moment inputs. The plots of the root paths show that
this mode is unstable at low rotor speeds. The onset of instability of the
fixed shaft system occurs at about 50 rpm. For the configurations with body

degrees of freedom, instability is delayed until down to about 30 rpm.

Vector plots of the gyro displacements in the gyro precessive mode for
the three configurations are shown in Figure 76 . The gyro precesses in
an advancing manner at all rotor speeds when the shaft is fixed. With body
motion allowed, the mode is regressive above about 30 precent of normal rotor
speed. At lower rotor speeds, the mode advances, as with the fixed-shaft
system. Although not shown on Figure 76 the rotor generally follows the
gyro except at very low rotor speeds. At 1 percent of normal rpm, the rotor

diverges in a teetering fashion.

Whether the gyro is advancing or regressing in the precessive mode 1is
important in comnection with some of the system parameters presented in
Appendix D for a fixed-shaft vehicle. However, the general discussions of the
effects on system stability of varying gyro inertia, damping, and stiffnesses

apply to vehicles with body degrees-of-freedom.

When comparing fixed and free shaift system stabilities, swashplate station-
ary damping is a most important consideration. Rotating damping is stabilizing
for both precessively advancing and regressing gyros, except at near stopped
rotor speeds. However, increased stationary swashplate damping will tend to
destabilize an advancing gyro mode and stabilize a regressing gyro mode. This
is illustrated in Appendix C, in which the gyro precessive mode has been
driven regressively below about 50 percent of normal rpm by a swashplate spring.
Therefore, in conclusion, the free-shaft configurgtions are inherently more
stable than the fixed-shaft system for other than very low rotor speeds; because
of the regressive character of the gyro precessive mode as opposed to the ad-

vancing free gyro of the fixed shaft system.

Turther evidence of the greater stability of this mode with body degrees-
of -freedom present is indicated by comparing the gyro precessive roots of

Figure 73 with those of Figures 7L and 75 . Except in the
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unstable region, damping is significantly greater with the inclusion of body

motions; and the onset of instability is delayed.

The last group of modes herein considered are the body modes. At low
rotor speed these modes may be roughly approximated by neglecting the rotor
and gyro and solving the remaining body equations. The gimballed model yields

the following non-zero roots from the uncoupled equations:

A= - 1.31+1.07] (pitch equation)

= - 1.h5 (roll equation)

The corresponding non-zero roots for the airworthy vehicle are:

A=~ 5,38 £ 4L.511 (coupled pitch and plunge
equations)
A= - 2.65 (roll equation)

The two complex pairs of roots are those of the pitch short-period modes.
These roots are approximated at low rpm on Figures 7h. and 75 . At
low rotor speed the mode is composed mainly of body piteh motion. Body roll
and rotor advancing flapping motions increase with inereasing rotor speed. The
amplitude of body pitch motion is about the same as that of the body roll
motion at near normal rotor speeds. This mode is guite similar for both the

gimballed model and the airworthy vehicle.

The non-oscillating roots cbtained from the roll equations belong to the
roll convergence mode. These roots are glso critically damped with the rotor
included, Figures 7h anc 75 . The mede is composed mainly of body
roll motion at low rotor speed. Body pitch motion increases with rotor speed.
The magnitude of body pitch and roll is similar at high rpm. The behavior of

this body mode is very similar for both configurations.

A comparison of the fixed-shaft airframe with the systems with body
motion allowed has pointed out some of the limitations of applying fixed-shaft
stability data to a flight vehicle. The behavior of the gyro control mode
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is different at most rotor speeds; thus the resultant fixed-shaft data are
overly pessimistic. However, the gimballed inertia airframe appears to

very adequately represent an alrworthy vehicle, except for the absence of the
long period body modes. The lack of a plunge degree-cf-freedom using the

gimballed model does not appear to be a serious limitation.

Since the gimballed model modes are similar to those of the free flying
gircraft, and the gyro precessive modes of the two exhibit behavior, at high
rom, quite different from that of the fixed-shaft rotor (being regressive
in the former and advancing in the latter), and inasmuch as the body short
period piteh and roll modes do not exist in the fixed-shaft case, and further;
since mechanization of the gimballed model for operation at rpm greater than
50 percent of nominal does not appear to present any extrodinary difficulty,
it is recommended that a gimballed model be employed to study the stability of
& modelled slowed-rotor compound helicopther.

163



Rotor Performance

The slowed/stopped rotor vehicle when operating in the helicopter mode,
and during the conversion operation requires power to:
(l) Provide a propulsive force, to overcome rotor and fuselage drag

(2) Provide torque to overcome blade profile and induced drag.

In this section the power requirements of the rotor, in terms of effective
The relatbive

drag, are discussed for the zero lift conversion condition.
magnitudes of the propulsive and torgque conmtribubtions to the total power
required are examined.

The total effective drag is defined as:

_ ROTOR POWER
EFFECTIVE DRAG = ROTOR DRAG + VELOCTITY

Rotor drag was measured by the tunnel balance (tare corrections were made).

Rotor power was obitained from the output of the shaft torgque strain gages.
The test data was corrected to a zero-lift condition by %treating the

rotor as an elliptical wing having the gecmetric properties

wing area, SW ='nR2

wing span, b = 2R

<%
alE

wing aspect ratio, A =

16h



For an elliptical wing the induced drag coefficient

C2
C = L
D, TA
i
hence
2
a s 1, I? LE
D =q_S C = —— = -
1 W Di ThA q SW wq A SW J—I-‘ITR a
thus for I = 0
2
P N
D =D + = - r————
eff v hTrRe a

At the low values of 1ift experienced in the test program this analytical

correction is considered adequate.

The rotor performance is discussed in terms of drag coeffiecient rather
than power coefficient because according to the usual definitions, drag coef-
ficient is non-dimensionalized by forward speed, and power by rotor angular
velocity. For normal helicopter operation, where forward speed is varied at
essentially constant rpm, power coefficient is preferred. However the conver
gsion maneuver involves rpm change at constant forward speed, thus drag coef-
ficient is more meaningful for describing rotor performance, and relating

propulsive and torque contributions.

In non-dimensional form
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which may be expressed

C =C . + C
Deff D propulsion D torque D

Figures 77 and 78 present the variation of

CD propulsion cD torgque
= and -

for advance ratios for three forward speeds. The data points shown represent
test conditions at nominal hub moment trim; no atbtemplt was made to correct the
data to exactly zZero hub moment. As a consequence, while the total rotor 1ift
is zero, the blades experience 1ift variations around the azimuth and induced

drag is thus present, which probably contributes to the data scatter.

Figure 79 presents the torgue and propulsive contributions to the total
rotor -effective drag. As would be expected, both terms decrease with reducing
rpm. Above an advance ratio of 1.5 the rotor torgue is negligible, and the

total effective drag is equal to the rotor drag.

The date indicated that the part of the effective drag due to rotor
torque became slightly negative at advance ratio greater than u= 1.7, This
was probably due to the greater drag of the blades in the reverse velocity

region than in the advancing flow regiom.
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CONCIUS TONS

", ..t0 develop analyses directed at

The basic objectives of the study,
predicting the rotor model behavior and to measure the rotor model charac-
teristics in various regions of interesi.”, were accomplished. The body
of data on slowed/stopped hingeless rotors which had accrued in the decade
preceding this study has been expanded by developing trim, control, and
stability data over a range of rotor speeds from 8.5 to 90 percent of
nominal rpm at flight speeds ranging from 50 to 120 knots; these data
were developed both theoretically and experimentally. Some noteworthy

conclusions are:

o A high-speed, constant-speed, gyro control system was demonsirated
to be stable, to automatically trim swashplate moments te zero,
gnd to produce hub moments in response to operator applied control
moments which varied only slightly in magnitude and azimuth over

a wide range of rotor speed and advance ratio.

o Feathering divergence at low robtor speed, discovered 1In earlier
testing, was reconfirmed and explained by analysis. Analysis also
showed that swashplate damping aggravated feathering divergence
but that its effect could be ameliorated by feathering friction.

o Expository methods, developed to give insight into the behavior of
rotor systems, led to the correct prediction of aerocelastic deriva-
tive trends over the advance ratio range .k <« M < 2.0:; and the
correct prediction of control mode stability trends over the full

"conversion” advance ratio range.
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e ©Studies of the practicality of testing the CL-870 model gimballed
in the wind tunnel concluded that sufficient differences exist be-
tween Tixed-shaft and free-flight stability to warrant the experi-

" mental study of the latter, but only at rotor speeds greater than
50 percent of nominal. At lower robor speeds, the fixed-shaft case

appeared to adequately represent free-flight.

The studies also showed that gimballed model stability resembled
free-flight stability in all essential features,

The mechanization of the gimballed model should not be difficult
since elevators and aileron and a special rotor control system

would not be needed at the higher rotor speeds.

For the above reasons, gimballed model fTeste at high rotor speed

are recommended.

o Performance of compound helicopters is greatly improved by slowing
the rotor., The torgue required to maintain rotor speed on a non-
lifting rotor decreases rapidly with decreasing rotor speed and
becomes negligible at an advance ratio M =1.5. The drag de-
creases somewhat with decreasing rotor spsed to a constant value
at an approximate advance ratio of 4 = 1.1, As a result of the
reduced drag and torgue, the total power .required by the unloaded
rotor reduces to about 1/3 that required at 0.4t advance ratio.
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APPENDIX A
DERIVATION OF THE DIFFERENTIAL EQUATTCNS
OF MCTTION OF THE FREE FLYING ATRCRAFT

Differential equations of motion of the free-flying, retractable-rotor
aircraft, during the period of conversion from the helicopter to the stopped-
rotor condition, are derived. The aircraft, rotor and stabilizing gyroscope

are represented by eight degreegs of freedom:

® aircraft piteh, roll, and plunge (3 DOF)
e rvotor pitch, roll, and coning flapping (3 DOF)
® gyroscope piteh and roll (2 DOF)

Scope and Procedure

A set of linear ordinary differential equations is derived to represent
a gyro-controlled, hingelegs rotor and alrframe with sufficient accuracy to
permit all significant modes of motion to be determined and their stabilities
%o be assessed. The rotor speed (rpm) is allowed to vary from a nominal value
for a helicopter (100 percent rpm) to zero. The degrees of freedom employed
in this analysis are those expected to be significant; iliustrated in Fig-

ures A-1, A-2, and A-3. They are:

Airframe piteh ®
Alrframe roll o
Airframe plunge Z
Gyro pitech 6
Gyro roll ¢
Rotor flap collective 6,
Rotor flap piteh &g
Rotor flap roll 6¢

The gyro angles 8 and ¢ , illustrated in Figure A-2, are measured relative to
the airframe. The absoclubte tilt angle of the gyro in space is therefore 6 +
@and ¢ +®. The rotor flapping modes shown in Figure A-3 represent motions
which are measured relative to the rotor shaft. Lateral, fore and aft, and
yaw degrees of freedom are not used because the very low frequency dutch roll,

spiral and phugoid modes are not expected to deviate much from those computed
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Pitch, Roll and Plunge (of the complete z,
vehicle )

Shaft Pitch w

Shaft Roll &

Shaft Plunge 2z

Figure A-1, Degrees of Freedom in Stationary Axes; Pitch,
Roll, and Plunge of the Complete Aircraft
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Note: Blade feathering Jdizplavements acconpanying gyro tilt angles
shou effect of carbt angl: v, .

A< (]

Yo = 60

Figure A-2. Degrees of Freedom in Stationary Axes;
Gyro (or Swashplate) Motion
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Collective
Flapping § o

Pitch
Flapping &,

Note: Position of the blades is arbitrary. The modes maintain the same
position relative to the earth-fixed axes shown. Piteh and roll
Tlapping modes lag by the cant angle.

Figure A-3. Degreeg of Freedom in Stationary Axes;
Rotor Flapping Modes
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48

by considering mean rotor aeroelastic and airframe derivatives. It is
expected that these motions could be easily stabilized and controlled in

designing an aircraft, therefore study of them is left for another time.

An additional cobjective of the study was to determine the practicality of
wind tunnel tests in which the rotor would be atbached to a rolling and pitch-
ing framework, TIn-plane motions of the blades were not admitted in the
anglysis and this is recognized as & possible shortcoming. However, sinte
only small loads are applied in tests, due to strueturzl limitations little

nonlinear action is expected.

The equations and thelr coefficients are determined in a general enough way
so that this work can be used as a basis for assessing the effects of period-
lcally varying coefficients. However, a study of the effects of the periocdic
coefficients on stability, steady-state response, and transient response is

beyond the scope of the work undertaken to date.

A Five degree of freedom version of the equations (pitch, roll, and plunge
are locked out) represents the rotor in the wind-tunnel-test configuration.
This version is investigated first. Iater, body inertia and aerodynamic deri-
vatives are added and the stability of the whole free flight vehicle system

is determined.

The differential equations are first derived in an axis system rotating
with the rotor. The eduations consisting of inertia, centrifugel, damping,
spring, gyroscope, structural , and aerodynamic terms are then transformed to

stationary axes. The equations are derived in the following seguence:

(1) Rotor Inertia berms

(2) Rotor Centrifugal and structural terms and rotating spring
(3) Robor structural damping %erms and gyro rotating damping
(k) Gyroscope terms

(5) Aerodynamic terms

(6) Collection of terms in rotating axes

(7) Transformation to stationary axes

(8) Swashplate springs and dampers

(9) Body terms .
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The derivation is preceded by descriptions of the rotor and gyroscope system
and of rotor system motions.

Geometry of the Rotor System

Blades. - Bach of three blades has a constant lb~in. (l.lT ft) chord,
from 15 percent of the rotor radius to the ip. The rotor radius (R) is
16.5 ft. The feathering hinge axis and the quarter chord locus intersect at
the center of rotation and are separated by a sweep-forward angle of the gquarter
chord (A) of 1.5 deg (0.0262 rad). The blades are preconed to an angle po
from the disk plane of 2.25 deg (0.0393 rad)., Fach blade twisted linearly,
leading edge down (washout), from zerc at the center of rotation to 9.43 deg
(-0.1645 rad) at the ®ip (efR). These dimensions zre illustrated in Figure A-L.

The twist and coning angles are not degrees of freedom in the present

formulation of the problem; these angles are fixed at all times.

Blades to gyroscope (and swashplate). - The feathering horns on the blades

are ccanected to the gyroscope housing by a system of walking beams and link-
ages. In turn the housing is abtbached to the swashplate by three rods which
constrain 1t to remain parallel to the swashplate. Angular displacements of the
swashplate and gyroscope are therefore assumed to be identical (elastic distor-

tion and joint tolerances are ignored).

In a simplified‘representaiion, the three blades ar® linked to the swash-

plate az shown in Figure A-5.

Blade feathering angles occur at azimuth angles different from the azimuth
angle of the gyro tilt. This angle, called the cant angle (¢O) does not affect
the bagie behavior of the system so long as the shaft is prevented from pitech-
ing and rolling. 1In addition, the gyrc arm is shorter than the blade feather-
ing horn arm so that the gyro tilt angie is greater than the feathering dis-
placement; this feature provides the mechanical advantage illustrated in

Figure A-6.

k = mechanical advantage = horn arm _ 1.15 for the rotor system tested
gyro arm

in the present study.
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center of hinge leading
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1/4 chord locus
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Figure A-4. Rotor Blade Geometry

feathering
A:<“/’-hinge

Figure A-5. ILinkages Between Blade(s) Feathering
Motion and Swashplate Tilt
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HORN ARM

k= 5YRO ARM

= MECHANICAL ADVANTAGE = 1.15 FOR THE PRESENT EXAMPLE,

@

GYRO ARM

.

. ”
S Fai y

HORN ARM

A4 ®
¥Po \

X

x , y AXES ROTATE WITH ROTOR,
PITCH AND ROLL ANGLES OF GYRO
ARE RELATIVE TO THE ROTATING AXES

Figure A-6. Tinkages Between Blade Feathering and Gyro Tilt
Angles, Showing Mechanical Advantage
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Rotor System Motions

Single blade motions. - The motions of the rotor are made up of the

motions of single blades. The individual blades are assumed to move in four

different modes:

(1) Feathering
(2) Iinear Flapping (used to represent rotor pitch and roll motions)
(3) Parabolic Flapping (structural elastic deformations)

(L) Vertical Displacement

The motions,vhich are illustrated in Figure A-T7, consist of displacements and

their derivatives with respect to time.

Although the above four modes of motion comprise all the blade motions
used in the derivations, it must be recognized that there are two "shape
parameters' which cause two of the forcing derivatives: the rotor precone
angle will cause aserodynamic loads due to linesr flap displacement; and the

twist shape will also cause aerodynamic loads.

Rotor pitch, roll, and plunge motions are now described relative to axes
rotating with the rotor in terms of motions of the blades. Ag the rotor
pitches or rolls, an equivalent motion is seen by letting the blades flap and
feather. Considering a rotor with a number of blades b, a cant angle ¢O, and
the number (:) blade located ¢o behind the x axis of the rotating system,

®

(:) Notes: 1. Numbers in circles in this
and in subsequent sketches
identify particular rotor

® blades in the discussion
and in the derivations
JZ'“ I which follow.

2. = and y axes shown are
rotating axes.

(:) To
(:) Planview of rotor
=0
x

180



FEATHERING MOTION
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Figure A-T7. The Four Modes of Motion
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the flapping motion, for any blade which is identified as blade p, is given

by

p-s®= - {Cos; [% + (p-1) —%T-’]}@ - {Sin [% + (p-1) %—1’]}@

which, for each blade of a three-bladed rotor, where the rotor cant angle,

becomes Yo = 60°

B, =-0.5@ -0.866 @
[32 = 1.0® +02
By = -0.5@ +0.866 @

Feathering angles for the three hlades are deduced by resolving ® and @ into

flzpping and feathering components:

®

Bl
Ll

B To

N3 X
8, =-5 ®+053
1
6 =0-2.08
Tp
Gf =§®+O-5®
3 ]



In matrix notation, the flapping and feathering motions of the blades,
in terms of rotor pitching and rolling motions, are:

~ T l ,\j:?-)
Py T2 T2 ®
N3 1 &
e -5 + 5
fl 2 2
B, 1.0 0
~ > =
) 0 -1.0
f2
! N3
Py ? 7
A3 1
9f3 2 2
L3 ) : )
Plunge motions of the blades are
rzlN r-1.07

A 1.0

Swashplate tilt in rotating axes. - Where it is easy to generalize,

generalization is made and the particular case of the 33-ft diameter rotor

system is abstracted. Blade feathering angles due to swashplate tilt in pitch
and roll are written for a rotor with "b" blades where "b" is any integer
greater than 2; the generalized rotor used for this discussion is illustrated
in the following sketch. The number (1) blade lags the x axis by the cant
angle ¢o, and therefore always possesses maximum negative feathering angle

due to positive gyro pitch angle and zero feathering angle due to gyro roll;
the lag is accomplished through pitch link geometry as illustrated in

183



Figure A-6. Because of this orientation of the axes the expression for blade

feathering angle ig independent of the gyro cant angle.

®

Yo

®
e

X

Since swashplate pitch tilt is lagged through the cant angle to blade (D
directly, the blade feathering tilt due to swashplate tilt is

o, -t [ 20 -3 fom [ 2

‘o

=i

where p identifies the particular blade, any of (:) through (:), to which
the expression applies. For each of 3 blades of a three-bladed rotor,

1
6 =-= 8 -!-Od)
£, k

0.5 0.866
O =% o - K ¢
2

0.5 0.866
ef3= el el

18k



which is denoted thus in matrixz form:

r ~ = -

1
efl "x )
0.5 0.866 ¢
1 ef2 r = T
o 0.5 0.866
£, T K
4 y L _

Rotor flapping modes in rotaving axes. - The mumber of modes in a
complete set of rotor flapping modes (corresponding to the first flap mode
of a single blade as in the case shown) equals the number of blades. For
three-bladed rotors, the three modes are: collective flapping, pitch flapping,
and. roll flapping; these are illustrated in Figure A-8. TFor more than three
bladegs, modes that would exigt in additlon to the above three modes would be
self~balancing; that is, they would produce no nel vertical inertia force or
pitehing or rolling inertia moments. For example, the modes of a four-bladed

rotor would be ag shown in Figure A-9.

The transformation relating tip deflections to rotor modal deflections

for the four-bladed rotor is given by the following expressions:

rN - 1 o R’
8) =5, ~6g * O+ & &1 1-1 0 1 6,
8, = 6, + 0 =64 = & 55 1 0-1-1 59

>. S = < o
53 =&, *8g * O+ b b3 1 1 0 1 6
6h = 50 + 0 + 6¢ - 8 8y 1 0 1L-1 | 5

" r L - \. J
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collective

piteh

roll

Figure A-8. Flapping Modes of a Three-Blade Rotor
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airflow
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collective

® ®

piteh

roll

self-balancing

Figure A-9. Flapping Modes for a Four-Blade Rotor
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For the three-bladed rotor locations of flapping modes relative to the

rotating axes must be identified, The resulting relationship for tip
deflections is:

-~ - [~ = ~ b
81 = 6, g &, 1 -1 0 5
1, .8 5 -
o =6, + 308 = 5 64 Jos L 1 5 -.866 do |
1, A3 .
53 =5,+% bg + > 8¢ 53 1 5 .866 64,
“ -’ - - “ o

It is important to note that the pitch and roll flapping axes are not coinel-

dent with the pitch and roll rotating axes but lag behind by the cant angle.

Summary of motion in rotating axes. - Let the fundamental rotor degrees

of freedom, in rotating axes, be arrayed in a column vector called.{ﬁ},

Z
3]

{g} = <4 & % = g vector of degrees of freedom.
5
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and let the displacements of the blades (shown Ffor a three-blade rotor) be

arrayed into a column vector called {n} s

{n}:.g 6. = a vector of blade motions.
2
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The relationship between blade motionsg and rotor motiong is a sgingle-~valued

nonsquare matrix, denoted D] » The combined expressions are

i} = ] (o}

- - - ~ A
By -5 -.866 0 0 O o 0 0 ®
z, 0 ) 1.0 0 O 0 0 0 @

68, -.866 .5 0 —'1-} 0 0 0 0 z
5, 0 0 0 0 1.0 -1.0 0 8
B> 1.0 0 0o 0 © 0 0 0 i ¢ [
Z5 0 0 1.0 0 O 0 0 0 6o

Yo, [ ~ |o 0 o 2 =Xe o o o 5g
65 0 0 o 0 o0 1.0 .5  -.866 | 5¢J
B3 -.5 866 0 0 O 0 0 0
Z3 0 0 1.0 0 0 0 0 0
63 866 5 0 ?5 "_f66 0 0 0
\ 63 J _o 0 0 0 O 1.0 .5 .866 ]
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Derivation of Bquations

Rotor inertia terms in rotating axes. - Each rotor blade is assumed to

have all mass concentrated in its chord plane (i.e., blade has no thickness

or twist, although twist aerodynamic forces are considered).

