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SUMMARY
 

Methods are developed for predicting the behavior of hingeless rotors
 

with stiff blades, at high advance ratios and low rotor speeds. The
 

methods are simple and expository in nature, and are developed for the
 

purposes of (1)providing insight into the influences of various rotor and
 

control parameters on rotor system behavior, (2) examining the suitability
 

of existing methods which contain more comprehensive analytic descriptions
 

for predicting behavior of hingeless rotors at high advance ratios at low
 

rotor speeds, and (3) to provide analysis techniques which are flexible
 

enough to be useful in preliminary design studies.
 

Cyclic angles required to trim rotor hub and swashplate moments are
 

calculated and compared with experimental data. Longitudinal cyclic angles
 

agree well over the advance ratio and rotor speed ranges studied. Lateral 

cyclic angles do not agree well, but the discrepancy is systematic, sug­

gesting a lack in the theory.
 

The dependence of hub moment, thrust, and swashplate moment on cyclic
 

angles, collective angles, and rotor angle of attack was investigated both 

analytically and experimentally at rotor speeds ranging from 8.5 to 90 per­

cent of nominal and at forward speeds ranging from 50 to 120 knots. Theoret­

ical predictions based on a simple analytical description of aerodynamics 

agree well with experiment. 

The control system used in the analyses and tests included a constant
 

speed gyroscope to stabilize the rotor. Rotor moments were controlled by
 

applying moments to the swashplate. The system was designe such that the 

swashplate was not restrained by the control-force servos while in the
 

normal operating mode. 

Theoretical estimates of hub moments produced by unit moments applied to
 

the swashplate show a trend toward very small changes in amplitude and phase 

over large ranges of advance ratio and rotor speed. The trend toward
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constancy in control effectiveness was verified by wind tunnel tests.
 

Stability of the gyro-stabilized cyclic feathering system was examined
 

experimentally by applying "step" control moments at the swashplate and 

observing the decay of induced oscillations. Frequencies, damping, and 

precessive direction noted in the experiments compared well with values 

predicted by theory. 

A description of the theoretical development, a summary of measured
 

data, and some comparative evaluations are presented in this report.
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INTRODUCTION
 

In the search for higher cruising speeds and lower drag in helicopters,
 

it became apparent that relieving the rotor of its propulsive :task (employ­

ing auxiliary propeller or fanjet propulsion) would reduce retreating blade 

stall and permit a higher cruising speed. If, in addition, the rotor did not 

have to support the weight of the vehicle, that function being performed
 

by wings, then the effects of retreating blade stall could be virtually 

eliminated (except in maneuvers) and a much greater speed attained. However, 

increasing flight speed, while maintaining a relatively constant rotor
 

rotational speed brings on another limitation: the tips of the rotor blades
 

on the advancing side encounter Mach number difficulties. It becomes desirable,
 

therefore, to slow the rotor speed as forward flight speed is increased.
 

Finally, if the rotor were completely eliminated, i.e., stowed away, the speed
 

and cruise efficiency of conventional jet aircraft could be attained.
 

It becomes of interest to investigate slowing and stopping rotors in
 

flight, and from a technological point of view, to develop knowledge and
 

analytical tools that would be prerequisites to developing slowed-rotor or 

composite aircraft. Although industry has already developed analytic tech­

niques for studying helicopters, many questions arise as to their suitability
 

for predicting the behavior of rotors at high advance ratios and the high 

flight speeds expected to be encountered in the operation of slowed-rotor or
 

stoppable-rotor aircraft. Therefore, the study reported here was undertaken
 

to investigate the behavior of, and develop analytic design tools for,
 

slowed/stopped rotors.
 

It was recognized that a rotor with very stiff blades would be required
 

for in-flight stops, so a full-scale rotary-wing aircraft wind tunnel model,
 

which had previously been used to demonstrate the feasibility of in-flight
 

stops (in the NASA-Ames 40 x 80 ft wind tunnel), was selected as a baseline
 

vehicle for this investigation.
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The requirements for stiffness of rotor blades for slowed-rotor aircraft
 

are not yet established. Since it is possible that blades may be stiffer than
 

those used in conventional helicopters, and since wind tunnel tests of the
 

stoppable rotor would span a complete range of advance ratios, from very low
 

to infinity, it was decided that the same model would be used as a baseline
 

vehicle for the slowed-rotor studies. Therefore, analytical methods are
 

developed which describe the behavior of the rotor system over a complete
 

range of rotor speeds, from nominal (for conventional helicopters) to zero;
 

and data measured in wind tunnel tests of the baseline vehicle are used to
 

corroborate the analyses.
 

Development of VTOL aircraft with hingeless rotors has progressed from a
 

helicopter through jet-propelled and propeller-driven compound helicopters.
 

Good handling qualities have been demonstrated in the helicopter, and greatly
 

increased speed has been demonstrated in the compound helicopter. The next
 

step in the direction of speed increase appears to be the development of the
 

slowed-rotor compound helicopter. A 100-knot increase in flight speed appears
 

to be realizable with a 50-percent reduction in rotor speed. This will
 

extend the range of operating advance ratio to A = 1.5. Control system
 

stability, damping of in-plane resonance, and blade stresses due to reduced
 

centrifugal stiffness are areas that must be investigated.
 

A horizontally stoppable, retractable rotor aircraft could follow the 

development of the slowed-rotor compound. Its problems would be associated 

with extreme advance ratios, to infinity, and with alleviation of periodic 

forces at low rotor speeds due to gust response. 

The research reported herein complements investigations made over the
 

last ten years into the effects of: high advance ratio, blade dynamics,
 

gyroscope stabilization, low rotor speed operation, and blade loads on a
 

rotor stopped in flight. Some of these investigations employed the rotor
 

used in this work.
 

A main purpose of the present investigation was the development of an
 

understanding of the physics of low rotor speed, high advance ratio, gyro­

6
 



stabilized rotor operation, with an aim toward facilitating the rational 

design of high-speed, high-efficiency, VTOL aircraft.
 

Since the objective of this study was primarily an understanding of the
 

behavior of a system, rather than precise numerical results, simplified
 
"expository" methods based on key physical aspects were derived. 
The results 

of the approximate calculations are compared with experimental data, Exposi­

tory methods were derived to determine the following: 

* 	 Stability of the fixed-shaft rotor-gyro system (representing the model 

in the wind tunnel) 

" 	Stability of a free-flying vehicle with the same rotor-gyro system
 

* 	 Aeroelastic derivatives of the fixed-shaft rotor 

* 	 Cyclic pitch angles required to trim the rotor 

* 	Control effectiveness
 

All but the free-flight vehicle stability were checked experimentally by wind
 

tunnel testing.
 

Although experimental data contained shaft vibration moments and blade 

harmonic loads, only the consequences of mean rotor coefficients were analyzed 

theoretically and are reported in this report. It is planned to reduce the 

vibration data and correlate it with theory at a later date. 
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SYMBOLS
 

[A] Aerodynamic stiffness matrix (rotating axes) 

[Ar] Aerodynamic damping matrix (rotating axes) 

AR Aspect ratio of wing 

b Number of blades 

b Wing span, ft 

bm Blade root bending moment, ft lb 

B Tip loss factor 

[B] Aerodynamic stiffness matrix (stationary axes) 

[Br Aerodynamic damping matrix (stationary axes) 

c Blade chord, ft 

CR Rotating damping (feathering friction), ft lb/rad/sec 

CS Stationary damping (swashplate damping), ft ib/rad/sec 

Z Wing mean aerodynamic chord, ft 

C t Tailplane lift curve slope 

Cm Hub pitching moment coefficient, M/qwrR 3 

C Hub rolling moment coefficient, L/qiw R3 

Cmsp Swashplate pitching moment coefficient, M/qrR3 

CIsp Swashplate rolling moment coefficient, M /qrR3 

CL Lift coefficient, L/qrR2 

CD Drag coefficient, D/qnR
2 

C/Cr Fraction of critical damping 

ICFb Blade centrifugal force matrix 

D Drag, lb 

[Damp] Damping matrix 
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[D] 	 Transformation matrix - rotor to blade
 

e Base of Naperian logarithms
 

fm Blade feathering moment, ft lb
 

{GF} Vector of rotor generalized forces 

{GFb} Vector of blade generalized forces 

H Blade parabolic flapping generalized force , lb 

H60 Collective flapping generalized force , lb
 

H6 Pitch flapping generalized force , lb
 

H6¢ Roll flapping generalized force , lb
 

I Blade linear flapping moment of inertia , slugs ft2
 

slugs ft2
 Gyroscope diametral moment of inertia ,IG 


slugs ft2
 IR 	 Feathering moment of inertia of rotor , 


Blade moment of inertia about c/4 , slugs ft
2
 

I 

I0Y Body pitching moment of inertia, slugs ft2
 

Ixx 	 Body rolling moment of inertia, slugs ft2
 

[I] 	 Rotor inertia matrix
 

[b] 	 Blade inertia matrix
 

k Mechanical advantage; gyro tilt: cyclic pitch ratio
 

KR Rotating spring constant, ft lb/rad
 

KS Stationary spring constant, ft lb/rad
 

It Tail length, ft 

L Hub rolling moment, ft lb 

Lp Body aerodynamic coefficient (damping in roll), C b'gvSt 
2
p 	 p 2fV
 

m 	 Mass, slugs
 

M 	 Hub pitching moment, ft lb
 

9
 



M Airframe mass, slugs 

M Body aerodynamic coefficient (damping in pitch), C c qScqq
q 	 2V 
Ma Body aerodynamic coefficient (static stability), CmaqSc
 

MV Body aerodynamic coefficient (plunge damping), Cm qScm2V
 

Swashplate pitching moment, ft lb
 

MO Swashplate rolling moment, ft lb
 

Mtip Tip mass, slugs
 

Blade flapping generalized mass, slugs
M 6 


M()( Generalized mass (subscripts denote coupling)
 

p The pth blade
 

P Per revolution
 

P Power, ft lb/sec
 

Dynamic pressure, PV2 /2, lb/ft2 

q-


r Distance from center of rotation, ft
 

R Rotor radius, ft
 

Tail plane area, ft
2
 

St 


Wing area, ft
2
 

S 


S 7 R2 , ft2
 

[S] 	 Structural matrix 

T Thrust, lb 

TI Time to half amplitude, sec 
2 

[T] Transformation matrix, between sets of rotating axes
 

I Matrix transpose operation
]T 


V Airspeed, ft/sec
 

V Blade root shear, lb
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X Roll axis (rotating) 

X Roll axis (stationary) 

y Pitch axis (rotating) 

Y Pitch axis (stationary) 

z Vertical displacement, ft 

Z Vertical axis 

Z0 Body aerodynamic derivative (lift cprve slope), CL qSlb/rad 

a Angle of attack, deg or rad 

Blade linear flapping angle, deg or rad 

0o Rotor precone angle, deg or rad 

IB} Vector of degree-of-freedom displacements 

7y Structural damping, fraction of critical 

8 Blade parabolic flapping displacement, ft 

6 Collective flapping displacement of the rotor, ft 
olPitch flapping displacement of the rotor, ft 

6 Roll flapping displacement of the rotor, ft 

9 Downwash angle of tail plane, rad 

I Vector of blade displacements 

0 Swashplate pitch angle, deg or rad 

f Blade feathering angle, deg or rad 

et Blade twist rate, deg/ft or rad/f" 

0 
0 

Rotor collective angle (measured at root), deg:or rad 

e. Rotor collective angle (measured at 3/4 radius), aeg or rad 

1c Cyclic pitch, nose-up at = 0. deg or rad 

Cyclic pitch, nose up at 4 = 90°, deg or rad 
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e Rotor pitch angle, rad 

Root of characteristic equation 

A 

P 

Sweep angle between c/4 and feathering axis, 

V 
Advance ratio -

Air density, slugs/ft
3 

rad 

a Solidity 

Summation sign 

' Swashplate roll angle, rad 

Rotor roll angle, rad 

Azimuth angle measured counterclockwise from 
positive X axis (aft) , rad 

Po 

W 

Cant angle, deg or 

Natural frequency 

rad 

1/sec 

o Rotor rotation speed, rpm or rad/sec 

G 

[-l 

Gyroscope rotation speed, 

Reciprocal of matrix 

rpm or rad/sec 

First time derivative 

Second time derivative 

Subscripts 

13 2, 3 Blade numbers 

n The nth vibration mode 

6 5 6¢ Used to denote flapping degree-of-freedom 

12
 



THEORETICAL DEVELOPMENT
 

The stability, fixed-shaft control effectiveness, and cyclic pitch required
 

to trim a stiffened rotor, stabilized by a high-speed gyroscope system, while
 

operating at high advance ratios were studied. The effects of operating
 

at low rotor speeds were also studied.
 

An important aspect of the theoretical investigation was a determination
 

to keep the analysis as elementary as possible consistent with explaining the
 

behavior observed in experiments. Although elegant methods employing com­

prehensive mechanical descriptions for precise analysis were available, and
 

were used for checking purposes, these methods were not expected to shed
 

adequate light on the fundamental physical processes at work in the system.
 

These more elaborate methods solve comprehensive differential equations in
 

step-by-step procedures, either around the azimuth or vs time, and often
 

require checking against desired conditions and iterating to a solution.
 

Elementary or "Expository" methods, in closed form where possible, are
 

adopted for the purpose of gaining insight to the causes and effects of design
 

variables, to the interrelated behavior of the rotor, control system, and the
 

airframe. Expository methods also offer the possibility of becoming prelim­

inary design tools for the design of new vehicles. Rapid solution to design
 

parameter variations is a goal of the expository methods. Also, the character
 

of the expository method makes it a good communication medium for use among
 

technical people.
 

The expository methods are designed to open physical situations for view­

ing. An example is the capability to calculate the dynamic modes of an aero­

mechanical system. Any linear system without periodically varying coefficients
 

is simply analyzed for its dynamic properties, the time constant or the period
 

and damping of its transient modes. They may be divergent or damped, and the
 

vector of degrees of freedom which describes the mode generally shows clearly
 

the important elements of that mode of motion.
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Equations of Motion
 

During its development, the expository method was assembled in three
 

stages, enlarging the magnitude of description in each successive stage. At
 

each stage, an understanding of the system behavior based on fundamentals was
 

obtained before the next stage was attempted. In this way the effects of
 

increasing the size of description of the system could be seen. Rationale
 

for development of the method is discussed here. Details of the mathematical
 

derivation are given in Appendices A and B.
 

The first stage of the expository method contained only two degrees of
 

freedom: gyro pitch and gyro roll. Even with this extreme simplicity the
 

fixed-shaft stability boundary was predictable, and the experimentally observed
 

effects of feathering damping and swashplate damping on control-mode stability
 

were indicated up to rotor speeds of approximately 30-percent rpm (where
 

nominal operating speed of the rotor, in a helicopter mode, is considered to
 

be 100-percent rpm). Above 30-percent rpm, the fact that the blade flapping
 

mode was not included in the analysis made the control mode appear to be
 

unrealistically unstable. The calculated rotor hub moment response to
 

cyclic pitch was largely in error at rotor speeds above 10-percent rpm. It is
 

important, however, that the simple version showed the limiting physical case
 

for extremely stiff cantilever blades, and so became a foundation for develop­

ment of the second stage.
 

The second stage in the development of the expository method consisted
 

of adding three rotor first flapping modes: pitch, roll and collective
 

flapping of the tip path plane; thus increasing the degrees of freedom in
 

the program from two to five. Again the rotor shaft was fixed. The five
 

degree of freedom model calculated control mode stability well over the com­

plete range of rotor speeds, except for an unexplained excessive damping
 

which occurred at an intermediate rotor speed. The hub moment aeroelastic
 

response to cyclic angles was predicted well at all rotor speeds. Trends of
 

cyclic angles required to trim rotor hub moments were correctly calculated.
 

The cyclic angle 61s (called longitudinal cyclic for its effect on articulated
 

rotors, but with very stiff blades such as used in this study, this angle
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produces more rolling than pitching moment) was very closely predicted.
 

The measured values of lateral cyclic trim angle 01, deviated considerably
 

from those predicted, and in a sense suggested that some important contribu­

tion to nose up pitching moment had been omitted in the analysis; reasons for
 

this are suspected but have not yet been checked. The method also predicted
 

control effectiveness trends well. The effects of flapping on stability and
 

on aeroelastic derivatives agreed well with the test measurements.
 

The third stage in the development of the method involved the addition
 

of hub (and body) pitch, roll and plunge degrees of freedom. The resulting
 

eight degree-of-freedom model was used to evaluate the feasibility and use­

fulness of testing the model mounted on gimbals in the wind tunnel (this eval­

uation was requested as part of an investigation into the possibility of
 

performing tests with the model free to pitch and roll in the wind tunnel).
 

The stability modes, frequenices, and dampings of the gimballed model were
 

compared with those of a hypothetical free-flight version of the model.
 

Results cf this comparison are given later in this report.
 

The fundamental concepts involved in the derivation of the equations are
 

few and are easily grasped. There are three rotational states in the total
 

system: Those associated with the gyroscope, the rotor, and the airframe.
 

Only small motions of mass elements in each rotating state, relative to the
 

appropriate set of axes which rotates with each of the rotational states,
 

need be considered in developing the equations of motion. This feature is the
 

key to the simplifications included in the expository method. (The most com­

plex parts of the method have to do with transferring equations among various
 

sets of axes, and they are not difficult.) The fundamental concepts used are
 

discussed in the following paragraphs.
 

Fundamental concept number 1. - Because motions of elements in a given
 

state are small (in fact perturbational) the calculation of forces due to
 

the motions is very simple. The forces may be inertial, centrifigual, aero­

dynamic, structural, or due to springs and dashpots. The force due to unit
 

displacement or velocity may be independent of azimuth, or may vary periodi­

cally with azimuth (the fact that they're viewed in rotating axes permits
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the simplification). Appendix A discusses calculation of all but the aero­

dynamic forces. Reference (1) discusses calculation of aerodynamic forces.
 

Fundamental concept number 2. - Small displacements relative to a set of 

axes can be expressed relative to another set of axes by a simple time depen­

dent transformation which relates the positions of the two sets of axes. In 

the present work it was necessary only to consider displacements normal to 

the (X, Y) plane (Z direction). These displacements are organized into pitch, 

roll, and plunge motions. They may be transformed from one axis system to 

another (from set Q to set ®) by the transformation 

-cos(@-l @)t -sine( CE))t- O 

j - )tsin ( Q2© co s - Q) t 0 

z 0 0 lizJ
 

or in more compact form,
 

P2 [T] Pl
 

Fundamental concept number 3. - This concept is a corollary to number 

two in that the generalized forces relative to one axis system may be trans­

formed relative to another by the transpose of the above transform, 

M T M 

L T TLTII
 

The two concepts enable the complete transformation of coefficients in
 

the differential equations from one rotating state to another. To transform
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time derivatives of displacements it is important to note that ;he time
 

derivatives of the transform are as follows:
 

=2 [T] l +[~ p T* 

For example, terms in one axis system:
 

(I] 2 + [Damp] p2 + I] P2 

may be transformed to another rotating system by:
 

[MT 	[I] {[I pF1 + 2 [M k + [!P, 

+ [T]T [Damp] t[T] + [T] Pl + [TIT [s] [T] Pl 

Fundamental concept number 4. - The centrifugal forces in a rotating 

state may be thought of as radial forces externally applied to each mass 

element and resisted by tension in the structure. The normal components of 

the resisting tensile forces may then be used to calculate moments and gen­

eralized forces on the various degrees of freedom. The transformation of 

centrifugally induced forces to stationary axes produces gyroscoqjic terms. 

Fundamental concept number 5. - The kinematic and dynamic relationships 

between degrees of freedom of the entire rotor in rotating coordinates and 

of individual blade motions are easily expressed. In the rotor rotating 

state, correspondence can be deduced by inspection; this is shown in Appendix 

A. Couched in matrix form it is stated
 

17blade motions = [D] 1If 	 Rotor degrees of freedom
 

in rotating coordinates
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The velocity and accelerations are related thus
 

[D] Jj} 

[D{] {1} 

With 	generalized forces on the blades easily calculable, be they inertial,
 

centrifugal, or aerodynamic, the generalized forces on the degrees of freedom
 

due to motions of the degrees of freedom can be obtained by noting that they
 

are related to the blade generalized forces by
 

{GFJP = [n] T {GFj blades 

The rotor generalized forces {GF} in terms of rotor motions is
 

GF = ED] T Llade force due tolrD] {Pj4 Li blade motions JL 

and the 	rotor derivations are obtained in terms of blade forces
 

[D] 	 T blade forces due to [D] 
[blade motions t 

Summary of the procedure. - Based on the preceding concepts, the equa­

tions of motion are derived in Appendix A as follows:
 

(1) Motions of the isolated gyroscope, in pitch and roll, are considered
 

relative to axes which rotate with the gyroscope. The pitch and
 

roll equations are not coupled.
 

(2) 	Equations for the isolated gyroscope are transformed to axes which
 

rotate at rotor speed.
 

18
 



(3) Equations of motion of the rotor, in terms of motions of individual
 

blades, are derived relative to axes which rotate with the rotor,
 

and are added to the transformed gyroscope terms. Blade forces are
 

inertial, centrifugal, structural damping, and aerodynamic.
 

(4) Rotating spring and rotating damping terms (terms involving rotating
 

friction about the blade feathering axis) are added.
 

(5) 	All terms are transformed to stationary or earth-fixed axes.
 

(6) 	Terms representing swashplate damping and springs are added.
 

(7) Body inertia and aerodynamic derivative terms are added to the
 

pitch, roll and plunge equations.
 

(8) 	The following forcing terms are added to the right hand side (RHS)
 

of the equations:
 

* aerodynamic terms due to precone, twist, and collective angles
 

* aerodynamic terms due to gust angle of attack
 

* terms representing control moments which are applied to the
 

swashplate
 

" a term representing the centrifugal flattening of the precone
 

Aerodynamics
 

Aerodynamics used in these investigations is organized into derivative
 

form, or coefficients in the differential equations. Simple aerodynamic
 

premises which are shown to be valid for high advance ratio and low rotor
 

thrust are used. The derivatives, analogous to rigid-body derivatives for
 

fixed wing aircraft, relate rotor forces, moments, and generalized forces
 

to displacements and velocities in various degrees of freedom of the rotor.
 

The derivatives are used relative to an earth-fixed axis system, but are
 

derived from blade forces due to blade motions in rotating axes.
 

Aerodynamic derivatives as used in this study are of two types:
 

(1) 	response derivatives
 

(2) 	forcing derivatives
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Response derivatives represent aerodynamic forces produced by motions of
 

the degrees of freedom. The response derivatives are comprised of changes in
 

" thrust
 

" hub and swashplate moments
 

* rotor-flapping generalized forces
 

due to unit changes in the displacements and velocities of
 

* rotor pitch, roll, and plunge rigid body motion
 

* swashplate pitch and roll
 

* rotor (flapping) degrees of freedom,
 

Forcing derivatives represent those aerodynamic forces produced external
 

to the dynamic system by
 

* gust angle of attack
 

* rotor precone
 

" blade twist
 

" swashplate collective (not considered a degree of freedom in this
 

analysis)
 

The main difference between aerodynamic derivatives of fixed-wing and
 

rotary-wing aircraft is that the rotary wing derivatives possess parts which
 

vary periodically with time (azimuth) as well as mean parts. The forcing
 

derivatives merely add steady oscillating forces to steady-state conditions.
 

The periodic parts of the response derivatives, however, alter the basic
 

mathematics of the differential equations.
 

The stationary axis derivatives consist of a mean value, independent of
 

azimuth, and harmonic components at frequencies of 3, 6, 9 ..... times the
 

rotor rotation rate. The 3P component is enough larger than the others to
 

make it the only one of significance. The phase or relative magnitude of
 

its sine and cosine components, is seen to remain unchanged over a large
 

range of advance ratios.
 

Since the application considered in the analytical portion of this
 

study involves winged aircraft, where the wing is expected to-unload the
 

rotor at appropriately high flight speeds, the rotor is considered to pro­
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vide little lifting force. The lightly loaded rotor must traverse the
 

advance ratio spectrum from [ = 0.3 to infinity during an in-flight start/
 

stop operation. In the case of a slowed-rotor compound helicopter, the rotor
 

is also lightly loaded, but its advance ratio is not expected to exceed
 

p.= 1.5. Since the aerodynamic and vehicle behavior studies reported herein
 

are exploratory in nature (high advance ratios and very stiff blades are in­

volved), the simplest concepts which yield approximately correct answers are
 

used. It is therefore of interest to discuss some ramifications of advance
 

ratio i . 

The parameter is fundamental to rotary wing aerodynamics. It is the
 

ratio of forward speed to rotor tip speed, and it in effect controls the
 

geometry of air flow relative to the rotor blades. A combination of forward
 

(flight) speed and rotor local velocity (rotational speed) gives the velocity
 

The flow pattern varies over
and direction of flow relative to the blades. 


the disk from the purely rotational flow at. = 0 to the purely rectilinear
 

at = M . 

2.OV
V 

=.5
v15 


V
=
 
Or~~~_ veoit- 0.5
 

Flow Flow Flow relative to blades
 

Flow Rotaiona
 



For rotors with infinitely stiff blades, similar geometries and common 

angles of attack, collective pitch and cyclic pitch; the aerodynamic forces are 

ratio, free stream dynanic pressure and size.functions only of advance 

In a fundamental sense, advance ratio can also be considered to control
 

the geometry of vortices shed by the blades; see Figure 1. At low advance
 

ratio, the vortex structure and attendant downwash from many blade passages
 

accumulate over the rotor disk and drift downstream causing large induced down­

wash over the disk especially toward its aft edge. At high advance ratio,
 

on the other hand the tip vortices move straight downstream from the blade
 

tips so that downwash cannot accumulate. Induced downwash at high advance
 

ratios can therefore be considered negligible.
 