The relationships between the motions of the degrees of freedom and

motions of the blades are as follows:
{n}= [p] {e}
(Al (0] {3)
{’d}: (p] {B}
which show the motions of the blades due to changes in displacement, velocity,

or acceleration ag related to the degrees of freedom. Therefore, blade

accelerations are related to degree-of-freedom accelerations by:

3 -5 -.866 0 0 O o o0 0o R
'z'l 0 0 1.0 0 O 0 0 0 oy
6, -.866 .5 0 1}} 0 o 0 0 ;
8, 0 0 0 0 1.0 -1.0 © { “Rr
[ 10 o o 0 0 ©o o o | %_R
i, 0 0 1.0 0 O o 0 0 o
16, 0 -1.0 0 ?5 14%6—6 o o0 o Seg
g, 0 0 O ©0 o© 1.0 .5  -.866 \.6.¢R‘
'5'3 e 5 866 0 0 0 0 0 0 i
‘z'3 0 0 1.0 0 © 0 0 0
"3 866 5 0 —ki %‘6- 0 0 0
‘;;3 0 0 0 0 0 1.0 .5 .866
. o - -
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The next step is to develop a mairix which relates generalized forces
on the blades to accelerationg of the blades. The generalized forces are
root shear (V), root bending moment (bm), feathering moment (fm), and flapping
generalized force (H). In this analysis the elements of mass in the blades
are assumed to move only normal to the rotor disk (no radial or tangential
motions). Therefore, there are no inertia forces, relative to axes which
rotate with the rotor, due to velocity. The only inertia forces are those
due to acceleration, which ig interpreted to mean that the blade generalized

Torces are related to blade mobticns by the blade inertia matrix,

{ox,} - - ] {“}

the vehicle degree-of-freedom generalized forces are related to the blade

generalized forces by:

Therefore, the vehicle degree~of-freedom generalized forces are related to

vehicle degree-of-freedom motions by

e} = " [5] P

The terms of the differential eguation due to acceleration of the

degrees of freedom of the vehicle are therefore

[ =] [

The minus sign makes them inertiaz reaction forces which pubs them in the
right hand side (RHS) of the differential equations.
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The [Ib] matrix for the three-blade roter consists of 12x1Z2 elements,
two thirds of which are zero. The non-zero elements are arranged in three bxk
sub-matrices, and since the blades are identical, the three sub-mabrices are

also identical.

N T T .
b dbm dbm dbm dbm I B
| | @ i & _d'é'_l | 1
\' o dv  dv  4av l Z
@ dgf a% a8 dp |
dfm dfm dfm dfml | 5
g 4% 4§ ab | | 1
. 4E ai a§ ai | %
@) g dZz a6 az | | 1
5 - am dbm abm dbm| 5
"® | i dZ ag & | 2
|
Y 4av av  av oy
‘@ |8 a & & | “2
= < -
) ( | dfm afm dfm dfml -9-
e | @ @ 4| 2
. |a8 an an ax | §
® 1_eL" 3z a8 ci‘ 2
dbm dbm dbm dbm .2
o) | :;ig" & @ af | |
| o oar av av | |
v | % & & = 3
£ | | 4fm afm afr afm .
B | | ' @ @& & 63
I |ag a@ aE anm o
£6) | |d d a8 B 83
\. » L. —_ .

In Appendix B, where flapping characteristics of the three-blade rotor
of the wind tunnel model are discussed the mass distribubion on each blade

is divided into two parts:
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o}

Each of

one part representing the distribution of mass between the blade tip
and the root, bubt excluding any mass concentrated at the tip

a second part which represents only the tip masgs.

the gubmatrices in the preceding 12x12 matrix is therefore composed

of two parts: one due to distributed mass and one due to tip mass. Those

elements due to distributed mass are derived for each of the four accelera-

tions as follows:

Due to B, for +f (tip moving up) the inertia forces will act in the

down direction. Using signs corresponding to RHS of eguations,

=+ dm
aZ = -pr ar dr
R
dd-l?.]'? = = f I‘2 SIIH dr
.1I5R
av R
E: = - T a; dr
p .15R
B g

5i
I
1
'\
5w
Fg
=l
S
o
H
Elg
o
[

Due to %, for +z (whole blade moving up) inertia force will act in the down

direction, and terms corresponding to RHS of equations are

..dln
al = -z I ar
R
& - - / v g &
.isg
o R am
dl- = - 'd-fd.l’
.15R



n
s
]

1}

R 2
- 0 e
.15R

Due to 6, for + 'e'f (blade nose moving up) inertia forces will act in the down

direction, and terms corresponding to RHS of equations are

. dﬂl
af = —GfAI"d—r—dr
R
i .15R
av R dm
EE_ = =A radr
il .15R
R
I L
f .15R
at -A : rzzﬂdr
46y - .15R R/ dr

Due to .6., for +5 (blade tip moving up) inertia Fforeces will act in the down

direction, and terms corresponding to RHS of equations are

2
T dm
ag = - (—R—) — qr

dbm _[R(E)ar@dr
dy .15R R dr
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@ /R (& & o
dy .15R R} dr
dfm dbm

ag ="

a [ () e
dg .15R R} dr

The [Ib] matrix for the distributed mass part is expressed as follows

when the preceding expressiong are included:

3 R
-d/’ r2 %%ﬁdr
.15R
R
-‘/~ r %% dr
.15R
“[Ib]=
j(:R 2 dm
- -a-r—-dr
.15R
R 2
THEE L
| J.15R

R R 2
- J{ r2 %% dr =~ (%) I’%% dar
.15R 15R

of

Rlg

.15R

&

)

It is noted that the matrix is symmetrical, and that it includes only five

different integrals.

The welght and stiffness distributions of each rotor blade of the 33-ft

diameter rotor of the wind tunnel model are given in Figures 9 and 12 in the

bedy of this report.

dwt./dr is shown in Figure 9.

of mass gives
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An algebraic approximation of the weight distribution,

Converting this expression to represent units

-




% = 0.44 - 0.0k78r + 0.001823r3 slugs/ft

Numerical values for each of the elements due to distributed mass can there-

fore be determined Tor the wind tunnel model rotor, as follows:

2.53 slugs

~
g oy
T
B

20.8 slugs/ft

-

Eg j=s

%
iy

219.0 slugs/f'r,2

,H\
ég [=v}
Hl‘\)
—
D
R
Il

2590 slugs/Tt3

-
Eﬂ =)
W»
T
e
~———
R
]

33,700 slugs/ftl*

R
(@)
T — ] dr
./. 15R dr

To derive equations of the elements for the tip mass part of the equa-
tiong, the same logic uged for the distributed mass part 1s used, except that
mtip replaces %% dr, and R replaces r. The equivalent of the 6.0 1b tip mass
shownn in Figure 9 is 0.1862 slugs, and R determined from the figure is
16.25 ft. Therefore, to each of the five integrals another term, representing

the concentrated tip mass, is added:

R fam
to f (E) ar add .1862 slugs
.15R

R
to f T (-g%) dr add (16.25) (.1862) = 3.03 slugs/ft
.15R
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hg.2 slugs/ft2

It

R
to f "z (%) dr add (16.25)2 (.1862)
.15R

800 slugs/ft3

R
to f 3 ((%1) dr add (16.25)3 (.1862)

15R%

13,000 slugs/ftlL

I

R
o f o (—%) ar  add (16.25)" (.1862)

15R

The resulting numerical values of the integrals are

dm
[(E) dr + m‘tip
f r (gl—;) ar + m‘tip R 23.8 slugs/tt

2 { dm 2
/r (dr)dr+mtR

f 3 (%) ar + m,_ RO 3390 slugs/ft°

2.72 slugs

1

268 slugs/ft2

I

46,700 slu.g;s/ftlF

~~
e
@D
g
+
d-E
P

Another contribution tothe inertia matrix occurs if the mass is
actually not located along the blade's quarter~chord. It adds to the
feathering moment of inertia and affect only the 3,3 element of the matrix.
Therefore, to make the inertia watrix more correctly represent the wind
tunnel model rotor, increment of local moment of pitch inertia about the
1/bk chord, 0.216 slug/ftz, will be added to the 3,3 element.
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To complete the inertia matbtrix, the following constants (applicable to

the wind tunnel model rotor) are to be combined with the integrals:

_AE = .000686
i% - .003675
R
l% - .0000962
R

1
=L = .0000135
R

Combining the preceding items appropriately results in the numerical value

of the inertia matrix as follows:

268 23.8 T7.01 12.46
23.8 2.72 .623 .985
_I]z_

[ b 7.01  .623 .4oO  .326

2.6  .985 .326 .631

Note I = 0.216 slug/ft2 was added to the 3,3 element.
The inertia matrix for a single blade [I ] evaluated is now 1ntroduced into

the expression for the inertia matrix for the entire rotor [D] [I ] [D]

The following page shows the completed inertia matrix for the wotor.

199



PRECEDING PAGE BLANK NOT FLLMED

Rotor centrifugal and structural terms and rotating spring. - The ele-

ments of mass of the rotor are subjected to constant centrifugal inertia
forces. These forces produce moments and generalized forces on the degrees
of freedom proportional to displacements. These forces are similar to forces
induced by structural deflection except that they couple degrees of freedom
whereas structural forces 4o not. Because, in this formulation of tﬁe dif -
ferential equations of motion, it was chosen to couple dynamic inertia forces
(i.e., acceleration inertia forces) the structural forces are not coupled

between degrees of freedom.

Since the blade deflecticns are related to deflections of the degrees

of freedom by

()= [2){#)

and the generalized Forces due to centrifugal forces on the blades are given

by

(o} = [ 1)

and rotor generalized forces are related to blade generalized forces by

(oo} = PI" {on)

the rotor centrifugal forces are related to rotor deflections as follows:

(o} - [ (=) B} e
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The centrifugal force matrix for a single blade is

dbm ©Obm 9dbm Sbm
oB 8z 26 5]

ov 3V v av
[CF ] 863 oz 28 a6

gfm 8fm dfm Jfm
oB dz 26 06

Il

oH oH oH oH

E: 52 36 86
L -

and the [CF] matrix for the entire rotor is formed by three identieal single

blade matrices along a diageonal, similar to the inertia matrix.

The elements of the centrifugal force matrix for a single blade consist
of the change in root bending moment (bm), shear (V), feathering moment (fm),
and generalized force (H) due to linear flap deflection (ﬁ), vertical dis-

placement (z), feathering angle (8), and parabolic flapping deflection (5).

dbm 2f 2 dm _ 2
ﬁ_ er drdr— Q Ib

where the negative sign denotes RHS of the differential equations.

av.  _

a = ©

afm 2 2 dnm B 2
ﬁ_ QA-/‘I' drd.r—'—ﬂ AIb
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disk plane

dH _ _fr\e . o° - a2 3 dm
g - (R)rﬂdm— R2frdr

The centrifugal forces due to vertical displacement z are all zero

dom _ av _ afm _ 4E
dz  dz ~ dz = d=z

The centrifugal force terms due to feathering angle are as follows:

dbm 2 2 dm 2
—= = QA — 4 = -5 A
def fr dr * Ib
L
Br
afm 2 2 2 dm 2
—_ = - A —_— = =
def 2 ( fr dr dr+Io) @ (AIb+Io)
an 92f3 dm
= = -A% fr0 = ar;

2 2
def R dr

this term comes from flapping due to feathering.
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The centrifugal force terms due to parabolic flapping deflection (§) are

as follows:

dbm - §ﬁ r3 dbm
as R2 dr
av
- 0
afm QB 3 dm
a-—a— = -A—/l" a—-dr
R
aH o° 4 dm
E = —;E/I‘ a}‘dr = -8 M6

where

4
Mg =f(£) @I‘ dr = blade flapping generalized mass

If the centrifugal force and structural stiffness are combined in the

latter term, it becomes

de 2
35 - Tws Mg

wherecpg is the flapping frequency of the blades in rotating sxes under the

conbined influences cof cenbrifugal and structursl forces.

S

In summary, the blade centrifugal force matrix, including the effects of

blade siructural bending stiffness is written as follows:
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Notes:

(1)

(2)

dbm dbm dbm dbm
ap dz  de@, ab
T
a @ v dv
ap dz def aé
dfm dfm dfm dfm
ap az dqf dé
kc) aE 4 &
Ldﬁ az def dbé
2 2 dm 2 2 dm 522 3 dm
-2 r -— dr 0 Q7 Afr — -"—= Jr’ —adr
dr dr R2 dr
0 0 0O
2 2 dm 2f, 2 2 dm 92 3 dm
-Q A-/; Zar 0 —Q(A = o a +IO) —AR—2 r> o ar
2 2 2
Q 3 dm Q 3 dm wg L dm
- —=fr —dr O “-A—= [Jr 5— dr Lo Jr —adadr
3 ar 2f ar ar
R R rY
The (4,4) element contains flapping structural stiffness as well

as centrifugal stiffness.

the [CFb] matrix can be cbtained from the - [Ib] matrix by

factoring by @, deleting the second row and column, and adding

(""62 - 92)

Y
R

b dm
E-I-;dr

to the (4,4) element; or more concisely, by factoring the

generalized mass by w52 instead of &'22.
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The numerical value of the single~-blade centrifugal force matrix becomes

068 2° 0 '10192 12.460%

0 0 0 0
Emd B R 0 .hoon®  .3260°
12.460° 0 .3260° 63107

which is used to relate the generalized forces on the degrees of freedom due
to centrifugal forces and blade bending stiffness to deflections in the

degrees of freedom, per the expression

[F [=]0)

The operations combining these matrices are shown on the following page.

Any feathering spring that might exist in the blade system (in the
rotating axes), for example due to the feathering spring effect of a tension-
torsion pack, is not included in the centrifugal force matrices shown on these
pages. If a wvalue of the feathering spring coefficient Kﬁ is available, and
is considered significant, the matrix can be modified to ineclude the effects

of the feathering spring by adding K, values to elements kit and 5,5.
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Rotor structural damping and gyro rotating damping. - Structural damping

is proportional %o and in phase with blade structural deflection velocities.
Therefore, to include the effects of damping of the structural modes, a gen-
eralized force which opposes the velocity of each mode is added. This force
is given in terms of the fraction of critical damping (Y). It is expressed
in terms of a damping coefficient, 2YuM, and is applied to the three flapping

modes as shown in the following matrix.

Blade feathering motions are opposed by mechanical Triction {(viscous
friction in +his linear analysis). In the matrix it becomes swashplate
moments due to swashplate tilt velocities. These terms are considered to

represent feathering (rotating) damping, denoted by the symbol Cg

Relative to axes which robate with the rotor, the mechaniecal damping

terms are written in matrix form as follows:

r M ) 's) ) 7 r®-.
L 0 &
T 0 z
MG Cr 0

Yup [ = 7 O b {
Hg,, 2y, 5 M5 .5, ‘?o
2} 2 M 5

og Yﬁem()e bgg . .9
H
[ Fog - Yo %50y 85 |34}
Rotating Axes Rotating Axes

The minus sign indicates that the terms are meant to fall on the right

hand side of the differential equations,

High-speed gyroscope terms in rotating axes - The equations of motion

of an unrestrained undamped gyroscope relative to its own rotating axes

are
I 0 E I 0 tle Forcing
0 IGr & 0 IG & Moments
The two axes of tilt are not coupled and each has its own natural
Trequency 2.
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The equations of the gyroscope relative to axes rotating with the rotor
are obtained by transforming the above equations from gyro axes to rotor axes.
Absolube tilt angles of the gyro in rotor coordinates are composed of the body
tilt angles ®, © and the tilt of the gyro relative to the bodyg, . There-

fore the gyro and rotor axes arye related ag follows:

SR NI K

Gyro
axes

where [T] is the sine, cosine transformation

cos G%E -Q)+t ~sin (QG -Q)

[T]= sin (QG -Q) t cos (QG - Q) t

The transformation relationship can also be written

0 L qfe
= [T T] o

¢ gyro 0| rotor axes
¢

axes

.

and its time derivative can be written

; . @
: =[T;T] @ +[T:T]<‘_§
¢ ] 8 i ]
gyro ¢ $A
axes -
rotor rotor
axes axes

The second derivative with respect to time is

5 e ® ¢

o1 = [FiE] 1% wefeid] (3} + [zie] |8

([;; 1 2] ' Q [ 'e

gyro ¢ ¢ $

axes
rotor rotoxr rotor
axes axes axes
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The transformation and its time derivabives for rotational symmetry are

[TiT]=}1 011 O

0 1.0 1

[T}T]=(QG-Q) O-liO-l
1 011 0

['T'i'T']=(9G-Q)2 -1 0 -1 ©
0 -1 0 -1

Substituting in the initial equations in this subsection yields

b o
TJlo I,J){FH] Ly o (48] + [mi7) |2
8 e 0
| $ ¢ 3
[T] [IG o] ® T
21T 0 I . &| _ | T]| |Forcing
+QG a| [TiT] 5 B [Moments]
$

The terms of the equation are now examined cone at a time, Expanding the

first term gives

10 IG 0 21 0 -1 of {®
0 - -
@ _9)2 1 0 IG O «1 0 -1} |®
G 10 8
[0 1] ¢
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Therefore, the first term of matrix equation, in rotor axes, becomes

——IG 0 -I; O 1 re
g -2 | © T © L |
-1, 0 -I, 0 | |6
0 -1, 0 -I,| |¢

Expanding the second term gives

10 I, 0o -2 0 - )
E(QG'Q) 0o 1 0 Ig|fr o1 o© 8
1 0 6
0 1 b

Therefore, the second term of matrix equation, in rotor axes, becomes

0 -I; 0 -l (@
3

2( -0) I, 0 I, ©
0 -I, 0 -I,| |6

0

-IG o I, |

The third term in the gyro matrix equation can bhe written

0 e’

)
which, in rotor axes, becomes
IG 0 IG 0 E?
0 IG 0 IG ?
0
IG 0 IG 0 M
0 I, © I, ¢
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The fourth term can be writbten in rotor axes,

I, 0 I, 0 (o]

i z (I)G © Lfje |
“ I, 0 6
o Ic_ 0 IG ¢

» " .

Regrouping all terms gives the following matrix equation:

~ - ST [~ i B g
I, 0 I, 0 & 0 -I, 0 -I, @)
0 I, 0 I 3 I, 0 I. O d
ch G
0 < .. > T 2(‘QG_ -‘Q‘) @ ¢ 1 . &
0 - -
T, I 8 0 -I, O IG 9
0 I, 0 T $ I, 0 I, O :
¢4
- G.. . J Rotor L G G - \. J Robtor
axes axes
[~ e B e ' -
I, © I, o] fe Mg
o I, 0 TI. M
2 o
(20,2~ O°) ¢ HERS I
I, 0 I, of]e Mg
0 I, © Iy b Mg
- “Rotor » '/ forcing functions
axes

Aercdynamic terms in rotating axes. -

The aerodynamic coefficients in the differential equations were

calculated in rotating axes and transierred to stationary.

In axes rotating with the rotor, the serocdynamic terms were calculated
in a manner similar to the way in which the inertia and centrifugal terms
were calculated. The displacements and velocities of individual blades were
firgt defined in terms of displacements and velocities of the degrees of freedom:
n = [D] ﬁ
n= [p] B
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Then the generalized forces on each blade, due to 1its displacements,
velocities, and fixed geometric shapes, were calculated at closely spaced

intervals around the azimuth with the effects of adveance raitio accounted for.

B B F
o - [ ] feed

The generalized forces on the three blades due to their individual motions

were combined to yield the matrices of arecdynamic terms in rotating axes.

o] = [o]* (52 Blto 16T 3 B+ Bl o] i

The rotating axes matrices were called

F
aerodynamic stiffness [D} T gnb {D} = [A]

and

gerodynamic damping PD] T[ég;h} [D] = [&R}

These were later transformed to stationary axes for use in the final
equations of motion. The forcing terms were transformed to stationary

axes as follows:

fixed

fixed
geom

geon

#1721 [

where [T] is the sine-cogine transformation of the degrees of freedom from

stationary to rotating axes:
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The column matrix of fixed geometry paremeters consisted of:

fixed} ={p
geom ©
B0
O
z
where: ﬁo = precone angle
80 = collective pitch
et = twist rate
z = verbical gust air veloeity

The aerodynamic matrices were based on a tip loss factor B = .97

and a section 1ift curve slope Cla = .95 (27).

Collection of terms in rotating axes.-

Matrices are now combined (on the next page) into a matrix equation
representing the equations of motion in the rotating axes system. Numerical

or symbolic values are showyn for all but aerodynamic terms.
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Transformation to stationary axes.- The eguations of motion of the rotor

and gyro in 8 degrees of freedom are written in rotating coordinates in the
preceding pages, They will now be transformed to stationary axes, and effects

of the rigid alrframe will be added thereto.

The pitch and roll of the rotor {(®,® ) and of the gyro (6, ¢ ) were devel-
oped relative o the same rovating axes. The flapping mode pitch and roll
deflections are lagged 60 degrees behind the rotating axes, therefore the
blade axes are allowed to lag behind the gyro axes so that the standard
transformation is valid,

The relationship between generalized coordinates (degrees of freedom) in

rotating axes (subscript R) and in stationary axes (subscript S) is as follows:

r

" ~ “~

(@ | [eost -sint o© 0 0

® 0 o) 0 ®
s sindt  cosllt O 0 0 0 0 ol]a
z 0 0 1.0 O 0 0 0 0 z
0 0 0 0 cosly -sinlls O 0 0 0
1 (71} o 0 0  sinQt coslt O 0 olVs
8q 0 0 0 0 0 1.0 O 0 5o
8g 0 0 0 0 0 0 cosllt -sin(lb bg
L % . L 0 0 0 0 0 0 sinfk coth_ L 6¢_‘

and in abbreviated nobtation:

{og = [ {‘S}S

and {B}R = [z] {5}5 + 1] {ﬁ}s

and {} R

l
L]
=
[a—
i,
™
——

tn
A
no
—
I=kd
R
—_———
L]
—_——
03]
+
=
=3
et
P
0
[e———
[42]
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Submatrices of FT] involving @&, 0¢ and Og 6@ are uncoupled, from each other

Therefore, each submatrix is handled independ-

and from z and 6, elements.

ently.

For rotationally symmebtric terms, the matrices and their time

derivatives become:
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For terms which are not rotationally symmetric, or which vary with
azimuth, the full transformations and their derivatives must be used. Fox

example, the first time derivative of [T] is

~-singt ~cosQzt O 0 0 0 0 0

cost -sinGt O 0 0 0 0 0

0 0 0 0 0 0 0 0

. 0 0 0 -sinfdt -costt O 0 0
[T =% 0 0 0 cos@t ~gin2t O 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 -sintt  -cost

" 0 0 0 0 0] 0 cosQt ~-sinQt

The robor equations in rotating coordinates are repeated here,

[I]{E}R " [D]{é}R * [S]{é}a - [AR]{é} R "[Alfﬁ}a =0

These equations are transformed to apply to stationary axes in two steps:

1. The transformation egquations for{ﬁ}R, {13}3 and{ﬁ} g are substituted

for the differential equations (in the matrix equations).

2. The differential eguations generalized forces are transformed from
rotating to stationary axes by premultipiying by the transpose of
the transformation matrix [T]T.

The equations hecome:

" [+ el ¢ (e

" o) [m8)s + o)) + @7 (el

217 ] (@8] + C{e)] ¢ 07 Ll Do) - o
f 1 1 + f
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Full transformstions, indicated by arrows, must be used for aerodynamic
derivative matrices., In all other places the abbreviated matrices for ro-

tational symmetry are used. For the rotationally symmetric matrices

(21" = [1] = [2]

Expanding the matrix equation and keeping the aerodynamic terms separated

from the mechanical terms, the equations become
(] (){F)g + 2 2] (9){p}, + [x][11{e}s
+ ] [21{}s + 118[e)s + [s1{s)g
P07 ] 0B+ T[] G e) - (T D G -

Full: Full//f Full
The mechanical terms are grouped as Follows:

({8} + [e1 081 + [o]{p) ¢ + [ O+ o1 (2] + ][] 4

The individual transformed matrices 2[I] [T], [1] [¥], anda [D] [T] are
calculated next and then the combined mechanical terms in stationary axes

are assembled,

2 [I] [T] is as follows:

-7.658 —5.17# 0 -15.942 - 9.768_-

0 -L02,75 ©

Lo2.75 0 0 5,174 -7.658 © 9,768 -15,942
0 0 0 0 0 0 0 0

2| 7.658 - 5.17hk © 0 - .60k O 0 - .Lese

5.17h 7.658 0 604 0 0 Jhose
0 0 0 0 0 o)

15.9h2 ~ 9,768 © 0 - k252 0 0 - .9h65

L-9.768 15.942 © Jhese 0 0 oh65 0

[I] [5] is as follows:
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4o2.75 0 0 5.17k -7.658 © 9.768 -15,9h2
0 ho2,75 0 7.658 5.17h+ 0 15.94%2 9.768
0 0 0 0 0 0 0 0
-92 5.174% 7.658 0,604 o} 0 Jhes52 0
- 7.658 5.17k 0 0 60k 0 0 Jese
0 0 0 0 0 0 0 0
9.768 15.942 © hoso 0 0 .9h65 0
L -15.942 9.768 0 0 hes2 0 0 .9hé5 |
[D] [TJ is as follows:
[ -.3(05-9) 0 0 -.3(2e-2 0 0 0 0
0 -3(Qe2) o© 0 3eg-) o 0 0
0 0 0 0 0 0 0 0
o -.3(Qq-) 0 0 -.3(2,-2) ~Cp 0 0 0
0 -.3(Q4-9) o *Cp 3e-2) © 0 0
0 0 0 0 0 0 0 0
0 0 0 0 o 0
0 0 0 0 0 1.893Y; wg 0
(2 1] [T] + [D]] is as follows:
B 0 - 38a g -15.3169 .+ 0 ~31.88% -19.54Q i
-805.2Q * -10,048%2 . .
+'3QG. +t3QG. - -
805. 282 0 0 10.0k86 15,3168 0 19.54Q 31.86%
0 0 0 0 0 0 0 o}
- 10,3480 -1.208% _
15.316% (@ a G - 3(Qe-9) 0 0 -850k
10.3480
1.2080+
L3160 .
326~ 15.31602 0 365 cR 0 850L52 0
31.882  -19.5kQ 0 0 -.850L0 0 1.893y68w66 - 1.8930
19.54Q 31.882 0 ,850402 0 0 1.893% 1'893Y6¢“’6¢
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Swashplate springs and dampers. - Springs and dampers are inserted

between the stationary ring of the swaéhplate and the airframe (body). The
springs produce swashplate moments proportional to swashplate ©ilt displace-
ments and the dampers produce moments proportional to the tilt velocities. In
this study both are considered to be rotationally symmetric or have equal

diagonal elements snd zero off-diagonsl elements.

Swashplate moments due to springs are given by:

Mg Cg O G]
My, 0 ¢ |le

The minus signs indicate that matrices apply to RHS of differential

equations,

Body terms. - The rigid body terms are sdded direectly to the rotor terms,
which were derived relative to esrth-fixed axes. The rotor equations relate
the generalized forces acting on the rotor degrees of freedom o the motions
of the same degrees of freedom - in fact, they describe the free flight motion
ol a rotor alone. Adding the body terms completes the descripiion of the

motion of the entire vehicle.

The rotor equations with swashplate springs and dampers are:

] 5o [of]

_ [BR]ﬁ - [B]ﬂ +[cs]'é + [KS] B = 0

He
[E—
o+
L et
=
| E—
e
+
—
| I
| ]

=H
| M|
+
| i |
o
e
ey
o
| I—
+
—
)]
| I )
gy
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The body (aircraft type) equations of motion are also written relative

to the earth-fixed axes.

Perkins & Hage (reference 6) give the rigid-body egquations of motion

relative to axes rotating with the body and aligned with the mean wind vector.

They are:
X
y
¥ %
oM gM oM » 2 e
sa bt a8tz d - mwE
BFZ . .
—— A = mV (@-—a)
do

Substituting the following:

.2

mk = T
v Yy
o = Z
Ty
s . L
T
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the equations are written:

1) 1 oM e oM e 1 oM «
Ty ® v a2 " % ® Vea? ™"
oF
(1] L] l Z._
mz - mvV@ - 7 Fye z = 0
and in matrix form are:
L oM o oM 1 oM .
IY.Y TV a& ||® Y V o« ®
+ = 0
oF
.. l Z hd
0 m Z - my -7 -EET Z

The aerodynamic derivatives are derived as though they are forcing funec-

tions (on RHS of equations). For axes fixed in the body (airplane axes),

1 .
»® - Mg -5 My llj@

Ne

1
0 M Z - MV ol Za

For earth-axes the equations become

<i| =
R

® |- (M, M)
e l [
0] M 7 0 - \—I' ZQ‘ zZ - 5
For body-axes the dynamic determinant becomes
2 1
I A -MXx -=Z
Yy q v
- MVh M)\2 -
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which expands to

L gy 3 Ly 2
- - + » + —_— -
Iy’y Mh (MM(;1 + Iy'y 7 MMQ,) 1S (Mq 7 MMQ,) hY

For earth-axes the dynamic determinant becomes

2

e - Y& . Yo
L (Mq+Ma)?s. M, 7 BN
2 Z
- Zg MX - vﬂfx

which expands %o

I M}f‘-(MM +1 2
vy q

yy V

-i-MM&))\.3 + (Mq 7 o- MM,) A 2

Since the two representations have the same characteristic equation they
yield the same roots, frequency and damping, or, the two equations can be said

1o represent the same physical situation.

The earth-fixed representation is used in conjunction with the rotor
equations; axes are selected to coincide with the rotor axis convention. The

equations of the body relative to aircraft axes are

o
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where

and:

l _[—t- B
O —vM&
T 0 B f+
xX
0 M Jt i
- M,
4 0
| 2o
T _—
C (—-)ch
ma, 2V
I3 —
CI'Il (ﬁ) qSe
q
Cm¢ gsce
—CL gs
o
CE Sy gSb
P
%y L - %
d¢e ’ m, — 8gc
N q oV
BCQ
5pb
2V
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Now the equations are rewritten in the helicopter axis system

Z

X

The ¥ axis is common to both systems, so signs of pitching moment and 6 do not
change. The helicopter Z axis is the negative of the airplane Z axis, so 2z
displacements and z forces ave ‘of opposite signs to those of the airplane; the
sign of the vertical force - % Z, and of M remain unchanged. Since the roll
axis is reversed, and roll forces and matrices are not coupled with the others,

their signs do not change. Examining the cross terms:

. 1 1

& The sign of - v M& changes to 7 M&
. 1 1

e The sign of - 7 Ma, changes %o 7 Ma

e The sign of - Za changes to 7,

The final equations of the body in rotor earth fixed axes system are as

follows:
— =1 — -Tr — —(1
I 0 =Ml - (M +Ms) O ZmM ® M, 0 Of{®
Yy V o q @ vV o
o 1 o |{2}+]o -, O teat+lo o ol{al = o
XX P
o o0 M ¥ 0 0 Lz |}z 7z 0 0l]l=
2 Ty “w @
e -— B e - L — -t N 4

These equations are based on the previously defined valuves of derivatives. It
would be proper to redefine the derivatives in terms of the new axis system,
but the system of dexivatives is selected so that existing airplane-type

derivatives can be usged.
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Aerodynamic derivatives of the wind tunnel model configuration are now
estimated. A tail-plane of the proper general size is assumed 4o be sdded to
stabilize the vehicle in free flight. Mass and inertia data appropriate to an
equivalent flight vehicle are 2lso estimated., Mass and inertis data of the
actual wind tunnel model are also approximated so that dynamic modes of the
model mounted in the wind tunnel could be calculated for comparison with

hypothetical free-flight calculations.

The equations of motion of the airframe contain the aerodynamic and
inertia terms needed for the analysis of vehicle stability. They are as
follows:

(29 o]
I,
b
Za
Inertia data required are
I I and M
YY 5 TEX

In the analyses discussed in this report, interference between the rotor
and body is ignored; in other words, rotor derivatives assume absence of the
airframe, and airframe derivatives assume absence of the rotpr. It is ex-
pected that interference between an essentially unloaded rotor and = body are

small and do not affect the basic form of the dynamic modes.
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Geometry of the wing-body tail of the model with an assumed horizontal

tail is shown in Figure A-10.

The pitching moment about the center of gravity due to a unit angle of
attack (M,) is caused by the body and tail. The wing is located so that its
aerodynamic center is at the aircraft center of gravity and on the shaft axis.
This location causes the wing to produce no moments about the center of gravity.

Wing downwash has an effect on the tail contribution to moments.

M, = C q&s¢

(4
at
= M, - C = 4 Stﬂt
body a,

where

CB = 1ift curve slope of the tail

%
ey = net angle of atbtack of the tail including downwash from the
wing

q = dynamic pressure

S = wing area

St = tail area

Pt = tail moment arm

mean aerodynamic chord of wing

of
It

The pitching moment due to a body angle of attack is proportional to the
volume of the body (slender body theory),

Ma = — = 2 Volume q
body

and the tail angle of attack is reduced by downwash from the wing,
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where

downﬁash angle

m
il

R
It

wing angle of attack

Therefore, the nondimensional devivative is

Physical dimensions of the model are

Fuselage volume Vol = 285 ft3
Wing area 5 = 95 ft2
Wing MAC € = h,58 1t
Tail moment arm Et = 18.3 ft
Tail area St = 33.3 ft2
The wing and tail geometries are
Area, S Span, b Aspect Ratio Taper Ratlo Gy
Pt2 Tt «
Wing 95 20.8 4,55 .62 L,o
Tail 33.3 11.0 3.60 ) 3.6

Downwash at the tail is obtained from page 224 of Reference 6, knowing
the position of the tail relative to the wing, and the wing geometry. The

value determined for this vehicle is

ol L)
=ln
R
o
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Therefore,

and

M, = - 2.51 g 8¢

The pitching moment due to & is

. ez} ¢ z
Mo = Oy (2V) 5 95
or M&-_«cm_qs'c'
o
¢ .= -c, St it 1t de
i i, s & Vv de

Substituting values for the model, at a flight speed of 120 knots,

= 33.3 18.3 18.3 _
cm& = - 3'6 95 )4'-58 203 (-30) = 00136
and
Mg = - .136 g 5€

The pitching moment coefficient due to q is
m “1 -:E _éi:: %E
q o,
Substituting-value for the model, at a flight speed of 120 knois,

¢, - 36 x B« B3

18‘
L.58 X 20% = - b5k

ol



and
Mq = - 45k g sc

The demping in roll derivative at a selected flight speed depends only on the

aspect ratio and taper ratio of the wing,

AR = k4,55

T.R, = .62

2v

® Cﬂ(pb) (&) ==

Using geometry of the model and a 120 knot flight speed, a value is obtained
from page 357 of Reference 9,

Therefore,
L = - .022 9gq &b
P

The vertical force due to angle of attack comes from the wing and tail.

z, = =-C_ 48
o L,
where
C is for the zirplane
L
o
_ St Jde
‘s, = O MR- (1" aa)
airplane a'wing i



Substituting values for the model,

_ 33.3 (4 _
cLa = 4,0 + 3.6 x oF (1-.3) 4.88
airplane
Therefore,
Za = - 4,88 g 8

In summary then the aerodynamic derivatives are

My = - 2,51 Q S€, (at any speed)= - 2.51 g S¢ (at 120 knots)

Mg =~ =7 9 SE, (at any speed)= - .136 q S% (at 120 knots)
92 — _

Mg = - & q ST, (at any speed)= - .454 g ST (at 120 knots)
TS

Lp = - = g Sb, (et any speed)= - ,022 q Sb (at 120 knots)

4,88 q 8 (at 120 knots)

Zg = - 4,88 ¢ 3, (at any speed) =

The moments of inertia are determined separately ilor the free flying
vehicle and the wind tunnel model. Estimated distributions of the masses are
used. The flying weight of the free vehicle is based on the actual weight of
a helicopter similar to the wind tunnel model: 3500 1b. The wind tunnel model
weighs approximately 6000 1lb. Inertia data for the body and hub are needed to
complete the required data items. The mass and inertia of the rotor blades are
ineluded in the roioxr equations of motion., A summary ol this additional inertia

data is as follows:
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INERTTIA

Gross weight, 1b
Body and Hub weight, 1b

Pitch moment of o
inertia, IYY’ slug £t

Roll moment of

inertia, Ixx’ slug ft2

Mass, M, slugs

DATA SUMMARY
Free Flight Wind Tunnel
Vehicle Model
3500 6000
3220 5200
1300 2400
800 1500
100 107
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APPENDIYX B
DISCUSSION OF BLADE FLAPPING

Each of the three blades of the rotor is assumed to flap normal to the
robor disk only. This assunption implies that as far as the flapping degree
of fresedom is concerned, the blades have no twist, no collective, and no
cyclic pitch. It further implies no radiuswise and no in-plane motioms of
the blades. This assumption eliminates coriolis forces and in-plane to
feathering coupling. The blade lst flapping mode, only, is considered; its
mode shape changes only slightly when rotor rotational speed is varied from
zero to full rpm; 50, a single mean shape is used for all values of rpn.
Since there are three blades, there are three rotor elastic modes assoclated

with the blade lst flspping mode. These three modes are shown in Figure A-B.

It would be expected that the two modes which bend the shaft, pitch and
roll, should have the same frequency, and that this frequency would be slightly
lower than that for the colletive motion. It becomes evident upon investiga-
tion, however, that the shaft is so stiff that deflections in the modes are
almost entirely due to the blades. Therefore, the three rotor modes have

efTectively the same frequency.

The three rotor modes can be used to formulate a complete description of
all first flapping displacements. This can be visualized by a plane passing
through the three blade tips; a plane can only translate vertically and tilt
in piteh and roll.

Summary of General Observabions Applicable to
Blade Flapping Motion

1. There are three rotor modes corresponding to the bilade lst flapping
mode of a three-~blade rotor. These are shown on Figure A-8.

2. The shape of the blade let flapping mode is adeguately described by
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The three rotor modes are orthogonal to each other and are the
complete set of lst flapping modes.

The rotor shaft bending contribution to the rotor pitech and roll
modes is negligible, so the natural frequency of these two modes
(in vacuo) equals the frequency of the collective mode.

The principles involved in finding the rotor blade natural flapping
frequencies at zero rpm in vacuo and with centrifugal effects
included for any rpm are illustrated with a rudimentary model. The
results approximate those which were obtained with a more compre-

hengive model.

Notation Used in Appendix B

Bending Stiffness, 1b in.2

Natural vibration frequency, cps
Force applied at lumped mass, 1b
Spring stiffness, in. Ib/radian
Masg, slugs <« 12

Digtance from center of rotation, in.
Tip radius, in. ) -

Blade bending structural influence matrix, in/lb

) Blade flspping deflection, in.

2] Root spring deflection angle, rad

w Natural vibration frequency, rad/sec

2 Rotor rotation rate, rad/sec
Subscripts:

1,2,440 Mass node number; vibration mode number
5 Structural deflection

i,n,p Lumped mass number

tip tip of blade
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Blade Frequencies and Mode Shapes as Influenced by
Centrifugal Forceg and Shaft Stiffness

A simple exawmple is used to illustrate the effects of blade stiffness,
mass distribution, shaft stiffness, and centrifugal forces on natural fre-
quencles and mode shapes of a blade relative to axes which robate with the
rotor. Although it would probably be necessary to use at least 3 or 4 lumped
masses to adequately represent the blade mass distribution (also a stiffness
matrix based on linear variation of EL between lumps would be more accurate
than a constant EI), the example uses only 2 lumped masses and a constant EL.
The results of this relatively crude representation have been shown to be

close to results obtained hy analyses using up to 30 lumps.

The shaft bending stiffness is represented by a spring attached to the
blade root ag shown below. The blade deformations under the action of forces

applied at the mass nodes are also shown below

Fa

¥

®
il

1
.ol

1

/
o M
jo ]

o
n

no
Ef

no

The part of the deflection due to bending of the blade is denoted by
65 and that due to the root spring by r8. The gsguare mabtrix [S] relates the
bending deflection to the node point forces. The root spring angular

deflection 8 is

oly



which is written in matrix notstion as

"1k, %k
g e F2
The total deflection then is given by:
; .
by %15 ry
= 3 + 4 s B
55 bog | T
5 ] ] [
_ ls |, 1 | [fl ‘Eg] ‘ 1
- ko k
62S T 6 o F2
5 -
P - Ty
= [S] ok 2
F2 %] rlr2 r2 F2
2
8 R - L
= ] + = ! 5 434ly t - - - == - - - = (1)
5 ke r.r., r 2 P
2 1z 2 2

To evaluate the vibration modes and frequencies, all aerodynamic forces

are assumed to be zero and the applied forces

Ty

Fa

are due to inertia and vertical components of blade tension forces induced
by centrifugal foreces. The inertia forces in a vibrating system are given

by'wzmé. Centrifugal force produces tension in the blades, which increases
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as esach lumped mase is passed on the way from the tip to the root. Blade

tension immediately inboard of any station, n, is

p
Tension = 3'22 z r.m,
y i i

i=1

where p identifies the most oubboard mass. The vertical reaction at station

n depends on the deflection of the blade at n, ntl, and n-1

segment of bhlade

n+1L
n-1 I
4T Sn+l. &n Sn+l
i i
Th-1 Tn Tnal
disk plane
P P
) -6 &, = o__
v = otk 'n .Q2 Z r.m, - n—_nl)92 z r.m,
et T -r . ii T -1 £ ii
n n+1 n i=n+l n n-1 i=rt

The net vertical force due to inertia and centrifugally induced feree is

P B
6 -5 6., = & __
F ocwom 6 +qoffRtl "n E rom -2 @l E _—
n n n k) -I‘n i 1 1 r - T £ 1 1

n n-1

and, in the two-mass representation of the example,

6, = 0
2 2 2 1 1
Fl =W ml 61 + 2 (;;-:T]i) (1'2 mz) - (I’l 1‘1'1:L + TE m2)

n

l_l

2hg



and, in matrix form,

Fy moO | (& r.m Lol m+toomy, O
- . o2 2z } 1
F 0] m r. - T 1 -1 0 0

2 o| (% >~ Ty

From equations (l), regarding the structural deflection due to vertical

forces,
-1
2
Fl] N rl Ty Ts 51
= tlsl o+ £ 2
F2 ke rlr2 r2 52

Bquating structural forces with inertia and centrifugslly induced

T 2 r.r ™ ) m 0 -1 1
1 12 1 1 T m
1 2 2 22
[S] + - = | w + 0 ==
k r, - T
© r.r., T 2 b 0 m 2 1.
1z 2 2 2
T
2
ml + -—rl m2 0 61
6
0 0 o

To determine the natural frequencies and mode shapes of the two-mass-
represented blade relative to rotating axes, which include the effects of
blade stiffnegs, mass distribution, cenitrifugal forces and root hinge stiff-
ness, the two roots of the characteristics equation of the following equations

are evaluated.
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r 2 r.T
1 1 12z
[s] + ¢
ke r.r r 2
iz 2
T
2
m + —nm 0]
i 1 rl 2
0 0
-

A simple check of the equation is available.

1 -1

(2)

Tf the structural matrix

is zero and the shaft spring is zero (this in effect makes the system a string

with two weights, swinging around a pylon) then one of the natural frequencies

would egual the rotational wvelocity; i. e., a root would be

w= 0:

Substituting w =and dividing by 522 yields:

The determinant equals zero when expanded.

. 0 -1 1]
1 r2m2
* I r
0 m, 2 Y L
) r2m2 ) 1"21112 r2m2
'h -4 T Th = g
oty Tolty
- mE Tr, - r
s ™ 5 o T 1

The natural frequencies and mode shapes are found from the eigenvalues

and elgenfunctions of the eguwations.
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5 -1
L rl rlr2 . r2m2 -1 1
[8 + £ 9T
° v 2 2 a1 o
12 T2
. ml O
- ) = O
O m2

The first step is to determine the structural matrix [S] .

deflection 65 and 65 due to loads F and ¥ >

1 o 1
éj @F @F;
"-'—--..._J
2 5y~ %
&5 , 6 due to wmit loads at @)
s S
1 2
; ’ ll.O 1b
2 D .
7 Fs
’ (21} =
1 5
. T N 1
%]
- To >
3
1.0 rl

asa-

That is find the



531, 582 due to unit load at@
o & 11,0 1b
7 —
7 7
Z B (L),
M @ = (1'2 - rl)
3
_ (r2 - rl) ry r]
1@ 2(ET), 3(EI),
r,-r) T\ (x, - 7))’
2@ \ D 2(ET), (5 = xp) 3(eD), s, ®
The structural matrix [S] then beccmes
o3 3 2 ]
1.0r] : 1.0r7 \ (r2 - I‘l)I‘l
3(EI)1 3(EI)l 2(EI)1
_____ . -
1.0r3 l 3 (r, -z, ) r (r -r)3
[S]='1+ Il - Rl N~ S R
3(ED), | 3(EI), 2(®1), 3(x1),
2 2
1.0r; (1'2 - rl) l T, - rl):t?_.L X ] (o - )
i Q(EI)l | (EI)l Q(EI)l 2 1 il
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The stiffness of the shaft acting as a spring to the blade is evaluated

as follows:

‘__5 3/8“""'—"

=

J = 27::

NN
{

w(dh - d%)
The diamebral moment of inertia I = ———ELEiri;—

L b st I =16 in® Materisl: steel E = 30 x 10° psi

(5.375

The change in slope due to a unit bending moment at the top of the shaft,

elative to its cantilever end is

27 -7
— = = = ——————— = _5£2 x 10 rad/in. 1b
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The value of k to be used must be smaller than that due to the shaft
since the analysis is performed for a single blade, but bearing in mind
that other blades are also bending at the same time (in phase with the
single blade being analyzed). Inspection of the pitech or roll modes shows
that the other blades act so as to cause 50 percent greater deflection of
the shaft than that supplied by the blade under consideration., The

effective k to use for a single bhlade then becomes

7 7

— =15 52 = 1.5x.562x 107 =0.8: x 107 rad/in, I

The next step is to evaluate the data for the blade:
ml’ m‘a’ (EI):LJ (EI)23 rlﬂ r2

and to find the modal freguencies for shapes at some gelecked range of rotor

speeds (rpm).

_ 86 slugs
m, T 386 T W3

_ 3k _ slugé
ry = 50 in,
r2 = 160 in,
(B1), = .6x 10° 1p in,?

Reference Figure B-1

(EI)2 =.2x 108 1b in.2
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The structural influvence matrix

le - [S] Pl

682 PE

- .695 2.99 -3

S] = x 10 ¥ in, per 1b
- 2.99  37.57

Substituting in equation (2) the resonant frequencies and mode shapes are.
found, for a robor speed range varying from O to 355 rpm
(0 < @ < 37.1 rad/sec):

7 3.0 (50)% (50)(160) || ™
X 10—3 + .84 x 10-7
3.0  37.6 (50)(160) (160)?
_g2 160 (.088) -1 .1 223 + 160 (.088) O
110 _ 50
1 -1 | O 0]
.223 0]
—we[ :O
0 .088,

which becomes

o1 3.717° ~.633  .128 223 0
lO =2 -l = Q
3.70 39.75 128 -.128 o .088

Tnverting the 2 x 2 matrix gives,

.78 -.166 -.633 ,128 .223 0

-.166 .0L06 128  -,128 0 .088
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The rocts of the above determinantal equation are caleculated for

Q = 0 rad/sec, 0% max rpm

= T7.h2, 20
= 14,85, ho
= 26.0, TO
= 37.1, 100

for =0

1780 ~166 7} . 223 0
J - w2

=0
166 L0.6 0 .088
2
_1780 - 223w =166
=0
166 40, 6-. 0885

. 01965 wLL - 166 w2 + L4h880 = 0O

The roobts of this are given by

2 _ 166 _-1_-\/(166)2 - 4(,01965) L4800

2(.01965)
W2 = 81505 w= 90.4 rad/sec
280; 16.7 rad/sec

and the two natural frequencies are 14.3 Ccps
2.66 cps
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The roots for all the rotational speeds, are found in a similaxy way are

Q 51 %

0 | 2.66 | 14,3
7.h2 | 2.98 | 1b.6
14,85 | 3.72 | 15.0
26,00 | 5,18 | 16.1
37.10 | 6.90 | 17.8

The variation of the calculated natural frequencies with rpm agrees well with
those calculated by more comprehensive analytical techniques as shown in

Figure B-2.