At any forward speed a reverse flow region exists just to the left of the
 

rotor mast, where the net air flow moves over the blades from the trailing to
 

This reverse velocity region can also be represented as a
the leading edge. 


The region is very small at low advance ratios
function of advance ratio: 


and approaches 50 percent of the disk area as the advance ratio approaches
 

infinity; see Figure 1.
 

Assumptions used in formulating aerodynamics representation. - Since the
 

nominal rotor lift of interest in this study is small, blade angles of attack
 

are well below stall limits, even in the reverse flow region. Also, over
 

most of the flight speed region of interest, tip speeds are well below the
 

These two factors permit the use of linearized aerodynamics.
speed of sound. 


Analyses and tests were limited to conditions which do not violate aerody­

namic linearity. Fundamentally, linearity allows the use of procedures in
 

which the effects of changing one angle at a time are determined; therefore,
 

coefficients analogous to fixed wing aircraft derivatives can be used, and
 

the superposition of these effects results in a good approximation.
 

In the calculation of a derivative, the effects of varying one degree of
 

freedom at a time are considered. In the wind tunnel, however, flapping
 

motions are not suppressed, so the measured derivatives are aeroelastic
 

derivatives.
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The differential equation coefficients vary with the azimuthal position
 

of the rotor.
 

Consistent with the expository approach, the most simple formulation of
 

aerodynamics which will yield results approximating reality are used. The
 

following are the simplifications used, and their justifications:
 

(1) 	Induced downwash is ignored. At high advance ratios., if induced down­

wash is assumed uniform, it is small enough to be neglected.
 

(2) 	Spanwise induction effects are approximated. The most significant
 

effect of spanwise induction is loss of lift near the blade tip.
 

This effect depends on the aspect ratio of the lifting surface.
 

For the blades of the wind tunnel model (AR=12) in uniform flow,
 

the tip effect is hardly noticeable inboard of 80 percent of the
 

blade radius. This effect is approximately accounted for by assum­

ing the blade radius to be slightly smaller than it actually is, by
 

The lift at any section can therefore be
a factor B = 0.97. 


assumed to depend only on local dynamic pressure normal to the lead­

ing edge and on the normal angle of attack at the section.
 

(3) Blade sweep effects are ignored. At azimuth locations remote from
 

90 and 270 degrees, at high advance ratios, the flow approaches the
 

blade obliquely. In the aft semicircle of the disk, the flow meets
 

the blade flowing obliquely outboard, whereas in the forward semi­

circle it meets the blade flowing obliquely inboard. Wind tunnel
 

tests have shown that resolving the flow into components parallel
 

and normal to the blade and ignoring spanwise components yields a
 

good approximation of the pressure distribution and lift, Reference 1.
 

Recent tests have shown that the primary effect of sweep is to in ­

crease the maximum lift before stall, but not to change the lift­

curve slope or the linearity, Reference 2. 
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(4) Unsteady aerodynamics are ignored. The primary effect of unsteady
 

aerodynamics can be seen by examining the growth of lift after a
 

sudden change in angle of attack. Lift growth is given by Wagner
 

in terms of numbers of chords travelled, Reference 3. Lift starts
 

almost immediately at 50 percent of maximum and grows to 90 percent
 

within 6 chords of travel. In the tested rotor, where the blade
 

chord is small (the chord of the blade of the wind tunnel model is
 

1.17 ft) the lift becomes 90 percent of steady-state in 7 ft of
 

travel. At the rotor tip the perimeter is 104 ft. Therefore, in
 

effect steady-state conditions are reached within 7 percent of total
 

azimuth travel when the forward speed is zero. At high advance ratio, 

the tip velocity on the advancing side is greater than £2R, so the 

lift would grow to steady state within a smaller azimuth displacement. 

On the retreating side, however, the opposite is true and longer 

azimuthal travel would be required to attain a near steady-state 

condition. Therefore, unsteady effects would cause some deviation 

from results based on steady aerodynamics. However, since the de­

viation is most significant in the reverse flow region where the low
 

dynamic pressure makes lift sensitivity small, the effect is assumed
 

to be lost in the total aerodynamic derivative. The net effect of
 

unsteady aerodynamics is not expected to reduce the effective blade
 

section lift-curve slope by more than a few percent; therefore, the
 

assumption to neglect unsteady aerodynamics is not expected to
 

change the basic characteristics of solutions in this study.
 

It is not the point of the foregoing discussion to suggest that crude
 

assumptions are adequate for all rotor analyses. For example, helicopters
 

to be efficient, must operate at high enough blade loading so that the blades
 

on the retreating side are well into the stall region. Downwash can affect
 

both loads and stability, and unsteady aerodynamics can damp or aggravate
 

flutter.
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Aerodynamic calculations are made to provide response and forcing
 

aerodynamic coefficients (derivatives) for the differential equations of
 

motion of a free-flying (slowed or stoppable rotor) aircraft. The differential
 

equations contain two types of response derivatives: those due to displace­

ments of the degrees of freedom, and those due to time rates of change of dis­

placement (i.e., displacement and velocity derivatives).
 

Motions of the system considered in the analyses are those which produce
 

vertical displacements of elements of mass of the rotor, gyroscope, and body.
 

They are all either tilt or plunge motions. Fore and aft, lateral, and yaw­

ing degrees of freedom, and in-plane motions of the rotor blades are not con­

sidered. Each motion of the blades produces a unique spanwise and chordwise
 

distribution of aerodynamic lift. The distribution depends only on advance
 

ratio and azimuth position. The magnitude depends on dynamic pressure due
 

to forward flight. In these analyses the effects of Mach number and Reynolds
 

number are considered to be negligible.
 

Lift distributions are integrated to produce blade forces. The blade
 

forces used in these analyses are:
 

" blade root bending moment, bm
 

" blade root shear, V
 

* feathering moment, fm
 

* generalized force in the first blade flap mode, H
 

Forces due to blade motions corresponding to the motion of any one
 

degree of freedom of the rotor, existing at any rotor azimuth position,
 

are combined to give overall or generalized forces to all the degrees of
 

freedom of the rotor. That is, any motion, displacement or velocity, or any
 

fixed geometry setting produces a distribution of aerodynamic lift over the
 

blades which are integrated to form generalized forces in all modes of vehicle
 

motion.
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Aeroelastic Derivatives of the Rotor
 

The concept of aeroelastic derivatives is borrowed from fixed wing
 

aircraft technology. Aeroelastic derivatives include the influences of
 

structural deflections which occur as a result of equilibria of aerodynamic
 

and shaft forces. Therefore, calculated derivatives which include aero­

elastic effects are more appropriately compared with data derived from wind
 

tunnel measurements.
 

Caution must be exercised in applying aeroelastic derivatives to -heli­

copter analyses. Uses parallel to those of airplanes are not always valid
 

due to lower rotor "structura frequencies. For example, in computing flight
 

motions of a fixed-wing aircraft) often only rigid-body motions are admitted
 

as specific degrees of freedom. As long as the periods of the structural
 

vibrations are short compared with those of the vehicle flight modes and rates
 

of applying controls are slow, the air forces produced by the elastic deflec­

tions may be put into equilibrium with rigid body inertia forces. The effects
 

of elastic distortion of the airframe are not, therefore, ignored. The
 

static distortion of the body is calculated and the aerodynamic forces so
 

produced are included with those due to an angle displacement to give
 

a static aeroelastic derivative, which may be used in studying the aircraft
 

dynamics and in calculating trimmed flight conditions. In the motions of a
 

rotary-wing aircraft, however, the natural flapping frequencies of the rotor
 

can be of the same order as the vehicle modes. It, therefore, seems inappli­

cable to compute helicopter stability by the use of aeroelastic derivatives
 

as done with fixed wirg aircraft. It is, however, valid to compute trimmed
 

conditions for helicopters using aeroelastic derivatives, since they are a
 

consequence of a steady state.
 

As well as being useful for calculating rotor steady state conditions,
 

such as trim, calculated rotor aeroelastic derivatives may be compared directly
 

with derivatives measured in the wind tunnel. In wind tunnel testing elastic
 

degrees of freedom are not under the direct control of the experimenter but
 

take up deflections in response to an equilibrium of aerodynamic forces
 

and structural forces due to the displacement of one of the parameters (or
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degrees of freedom) under direct control. The rotor aeroelastic derivatives
 

therefore parallel the aeroelastic derivatives calculated for airplanes.
 

In making a unit change in one of the directly controlled parameters,
 

airloads are created due to both the rigid geometry change and the resulting
 

deflection shape change of the blades. The sum of all airloads due to the
 

change yields the aeroelastic derivatives.
 

The parameters (or degrees of freedom) under the direct control of the
 

experimenter were cyclic and collective pitch and angle of attack. The changes
 

in lift, hub moment, and swashplate moment due to unit changes in these
 

parameters were found experimentally and compared with theoretically calcu­

lated values.
 

In order to calculate the cyclic angles required to trim hub moments or
 

swashplate moments to zero, it was convenient to calculate the aeroelastic
 

derivatives due to twist and precone.
 

In summary the aeroelastic derivatives calculated were:
 

a(M, L, T, Me, M) 

a(e, , p0 
' ot)10 eo0, 

The aeroelastic derivatives were calculated using the eight degree-of­

freedom equations shown in Appendix A. The forcing derivatives are not set
 

to zero, as in computing the system stability, but are retained for the
 

computation of aeroelastic derivatives.
 

The rigid aerodynamic derivatives calculated in Reference 1 contain a
 

mean part and harmonic components, the most significant of which are the 3P
 

components. Only the mean aeroelastic derivatives are calculated in this
 

investigation and they are compared to the mean experimental derivatives.
 

The harmonic components are important from a blade loads and shaft vibration
 

point of view and could form the subject of a separate study.
 

In calculating the aeroelastic derivatives for the fixed-shaft case it
 

may be noted that in stationary axes and steady operation the accelerations
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and velocities of all degrees of freedom are zero. Therefore, the inertia 

'[I] and velocity matrices [2 [I] [T+ + [Damp]] and [Br] need no longer be con­

sidered and the system in steady state equilibrium is represented as follows: 

oEStiffess]
[Mech Stiffness] 


} 
 Fo]@[]]
Drcing.0
IBalancingl 

fForces +j'II]+ [Dl[i] + [S - [B] P Forin. + [Cr6 1]] :o 

In the fixed-shaft case the shaft deflections ®, (),and z are zero and 

the swashplate tilt angles e and 4'are specified (i.e., they are no longer 

free). The only free motions are the three flapping deflections 5o 6e', . 

In calculating the aeroelastic derivatives one of the angles - swashplate
 

cyclic or collective, angle of attack, precone or twist - is made equal to
 

unity and the rest are made zero. Under the influence of this specified unit
 

angle the rotor flapping deflections are found. A second step then allows
 

hub moments, lift,and swashplate moments to be found due to all airloads.
 

These form the aeroelastic derivatives.
 

Blade structural damping and swashplate stationary damping are assumed
 

to be zero. Rotating (feathering) damping is retained. The basic equation
 

may then be written:
 

M 0 

L 0 

T 0 FORCING PO 
0 AERO 

M 
'M + STIFFNESSH 

AERO 
STIFFNESS 

o 
0 

I I 
+-F--I- 7-" 0--------- ()t 

o I ° F-- v-I- Ii-­ z 
H8 

60 ~01 
8 II 

H LI -VT-
I 

T 
I 
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In the balancing forces matrix, the left hand column matrix, the rotor 

generalized flapping terms are set equal to zero. In turn, one of the values 

of e, ), PI , o0, t and (i/V is rotor angle of attack) is set equal to 

unity and the rest set to zero. The unknowns in the matrix equation then 

become the hub and swashplate aeroelastic derivatives M, L, T, ME and mN4
 

and the rotor generalized flapping displacements 6o, 68 and 6 Equation (1)
 

may then be rewritten (and partitioned):
 

M ( JoC (AERO (FORCING 

L STIFFNESS) STIFFNESS) AER0) 

T MSl ASl 9 Ai Po 

S+6 0 E (2) 

0 + 

0 S1MS3 AS2', AS3 CF AF2MS2
1 

0 -J L L 

Note that the (6,1) element of the forcing aero matrix contains the non­

aerodynamic part of the centrifugal force collective flapping term.
 

At this point it may be noted that the hub and swashplate unknown forces
 

are not found in the last three algebraic equations. This allows the rotor
 

flapping deflections to be solved for independently.
 

In the calculation procedure, the values for 8 , 68 and 6 must first 

be found. This is carried out as follows: 

-+CF!' 
 Po
B
 

0 OF1,1 t0 

300
 



Therefore:
 

0
 

: MS3 -AS3 AF2 e MS2 - AS2 -- (3) 

Lt 

Then the body and swashplate aeroelastic derivatives may be determined:
 

M e PO
 

L e
 

-T = Msl]. [A1] + [Ml e---------- -(4) 
M8 68 t 

Me 6 

A unit value of one of PO 80, 8t, i, G or 4 is substituted in equations 
(3)with zero for the others. The set of rotor flapping deflections obtained
 

is then substituted in equations (4)along with the unit value of the chosen
 

angle. The column matrix of hub and swashplate forces becomes the aeroelastic
 

derivatives for the angle.
 

The above derivatives are dimensional, i.e., hub and swashplate moments
 

in ft lb and thrust (the same as lift for small angles) in lb.
 

It is convenient to display the moment and force derivatives in a non­

dimensional form. The moments are divided by dynamic pressure due to forward 

speed, disk area and radius qirR 3 and the forces by dynamic pressure and
 

disk area qnR2. The convenience is due to the fact that the basic aerodynamic
 

derivatives upon which the calculation of the aeroelastic derivatives are
 

based are functions only-of advance ratio when so non-dimensionalized (for
 

a given rotor geometry).
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When the effects of blade flapping are included, for a given mass and
 

stiffness distribution in the blades, the aeroelastic derivatives become a
 

function of flapping frequency (P) and air density (Lock No.) and advance
 

ratio. The aeroelastic derivatives are displayed in nondimensional form
 

versus advance ratio pand flapping frequency (P) for the Lock No. correspond­

ing to nominal sea level air density. The variation with Lock No. is not
 

shown, since tests were performed only at the one air density.
 

Lock No. is an index as to the ratio of air forces to mass forces on a
 

root-hinged, articulated rotor blade. It serves approximately the same
 

function for hingeless rotors. It is, perhaps, more properly thought of as
 

a density relationship; the ratio of air density to blade density (for a
 

given lift curve slope). It is defined as follows (Reference 4):
 

c 	P a R4
 

Pa
Lock No. c 
I
11
 

4
 
1l.17(.002378) .95(2)(165)


268
 

= 4.57 

where:
 

c = blade chord
 

P = air density
 

a = lift curve slope
 

R = rotor radius
 

I1 	= blade moment of inertia in linear flapping
 

Lock No. = 4.57 in all tests.
 

Figure 2 shows an example of the theoretical variation of nondimensional
 

derivatives with advance ratio and flap frequency ratio at sea level air
 

density. Lines of constant forward speed are also shown to facilitate the
 

comparison of the experimental data gathered along lines of constant speed
 

with theoretical. The figures show the variation of hub moment coefficients
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Figure 2. Analytically Derived Hub Moments Due to Cyclic Pitch Angles-Effect of Velocity
 



with the cyclic pitch components eI and 01 . Hub moment is shown as a vector 
c s 

with its tail at the origin and head in the pitch-roll moment field. The right
 

hand rule indicates its azimuth, viewed from above. The great reduction in
 

the coefficients with increasing advance ratio is apparent and the change in
 

azimuth due to increased flapping due to the rpm increase associated with
 

increased forward speed is also apparent.
 

Moment Trim Using Cyclic Pitch
 

Two basic trim conditions are considered: hub mean moments trimmed to
 

zero and swashplate (or gyro) mean moments trimmed to zero. These are referred
 

to in this report as the hub trimmed or swashplate trimmed conditions.
 

Control of helicopters is accomplished through pitch and roll moments
 

applied to the airframe by the rotor. These moments are produced primarily
 

through blade cyclic pitch angles which have limited maximum amplitudes. The
 

fraction of the available cyclic angles used in trimming rotor hub moments to
 

zero is therefore very important since the angles remaining may seriously
 

limit the moments which may be applied in some azimuth.
 

Cyclic angles can be applied to nullify the moments produced by blade
 

geometry and flight operating condition. Rotor precone tends to apply a
 

nose-up pitching moment to stiff bladed cantilever rotors and negative
 

lateral cyclic pitch 01c (so called for its effect on articulated rotors) is
 

required to compensate it. Angle of attack, collective pitch and blade twist
 

tend to apply rolling moments which can be cancelled by longitudinal cyclic
 

pitch Sis.
 

It is important to note that this study considers only the mean moments
 

applied to the shaft and not the moments that occur periodically relative to
 

rotor azimuth position. At low rpm these moments may be cancelled by judicious
 

use of cyclic and collective pitch varying with azimuth. Trimmed conditions,
 

being steady state, are well suited for computation by the use of aeroelastic
 

derivatives. Hub moment trim is easily calculated using hub moment aero­
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elastic derivatives. The cyclic angles required to trim hub moments to zero
 

may be found by considering only the aeroelastic balance of hub moments.
 

eM 3M r M 3M 3M 3M" 65
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and the cyclic angles may be found directly:
 

I am aM 1 aM am am aM e.75 
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The cyclic angles required to trim the swashplate moments to zero are
 

found in identically the same way. The effects of rotating damping (feather­

ing friction) CR must be included in the calculation of the aeroelastic
 

derivatives.
 

Swashplate moment trim is important for gyro controlled.feathering moment
 

feedback rotors because the gyroscope responds to moments applied to the swash­

plate and trims them automatically to zero in the absence of pilot applied
 

control moments. This also trims hub moments to zero up to an advance ratio
 

of approximately p.= 0.8, where the swashplate moments are more or less propor­

tional to hub moments; but above this (4>0.8),increasingly larger hub moments
 

occur with zero swashplate moments due to the reverse velocity over the re­

treating blades and to feathering friction effects on the large cyclic angles.
 

The cyclic angles to trim the swashplate, therefore, tend to increasingly
 

disagree with those required to trim the rotor as the advance ratio increases.
 

The hub moments due to swashplate trim, as calculated from equations (5) and
 

(2) below, therefore, represent the free-gyro condition.
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Rearranging equations (2) and (3) after setting the left hand sides equal 

to zero: 
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Swashplate Trim
 

The hub moment trimmed swashplate angles and corresponding swashplate moments
 

are obtained by using equations (4) and (3)respectively. Similarly, the
 

swashplate trimmed angles and.hub moments are determined by employing equa­

tions (5)and (2). The swashplate angles may be transformed to blade cyclic
 

angles by the sine cosine transformation:
 

61c [-.4347 .7530[ 1I1
+-[753034~ ~.4

(The effect of mechanical advantage k is also included. ft gives the gyro
 

an increased tilt per unit cyclic angle applied.)
 

Theoretical cyclic pitch angles required to trim hub moments to zero
 

are shown in Figure 3 and to trim swashplate moments to zero in Figure 4.
 

The conditions were as follows:
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Figure 3. 	Analytically Derived Cyclic Pitch Angles For Hub Moment
 
Trim - Effect of Velocity
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The variation of the cyclic pitch vector is shown with respect to advance
 
ratio and forward speed. The ranges of each were:
 

0.4 < [t < 4.o 

0< V < 120 Kts.
 

From the curves it may be seen that 81 is a function only of advance ratio,

s
 

but 61 varies according to both advance ratio and forward speed, or more pre­
c


cisely, according to advance ratio and flap frequency ratio.
 

It is interesting to note that over the advance ratio range from p = 0.4
 

almost to jL = 0.8 the cyclic pitch angles to trim both hub and swashplate
 

moments to zero are almost the same. Rotating damping (feathering friction)
 

was assumed to be zero.
 

Control Effectiveness
 

As used in this report, the term "control effectiveness" refers to the
 

moments produced at the rotor hub by the application of unit control moments
 

to the swashplate. The shaft is prevented from pitching or rolling both in
 

the tests and in the analyses. In a free flying aircraft, control moments
 

result in steady rates of roll and normal accelerations with somewhat dif­

ferent aerodynamic forces on the rotor, so the definition of "control effec­

tiveness" is different in that case.
 

In the fixed-shaft case the free-gyroscope control system affords a
 

simple method of applying hub moments to the rotor. The control system, in
 

the absence of operator applied swashplate control moments, automatically
 

trims hub moments to near zero. Then, as the operator applies control
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moments through the free-floating swashplate, hub moments are produced as
 

balancing feathering moments build up.
 

Feathering moments are proportional to root bending moments, and in the
 

advancing flow region, the factor of proportionality is the blade sweep angle
 

A. In the reverse flow region, the factor reverses sign and becomes variable
 

with azimuth and advance ratio. Therefore, as long as effects of the reverse
 

velocity region remain small relative to the effects of the advancing flow
 

(at advance ratios less than, say, g = 0.8), the swashplate moments are
 

approximately equal to hub moments factored by A (with unit mechanical
 

advantage).
 

The mechanical advantage is the ratio of swashplate tilt to cyclic pitch
 

and is denoted by "k". The ratio of swashplate moment to hub moment with
 

zero cant angle therefore, becomes-L at modest advance ratio.
 
k
 

For purposes of flight stability, the feathering linkage is designed to
 

rotate the swashplate moments in azimuth through the cant angle*o . This effect
 
0
 

may be seen in the control effectiveness results.
 

Because the azimuth and amplitude of the reacting hub moment remain
 

fairly constant the cyclic angles are forced to take on large azimuth and
 

amplitude changes as the rpm and advance ratio change.
 

If a servo control moment is applied rapidly, the control mode (indicated
 

by an advancing precessive motion of the gyroscope) will be excited. It is
 

well damped down to a low rpm and then becomes unstable with further rpm re­

duction. The control effectiveness discussed here is a measure of the in­

cremental hub moments remaining after the transient motions and forces have
 

damped out for the stable system.
 

The control effectiveness ratios are easily evaluated using the aero­

elastic derivatives. The steady-state moment equilibrium equation may be
 

written as follows where the partitioned 4x6 matrix consists of aeroelastic
 

derivatives:
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or:
 

A LJ
[Ams]
Ittime{:I(5 

Inverting 
 :AM]{]
 

= J[AS] AM F(6) 

Combining (4) with (6) to eliminate the swashplate angles:
 

ALl [- [AMI 
[AMEj

1AM J 1 LI Altt--------' 

And the control effectiveness ratios can be defined as:


IALI
[CONFTOLJ A0 
AM L0ATIOS _J [AM4J 

Therefore, the control effectiveness ratios are: 

L -lLAM' [AMS ] 
ONTEOL] 
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Fixed-Shaft, Rotor-Gyroscope Stability
 

The stability of a rotor-gyroscope system with the rotor shaft mounted
 

so that it could not pitch, roll, or plunge (as was tested in the wind tunnel),
 

is more simply predictable than a system mounted in a free-flying aircraft.
 

The differences are discussed in detail in a later section.
 

The equations of motion of the rotor-gyroscope-body, which are derived
 

in Appendix A for a free-flying aircraft, are easily reduced to the fixed­

shaft case since pitch, roll, and plunge displacements and velocities in the
 

fixed-shaft case are zero. All forces due to these motions are zero, which
 

permits the first three columns and the first three rows of all matrices to
 

be deleted. Therefore, the fixed-shaft equations of motion are obtained from
 

the free-flying equations of notion by extracting the lower right 5x5 terms
 

8
from the 8x matrices, thereby reducing the size of the mathematical repre­

sentation from eight degrees-of-freedom to five degrees-of-freedom.
 

The stability of the five degree-of-freedom linear system can be assessed
 

from the roots of the characteristic equation of the system (as long as the
 

periodic components of the differential equation coefficients are ignored).
 

The roots occur in pairs that indicate either damped or unstable oscillation,
 

or they occur singly indicating subsidence or divergence. Since the equations
 

are second order and five in number, the total number of roots is 10 (the
 

product of the order and the number of equations).
 

For the free gyro case, the roots generally consist of five oscillating
 

roots over a large range of rotor speeds. At some low value of rpm, as rotor
 

speed is reduced, one mode will split into two real roots, one subsident and
 

the other divergent or unstable.
 

Each of the modes of motion corresponding to the roots consists of comb­

inations of degrees of freedom in ratio to the one of maximum value. The 

ratios of displacements are complex for oscillatory modes and real for 

aperiodic modes. The modes are named so as to describe their most prominent 

features. A typical example is shown (Figure 5, 6 and 7) in which the rpm is 

reduced from 100 percent to zero at 100 knots. The swashplate is free of spring 

restraint and the rotating (feathering) damping C = 7 ft lb/rad/sec and the 

swashplate damping CS = 80 ft lb/rad/sec. 
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Theory. - The five degree-of-freedom equations shown in Appendix C
 

may be written in abbreviated form as follows:
 

+ +[B[1]0 +I[DBr] [[] 0 

Where P is the vector of displacements of the degrees-of-freedom 

e 

60
 

60
 

Assuming that the motions of the system are expressible in exponential form,
 

their time derivatives become:
 

p= p0o 

= po t 

x2 = o eXt 

and the differential equations become:
 

[S] + [B]] p =0
X2 [In] + X[n] + [B]] + 

For non-trivial solutions the determinant of the equations must equal zero:
 

A 2 I1] + X[[D] +[Br] +[S] + [B] = 0 
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The values of X which cause this to occur are called the roots (sometimes
 

eigenvalues) and indicate the frequency and damping in each of the modes of
 

transient oscillation. The roots are complex in general:
 

X = X
r ±iX i
 

The exponential decay or amplification and the frequency are determined as
 

follows. First note that
 

(XriiXi)t krt ± iX .t 

p poe r poe e 

and 

if X is negative, the oscillations subside;
r 

if X is positive, the oscillations diverge and are unstable.
r 

The frequency in radians/sec is given by Xi = Wdamped and this is the damped 

natural frequency. The undamped natural frequency is given by: 

k2 2' 
= .+ X

nundamped r 

The time required for the oscillation or subsidence to reduce to half the
 

original amplitude may be found as follows:
 

the time to subside to I amplitude Tile -1
 

r 

and from this the time to subside to half the original amplitude
 

TO/2 = log 2 TI/e 

= .693 TI/e 

1i/2 X 
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and the reciprocal of time to half amplitude is used as an index to stability
 

in these analyses.
 