The objective of the following analysis is to show the contribubtion
of shaft flexibility to the mode shape. Ground vibration tests (and more
comprehensive analyses) showed that the lst flap mode 1s essentially para-

bolic at all values of rpm,
Examining equation (1) and substituting values for = O gives:

1780 - .223(02 -166 5
1o o

-166 10,6 - .088 w? 6

To obtain the mode shape the equations are divided by 615

1780 - 22305 -166

ol o
= b
il
(@]

-166 40,6 - .088 w2

to solve for 62
T
51

5
166 + (40.6 - .088w?) 32 = 0
L

The mode shape depends on the value of(»2 rookt. For the 1lst mode, the root

w? = 280, therefore,

(40.6 - 088 (280)) %2 _ 1. 82 _ 166

= —= = =22 = 10.L
6, 16

]
&

I_I
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Figure B-2, Blade Vibration Modes and Frequencies
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Because of the peak acceleration of point C) or ()

(see preceding sketches)

is proportional to the displacement, and the force at each point is equal to the

mass times the acceleration, the ratio of the forces at the two stations is

And the deflections at (D)

spring displacements

N

fg _ 10.4 x 3k N.1:1.0
F 1.0 x 86 T
and (@ consist of bending deflections and

5 681 bq Fy vy Tl [y
L 1
& B & » 5 B [S] B i X r.r. v 2 ¥
2 S B 2 1272 2
EJ 2
8, .7 3.0 Fl .21 .71 Fl
- 1073 + 1073
65 | 3.0 37.6 F, Tl 2.15 F,

- [ -

bending deflection

=

"

spring deflection

Aszsuming F2

= 4,100 1b, F, = 1,000 1b for the lst mode

5 T+ 3.0 (1) .21 + .71 (4,19
= +
6, 3.0 + 37.6 (k1) 7L+ 2,15 (k.1)
&y 13 3.1 16.1
5, 157 9.5 166.5
bending gpring
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It is seen in Figure B-2, that the contribution to blade flapping deflection atb
the outboard mass-lump location to shaft bending is only 5.7 percent of the
total deflection. In the rest of the analyses this small shaft bending deflec-

tlon is neglected.
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APPENDIX C
EFFECTS OF SWASHPLATE AND GYROSCOPE PARAMETERS
ON FIXED-SHAFT STABILITY

The five degree-of-freedom equations which relate swashplate cyclic
feathering to the three rotor degrees of freedom in blade first flapping are
shown on the following page. The effects of rotating damping (primarily
feathering friction), swashplate stationary-axis damping, swashplate spring,
gyroscope diametral moment of inertia, and rotor speed (rpm) on the stability
of the gyroscope precessive mode are shown. Stability is expressed in terms
of the damped (or undamped) natural frequency of the system, and‘the time for

transient motions to subside to one-half amplitude.

The five degree-of-freedom equations were abstracted from the eight
degree-of -freedom equations derived in Appendix A. In this appendix the
gyroscope's diametral moment of inertia and rpm and the generalized masses
and cross products of inertia have been left in explicit form so that thelr

effects may be more readily seen.
Effects of Rotating (Feathering) Damping and Swashplate Damping

When the gyroscope's motion is not restrained by springs, the gyro pre-
cessive mode is referred to as the control mode, since it is the dominant one
excited by control moment inputs, and since the system's steady state hub
moment response remains of Tairly constant (ezimuth and smplitude) as the

rotor rpm changes.

The control mode maintains its advancing precessive character at the
higher rotor speeds as the values of feathering and swashplate damping change
over the modesgt ranges shown in Figure C-1. The figure shows the effect of
rotating damping on the damped natural frequency and the reciprocal of the
time to half amplitude. CR and CS have little effect on the natural freguency
of the mcde, especially at low rpm. CR tends to slightly increase, and CS

to slightly decrease, the frequency at the higher rpm.

CR acts strongly to increase the stability of the control mode gt high

rotor rpn where it is an advancing precession but at the low rpm feathering

263



FOLDOUT FRAME |

[1
- -3_ _ B
0 0 Mgy, 0 e+ Oy
Lr 0 ¥ ST 2, + 2T St
IG '}? Q M¢&¢ ¢ GQG ,Rﬂ 3
[ +
[v] M6050 0 ] o o]
o
o 0 Mg O {|% o
i 0 0 u - 2aM
- Mgy B, L6¢ By
MASS MATRIX
[s]
- RCR D ] Q 5}
Ky 0 0 o $
2
0 My ef 0 o 5o
0 0 M o b2 - 0QB) -2 w M §
E\aﬁe 5o by "Gg 6666‘ (5]
o o 28y, 1 M o (wE - 02) B,
spegleghe gty 5y ¢

MECHANICAL STIFFIESS MATRTYE

[

2L & - BIRﬂfkg o

CR + G % Q
W] 2\"5“(-)60 Mén'sn
~2aM G
5¢¢
¢ Q

MECHANTCAL DAMPING AND GYROSCOPIC MATRIX

(B

Had Hpj, Hol,

Hed Hpf  Falg

Hyd Fody  Feolp

. a ?
Hsgd Togl, Togop

H6¢4'> H&¢g° H64,EB

ALRO DAMPTNG

EQLROUT FRaME 7
-2QMgg, &
2RM g6y 0 ¢
0 g
2Y58w65 Mtseae - EQME’B'SB 59
20 M, 2, M S
By BB Sy ]
8]
- a ] ¢ 7 ™ T
heﬁ¢ 3] . Hgg He¢ HBGD HBE’D H55¢
1
H¢5¢ i Hpg Hpe Hps, Bhog sy
e dg | | %0 7| Moo Fogd Mays, Teosy Mooy
@ g i
Hagty | | %8 Brgo Hege Hogoo Hoghg Heghy
5 |
Hﬁ¢g¢ ad’! Hﬁq;e Hélbd) H§¢6D Hﬁlbﬁa H5¢5¢,

AFRO STIFFNESS

PRECEDING PAGE BLANK NOT FIIMED

265




JASTA

S = 100 50 0

. CR=0 10200 100200 10 20
100 FA
7/
80 |- .
20
o |- UNSTABLE
PERCENT Cl
FULL RPM
40 I AIRSPEED 120 KTS
s .15 SLUGS-FT?
20 / e 10,000 RPM
!, Ks 0
! STABLE Cgr Cp UNITS FT-LB/RAD/SEC
0 L.(// i | | | J SEA LEVEL ]
0 0.5 1.0 1.5 =2 0 2 4 6
FREQUENCY C.P.S. RECIPROCAL OF TIME TO HALF AMP,
1/SEC 1/SEC
Figure C-1. Fixed-Shaft, Free-Gyro Stability - Effect Of Swashplate Damping And Feathering Damping

QEWTE TON JNVTE H9Vd DNIAEOTHd



divergence stability boundary, with zero swashplate damping, the freguency is
close to the rotor rotation rate so that no cyelic feathering takes place and
the feathering dampers have no effect. Rotating damping does not effect the

feathering divergence instability boundary when CS = 0.

As swashplate damping CS is inereased, while G, = 0, the stability of

the advancing precessive mode is reduced and the 103 rpm stability boundary
gradually rises, thus increasing the unstable region. Rotating damping tends
to counteract the effect of the swashplate damping; therefore adding rotating
damping moves the instability boundary to a lower rotor speed and increases

stability at all higher roctor speeds.

The reason for the advancing precessive character of tne control mode,
and the effects of feathering and swashplate damping on the mode are discussed
in physical terms. In the rotor-gyroscope system, the cyelic pitch angles of
the blades are geared directly to the gyro tilt, and the gyro tilt plane
remains parallel to the swashplate plane. As far as the precessive mode is
concerned, the gyroscope and blade feathering inertia act together 1like a
single gyroscope. If no dampers or acrodynamics act on the system, it has
a natural frequency of zero (1P in the rotating axes) and is undamped, or
neutrally stable. That is, if the gyro were tilted it would maintain its
tilted position. In rotating axes the blades would feather nose-up, then

nose-down, once per revolution, ad infinitum.

If weak diverging feathering aerocdynamic moments are added to such a
system, so as to produce a negative spring effect, which when combined with
blade feathering centrifugal moments reduces restoring moments (viewed in
rotating coordinates), the freguency would reduce below 1P. The period of
each control mode oscillation is longer than that of one rotor revolution,
and its peak amplitude precesses to a position slightly ahead of its last
position, that is, it advances in the direction of rotation. If the feather-
ing diverging moments become strong enough {or the centrifugal moments become
weak enough) the frequency in rotating coordinates vanishes and the system
statically diverges in feathering. There is no cyclic feathering at this

point; therefore, feathering damping cannot prevent the divergence.
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The effect of feathering damping on dynamic stability is stabilizing, as
indicated on Figure C-1. This may be better understood by examining the
control system in the absence of aerodynamic forces, and relatvive to axes
rotating with the rotor. From this viewpoint, the blades and gyroscope osecil-
late at 1P with the inertia forces balanced by centrifugal forces and, in fact,
each axis of the gyroséope may be examined independently, as a single degree-
of -freédom system. The equation is the same as for a spring-mass system. The
introduction of feathering damping, therefore, causes the 1P oscillation to
gradually diminish to zero. Viewed in the stationary axes the swashplate

attains a level position.

Swashplate damping (stationary axis damping) acts on the precessing
gyroscope. Precession-induced damper moments cause the gyroscope to precess
about an axis lagged 90 degrees behind the damper axis. If the driving pre-
cession is regressive, the damper-induced precession diminishes the driving
precession and stabilizes the motions as shown in Figure C-2. If, on the
other hand, the driving precession is advancing, the damper-induced preces-

sion augnents it and destabilizes the motion.

The effects of CR and ¢, on control mode stability at speeds lowexr than

S
120 knots {those shown on Figure C-1) are qualitatively the same. The wain
effect of reducing the forward speed is a reduction in precessive mcde fre-
quency. This is illustrated by the reference curve (for 80 knots) shown on

the figure.

Effects of Gyroscope Inertia and Rotor Speed

The equations summarized in this appendix show that gyro speed QG is in
the eguations only in a product with gyro diametral moment of inertia IG.
Where IG exists without QG its effect is rendered insignificant by being
combined with the much larger rotor feathering inertia term. Tt would be
expected, therefore, that stebility would vary according to QGIG and this,
in fact, was shown to be the case in tests. Control mode stability was
checked by varying first IG and thenS]G. The effects were the same. Fig-

ure -3 shows the effect of doubling and halvingngIG.
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1he control mode natural frequency is affected almost inversely propor-

i Q .
tioned to GIG

ing QGIG increases the time to half amplitude slightly. Increasing the QGI

The time to half amplitude is only slightly affected. Increas-

G
tends to reduce the rpm of feathering divergence.

The regquirements of stability and handling qualities oppose each other.
A large gyroscope reduces the Feathering divergence boundary but also reduces
the response time of the system tending to make handling siuggish. The

smallest tolerable stability would give the best system response.

Effects of Swashplate Springs

Figure C-4 illustrates the effect of swashplate springs, K., on ths gyro-

S
scope precessive mode stability. With no springs employed, the mode is a
stable advancing precession down to the feathering divergence boundary at

very low rotor speed.

When the swashplate is restrained by springs, the natural frequency and
time to half amplitude decrease gnd the mode retains its advancing precessive
character at high rpm. As the rotor speed is reduced, the nmatural frequency
rapidly reduces to zero; and as it is reduced further, the mode becomes
regressive and its frequency increases to a finite value at zero rpm. The

mode remaing stable to zero rpm and the feathering divergence vanishes.

It is interesting to note that in the vieinity of the vanishing natural
frequency (in stationary axes) the mode degenerates into two real, stable roots,
and the damped natural frequency remains zero over a small range of rotor
speeds, whereas the undamped natural frequency merely passes through the zero

frequency point.

BEBffect of Swashplate Damping on the Stability of the
Spring-Restrained Swashplate

Figure C~5 shows the effect of increasing swashplate damping on the
stability of the precessive mode of the spring-restrained gyro. Swashplate
damping causes an inecrease to the high rpm advancing precessive mode natural

fregquency and a reduction in stability. Tt causes a decrease in the regressive
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precessive mode frequency and stability at low rotor speeds. The effects on
frequency are small, but the effects on stgbility are large. The effect of CS
on stability depends on the advancing or regressing character of the mode as

showvn in Figure C-2.
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APPENDIX D
REDUCED EXPERTMENTAL DATA

Computer printouts of the reduced test data are shown on the following
pages. The methods of data reduction employed are those discussed previously
in the section entitled Wind Tunnel Tests. The 1ift data shown here were

not used in the plots of the 1lift derivatives; wind tunnel balance data was

used instead.
The following data are shown:

1. Dimensional derivatives.

2. Data samplings and their deviations from least-sguares-planes of
best Tit.

3. Hub or swashplate trimmed angles and moments.

4, Control moments.

5. Nondimensionalized derivatives; these are grouped according to

forward speed.

Two tabular forms are employed. The first: (pages 278-306) presents
the mean data recorded for various values of cyclic pitch €, , els (and
= 1,50

.T5R
and « = 0 for nominal forward speed ranging from 50 to 120 KIS at approximately

corresponding swashplate tilt 6 and ¢ ) for a collective angle 6

sea level density. The second tabular form (pages 30T-310) presents nondimen-
sionalized derivatives corresponding to the cases shown in the first tabular

presentation.
In the first form, there are four tables:

l. ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC ANGLE. These are
rates of change of LIFT, hub roll moment (Ih), hub pitch moment (Mh),
swashplate roll moment (I%P)’ and swashplate pitch moment (MSP) with
respect to wnit changes in cyelic pitch 6 . (mc), eLs(TS)’ and.
corresponding swashplate tilt angles 6(TH) and $(PHI), all angles
expressed in degrees. The first row (RWL) consists of values of

the forces (1b) and moments (in-1b) occurring at zero cyclic pitch



The second (RW2), third (RW3) etc. rows contain the rates of change

of the forces and moments with respect to angles in degrees.

The main table consists of the complete set of mean data from which
the above derivatives were obtained by a least-squares fit of a plane.
The first four columns contain the cyelic pitch elc(TlC), els(TlS)
and corresponding swashplate tilt 6(THT), ¢{PHI) in degrees that

were actually held during each of the test runs. The féilowing
columns contain the mean values of forces and moments experimentally
measured, LIFT, hub roll moment (Lh) in-1b, hub pitch moment (Mh)
in.-1b, ebtc. The deviations of the measured forces from the best fit
plane through the data D(LIFT), D(Lh)’ D(Lsp) etc. are also shown.
These deviations allow an appreciation of the scatter in the test
data, and more important an appraisal of the applicability of the
linear approximation to be mede. The rms value of the deviations,

SIGMA is also shown.

The third table HUB OR SWASHPIATE TRTMMED ANGLES AND MOMENTS presents
the 8 » 8 {and 6 and ¢) for hub moment trim L =4 = o
Residual swashplate and hub moments are also shown.
The fourth table, CONTROL MOMEWTS, presents the conbrol effectiveness
data. The hub roll and pitch moments for zero swashplate moments
in in-ib L =M =20 d the rate of change of hub
(in in-1b), Lh’ Mh { sp - ), an e rate chang
roll and pitch moments with respect to unit swashpiate moment are

given.

a (L, 1)
T, M)

S
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TABLE III. REDUCED EXPERIMENTAL DATA, NOMINAT VELOCITY = 50 KNOTS

ROTOR AND SUASUPLATFE REPIVATIVES DL TN GYGCLIC AMALES LOCKED GkYRO MODE
V =49,38 kis
REL:A(N)  RE2:A(TC) PUZ:d(TSY RWA;A{THY RUG:A(PM) q==7.94pﬁ
p=10,488
ALLIFT) d(Lh) A (Mh) A{Lsp) d{tsp)
138,00 40RG, RS 15421 .03 -8N., 41 SIN.RQ
=1n, 3l 75%,9% -50172.99 88.71 -47.56
40,23 B11g8,%1 1871.28 22,.h5 124,20
34,78 277?,R) 3437,85 -21,66 114,32
9,73 2359, 02 =3INL8. k2 76.5R 18.15
" TG Tis THT PIl1 LIFT PRLIFT) Lh n{Lh) Mh N{kh? Lsp % {lsp) Msp N{Msp)
1 1.75n -.652 =1.6G1 1.377 95, 1. 1810, -929. uaaG. -827. 92, 31. 281, -65,
2 L5382 L051 -.169 410 145, 9. 4284, -301, 13418, =172, -h2, 3. St 1.
3 1.507 -.7%4  -1,5897 1.n79 1ms. - 12. 2900, 6915, R2BY, =375, 2, 5. 367, 19,
bl 7,317 1,190 -2,51%8 T.0%4 70. u, 8. -030. 1155, ~GEM, 8L, -1h, 230. -22.
5 2,018 -1,718 -3,387 1.92n [ f. -450, " 324, 1940, 138, ihe, 8. 174, 16,
fi L.GAS -.308 -1,752 1,194 As5. -3, 1182, -837. 4761, ~06h. 42, -7. 3, 12.
7 1,177 -1.801 =2.471 .137 70. 17. 2920, =479, G761, 252, n, 15, 220, -11.
3 597 =2.336 ~2,Bh0 -.749 15, 7. ~h132. 949, o501, 975. 113, =33, Z11. 19.
] 1,708 -.69% =1,R72 1.303 11, -82. 298% ., 59, 5870, =31, 79, i, 337. -8.
1n 2,210 LWL -1,2%%8 2.234 130, 13, [ EHR Sha, 5275, 998, 127, 10, L4ys, 35.
11 2.616 L7001 ~.80€F 3.0N9 155, 18, aQLhLf, han, 4238, 7R0, 134, =33, h75, 2.
SIGHA 76, 73, 551, 1e, 8.

HUR OR SWASHPLATF TPIMMED ANGLFS AMD MOMFNTS

Tie T18 T LR Lh Mh Lsn Msp
2.587 1,467 =2.9hk9 1,733 n, fi. 116. 205,
1.77h -3.429 ~h, U35 =.20h -R6n2. 798. 0. 0.

CONTRNL MOMENTS

Lh{Lsp,itsp=0) dLh/dl.sp dl.h/di'sp Hh(Lsp,Msp=N) di*h/dLsp dlth/dtisn
~8535.76 22.89 78.5¢% 1000q,19 -41.96 20.15
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TABLE III. CONTINUED
ROTOR AND SWASHPIATE NERIVATIVES DIE TO CYCLIC ANARLFS
RWL:ed(N) PH2:d(TC)  RWA:A(TS)  RUG:dA(TH)  RYUS:A(PH)
A(LIFT) d(Lh) (| (#h) AlLsp) 1{Msp}
&4,00 3582.99 10127,53% -57.51 b6 .53
=10.95 310,90 -2451.06 54,10 =14, 68
26,58 2658.09 911,26 7.55 R7.37
74,38 166,823 1751.78 -17.33 ha.58
3,40 1382.01 -1L49.58 by, 02 15,89
H e T1s THT PHI LIFT D{LIFT) Lh NC{Lh) Mh
1 2,776 =1,011 =2.396 1.64D i, 1. 130, 2h2. hN4s,
2 1,249 -.hnl -1.118 1.013 77. 4G, 2269, =A%k, G277,
3 -. 115 L3k o N33 nz. -7, L3371, =131, 10302,
4 2.200  -1.,208  =2.50R 1.636 32, 7. 768, =750, 3727,
5 3.%88 -1,8hl =%.747 2.318 f. D -31, 180, sn7.
5 ho21 -2,775 =5,1%0 ?.R00 -29, 3. -3025. -539, -36R7,
7 2.249  -1.36% -2,0G57 1.430 12. =13, 487, -187, 3570,
b 1.603 ~2,00n7 -2,092 532 17. 3. -77. L300, hn37.
9 L708  =3,.437 ~3,831 -1,271 -23, =1, =-52n1, 133, 5585,
10 2.670 -.504  ~2,037 2,370 37. -7. 3800, 733, 3243,
11 3,450 780 -1,207 3.R84 62. -8, G749, 2k, 2575,
'S IAMA R. 387,
HUR DR SUASHPLATE TRIMHED AHNLES AND MOMEMTS
Tl T1s THT PH I Lh Hh Lsp Hsp
3.480 -1.,75L -3,748 2,u5R a, n, 117, 780,
2.0AR7 ~7.152 ~8,309 ~2.059 -14788%. =1443, h. .
NOMTROL MOMFNTS
Lh{Lsp,Msp=0)} dLh/dlsp dLh/dMsp th{Lsp,HMsp=0) dtth/rilsn dbth/cdtisp
-17377.23 11,17 37.868 -1726.41% -31.90 20,78

LOCKED GYRO MODE

vV =48.04 kts
q=7.51 psf
p=0.771
Nethy Lsn
g0, 170,
-h28, h%.
=21, =113,
A7. he,
hn3, Al
=91, 13k,
1949, 50
=113, 13.
315, ~6G7,
1149, na,
1a7. inG,
b1z,

n(Lsp)

G3,
LR,
-51.
-3,
=28,
~-16.
7.
QI
-18,
16,
-929q,

33.

Msp

L7,
380,
hutfy,
737,
274,
223,
302,
Ih3

250

Ly,
hho,

n{tsp)

-2.
-10,
=22,

-7.
-Gl

I
"

-7.
L2,

7,
Ly,
L,

27
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TABIE IIT.

ROTOR AI'D SWASHPLATE NERIVATIVFS DUF TD GVQLIG ANGLES

RUT:d(N) RM2:dA(TCH
d(LIFT) d(Lh)

51.28% h7a8,77

-9,0n1 =226,80

23,28 2166,08

?21.45 17%24.,758

3,3%% 77n, 83

hl Tie T1S THT
1 3,297 =2,088 =3.97r
2 2,475 =1,572 -2,a89
3 1.162 =52 ~1.248
1 3.308 ~1.911 -3.20h
5 .50 =3,689 -5,6G4
6 W.716 ~2,126 -4.829
7 5,041 ~3,289 ~R/,17h
8 35.291 =2,0%2 =%,91G
g 2,734 =2,820 -4,331
10 1,881 -4,198 -K,245%
11 3,216 =1,984 -3,82%
12 3.882 -1.715% -3, 447
13 4,730 .N73  =2.B5%

SIGHA

AROOR SWASIIPLATE TRIMI'ERD ANGLES AMD FOMENTS

Tic T18§
4,598 =1,734
2.n81 ~9,.35%

CONTROL MONENTS
Lh(Lsp,Hsp=0)
=1004G,5h

THT

-h,371
-1n,553

dLh/dLsp
27,15

CONCLUDED

RUZB:d(TS) DU A(TIY  RWS:td{PH)
d{Mh) d{Lsp) d(Msp)
aG22.n7 -21.43% B77.82
-1754.59 15.60 -20,495
aafi, 54 7.08 h6.1¢9
1437,88 -6.97 43,80
-831.4R 15,6% .31
PHI LIFT D{LIFT) Lh n{Lh)
2.083 =25, 2. =-70%. =230,
1.561 =10, -2. 1hRR., GER,
822 29. 2. 3INAG. =267,
2.10R -21. 2. n7e, 50,
1.324 -61, 5. -3607, 370,
z.u78 =51. -10, =1454, -578.
3.130 ~56, 5. -33%5, 134,
2,104 =16. 10, =795, ~hh6,
1.191 -61. =22, -1735. 196,
-.571 -61, 2. -5169. =455,
2.062 ~16, 8. -251. -23.
3.1R8 =11, 1, 1484, 197,
b.7R2 9, =1. 3758, =173,
a. 370,
PH Lh Mh LLsp
3.5%3 1. 1. 65,
=-3.379 ~1A/021, -2451, 0.
dLh/dMsp Mh(Lsp,Msp=n) AMh/dLsp
27.23 =53%,9% =38, 66

Hsp

bh

174k,
W6Gan,
5010,
1995,
2472,
~388,
~2134,
1515,
7210,
2793,
1120,
1R19,
15R7.

301,

n.

dtth/ rtisn
12.77

LOCKED GYRO MODE

YV = 50,03 kis
q=8.14 psf
P=1.055
n(rth) L.sp
-220, ha,
325, ha,
~-151. 1,
~118, 35,
47, 79,
17k, A3,
1. ’L.
=512, L2,
-8h, n,
182, ~1h,
-281. 21,
-19%, 2,
1ns, 6%,
3ny,

flsp)

HMsp

201,
330,
390,
327.
207,
719,
iGe,
250,
282.
214,
380,
419,
4a1,

n(Msp)

=21,
-23.
~hi,
7.
57.
-G2,
=59,
-65.,
-8.
40,
32.
79,
59,

4a,
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TABLE IV,

ROTOR AlID SWASHPLATE DERIVATIVES DUE Tn CYCLIC A'NGLES
RIS s (PH)

RUWL:d (6
ACLIFT)

32,
Zl.
74,
L6,
s,

" T

2.002
1.311

.822

.217
2.203
3,210
1.866
1.0645

.997
10 1.599
11 2.101
12 2.8G3
13 3.234

D8~ uINn

S1GHA

) RHW2
G

03
88
30 1
bl
78

TLlS

-.9%"
-.717
=462
~. 297
-1,587
-2,300
=-1,127
-1.828
-2.899
-. 947
-.142
L9536
1.502

s (TR)
(Lh}

7653, 98
2884 .47
A368.41
553.82
CR79.6h

THT

-2,179
-1.4R8
-,033
=420
-2.84%
-4,151
2,196
-2.767
=3.401
~-1.863
-1,349
-.6Gk
~.306%

RW3:e(TS)
d{iih)

26892.70
=L0n3N07.%3
LGY5 .34
8016.73
=5720.5%

PHIT L

1.43%
L8k
.553
NuA

1.282

1.8748

1.211
.587

-.07h -

1.043

2,011

3.410

L.nas

R d{TH)

HUB NR SUASHPLATE TRIMHED ANGLFS AND MONMCHTS

TiC Tl
2,07 -1.
1.0R4 -1.

CRITROL HoiL
Lh(lsp,liap=n
-9121.37

g T

209 -2.45h

a72 -2.52%8

HTS

) ALh/dlsp
27.05%

PHI

1.267
-.N55 -

ALh/4dl'sn
39,810

c{Lsp) d{lisp)
-76,31 480,28
188,78 ~69.(6
65,01 213.35
=33.1n0 190.94
170.39 kN.29
IFT RCLIFTY l.h R(Lh)
n, -4, AN ER -1179.
9. -7. 4608, €02,
28. 12, L3u5, -f8%.
28. 13. 5664, W56,
~28. 10, ~1271. 1176,
-55, 1k, -722fF. -225,
-55, -k, 1187. =1R5.,
~-83, -15. -7381. -826.
133, ok, -1870R, N2h,
0, 3. 3551, 1906,
28. -39, ingun, -1798.
194, 26, 255%¢0, =usn,
222, 3. 34015, 145h,
21. 967.
.h Ith Lsp
n. n, 220,
9671, ALE2, 0.
th{Lsp,Msp=0) dth/«elsp
5402 .48 =-35.496

REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 60 KNOTS

LOCKED GYRO MODE

V = 60.21 kts
q=12.18 psf
i= 0,402
tth neth) l.sn n{Lsp)
893, =1h7, 374, 1725,
11653, 1139, 2117, 87.
14950, =1201, [N 20,
23148h, ~-77. -1, =-G.
=303h, 237. 175. -GL.
-17882, =756, 429, 30,
2827. hG3. 1ra, -35,
1nls. =338, Ga, -1R,
3874, ano, =11h. =-37.
GnR77. J08, 130, =3k,
2038, -1633, 260, -51,
1347, -1GA/, BOF, ~37.
17048, 1ann, 633, 1.
526, 53.
79,
0.
dMh/dtsn
33.73

Msp

152,
320,
201,
407.
29,
~243,
135,
-%h,
~181,
163,
302,
hog.
5a4,

D{lsp}

10,
77.
-ka,
-11.
1r.
-22.
a.
=26,
11,
0.
-15.
1.
2,

28.
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TABLE IV.

ROTOR AMD SUASHPLATE DERIVATIVES DUE TO CYCLIC ANALES

Ril:A(0) RUW2:d(TC)
A{LIFT) d(Lh)
64,57 7353.73
-k, 34 190,37
AL,91 L1455
8,10 3008.12
-5,17 1927.78
| TLC T1lsS THT
1 2,025 -.842 =2,233
2 1.808 -,613 -1.651
3 1,222 -,037 =, 7h0
I 521 .638 . 3306
5 1.875 -1.809 -2,880
6 2,488 -2.34%n =3,7G1
7 3.272 =2.914h -4,783
8 1,879 -1,590 =2,.GCA4
9 1.259 ~=2.54% =3,20L
10 .517 =3.5390 -3,822
11 1.768 -1.6n2 -2,.612
12 2.233 -. 721 =2.002
13 2.973 LO0h2 -1,8667
14 F.402 LBRE =1,2%h
SI0HA

HUB NR SUASHPLATE TRIMHMED ANGLES AND

Ti6

3.542
2.015

718

-1.956
~3.082

CONTROL HOHENTS

Lh{Lsp,tsp=0)

-4639.,78

THT

=3.955

~4,180

dLh/dLsp

79.37

RW3:A(TS) RWh:d(TH) RUS:d(PIH)
d{l4h) d{lLsp) d{i1sp)
1660Q.57 -79,67 176,83
-3715.34 65.76 -h7,11

176Gk, 31 17.37 92.6%
2843,79 -18.50 90.25
-2030,79 57.07 4,81
EH LIFT RCLIFT) l.h
1.931 =83, 15, 4207
1.449 ~55. 0. 5528
1.196 -28, =36, 6519
L8865 111, 28. 16159
827 -111. 25, =211
1,132 =222, -24, -19387
1.583 =209, 2. -4268
L9587 =-138. =16, 1170
=.200 =133, 19. -2514
=1.52n0 -222, -3h, -Eqn3
LB -111, 7. 1983
1.810 =55, 26, L7777
2,935 =55, 9. q0%]
3,771 -83. =40, 10359
24,
MOHENTS
PHI Lh Hh
2.k03 0. n.
.258 -4750. 375h,
dLh/dHsp Ithilsp,lisp=0)

38.12

3822.75

CONTINUED

niLh) Mh
. -154, 5034,
. IhT. 8322,
. -015, 11277,
. a7. 16010,
. -hGh, G3E2,
. =210, 2939,
. =285, -778.
. -14, BGLEL,
. 35. 7341,
. 172, 3627.
. 367. 7010,
. -hh, (937,
. ahq7. 54010,
. -341, G011,
L75.
L.sp Msp
119. 29,
n. n.

dtih/¢lLsn

=34, 857

dith/dlsn

25.2%

LOCKED GYRO MODE

YV =59.96 kis
q = 11,87 psf
L=0.799
DIGLHD! Lsp
-82. 99,
13, 4.
-72¢C, 15,
211, ~6G9.
-aG. i5,
-299, 38.
=92, 6l.
~183. 15,
-G65. =38,
18%. =114,
G96. 23,
~103. 61.
760, 17,
-2%3., 45,
368,

n{Lsp)

3.
17.
15,
-35.
3.
-5,
=24,
-1,
2.
-7.
1k,
g.
=10,
-11.

7.

Hsp

189,
231.
309,
437,
127.

71,
=39,
152,

3.

12.
151,
17n.
233,
273,

N{Msp)

b,
-7.
26,
5.
28.
8.
11.
~18.
~13.
.
-35,
-3,

-5.

16.
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SIGHA

ML (%)

AH2:e{TC)

o {LIFT} (LI

93,54 7700,86
-38,5C0 -29n0.21
8N,38 3163.16
55.14 2511.,62
-7.88% 1150,53%

TiC T15 THT
2.6232 =1.68L =3,L9n
L.oks  -1.529 -2,G640
1.128 -,880 =1.5%4
L2704 -.029 -.24%5
2.678 -=-2.187 =-3,718
3,433 ~2.85% -~4,815
5.262 -3.457 =5.913
2.633 =1,931 =3.437
1.759 =3,078 =L, 171
1.383 ~4.051 =4,.8%1
L613  =5.063 -5.31k
2,528 ~1.903F 3, 43%
3,000 =1,278 -2,Mm2
3,763 - 585 -2.7.40
4,.00%r L300 =2.21%
5.877 1,012 =-1.774

IR AR SEASUPLATE TRUMIED RHRLES AVO MAFTCNTS

TG

CONTR
Lh(ls

=-3n

TABIE IV, CONCLUDED
ROTOR AND SUAGHOLATL NENIVATIVES IE To CYCLIC AMNALES LOCKED GYRO MODE
. V = 60.02 kis
RUZed(TS)  RWk:A(THY  RUS:d(PH) qpilll'ﬁ%pﬁ
a{th) dlLsp) d{Hsp) oo
iynn7y, 22 =15.17 29G.95
-27472.50 31,45 =25.107
101,40 .51 G0, 58
2021.36G 4.79 56,083
-15580.56 34,33 £.7h
PI*l LIFT DLLEFT) L.h D(Lhk} Hh nihh) l.sn niLlsp)
1. hGR =83, 28, 124, -575. 1,355, =753, 23. .
1,154 ~«55, 5. 30G7. 97, 7985, 81N, 8. 29.
617 =28, -32. 4161, =477, e837. =-137. a. 9.
222 85, ~23. 2113, GR4a, 135£8, 39, -23. =1h,
1.410 =111, 1z, =13, -84, 4279, =66, 23, 7.
1.771 =194, -8, -2451. =140, 1515. 73. 23, HR
2,240 =305, -5y, -3663, 850, -1nny, 423, 31, -2,
1.u8% =111, -1. 3. =732, EVALE ~nN3, 31, 12,
L1023 -166. =27. ~30LG. -541. Latn. =521, -15, i,
~-,951 -138., 27. ~5277. 163, Sh48, G156, -B3. 3.
-Z2.520 -166. 14, =7947, 514, 7329, 7. -158. =il
1.373 ~-111, -4, 32. -6n8. 3419, =inhs. 15, -1,
2,258 =55, 3h, 29¢0C, in. 4121, =352, hh. =2.
3411 -55. 30. Loz2y, 114, 3170, 45, 76. =13,
4,168 -55, 7. 651%, -h88, 2818, =154, 1n7. ~10.
5.k49 -55. -7. 10265, 731. 2720, 38k, 152. -11.
24, 5L1. 543, 16.
PH L I.h tth Lsp Hsp
3.1L0 . {}. 70. 55,
1.172 -4072. 1608, n. 0,
ALh/eltsp Mhilsp,iisp=0) dlth/dlsn Jdhih/dlisn
50,72 1995.940 -47.50 35.44

T1S T
5 ChER 858
OL JIOMENTS
n,tsp=n0) dlh/dlsp
17.52 25,056

Msp

52.
159,
229.
272,

70.

16,
=12,

85.

57.

17.

-7,

87.
LG,
185,
173,
237.

Diksp)

-51.
11.
21.
=B,

~20.

-13.
18,

-37.
13,

7.
21.

-13.
10.
28.

5.

11.

22,
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TABLE V

. REDUCED EXPERIMENTAT, DATA, NOMINAL VELOCITY = 7O KNCOTS

RATAR AND SUASHUPIATE AFRIVATIVES NUL TR CYCLIG ANRLES

RUIT:d(9)  migedeTC)
A{LIFT) ACLh)
293,62 an51,74
=31.67 102,45
70,74 Aryr .87
73,71 885,70
10,30 Ban7 ., ne
i TLC S THT
1 1,067 -. 977 -1,50n
7 L5601 ~. 576 -,01%
% LR - 300 - ohag
o 1.2682 -, 816 -1.8%3
5 1T.h76 =1.377 =n_1R1
6 1,966 =1,272 =-2,307
7 LO71 =1,1908 <1, 787
9 LA26 “L PRT o 077
q LN =2, R07 =% ,0GN
o 1,1Afh =, RR8  -1,691
11 1,02 =~ 178 =1,01F
1? 2.00% 710 = BN
SIaPA

PR TSY

RUL e {T!)

e oR SUASHPLATE TPLIPMHED ANGLES AND MDMENTS

i T1lS

7.350
2,121

NOMTROL, POMENTS

Lh{lsp,isp=0)

~75R7, 00

-1.315
-2,362

THT

=2,001
-3,577

dl.h/dLlsp

33,73

RMT ;e { PH)

d (th) dflsp? Aftsp)
29252.,01 =lan,7h 585,62
-10123. 24 155,0¢ -01.,70
h151, 2% g, r3 1E5, 28
7527.01 -2N0,55 164,31
-5318.47 153,39 2.79
nH| LIFT DN{LIFTY Lh
L.5N2 181, -6, 7851
L2583 131. -3, 374
-.1"2 THF. -1, Lan?
778 18R, -8, rl6n
L7171 RN -2, =171
1,275 126, -q, 575
281 176, 3. ~1262
=30 11AR. -11, =127n
-.8%5 atl. 17, <=18447
BNl 191, =-2. 715
1.355 2506, 18. 8N2h
2.470 296, b, 15588
a,
oM Lh t*h
1.585% 0. n.
L7R2 =9340, -21na,
ALh/dlsp Ph{lsp,Msp=n)
Ih.72 -3A0,51

D(Lh)
. 1752,
. h62,
. =73,
. 239f%,
. A1,
. 7h%,
. =375,
. =250,
. -1hR7,
. =1225%.
. -5585,
. ~1h481.
115%,
Lsp
108.
n.
dtth/dlsn

=%5.57

Mh

15101,
22208,
27115,
136570,

3754,

BEysih,
14570,
123812,
1narz,
13n6n,
13001,
11205,

dith/4AMsp
345,30

LOCKED GYRC MODE

V =69,19 kis
q=15.58 psf
k= 0,492

Ntk ) Lsn n(l.sp}
736, -4, 17.
han, =134, -2.
103, =205, =3,
Lah, %5 %,
=100, =-2q., 7.
1384y, k0, 2.
107, =07, 29,
-1363, =183, 15,
~15h, =787, 20,
~131h, -&5, -7,
=560, 28, -1,
=G93, 183, -7,
880, 13,

Hsp N{Msp)
272, -5,
L832. 5,
h72. =47,
3Ny, ~79.
206, -23.
170, -25,
356, 56,
"105, -15.
112, 3.
370, 33,
b3k, 1z
542, 22.

36,
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TABIE ¥V, CONTLNUED
ROTOR A0 SUASHPLATE OFRIVATIVES DUE TN CYCLIC ANAGLES LOCKED GYRC MODE
: V= 68,45 kis
RUL:A{N) RUZ:ALTE)  2H3:ALTS) R :A{THY  RUHS:A(PHD q=15.14 psf
p=0,494
A(LIFT) 40LhY 4{Mh) dA{Lsp) ri{lisp) ql'{=1.5DEG
377.N03 100T73,78 32513,7% -133%.17 133,91
=13.00 21417970 ~A58n0 8% 171,76 =-R7.20
79,41 ROG7 24 783%0,3? n5.27 172,61
67, LA 581n,28 ING3 43 =1n.u0 161,10
2n,.9r 55N, e =555H.33 160,30 24,3
! TLr T1S THT m LYET ND(LIFT) .h NeLh) Mh n{ih) I'sn n{rsn)
1 1,R0hT -1,375 =-2,L2R 1.043 238, 3. 1309, -801, aan7, -RR3, ah, 18.
2 1,277 -.860  ~1,600 772 208, 13. LNR3, =13h7, 16160, -770, -7. ~-1n,
3 LGR1 -.553 LY, 361 310, -11. 7908, a2y, 24860, nng, =i, 1,
I 1.996 ~1.,?7283 ~2,305 1.287 253. 17. %330, =101, 83F1, =214, 77. =24,
B 2,230 =1,50% =2,77° L.357 ma2, =15. 2170, 385, AR73, 13n5, 127, 5,
6 2,761 -1,071 -%,580 1,617 168, -3, -1172. HEN -1138., 37k, ina, =h,
7 2.013 ~1.261 -2,4W13 1.280 932, -9, 2642, -85, 7heT, =885, 1nA, 1,
8 1.668 ~1.8970 -2,927 ,525 188. -2. -351h, 133, 8058, =301, -7, 8,
9 1.392 =2.744 -3,53%3 -.1q1 143, 9, =~ING1A, k92, ansh, 401, =194, 27,
13 2.00n =1.366 =2,511 1.207 233, 1. 2380. -148, 318k, Bh. 1. =17,
11 2,175 =734 =1.981 1,74b 778, -1. onnLs, 583, 8935, 87, 155, =23,
12 2,707 L0015 =1,503 2.7156 323, -5, 17376, 774, fINT7. hR1. 3L5. =,
13 3,350 LR72 =1.0G63 3.847 393, 3. 25139. =332, 3377, -6, 542, 2k,
SICHA 8. GR0. n7e., 17.
e P SUASHPILATE TRIMMFN AMGLES AND NOMENTS
Tir T1S TT P 1.h tth l.ep lisn
2.660 ~1.8n8 -%,335 1.811% 1. n, 171, -35%,
L9712 -.317 -.q55 700 annn, 21067, n. n.
CONTROL I'ONERTS
Lh(lsp,!'sp=N) dLh/-Lsp ¢dlLh/dtisp Philsp,sn=0) dtth/dlsp dtth/d™sp
3875.33 27.52 37.70 212606, 2F ~3R.41 19,32

Hsp

=756,
=174,
15,
=250,
-?6R.,
=301,
~7%h.
-%26%,
-%98,
=231,
-9%.
=35,
ne,

n{Msp)

-78.
=27,
'7%_
-2k,
n.
11.
~15.
=hh,
55.
5.
b3,
17.
-11.

25.
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RW1:d{0) PRW2
d(L1FT) d
130,72
-22.78
54,05
50,60
f,35
1] TiC TS
i 1.780 =-.902
2 ,929 -.547
3 .322 -, 061
L 1.742 -.823
5 2,182 =1,122
[ 2.760 ~1,R56
7 1.539 -. 861k
8 1.008 =«1.580
9 .B71 «2,087
10 1.672 ~-.798
11 1.888 -.322
1? 2,359 302
S1GMA

:(TC)
(Lh)

3693, 86
-52N0,55
hana, 81
FaRR,27
16992,00

THT

-1,922
=1.0n70
-, 245
-1,821
“2.349
=3,237
«1,745
-2,15%
~2,1t65
=1,756
-1.506
-1.016

TABLE V. CONTINUED

ROTOR AND SHASHPLATE DERIVATIVES DUE TO CYCLIC ANGLES
R :d(TS) RUE:d(TH) RWS:d(PH)

A (Mh) d(Lsp) d(MspYy
21330.27 -99.42 48,20
~5375.34 64,52 -55,19
7430,29 27.21 121.41
L166.96 ~7.58 115.41
-2091,39 60,542 11.22

PHI LIFT N(LIFTY Lh
1.254 B6, -5. 3725
L6110 131, 1. 3600
285 166, -h, 2070
1,261 9§, -1, 5849
1.488 71, n, 1318,
1.797 26. -2, -6k
1.036 101, 2. 3288
,095 71, -1 2420
-,532 61. 8. =300
1.206 96, -k, 148
1.696 116, -4, 6080
2.546 156, 11. 3537

5.

HUR OR SWASHPLATE TRIMMEDN ANGLFS ANMD HMOMENTS

TiC

3,313 -
2.600 -

CONTROL MOMENTS

Lh{Lsp,Msp=0)

-4382.48

T1% T
1.45n ~3.3%49
2,510 -3,005
dLh/dlsp
23.02

PH Lh Mh

2,460 0. a.

1.145 -h728, 1756,
dLh/dMsp Mh{Lsp,Msp=n)

33.53

133%,85

p(Lh)

' 2493,
. ~1980,
. 334,
. 2015,
~870,
. 57,
. =45h,
. 1844,
. -1333.,
. 158.
. =79,
. ELYAE N

1125,

l.sp

75.

daith/dlsp
=50, k3

Mh

9941,
13753,
20101,
11801,
6591,
2398,
1451,
13912,
11206,
10636,
91h8]
950h.

Msp

fa,
.

Hh/dtisp
32,49

LOCKED GYRO MODE

V =69,30 kis
q= 15,63 psf
p=0,783
D(Mh} Lsp
375, 0.
-1253%, =50,
550, -78.,
1923, 7,
-hQg, '
-71. 35,
=509, -35,
1838, -6,
-1356. =134,
231, -7.
~-1250, 7.
21. 49,
1043,

f(Lsp}

Msp

286,
319.
307,
273.
161.

7h,
762,
237.
156,
285,
274,
391,

D{Msp)

6.
-1z,
-26,

21.

-33.

-21.
h,
36,
-2,
26,
-31.
31.

2k,
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ROTOR AMD SWASHPLATE DERIVATIVES DUR TO CYGLIC ANGLFS

RWl:dA{D)} RW2:d(TE)
d(LIFT) d{Lh)

125.18 5936,81

-18.9: 120,356

k2,71 3129,64

h0.3¢ 2308 ,472

b,.31 1451,20

M T1C T1S THT
1 2,515 ~1.998% =3.436
2 2.21 ~1.531 -2.798
3 1,501 -1,004 -1,953
& 2,528 -1,949 -3,3%%4
5 3,379 =2,.44n -4 344
h L,1Rl ~3,057 ~5.432
7 2.422 -1,88L -3.70
R 2.003  ~2.704  <3%.845
9 T.hS0 =-%,420 -4 269
1 2,484 -1,911 -%,3%2
11 2,930 =1,035  =2,715
12 3.40R -.hre -2 n06

SIGHA

RIY3:d(TS)

A{Mh)

16184.%%
=~3400,46
1185.88
23771.31
~-2045,13

Pl

1.35HR
1.32%

L8660
1.398
1.913
2.380
1.3290

1)
-.527
1,375
2,323
3.122

HUR OR SWASHPLATE TRIMMED ANGLES AND MOMENTS

TG T1S
b.0ky -2.,052
3,332 ~3.747

CONTROL MOMFNTS

Lhflsp,Msp=0)
-hhin9, 27

THT

=4.369
-5.6G48

dLh/dlsp

19.89

PH |

2.867
1.164

dLh/dtsp

3h.81

TABIE V., CONTINUED
LOCKED GYRO MODE
V = 69.40 kis
AWk d(THY  RWE:A (P g - 15.20 psf
B= 1,125
d{Lsp) d{tisp)
749,31 310,31
9, 40 -22.60
22.77 (2,71
=, 33 57.05
47.1n 19.24
LIFT DCLIFT) Lh D{Lh) Mh nith) lsp rilsn)
-8. 2. -1573, =1558, 4987, -1181. -21. -2,
22. 6. 1199, ~213, 8747, -43. -1k, «1,
57. 9. ah3h. 7nn, mn73h, 9%2. =h2. =12,
-8. 0. ~327. ~L70, 512%, =152, 21, 20,
“L8, -5, -24A3, =113u, 81R, -115h, 28, -2,
-75. 2. -2017. 1098, -3k, 1750, sa, -8,
-8, -5, 7373, 1902, 7287, 155%, 0, 3,
-7%. 7. ~2304, -113, R170Q, 1h, =35, 7.
=63, -12. -k 85N, ~231, 018, =208, -8, 2.
. 2. R37. 583, G357, -114, 7. 7.
17, -7. 2372, -L7a, ni57, -13A, 5G. ik,
-7. hetl3. 35, Eak, 9y, 17, -1,
7. ahh, 841, 11.
th l.sp t'sp
0. 0. 7h. an.
=539n0. hoa, 0. 0.
Mh(Lsp,Hsp=n) dMh/dlsp dMh/dAMsp
1080, 64 -49,87 32,41

Hsp N(Hsp)
L5, -84,
162, -2,
208, =-2.