1 1.442 k 
T1/2-r 

The critical damping ratio of a mode is given by:
 

C r 
Cr + 2 

The modes of motion corresponding to the roots of the equations (some­

times called eigenvectors) are determined by substituting the value of the
 

nth root Xn for X and then evaluating the nondimensionalized vector of 

displacements for the nth root. The modal vector divided by one of its 

displacements could be as follows: 

e/e 60/0
Let 

and the equation becomes
 

[X"2 [1] + Xr [D + [B,]] + [S] + [B]] {pn} 0 

In the product of the square matrix and the mode vector, the first
 

column will have no unknown quantities, in this example, as follows: 
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a1 1 1 + 1 2  /e + a1 3  %/G + 0 

a 2 1 1 + a2 2 (/e + a2 3  6/6 + 0 

+ 4/6 6o/e + = 0a 3 1 1 a 3 2 + a3 3  

The equations may then be solved for the four unknown ratios by dis­

carding any one of the five equations and the transferring the constant column
 

to the right hand side 

13- 4)/e 
a1 2 a13 
 all
 

a22 a23 6/e a21
 

a32 a33 64/e a31 

Se/C 

Then
 

-1 

/e "a12 a13 
 all
 

60/0 .aa2 2  a23  2 1 

66/6) a 3 2 a33 a31 

The modal vector then would consist of unit real gyro pitch angle and
 

complex ratios of the other displacements to the unit pitch displacement, in
 

the case of an oscillatory root. Modes with real roots have real modal
 

vectors.
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In the case of an oscillatory mode the projections in the real axis of
 

All components
the components of the vector represent the actual motion. 


maintain the same amplitude and phase, in the imaginary plane, relative to
 

each other but rotate as time passes making one complete resolution in each
 

period of oscillation, counterclockwise.
 

It should also be noted that the modes are orthogonal to each other;
 

i.e., motions entirely in one mode do not create forces that disturb other
 

modes.
 

Modal vectors may be nondimensionalized relative to any element of dis­

placement. In this example, they have been arbitrarily scaled relative to the
 

largest element.
 

Example: The variation of the roots and vectors of the characteristic
 

equation over the rpm-range is shown in Figures 5, 6, and 7. The case
 

chosen for examination was fixed-shaft at an airspeed of l0 knots EAS with
 

a free (or unsprung) swashplate. The swashplate damping CS was 80 ft lb/ 

rad/sec and the rotating damping (or feathering friction) CR was 7 ft
 

lb/rad/sec.
 

Figure 5 shows four of the five oscillating roots of the system displayed
 

relative to real-imaginary axes. The real part of the root is displayed along
 

the abscissa (it is also the reciprocal of the time to 1/e amplitude). The
 

imaginary part of the root is displayed along the ordinate and is the damped
 

natural frequency in radians/sec.
 

This way of displaying the variations of roots with rpm is particularly
 

useful since radial lines from the origin mark contours of.constant critical
 

damping ratio C/Cr and the stability of each root becomes immediately apparent.
 

The four roots displayed are the rotor nutating, rotor collective, rotor
 

precessive and the gyro precessive. The gyro nutating mode is not shown
 

because it is very high frequency and lightly damped and doesn't charge with
 

rotor rpm.
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Another way of displaying the roots is shown in Figure 6 . The damped 

natural frequency in cycles per second and the reciprocal of the time to half 

amplitude 1/Ti
2 

are displayed versus rotor rpm. This method allows the stability 

at any given rpm to be assessed at a glance.
 

Figure 7 shows the modes of oscillation. The vectors of degrees of
 

freedom (mode shapes) are shown at full rpm, 30 percent, and 0.1 percent rpm
 

(or essentially the stopped condition).
 

Analysis of transient motions of the rotor gyro mechanical system in
 

terms of mode shapes, frequencies, and decay times, required that the equations
 

be linear and without periodic coefficients. The linear mathematical model
 

discussed here was abstracted from the more complex mechanical system, which
 

contained nonlinearly coupled flap and in-plane modes, a spring-restrained
 

gyro, plunge degree of freedom, lack of precise inertial and geometric sym­

metry, and a shaft that was mounted on a spring-supported mass.
 

Had the nonlinear complications been considered, then modes, frequencies,
 

and damping could not have been found in closed form. The variations of the
 

degrees of freedom with time could only have been found through step-by-step
 

integration or electronic analog, afid the stability inferred from this response.
 

Modelling only the principal aspects of the system allowed the basic
 

motions, as discussed below, to be -clearly seen.
 

The gyro precessive mode is characterized by a frequency lower than those
 

of the rotor modes. Examination of Figure 7 shows that motion in the mode
 

consists primarily of gyroscope, or swashplate precessite tilting. Since the
 

physical motion of a mode is given by the projection of ith modal vector
 

components in the real, or horizontal, axis as it rotates counterclockwise at
 

the mode frequency, it may be seen that the modal precession is advancing (or
 

wobbling in the direction of rotation). Accompanying the gyro precessive
 

wobble is a much smaller precessive wobble of the disk plane, which diminishes
 

as the rpm reduces.
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The rotor precessive mode frequency is somewhat higher than the gyro
 

precessive frequency. but still much lower than the rotor rotation rate. From
 

full rpm down to less than 30-percent rpm, the mode is a regressive precession
 

(wobbling in the opposite direction to the rotor rotation), and the blade cyclic
 

pitch is approximately the same magnitude as blade flapping but opposite in
 

sign (but still regressive). At zero rpm, the mode degenerates to a negative
 

pitch flapping relative to the airstream combined with a negative collective
 

flapping.
 

Had the rotor blades been articulated and the aerodynamic forces been
 

zero, the rotor precessive mode frequency would have been zero. Relative to
 

rotating coordinates, the blades would have oscillated in flap at 1P. Any
 

blade root spring effect added to the articulated blades would cause them to
 

simulate hingeless rotor blades and would increase the flap frequency above
 

1P in rotating coordinates. This would result in a small frequency in station­

ary coordinates, and the cyclic flapping would have a regressive wobble.
 

At full rpm, the cyclic pitch angle participation in the mode is equal
 

and opposite the flapping motion. When the rotor flaps down, the blades 

feather nose-up in that region of the disk so that the aerodynamics tend to
 

reinforce the structural and centrifugal stiffness again increasing the
 

frequency of the regressive flapping motion. At zero rpm the mode degenerates
 

to a negative pitch flapping relative to the airstream combined with a
 

negative collective flapping.
 

The rotor collective flapping mode is almost pure at full rpm. At zero
 

rpm, it degenerates to almost pure roll flapping mode relative to the air­

stream. Its frequency is slightly higher than the rotor rotation rate due to
 

the root spring effect.
 

The rotor nutating mode is characterized by a frequency slightly larger
 

than twice the rotor rotating rate and an advancing precessive motion of the
 

pitch and roll flapping degrees of freedom. The mode is similar to the nutating
 

mode of a gyroscope, and derives its name from that fact.
 

As the rotor is stopped, the mode changes to a combined pitch flapping
 

and coning (collective flapping) motion.
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Wind Tunnel Simulation of Free-Flight
 

The most convenient way to test a rotor in the wind tunnel is with its
 

shaft fixed against pitching, rolling and plunging. The results of such-tests
 

validly represent flight cases in which the shaft low frequency motions are
 

insignificantly small. These cases include level flight of stable-systems and
 

should be valid for rotor performance, trimmed flight swashplate angles, and
 

fluctuating loads provided that the vibrating shaft deflections are small.
 

On the other hand, the transient response of the system to sudden force 

applications would not possess representative frequencies, dampings, and 

influences of the degrees of freedom if the body in free flight would take on 

large motions following the force application. In fact it is conceivable that 

a control system that behaves well in the fixed-shaft condition could be 

unstable in free flight. One parameter must be carefully optimized for free 

flight stability but has absolutely no effect on fixed-shaft rotor gyroscope 

stability. It is the cant angle (t) between the gyro tilt axes and the 

feathering displacement axes. 

The difficulty and expense involved in mounting a model in the tunnel sc
 

as to be essentially free requires that a careful assessment be made of gains
 

obtainable by freeing the various rigid-body degrees of freedom:
 

" pitch and roll
 

* plunge
 

* yaw and sideslip
 

* surge
 

The logic which led to the decision to test the fixed-shaft configuration
 

was as follows. The significant aspects of slowing and stopping a rotor were
 

assumed to be high advance ratio aerodynamics, effects of stiffened cantilever
 

blades, and high-speed gyro control. These aspects played important parts in
 

the:
 

" automatic trimming of hub moments
 

* effectiveness of the control system 

* stability of the rotor-gyro system 

* dynamic rotor loads and vibrations. 
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The procedure adopted was to develop methods of predicting the behavior
 

of the fixed-shaft system - methods that adequately treated high advance ratio
 

aerodynamics, very stiff blades, and a gyro-controlled feathering system. It
 

was presumed that to extend the methods to include the effect of the rigid-body
 

degrees of freedom would be straightforward. This logic does depend on how
 

large an extrapolation is necessary to include the body degrees of freedom.
 

There is some risk that basic rules learned on one system might not apply
 

well, in extenso, to more complex situations. It is expected, however, that
 

verification of the fixed-shaft tests greatly increases the likelihood that
 

the free-flight analyses would be valid.
 

There is always the element of doubt which quasi-free-flight tunnel
 

tests would clear up. The question to be assessed at this time is "Are
 

gimballed-model wind tunnel tests worth the additional difficulty and expense?".
 

If gimballing a model in the tunnel is to represent an inflight stoppable
 

rotor aircraft, the tests would be very difficult, because a full set of con­

ventional airplane controls, elevators and ailerons (perhaps flaps) would
 

have to be installed on the model and a full rotor harmonic cyclic-collective
 

active swashplate control system would have to be developed. A pilot would
 

have to remotely "fly" the vehicle in the wind tunnel.
 

In the case of the slowed rotor compound helicopter, with a rotor slowed
 

to approximately 50 percent rpm, many of thp expensive requirements vanish.
 

The rotor controls can be used to control the aircraft. The existing passive
 

high-speed gyro system might be adequate, at least for test purposes. In
 

addition, the possibility that limited free-flight freedoms (pitch and roll)
 

could yield a majority of the desired information leads to relatively simple
 

mechanization of the freedoms.
 

The differences between fixed-shaft and free flight can be resolved by
 

logic and the analyses discussed herein. Free flight involves:
 

* pitch and roll
 

* plunge
 

* yaw and sideslip
 

* surge.
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The surging or axial degree of freedom involves the speeding up and
 

;lowing down of the aircraft. Leaving it out of analyses prevents the cal­

culation of phugoid motion (of very long period) which involves the inter­

change of potential and kinetic energies of the airframe as a whole. The test
 

section size of a wind tunnel is too small to permit the perturbation in
 

position (from a mean) that would be necessary to include these motions. There
 

is some logic to the point that the motions do not really reflect highly
 

coupled rotor/airframe motions, because of the very long period, of the order
 

of 10 seconds, of the motion compared to the periods of other rotor/airframe 

modes. Restraining the aircraft fore and aft motions is necessary for tunnel 

operations and is not expected to materially affect rotor/airframe interactions.
 

Yaw and sideslip are important to yaw control and stability and the
 

effectiveness of the tail rotor. These modes are also of relatively long
 

period, or are aperiodic. The dutch roll-like modes could be expected to be of
 

the order of half the period of the phugoid-like modes, perhaps three to four
 

seconds, and also reflect the effects of gravitational attraction. The
 

motions are a bit too large to stay within the confines of the wind tunnel
 

test section, but rotor sideslip derivatives are not fundamentally different
 

from rotor symmetric derivatives; the azimuth change of air approach to the
 

rotor in effect merely shifts the rotor reference axis. The motions are of
 

long enough periods so as to not intimately react with the rotor-gyroscope­

body motions.
 

Plunge is fundamental to the correct calculation of the short period
 

pitch mode. Pitch-plunge coupling is the essence of this mode and is expected
 

to couple with roll (due to the rotor in the system). So the pitch-roll­

plunge motions should be important to the fundamental rotor-gyro-body modes.
 

If the plunge mode is to be suppressed in the wind tunnel, knowledge of
 

gimballed model representative rotor-gyro-body motions must first be obtained
 

by analysis. Eliminating the plunge degree of freedom by supporting the model
 

would simplify the suspension, and because the model is about twice as heavy
 

as a free-flight vehicle (for the size of the rotor), would allow the wing to
 

be properly loaded.
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The study reported herein, therefore, is devoted to answering the two
 

questions:
 

1. 	What are the differences between free-flight and fixed-shaft
 

stability, and are the differences worth the expense of testing
 

by gimballing the model?
 

2. 	Does suppressing the plunge degree of freedom (and effectively
 

eliminating the overweight condition) and suffering the oversize
 

pitch and roll inertias fundamentally change the behavior of
 

the gimballed model from free-flight behavior?
 

These questions are answered under "Topics Related to Wind Tunnel Tests"
 

by finding the roots and stability mode vectors of the characteristics equa­

tions of the rotor-gyroscope-body equations of Appendix A for both the free­

flight aircraft and the gimballed model and comparing them with those of the
 

fixed-shaft case.
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WIND TUNNEL MODEL 

Description
 

The wind tunnel test model, shown in Figure 8, has a 3-bladed 

33-foot diameter hingeless rotor, and a mechanical-hydraulic control system 

incorporating a high-speed gyro. The pertinent vehicle geometry is presented 

in Table I. Power is provided by a Pontiac engine, driving through a 

torque converter, transmission, slip differential and sprocket and chain to
 

the rotor shaft. Slowing and stopping the rotor are accomplished by a hy­

draulically actuated brake. The support structure, engine and drive train are 

enclosed in an aerodynamic fairing simulating a compound helicopter fuselage. 

Wings are also available for the model, but both analysis and tests were per­

formed in the wing-off configuration, to more correctly approximate the con­

ditions of the aerodynamic analyses. 

The complete model was rigidly mounted in the wind tunnel on two forward 

struts at the sponsons, and one telescoping tail strut. Ball and socket
 

joints at the attachment points permitted swivel freedom for angle of attack 

changes, which were accomplished by remotely varying the tail strut length. 

The three support struts reacted through the wind-tunnel model balance system 

to provide basic aerodynamic force and moment data. 

Although the model has been designed specifically for the investigation 

of slowed/stopped rotor behavior, the rotor should be considered as repre­

sentative rather than optimum. The rotor is specially stiffened to resist 

blade bending divergence when stopped. Figures 9 through 13 show the
 

blade mass and stiffness radial distribution. A previous tunnel entry with
 

the model demonstrated the structural integrity of the blades in the stopping, 

starting, folding and unfolding operations and is discussed in Reference 5.
 

Control System
 

A feature of the vehicle is the provision of two essentially different
 

control system modes, the primary or free swashplate mode, and the locked
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TABLE I 

MODEL PHYSICAL PARAMETERS 

Main Rotor
 

Number of blades 3 

Radius 16.5 feet
 

Chord 1.17 feet (14 inches) 

Airfoil NASA 632015 

Solidity O.0675 

57.7 ft2
 Blade Area 


855.3 ft2
 Disc Area 


Blade pre-cone angle 2.25°
 

°
Blade forward sweep 1.50
 

Blade twist (down at tip) 9.43' (0.572°/ft)
 

Blade twist axis 27% chord
 
(passes through shaft CL)
 

Blade Feathering axis 32.5% chord at R.S. 30.85 inches
 

Rotor 100% rpm 355
 

Tip speed 613.4 ft/sec at 100% rpm
 

Mast angle (forward tilt) 00
 

Rotor polar inertia 849 slug ft2
 

Gyro
 

100% rpm 10,000 

Gyro cant angle 600 

Gyro polar inertia 0.30 slug ft2 

(ring off) 
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swashplate mode, each having its own pair of cyclic control sticks. A
 

schematic of the system is shown in Figure 14.
 

In the primary mode the characteristics of the high-speed gyro are
 

utilized. Rotor control is achieved by use of pitch and roll servo-damper
 

actuators, each of which applies a force to the swashplate independent of the
 

position of the actuator piston in the cylinder. Motion of the control
 

stick directs the net force upon it. The force is then transmitted to
 

the gyro via the belicrank, swashplate and control rods. For a stable
 

system the gyro, in response to this input, will rapidly take up a position 

dictated by equilibrium of the moments applied to it by the controller and 

those fed back to it from the rotor. 

At conversion speed, the rotor/gyro system is inherently stable at nor­

mal operating rpm, but stability deteriorates with decreasing rpm. At some
 

low rpm the system becomes unstable. Since operation in this condition is
 

unacceptable the primary control mode is supplemented by an augmentation
 

spring at rpm less than 110, as indicated by an rpm sensing valve. The spring
 

force provided by this unit acts to assist the gyro in preventing blade
 

feathering divergence. Motion of the primary control stick will still result
 

in a force output from the servo-damper actuator, but with the spring unit
 

engaged the net output from the bell-crank will be significantly reduced, and
 

the primary control will be relatively ineffective. The augmentation spring
 

was not employed during these tests.
 

In the locked swashplate control mode, the locking function is performed
 

by the spring augmentation unit. The gyro tilt angle is. commanded by the 

position of the control stick, via the position servo-actiuator within the 

unit, the gyro is thus constrained from precessing and is isolated from the
 

control loop.
 

The spring augmentation unit serves an additional function in the Failure
 

Prevention System. When flapwise blade loads reach a pre-set value (approxi­

mately 50% of failure load), the unit is automatically locked, preventing
 

further control application in either mode until the system is disarmed.
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Because of the nature of the test program, remote control of collective
 

pitch was not considered essential. To preclude an incident due to leakage
 

in the collective servo-actuator, it was replaced by a solid, adjustable link.
 

Ground Tests
 

In preparation for tunnel entry, an extensive ground test program was 

conducted to functionally check out the vehicle operation and determine
 

its strength and vibration characteristics. The fuselage shell was prqof
 

tested to a load distribution representative of the limit wind tunnel
 

test condition for forebody loads, i.e., 180 KTS forward speed, and 40 shaft
 

angle of attack. The limit aft body load was considered to occur at a 5 yaw
 

angle, at 180 KTS and this condition was simulated by loading the vertical fin.
 

The control system strength capability and stiffness characteristics were
 

examined by replacing the actuators by solid links, then proof testing to
 

represent both collective and cyclic loads. No evidence of structural failure
 

or permanent deformation was present. The effect of measured cyclic and col­

lective stiffness on the system aeroelastic stability was assessed analytically
 

and found to be small.
 

Shake tests on the rotor were performed to identify the important blade
 

flapwise and in-plane non-rotating natural frequencies and mode shapes. The
 

model structural framework was anchored to the ground, and the control actua­

tors were replaced by solid links. Figure 15 shows the test results,
 

and the calculated effect of rpm on the mode frequencies.
 

The rotor whirl test program served as a checkout of vehicle systems
 

operation, rotor stability and loads over a range of rpm, lift and body mo­

ments that encompassed the planned wind-tunnel test envelope. Based on this
 

program, improvements were made to control system hardware, and the procedures
 

for real-time monitoring of rotor and control system loads and stability were
 

evolved.
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A safety engineering analysis of the system, operating within the
 

prescribed test envelope, was made in sufficient depth to assure maximum
 

safety consistent with operational requirements. The study encompassed the
 

model and its components, interfacing subsystems, equipment, instrumentation
 

and test crews. A Gross Hazard Analysis considered the probable nature and
 

impact of failures within the model's power and drive system, rotor control
 

system, hydraulic distribution system, electrical distribution system, control
 

instruments and tunnel drive system. A Failure Mode and Effects Analysis
 

examined in greater detail the hydraulic and electrical components of the rotor
 

control system.
 

Instrumentation
 

Instrumentation was installed to provide a record of the rotor and control
 

system behavior during the test program, to facilitate control of the vehicle
 

and to permit real-time monitoring of critical system loads.
 

A summary of the parameters measured is given in Table II.
 

Loads data were obtained from foil type strain gages wired into bridge
 

circuits, and position data from angular or linear potentiometers. Blade
 

loads and rotating control system measurements were transmitted through shaft
 

mounted slip rings. Lift, pitch moment and roll moment were measured by load
 

cells mounted on longitudinal and lateral axes through the rotor center-line,
 

36 inches below the hub. As a consequence of this vertical location, the
 

pitch and roll moment outputs reflected the presence of in-plane forces at the
 

hub in addition to hub moments. The shaft bending bridges were located close
 

to the hub (11 inches) and this data, when transformed to stationary axes,
 

was preferred to the load cell output as an indication of hub moment.
 

Transducer sensitivities were measured by direct calibration over the
 

expected operating range, and the electrical equivalent load obtained by
 

inserting a shunt resistance on one leg of each bridge.
 

The parameters measured during the test program were recorded on three
 

data acquisition syst6ms, each tailored to a particular task. The basic
 

recording instrument, a CEC oscillograph with 28 active channels was in
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TABLE II
 

INSTRUMENTATION MEASUREMENTS
 

Item Measurement 


1 Lift 
2 Pitch Moment 
3 Roll Moment 
4 Shaft Bending at 00 
5 Shaft Bending at 900 
6 Collective Position 
7 Swashplate Pitch Angle
8 Swashplate Roll Angle 
9 Swashplate Pitch Moment 

10 Swashplate Roll Moment 
11 No. 1 Blade Angle 
12 No. 2 Blade Angle 
13 No. 3 Blade Angle 
14 No. 2 Pitch Link Load 
15 Swashplate to Gyro Rod Load 
16 Shaft Torque 
17 Shaft Lateral Vibration 
18 No. 2 Flap Bending at Station 10.7 
19 No. 2 Flap Bending at Station 21.3 
20 No. 2 Flap Bending at Station 43.0 
21 No. 2 Flap Bending at Station 69.0 
22 No. 2 Flap Bending at Station 118.0 
23 No. 1 Flap Bending at Station 43.0 
24 No. 3 Flap Bending at Station 43.0 
25 No. 2 Chord Bending at Station 10.7 
26 No. 2 Chord Bending at Station 69.0 
27 Index Pip 
28 Strain Gage Voltage 
29 Time Code 

* No data due to faulty amplifiers 

No. 1 

Osc. 


X 
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X 
X
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Osc. Recorder
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X X
 
X X
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X 

X X 
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X X 
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continuous operation throughout the tests, at high speed for data points and
 

envelope expansion, and at low speed elsewhere. Supplementing this for the
 

derivative and control effectiveness tests was a 14 channel FM tape recorder,
 

the first item in an automated data analysis system. Rotor/gyro response to
 

step control inputs was recorded on an additional oscillograph, with fewer
 

channels for easier reading, and greater sensitivity for more accurate data.
 

Time correlation of the three sets of data was achieved by recording time code
 

on each.
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WIND TUNNEL TESTS
 

PROCEDURES
 

When the detailed test plans were written, it was anticipated that rotor
 

instability or high structural loads might make operation in some areas unsafe,
 

and that severe rotor resonance at a planned test point might introduce a
 

factor into the test data which had not been considered in the analysis, making
 

a direct comparison invalid. In recognition of these factors, the criteria
 

used in planning the test procedures were, first, assure the safety of the
 

vehicle, then sequence the tests such that maximum useful data is obtained.
 

To obtain maximum useful data, the tests and theoretical work were con­

ducted so as to isolate error. The experimental aeroelastic derivatives
 

depended only on the slopes of the instrumentation calibration and were not
 

subject to calibration zero error. Each of the derivatives depended on the
 

variations of a restricted set of parameters, thus allowing errors to be
 

isolated. Verification of rotor derivatives by test eliminated them as a
 

source of error in the stability analyses.
 

In order to establish a safe operating envelope, a series of Safety Tests
 

were performed at each forward speed prior to gathering technical data. In
 

the fixed swashplate control mode the rotor was demonstrated to be free from
 

low frequency instabilities by pulsing the cyclic control and observing the
 

response, over the test rpm range. Resonant modes in the rotor-body-support
 

strut system were located by making slow rpm sweeps, first at zero tunnel
 

speed then with increasing forward speed.
 

Having established the "avoid" regions at each tunnel speed by the Safety
 

Tests, the Technical Tests were performed in the following order:
 

(1) Fixed swashplate derivative tests
 

(2) Free swashplate stability tests
 

(3) Free swashplate controls effectiveness tests
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Transition from fixed to free swashplate control mode was always accomplished 

at 40 knots in these tests to minimize possible transient loads. When changing 

tunnel speed the rotor speed was set to 200 rpm where loads were generally 

small.
 
Fixed swashplate derivative tests. - The planned procedure called for the
 

operator to trim out hub moments, then apply an increment in swashplate pitch
 

angle holding roll angle constant, and vice versa, to give the variation of
 

hub moment and lift due to each cyclic angle. However due to leakage in the
 

servo-actuators, and air in the hydraulic lines, the acttators were not com­

pletely effective in locking the swashplate. When applying an incremental
 

swashplate pitch angle from trim, for example, corrective action was necessary
 

to maintain the roll angle at its trim value. Thus the elimination of cross­

coupling in control application was dependent on the accuracy and resolution of
 

the swashplate angle panel instruments.
 

Because of the vertical offset of the moment load cells from the hub, the
 

panel moment indicators were not used to trim the rotor. An oscilloscope
 

display of shaft bending moment was provided, so that the operator, by zeroing 

the iP component, could achieve a satisfactory trim, except where harmonics 

higher than lP obscured the trace. 

In order to obtain accurate derivatives, a minimum of four swashplate angle 

increments from trim (two positive, two negative) were applied in each of 

pitch and roll, the maximum input being dictated in most cases by the blade 

flap-wise or chordwise strength relative to allowable endurance stresses. An 

X-Y oscilloscope presenting blade chord and flap bending moments, was used to
 

monitor both blade loads and blade dynamic behavior. Rotor strength limits
 

were rarely approached, and when high loads were experienced Failsafe System
 

actuation prevented further control application. In such cases, the cause
 

of the high loads was determined, the system was then disarmed, and corrective
 

action taken. 

To obtain the lift and moment derivatives with respect to angle of attack, 

the test procedure followed was to trim the rotor at aR = 00, then increase aR
 

in 0.5 degree or 1.0 degree increments. As with the cyclic derivative tests,
 

it was not possible to maintain the cyclic angles at the values for trim at
 

00, so the data reflected the changes in these parameters in addition to
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the variation in angle of attack. Blade endurance loads dictated the maximum
 

angle of attack achieved in the tests.
 

The majority of the test points in the program were performed at a col­

lective angle setting of 8 .75R= 1.50° . Time limitations prevented a thorough 
investigation of the effects of collective angle changes. The adjustable link 

in the collective control system was set to give a collective angle of
 

e0.75R = 3 degrees, and data was recorded at nominal trim for a number of 

test conditions.
 

Free swashplate stability tests. - With the gyro operating at its design
 

speed of 10,000 rpm, the rotor/gyro stability in the primary control mode was
 

obtained by applying step moment inputs about the swashplate roll axis, start­

ing at 320 rpm and at gradually reduced rotor speeds. The stability and fre­

quency of the swashplate angular response were determined from the oscillo­

graph records after each test. The decay rate was plotted versus rotor rpm,
 

and the trend examined before testing at a lower rpm. In this manner the rpm
 

at which the system became neutrally stable was determined graphically. The
 

unstable region was never penetrated during testing.
 

Free swashplate control effectiveness tests. - The test method here was
 

similar to that employed in the fixed swashplate cyclic derivative tests,
 

except that incremental swashplate moment, rather than angle, inputs were
 

made, by means of the primary control system. Once again a minimum of four
 

control increments from trim were applied in each axis, the other control
 

being left untouched.
 

The free swashplate test envelope was severely restricted, because of the
 

poor stability of the rotor/gyro system at low rpm and high advance ratio.
 

No control effectiveness tests were conducted near the stability boundary.
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Airspeed-RPM Envelope
 

The Wind Tunnel Test Plans called for testing at advance ratios between
 

0.4 and 4.0 at tunnel airspeeds in the range 60 to 120 knots. However, the 

preliminary safety tests exposed areas where model operation was hazardous,
 

or where the model behavior was such as to preclude the gathering of useful
 

data. Figure 16 presents the overall test envelopes in the fixed and free
 

swashplate modes, and Figure 17 shows the regions within these envelopes
 

which were avoided for continuous operation.
 

Continuous operation of the rotor was limited to a maximum of 320 rpm due
 

to an anticipated engine drive train heating problem. The rotor was demon­

strated to be free of flutter and pitch instabilities within the test rpm
 

range. It should be noted that flutter checks made during the whirl tests
 

indicated a flutter-free rotor to at least 390 rpm.
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Model resonance. - The model resonant modeE that were potentially
 

bothersome and hence restricted the test envelope (Figure 17 were:
 

(1) Model lateral mode at 160 rpm which was characterized by strong
 

iateral response at 3P in the stationary system and chordwise 2P
 

response.
 

(2) Model pitch mode at 220 rpm which was charactdrized by pitch load
 

cell 3P in the stationary system and strong chordwise response at
 

2P. This mode was not detected at tunnel speeds less than 90 KTS.
 

(3) Rotor blade first inplane 2P crossing at 280 rpm (at 1.50 collective
 

blade angle). Continuous testing was restricted between 250 and
 

310 rpm to 'preclude a 1P x 2P instability.
 

(4) A tunnel balance system resonance was observed at 1.8 CPS (108 rpm).
 

Control difficulties. - In the fixed swashplate control mode, the opera­

tors had difficulty holding steady conditions at the higher tunnel airspeeds.
 

The model behavior was characterized by a random load cell moment fluctuation
 

which increased in amplitude with increasing airspeed and rotor rpm to
 

±12,000 in lb at 120 KTS, 320 rpm. As a consequence no fixed swashplate tech­

nical tests were performed above 100 KTS. It was thought that the problem
 

might be due to random blade feathering motion within the slop band of the
 

control system. However, examination of the oscillograph records of blade
 

angle did not substantiate this. It is postulated that the tunnel flow
 

straighteners in the return circuit were unable to remove all the swirl in the
 

airflow induced by the rotor. Since rotor control in the primary mode was
 

much steadier and the gyro took up random oscillations it is felt that the
 

gyro was effective in overcoming the effects of these external aerodynamic
 

"gusts." 

Test Conditions
 

The fixed swashplate test conditions which were investigated in the
 

determination of derivatives with respect to cyclic pitch, collective pitch,
 

and angle of attack are summarized in Figures 18 and 19. The free swash­

plate control effectiveness test conditions are also shown.
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Rotor and swashplate derivatives, and control effectiveness data were
 

measured along lines of nominally constant advance ratio in order to simplify
 

the isolation of the aerodynamic and aeroelastic effects.
 

Data Reduction and Analysis
 

The data of primary interest to the modification of theoretical methods
 

was recorded on tape as well as oscillograph. It consisted of instrument
 

output which yielded cyclic pitch angles and hub and swashplate moments.
 

The analog data recorded in FM form on magnetic tape was chosen as the main
 

source of information primarily because it lent itself to automatic data
 

reduction with a minimum of manual operations. The test records were passed
 

through an analog-to-digital conversion process, which picked off data every
 

0.004 seconds, to make them acceptable to computer equipment, then stored in
 

digital form on magnetic tape.
 

The preliminary computer operations involved calibrating and smoothing
 

the data. Calibration was performed by recording pre-run resistance shunts
 

having known equivalent loads. This gave the parameter sensitivities, from
 

which the conversion from data counts to engineering units were made. Elec­

trical noise and wild points in the data were eliminated by a three point
 

parabolic smoothing routine. The computer next recognized the rpm signal,
 

which was triggered whenever the No. 1 blade was aft (at q = 00). The data
 

within the cycles of interest were interpolated to give 72 data points per
 

cycle.
 

In this form the data was suitable for the subsequent inalysis procedures
 

discussed below:
 

Shaft bending moment transformation. - As discussed in the Instrumenta­

tion section, the output of the 0 degree and 90 degrees shaft bending moment 

gages was preferred to the load cell moment measurements, because of their 

proximity to the rotor hub. In order to indicate pitch and roll moment, a
 

transformation from rotating to non-rotating coordinates was required. The
 

relationship at a particular instant, where the No. 1 blade is at an azimuth
 

of LP degrees, is given by 
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M = S.B. 0 cos L- S.B. 9 0 sin4 

L = S.B. 0 sin'Y+ S.B. 9 6 cos41 

By this conversion process, derived time histories of shaft pitch and roll
 

moment were available.
 

Harmonic Analysis of Data. - If y = f(x) is periodic, so that the value 

of the function y is unaltered if the variable x is increased by any multiple 

of the period, then the function can be expressed in the form of a Fourier 

Series
 

y=A+ A. cos ix + Bj sin jx

j= j=1 

Given a set of observed values (xi, yi), i = 1, 2, 3, ... N, where N is 

the number of equally spaced input points in one cycle, it is desired to 

approximate y(x) by a trigonometric polynominal 

n n 
y(x) = AO + l Aj cos jx +3=1 LB sin jx
 

or, in the polar (amplitude - phase) form,
 

n 
y~x) A° n=lA F JCos (ixy(x) = + c -

The required coefficients are:
 

N 

A 2 cs[2(1-l) r 
.=NosN8
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B. iN sin 2(i-1) ] 

2 )2
C. (A.2 +B 

and
 

for 

2
 

Since N = 72 for the test data, the harmonic analysis is theoretically 

good for harmonics from 1 to 35. However, only the first ten harmonics, plus 

the mean, were calculated. 

In the data analysis which follows, only the mean of rotor and swashplate
 

forces and moments, and the first harmonic of blade angle (giving the cyclic
 

control angles) were required. However, the digital format of the data made
 

the results amenable to harmonic analysis, and the dynamic behavior of the
 

rotor/gyro system within the aerodynamic environment was of interest for
 

future studies.
 

Method of least squares. - To obtain the cyclic aeroelastic derivatives
 

and the control angles for trim, hub and swashplate force and moment data
 

were recorded for-various combinations of pitch and roll control angles. In
 

order to separate the effects of the combined input, a least squares solution
 

of the equations for the rotor and swashplate moments was employed.
 

It has been hypothesized that changes in rotor and swashplate forces
 

and moments are linearly related to changes in swashplate angles, e.g.,
 

M = M 8M M 
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and similarly for
 

L, Me, M, T 

Alternatively, if the control positions are described by cyclic blade pitch,
 

then
 

+ m + am_ . l 
M = 18=0 =o 1c 8s 11= 81 c cl 

For convenience, the method will be discussed in terms of swashplate angles
 

only.
 

The problem is to determine the values of M ==o, 8M/8, 8M/8a (denoted 

Mo0 Me, M hereafter) which will describe the best fit plane of M through e 

and 4 . If Mi, 0i and 4,i are particular measured values, then the deviation 

of this data from the best fit plane is given by the residual 

v. = M. -M 

if
 

n 2 n2
 

i=l i=l
 

then the best fit plane is defined by the requirement that S be minimum, i.e.,
 

as _as0M° 0Me 
_ as = 00 

or 

o+S 
(n E 

1 = 
) (n 

i=l i=l E 3. 

(1 zE) m+(, E i2) Me +(in Eo iM4 = nEMw ei 
izl(=2 i=l 

n E o+ ( n E i) M) +( n 4n i 



In matrix form this becomes
 

+
) +. (e2 2 + 0 + 


2 = l + +
 

(i+i + .. (01+62 + ) M o M1 +M2 . 

(e1 + e2 + + . (e1't + 02 + .. Me)(2 e2 ME 


( ! + + + )
2 "" )8i1 G2 2 + "" 2 + + "")l 22 M MlI@! + MA2 + " 

from which
 

l + + +
M0 81 41 Ml + M2 +"+ 1 + 82 ;2+ 


* 0 (e1 + + ..)(el2 + 822 + .. ) (e1)1 + '2)2 + ..) Ml'1 + M282 + . 
+ +
2 +M + 2 + ")(1€1 + 0202 + ")(4 .)J [ll + M22 +[( 


In the same manner we can solve the remaining hub and swashplate
 

equations
 

L Le=¢=° + 2L E)48+ aL 4" 

ae
Te=¢)=°o -T.+-"

8NSp 
 8MSp 
MSp MSP + -7E ++-. 

8=4spo8sp
LSp LSPe= =
 o + a-E ) + -5T" 

Since the control inputs 0, 4) are the same in each case, it is convenient 

to combine the analysis into one matrix equation, 
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• • °-1 

M0 Lo T0o MSF 
0 
LSF 

0 
(n) E 

i=l i=l 

SPO i~l =l 

r, ~i(~e)(,4Q)M4,L4pTrpM, L5
s(i_ spj iO 
nni 

i~ 1il i8 i 

n )n n.4n n 
z Mi i , ,iZ T 

(il i=l il =- i ,Lsi 

which may be formed as follows 

M
0 

L
0 

T
0 

MSPo L 
0 SF S 0 

1 1 1 e1
11 

" 

Me Le To6 M OL e 28 - 1 e2 

M L4 T MSp Lsp, -(1 ' 2 q 

12 n 

Sil1 1 T1 MSp LSp1 

el 2 2 L2 T2 Msp LSp 2 

'P 'P i. . 

Mn n Tn 
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to give the derivatives of hub and swashplate force and moments with respect
 

to the swashplate pitch and roll angles.
 

The residuals (Mi - M), (Li - L) etc., for each test point, and the root
 

mean squares of the residuals for each set of test points, were then calcu­

lated. (See Appendix D.) These were helpful in detecting errors in the data,
 

and also gave an indication of the suitability of the linear equations used
 

to describe the model behavior.
 

To determine swashplate angles for trim it should be noted that in the
 

foregoing analysis the following relationships have been determined
 

LM IMO [+ 4M 1 

For the hub moments to be trimmed, M = L = 0, hence the swashplate angles 

required to trim the rotor will be given by 

am 8M -1 

L&L
aL 

Eotor
 
Trim
 

In a similar manner the swashplate angles required to make the swash­

plate moments (control moments) go to zero are found to be
 

04 s M] 'M 

8Lsp 8LS 

H SP 
S.P. Trim 
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Rotor-gyroscope stability. - The stability of the free-gyroscope system 

was determined experimentally by observing the period and time to decay of 

transient oscillations of the control mode. The control mode was excited by 

suddenly releasing a large steady-state moment applied to the swashplate.
 

The decaying oscillations were, therefore, centered about the zero moment 

level. This procedure was used to ensure that large overshooting rotor forces 

were not inadvertently applied. 

The swashplate pitch and roll angular displacements were recorded con­

tinuously on the oscillograph until the transient oscillations had died away.
 

Figure 20 shows a typical recording.
 

From the figure the frequency, the time to half amplitude and the type of 

stability mode may be deduced. The frequency is obtained by taking the recip­

rocal of the time between successive peaks of oscillation. The time to half 

amplitude is obtained by fitting a smooth curve through the peaks 

and noting the time taken for the peak to peak displacement to reduce to half 

its amplitude. It is generally more-or-less independent of the starting time, 

thereby indicating an exponential decay. 

The direction of precession of the gyroscope and the circularity of the
 

mode is indicated by the phase and relative amplitude of the swashplate pitch
 

and roll displacements. Roll displacement leading the pitch displacement
 

indicates an advancing precessive motion. Equal amplitude of pitch and roll
 

indicates a circular mode. The teetering motion is indicated if the amplitude
 

of one displacement is much larger than the other.
 

Some transient responses exhibited a slight tendency to pulse during the
 

decay and this impaired the precision of determination of period and time to
 

half amplitude. This could have been caused by proximity to another mode,
 

possibly the rotor precessive.
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THEORETICAL AND EXPERlIMENTAL RESULTS
 

Aeroelastic Derivatives
 

Aeroelastic derivatives, which include the effects of structural deflec­

tions, are determined from wind tunnel data by the least squares method. The
 

test data are correlated with derivatives obtained from theory.
 

The derivatives which follow include the changes in hub moment, swash­

plate moment, and thrust resulting-from variations in blade cyclic and col­

lective pitch, or rotor angle of attack. All derivatives are nondimensional­

zied relative to angles in degrees. Data are given over a speed range of 50 to
 

120 knots and advance ratios range from about 0.4 to 2.0.
 

Hub moment derivatives due to blade cyclic pitch. - A summary of the
 

theoretical hub moment derivative coefficients due to blade cyclic pitch is
 

shown in Figure 2. Rolling and pitching moment coefficients due to
 

are plotted along the ordinates and abscissas respectively.
either 01c or (1s 


Intersecting curves for constant values of advance ratio "g" and flap frequency
 

ratio "P" are drawn for the value of Lock No. at nominal sea level air density.
 

If divided by solidity "a" the curves would be generally applicable to all
 

motors.
 

The P =-ocurve is a limit case where there are no structural deflections.
 

Thus, points along this line represent aerodynamic derivative coefficients
 

applicable to a rigid blade. To aid in correlating test and theoretical data,
 

wind tunnel speed curves for the present tests are also plotted.
 

Relative phase and magnitude changes with forward speed and advance ratio­

are indicated on the plots. The derivative coefficients grow in magnitude
 

along lines of constant forward speed in the direction of decreasing advance
 

ratio, due to greater cyclic control effectivity resulting from both lower
 

advance ratio and higher rotor speed.
 

The aeroelastic derivative coefficients increasingly deviate from the
 

rigid blade condition along lines of constant forward speed in the direction
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of decreasing advance ratio. This phenomenon is primarily due to increasing
 

rotor rpm, whereby the ratio of rotor angular frequency to blade first natural 

flap frequency (l/P) increases, causing greater lag in blade response to inputs. 

The theoretical derivative coefficients accompanied by the appropriate
 

test data are shown on Figures 21 through 27. Each figure gives 

data for one forward speed. Test values of advance ratio approximate values 

of o.4, 0.5, 0.8, 1.1, and 2.0; not all of which are shown at each forward 

speed. Tick lines on the theoretical curves relate to test values. The
 

experimental data was taken in both the free and locked swashplate modes of
 

operation.
 

Test and theory generally agree better at the lower forward speeds and
 

the higher advance ratios. Some of the assumptions in the theoretical method
 

(i.e., no downwash) are known to be inappropriate at low advance ratio. The
 

test data is less valid at higher forward speeds because of the higher model
 

vibration level.
 

Swashplate moment derivatives due to blade cyclic pitch. - The swash­

plate (or gyro) aeroelastic moment derivative coefficients due to either of
 

the blade cyclic angles elc and 81s are presented in a manner parallel to the
 

corresponding hub derivative coefficients. The theoretical data are sum­

marized on Figure 28.
 

The swashplate coefficients reflect the cant angle; thus, they are
 

rotated about 600 relative to the hub coefficients, Figure 2.
 

The phase shifts and relative magnitude changes with velocity and advance
 

ratio are very similar to the parallel changes on the hub moment plots. Swash­

plate moment sensitivities are increased with increasing rotor rpm and decreas­

ing advance ratio, and the greater lag in blade response with increasing rotor
 

speed is also reflected here.
 

The comparisons between theory and test are made on Figures 29 

through 35. The figures display swashplate derivatives coefficients 

which are for the same conditions as the hub moment coefficients on Figures 

21 through 27. 
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The swashplate aeroelastic derivatives, in conjunction with the hub
 

moment aeroelastic derivatives, determine the control moment effort required
 

to apply pitch and roll moments and ultimately pitch and roll rates to the
 

airframe.
 

The swashplate test data points display somewhat less regularity than the
 

hub moment derivative data points, due in part to the smaller magnitude of the 

loads. The correlation is better at higher advance ratios and lower forward
 

speeds.
 

The effects of rotating damping are not included in the theoretical
 

swashplate derivatives of Figures 29 through 35, even though each of the
 

four derivatives is influenced by rotating damping. However, if the deriva­

tives are written in terms of the swashmlate pitch and roll angles 8 and 4),
 

rotating damping appears in just two of the derivatives. The relationship
 

between derivatives of swashplate tilt angles and derivatives of blade cyclic
 

angles is:
 

ac a1 Cm 861a 8
 
--sp sp ...... sp MsP I oc al 

ae 84 C 0 els 8e 88 

C 801 8, C
 
_sp lop sp sp aels _els
 

8L 84 8 1c 8l 86 84)
 

where:
 

88e Te- -.4347 .7530
 

86i 881s
HIS ael
 

•7530 .4347
 
ae a¢ 

Damping appears in the resultant off-diagonal derivatives, adding to
 

8 Cm /84 and subtracting from C1 /ae.
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The swashplate derivative coefficients in terms of swashplate tilt angles
 

are shown on Figure 36 for the 80 knot forward speed condition. Curves
 

with no rotating damping (relatable to Figure 32) and with 20 ft-lb/
 

rad/sec of rotating damping are shown for illustrative purposes. The damping
 

value chosen as representative of the tunnel model is 7 ft-lb/rad/sec.
 

The small value of rotating damping applicable to the tunnel model has
 

little effect on the correlation between theory and test of the swashplate
 

derivatives, in addition to being difficult to determine precisely. For these
 

reasons, the rotating damping effect is ignored in the presentation of most of
 

the swashplate moment derivatives.
 

Lift derivatives due to blade cyclic pitch. - Analytically determined
 

lift coefficients, due to changes in the blade cyclic angles 01, and els, and
 

plotted versus advance ratio and the square of its inverse, are shown in
 

Figure 37. Coefficient curves are shown for various forward speeds.
 

Theoretical and experimental values are shown on Figures 38 through
 

40 at forward speeds of 50, 70, and 90 knots; also plotted as functions of
 

advance ratio.
 

The test points tend to be slightly lower than the analytical curves for
 

both derivatives. The correlation is about the same at all advance ratios.
 

Derivatives due to blade collective pitch and rotor angle of attack. -

Analytical nondimensionalized derivatives of hub moment, swashplate moment, 

and thrust due to the collective blade angle are shown on Figures 41 

through 43. Corresponding derivatives due to rotor angle of attack are 

given on Figures-44 through 46. Derivatives along lines of-either 

constant forward speed or advance ratio are indicated. The thrust derivatives 

for various forward speeds are presented as the dependent variables of advance 

ratio and the square of its inverse. 

Figure 41 shows analytical derivatives of hub rolling and pitching
 

moments due to the blade collective feathering angle. At high advance ratio,
 

collective angles produce mainly rolling moments. At the higher rotor speeds,
 

attendant to high forward speeds and low advance ratios, collective angles
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mainly influence hub pitching moments. This figure is similar to that part
 

of 2 which shows hub moments due to the blade cyclic angle 0l. At
 

high advance ratios, collective angle is more effective in controlling hub
 

rolling moments than is 61s.
 

The swashplate moment derivatives of blade collective angles are shown
 

in Figure 42. The figure is rotated 600 relative to the hub moment derivatives
 

plot (Figure 41) due to the cant angle TO which rotates swashplate moments
 

relative to hub moments.
 

The derivative of lift due to collective pitch is shown in Figure 43.
 

This derivative varies little with forward speed but strongly with advance
 

ratio. At advance ratios above about 1.0, the cyclic angle s is more effec­

tive in producing lift than is the collective angle. Figure 37 shows lift
 

due to 0s.
 

Hub moments resulting from unit changes in rotor angle of attack are
 

shown on Figure 44. The hub moments vary relatively little with advance
 

ratio and forward speed compared with the loads produced by changes in blade 

feathering angles. Rolling moment is seen to increase with decreasing
 

advance ratio at low rotor speeds. However, at high rotor speeds, a decrease
 

in advance ratio lowers hub rolling moments.
 

The swashplate moments dependent on unit changes in rotor angle of attack
 

are shown in Figure 45. Changes in moments with variations in forward
 

speed and advance ratio are small when compared with the moments resulting
 

from changes in blade feathering angles.
 

Lift produced by the rotor angle of attack is presented in Figure 46.
 

Changes in forward speed have little effect on the nondimensionalized deriva­

tive. This derivative is similar to the lift derivative due to Gis, Fig­

ure 37. 

Trim Cyclic Angles 

The experimental trim angles presented here are based on conditions 

attained during testing. Since it was not practical to attain "flight trim"
 

conditions in the wind tunnel, test "trim points" are calculated from test
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data derivatives presented in preceding paragraphs in combination with cal­

culated moments on hub and swashplate corresponding to blade cyclic angles
 

equal to zero.
 

Hub trimmed cyclic angles. - The blade cyclic pitch angles that are requir­

ed to produce zero mean hub moments during steady-state operation are defined 

as the hub trimmed cyclic angles. The applicable test conditions were attained 

in the locked-swashplate mode of operation, in which test control,operator 

applied inputs necessary to determine a trimmed condition at the hub. 

Analytically determined trim angles are shown in Figures 3, 47 and 

48. The effect of varying forward speed at constant advance ratio, is shown 

on Figure 3 for a collective angle fixed at 1.5 degrees. Increase in forward 

speed at constant advance ratio causes reduction of the trim angle ec with 

little effect on ls; this effect is due to rotor centrifugal flattening. The
 

lateral cyclic 0ls is more a function of advance ratio.
 

Figure 47 illustrates the effect of the collective angle on the trim
 

cyclic angles at a forward speed of 120 knots and a fixed rotor-angle of attack.
 

Changes in collective angle at constant advance ratio mainly influences the
 

lateral trim angle ls, as might be expected. 

The effect on trim of changing rotor angle of attack is shown in Fig­

ure W , at 120 knots and at a collective feathering angle of 0 degrees.
 

Changes in angle of attack mainly change the els cyclic angle.
 

Analytical and theoretical trim angles are compaed-in Figures 49 through 

55. The figures show data for a forward speeds ranging from 50 to 120 knots. 

The test trim angles are based on both locked- and free-swashplate data, 

although the hub trim data used were obtained primarily in the locked mode of 

operation. A zero rotor angle of attack and 1.5 degree of collective angle 

are used.
 

The agreement between test and theory for the cyclic 6Ls is satisfactory.
 

However, the test data is consistently higher than the analytical results,
 

generally by about 2 to 3 degrees, for the 6le cyclic angles. Several reasons
 

are suggested for the discrepancy. Blade spanwise flow was neglected in the
 

analysis; also neglected was the deflection of the flow through the rotor caused
 

121 



-2
 

N') 

0.7-5R = 450­

0..4
 

2 V = 120 KTS 
a = 00 

03o= 2.250 
OR = ­9 .430 

-9 -8 -7 -6 -5 -4 -3 -2 -I 0 

0 is, deg 

Figure 47. Analytically Derived Cyclic Pitch Angles For Hub Moment 
Trimmed Condition, Effect Of Collective Angle
 



-2 

-1 	 0,25_0.__ 

~o -. 	
. 