127, -b,
53. -29,
L1, 16,
150, 13,
8a. -7.
a7, 34,
176, 42.
160. =11,
246, K2,
33.
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RUL1:d(0) RUW2:d(TE)
d(LIFT) d{Lh)
5.9 7187.20
-11,98 -550,31
28,95 1688.54
27.00 1510,77
3.58 319.67
TiC T1S T™HT
3.700 -1.611 =3,732
3,078 -1,212 -2,977
2,314 ~-,331 -1,66N0
1.397 311 =, 493
3.835 ~-1.765 ~3.063
h,749 -2,340 -5,057
5.470 -3,003 -6.13%7
3,896 -1,677 -3,911
3,319 -2.25k -4,154
2,761 -2,869 ~b4,545
3,769 -1.611 -3,772
4,139 -.911 -3.287
L,758 =243 ~2.976

RW3:d4(TS)
d(Mh)

13915.62
-2015.96
£33.17
1353,21
-1242.83

PHI

2.758
2.369
2.114
1.570
2.805
3.375
3.721
2,916
2.01n
1.043
2.827
3.598
4.596

TABLE V.
RATOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC ANALFS

AL ad(TH)
d{Lsp)

~16.68
18.81
30.62
14.88
27,48

RIS s { PH)
f{Msp)

342.05
~31.22
53.19
53.62
-.39

LIFT DCLIFT) Lh

~3q,
-42.

26.

55.
-3k,
=70.
-90,
-39,
=50.
-59,
~34,
=25,

-k,

HUR OR SWASHPLATE TRIMMFD ANGLES AND MOMENTS

TG T1S8 THT
6,201 =-2,23h -5,792
5,806 ~3.,023 =6.349
CONTROL MOMENTS
Lh{lLsp,Msp=0)  dLh/dLsp
=TNARAR._LS -1.59

PHI Lh

4,890 n.

.04 -1112.
dLh7/dMsp

25.03

-4, 2028
=26, 3342
7. 6037,
7. Gg1a
7. 1739
-1. -482
G. 121
0, 2723
-1. 1850
L. -8l
2. 2881
=5. L2686
b, 3107
9.
th
0.
297.

th{Lsp,Msp=0)

576.44

Lsp

CONCLULED

D{Lh)

. =402,
. =105,
583,
. ~126.
. -358,
. ~1109,
. 1n1s,
. 512,
. 796,
. =736,
. La0,
. 05,
. -1n53,

G8h,

32,

dVh/dlsp

=41, 80

Hsp

35.R5

LOCKED GYRO MODE

V = 68,66 kis
q =15.70 psf
B=1,9460
h n(th) Lsp nflsp)
5346, -1, -7. ~11.
7268, 325, 7. 3.
9len, 1he, A%, 46,
11170, -127. 1, -5,
L7nNAa, -%461, 7. 6,
230h, ~4ah, 28, 27.
1358, 377, i, 20,
5378, 379, -2, -aR,
5867, 71. =42, =19,
5881, -E39, EHEN -7.
B74a, k50, n., -5,
5845, 850, 14, -10,
3233, -qhh, 56, -0,
78, an,
3n.
n,
dMh/dtisn

Hsn n(Msp)
10, -1,
188, 7.
317. ARG,
30%, -12,

4. =-35.

n, 1.

59, 3.

a3, -48,

116. -3,
Rh. -1k,

148. 9.
166, 2.
162. -19,
29.
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TABIE VI.

ROTOR AMD SWASHPLATE DERIVATIVES DUE TO CYCLIG ANGLES

RM1:d(0) RW2
d(LIFT) d
468.329
=3h,45
169.07 1
142,29
47.56 1
M TlC T1S
1 .529 -. 429
2 3.1481 -1.698
3 1.433 ~1.116
] 2.142 -1.9Rk6
5 1,395 -.871
B 1,769 -.861
7 2,202 -1,233
8 1.403 -.491%
9 1.896 =-1.830
10 1.529 =-2.970
11 1.337 -,851
12 1.R48 -.LGY
13 1.852 v
14 2,255 L7602
SIGMA

1d{TC)
(Lh}

8961.58
7212.33
5537.93
565,19
2186.05

THT

-, 732
-3.497
-1.935
-3.,170
-1.669
-1.875
~2.h4h
~1.774
-2.798
-3.837
-1.616
=-1.410

-.857

-.508

HUB OR SWASHPLATE TRIMMED ANGLES AND HMOBENTS

Tic

1.822
1.199

T8

~1.,422
-1.507

CONTROL MOMENTS

Lh{Lsp,1sp=nN] dL

-5877,.91

THT

-2 46k
~2.185

hfdblsp

24,35

RWBtd (TSY RWh:d(TH) RWS:d({PH)
d{ih) diLsp) d{Msp)
5669, 88 -411.08 659,70
=17834.31 417.28 ~75,33
N2R7.72 56,57 378.35
147%2.17 -138.79 317.EB
~-9400.90 338,80 1n7.76
P LIFT D{LIFT) Lh D(Lh)
. 281 332, UG, G867, 755,
2,152 Q. -73. 5088. -ik9,
L. 786 222, -8, 30580, 1088,
1.015 58, -11. -5Q3Nh. 289,
.889 277. bk, 4752, -742.
1.267 222, =k0, 7237, -1101.
1.485 194, 10. h278. -1417,
.959 0. -262. 3946. -1501.
637 138. 37. ~R960. ~1715.
~-.1384 28. 11y, =23440, 2711,
.8h2 388, 116, 5606, 224,
1.375 360. 27. 113480, -2295,
2.098 499, 53. 27657. L0,
2.702 609, 2k, W0317., 2784,
gl. 1514,
PHI Lh th Lsp
.997 0. 0. 269,
.318 -5872. 10491. 0
dLh/dlsp Mhi{Lsp,tsp=n) dMh/dLsp
36,98 1023614 -36,10

Mh

31729.
-27239,
9132,
=731,
15043,
4020,
~75h0,
7170,
-3619,
~5061.
132554,
12515,
14750,
15653.

Hsp
=15,
n.

dMh/dMsp
20,83

REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 80 KNOTS

LOCKED GYRO MODE

V = 80.59 kis
q =21,23 psf
H=10.,39%

D(Hh) Lsp

-522. ~130,
~-1151. 870,
=639, 153,
1853, 397.
2323, 9.
=2115, 233,
-2509. L1z,
~3352, L5,
~2085, 175,
k0G5, 15,
=635, 92.
542, 206,
1h25, 3456,
2862, 500,
21h9,

D(Lsp)

84,
GG,
29,
2h .
=23,
2a,
~26.
~-15,
=18,
-l
=7,
=4k,
-E3,

5,

L,

tisp

42,
=303,
85,
-198.
211,
170,
=25,
158,
=202,
=429,
255,
355,
61,
an3,

D{Msp)

=55,
-8k,
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GHHIFIE LA TE DERT YA 1Y eu e

ot s
RWL:A(D) RW2:4(TC)
d(LIFT) A(LRh)

157.40 12528.95

-4, 07 2873,52
77.00 11997, 86

59.75 7785,62

30.41 71379.77

i Tic T1S THT
1 1.812 -1,25% -2,292
2 1.968 -1.179 -2.257
3 .B&R -.431 ~,82h
I 1.812 =-1.028 -2,066
5 1.811 -1.126 -2,1A3
f . 890 -.820 -1,328
7 L 240 ~-.48&n -.617
8 1.950 -1.191 -2,307
9 2.869 =1.796 =3.438

10 1,681 -,927 -1,896

11 1,312 -2,313 -3.058

12 1,186 -=3,51k -h,181

13 1,925 =1,245 =-2,348

14 1.976 =277 =1,412

15 1.Gh4L 1.100 150

S1GMA

RW5:dA(TS)

RWt s ed (TH)

HUB OR SWASHPLATE TRIMHED AMRLES AMD MOMENTS

TiC T1S
2,060 ~1,538
1.369 -1.408

CONTROL MOMENTS

Lh{Lsp,Msp=0)
-330,.61

THT

-2.716
-2,187

dl.h/dlLsp
26.49

TABLE VI,

RWS sl (PH)

CONTINUED

d(Hh) d{Lsp) d{Msn)

37029,13 -242, 21 540,725

-12928.82 220,87 -87.53
5759.10 52,75 298,98

10710.48 -63,82 263,74

-6797.47 188,91 £3.09
PH I LIFT D(LIFT) Lh niLh) Mh
1.083 n. -53, 2371. -307, K917,
1.311 4. -22, 8870, 23k, 3543,

B35 137, 16, 7762.  =15G3, 25234,
1.214 27. -4, 554k, 11hs, 7830,
1.156 27. -38, 3953, -267, 5599,
415 110, 19. 3956, -1297. 18535,
-, 037 82, -37. 3433, 982. 31741,
1.758 55, -3, 3750, -97, 2780,
1.82% 55, 48, -1325. ~%8kL. ~112L6.
1,152 55, -2, 6499, 224, 10504,
-.023 0. 26, =~12897.  -10L8, 3141,
-.840 -55, 83, -24747, 7L, -1302,
1.201 n. ~5i, 3843, 798, 3789,
1.8n8 137, 9, 13530, ~1383, 7877,
2,270 329, 9y, 33149, 1701, 23909,
43, 1017.

PH| Lh " Mh Lsp Msp

1.168 n. a. 7. -100,
555 ~L05, 2§30, 0. 0.
dLh/dMsp Mh{Lsp,Msp=0)  dMh/dLsp dMh/ dMsp

35,95 0798,55 -L§,78 29.21

LOCKED GYRO MCDE

V= 82.72 kts
=21,84 psf
qP«= 0.527

N{Mh) Lsp niLsp)
-202, g2, =13,
-384, 148, b,
-1k, -100, 9.
1277, a1, -33,
-40h, 75, -35.
-1h45, -28, -7.
1111, =224, -1k,
-991. 145, 7.
a51, 321, 6,
1508, 63. -28.
=-12490, ELEN 7.
ns, ~05, 35,
74, 135, 5.
=17k, 194, 12,
707. 213, L5,
10138, 22,

Msp

-1.
11.
347,
96,
g,
188.
328,
-291.
153,
=256,
~558.

259,
796.

D{Mspl

-3,
-19.
-k,
22.
5.
-29.
-48,
-21.
=43,
38,
0.
5f.
h
=25,
.

33,
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TABLE VI.

ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC ANGLES

RWl:d(0)} RU2:ALTC)
d(LIFT) d(Lh)
~5.4h 13031.94
18.28 ~52.41
54,92 6764,76
33.48 5116,90
37.65 2901,42
N TiC T1s THTY
1 1,373 -, 831 ~1,717
2 736 -.521 -,952
3 2,220 -1,264 -2.530
b 2.666 -1,554 ~3,081
5 3,226 =-2.109 -3.955
] 1,534 ~2,1k6  =-3,02D0
7 1.342 -2,931 -3.591
3 2.8 -1.,106 -2,719
G 2.800 -1,080 -2.686
10 2,849 469 ~1,171
S1GMA

HIIR NR SWASHPLATE TRIMMED

Tie T1S THT
3.07% -1,903 -3,6B65
1.692 -1,756 =-2,721
CONTROL HMOMENTS
Lh{Lsp,Msp=0)  dLh/dLsp
1137.73 19,56

RUG:d(TS) R¥4:sd(TH) PRHE:A{PH)
A{Mh) d(Lsp) d{Msp)
24265, 98 -117.7k 409,95
-5735,67 97.33 -59.01

3472.80 76.71 176.63
5108,65 =22.20 158,66
-2809.43 84,90 32.35
PEI LIFT D(LIFT) Lh

,832 -55, ~24, G622

B33 0. 21. A612
1.470 -82 =48, 5057
1.762 -82, =40, 2388
2,001 -55, 7. -1313

.29k ~110, -15. -1811
-, 319 -110. 32. 7090
2,166 -27. =12, 4989
2.168 55. 69. 5899
3.108 82. 10. 15714

33,

ANGLES AND MOMENTS
PHI1 1.h Mh
1.972 n. 0.

675 1065, BUBR.
dih/dHsp Mh{Lsp,Msp=0)
35.09 8405,75

LOCKED GYRO MODE

CONTINUED
V = 82,78 kis
q =21.85 psf
= 0,807
n{Lh) Mh N{Mh)
. -0, 13366. 206,
. 1ns, 18268, 33,
. 693, 7115, =87,
. 11. 2497, -1077.
. 94, -547, 1018,
. -2hh, 7774, ~240,
. -22%, 6798, 508,
. =415, 3679, -609,
. 321, 4185, -268,
. =342, 10169, G17.
318, 57h,
Lsp Msp
131, -108,
0. n
diMh/dLsp dldk/ dMsp
=41.95 26.11

L.sp

-31,
~49.

Msp

166.
26h.

-18.
~1549,

-172.
35,
51,

340,

N{Msp)

1.
-1in,
2.
I,
-6.
-5,
15.
-13,
-3.
15,

9.


http:24265.98
http:13031.94
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TABIE VI.

CONTINUED

ROTOR AND SWASHPLATE NEPIVATIVES DUE Tn CYCLIC AHGLES

RWL:d(N} PRW2:d4(TC)
d{L1FT) d{Lh}

LS. %2 1308%,84
-11.20 -571.02

73,54 5428.0
60.25 4355.80

23,54 1929.7¢

N TicC T1S THT
1 2,503 -1,394 ~2,828
2 2,042 -1,146 -2,31%
3 1.583 -.790 -1,685
b 2,295 -1.525 -2,839
5 2.839 -1,967 -3,R21
fo3.907 -2,940 -5,175
7 2,630 -1,631 -3,137
8 2,108 -2,4h2h -3 R27
9 1,817 -3,3682 ~4,39%
1n 2,610 =1,127 -~2.62h
11 2,764 -.251 -1,847
12 2.837 823 -.809

S1GMA

HUB OR SWASHPLATE TRIMMED ANGLES AND

Tie Tl
3,455 -2.
1.907 -1,

CONTROL MOMENTS

Lh{Lsp,Msp=n
1993.86

s THT
047 «h,025
a5 -2,942
H dLh/dLsp
21.31

RM3:el(TSY RWU:dA(THY RUS:d(PH)
e (Mh) d{Lsp) d{Msp}
23487,76H ~32,4% 383,62
=501R.34 72,85 -Ak,81
3008.52 zn, 28 150,30
Lhs6.31 ~-8.81 133,83
-24690,58 67.86 12,19
PH1 LIFT DCLIFT) Lh n{Lh)
1,691 -55, 30, 249, 151,
1,375 -55, 7. 6393, Gak.
1.102 . 0. 6602, -1301.
1.409 =55, 38. 5149, 1653,
1,746 -137, -5, 1754, 994,
2.201 =1a2. 23. -5R835., -5218,
1.681 -137. ~33. 2130, -5a8,
LI0R =137, 20. -1008. 271.
-,12h “274, -52. -5783%, -83,
1,952 -82, -15. 4187, -1287.
2,612 -27, -23. 9338, -801,
3.204 55. ~11, 16753, 821.
28. 295,
MOMENTS
PHI Lh th Lsp
2.264 n. 0. 107.
B33 1934, B34W7. 0.
dl.h/dMsp Mh(Lsp,Msp=nN) dlh/dlsp
33,Rh 8106, 04 -37.24

LOCKED GYRC MODE

~127.
n.

V = B82,68 kis
g = 21,80 psf
B=1,120
Mh neiih) Lsp
6836, a7, 5N,
9961, 173, 55,
12392, -280, 21.
L85, 1449, 35,
3057, 381, 62,
=5406. =443, 138,
Lh732. -GR8, 3L,
5825. 207, 3.
L35, 1748, -5,
5798, =-120%, 51,
T 8019, 71. an.
11257, hoy, =2,
659,
dbh/dtsp

29.7%

niLsp}

23,
15,

-F,.
22,
-28,
5.
_ﬁ'
=22,
=21,
1k,

17,

HMsp

15,
0.
154,
29,
=77,
=285,
-43,
-88,
=165,
26,
177,
357.

NiHs

p)
8.

~-20.
-18.

-2

N
-3

I

2

3.
3.
3.
8.
5.
1.
0.
%.
2.

"7

L
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TABLE VI.

ROTOR AND SWASHPLATE DERTVATIVES DUE TN CYCLIC ANGLES

RWl:d(0) RW2
d{LIFT)} d
144,93 1
-23,3h
40,85
Lo, 91
.18
N Tir TS
1 3,862 =-2,227
2 3,013 -1,281
3 2.589 -, 891
b 1,981 =-.379
5 3.276 -1.6K9
6 4,317 -2,74l
7 3.,27F -1,596
8 2,857 -2.675
9 2.67% -3,758
10 h,161 -1,339
11 L,822 -, 770
S1GMA

;d(TC)
(Lh)

1004,3h
14.17

3594,56

2700,68
1573,35

THT

~4. 439
-3.008
-2,376
-1,517
-3.535
~5,212
=3.471
=4,30]
-5.230
~3,726
~3.539

RW3:d(TS)
d{Mh)

17396.04
-2015,78
1705,21
2150.42
~776.64

PHIT

2.566
2,264
?.NGAK
1.755
2,300
2.724
2,300
1,298

501
3.374
,3560

IR NR SWASHPLATE TPIMMED AMGLES AND

Tie

T1s

6.n20 -3.085
1,110 -1,370

CONTROL MOMEMTS

Lh{Lsp,Hsp=0) dl.

f339.26

™7

=6,5%4
-1.95R

h/dlsp

13,57

PHI

4,222
355

RiL s d(TH)  RWS:d{PH)

d{Lsp

13
36
b1
15
45

LIFT N

~-27,
27,
55.
82.
-27.
=55,
27,
-27,
-82.
=-27.
0.

HMOMEBTS
Lh

0.
G274,

AdLh/dlisp th

25.66

) d{Msp)
.05 178.62
.79 -19.,92
Ik 118,41
U3 97.82
] 36.48
(LIFT) Lh*
q, 3011
5. B377
7. 2374
-1. 9090
~28. 7010
13, 707
24, 4710
i, 281
-11. -1731
-20. 5525
-1. R7BT
14,
’
Mh
n,
12890,

{(Lsp,Msp=n)

12704.37

CONTINUED

LOCKED GYRO MODE

V =82,88 kts

q =21.91 psf

H=2,129

D{Lh} tth n{4h) Lsp N{Lsp) Msp
. -4%, 5962. 149, 41, =22, =175,
. -67. q1a1, 162. Al -7. =725,
. 536, 111F3, 50%, g9, -3, 31.
' -570q, 12748, =500, 75, 5, an,
. 1922, anal, 112G, LY 17, =76,
. =506, 3751, =289, 67. o, =219,
. =602, 75949, -4 80, A, -0, -39,
. -1150. G457, -(30, L, -3, =220,
. 735. 5840, 289, =41, Ity =305,
. ~72R, 6243, =483, 122, 11, -6,
. k8. E52NL, 1R, 157, -2 =G,
$29. 512. 10,
Lsp Hsp
1n7. -3n7,
n. 9,
dMh/dlsp ciMh/dHsp
-37,33 27.70

niMsp)

~-13,
8.
in.
1.
7.
13,
14,
-25.
15,
3.

*
L

12,
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TABIE VI. CONIINUED

ROTOR ARD SHASHPLATE DER!IVATIVES DUE Tn CYCLIC ANALES FREE GYRO MODE
V =81.67 kis
RM1:d(0) RW2:d(TG) RW3:d(TS) RWE:d(TH) RWS:d(PH) q = 21,28 psf
1=0.404
d(LIFT) d{Lh) A(Hh) A(Lsp) d{Msp)
240,56  10953.69  ©1377.8¢  -391.63 523,53
73.39 F816.50 -1G6508,33 388,25 =37.79
136,3%  1A184.52  9455.81 F1.52 H0G.85
70,77 9224,1%8  14297.35  =122.46 322,80
116,54  12169.07  -8320.62 319.11 14841
M T T1S THT PHI LIFT DILIFT) Lh n{Lh} Mh N(Mh) Lsp n{l.sp) Msp n{Msp)
1 1.606 =-1.,201 -2,120  ,908 19k, -1. 1708,  -746.  1536. -197k, 135, =23, =74,  -ug,
2 461 -1,198 -1.458  ~.230 85, =28, -7280. ~1079. 221k,  -292,  -325, -39, =71,  ~-8q,
3,177 ~1.398 -1.49% ~.B28 78,  ~35. -10177. 309, 27534, 2310, -u10. -1, =B4,  -12,
4 1,673 ~-1,042 =-2,000 1.067 194,  -27, 3847, -1647, 1429,  -2467, 14k, =50, =45,  -§I,
5 3,580 -,885 -2.940 3,056 332,  -51.  20156.  -868. -24640. 1441, 9§32,  ~12.  ~37. =G5,
£ 1,570 ~1,195 -2,019% 876 186,  =-27. 2550, 251. 2412,  -1789., 733, 29, 37. 55.
7 2.N86 =2,453 -3, 643 .567 111. 52. ~13£99. 832. -1unesh. 2189, nz, =-hl, =511, w2,
8 1.975 -3.7hB -4.371  .po9  -2§. 20, -26178.  1978. =-21094. 846, 240, 65,  -784, 39,
9 1,673 -1,128 -2.085 1.n18 221, 11. %886,  -225. 1634, -1k57,  207. 18.  -43. =45,
10 1,648 =-,107 ~1.054 1.580 360, 13, 19390, -1969.  12665.  -502, 250, 8, hu5. 27.
11 1,424,312 <~.508 [.598 470, 82. 30310,  KBOL, 24558,  37k0,  21A. 36, 756, 154,
12 1,762 -1,143 -2.151  1.097 194,  -20,  3027. -1437.  -R07. -2095, 195,  ~27.  -4l.,  -33.
S1GHA 33. 1759. 1976, Wi, 77,

HURB OR SWASHPLATE TRIMMEL “MALES AND MOMENTS

TG T8 THT Lh Mh Lsp Msp
1.7n7 =1.396 ~2.372 .89 n. 0. 135, -1n9.
1,195 -1.176 -1.354 WS1h 71, 10534, 0. 0.

GCONTROL, MOMFNT.
Lh{Lsp,Msp=0) aun/dlsp dlh/dMsp Mh{lLsp,Hsp=0) dMh/dLsp dih/ dMsp
158,85 20,42 35.75 10489 .47 ~39.40 29.27
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RW1:d{0) RW2:d(TC)
d(LIFT) d{ih}
18,10 1iR70,22
Al,5h 3208,65
90,57 11309,2%
W1, 45 7121.38
85,71 7332,77
N T1C T1S THT
1 1.917 ~1.377 ~2.473
2 .90 -1,397 -1.67h
3 -,003 =-1,306 -1,299
b4 1,888 =~1.592 =-2.671
5 3,130 ~1,078 -2.87h
A 3,971 -.500 ~2,781
7 1.90k -1,498 -2.587
8 3,455 - 702 =2,720
9 1,910 =1,583 -2.675
10 1,952 =-2.710 -3.822
11 1,910 -3%,391 -4, 478
12 1.913 -1,685 =-2,778
13 1.891 .068 =1,020
14 1.431 959 132
S1GMA

HUR OR SWASHPLATE TRIMMFD ANGLES AND

TiL T1S THT
2,135 -1,655 -2,876
1,410 -1.295 -2.100
CONTROL MOMENTS
Lh{Lsp,tsp=0) fdLh/rdLsp
1723.78 19,52

DeMb)

-768,
-G53,
300,
1779,
1506,
-988,
-61.
-523.
1881,
-Eh6,
=-1742,
88n.
181,
-12486,

1117.

atih/dMsp

TABLE VI. CONCLUDED
ROTOR AND SHASHPLATE DERIVATIVES DUE TCQ CYCLIG AMNGLES
Ri3 sd(TS) RuWb:sd(TH) RUG:d(PH)
A(Mh) d{Lsp) d{Msp)
24963 ,08 -330.18 399,17
-11646,87 258.79 -4, 25
A1Nn3.26 76.80 250.1&
9658,30 -92.33 215,13
-6117.23 206.53 79.77
PH1 LIFT D(LIFT) Lh D{Lh)} Mh
1.117 28, 17. 2824, 376, 3470,
-.315 -h9, 9. ~3987. -1627. 20069,
-.754 -138. -38, -4341, -1430, 27327.
. 365 0. 10. 2171, 2252. 5036,
2.h98 124, 11. 10476, 757, -6571.
3.687 208, -9, 17216. =1744, =15320,
1.035 =14, =1h, 2205, 1165. 3581,
3,005 124, -39, 13092. =144, -10214.
,992 0. 3. 936, 840, 4932,
. 387 -83. 2%, -12235, 274, -49R1,
-, 087 =194, -23, =2177h, -31425, ~Q725%,
937 0. 17. K2, 1445, 275,
1.922 180, 39, 19023, 320. 13534,
1.977 180, -13, 27554, 242, 22902,
22, 1254,
MOMENTS
PH! Lh Mh Lsp
1.174 0. 0. 178, -126.
660 1753, 1841, n. 1,
dLh/dMsp Mh(Lsp,Msp=0) dMh/dLlsp
L0, 40 10583,77 ~39,91

26.50

FREE GYRO MODE

V =81.26 kis
g =21.07 psf
#= 0,520

Lsp N{Lsp}
13§, 7.
-225, 16,
-3 8%, -18.
126, 19,
432, -19.
723, 39.
128, G,
508, -3,
75, =57,
lon, -3.
11h, 41,
103, -17.
143, -18.
1n3, 37,
26,

Msp

-33.
24,
L.
LN
-13.