1 

2 	 z=4.50 /,0 

deg 

4 

5­

- ).75R 1 06 

(3o = 2.250 

tR=. 0' 	 = -9.430 

-7 -6 -5 -4 -3 -2 J1 0 
0is deg 

Figure 48. 	 Analytically Derived Cyclic Pitch Angles For Hub Moment 
Trimmed Conditions, Effect Of Rotor Angle Of Attack 

123.
 



LOCKED SWASHPLATE 
=Ca = 0 0.75R 1 .5 

go = 2.250 = -9.430 

6 

0 

DEG 

20 

0 

s -2 0 O O 

DEG 

0 0.4 .0.8 ,1.2 1.6 2.0 

Figure 49. Cyclic Pitch Angles For Hub Moment Trimmed Condition - 50 Knots 

124
 



8I 

LOCKED SWASHPLATE 
a= 0 Q75R = 15.5 

6 0= 2.250 tR=-9.43
0 

Ec 4 

DEG 

2( 

01 

0 

DEG -2 

-41 
0 0.4 0.8 1.2 1.6 2.0 

Figure 50. Cyclic Pitch Angles For Hub Moment Trimmed Condition - 60 Knots 

125
 



6 

LOCKED SWASHPLATE 
0=0 0.75R = 1 .5

e c 4O 

DEG 

2 
CC 

0& 

00 

DEG 

-4 0 0.4 0.8 1.2 1.6 2.0
 

Figure 51. Cyclic Pitch Angles For Hub Moment Trimmed Condition - 70 Knots 

126
 



6 -

KEY 

0 LOCKED SWASHPLTE 

-0 FREE SWASHPLATE
al = 0 075R 1.5 ° 

Po = 2.250 BtR -9.430 

0 
Ic 

deg 

216 

0 

0 

0 

0ls 

deg -2 

0.4 0.8 1.2 1.6 2.0 2.4 

Figure 52. Cyclic Pitch Angles For Hub Moment 

127 

Trimed Condition - 80 Knots 



8 

6 

LOCKED SWASHPLATE 
=0 6.75R­ 1 "50 

,3o= 2.250 OtR=-9.430 

eIc 4 

deg 

2­

01 

0 

0 1s -2 0. 
deg 

-4 0 0.4 0.8 1.2 1.6 2.0 

Figure 53. Cyclic Pitch Angles For Hub Moment Trimmed Condition - 90 Knots 

128
 



0144 

OIC 

deg 2 

0 

91 

4o 

LOCKED SWASHPLATE 

FREE SWASHPLATE=0 0 75R =1.50 

2.250 0tR=-9.430 

0 

-2 

0 

Sis 

deg 

-2 

0 0.4 0.8 1.2 1.6 2.0 

Figure 54. Cyclic Pitch Angles For Hub Moment Trimmed Condition - 100 Knots 

129
 



FREE SWASH PLATE 
= a = 0 0.75R 1.50
 

4 g_o = 2.250 OtR=-9.430
 

Ofg
 

2DEG 

0 

-21 

0 

DEG -2 

0.4 0.8 1.2 1.6 2.0 
IA 

Figure 55. Cyclic Pitch Angles For Hub Moment Trimmed Condition - 120 Knots 

130 

-41 



The inclusion of these factors in the analytical solution
by the fuselage. 


would probably improve the trim correlation.
 

Swashplate trimmed cyclic angles. - The cyclic feathering angles that 

produce zero mean swashplate moments are here referred to as the swashplate
 

(or gyro) trim angles. The swashplate is normally trimmed in steady-state
 

operation in the free-gyro mode in wind tunnel tests. This is in contrast to
 

the hub trimmed condition, which can generally be produced only by operator
 

manipulation of the controls.
 

It is important to note that the feathering moment feedback system operates
 

so as to put the gyroscope into mean equilibrium. If the control moments
 

applied to the swashplate are zero, then the gyroscope precesses to the mean
 

steady position, which causes swashplate moment feedback from the rotor to
 

become zero. The gyroscope and swashplate become trimmed.
 

If the advance ratio is such that the mean vector sum of the blade root
 

bending moments also becomes zero, then the hub moments are also trimmed.
 

At high advance ratio, swashplate trim is usually accompanied by small
 

unbalanced hub moments.
 

Theoretical swashplate trim cyclic angles at fixed collective and rotor
 

angle of attack at various forward speeds and advance ratios are shown in 

Figure 4. Swashplate damping is not included in this figure, or in subsequent 

figures, except where mentioned. This figure may be compared with Figure 3, 
the corresponding hub trimmed solution. At low advance ratio, the two figures
 

agree fairly well. In other words, at low advance ratio, with only a small
 

reverse velocity region, hub moment is a linear function of swashplate moment,
 

i.e., with swashplate moment zero, the hub moment is zero. At the higher
 

values of advance ratio, say at[>.5, the reverse velocity region becomes
 

much greater in size, and the aerodynamic center shifts to the three-quarter
 

chord location. The feathering moment per unit blade root bending moment
 

changes sign. It is possible, therefore, that the net feathering moment
 

vector applied to the swashplate then could become zero even while the rotor
 

supports a significant hub moment. In this case, the cyclic pitch angles
 

required to trim the swashplate moments to zero would be different from those
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required to trim hub moments. Figure 3 and 4 show that at advance ratio less
 

than, say P = .5, the cyclic pitch angles required to trim both hub and swash­

plate moments to zero are approximately the same.
 

Figures 56 and 57 show the effect of changing collective angle ani rotor
 

angle of attack, respectively, at 120 knots. Comparisons with the hub trimmed
 

solutions of Figure 47 and 48 show the trim angles to be similar at low advance
 

ratio, but dissimilar elsewhere.
 

Comparisons between analytical and experimental trim are shown in Figures
 

58 through 63 at forward speeds ranging from 60 to 120 knots. Confidence
 

limits to the accuracy of the experimental data are not precisely known, but
 

it is expected that anomalies in the rotating friction, for example, which
 

would be more-or-less independent of the forward speed dynamic pressure, would
 

cause larger and larger errors in swashplate trim cyclic pitch angles as the
 

forward speed reduced at constant advance ratio. This may account for the
 

increasingly poor agreement at the higher advance ratios as the forward speed
 

is reduced.
 

The effects of rotating damping are shown on Figure 61 at 80 knots. A
 

rotating damping value of 20 ft-lb/rad/sec is used for the data presented.
 

The actual value of the model was later determined to be about 7 ft-lb/rad/sec.
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Control Effectiveness
 

The change in hub moment resulting from a change in swashplate moment is
 

a measure of the control effectiveness of a rotor-gyro system. The control
 

effectiveness derivatives are determined from test data by the method outlined
 

in the preceding section. The theoretical method was described under
 

"Theoretical Development."
 

The test and analytical results are compared in Figure 64 through 66,
 
for forward speeds of 60, 80, and 120 knots. Rotating (feathering) damping is
 

not included in the theoretical results, except at 80 knots where the effect
 

of 20 ft-lb/rad/sec of rotating damping is shown. Rotating damping acts to
 

reduce the rotor response to swashplate moments slightly and to shift the
 

phase of the rotor response.
 

The control effectiveness test data appear to contain considerable scatter.
 

This is likely caused by the combination of error from the two sets of data
 

upon which it depends, namely the hub and swashplate moment cyclic pitch
 

aeroelastic derivatives.
 

There does appear to be a trend toward poorer agreement at low forward
 

speed and high advance ratio, i.e., low values of advancing tip dynamic
 
P 2
 

pressure -, (S2R+V) 

It should be noted before leaving the subject, however, that the method
 

of plotting emphasizes the disagreement between experiment and theory. At
 

the lower advance ratios, there is rarely a phase angle discrepancy greater
 

than, say 5' or.an amplitude error of more that 20 percent.
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Rotor-Gyroscope System Stability
 

The theoretical determination of rotor-gyroscope system stability
 

characteristics (mode shape vectors, natural frequencies, and damping) and
 

the experimental determination of the precessive character of the control
 

mode, its natural damped frequency and the reciprocal of its time to half
 

amplitude were discussed in preceding sections. This section displays the
 

experimental values of the natural frequency and 1/T versus rotor speed on
 
2 

the same page for purposes of comparison; see Figures 67 through 72. The 

calculated characteristics shown on the plots are based on values of rotating 

damping (feathering friction) and stationary damping (swashplate dashpot) 

determined experimentally. 

If the swashplate is viewed from a set of axes which rotates with the 

rotor, the feathering damping CR is defined as the swashplate moment required 

to overcome blade feathering friction and aerodynamic feathering damping 

moment per unit angular velocity of the swashplate. Viewed relative to the 

earth fixed axis system, feathering damping becomes proportional to swashplate 

position (as well as velocity) and so becomes important in calculating swash­

plate (or gyro) aeroelastic derivatives. 

The swashplate moments due to swashplate displacement in earth fixed
 

axes may be shown by the matrix representation as:
 

0M+ &2) e 

- nCR) DM0 0-

where the derivatives are aeroelastic.
 

An interesting observation is that the feathering damping only contri­

butes to the cross swashplate displacement derivatives and should not, there­

fore, be evident in the diagonal elements of the matrix of experimental data.
 

If good agreement between theoretical and experimental values of the on-diagonal
 

elements are achieved it might be assumed that the off-diagonal elements due
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to aerodynamics are similarly accurately predicated and the difference between 

theory and experiment would be the feathering damping. This technique was used 

in the study and it was learned that the feathering damping was very small and, 

therefore, could not be accurately determined. 

The swashplate damping produced by the control force servos was calcu­

lated and checked by (bench) tests. The spring augmentation devices, which
 

are parallel to the control servos, were also tested and modified to reduce 

damping to an acceptable value. The total damping from the two sources was
 

deduced to be 53 ft Ib/rad/sec. Stationary axis damping contributions from
 

the bellcranks and links were expected to be negligibly small. The swashplate
 

damping coefficient was also determined from the control moment sensor and
 

swashplate angle data recorded in the wind tunnel. Small harmonic motions
 

and some nonlinear action made interpretation difficult, but the general order
 

of the swashplate damping appeared to be between 50 and 120 ft-lb/rad/sec from
 

that experimental source.
 

The rotating damping CR (feathering friction) chosen as representative
 

was 7 ft-lb/rad/sec, much less than the value predicted earlier, 25 ft-lb/rad/ 

sec, but compatible with the value deduced by comparing theoretical and 

experimental swashplate derivatives. The swashplate damping C ­was
 

approximately 80 ft-lb/rad/sec, from inspection of experimental stability data.
 

This was within the range expected from the bench and tunnel test data.
 

The frequency, in cps of the gyro advancing processive (or control mode 

and the reciprocal of its time to half amplitude were calculated over the 

entire rpm range at speeds of 60, 70, 80, 90, 100 and 120 knots, using best 

estimates of rotating and stationary axis damping deduced above: 

CR = 7 ft-lb/rad/sec
 

Co = 80 ft-lb/rad/secS 


and the results are plotted in Figure 67 through 72 where they are compared
 

with experimental values.
 

The theoretical damped natural frequencies varied with rotor speed in 

the same manner as the experimental values but were approximately 30 percent 
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greater. The experimental l/T was somewhat erratic but generally straddled 

the theoretical values. There was a tendency for the system to be two to three 

times more stable than predicted at 50 percent of the full rpm. The reason 

for this is not yet understood. 

The tests were performed under near sea level air density conditions,
 

and the results are compared with analyses using sea level air density. The
 

stability results should depend on air density, or Lock Number, but a 

systematic investigation of the effects of density variation has not yet 

be undertaken. 
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TOPICS RELATED TO WIND
 
TUNNEL TESTS
 

Wind Tunnel Simulation of Free Flight
 

The stability of a fixed-shaft system during rotor starts/stops was exten­

sively investigated theoretically and compared with test results; these are
 

discussed earlier in this report. However, any of several body degrees of
 

freedom can couple with rotor and gyro motions; namely body pitch, roll, and
 

plunge. It is logical to question whether the stability of a free flying
 

vehicle can be adequately represented by a fixed shaft system. Therefore, an
 

8 degree-of-freedom analysis was used to gain information about systems in
 

which body motion is included.
 

Three configurations are compared: The fixed-shaft system, a gimballed
 

inertia airframe suitable for tunnel testing, and a hypothetical airworthy
 

vehicle. The gimballed inertia airframe is similar to the fixed-shaft model,
 

except that body pitch and roll are permitted. The hypothetical airworthy 

vehicle is aerodynamically similar to the gimballed inertia airframe, a body 

plunge motion is included in addition to pitch and roll, and its mass and
 

moments of inertia are more appropriate.
 

The analysis of the airworthy vehicle does not contain all possible
 

motions. However, those omitted (body surge, sideslip, and yawing motions)
 

would have second order effects on the rotor and gyro compared with those
 

included. Thus, the 8 degree-of-freedom analysis is considered adequate
 

for investigating the rotor-gyro stability of the flight article.
 

The gimballed inertia airframe is examined to determine whether it would
 

yield more representative stability data than a fixed shaft airframe.
 

Stability root plots for the fixed-shaft case, the gimballed airframe, 

and the airworthy vehicle are shown on Figure 73 through 75 respectively. A 

forward speed of 120 knots was chosen as representative of conversion flight.
 

(Conversion is the name applied to the operation of converting from a heli­

copter to an airplane in the case of a stoppable rotor composite aircraft.)
 

The path of each root is plotted as it varies with rotor speed. Shown
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are toots for 10 rotor speeds from 355 rpm (i00 percent normal rotor speed)
 

in equal 35.5 rpm increments, down to 35.5 rpm; a root is also shown for
 

3.55 rpm. This range of rotor speeds covers that which the rotor would
 

encounter during conversion.
 

Figures 73 through 75 show roots for configuration using a free
 

gyro; no rotating or stationary mechanical stiffnesses are used. Rotating
 

and stationary swashplate damping values of 20 and 50 ft-lb/rad/sec respec­

tively are used, which do not differ greatly from the values determined for
 

the fixed shaft vehicle. The airframe inertias and aerodynamic derivatives
 

used here are those derived in Appendix A. The body aerodynamic derivatives
 

used are identical for the gimballed airframe and the airworthy vehicle. How­

ever, the body inertias are necessarily larger for the gimballed existing model.
 

The calculated roots may be classified as belonging to rotor, gyro, or
 

body modes. The rotor and gyro both have precessive and nutating modes. The
 

rotor also has a collective mode. The pitch short period and the roll con­

vergence modes result from the body degrees-of-freedom. The modes are named
 

for the predominant motion they exhibit at either high or low rpm (low or high
 

advance ratio respectively); the former for the rotor and gyro modes, and the
 

latter for the body modes. The modal content varies considerably with changes
 

in rotor speed.
 

The nutating and precessive natural frequencies of the classical free
 

gyroscope would be twice the angular velocity and zero respectively, as viewed
 

by a stationary observer. As the gyro and rotor (which is also a gyroscope)
 

are damped, interconnected, and have different angular velocities, their
 

natural frequencies are shifted from the above values.
 

The rotor modes display their least complicated behavior in a hover con­

dition. The rotor, when vibrating in the nutating mode in hover, exhibits pure
 

advancing motion of slightly over 2P. The collective mode in hover consists
 

of a uniform vertical oscillation of the rotor, with frequency very close to
 

that of the blade first natural flapping. The rotor flaps regressively in
 

hover when vibrating in the precessive mode, which has the lowest frequency
 

of the rotor modes.
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At normal rotor speed (j±= 0.33 at 120 knots), the rotor modal behavior
 

as displayed in hover predominates. As rotor speed drops and advance ratio
 

grows, the mode deviates from the relatively simple behavior it has in hover.
 

With the rotor almost stopped, the modes are nearly unrecognizable.
 

The rotor modes of the fixed-shaft vehicle, not complicated by body
 

motion, are easier to examine than corresponding modes of the other configura­

tions. Rotor collective content increases with decreasing rotor speed in the
 

nutating and precessing modes. Near zero rotor speed, the nutating mode
 

degenerates to a combination of collective flapping and longitudinal teetering
 

flapping. Up collective flapping coincides with pitch down teetering flapping.
 

The precessive mode is similar to the nutating mode at near stopped rotor
 

speeds, except that up collective flapping is coincident with pitch-up teeter­

ing flapping. Regressive flapping in the collective mode increases with
 

decreasing rpm. At the lower rpm limit, the rotor m6tion in this mode is
 

composed of lateral (rolling) teetering flapping with negligible collective
 

flapping. The frequencies of each of these three modes approach the blade
 

nonrotating first flap natural frequency at very low rpm. Gyro motion is
 

present in all of the rotor modes at all rotor speeds.
 

Body motions are included in the rotor modes of the gimballed and air­

worthy systems at all rotor speeds. The rotor motions in the rotor modes of
 

the gimballed model are similar to those of the fixed shaft system. How­

ever, body motion is pronounced and the rotor modes are more affected in
 

the case of the flightworthy vehicle, with its attendant lower inertias and
 

plunge degree-of-freedom. The flight vehicle rotor modes differ in the fol­

lowing respects at very low rotor speeds: the collective mode is still 

flapping regressively as well as collectively at 3.55 rpm, and the advancing 

flapping in the nutating mode remains evident at this rotor speed. 

Of all the modes, the gyro nutating mode is the least affected by changes
 

in the configuration or rotor speed, since it is of much higher frequency
 

than the other modes. This mode is virtually the same for all three con­

figurations. The frequency is about 810 rad/sec at full rotor speed and
 

decreases to about 760 rad/sec at zero rotor speed. 

at about -170/sec, or better than 20% of critical. 

The roots of this mode are not shown. 

The decay constant stays 

It is an advancing mode. 

159 



Of more importance is the gyro precessive mode, which is the mode most
 

responsive to control moment inputs. The plots of the root paths show that
 

this mode is unstable at low rotor speeds. The onset of instability of the
 

fixed shaft system occurs at about 50 rpm. For the configurations with body
 

degrees of freedom, instability is delayed until down to about 30 rpm.
 

Vector plots of the gyro displacements in the gyro precessive mode for 

the three configurations are shown in Figure 76 . The gyro precesses in 

an advancing manner at all rotor speeds when the shaft is fixed. With body 

motion allowed, the mode is regressive above about 30 precent of normal rotor
 

speed. At lower rotor speeds, the mode advances, as with the fixed-shaft
 

system. Although not shown on Figure 76 the rotor generally follows the
 

gyro except at very low rotor speeds. At 1 percent of normal rpm, the rotor
 

diverges in a teetering fashion.
 

Whether the gyro is advancing or regressing in the precessive mode is
 

important in connection with some of the system parameters presented in
 

Appendix D for a fixed-shaft vehicle. However, the general discussions of the
 

effects on system stability of varying gyro inertia, damping, and stiffnesses
 

apply to vehicles with body degrees-of-freedom.
 

When comparing fixed and free shaft system stabilities, swashplate station­

ary damping is a most important consideration. Rotating damping is stabilizing
 

for both precessively advancing and regressing gyros, except at near stopped
 

rotor speeds. However, increased stationary swashplate damping will tend to
 

destabilize an advancing gyro mode and stabilize a regressing gyro mode. This
 

is illustrated in Appendix C, in which the gyro precessive mode has been
 

driven regressively below about 50 percent of normal rpm by a swashplate spring.
 

Therefore, in conclusion, the free-shaft configurations are inherently more
 

stable than the fixed-shaft system for other than very low rotor speeds; because
 

of the regressive character of the gyro precessive mode as opposed to the ad­

vancing free gyro of the fixed shaft system.
 

Further evidence of the greater stability of this mode with body degrees­

of-freedom present is indicated by comparing the gyro precessive roots of 

Figure 73 with those of Figures 74 and 75 . Except in the 
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unstable region, damping is significantly greater with the inclusion of body
 

motions; and the onset of instability is delayed.
 

The last group of modes herein considered are the body modes. At low
 

rotor speed these modes may be roughly approximated by neglecting the rotor 

and gyro and solving the remaining body equations. The gimballed model yields 

the following non-zero roots from the uncoupled equations:
 

X= - 1.31:1.07i (pitch equation) 

X= - 1.45 (roll equation) 

The corresponding non-zero roots for the airworthy vehicle are:
 

X= - 5.38 E 4.51i (coupled pitch and plunge
 
equations)
 

- 2.65 (roll equation) 

The two complex pairs of roots are those of the pitch short-period modes.
 

These roots are approximated at low rpm on Figures 74 and 75 . At 

low rotor speed the mode is composed mainly of body pitch motion. Body roll 

and rotor advancing flapping motions increase with increasing rotor speed. The
 

amplitude of body pitch motion is about the same as that of the body roll 

motion at near normal rotor speeds. This mode is quite similar for both the 

gimballed model and the airworthy vehicle.
 

The non-oscillating roots obtained from the roll equations belong to the 

roll convergence mode. These roots are also critically damped with the rotor 

included, Figures 74 ane 75 . The mode is composed mainly of body 

roll motion at low rotor speed. Body pitch motion increases with rotor speed. 

The magnitude of body pitch and roll is similar at high rpm. The behavior of
 

this body mode is very similar for both configurations.
 

A comparison of the fixed-shaft airframe with the systems with body
 

motion allowed has pointed out some of the limitations of applying fixed-shaft
 

stability data to a flight vehicle. The behavior of the gyro control mode
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is different at most rotor speeds; thus the resultant fixed-shaft data are
 

overly pessimistic. However, the gimballed. inertia airframe appears to
 

very adequately represent an airworthy vehicle, except for the absence of the
 

long period body modes. The lack of a plunge degree-of-freedom using the 

gimballed model does not appear to be a serious limitation.
 

Since the gimballed model modes are similar to those of the free flying 

aircraft, and the gyro precessive modes of the two exhibit behavior, at high 

rpm, quite different from that of the fixed-shaft rotor (being regressive 

in the former and advancing in the latter), and inasmuch as the body short 

period pitch and roll modes do not exist in the fixed-shaft case, and further; 

since mechanization of the gimballed model for operation at rpm greater than 

50 percent of nominal does not appear to present any extrodinary difficulty, 

it is recommended that a gimballed model be employed to study the stability of 

a modelled slowed-rotor compound helicopter. 
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Rotor Performance
 

Tle slowed/stopped rotor vehicle when operating in the helicopter mode,
 

and during the conversion operation requires power to:
 

(1) Provide a propulsive force, to overcome rotor and fuselage drag
 

(2) Provide torque to overcome blade profile and induced drag.
 

In this section the power requirements of the rotor, in terms of effective
 

drag, are discussed for the zero lift conversion condition. The relative
 

magnitudes of the propulsive and torque contributions to the total power
 

required are examined.
 

The total effective drag is defined as:
 

= ROTOR POWEREFFECTIVE DRAG ROTOR DRAG + 
VELOCITY 

Rotor drag was measured by the tunnel balance (tare corrections were made).
 

Rotor power was obtained from the output of the shaft torque strain gages.
 

The test data was corrected to a zero-lift condition by treating the
 

rotor as an elliptical wing having the geometric properties
 

S = iR 2 
wing area, 
 w 

wing span, b = 2R 

b2 4
 

wing aspect ratio, A = b 4
 
S r
 w
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For an elliptical wing the induced drag coefficient
 

2 

CL
CCD. = -­

hence
 

w2 L2
 

Di = q S2 C 22
1 w Di trA [q TrqAS lE q 

thus for L = 0
 

2
P 
Deff + VDV- 4rrR q 

At the low values of lift experienced in the test program this analytical
 

correction is considered adequate.
 

The rotor performance is discussed in terms of drag coefficient rather
 

than power coefficient because according to the usual definitions, drag coef­

ficient is non-dimensionalized by forward speed, and power by rotor angular
 

velocity. For normal helicopter operation, where forward speed is varied at
 

essentially constant rpm, power coefficient is preferred. However the conver
 

pion maneuver involves rpm change at constant forward speed, thus drag coef­

ficient is more meaningful for describing rotor performance, and relating
 

propulsive and torque contributions.
 

In non-dimensional form
 

[ 2)Deff q (R2) +q (7rB 4 q 
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which may be expressed
 

CDeff 
 f propulsion + 
 torque 
 B.
 

Figures 77 and 78 present the variation of
 

CD propulsion D torque 
a' and 

for advance ratios for three forward speeds. The data points shown represent
 

test conditions at nominal hub moment trim; no attempt was made to correct the
 

data to exactly zero hub moment. As a consequence, while the total rotor lift
 

is zero, the blades experience lift variations around the azimuth and induced
 

drag is thus present, which probably contributes to the data scatter.
 

Figure 79 presents the torque and propulsive contributions to the total
 

rotor effective drag. As would be expected, both terms decrease with reducing
 

rpm. Above an advance ratio of 1.5 the rotor torque is negligible, and the
 

total effective drag is equal to the rotor drag.
 

The data indicated that the part of the effective drag due to rotor
 

torque became slightly negative at advance ratio greater than 11= 1.7. This
 

was probably due to the greater drag of the blades in the reverse velocity
 

region than in the advancing flow region.
 

166
 



KEY 
.05 o100 KTS 

c3 90 KTS 

A 70 KTS 

.04 
LIFT = 0 LB 

0 o.75R = 1.50 
a R = 0° 

.03 

PROP 
0 

.02 

.01 

0.4 0.8" 1.2 1.6 2.0 2.4 

Figure 77. Rotor Drag Coefficient Versus Advance Ratio
 

167
 



.06 	 KEY 

6 100 KTS 

90 KTS 

.05 	 70 KTS
 

LIFT = 0 LB 
0 0.75R = 1.50 

0 ______R =0
 

.04
 

.03 
CDTORQUE
 

A
 
.02
 

.01
 

0 

-. 01 0 0.4 0.8 1.2 1.6 2.0 
/.2.
 

Figure 78. 	 Rotor Power Expressed As Effective Drag
 
Coefficient Versus Advance Ratio
 

168
 



.10 

.08 CDEFF 

CD 

a" 

.06 

.04 CD
PROPULSION 

.02 
CDTORQUE 

0 

-.020 0.4 0.8 1.2 1.6 2.0 

Figure 79. Rotor Total Effective Drag Coefficient Versus Advance Ratio 

169
 



CONCLUSIONS
 

The basic objectives of the study, "...to develop analyses directed at
 

predicting the rotor model behavior and to measure the rotor model charac­

teristics in various regions of interest.", were accomplished. The body
 

of data on slowed/stopped hingeless rotors which had accrued in the decade
 

preceding this study has been expanded by developing trim, control, and
 

stability data over a range of rotor speeds from 8.5 to 90 percent of
 

nominal rpm at flight speeds ranging from 50 to 120 knots; these data
 

were developed both theoretically and experimentally. Some noteworthy
 

conclusions are:
 

o 	A high-speed, constant-speed, gyro control system was demonstrated
 

to be stable, to automatically trim swashplate moments to zero,
 

and to produce hub moments in response to operator applied control
 

moments which varied only slightly in magnitude and azimuth over
 

a wide range of rotor speed and advance ratio.
 

o 	Feathering divergence at low rotor speed, discovered in earlier
 

testing, was reconfirmed and explained by analysis. Analysis also
 

showed that swashplate damping aggravated feathering divergence
 

but that its effect could be ameliorated by feathering friction.
 

o 	 Expository methods, developed to give insight into the behavior of 

rotor systems, led to the correct prediction of aeroelastic deriva­

tive trends over the advance ratio range .4-FJL< 2.0; and the 

correct prediction of control mode stability trends over the full 
"conversion" advance ratio range.
 

170
 



* 	Studies of the practicality of testing the CL-870 model gimballed
 
in the wind tunnel concluded that sufficient differences exist be­

tween fixed-shaft and free-flight stability to warrant the experi­

mental study of the latter, but only at rotor speeds greater than
 

50 percent of nominal. At lower rotor speeds, the fixed-shaft case
 

appeared to adequately represent free-flight.
 

The studies also showed that gimballed model stability resembled
 

free-flight stability in all essential features.
 

The mechanization of the gimballed model should not be difficult
 

since elevators and aileron and a special rotor control system
 

would not be needed at the higher rotor speeds.
 

For the above reasons, gimballed model tests at high rotor speed
 

are recommended.
 

* 	Performance of compound helicopters is greatly improved by slowing
 

the rotor. The torque required to maintain rotor speed on a non­

lifting rotor decreases rapidly with decreasing rotor speed and 

becomes negligible at an advance ratio A = 1.5. The drag de­

creases somewhat with decreasing rotor speed to a constant value 

at an approximate advance ratio of P = 1.1. As a result of the 

reduced drag and torque, the total power required by the unloaded 

rotor reduces to about 1/3 that required at 0.4 advance ratio.
 

171
 



APPENDIX A 
DERIVATION OF THE DIFFERENTIAL EQUATIONS 

OF MOTION OF THE FREE FLYING AIRCRAFT 

Differential equations of motion of the free-flying, retractable-rotor
 

aircraft, during the period of conversion from the helicopter to the stopped­

rotor condition, are derived. The aircraft, rotor and stabilizing gyroscope
 

are represented by eight degrees of freedom:
 

* aircraft pitch, roll, and plunge (3DOF)
 

* rotor pitch, roll, and coning flapping (3DOF)
 

* gyroscope pitch and roll (2 DOF)
 

Scope and Procedure
 

A set of linear ordinary differential equations is derived to represent
 

a gyro-controlled, hingeless rotor and airframe with sufficient accuracy to
 

permit all significant modes of motion to be determined and their stabilities
 

to be assessed. The rotor speed (rpm) is allowed to vary from a nominal value
 

for a helicopter (100 percent rpm) to zero. The degrees of freedom employed
 

in this analysis are those expected to be significant; illustrated in Fig­

ures A-!, A-2, and A-3. They are:
 

Airframe pitch
 

Airframe roll 

Airframe plunge z 

Gyro pitch 6 

Gyro roll
 

Rotor flap collective 80
 

Rotor flap pitch 5e
 

Rotor flap roll 4
 

The gyro angles 6 and (), illustrated in Figure A-2, are measured relative to
 

the airframe. The absolute tilt angle of the gyro in space is therefore 8 +
 

® and $ +C ). The rotor flapping modes shown in Figure A-3 represent motions
 

which are measured relative to the rotor shaft. Lateral, fore and aft, and
 

yaw degrees of freedom are not used because the very low frequency dutch roll,
 

spiral and phugoid modes are not expected to deviate much from those computed
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Pitch, Roll and Plunge (of the complete z
vehicle) 

- e 

Shaft Pitch x - - -e 

z 

Shaft Roll 'Zb
 
z 

Shaft Plunge z X
 

Figure A-1. Degrees of Freedom in Stationary Axes; Pitch,
 
Roll, and Plunge of the Complete Aircraft
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Note: Blade 	 feathering ,Lsplacements acccai.panying gyro tilt angles 
shou effect of cwur 1n0lo . 

Gyro Roll 

O= 6o; 

Figure A-2. 	Degrees of Freedom in Stationary Axes;
 
Gyro (or Swashplate) Motion
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z 

Collective 
Flapping 6o 
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Pitch 
Flapping 6-0 

Roll 
Flapping 84 

Note: Position of the blades is arbitrary. The modes maintain the same
 
position relative to the earth-fixed axes shown. Pitch and roll 
flapping modes lag by the cant angle.
 

Figure A-3. 	Degrees of Freedom in Stationary Axes;
 
Rotor Flapping Modes
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by considering mean rotor aeroelastic and airframe derivatives. It is 

expected that these motions could be easily stabilized and controlled in
 

designing an aircraft, therefore study of them is left for another time.
 

An additional objective of the study was to determine the practicality of 

wind tunnel tests in which the rotor would be attached to a rolling and pitch­

ing framework. In-plane motions of the blades were not admitted in the 

analysis and this is recognized as a possible shortcoming. However, sinbe 

only small loads are applied in tests, due to structural limitations little
 

nonlinear action is expected. 

The equations and their coefficients are determined in a general enough way
 

so that this work can be used as a basis for assessing the effects of period­

ically varying coefficients. However, a study of the effects of the periodic
 

coefficients on stability, steady-state response, and transient response is
 

beyond the scope of the work undertaken to date.
 

A five degree of freedom version of the equations (pitch, roll, and plunge
 

are locked out) represents the rotor in the wind-tunnel-test configuration.
 

This version is investigated first. Later, body inertia and aerodynamic deri­

vatives are added and the stability of the whole free flight vehicle system
 

is determined.
 

The differential equations are first derived in an axis system rotating
 

with the rotor. The equations consisting of inertia, centrifugal, damping, 

spring, gyroscope, structural, and aerodynamic terms are then transformed to 

stationary axes. The equations are derived in the following sequence:
 

(1) Rotor Inertia terms
 

(2) Rotor Centrifugal and structural terms and rotating spring
 

(3) Rotor structural damping terms and gyro rotating damping 

(4) Gyroscope terms 

(5) Aerodynamic terms 

(6) Collection of terms in rotating axes
 

(7) Transformation to stationary axes 

(8) Swashplate springs and dampers 

(9) Body terms 
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The derivation is preceded by descriptions of the rotor and gyroscope system
 

and of rotor system motions.
 

Geometry of the Rotor System
 

Blades. - Each of three blades has a constant 14-in. (1.17 ft) chord,
 

from 15 percent of the rotor radius to the tip. The rotor radius (R) is
 

16.5 ft. The feathering hinge axis and the quarter chord locus intersect at 

the center of rotation and are separated by a sweep-forward angle of the quarter 

chord (A) of 1.5 deg (0.0262 rad). The blades are preconed to an angle po 
from the disk plane of 2.25 deg (0.0393 rad). Each blade twisted linearly, 

leading edge down (washout), from zero at the center of rotation to 9.43 deg
 

(-0.1645 rad) at the tip (etR). These dimensions are illustrated in Figure A-4. 

The twist and coning angles are not degrees of freedom in the present 

formulation of the problem; these angles are fixed at all times. 

Blades to gyroscope (and swashplate). - The feathering horns on the blades 

are connected to the gyroscope housing by a system of walking beams and link­

ages. In turn the housing is attached to the swashplate by three rods which
 

constrain it to remain parallel to the swashplate. Angular displacements of the
 

swashplate and gyroscope are therefore assumed to be identical (elastic distor­

tion and joint tolerances are ignored).
 

In a simplified representation, the three blades ar linked to the swash­

plate as shown in Figure A-5.
 

Blade feathering angles occur at azimuth angles different from the azimuth
 

angle of the gyro tilt. This angle, called the cant angle (%o) does not affect
 

the basic behavior of the system so long as the shaft is prevented from pitch­

ing and rolling. In addition, the gyro arm is shorter than the blade feather­

ing horn arm so that the gyro tilt angle is greater than the feathering dis­

placement; this feature provides the mechanical advantage illustrated in
 

Figure A-6. 

k = 
k =mecanialmechanical 

dvatag
advantage 

=horn ar 
armgyro arm 1.15 for the rotor system tested 

in the present study. 
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center of hinge leading 
rotation axes edge 1/4 chord locus 

4ep-R15 A 
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FigueRtor A-. Geoetr
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rosto swashplate .. feathering 
N hingex 

Figure A-5. Linkages Between Blade(s) Feathering
 
Motion and Swashplate Tilt 
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ARE RELATIVE TO THE ROTATING AXES 

Figure A-6. Linkages Between Blade Feathering and Gyro Tilt 
Angles, Showing Mechanical Advantage
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Rotor System Motions
 

Single blade motions. - The motions of the rotor are made up of the
 

motions of single blades. The individual blades are assumed to move in four
 

different modes:
 

(1) Feathering
 

(2) Linear Flapping (used to represent rotor pitch and roll motions)
 

(3) Parabolic Flapping (structural elastic deformations)
 

(4) Vertical Displacement
 

The 	motionswhich are illustrated in Figure A-7, consist of displacements and
 

their derivatives with respect to time.
 

Although the above four modes of motion comprise all the blade motions
 

used in the derivations, it must be recognized that there are two "shape
 

parameters" which cause two of the forcing derivatives: the rotor precone
 

angle will cause aerodynamic loads due to linear flap displacement; and the
 

twist shape will also cause aerodynamic loads.
 

Rotor pitch, roll, and plunge motions are now described relative to axes
 

rotating with the rotor in terms of motions of the blades. As the rotor
 

pitches or rolls, an equivalent motion is seen by letting the blades flap and
 

feather. Considering a rotor with a number of blades b, a cant angle L0, and 

the number Q blade located P,behind the x axis of the rotating system, 

Q0 

Notes: 1. Numbers in circles in this
 Qand 
 in 	subsequent sketches
 
identify particular rotor
 
blades in the discussion
 
and 	in the derivations
 

Y 
 which follow.
 

2. 	x and y axes shown are
 

rotating axes.
 

(
 

0 Planview of rotor
 

x 
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FEATHERING MOTION
 

f + nose up 

f
 

feathering axis undistorted 
disk plane
 

LINEAR FLAPPING 

8,B tip up +
 

disk plane 

rotation
 

PARABOLIC FLAPPING 

rotation 6,; tip up +
 

disk plane
 

VERTICAL DISPLACEMETT 

4 z flow 

I JI I 
+
Zz upI z 

disk plane ­
plunge velocity is + upward
 

therefore relative flow is downwas]h
 

Figure A-7. The Four Modes of Motion
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the flapping motion, for any blade which is identified as blade p, is given
 

by
 

- {cos [',o + (p-l) .j}®T fsin [Po + (p-i)9ff° 

which, for each blade of a three-bladed rotor, where the rotor cant angle,
 

becomes LPo = 60'
 

p1 = -0.5 ® -o.866° 

P2 = 1.0® +0( 

P3 = -0.5 @ +o.866, 

Feathering angles for the three blades are deduced by resolving ® and P into
 

flapping and feathering components:
 

0 

y 

= ff 


0 N3 0 50
 

Sf2 = 0 - 1.0Oo 

=T @+ 

Of 3 x2 
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In matrix notation, the flapping and feathering motions of the blades,
 

in terms of rotor pitching and rolling motions, are:
 

1 7 -K-


L3+ 
of ­

1.0 0P2 

0 -1.0Of2 


Of3 2 2 

Plunge motions of the blades are
 

1.0 

z2 = 1 1.0 z 

z3 1.0 

Swashplate tilt in rotating axes. - Where it is easy to generalize,
 

generalization is made and the particular case of the 33-ft diameter rotor
 

system is abstracted. Blade feathering angles due to swashplate tilt in pitch 

and roll are written for a rotor with "b" blades where "b" is any integer 

greater than 2; the generalized rotor used for this discussion is illustrated 

in the following sketch. The number (1) blade lags the x axis by the cant 

angle to, and therefore always possesses maximum negative feathering angle
 

due to positive gyro pitch angle and zero feathering angle due to gyro roll;
 

the lag is accomplished through pitch link geometry as illustrated in
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Figure A-6. Because of this orientation of the axes the expression for blade
 

feathering angle is independent of the gyro cant angle.
 

©G
 

Since swashplate pitch tilt is lagged through the cant angle to blade (
 
directly, the blade feathering tilt due to swashplate tilt is
 

ef: = - 1 fCos [(P-lL) ] e - k {Sin [(P-l) .] I 

where p identifies the particular blade, any of @ through D , to which 

the expression applies. For each of 3 blades of a three-bladed rotor, 

1 
Of16
 

5=0.5e 0.866 
Of2 k k
 

0.866 
ef3 k k 



which is denoted thus in matrix form:
 

E)- 0 
0.5 0.866
 

ef2 k k 

0.5 0.866 

Rotor flapping modes in rotating axes. - The number of modes in a 

complete set of rotor flapping modes (corresponding to the first flap mode 

of a single blade as in the case shown) equals the number of blades. For 

three-bladed rotors, the three modes are: collective flapping, pitch flapping, 

and roll flapping; these are illustrated in Figure A-8. For more than three 

blades, modes that would exist in addition to the above three modes would be 

self-balancing; that is, they would produce no net vertical inertia force or 

pitching or rolling inertia moments. For example, the modes of a four-bladed 

rotor would be as shown in Figure A-9. 

The transformation relating tip deflections to rotor modal deflections
 

for the four-bladed rotor is given by the following expressions: 

61 = 0 - 6e +0+ 6s 61 1 -1 0 1 60 

62 = 0 + 0 6- s 62 1 0 -1 -1 60 

63 = 60 + 50 + 0 + 6s 63 1 1 0 1 6 

64 = 60 + 0 + 6 - 5s 64 1 0 1 -1 6s 
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Figure A-8. Flapping Modes of a Three-Blade Rotor 
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collective 

pitch 
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Figure A-9. Flapping Modes for a Four-Blade Rotor
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For the three-bladed rotor locations of flapping modes relative to the
 

rotating axes must be identified. The resulting relationship for tip
 

deflections is:
 

61 6
 o 6e 
 61 
 1 -1 0 60 

1 L -. 8666 2 6o +_12 6 e - 64 62 1 ­

u3 060 ' 2 6E + 2 63 1i 5 .866 64 

It is important to note that the pitch and roll flapping axes are not coinci­

dent with the pitch and roll rotating axes but lag behind by the cant angle.
 

Summary of motion in rotating axes. - Let the fundamental rotor degrees
 

of freedom, in rotating axes, be arrayed in a column vector called P1.
 

C3 
z 

{PI = 4) = a vector of degrees of freedom. 

0 
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and let the displacements of the blades (shown for a three-blade rotor) be
 

arrayed into a column vector called IT11
 

Pl
 

z1
 

P2
 

z2
 

a vector of blade motions.
 -{IT=. o2 


62 

P3
 
z3
 

3
 

63 
1
 

189
 



The relationship between blade motions and rotor motions is a single-valued
 

nonsquare matrix, denoted [D] . The combined expressions are
 

{TI= [o1]3
 
p1 -.5 -.866 o 00 0 0 0 

0 0 1.0 0 0 0 0 0
z I 
-! 

el -.866 .5 0 -70 0 0 0 z 

61 0 0 0 0 1.0 -1.0 0 6 

P2 1.0 0 0 0 0 0 0 0 

0 0 1.0 0 0 0 0 0 60z 2 

62 0 -1.0 0 .5 -.866 0 0 0
 
k k
 

62 0 0 0 0 0 1.0 .5 -.866 4
 

P3 -.5 .866 o 0 0 0 0 0
 

0 0 1.0 0 0 0 0 0
z 3 

e3 .866 .5 0 .5 -. 866 0 0 0 

63 0 0 0 00 1.0 .5 .866 
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Derivation of Equations
 

Rotor inertia terms in rotating axes. - Each rotor blade is assumed to
 

have all mass concentrated in its chord plane (i.e., blade has no thickness 

or twist, although twist aerodynamic forces are considered).
 

The relationships between the motions of the degrees of freedom and
 

motions of the blades are as follows:
 

I I=[D] {61 

{11}= [D]{i~ 

which show the motions of the blades due to changes in displacement) velocity,
 

or acceleration as related to the degrees of freedom. Therefore, blade
 

accelerations are related to degree-of-freedom accelerations by:
 

S-.5 -.866 0 0 0 0 0 0 'R 

" 

Cl 

61 

0 

-.866 

0 

0 

.5 

0 

1.0 0-1 
0 -

k 

0 

0 

0 

0 

0 

0 

1.0 

0 

0 

-1.0 

0 

0 

0 

CR 

2 

z2 

2 

62 

p3 

1.0 

0 

0 

0 

-.5 

0 

0 

-1.0 

0 

.866 

0 

1.0 

0 

0 

0 

0 

0 

5 

k 

00 

0 

0 

0 

- 866 

k 

0 

0 

0 

1.0 

0 

0 

0 

0o60 

.5 

0 

0 

0 

0 

-.866 

0 

8O 

°.e 

4p 

z3 0 0 1.0 0 0 0 0 0 

A'3 

3k 
.866 

0 

.5 

0 

0 

0 0 

.866 
t 

0 1.0 

0 

.5 

0 

.866 
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The next step is to develop a matrix which relates generalized forces
 

on the blades to accelerations of the blades. The generalized forces are
 

root shear (V), root bending moment (bm), feathering moment (fm), and flapping
 

generalized force (H). In this analysis the elements of mass in the blades
 

are assumed to move only normal to the rotor disk (no radial or tangential
 

motions). Therefore, there are no inertia forces, relativeto axes which
 

rotate with the rotor, due to velocity. The only inertia forces are those
 

due to acceleration, which is interpreted to mean that the blade generalized
 

forces are related to blade motions by the blade inertia matrix,
 

{GFbI =- [, 

the vehicle degree-of-freedom generalized forces are related to the blade
 

generalized forces by:
 

I04 [D]T {GF} 

Therefore, the vehicle degree-of-freedom generalized forces are related to
 

vehicle degree-of-freedom motions by
 

{GF}I = _ [DI]T ['bi [n] j 

The terms of the differential equation due to acceleration of the
 

degrees of freedom of the vehicle are therefore
 

_ [D]T ['Ib [n] 

The minus sign makes them inertia reaction forces which puts them in the
 

right hand side (RHS) of the differential equations.
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The ['b] matrix for the three-blade rotor consists of 12xl2 elements,
 

two thirds of which are zero. The non-zero elements are arranged in three 4x4
 

sub-matrices, and since the blades are identical, the three sub-matrices are
 

also identical.
 

bdbm dbm dbm dbm
 

IV 	 dV dV dV dV 

dm dfm dfm dfm j 

dH dHHQ 	 dE dH 

aN 	 dbmail
 
dbm ThinPdbm dbm 

vq 	 VdV aV dV 761Id Z7de V I	 2 

lam fm dfm lfm 
l tI is di d dIl6
 

H®D -'ap d do d6 2 

bh) dbm dbm dbm dbm 

dp d72 d d" "3 

V I l dv dV dV av Y 

t m d m dfm
Im
fm) 1 l d z d' )d 6 (63 

liH dl dl dH 
"3
d9
d da'* 	d8 

In Appendix B, where flapping characteristics of the three-blade rotor
 

of the wind tunnel model are discussed the mass distribution on each blade
 

is divided into two parts:
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o 	one part representing the distribution of mass between the blade tip
 

and the root, but excluding any mass concentrated at the tip
 

o 	a second part which represents only the tip mass.
 

Each of the submatrices in the preceding 12xl2 matrix is therefore composed
 

of two parts: one due to distributed mass and one due to tip mass. Those
 

elements due to distributed mass are derived for each of the four accelera­

tions as follows:
 

Due to I' for + (tip moving up) the inertia forces will act in the
 

down direction. Using signs corresponding to RHS of equations,
 

al -F dm d
 

dt = -pr d dr
 

dbm R -2dmd- J.li5R d 

d- = - lrdr 

dfm dbm
 
ddj 

- (I= r~dr 
f15R ( R 

Due to z, for +z (whole blade moving up) inertia force will act in the down 

direction, and terms corresponding to RHS of equations are 

dr
 

d = j-	 r dr 

f 	 R dmdV = = 15R T-Vdr 
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dfm = dbm 

RCLH 

fR\2 dm d 

Due to 6, for + f (blade nose moving up) inertia forces will act in the down 

direction, and terms corresponding to RHS of equations are 

ap= Ard dr
f dm 

dbm A fR 2dm 

df -A f ' 1r dbfi 2 5RH
 

dV = f1R 2dm
 
Tf -A R r drdHf5R -A2 2d,n
 

ff 51. ,) dmrdr
 

dH -A drf
def 1 d 

Due to 6, for +F"(blade tip moving up) inertia forces will act in the down
 

direction, and terms corresponding to RHS of equations are
 

d2 = - ( 2\ ar 

dbm R r rfd - d1 
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_F i5R \)d
.

dfm - A db 

_-- - - dr 
dli [R 1r\ dm d
dx .15R ! Jr 

The [ib] matrix for the distributed mass part is expressed as follows
 

when the preceding expressions are included:
 

f R 2 dm R am aR 2 dm R r2r d 
f r dr f dr Aj r Tr r V 

5Ra 15R 15R J.15R­

1R5R dr 15R 15R
 

-AJ r 2 d r -Af r 2 dr _A2J r2 dr -A f r) !dr 
15R .. ar.15R R /1ROa15
 

It is noted that the matrix is symmetrical, and that it includes only five
 

different integrals.
 

The weight and stiffness distributions of each rotor blade of the 33-ft
 

diameter rotor of the wind tunnel model are given in Figures 9 and 12 in the
 

body of this report. An algebraic approximation of the weight distribution,
 

dwt./dr is shown in Figure 9. Converting this expression to represent units
 

of mass gives
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dm = 
0.44 - 0.0478r + 0.001823r3 slugs/ft
dr
 

Numerical values for each of the elements due to distributed mass can there­

fore be determined for the wind tunnel model rotor, as follows:
 

f.lR (d) dr = 2.53 slugs15R d
 

r (2)dr = 20.8 slugs/ft

(r
.-15R 

r d = 219.0 slugs/ft
2
 

)d

.15R 


d 2590 slugs/ft3 15R =3 (2E) dr
ifR r


4
 
33,700 slugs/ft
dx = 
f15R J r If 

To derive equations of the elements for the tip mass part of the equa­

tions, the same logic used for the distributed mass part is used, except that
 

tireplacesp 4 dr, and E replaces r. The equivalent of the 6.0 lb tip mass
 

shown in Figure 9 is 0.1862 slugs, and R determined from the figure is
 

16.25 ft. Therefore, to each of the five integrals another term, representing
 

the concentrated tip mass, is added:
 

to (dr add .1862 slugs
 
15R
 

r (f)
to dr add (16.25) (.1862) 3.03 slugs/ft
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to r22M dr add (16.25)2 (.1862) = 49.2 slugs/ft 2
f 
d1l5R 


to R r ( dr add (16.25)3 (.1862) = 800 slugs/ft3 

(.1862) 13,000 sings/ft
to R r4(r)dr add (16.25) = 

d
f15R 

The resulting nuerical values of the integrals are
 

J(t r =a+mti, 2.72 slugs 

f r (2) dir + mti. R = 23.8 slugs/ft 

r ( ) dr + mt = 268 slugs/ft2 

f r3 ,) dr + mt R3 = 3390 slugs/ft3 ' 

+ mt R4 = 46,70o slugs/ft4 f r(2E) dir 

Another contribution to the inertia matrix occurs if the mass is 

actually not located along the blade's quarter-chord. It adds to the 

feathering moment of inertia and affect only the 3,3 element of the matrix. 

Therefore, to make the inertia matrix more correctly represent the wind 

tunnel model rotor, increment of local moment of pitch inertia about the 

1/4 chord, 0.216 slug/ft2, will be added to the 3,3 element. 
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To complete the inertia matrix, the following constants (applicable to
 

the wind tunnel model rotor) are to be combined with the integrals:
 

A= .0262
 

2
 
A = .oo686 

1
 
2 .003675
 

A 
 - .0000962

R2 


1
 
i = .0000135 

Combining the preceding items appropriately results in the numerical value
 

of the inertia matrix as follows:
 

268 23.8 7.01 12.46
 

2.72
23.8 .623 .985 
[bj - 7.01 .623 .400 .326 

12.46 .985 .326 .631
 

Note I = 0.216 slug/ft 2 was added to the 3,3 element.
 

The inertia matrix for a single blade [b] evaluated is now introduced into 

the expression for the inertia matrix for the entire rotor [D]T [Ib] [D]. 