10,
~U6,

-3.
-48,
378.
59§,
74,
L52,
560.

N{Msp)

11.
-37.
-9q,

5§,

7.
-84,

29,
-57.

50.

1k,
~31.

50.
119.
-25.

58.
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TABLE VII. REDUCED EXPERTMENTAL DATA, NOMINAL VEIOCITY = 90 KNOTS

ROTOR AMD SUWASHPIATE NERIVATIVES DUE TH CYCLIC ANRLES
RM1:A(N)  RW2:d{TC) RWI:d(TS) RW4:zd{TH) PRWS:d(PH)

d(LIFT} " d(Lh) Ad{Mh) d{Lsp} d(Msp)
ku2.n3 aun3.6l E7941,88 -531.24 £95.99
=20,71 4315,51 ~17244.57 329,32 ~80.83
150,32 13024, 64 8722.04 T4 .57 367.0%4
122,20 7631,9L4 14064 ,88 ~-87.01 315.88
49,76 £912.02 ~0194,0% 280.41 21.16

! Tic T1s THT PH! LIFT D(LIFT) Lh
1 1.898 -1,236 =-2,322 1.180 252, 25. 770,
2 1,513 -1.402 =2,266 701 178, ~22. -3655,
3 .362 -.681 ~,89F -.036 305. ~26. 2576,
It 1.974 ~1,65h =-2,783 1.n15 178, 26, =-1645
5 3.183 -1.918 ~3,7141 2.068 76. -12, -2282
f 3,571 -1,865 -3,911 2,485 76. -12. 1309
7 2,220 -1.184 -2,.45HR 1.530 227, 9. 2490
8 2.420 -2,009 -%.392 1,255 Bl. -20. -7476
9 2.189 -1.,30% -2.887 1.531 221, 20, 3356
in 1.722 ~.985 -1.971  1.1u8 287. 29. hh
11 1.260 -.317 -1,386 1.R71 377, 21. 12344
12 2.000 .199 -.952 2.107 Lol, =30, 209945

S1RMA 73.

HIIR DR SWASHPLATF TRIMMED AMGLES AMD MOMEMTS

Tic T1s THT PHHL Lh Mh
2,068 -1.407 -2,591 1.251 0. .
1,647 -1.489 -2.430 780 ~2881, 6562,

CONTROL MOMENTS
Lh{Lsp,Msp=0) dLh/elsp dlLh/disp Mh(Lsp,Hsp=0)
~?685,31 20,88 3n.11 6565.04

NeLh)
-727.
-1332.
606,
. 1978,
. ~414,
. 787.
. -1070,
. -1157.
. 1588,
. 435,
. ~958,
. 365.
1n53,
l.sp
145,
0.
dih/di.sp

=43.15

th

4582,
gan2,
36889,
2888,
~23085.
-286%3,
=2324,
=14192,
-an7,
867,
115683,
1614R,

dMh/rdMsp
31.98

LOCKED GYRC MODE

V =89.80kits
q=26.22 psf
#=0,493
n{Mh) Lsp
146, a%,
~330, =57,
1216, 374,
3425, 77.
508, TN
1281, 661,
-1661, 211,
-78382, 190,
272, 218,
-998. 6%.
~153%1, 180,
9R?, 231,
]
1616,

Msp
-47.

433,
=43,
-326.
=303,
31.
-213.
84,
171,
433,
5a5.

N{Msp}
-117.
-3,
23.
k7.
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SIGRMA

ROTOR AND SWASHPLATE NERIVATIVES DUE TD CYCLIG ANGLES

RW1:d{0) RW2:d(TC)
d(LIFT) d(Lh)
167,36  14480,53
-1.72 -1053,07
45,63 6407 .46
35.11 5282.87
18.54 1992,55
TiC T1S THT
2,176 -1.01n =-2,257
1.602 -.738 ~1.706
1.101 -,527 -1,158
2,123 =T.0R0 -2,27R
2,15 «1,198 ~2,8%4
2.561 ~1,493 -2,959
1.92h =1,085 =2,187
1.816 -1,833 =-2.755
1,304 -2,178 =~2,919
1.95n ~1,168 -2,2R85
2.070 -.590 =1,778
2.406 L0983 =1,293

HIIR OR SWASHPLATE TRIMMED ANGLES AND MOMENTS

TG T1S THT
3.538 -l.680 -3.708
.06 =2.045 ~%,788
LONTROL MOMENTS
Lh{lsp,Msp=0) dLh/dLsp
-372.28 23,36

TABLE VII. CONTINUED
W3 :d{TS) RWh:d(TH) RWE:d(PH)
d{Mh? d{Lsp) d(Msp)
32884.23 -151.97 531.39
-7209,37 78.60 ~72.52
4390.53 42,78 151,84
Ghho. bl -1.95 145,87
-3520.21 77.79 11.t0
PH1 LIFT D{LIFT) Lk n{Lh) Mh
1.58R imnz. ~16. 5941, 211, 11RES.
1.242 137, 8. 8263. 511, 18108,
,703 107. =34, 10101, 146, 22075,
1.506 203, R8. 4634, -832. 11439,
1.559 97. -12, k607, 6h. 12486,
1.692 L7, -48. 2715, 483%. 7R1E,
1.292 q7. -18. 6199, 589, 15011,
L5560 60, -21. 384, ~-682, 13117,
N4L7 R7. 21. -8498, =53, 14232,
1.271 127, 16, 8361, un7, 1huny,
1,723 157. 20, 7690, -83¢9, 15624,
2,408 162. -5, 12417. ~117. 16493,
3L, 505.
Pt Lh Mh Lsp Msp
2.558 0, 0, Sk, 20,
1.858 «-1819. 1945, Q. 0.
dl.h/dMsp Mh{lLsp,Msp=0) dMh/dl.sp dlth/dlsp
30.8% 3712.35 -h2.48 37.65

LOCKED GYRO MODE

V =89,37 kis
q= 26,01 psf
v “=].072

n{tth} Lsp n{lsp)
-1101, =21, 3.
233, =29, 31,
-560. =106, -19,
-1488, -4%, -13,
k1n, ~21, 13,
-5k, -21., -R,
761, -L9q, -2
-a0n. =129, -17.
358, -134, 9,
7na, =50, -1,
256, ~7. 7.
556, 35, -G,
681, 13,

Msp

158,
312,
361.
0%,
240,
1k,
139,
183,

8k,
225,
310.
3R,

D(Msp)

-62.
16,
-11,
-1k,
u7.
-5
-38.
47.
-22.
12,
18,
0.

31.
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TABIE VIL. CONTINUED

RNTOR AMD SWASHPLATE DFRIVATIVLS DUF TN CYCLIC ANGLES

RUT:A(N) RW2:4(TC)
d(LIFT) d(Lh)

326,27 16761.49

-31.93 WA, 16

&0, 46 6691.00

Th, b7 5018,51

10.93 2943,58

I T1G T8 THT
1 2.863 -~1.961 -3%.599%
2 2,133 ~1,405 -2,676
3 1.388 -.373 -1_.687
[ 2.80h -1,752 -=3,358
5 3.367  =2,282 -k,160
53 3.938 =2.317 -5,071
7 2,733 ~1,555 =3,100
R 7,376 =2,84% -3 _Ann0
9 2.25h =3 162 -4, LkE6
0 2,800 =1 R70 -3 36N
11 2.821 ~1,.02¢ -9.647
12 3,297 -, (272 =-2,815

SINBA

RYZ 1 ACTS)

HUE OR SHASHPLATE TRIMMFD ANGLES AND MOMENTS

TiC

3.939 -
1,490

CONTROL MO
Lh{lsp,Msp
12376,587

T1ls

2,532
-.659

MENTS

=0) il

THT

-, 787
=1.514

h/dlsp

22,638

Ritgsed(THY RWS:A{PID
d(Mh) d(Lsp) A{Msp)
34171.09 =122.A0 180,41
-5671.78 15,53 -5h,23
§671.92 30.00 151,02
5983.87 -18.04 137,30
-2240,02 84,98 2h,82
PHI LIFT DLLIFT) Lh n{Lh}
1.723 2. b, 3512% =280,
1.316 132. -13. 6381, ~1105,
. 881 221, 1. 1715, =271,
1.785 81, ~15, 187, =9385,
2.0R5 31. -7. 1345, -573.
2,303 -18. 8. -2298, -390,
1.82% 122. 8. s2an, 1306,
L O0h 46, n, =996, -840,
27 7. 2. 3047, 1251,
1.51% 91. =1. 5038. G9%,
2.218 157, . inz200, 193,
2.927 172. 1. 1324%, 489,
3. 872.
-
PHA Lh Mh Lsp
2.4kR7 0. n. 175,
1,108 12418, 22R37, fn,
dlLh/Atsp Hh{lLsp,Msp=0) dAth/dLsp
0.hY4 22552.57 -37.42

Hh

7603,
15846,
212n#a,

alkh,

k078,
~1775,
12460,

472,

803K,
10382,
Th11Ek,
15192,

Msp

~k16,
0,

Hh/dbsp

35.10

LOCKED GYRO MODE

V = 89.56 kts
q = 25,79 psf
B= 1,079
0& =1.0 DEG
n(ith) Lsp
-1171. 113,
386, 35,
-1012, -7.
-037, 3L,
=521, h,
-396, 159,
1n5R5, 99,
=341, 21,
1423, -7.
-26GR, 6%,
752, 6,
(28, 160
R73%.

N{lLsp}

21.
=i,

9.

Hsp

-283,
-168.
-k3,
-235,
~356,
L6,
-149,
-34A,
-3R%,
-262.
=111,
~-8N,

N(Msp)

-12.
-21,
-16,

=15,
~-17.

Sh,
~13.
B8,
-15.
T,
13,

23.
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RUL:d(0) RWZ2:d(TE)
d(LIFT) dlLh

126,37 4915,97

-19,23 -338,74

46.87 3076.24

43,60 2463,78

5.90 082,27

J T TS el
1 3.7k4  =2,210 -§,06A
2 2,796 -1,6n7 -%,258
3 T.Ren  -1,1?5% -2,2n7
b 3,305 -2,7R7 -4.17%
5  3.590 -2,871 ~4,57%
G 4.31R -2,979  <5,4h0
7 3.188 -2.175 -3,04%
8 2,870 -2,5kR  ~N,150
9 2,340 -3,085 ~h,389
10 3.08h  -1,680 =%,773
11 3.396 -1,708 -3,6584
12 3.804 ~.877 ~3.,00C0

SIBMA

HUR NR SWASHPLATE TRINMFN ANGLES AND

TiC T18
5,086 -?.50L
b,347 -1.438

THT

~5,8008
=%5.937

OONTRAL. BOMENTS

TABLE VII CONCLUDED

RATOR AMD SUASHPLATE DFRIVATIVFS DUE Tn GYCLIGC AMALES

LOCKED GYRO MODE

Lh(Lsp,Msp=0)

h0ol1.66

dlLh/dlsp

a,71

RUZ :d(TSY RUL:A(TH) RWS:d(PH)
d(Hh) d{Lsp) d{Msp)
21696.48 -139,r% 289,95
“2942.87 51,56 -20.734

150,98 58.72 190,89
247740 21,80 a5, 94
-1524 . 4 BL.35 24,97

Pl LIFT N{LIFT) L.h
1.0950 -4R, 5. 1534
1,740 -1, 5. 72945
1.236 34, =3, RNL7
1,977 ~37. 7. 368
72.175 -84, h. 1766k
7.5858 =101, -5. =573
1.952 =35, -2. 1143
1.3 -LA, 1. 1370
570 -GhR. =, 10
1.an3 -22. 3. L2453
72.400 ~1h, % 7433
45,285 5. -k, L3l

I,
MAMENTS

" PHI Lh Hh
L.hge n. n.
3.502 #n1n, 661A,

dLh/dbisp "h{Lsp,lsp=0Y

19,82 708G, 00

V= 88,28 kis

q= 25,29 psf

p=2,018

B{Lh) nih) l.sn N{Lsp) Msp
. 48k, =302, -113, -11, =23,
. -525, 1nhna, =625, =1NA, -7. -3,
. 231, 15357, 7. =94, 9. ar,
. -394, =527, -11%, -9, -a7,
. R23, 589, =99, L, -116,
. %8. 38, ~-78, e, -183%,
. =-1157, ~159%. =148, -h8, =121,
. 248, Ak, -1Lg, -4, -33.
. 345, 11107. 115, -1837, 15, =G,
. 1k53, innit, k53, -74, 20, 2,
. -278. =184, -57, B 51.
. 503, 10285, 1158, 14, q, 1ns,
731, 758, 17.
Lsp tisp
18. ~17%.
n. n.
dMh/dlsn dAt*h/dl'sn
~30,095 300t

n{Mspi

78.
-24,
-28.
=30,
-20.
-15,
-81.

-7.

53.

kb,

59,

27.

39,
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TABLE VIII. REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 100 KNOTS

ROTOR AND SMASHPLATT NERIVATIVES DUE TN GYGLIC AUALES LOCKED GYRO MODE
¥ = 101.91 kis
RUL:A(0)  PU2:d(TR)  2M3:d(TS)  RUL:dALTH)  RYS:d(PH) q =33.16 psf
1= 0.410
ACLIET) ACLh) A1) AlLsp) AMsp)

703.93  1L202.28  63184.32  -h23.32 659,18

37.85  12598.30 -25496.51 592,52 2300

222.23  23753.95  14265.31 3457 583,79

150.89  12010.55  23130.8h  -231.60 WD 96

125.11  17813.77 -15787.28 151,20 951 .66
B Tie T15 T PH 1 LIFT D(LIFT) Lk D(Lh) tth DY tsp N(Lsp)  dlsp  Dllisp)
1 1,735 =1.433 -=2,425 008 401,  -50.  1L0S.  -701. =776k,  -1072. 505, KA. =245, -Ba.
2 .721 -l.ehl -1.857 110 L2a.  —73. 1795, 57. 23017, 229, -2. 30, N -,
3,875 ~.860 -1.418 477 k81,  -§8. 245G,  -368%. 23474 355, 103, -22, 120,  -34.
b .a09 =911 -1.097  -.315  SQR. -1, -7155.  -2040,  KL1807. 2347,  -31f. 15, nE. -h2.
5 10482 -1.25% -2.007  .757 535, 3. 7645, 4383, 5111, 1878,  3nn.  <tp. -2, S
f 2,292 -1.486 -2.77%  1.428 508, 53,  B8G7.  -np5. -21k¥n. 1872, 880, -33.  -268.  ~43.
7 3.016 ~2.8%1 -%.168 1,601 R01.  -75.  ~0iok.  -2500. -a3rn.  -2700.  130r. 3. =780, 1k,
8 1.30% -1.087 -1.878  .875 583, 75, G324, 180y, 11614, Na7. 38T, -5, 28, N
9 1.555 -2.187 -3.0150 437 37h. 76. -1219n. 2712, -13153. 8y, 487, =17, -yon. 77.
10 1.470 -1.188 -1.485  .752 503, 10,  5ipa. 557,  7547. 1740, 356, <97,  -19. 15.
11 1.217  -.153 -.853 1.12: 722, . 2678k, 705,  24h77. 1877, 318, 25, ©is. wa.
1017 56. 2207, ‘16851, an, 43,

HUB OR SUASHPLATE TRIUMED ANGLES AND MOUEHTS

Tic T1S ™HT PHI Lh Kth Lsp Msp
1.51% ~1.405 =-2.270 L7007 0. 0. k25, =106,
. 780 -1.125 -1.569 .130 -2605. 2909, 7. .

CONTRNOL OMFNTS
Lhi{Lsp,i'sp=0) dlh/dlsp clLh/dltsp tHh{Lsp,tisp=") dith/dlsp dith/dl'sn
-2533,50 21.23 39.37 24085,71 -45,28 26,50
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ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYOLIC AMSLES

RW1l:d(0) RW2:d(TC)
d{LIFT) d{Lh}
430,37 23083, 47
4.35 50G8.49
124,03 17143.65
91,51 10706.40
57.19 11269.65
N TiC T1S THY
1 1.837 ~1.%84 -2.519
2 1.209 ~1.339 -2,029
3 372 -1.073  -1,283
b 1.791 -1.3%6 ~2,hL21
5 2.531 -2.036 -~3.483
G 1.83% -1.875 =2.7%73
7 2.810 -2.900 -k,0h%
8 I.k79 -=1.516 -2.36¢
9 1.583 ~.985 -1.892
10 1.132 - 482 -1,131
SEAMA

HUB OR SWASHPLATE TRIMMED ANGLES AKD MOMENTS

Tie TIS THT
1,725 -1,856 ~2.341
L6582 -1.579 -1.978
CONTROL MOMENTS
Lhi{lsp,Msp=0) dib/disp

=%27.48 18.49

D{isp}

45,
34.
-18.
45,
~-38.
~32.
=6.
~25,
~-18,

31.

TABLE VIII. CONTINUED
LOCKED GYRO MODE
V = 101.87 kis
RW3:d(TS) RWH:d{TH) RWS:d(PH) q = 33. 13 psf
M= 0,512
ditth) d{Lsp? d{Msp}
55873.83 =504,37 739,21
-18548,64 358,33 43,45
12753%.82 -35.68 49,21
17667.87 ~-182.65 357.1%
~8423,29 254,33 162,57
LIFT D{LIFT) Lh p{Lh) Mh D{Mh) Lsp
.71%9 267, 26, 4539, 322, K901, ~206, 388,
A3k 267. -7, 6935, 883, 15806, =372, 210,
- 247 321, 22, 5223, 349, 35300, 2ng, =12k,
.981 204, 29. 785%, «367. 4876, 255, 369,
1.350 201, 12. 654, ~350, ~1814n, S LER 720,
.353% 251, 18, 504%, 833, =244, 1138, g7,
3% 33. =26. ~17457. -101%, =-1829%. 287. EB7,
LGN1 227. =22, 6181. 1596, 7808, -1104%. 27k,
1.011 294, -21, 1%891. =330, 15293, 15852, 273,
. 851 ing., -28, 19643, -1123, 27744, -782. 101,
22, 822, 823,
Lh ik Lsp Msp
Q. Q. 380. =-170.
=572, 22701, . 0.
dLh/dMap #hilLsp,Msp=0} dtthfdlsp dith/dMsp
38,30 22301.35 47,50 4,09

Msp

~23,
86,
209,
b,
~326.
-33,
-§32,
f,
233,
593,

N{Msp)

2.
1,
~32,
~10.
“k1,
8,
19,
1q.
5.
13,
20,


http:22301.35
http:11269.65
http:17567.87
http:10706.40
http:12753.82
http:17143.65
http:18548.64
http:55673.83
http:23083.47

20€

TABLE VIII. CONTINUED
ROTNOR AND SWHWASHPLATE DERIVATIVES DUE TN CYCLIC ANGLES
RWI:d(D) RW2Z:d(TC) RU3:d(TS) RWB:{TH) RW5:d{PI})
a(LIFT) d(Lh} d (Mh) d{Lsp) d({Msp)
840,19 10373.26 GO0GT kil -309.59 209.84
41,39 12270,63 =23087,5h 531,47 -49,86
290.17 255h1,09 20600,33 10k.69 745,85
200.5%2 13913,99 25550.69 -152.22 583.33
157,32 20352.58 -8431.59 hﬁé.?k 286,71
Hj TiC TS THT P LIFT D{LIFT Lh n{LR) Mh
1. 1.66h =1,157 " =2.11D .982 h28. -1lhs, 2293, 1078, 5B31.
2 1,211 -1,255 -1.946 LB 562, 36. -3881. 2972, 16697,
3 729 -1.121 -1,53%5 .082 575. 30. -8020, 1305, 26228,
4 1,707 ~1.20G6 =~2,182 1.007 615, Nk, 1427, o2h, 6403,
5 2.161 -1,008 -2.246 1.573 A55, 18, 10754, =375, -7751,
6 2,427 =1,115 =-2.50§ 1,776 NG9, 52. 14923, 3757, -94185,
7 1.656 =1.022 -1,4970 1.982 5849, -23. 2299, -2275, LHER,
3 1.795 -1.755 =2.781 778 491, -4, ~13177. -705. ~10785,
9 1.626 =-1,580 -2.509 711 40%. =48, =13n01, -3418. -a721.
in 1.525 =1.098 -~1.979 .388 42, 57. 150, -876. 6479.
11 1.58¢a -.805 -1,71R 1.12n 668, -5, A4KS, -832. ig292.
12 1,675 -.200 =-1.162 1.55% 829, -23. 24770, -1055, 23602,
SIGHA 55. 1898,
HUB NR SWASHPLATE TRIMHED ANGLES AMD MOMENTS
TicC T1s THT PHI Lh HMh Lsp Msp
1.750 -1,2k6 -2.247 1.026 n. 0. 490, -207.
. 786 -1.033 ~1.481 .1849 -G3592, 26633, 0. 0.
CONTROL MOMENTS
Lh{Lsp,Msp=0) dLh/dLsp dLh/dMsp tih{Lsp,Msp=n) dbtth/rdLsp dih/dMsp
-6274.88 25,65 30.41 25502.88 -37.,76 33.59

D(Mh)

1733,
hh43h,
7,
4585,
-3167.
3518,
~2327.
757,
=-5690,
-1761.
-2495,
333,

3980.

~REE GYRO MODE

vV =102,93 kis

q=33.33 psf

#= 0,413

Lsp nN{Lsp)
513, 548,
200, -2,
-5. 35,
L3g, -32,
784, 31.
S17. 53,
387. -E6.
377. -8L,
369, ~20,
G5, 79,
475, 24,
L3y, -7h.
53,

Msp n{Msp)
-92. hy,
-92, 95,
-96. -33.
-91, 83,

-1n5, -55,

=120, 22.
=90, -55.

-539. 50.

-562. -112,

-117, =32,

a6, ~3h,
504, 27.
60,
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TABIE VIII. CONCLUDED
ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIL ANALES
RUled(0) RW2:d(TC) RWI:(TS) Rut:d(TH) RW5S:d(PH}
d{LiFT} d{ih} a{hh) d{Lsp) td{lisp}
k87.82 155404.08 62570.91 -306.39 796,43
45,52 5104,37 ~2055%.10 396.03 =141, 53
204,00 17024, 74 12027 .68 99.97 432,03
133,83 19601.22 17992, 91 -96.39 387.32
122.96 11285.05 ~102%%.15 301,69 21,54
i Tie T1% THT PHE LIFT D{LIFT) Lh niLh) Hh Di{vh}
i 1,878 -L.30% 2,437 1,220 33h, 22, 3863, 571. 078, 47,
A 1.250 -1,.k26 ~-2.139 425 267. 13, -3132, -737, ez, 618,
3 892 -1.584 -2,060 -.005 214, 3. -68n7, -11%, 24830, -G13,
4 2.568 -1.043 -2.516 1.958 401, 9. mnmzal. =650, ~27h2Z. 128,
5 3.210 - 776 -2.61%  2.751 81, 5. 18681, 8. =137L7, =805,
6 1,968 -1.11E8 -2.227 1.301 284, 58, 3579, ~2845, 7243, ~15311.
7 £.200 -2.088 -3.3u0 JI93 168, “3, -5861%. =116, ~RE4T, 1162,
8 2,187 ~2.85%1  -3.79% .127 f0. 11, -18625. $1hy  ~12307. g30.
9 1,809 -1.375% -2.461 1,101 294, a. hil3, 2320, 8087, 1180,
10 1.792 -.570 -1.5498 1.457 415, ~33, 13761, -1192, 15973, -2382.
11 1.675 085 -, 879  1.71% G15. 34, 27848, 1934, 32504, 3466,
S1RMA 2%, 1335, 1618,
TR R SWASHPLATE TRIPMED AMRLES AHBR DOMENTS
T T15 ™7 PHI Lh ith Lsp *sp
2,137 =1.550 -2.779 1.233 0. 9. 353, =176,
1,144 -1, 467 «2.1i17 A 795 ~3H27, 23319, . 9.
CONTROL DOHENTS
Lthilsp,lisp=0] dih/disp dif/dlian Hhibsp, Psp=0) dth/dLlsp dHh/eltsn
-360%,95 .81 33.21 211r3.92 -38.33 36,50

FREE GYRO MODE

V=102,95kts

q'= 33.28 psf

b=10,520

Lsp B{lsp)
352, -5,
52. 6.
~8h, 2h,
575, -30,
334, [
79%., -(7,
5325, «31,
331, 2.
327, 14,
368, 22.
360, -8,
8.