The following page shows the completed inertia matrix for the rotor. 
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Rotor centrifugal and structural terms and rotating spring. - The ele­

ments of mass of the rotor are subjected to constant centrifugal inertia
 

forces. These forces produce moments and generalized forces on the degrees
 

of freedom proportional to displacements. These forces are similar to forces
 

induced by structural deflection except that they couple degrees of freedom
 

whereas structural forces do not. Because, in this formulation of the dif­

ferential equations of motion, it was chosen to couple dynamic inertia forces
 

(i.e., acceleration inertia forces) the structural forces are not coupled
 

between degrees of freedom.
 

Since the blade deflections are related to deflections of the degrees
 

of freedom by
 

and the generalized forces due to centrifugal forces on the blades are given
 

by
 

I{GFb [CEF] h 
and rotor generalized forces are related to blade generalized forces by 

ED]
G
{GF} = {bI 

the rotor centrifugal forces are related to rotor deflections as follows:
 

{GF} = [D]T EP] E 
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The centrifugal force matrix for a single blade is 

8bm 
8a 

8bm 
8z 

Dbm 
ae 

Bbm 
88 

[cFb] = 

av 

p 

Sv 

8z 

av a 

86 

v 

a6 

Sfm 
ap 

Sfm 
Sz 

Bfm 
86 

Sfm 
88 

H 8H 8H OH 
aP 8z T6 88 

and the [CF] matrix for the entire rotor is formed by three identical single
 

blade matrices along a diagonal, similar to the inertia matrix.
 

The elements of the centrifugal force matrix for a single blade consist
 

of the change in root bending moment (bm), shear (V), feathering moment (fm),
 

and generalized force (H) due to linear flap deflection (P), vertical dis­

placement (z), feathering angle (e), and parabolic flapping deflection (6).
 

dbm = 2/2dm r= _d22dp dr = 

where the negative sign denotes RHS of the differential equations.
 

dV
 

2dfm 2 Af dm 2A b 
dp = A rdr ­
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Rotor
 

2 

-7disk plane
 

(K_ r 2 = qm dr2dli - r)2Q2 dm ~ dm 

The centrifugal forces due to vertical displacement z are all zero
 

dbm dV dfm dH 
dz = z dz dz 

The centrifugal force terms due to feathering angle are as follows:
 

dbm - _2 2 A r2 dm 2 
ef 2 f dr = -Q 2AIb 

dV d 
--_ = 0 

def
 

dfm = _2(A2fr2 +I) = _a2(Ad + o 
def r 0 

2 
dH AQ 2 r 3 cmdr; 

de R2 dr 

this term comes from flapping due to feathering.
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The centrifugal force terms due to parabolic flapping deflection (6) are
 

as follows:
 

R2dbm _ f f rdrmd drd6 

dV d
 
d- ---0 

dim
 

dfm 2 3 
- A rdar dr
 

a­

dH 02 4 2adm 2 

where
 

M5 dr = blade flapping generalized mass 

If the centrifugal force and structural stiffness are combined in the
 

latter term, it becomes 

dH 2
 
-
 = -Wa M6 

2.
where w5 is the flapping frequency of the blades in rotating axes under the 

combined influences of centrifugal and structural forces. 

In summary, the blade centrifugal force matrix, including the effects of 

blade structural bending stiffness is written as follows:
 

2o6 



dbm dbm 	 dbm dbm
d!-P I-	 - ef dT5 

dV dV 	 dV dV
 

avZ av-f av
[Cvb 

dfm dfm 	 dfm dfmd[ T dz-	 def- dS 

dH dH 	 dH dH
 

Tz TZ f T6 

2f2 dr 0 -2Af 2 dn 	 fr3d dr 

0 0 0 

-dmrj- r 0 	 _22IA rr-r2 dm r2Af2 1 ) 2 JA3fr3 &ed 

4922 fr dm d2 fr 	 f r dm3 
- f 	 0 -A'r fr3 dr - w64r 

Notes: (i) 	The (4,4) element contains flapping structural stiffness as well
 

as centrifugal stiffness.
 

(2) 	the [CFb] matrix can be obtained from the - [Ib] matrix by 

factoring by 2 . deleting the second row and column, and adding 

(62 _ rh2m

R4 rm r 

to the (4,4) 	element; or more concisely, by factoring the
 
2 	 2

generalized mass byw6 instead of 2 
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The numerical value of the single-blade centrifugal force matrix becomes 

268E 2 0 7.019 2 12.46062 

0 0 0 0 
[CFb] - 7.0192 0 .40092 .326o2 

2 
0 .326o 2 .631012.46o2 

which is used to relate the generalized forces on the degrees of freedom due
 

to centrifugal forces and blade bending stiffness to deflections in the
 

degrees of freedom, per the expression
 

The operations combining these matrices are shown on the following page.
 

Any feathering spring that might exist in the blade system (in the
 

rotating axes), for example due to the feathering spring effect of a tension­

torsion pack, is not included in the centrifugal force matrices shown on these 

pages. If a value of the feathering spring coefficient KR is available, and 

is considered significant, the matrix can be modified to include the effects 

of the feathering spring by adding KR values to elements 4,4 and 5,5. 
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Rotor structural damping and gyro rotating damping. - Structural damping
 

is proportional to and in phase with blade structural deflection velocities.
 

Therefore, to include the effects of damping of the structural modes, a gen­

eralized force which opposes the velocity of each mode is added. This force
 

is given in terms of the fraction of critical damping (M). It is expressed
 

in terms of a damping coefficient, 2YwM, and is applied to the three flapping
 

modes as shown in the following matrix.
 

Blade feathering motions are opposed by mechanical friction (viscous 

friction in this linear analysis). In the matrix it becomes swashplate 

moments due to swashplate tilt velocities. These terms are considered to 

represent feathering (rotating) damping, denoted by the symbol CR * 

Relative to axes which rotate with the rotor, the mechanical damping
 

terms are written in matrix form as follows:
 

14 0 

L 0 6 

Me --- CR 
TI8 0 

H68 o0 2-y6 W60o06o6 
He 2 "Y6WMM6es 5 

Rotating Axes otating Axes
 
The minus sign indicates that the terms are meant to fall on the right
 

hand side of the differential equations.
 

High-speed gyroscope terms in rotating axes - The equations of motion 

of an unrestrained undamped gyroscope relative to its own rotating axes
 

are
 

Ircing I 

0
[1
VGf j:j:+ ' toments}f 

The two axes of tilt are not coupled and each has its own .natural 

frequency %. 
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The equations of the gyroscope relative to axes rotating with the rotor
 

are obtained by transforming the above equations from gyro axes to rotor axes.
 

Absolute tilt angles of the gyro in rotor coordinates are composed of the body 

tilt angles®, and the tilt of the gyro relative to the bodye , . There­

fore the gyro and rotor axes are related as follows:

I°ITIIl I 
T +VG1: Rotor Axes 

axes
 
where [T] is the sine, cosine transformation
 

The transformation relationship can also be written
 

{Iro T rotor axes 

axes
 

and its time derivative can be written
 

{e ; .: IJ +[T TJj 

gro
 

axes 
rotor rotor
 
axes axes 

The second derivative with respect to time is
 

{~gyo J Ij +2[TT 2 + [TjTJ]~ 
axes
 

rotor rotor rotor
 
axes axes axes
 

212
 



The transformation and its time derivatives for rotational symmetry are
 

[T T] 0a1 1a] 
-2
1 -i0 

[ 'T] = ( G - ) [-1 - ] 