Hgp

-18,
25,
~31.
«30,
~28,
~81.
=530y,
=593,
~26.
2L,
£9l.

Ditisp)

4.



HOE

TABLE

IX.

ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC ANGLES

RW1:d{0
d(LIFT)

18812,
67.
614,
u33.
317.

=

TiC

1.275

T3
1.227

675
1.366
1.714
1,936
1.266
1,281
1,187
1.340
1,439
1.379

o
HMOWSOIWN WM

[arpe
N

S I GMA

} RW2:d(TC}
d{Lh)
30 -4926.97
40 30133,22
15 30029,25
17 9513.17
75 35746, 26
T1s THT
-1.055 ~1.784
-.914 =1,354
-1.142 ~1,843
~1.073 -~1,457
-1.001 -1.782
-1.298 =-2.278
-.930 =-2.089
-1,016 ~1,740
~1.557 -2.287
-1.856 -2.519
=1.043 -1.809
~.547 -1.372
-.527 ~-1.318

HUB OR SWASHPLATE TRIMMED ANGLES AND

Tic T1S THT
1.266 -1.106 -1.830
.586 =, 730 -1.064
CONTROL MOMENTS
Lh{lsp,Msp=0) dLh/dlLsp
-5015.13 31,02

RW3:d(TS) RWL:d(TH) RWS:d(PH)
d(Mh) d{Lsp) d(Msp)
78877.55 -475,29 664,12
~33622,27 730,13 68,13
32834,72 -64,69 964,32
39342.60 -366,13 696,54
=11044, 01 521.69 470,52
PHI LIFT D(L!IFT) Lh D{Lh}
. 663 1188, =132, =179. -197h.
P24 12417, -132. =~11536. -2447,
. 566 1293, 29, -3535, -1293,
. 056 1372, 103, =15100. 1702.
785 1267, =93, 23690. -3808.
.961 1293, 92, 12811, 5043,
1.359 1320, -85. 20113, -3566.
.676 1372, 28, 3525, 828,
. 380 1134, 122. =13085. 13,
. 096 765. -56. =24059, 1418.
735 1320. <12. 2489, -1630.
1.119 1662, 19, 20141, ~-1861.
1,070 1768, 116, 28366. 7574,
89. 3202.
MOMENTS
PH! Lh Mb Lsp
.625 0. 0. 520.
.164 =-9186: 35192, .
dLh/dMsp Mh{Lsp, Msp=0) dMh/dLsp
3h.éﬁ 28976.66 ~38.46

Mh

2720,
18286.
4B60.
22077.
-3788.
=15263,
=-257%0.
=447,
=14098.
-22914,
712.
14419,
18434,

Msp

~316,
0.

dMh/dMsp
28.80

D{Mh)

1340,
-4612,
4558,
1142,
-3879.
6108,
-707k.
3408,
1207,
-1612.
1127.
1883,
3219,

3708k,

REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 120 XKNOTS

FREE GYRO MCDE
V =120, 54 kis

q=46.83 psf
Bp=0.

365

Lsp

615,
Lay,
352,
~-95.
491,
901,
1039,
528,
535.
513.
528,
535.
535.

D{Lsp}

91.
336,
=143,
-182.
=-96.
k1,
97.
1%,
~25.
16.
-2,
-76,
~30.

125,

Msp

=297,
-284,
-315,
-257.
~312.
-310.
-313.
=290,
~713,
~1037.
-285,
233.
452,

D(Msp}

=31,
-130,
39.
638,
-104.
160.
=154,
-61.
37.

-35,
-2,
202,

101.
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RMI:d(0) RW2:d4(TC)
d(LIFT) d(Lh)

1092,32 12935, 90

-3.35 9392,78

265.49 20046,27

201.38 11689,96

112.89 156179.22

H T1C T1s THT
1 1.938 ~1.480 -2.58%
2 1.484 -1.390 -2.220
3 1.170 =-1.401 -2,008
) .a8 -1.626 -2,101
5 l.947 -1,567 -2.880
6 2,403 -~1.086G -2,403
7 2,993 «~1.128 =2_8L4L5%
8 1.933 -1,3%80 -2.4B6G
9 2,145 -2.n77 ~3.302
10 2.236 =2.744  -L4.019
11 1.854 -1.355 ~2.415
12 1,859 -.703 -1.780
13 1.924 -.1n5  -1,251

SI1GHA

HURB NR SWASHPLATE TRIMMID ANGLES AND HOMENTS

TABLE IX.
ROTOR AND SWASHPLATE DERIVATIVES DUF To CYCLIGC ANGLES
RW3:A{TSY RWL:A{TH) RWS:d(PH)
d(Mh) d(Lsp} d(Hsp)
7894044 -550,03 #83.59
-28798.41 517.89 -1n5.7%
15622.81 60,146 585.73
24284.,28 -179,84 487.05
-14834,50 416.15 175,00
PH LIFT D(LIFT} LLh
1.079 739, L&, 1614
L6419 713, -5, =3181
360 713, -4, -87n9
.055 B&O, 3. =109F8%
1.038 68A, 14, 3214
1.7¢9 739, -57. 11435
?2.332 318%. 35, 16977
1.132 KGO, ~R[0, 3627
Lanz 475, ~50, =15283
. 649 369. 13, =~23173
1.067 818, Q2. 5505
1,647 R71. =28, 13876
1.833 19455, 3. 278886
42,
PH Lh tth
1.n73 a. 0.
6B -2R90, 23841,
dLh/Msp Ph{Lsp,t'sp=n})

T1C T1$ ™7T
1.935  -1.485  -2,502
1.212  -1.29%  -1.981
CONTROL NONINTS
LhiLsp,Msp=0)  dLh/dLsp
-2671.08 24,83

33.15

2273940

CONTINUED

nCLh}
. 1476,
. -663%.
. -%29rn,
. 30k,
. 1817,
. -1319,
. =~h3a,
. 1437,
. -4861,
. 371,
. 3530,
. ~1785.
. -77.

2493,

Lsp
363,

0.
dith/dLsp

-45,87

Mh

3929,
14117.
ZN2Th.
2E595,

3825,

~13732.

-22758.
8n7,
-21735.
~257hA,
512k,
14328,
23065,

tsp

=-191.
0.

cltth/dMsp

31.78

V =119.92 kis
q=456.1 psf
1= 0,503
nitth) l..sp NiLsp)
3417, 411, Wi,
-12u1, g1, 2.
-3N’2, =15, 15,
1hR30, =G, =28,
5h34G, 54, 9n,
-6n7. e, 1un,
212L. gny, =30,
-Q15, 381, 15,
=Ghhh. 306, =70,
2596, Z7h. -G1.
731, 337. a9,
-n5, 315. =55,
17493. 337. ~-1n],
3497, nG.

Msp

=144,
=131,
~-135.,
=143,
-149,
-139,
-83.
-1351.
-F7G.
-§71,
-8k,
2C8.
683,

nN(Hsn)

b,
-h7.
=77,

31,

QL.

-13%2.
1.
-2.

-116,
LA

27,

-7.

B8.

71.
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TABIE IX. CONCLUD
ROTOR AHD SWASHPLATE DERIVATIVES DUE TO CYCLIC ANGLES
RW1:d(0) RHU2:d(TC) RW3:d(TS) RWh:d{TH)} RW5:d(PH)
d(LIFT) d{Lh) A(Hh) d{Lsp) d(Msp?
f52.00 22325.48 57164.11 =492,34 1097.90
-12.70  2010,75 -13284,34 269.83  ~154.62
195,84 14851,94 11179,65 22.64 486,51
153,00  10309,93  15193,88  -100,26 433.58
75.58  7970.85  -5143.42 213.03 95.07
N TlC T18 THT P L1FT D(LIFT) Lh D{Lh)
1 2,791 -1,557 =-3.155 1.88% 343, 31, 3752, -1059.
2 2,036 -2.023 -3.186 865 237. 7. -2760, 866,
3 1,336 -1,955 =~-2,715 2206 237. ~15. -Ghth, =2421,
b 2,798 ~1.820 -~3.422 1.741 290. 30. 2884, 1958,
5 3.649 =967 -3.061 3.079 317. -89, §739. -6564.
6 3.606 -1,552 -3.619 2,689 396, 9. 94345, 2911.
7 2,Bhh -1.803 -3.316 14597  370. 105, 1126, 258.
8 2.823 -2,014 -3.629 1.653 158, -64. =133, 1778.
9 2,776 ~2,169 =3.757 1,517 132. -6o, ~6949, ~2637.
10 2,732 -1,682 -3.247 1,754 237. =51, 2248, ~586.
11 2,532 ~1.329 2,779 1.758 343, -17. 7412, -272,
12 2.696 -1.029 =~2.575 2,004 h22. 6. 12834, 370,
13 2,837 -1,026 -2.653 2,235 548, 33. 18190, 5399,
S16MA 58. 2815,
HUB OR SWASHPLATE TRIMMED ANRLES AND MOMENTS
T1iC T1iS THT PH? Lh Mh Lsp
2,727 ~1.872 ~3.433 1.640 0. n. 201,
1.962 ~1.633 ~2,755 1.015 2013, 12848, 0.
CONTROL MOMENTS
Lhi{lsp,Msp=0)  dLh/dLsp dLh/dMsp Mh(Lsp,Msp=0)  dMh/dLsp
2242.79 22.38 28.85 1251%.828 -33.67

ED

Mh

918.
7180,
16486,
2465,
~6330.
-6266,
1754,
~1097,
-4726.,
-832.
8504,
1154k,
11233,

Msp

=235,
0.

dMh/dMsp
24,27

D(Mh)

-1767,
~320.
~-1080.
2821,
~42086.
1828,
-130.
1752,
=-767.
-2889,
-17¢.
1704,
3223,

2125,

FREE GYRO MODE

V =119.98 kis
q =46,15 psf
k=0.,787
Lsp D{Lsp)
227. Z,
59, 48,
~-193. -22.
183, =39,
425, =45,
520. 7h.
208, 25,
149, -75.
212, 5.
205. -2,
198. 37.
220. 8.
234, -16.
39.

Msp

-207.
-192.
-109.
-145,
-127.
-109.
-151.
-308,
~437,
-138,
17.
212,
335,

D(Msp)
~-116.
9.
~h9,
75,
~190,
106.
37.
10.
~50.
5.
=43,
32,
175,

90.
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Ykt

49.38
48,04
50.03

Vkt

49,38
L8,k
50.N03

Vkt
60.91
59,96
60.02

Vit
60.91

59.896
60,02

TABIE X, REDUCED EXPERIMENTAL DATA, NONDIMENSIONALIZED DERIVATIVES (a) LOCKED SWASHPIATE

MU
.4L88
771

1.055

Hu
L4388
771

1.055

MU
402
799

1,112

MU

402

1.112

RPH dCL/dT1C
98.7 =-.151817E-02
60.8 -.156462E-02
4b6.3 -,129414E-02
P.PM dCL/dT1S
98.7 .59230955F-02
AN.8  .41380R5E~02
B6.3  .3343804E-02
RPM dCL/dTicC
147.9 ,2100305E-02
73.3 -.4389635K-02
52.7 -.39N979E-02
RPM dCL/dT1S8
147.9  .7132204E-02
73.3  .Bh2B6D4BE-D2
52.7 L4979155E-02

(dC1)h/dT1C

«5h21835E-03
2437467E-03
~.164570E-03

(dC1Yh/dT1S
.3062778E-02
.2080N02F-02
.1571315F-02

(dC1)Yh/dT1cC
.1398414E~D2
.9518437E-04
-,.148852E-03

(AC1)Yh/dT1S
w5026688E~02

.2052262E-02
.1578896E~02

(dCm)h/dTI1C

-.372815E-02
-.192722E~02
-.127277E-02

(dACm)h/dT15
.1242913E-02
.7165053E-03
.6503727FE~-N3

(dCm)h/dT1C
-.499708E-02
-.185766E-02
-.136892E~02

(dCm)h/dT1S
.2276338FE-02

.8821492F~-03
.5485657E-N3

(dCl)sp/dT1C

L6597344E-04
JH253774E-Nk
L 1421833E-04

(dC1)sp/dT1S
.1669602E-04
5936L12E-05
CIBAK3TGE-DNS
(dC1)sp/dT1C
LAI50266E-NL
+3287978E-n4
LA1568831E-04
(dC1)sp/dT1S
315173 7FE-N4

L3684 943E~N5
<1223420E-04

(dCm)sp/dT1C

= 3544L6E-00
~.115426E-04
-.151977E~-04

(dCm)sp/dT1S
LO243421FE-04
JLS10887E-nY
L33EN739E-04
(dCm)sp/dT1C
-, 337717E-04
-.235548E-04
-.129630E-04
(dCm)sp/dT1S
.1034338E-073

LU632970E-04
«3018868E~04
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Vkt

69.19
8,45
69,30
59.4¢0
68.66

Vkt

£59.19
G845
69,30
69.40
68.66

vkt

8§0.50
82.76
82.78
82.68
82,88

Vkt

80.59
82.76
82,78
'B2.68
82.88

MU

L 492
494
.783
1,125
1.960

MU

Lb92
LB08
.783
1,125

1.969

MU

.388
527
807
1.120
2.129

14U

.399
527
.807
1.128
2.129

RPM

137.4
135.3
86,4
60.2
34.2

RPM

137.4
135.3
86.4
60.2
3.2

]PM

1987.2
15%.,2
100.2
72.1
38.0

RPM

197.2
153.2
10,2
72.1
38.0

TABLE X.

ACL/4T1C

~.237288E-02
-.139709F-02
=, 1704063E~02
~-.155609E-02
~-.890664LE-03

dCL/dT1S

.5883902E-02
LG132415F-02
AB0LB3142E-02
«32852h8E-02
.2155913E-02

dCL/dT1C

-.189724E-02
~.217883E-03
.9781534E-03
-.600681E-D3
~.124555E~02

dCL/dT1S

.9311053E~02
LB122117FE-02
.2838741E-02
.3944113F-02
.2179877E-02

(dC1)h/dT1C

.5315413E-03
.8353375E~03
- 196662E-03
L4B675797E-04
-.206378E~03

{dC1)h/dT1S

.3270685E-02
3LA1587E~02
L1817130E-02
1215816E-02
A350805E-03

(dC1Ih/dT1C

.2006054E-02
JT769242E-03
-.1L1638E-0L
=.154680E-N3
.3818955E~05

(dC1)R/dT1S

H321756E-02
L3243090KE-02
.182817RE-02
LIL70303E-02
LB687694E-03

CONTINUED (b) LOCKED SWASHPIATE

{dCm)h/dTLC

~.383680E-02
~,374026E~02
~.203073E-02
~.132103E~D2
-.758227E-03

(dCm)h/dTLS

L1573373E-02
.1493216E-02
. 9181554E-03
JMB0B95T7E~03
.23R1L428E~03

{(dCm)KR/dT1C

-, 4960L8E-02
-.349561E-02
~.155006E-02
-, 135877E~02
~.543273E~03

(domYh/dT1S

L2577745E-02
L18274R3E-02
.9385240E-03
LB1BGL72E-03
L4595708E-03

{(dCl)sp/dTiC

LB257061E~DL
.6639050FE-nY
L283758LE~04
1819112E~-04
707867 0E-NS

{(dC1)sp/AT1S

L,25783G99E~0k
.3323783E-04
L1027985E~04
.8845787E~05
«1151655E~0k

{dC1)sp/dT1C

.J1605L9E-03
.5Q717HhLE-DN
2B30343E-0D0
L1967869E-04
.8915268E~05

(dCYYsp/dAT1S

.1573451E-04
+1155847E-N4
<721RZTEE~DD
.R193811E-05
L11248934E-04

(dCm)sp/dT1C

= 3h7551E-0h
-.26209RFE-04
-.20R506E-04
=.37787hE-05
-.117422E-0k

(dCm)sp/dT1S

LHB28350E-04
LG732202E-04
LALRBER2QE-04
L2436185E-04
LADNO5K1E~Oh

(dCm)sp/dT1C

~.209525E-04
-.236928E-04
~ 1504 THE-Oh
=, 175551E-DL
~.53686LE-05

(dCm)sp/dT1S

L1052351E-03
LA0R3R32E-0Y
JAT73425E-04
L3800303F-04
.3191266E-0L
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Ykt

89.80
89,37
89.56
88.28

Vkt
89,80
89.37
89.556
88.28

Vit

101.91
101.87

Vkt

101,91
101,87

M

. BG3
1,072
1,078
2.018

Ml
493
1.072
1.079
2.018

MU
410
.512

Hu

L410
.512

RPM

177.7
81.4
$1.0
42.7

RPM

177.7
8l.4
81.0
Wz2.7

RpM

242.6
194.1

RPM

242,06
ia4,1

TABLE X.

dCL/4T1C

~.023585E-03
-.773162E~04
-, 1ub754E~02
-.88%8022E~03

dCL/dT1S
.6702955F~02
.2051126E-02
L3647631E~02
.21668L8E~-02

dCL/4T10

LI33USHEE~D2
«1535147E~03

dCL/dT1S

L78355R7E~N2
LA377111E-02

(dC1)Yh/dTILC

.971888GE-03
-.239075E-03
LAINS680LE-0h
-.730924LE-04

{dC1Ih/dTLS
.2933257E-02
L1454604E~02
.1531993E-02
L71877T12E-03

(dC1Yh/d4T1C

L2243456E-02
LI033717E-03

(dCYIh/dT1S

L4229980E-02
L3055617E-02

CONTINUED {c) LOCKED SWASHPLATE

(dCm)h/dT1C

-.388362E~02
-.183R72E-D2
-.129853E-02
-.687131E-03

(dCmdh/dT1S
L1964280E-02
.99E87R70E-N3
LAINR9BERE-G2
L3714778E-03

{dCm)h/d4T1C

-.507451E-02
-.330604E-02

{(dCm}h/dT1S

.2540307E-02
L2273191E-02

{(dC1)sp/dT1C

CTHIB559E-04
C178LL20E-0N4
.2187280E-0k
L.1203874E-Nk

(dC1)sp/dT1S
L1679378E~04
L9712197E=-05
.G8ERROGE-(S
L1371053E-04
{(AC1)sp/dTin

LANND2419E-03
H386733E-D4

(dC1)sp/AT1S

LR156NLTE-NS
-, B35045GF=05

(dCm)sp/ATI1C

-, 2045578~k
- I84ENNE-NY
- 124187E-0L
« 7084NGE-NS

{(dCm)sn/dT1S
R2BEQLEE =04
LSUB7172E-04
L3BE7ENR2E-0L
L25B5821E~-04L
(dCm)sp/dT1C

-.550251E~06
-, 7T4L3EE-N5

{dCm)Ysn/dT1S

L 1039583E-03
LAONERE3E-04
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Vikt
81.67
31.26

Vkt
81.67
81.26

Vit

102,93
102,85

Vit

102.93
102,385

Vkt
120,5¢L
119,92
119,98

Vkt
120,54

119,92
119,98

MU
40
520
MU
m
.520
MU
413
520
MU
413
.520
1l
.365
503
.787
MU
365

.503
787

TABLE X,

RPM dCL/dT1C
187.2 ,L032250FE-02
152.6 .3L14878E-02

RPM dCL/dT1S
197.2 ,74L90898E-02
152.6 ,5025764E~02
RPH dCL/dT1C
23,4 ,1451919E-02
163.1  ,1598194E-N2

RPM dCL/dT1S
23,4 L10178R87FE-01
193.1 .71G68R3E-02

RPM dCL/dT1C
322.4  ,1682744E-02
232.9 -.849623E-04
148.8 =.321747FE-03

RPM dCL/dT1S
322.4%  ,1533319F-01
232.9 .6733324E-02
148.8 .L9K1488E-02

CONCIUDED (d) FREE SWASHPLATE

(dC1)h/dT1C

.18915n02E-02
.899238LE-03

(dC1)h/dT1S

LALO1N23E-02
3169468E-02
(AC1)h/dT1C
.2173945E-02
.9056823E-03
(dC1)h/dT1S

A4528570F-02
.3020746E-02

(dC1)h/dT1cC
.3799G05E-02
$1203125E-02
L 2572785F-03

(dC1Yh/dT1S
3786495E-02

.2683013FE-02
.1900328E-02

(dCm)h/dT1C
-.458088E-02
-.326409E-02

(dCm)h/dTIS
.2623881E~-02
.1710L466E-02

(dCm)h/dT1e

-.409069E-02
~.364R97E-N2

(dCm)h/dT1S

.3649689E~02
«2134104E-02

(dCm)h/dT1C
- 4239R5F~-(}2

-.363880E-0N2
~.169975E-02

(dCm)h/dT1S

LleN2L7E-02
.2001130E~-02
L1430453E-02

(dC1)sp/dT1C
L1077350E-03
LI252705E-04
(dC1)sp/dT1S
L1707111E-04
.7510819E~05
(dC1)sp/dT1C
.OL160LBE-NY
LTN26RG8E~DN
(dC1)sp/dT1sS

L1854757E-04%
.1773795E-04

(dC1)sp/dT1C
<92N6469E-NL

.GE33667FE=-04
.3452515E-0n4

(dC1)sp/dT1S

~.815699E-05
.7705910E=-N5
.2896822E~05

(dCm)sp/AT1C
-~ 104863E-QL
-, 128013E-04
(dCm)sp/dT1S
L1128063E~-03
. 7290539E=-04
(dCm)sp/dT1C
-.883352E-05
-, ?251121FE-0N4
(dCm)sp/dT1S

«1321397E-03
JIBTE272E-04

{(dCm)sp/dT1C
L5590 754FE=-05

=~ 135455F-0k
~.187839E-04

(dCm)sp/dT1S

.1215933E-03
L7502631E-04
LG2249GRE-04



REFERENCES

Abbot, I. H. and Von Doenhoff, A. E., "Theory of Wing Sections," Dover
Publications, New York, 1959

Harris, F. D., Tarzanin, F. J. and Fisher, R. K. "Rotor High Speed Per-
formance, Theory vs. Test," Proc. V/STOL Tech. and Planning Conference,
Las Vegas, 1969

Fung, Y. C., "The Theory of Aeroelasticity," John Wiley & Sons, Inc.,
New York, 1955

Gessow, A. and Meyers, G. C., "Aerodynamics of the Helicopter,” Frederick
Ungar Publishing Co., New York, Republished 1967

Cardinale, S. V.; Donham, R. E., "Full-Scale Wind Tunnel Tests and Analysis
of a Stopped/Folded Rotor," Lockheed Report 21016 for Maval Air Systems
Command, May 1968

Perkins, C. D.; Hage, R. E., "Airplane Performance Stability and Control,"
John Wiley & Sons, Inc., New York, 1949

311