Substituting in the initial equations in this subsection yields
 

]H +[TIT]
V0a)GA% +2 [Il 

2[T 1 [ i [ Forcing 
~~~~ GJEW1V MomentsjF 


The terms of the equation are now examined one at a time. Expanding the
 

first term gives
 

1n0 1 0 0 1 0 -i ®1 

Q)2 1 [10o0 a II -0 -0] 

-0 1. 

Note: 
(G-n.2 

(% 
=n2 

2 
_ 2+2 

+ 
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Therefore, the first term of matrix equation, in rotor axes, becomes
 

(E2G - Q)2 0 -1Ga o -1G 4 
-I G 0 -I G 0 

0 -1IG 0 -I G -

Expanding the second term gives
 

2(0a 1a [1 IG [ -o 0 1] 

.0 1. 

Therefore, the second term of matrix equation, in rotor axes, becomes
 

2( -1) IG 0 I G 

o -iG 0 - lel 

I G 0 I G 0 

The third term in the gyro matrix equation can be written
 

[K][iG ()]TIT 

which, in rotor axes, becomes
 

IG 0 IG 0 
Cl Cl
0 I G 0 I 

l 
 IIG 0 G 0 
0 IG 0 IG 
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The fourth term can be written in rotor axes,
 

IG 0 1G 0 ®
 
2 0 0 PIG 1G 


G IG 0 IG 0 0
 

0 0
1G G
 

Regrouping all 	terms gives the following matrix equation:
 

0 1G 0 	 0 -IG 0 -I 6 

o 	 IG 0 IG '' +2(2 00 -S 0 IG 0 IG 0
 

G0 I0G G 0 -


Rotootor
100 I +2G M6J 	 Rotor 
axes 
 axaes
 

0
0' 


00 ' 0 
 0GM
 

A y 0 I 0 e.­

10 I 0 € @6 M
 

)-- 0 Rto r - forcing functions 

axes 

Aerodynamic terms in rotating axes. -

The aerodynamic coefficients in the differential equations were
 

calculated in rotating axes and transferred to stationary.
 

In axes rotating with the rotor, the aerodynamic terms were calculated
 

in a manner similar to the way in which the inertia and centrifugal terms
 

were calculated. The displacements and velocities of individual blades were
 

first defined in terms of displacements and velocities of the degrees of freedom: 

7 - [D]j 

= [D] 
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Then the generalized forces on each blade, due to its displacements, 

velocities, and fixed geometric shapes, were calculated at closely spaced 

intervals around the azimuth with the effects of advance ratio accounted for. 

JFJ F i] r 8Fb] [_F 1IF-++ + a Fixed] fixed1 
= J { [1geom .1 i 1e 

The generalized forces on the three blades due to their individual motions
 

were combined to yield the matrices of areodynamic terms in rotating axes.
 

!GF I = [D]T[8F [n]fpI+D]T [aFb ] TJaFb " fixed 

LH I 1 [f eom 

The rotating axes matrices were called 

aerodynamic stiffness [D]T [ D] = [A] 

and
 

[D] [rbj [n] [A.R]aerodynamic damping 

These were later transformed to stationary axes for use in the final
 

equations of motion. The forcing terms were transformed to stationary
 

axes as follows:
 

T T FixedfixedI 

T u eom j geom 

where [IT] is the sine-cosine transformation of the degrees of freedom from
 

stationary to rotating axes: 

= [T] p 
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The column matrix of fixed geometry parameters consisted of:
 

fixed PO
 
geom I
 

Ot
 

where: 	 Po = precone angle
 

6 = collective pitch
0 

60. = twist rate
 

z vertical gust air velocity
 

The aerodynamic matrices were based on a tip loss factor B .97
 

and a section lift curve slope Cl . .95 (2Tr).
 

Collection of terms in rotating axes.-


Matrices are now combined (on the next page) into a matrix equation
 

representing the equations of motion in the rotating axes system. Numerical
 

or symbolic values are showm for all but aerodynamic terms.
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Transformation to stationary axes. - The equations of motion of the rotor 

and gyro in 8 degrees of freedom are written in rotating coordinates in the 

preceding pages. They will now be transformed to stationary axes, and effects 

of the rigid airframe will be added thereto. 

The pitch and roll of the rotor (®,c ) and of the gyro (0,4) were devel­

oped relative to the same rotating axes. The flapping mode pitch and roll 

deflections are lagged 60 degrees behind the rotating axes, therefore the 

blade axes are allowed to lag behind the gyro axes so that the standard 

transformation is valid. 

The relationship between generalized coordinates (degrees of freedom) in 

rotating axes (subscript R) and in stationary axes (subscript S) is as follows: 

cos&2 -sin 0 0 0 0 0 0 

sin2t cost 0 0 0 0 0 0 

z 0 0 1.0 0 0 0 0 0 z 

0 0 0 cost -sinSrb 0 0 0 a 

40 0 0 sint cost 0 0 0 

60 0 0 0 0 0 1.0 0 0 50 
0 0 0 0 0 0 cosgt -sirt 68 

L4 0 0 0 0 0 0 sinS cost 84 

and in abbreviated notation:
 

{P} = [T] 1pl1 


and PIR= [T] {qS+ [T] { 

and = [T] {} + 2 [T] + [ ] P S 
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Submatrices of T] involving ®, 0'P and 6e 54 are uncoupled, from each other 

and from z and 6o elements. Therefore, each submatrix is handled independ­

ently. For rotationally symmetric terms, the matrices and their time 

derivatives become: 

1 tLi FiT 

[T] = jILLLL 
,II I IlIll I
 

-+--- ++ 4-----

II I I I llI 

-- t--t t -f---

I1 I i I i I 

---- TI--Ti-----k 
_ IFII I TT 
- I I
 

iIi I I I
 
-
Erl . .T-T
 

-L&4--4---


I I I IryI 1 i I I 

II I I--

T rI--2
 

[ I _ ~ l
i I 22­



For 	terms which are not rotationally symmetric, or which vary with
 

azimuth, the full transformations and their derivatives must be used. For
 

example, the first time derivative of [T] is
 

-sinM -cosfl 0 0 0 0 0 0
 

cosat -sinmb 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 -sinm -coszt 0 0 0 

0 0 0 cosm -sint 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 -si 2t -cosmt 

0 0 0 0 0 0 cosm2t -sinfzt 

The 	rotor equations in rotating coordinates are repeated here,
 

N+ ED 1+ [S]{IR - [A]fjR - [AJf P}IR = 0 

These equations are transformed to apply to stationary axes in two steps:
 

1. 	The transformation equations for PIR'l{R and{} R are substituted 

for the differential equations (in the matrix equations). 

2. 	The differential equations generalized forces are transformed from
 

rotating to stationary axes by premultiplying by the transpose of 

the 	transformation matrix [T]T.
 

The 	equations become:
 

[T] T [I]I, + 2[TI{S + [T{P} 8] 

" [T] T [n] [[T]{108 + [M]PIS] + [T]' [s] [T]{P}8 

" [T] T [A,] [[T]tI }S + [t lS] + [TIT [A] [T]{p} = 0 
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Full transformations, indicated by arrows, must be used for aerodynamic
 

derivative matrices. In all other places the abbreviated matrices for ro­

tational symmetry are used. For the rotationally symmetric matrices
 

[T]T = [T] = [1] 

Expanding the matrix equation and keeping the aerodynamic terms separated
 

from the mechanical terms, the equations become
 

2 [1] [*{] [~{}[ll [ET{fP + s i 

" ED] [T]{[1q8 + E[nj [f pJ + [s]{p} 

+ [TIT [A.] [T]I} + [T] T [R]!411Is + ET]~T A] ETrrj{13} 

'* ' ull/' Full/' 
The mechanical terms are grouped as follows: 

+ +I1108 [2[z] [~J [D]]{i }S + [['I [!fl + En] [fl + [s]jJfpJ S 

The individual transformed matrices 2[I] [, [I] [], and [D] [] are 
calculated next and then the combined mechanical terms in stationary axes 

are assembled. 

2 [1] [T] is as follows:
 

0 -402.75 0 -7.658 -5.174 0 -15.942 - 9.768 

402.75 0 0 5.174 -7.658 o 9.768 -15.942 

0 0 0 0 0 0 0 0 

2f2 7.658 - 5.174 0 0 - .6o4 0 0 - .4252 

5.174 7.658 o .604 0 0 .4252 0 

0 0 0 0 0 0 0 0 

15.942 - 9.768 0 0 - .4252 0 0 - .9465 

9.768 15.942 0 .4252 0 0 .9465 0 

[i] [Y] is as follows: 
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402.75 	 0 0 5.174 -7.658 0 9.768 -15.942
 

0 402.75 0 7.658 5.174 0 15.942 
 9.768
 
0 0 0 0 0 0 0 0 

_02 5.174 7.658 0 .604 0 0 .4252 0
 
- 7.658 5.174 0 0 .604 0 0 .4252
 

0 0 0 0 0 0 0 0
 

9.768 15.942 0 .4252 0 0 .9465 0
 
-15.942 9.768 0 .4252
0 	 0 0 .9465 

[D] EL] is as follows: 

0 0 -. 3(%G-) 0 0 0 0 
0 -. 3(QG-Q) 0 0 -. 3(G'-) 0 0 0 
0 0 0 0 0 0 0 0 

3.(Q-P) 0 0 -03(0-E) -e R 0 0 0 
0 -. 3(Q0 -0) 0 +Ca -. 3(TG-2) 0 0 o 
0 0 0 0 0 0 0 0 
0 0 00 	 0 0 0 -1. 893 y60 SO8 
0 0 0 0 0 0 1.893Y5 6 0 

[2 [I] [1] + [DI]] is as follows: 

0 3nG 0 -15.316 - .3G 0 -31.88 -1954E2-805.202 	 -o.M048o8 
805.nG 0 0800 +.3QGG -15.3160 0 19.54o -31.88S2 

0 0 0 0 0 0 0 	 0 

10.348Q -12080	 0
15.3162 - .3(a G_f CcR _.5(S2 G_S ) 0 	 .85o o 

10 -348E2.15.316Q 1.(20_e) C 0 .85o4Q 038G_ 0 208 2+
 

.3(G-U.-3 (S 0 -S R
 
0 0 0 0 0 3.78 6 -Y6 oy8 0 0
 

31.88o -19.54 2 0 0 -. 85o4 0 1.893y 6 8 6 - 1.893e2 
19.540 31.88 Q 0 .85o4Q 0 0 1.8930 1.893y[W ,6 
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Swashplate springs and dampers. 
- Springs and dampers are inserted 
between the stationary ring of the swashplate and the airframe (body). The
 

springs produce swashplate moments proportional to swashplate tilt displace­
ments and the dampers produce moments proportional to the tilt velocities. In
 
this study both are considered to be rotationally symmetric or have equal
 

diagonal elements and zero off-diagonal elements.
 

Swashplate moments due to springs are given by:
IM}
- [: ]{:j 

Swashplate moments due to dampers are given by:


I:1e[CS 0 
The minus signs indicate that matrices apply to RHS of differential
 

equations.
 

Body terms. - The rigid body terms are added directly to the rotor terms,
 

which were derived relative to earth-fixed axes. The rotor equations relate
 

the generalized forces acting on the rotor degrees of freedom to the motions
 

of the same degrees of freedom - in fact, they describe the free flight motion
 
of a rotor alone. 
Adding the body terms completes the description of the
 

motion of the entire vehicle.
 

The rotor equations with swashplate springs and dampers are:
 

[I] +[2[] + [D] + [[I][T] + [D][ +[ 

- [BR [B]PI + [CSI + [KSI]3 0 
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The body (aircraft type) equations of motion are also written relative
 

to the earth-fixed axes.
 

Perkins & Hage (reference 6) give the rigid-body equations of motion
 

relative to axes rotating with the body and aligned with the mean wind vector.
 

They are:
 

x 

y 

z. 

8M Aa + 8M + *= m k2.@ 

aF
 
A a mvG -) 

Substituting the following:
 

2 

a y 

a v= 

V 

2
 



the equations are written:
 

1 am .. _ _ a 

m.mV - i 8Fza 

V 8c 

and in matrix form are:
 

iyy 1v 7a H -8V 
Da 

+ = 0 

0 m 'i mV ] j 

The aerodynamic derivatives are derived as though they are forcing func­

tions (on RHS of equations). For axes fixed in the body (airplane axes),
 

. ..M M
Mfl + L:A= 0
VaV V 

For earth-axes the equations become
 

Iy V (Mq +M V Ma_1 

+ + =0 

For body-axes the dynamic determinant becomes
 

ImX - 1 M 2 - MX 
a V ax
yy q V 

- MVX MX2 -IzX 

V3 
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which expands to 

X3 
 MM)I M%4 -(M+I + M%) +(M 
yy q yy V q V a
 

For earth-axes the dynamic determinant becomes
 

2 

I X _M + X-M M& Z 
yy V
 

- Zar Mx -Za 
V
 

which expands to
 

_ +Iyy 3 + CMq 2MXh-(Mq + MM)x 

Since the two representations have the same characteristic equation they
 

yield the same roots, frequency and damping, or, the two equations can be said
 

to represent the same physical situation.
 

The earth-fixed representation is used in conjunction with the rotor
 

equations; axes are selected to coincide with the rotor axis convention. The
 

equations of the body relative to aircraft axes are
 

)X 

z 

234 



1 0 
0 v -

-
I(Mq 

+ 
+M) 

0 - 1 

va 

0 i 0 1 + -L 0 

va 

- Ma o ® 

+ 0 0 0 , = 0 

•Za 0 0 Z 

'here 

Ma= gsTcqEC 

q 

M = C qSc­

and: 

aa 
Z = -C qS 

L = b 

C iv 
p 2 

aC 
C m m = ac ' 

a 

cL = 2p­
c235 

qSb 

c m 

aC 

a-Qc 
2V 
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Now the equations are rewritten in the helicopter axis system
 

zy
 

x
 

The Y axis is common to both systems, so signs of pitching moment and 0 do not
 

change. The helicopter Z axis is the negative of the airplane Z axis, so z
 

displacements and z forces are of opposite signs to those of the airplane; the
 

sign of the vertical force - 1 Z and of M remain unchanged. Since the roll
 

axis is reversed, and roll forces and matrices are not coupled with the others,
 

their signs do not change. Examining the cross terms:
 
11
 

sin of-
" 2Te 1Mj changes to 1 M&
 

* The sign of - :M. changes to 2 M
 

* The sign of - Za changes to Za
 

The final equations of the body in rotor earth fixed axes system are as
 

follows:
 

1 ( - (M+M&)0 vMa 0o0 

0 1 0 (1 + 0 -LO 0 0 0 =0 
xx p
 

0 0 M -1Z
 

0Z -- z Za 0
 

These equations are based on the previously defined values of derivatives. It
 

would be proper to redefine the derivatives in terms of the new axis system,
 

but the system of derivatives is selected so that existing airplane-type
 

derivatives can be used.
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Aerodynamic derivatives of the wind tunnel model configuration are now
 

estimated. A tail-plane of the proper general size is assumed to be added to
 

stabilize the vehicle in free flight. Mass and inertia data appropriate to an
 

equivalent flight vehicle are also estimated. Mass and inertia data of the
 

actual wind tunnel model are also approximated so that dynamic modes of the
 

model mounted in the wind tunnel could be calculated for comparison with
 

hypothetical free-flight calculations.
 

The equations of motion of the airframe contain the aerodynamic and
 

inertia terms needed for the analysis of vehicle stability. They are as
 

follows:
 

Ma, Ma, Mq 

L 
p
 
Za
 

Inertia data required are
 

I I and M
 
yy xx 

In the analyses discussed in this report, interference between the rotor
 

and body is ignored; in other words, rotor derivatives assume absence of the
 

airframe, and airframe derivatives assume absence of the rotor. It is ex­

pected that interference between an essentially unloaded rotor and a body are
 

small and do not affect the basic form of the dynamic modes.
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Geometry of the wing-body tail of the model with an assumed horizontal
 

tail is shown in Figure A-10.
 

The pitching moment about the center of gravity due to a unit angle of
 

attack (Ma) is caused by the body and tail. The wing is located so that its
 

aerodynamic center is at the aircraft center of gravity and on the shaft axis.
 

This location causes the wing to produce no moments about the center of gravity.
 

Wing dovnwash has an effect on the tail contribution to moments.
 

Ma = C q STma
 

at
 

MC -e q St t 

at

'body 


where
 

C = 	 lift curve slope of the tail 

Ot 

at = 	net angle of attack of the tail including downwash from the
 

wing
 

q = 	dynamic pressure
 

S = 	wing area
 

St = 	tail area
 

Pt = 	tail moment arm
 

t = 	mean aerodynamic chord of wing
 

The pitching moment due to a body angle of attack is proportional to the
 

volume of the body (slender body theory),
 

Ma - = 2 Volume q
da
body 


and the tail angle of attack is reduced by dcwnwash from the wing,
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Figure A-10. Wing-Body-Tail Geometry Of The Gimballed Model And The Free-Flight Vehicle 



a aCi E­

where
 

E = downmash angle 

a = wing angle of attack 

Therefore, the nondimensional derivative is
 

C 2 Vol C St t 1 8 E) 
ma SEat S cE I­t
 

Physical dimensions of the model are
 

= 225 ft3
 Fuselage volume Vol 


S = 95 ft2
 
Wing area 


Wing MAC 	 = 4.58 ft
 

Tail moment arm 2t 	= 18.3 ft
 

= 33-3 ft2
St
Tail area 


The wing and tail geometries are
 

Area, S Span, b Aspect Ratio Taper Ratio CE
 

ft2 
 ft
 

Wing 95 20.8 4.55 .62 4.0
 

Tail 33.3 11.0 3.60 	 .5 3.6
 

Downwash at the tail is obtained from page 224 of Reference 6, -kowing
 

the position of the tail relative to the wing, and the wing geometry. The
 

value determined for this vehicle is
 

Dc
 
0.3
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C 

Therefore, 

2 x225 - 3.6 x 333 x -83 x (1 - .30) = - 2.51 
5x45 2 5 4.58
 

and 

Ma - 2.51 q Sc 

The pitching moment due to a is 

m TV TVMA = Cm ac q SE 

or M = a q SE 

a ma 

• S I ~ St it it dEClt- s 

Substituting values for the model, at a flight speed of 120 knots,
 

Cm = -3.6 333 18.3 18.3 (.30) = -0.136 
mA95 4.58 203
 

and
 

M = - .13 6 q SE 

The pitching moment coefficient due to q is
 

St it it
Cm Cl W 5 Vq a
 

Substituting-value for the model, at a flight speed of 120 knots,
 

C33.3 = 318.3 x 8-3 .4 54 
m 95 4.58 203
 

q 



and 

m = - .454 q SE9 

The damping in roll derivative at a selected flight speed depends only on the 

aspect ratio and taper ratio of the wing, 

AR = 4-.55 

T.R. = .62 

C~ /bC q Sb 

Using geometry of the model and a 120 knot flight speed, a value is obtained
 

from page 357 of Reference 9,
 

c - - .43 

Therefore,
 

L = -. 022 q Sbp 

The vertical force due to angle of attack comes from the wing and tail.
 

Za = -L q S 

where
 

CLe is for the airplane
 

CCL + Cl St ( e 
0La = L +01I S& i 8) 

airplane a wing at 
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Substituting values for the model,
 

C = 4.o + 3.6 x 33.3 (i - .3) = 4.88 
La 9
 

airplane
 

Therefore,
 

za = - 4.88 q S 

In summary then the aerodynamic derivatives are
 

MaI - 2.51 q SF, (at any speed)= - 2.51 q SE (at 120 knots) 

27.6 

Ma = - q SE, (at any speed)= - .136 q SE (at 120 knots) 

92 

mq = - -_ q SE, (at any speed)= - .454 q Sc (at 120 knots)
 

V4-46 q Sb, (at any speed)= - .022 q Sb (at 120 knots)
 

Za = - 4.88 q S, (at any speed)= - 4.88 q S (at 120 knots)
 

The moments of inertia are determined separately for the free flying
 

vehicle and the wind tunnel model. Estimated distributions of the masses are
 

used. The flying weight of the free vehicle is based on the actual weight of
 

a helicopter similar to the wind tunnel model: 3500 lb. The wind tunnel model
 

weighs approximately 6000 lb. Inertia data for the body and hub are needed to
 

complete the required data items. The mass and inertia of the rotor blades are
 

included in the rotor equations of motion. A summary of this additional inertia
 

data is as follows:
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INERTIA DATA SUMMARY
 

Free Flight Wind Tunnel
 
Vehicle Model
 

6000
Gross weight, lb 3500 


Body and Hub weight, lb 3220 
 5200
 

Pitch moment of 2 1300 2400
 

inertia, IY, slug ft2
 

Roll moment of 800 1500
 
inertia, Ixx slug ft2
 

Mass, M, slugs 100 177
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APPENDIX B 
DISCUSSION OF BLADE FLAPPING 

Each of the three blades of the rotor is assumed to flap normal to the
 

rotor disk only. This assumption implies that as far as the flapping degree
 

of freedom is concerned, the blades have no tvist, no collective, and no
 

cyclic pitch. It further implies no radiuswise and no in-plane motions of
 

the blades. This assumption eliminates coriolis forces and in-plane to
 

feathering coupling. The blade 1st flapping mode, only, is considered; its
 

mode shape changes only slightly when rotor rotational speed is varied from
 

zero to full rpm; so, a single mean shape is used for all values of rpm.
 

Since there are three blades, there are three rotor elastic modes associated
 

with the blade 1st flapping mode. These three modes are shown in Figure A-8.
 

It would be expected that the two modes which bend the shaft, pitch and
 

roll, should have the same frequency, and that this frequency would be slightly
 

lower than that for the colletive motion. It becomes evident upon investiga­

tion, however, that the shaft is so stiff that deflections in the modes are
 

almost entirely due to the blades. Therefore, the three rotor modes have
 

effectively the same frequency.
 

The three rotor modes can be used to formulate a complete description of
 

all first flapping displacements. This can be visualized by a plane passing
 

through the three blade tips; a plane can only translate vertically and tilt
 

in pitch and roll.
 

Summary of General Observations Applicable to
 
Blade Flapping Motion
 

1. There are three rotor modes corresponding to the blade 1st flapping
 

mode of a three-blade rotor. These are shown on Figure A-8.
 

2. The shape of the blade 1st flapping mode is adequately described by
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3. 	The three rotor modes are orthogonal to each other and are the
 

complete set of 1st flapping modes.
 

4. 	The rotor shaft bending contribution to the rotor pitch and roll
 

modes is negligible, so the natural frequency of these two modes
 

(in vacuo) equals the frequency of the collective mode.
 

5. 	The principles involved in finding the rotor blade natural flapping
 

frequencies at zero rpm in vacuo and with centrifugal effects
 

included for any rpm are illustrated with a rudimentary model. The
 

results approximate those which were obtained with a more compre­

hensive model.
 

Notation Used in Appendix B
 

EI Bending Stiffness, lb in.
 

f Natural vibration frequency, cps
 

F Force applied at lumped mass, lb
 

k@ Spring stiffness, in. lb/radian
 

m Mass, slugs + 12
 

r Distance from center of rotation, in.
 

R Tip radius, in.
 

Es] Blade bending structural influence matrix, in/lb
 

6 Blade flapping deflection, in. 

6 Root spring deflection angle, rad 

W Natural vibration frequency, rad/sec 

0Rotor rotation rate, rad/sec
 

Subscripts: 

1,2,... Mass node number; vibration mode number 

6 Structural deflection 

in~p Lumped mass number 

tip tip of blade
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Blade Frequencies and Mode Shapes as Influenced by
 
Centrifugal Forces and Shaft Stiffness
 

A simple example is used to illustrate the effects of blade stiffness,
 

mass distribution, shaft stiffness, and centrifugal forces on natural fre­

quencies and mode shapes of a blade relative to axes which rotate with the
 

rotor. Although it would probably be necessary to use at least 3 or 4 lumped
 
masses to adequately represent the blade mass distribution (also a stiffness
 

matrix based on linear variation of EI between lumps would be more accurate
 

than a constant EI), the example uses only 2 lumped masses and a constant EI.
 

The results of this relatively crude representation have been shown to be
 

close to results obtained by analyses using up to 30 lumps.
 

The shaft bending stiffness is represented by a spring attached to the
 

blade root as shown below. The blade deformations under the action of forces
 

applied at the mass nodes are also shown below
 

F2
 

]6Sl( I 2 = F12 

r 22 

The part of the deflection due to bending of the blade is denoted by
 

5s and that due to the root spring by re. The square matrix [S] relates the
 
bending deflection to the node point forces. The root spring angular
 

deflection 6 is
 

rF1 + r2F2
 
2k
 

o
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which is written in matrix notation as
 

The total deflection then is given by:
 

= I: + 1 

2 [l I [%] Jr2f 


+IF[s] [:2 rlr2 F{:

V:1[SJ 16:'2± 1: 

To evaluate the vibration modes and frequencies, all aerodynamic forces
 

are assumed to be zero and the applied forces
 

F
2
 

are due to inertia and vertical components of blade tension forces induced
 

by centrifugal forces. The inertia forces in a vibrating system are given
 

by w2m6. Centrifugal force produces tension in the blades, which increases
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as each lumped mass is passed on the way from the tip to the root. Blade
 

tension immediately inboard of any station, n, is
 

p 

Tension = S22 r m1 
1=n 

where p identifies the most outboard mass. The vertical reaction at station
 

n depends on the deflection of the blade at n, n+l, and n-l
 

segment of blade
 

disk plane
 

2 P6n-l
2 i_5n6 nn+l -

Vcn Ir~ n) rimi rn n-l/ i=n­
f - r ' n J im i1 n 

The net vertical force due to inertia and centrifugally induced force is 

F =2 6n+l 6n r.m. 16 5n 1 ) rImj 

and, in the two-mass representation of the example,
 

6 ) ( ) L (F =2m 6 +Q 2 [ 62 


2 

2r
9
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2 2 2 - 1 

and, in matrix form, 

1
0 1 + [. . 1 _Fm ij[ 2J :2rrI 0 {m t2 

From equations (i),regarding the structural deflection due to vertical
 

forces,
 

1 [s1 r l r2]] - 1 
2 

Equating structural forces with inertia and centrifugally induced
 

[S [ 1]+ 4r 1 r24 f l [:1 0 1 + 02 [ _r2m2r 
=rlr2 ]I 1e rr 2 62 0 m2 J2 r 

[ml+ 1m1 121 

To determine the natural frequencies and mode shapes of the two-mass­

represented blade relative to rotating axes, which include the effects of
 

blade stiffness, mass distribution, centrifugal forces and root hinge stiff­

ness, the two roots of the characteristics equation of the following equations
 

are evaluated.
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Er:2K+ S]41 2 2 

r±%12 :]]]0{-- n 21_ 1Ms + 2o _ 
r1mr 20 ] 1 2 L2 r 1 ­

0 O_ 621
 

A simple check of the equation is available. If the structural matrix
 

is zero and the shaft spring is zero (this in effect makes the system a string
 

with two weights, swinging around a pylon) then one of the natural frequencies
 

would equal the rotational velocity; i. e., a root would be W =n : 

Substituting w =S2and dividing by S2 yields:
 

~ r2_2l+~~ 


[: 02 r2m2r [ [m 1%m2 0
1:i :10 m2 11 -0 o 

r2m2 r2m2 r2m2
 

- r2 ­r2 rI r rI
 

r22 
 r m2 
r2 - r m r2 r--


The determinant equals zero when expanded.
 

The natural frequencies and mode shapes are found from the eigenvalues
 

and eigenfunctions of the equations.
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_2 
= 0 

The first step is to determine the structural matrix [S] .That is find the
 
deflection 6 
 and 6 clue to loads F Iand F2
 

I sF 

1 2
 

, 6 due to unit loads at (D 

S1.0lb 

(El)1 2 

1-1
 

r13
1.0 

6S1D 
 3(EI),
 

1.0 r3 2 (r 2 - rI ) 
s
6s = 6 + 2(E1 
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6Sl 6s 2 due to unit load at ® 

- 2? 2 (D1. 0 lb 
r! 

6 (C - r1) r. r
6Si ® 2(EI)2 1 + 3(EI)1 

(r -rl) rI rI + r2 -r9)
 

6l 1 -(I (ET)
1 (I+
 

2 ®=\ (n (Ej)r2 2 1l) - 2 + sa
6s (r r + 3(EI)2 Si®
 

The structural matrix [S] then becomes 

2
1.or (r - r 
.0r3 


1(I+ 2 1
1 


3 3
r3.0r r23 
3(El)1 ( 2 -r 1 )f + r2 1
 

[s] = 3( 3(EI) 2(EI)l 3(EI) 2 

.r ) - r1 rI)r 2C~l r 2 - r1 )2 r1 
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The stiffness of the shaft acting as a spring to the blade is evaluated
 

as follows:
 

-5 3/8"­

43/W.­

k 27" 

r(d 4 d.i

I = -The diametral moment of inertia 
 x 64
 

- - (5.375 - 4.75) I = 16 in Material: steel E = 30 x 10 psi
 
64 x
 

the change in slope due to a unit bending moment at the top of the shaft,
 

'elative to its cantilever end is
 

-7
a - O27 562 x 10 rad/in, lb
 
SE 30x106x1610 
 rai
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The value of k to be used must be smaller than that due to the shaft
 

since the analysis is performed for a single blade, but bearing in mind
 

that other blades are also bending at the same time (in phase with the
 

single blade being analyzed). Inspection of the pitch or roll modes shows
 

that the other blades act so as to cause 50 percent greater deflection of
 

the shaft than that supplied by the blade under consideration. The
 

effective k to use for a single blade then becomes
 

1 = d = 1.5 x .562 x 1 - 0.84 x 10 rad/in, lb 
__ 1.5l01O ra/n 

The next step is to evaluate the data for the blade:
 

Mi, m2, (EI)1 , (EI)2 , rl , r2 

and to find the modal frequencies for shapes at some selected range of rotor
 

speeds (rpm).
 

-
86 slugs

= .223 12 

34 slugs
 

=-86 .088 s12
m2 


rI1 = 50 in.
 

= 160 in.
r2 


(EI)1 = .6 x lo8 lb in.2 Reference Figure B-1 
18 2 

lb in.2 
(El) 2 = .2 x 
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The structural influence matrix
 

H L2.99 3.571 x 10 in. per lb 

Substituting in equation (2) the resonant frequencies and mode shapes are­

found, for a rotor speed range varying from 0 to 355 rpm 

(0 < 2 < 37.1 rad/sec): 

25016)
- 7 (5 
3 .84 x l0 (6o)]- + (50) 2(60)

3.0]x 10
 3 01 7 37.6 


[3 27 .o6 + 16o (.o88) 01
K~o 5022 
[ 223 0­2 

0 o088] 

which becomes 

.91 3.711 [.633 .1281 2 [.223 0 
0L 0 .088 -.1281 


3.71 39.75 10 .128 


Inverting the 2 x 2 matrix gives,
 

W278103 128 ­

[-.166 .0406] 12- .128 2 0 .0881 
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The roots 	of the above determinantal equation are calculated for
 

= 0 rad/sec, o% max rpm
 

= 7.42, 20
 

= 14.85, 4o
 

= 26.0, 70
 

= 37.1, 100
 

for 2= 	0 

[178 -166 w [.2:3 = 0 

-166 40.6 .088 

2
1780 - .223w -166
 

=0
 
1-66 4o.6-.o88w
 

14 2
 
.o1965w4 - 166w + 4488o = o
 

The roots 	of this are given by
 

W2 - 166 + 4(166)2 - 4(.01965) 44800 

2(.01965) 

2 = 8150; w = 90.4 rad/secw 

280; 16.7 rad/sec
 

and the 	two natural frequencies are 14.3 cPs
 

2.66 cps
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The roots for 	all the rotational speeds, are found in a similar way are
 

f f2
 

.0 2.66 14.3
 

7.42 2.98 14.6
 

14.85 3.72 15.0
 

26.00 5.18 16.1
 

37.10 6.90 17.8 

The variation of the calculated natural frequencies with rpm agrees well with
 

those calculated by more comprehensive analytical techniques as shown in
 

Figure B-2.
 

The objective of the following analysis is to show the contribution
 

of shaft flexibility to the mode shape. Ground vibration tests (and more
 

comprehensive analyses) showed that the 1st flap mode is essentially para­

bolic at all values of rpm.
 

Examining equation (1) and substituting values for 2 = 0 gives: 

170-20 L:6
.223w2 
 1= 
-166 4o.6 - 88 2 l 2
 

To obtain the 	mode shape the equations are divided by 61;
 

2
 

L-166 .o8o.6-8 2J 1 
to solve for 	62 

5 1 

-166 + (40.6 - .088 	w2) 62 061
 

The mode shape depends on the value of w 2 root. For the 1st mode, the root
 

2 = 280, therefore, 

(40.6 	- .088 (280)) 2= 1662 166 - .
 
61 161 1
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Because of the peak acceleration of point Q or © (see preceding sketches) 

is proportional to the displacement, and the force at each point is equal to the 

mass times the acceleration, the ratio of the forces at the two stations is 

F 2 = 10.4 x 34 4.1:1.o 

F1 1.0 x-86--

And the deflections at © and © consist of bending deflections and 

spring displacements 

611 _ SI 681 F1 1 + 1 FI1 

6 2 E) 262 1 2Lrl2r J 2 

f:l103[.t3d0 l + [2 :7JU:1z= = 

62 3. 37.61 F2 L .71 2.151 [F2 

bending deflection spring deflection
 

Assuming F2 = 4hI00 lb, F 1 = 1,000 lb for the 1st mode 

61j [ .7 + 3.0 (4. ) 1 [.21 + .71 (4.l )
621 3.+ 37.6 (4.1).T1 + 2.5 (4.1 

511~~~ =i3+1*1 16.1j 
62 157 19.51 L166.J 

bending spring
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It is seen in Figure B-2,that the contribution to blade flapping deflection at
 

the outboard mass-lump location to shaft bending is only 5.7 percent of the
 

total deflection. In the rest of the analyses this small shaft bending deflec­

tion is neglected.
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APPENDIX C
 
EFFECTS OF SWASHPLATE AND GYROSCOPE PARAMETERS
 

ON FIXED-SHAFT STABILITY
 

The five degree-of-freedom equations which relate swashplate cyclic
 

feathering to the three rotor degrees of freedom in blade first flapping are
 

shown on the following page. The effects of rotating damping (primarily
 

feathering friction), swashplate stationary-axis damping, swashplate spring,
 

gyroscope diametral moment of inertia, and rotor speed (rpm) on the stability
 

of the gyroscope precessive mode are shown. Stability is expressed in terms
 

of the damped (or undamped) natural frequency of the system, and the time for
 

transient motions to subside to one-half amplitude.
 

The five degree-of-freedom equations were abstracted from the eight
 

degree-of-freedom equations derived in Appendix A. In this appendix the
 

gyroscope's diametral moment of inertia and rpm and the generalized masses
 

and cross products of inertia have been left in explicit form so that their
 

effects may be more readily seen.
 

Effects of Rotating (Feathering) Damping and Swashplate Damping
 

When the gyroscope's motion is not restrained by springs, the gyro pre­

cessive mode is referred to as the control mode, since it is the dominant one
 

excited by control moment inputs, and since the system's steady state hub
 

moment response remains of fairly constant (azimuth and amplitude) as the
 

rotor rpm changes.
 

The control mode maintains its advancing precessive character at the
 

higher rotor speeds as the values of feathering and swashplate damping change
 

over the modest ranges shown in Figure C-I. The figure shows the effect of
 

rotating damping on the damped natural frequency and the reciprocal of the
 

time to half amplitude. CR and CS have little effect on the natural frequency
 

of the mode, especially at low rpm. CR tends to slightly increase, and CS
 

to slightly decrease, the frequency at the higher rpm.
 

CR acts strongly to increase the stability of the control mode at high
 

rotor rpm where it is an advancing precession but at the low rpm feathering
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divergence stability boundary, with zero swashplate damping, the frequency is 

close to the rotor rotation rate so that no cyclic feathering takes place and 

the feathering dampers have no effect. Rotating damping does not effect the 

feathering divergence instability boundary when CS = 0. 

As swashplate damping CS is increased, while CR = 0, the stability of
 

the advancing precessive mode is reduced and the low rpm stability boundary
 

gradually rises, thus increasing the unstable region. Rotating damping tends
 

to counteract the effect of the swashplate damping; therefore adding rotating
 

damping moves the instability boundary to a lower rotor speed and increases
 

stability at all higher rotor speeds.
 

The reason for the advancing precessive character of zne control mode,
 

and the effects of feathering and swashplate damping on the mode are discussed
 

in physical terms. In the rotor-gyroscope system, the cyclic pitch angles of
 

the blades are geared directly to the gyro tilt, and the gyro tilt plane
 

remains parallel to the swashplate plane. As far as the precessive mode is
 

concerned, the gyroscope and blade feathering ipertia act together like a
 

single gyroscope. If no dampers or aerodynamics act on the system, it has
 

a natural frequency of zero (lP in the rotating axes) and is undamped, or
 

neutrally stable. That is, if the gyro were tilted it would maintain its
 

tilted position. In rotating axes the blades would feather nose-up, then
 

nose-down, once per revolution, ad infinitum.
 

If weak diverging feathering aerodynamic moments are added to such a
 

system, so as to produce a negative spring effect, which when combined with
 

blade feathering centrifugal moments reduces restoring moments (viewed in
 

rotating coordinates), the frequency would reduce below 1P. The period of
 

each control mode oscillation is longer than that of one rotor revolution,
 

and its peak amplitude precesses to a position slightly ahead of its last
 

position, that is, it advances in the direction of rotation. If the feather­

ing diverging moments become strong enough (or the centrifugal moments become
 

weak enough) the frequency in rotating coordinates vanishes and the system
 

statically diverges in feathering. There is no cyclic feathering at this
 

point; therefore, feathering damping cannot prevent the divergence.
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The effect of feathering damping on dynamic stability is stabilizing, as
 

indicated on Figure C-1. This may be better understood by examining the
 

control system in the absence of aerodynamic forces, and relative to axes
 

rotating with the rotor. From this viewpoint, the blades and gyroscope oscil­

late at 1P with the inertia forces balanced by centrifugal forces and, in fact,
 

each axis of the gyroscope may be examined independently, as a single degree­

of-fre6dom system. The equation is the same as for a spring-mass system. The
 

introduction of feathering damping, therefore, causes the 1P oscillation to
 

gradually diminish to zero. Viewed in the stationary axes the swashplate
 

attains a level position.
 

Swashplate damping (stationary axis damping) acts on the precessing
 

gyroscope. Precession-induced damper moments cause the gyroscope to precess
 

about an axis lagged 90 degrees behind the damper axis. If the driving pre­

cession is regressive, the damper-induced precession diminishes the driving
 

precession and stabilizes the motions as shown in Figure C-2. If, on the
 

other hand, the driving precession is advancing, the damper-induced preces­

sion augments it and destabilizes the motion.
 

The effects of CR and CS on control mode stability at speeds lower than
 

120 knots (those shown on Figure C-1) are qualitatively the same. The main
 

effect of reducing the forward speed is a reduction in precessive mode fre­

quency. This is illustrated by the reference curve (for 80 knots) shown on
 

the figure.
 

Effects of Gyroscope Inertia and Rotor Speed
 

The equations summarized in this appendix show that gyro speed G is in
 

the equations only in a product with gyro diametral moment of inertia IG.
 

Where IG exists without QG its effect is rendered insignificant by being
 

combined with the much larger rotor feathering inertia term. It would be
 

expected, therefore, that stability would vary according to 0GIG and this,
 

in fact, was shown to be the case in tests. Control mode stability was
 

checked by varying first IG and then G' The effects were the same. Fig­

ure 0-3 shows the effect of doubling and halving GI G
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Tine control mode natural frequency is affected almost inversely propor­

tioned toG IG. The time to half amplitude is only slightly affected. Increas­

ing %GIG increases the time to half amplitude slightly. Increasing the 2GIG
 

tends to reduce the rpm of feathering divergence.
 

The requirements of stability and handling qualities oppose each other.
 

A large gyroscope reduces the feathering divergence boundary but also reduces
 

the response time of the system tending to make handling sluggish. The
 

smallest tolerable stability would give the best system response.
 

Effects of Swashplate Springs
 

Figure C-4 illustrates the effect of swashplate springs, KS, on the gyro­

scope precessive mode stability. With no springs employed, the mode is a 

stable advancing precession down to the feathering divergence boundary at 

very low rotor speed. -

When the swashplate is restrained by springs, the natural frequency and
 

time to half amplitude decrease and the mode retains its advancing precessive
 

character at high rpm. As the rotor speed is reduced, the natural frequency
 

rapidly reduces to zero; and as it is reduced further, the mode becomes
 

regressive and its frequency increases to a finite value at zero rpm. The
 

mode remains stable to zero rpm and the feathering divergence vanishes.
 

It is interesting to note that in the vicinity of the vanishing natural
 

frequency (in stationary axes) the mode degenerates into two real, stable roots,
 

and the damped natural frequency remains zero over a small range of rotor
 

speeds, whereas the undamped natural frequency merely passes through the zero
 

frequency point.
 

Effect of Swashplate Damping on the Stability of the
 
Spring-Restrained Swashplate
 

Figure C-5 shows the effect of increasing swashplate damping on the
 

stability of the precessive mode of the spring-restrained gyro. Swashplate
 

damping causes an increase to the high rpm advancing precessive mode natural
 

frequency and a reduction in stability. It causes a decrease in the regressive
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Figure 0-5. 	Fixed-Shaft Stability - Effect Of Swashplate Damping On The
 
Gyroscope Precessive Mode, With The Swashplate Spring Restrained
 



precessive mode frequency and stability at low rotor speeds. The effects on
 

frequency are small, but the effects on stability are large. The effect of CS 

on stability depends on the advancing or regressing character of the mode as 

shown in Figure C-2. 
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APPENDIX D
 

REDUCED EXPERIMTAL DATA
 

Computer printouts of the reduced test data are shown on the following
 

pages. The methods of data reduction employed are those discussed previously
 

in the section entitled Wind Tunnel Tests. The lift data shown here were
 

not used in the plots of the lift derivatives; wind tunnel balance data was
 

used instead.
 

The 	following data are shown:
 

1. 	Dimensional derivatives.
 

2. 	Data samplings and their deviations from least-squares-planes of
 

best fit.
 

3. 	Hub or swashplate trimmed angles and moments.
 

4. 	Control moments.
 

5. 	 Nondimensionalized derivatives; these are grouped according to 

forward speed. 

Two tabular forms are employed. The first: (pages 278-306) presents 

the mean data recorded for various values of cyclic pitch e 1 s (and 

corresponding swashplate tilt 0 and C ) for a collective angle 07R = 1.50 

and a = 0 for nominal forward speed ranging from 50 to 120 KTS at approximately 

sea level density. The second tabular form (pages 307-310) presents nondimen­

sionalized derivatives corresponding to the cases shown in the first tabular 

presentation. 

In the first form, there are four tables:
 

1. 	 ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC ANGLE. These are 

rates of change of LIFT, hub roll moment (Lh), hub pitch moment (Mh 

swashplate roll moment (Lsp), and swashplate pitch moment (Msp) with 

respect to unit changes in cyclic pitch 8Ic (TC), e1s(TS), and 

corresponding swashplate tilt angles 8(TH) and 4(PHI), all angles
 

expressed in degrees. The first row (RW1) consists of values of
 

the forces (lb) and moments (in-lb) occurring at zero cyclic pitc>
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The second (RW2), third (RW3) etc. rows contain the rates of change
 

of the forces and moments with respect to angles in degrees.
 

2. 	The main table consists of the complete set of mean data from which
 

the above derivatives were obtained by a least-squares fit of a plane.
 

The first four columns contain the cyclic pitch 0e(TiC), 0 s(TiS)
 

and corresponding swashplate tilt e(THT), 4(PHI) in degrees that
 
were actually held during each of the test runs. The following
 

columns contain the mean values of forces and moments experimentally
 

measured, LIFT, hub roll moment (Lh) in-lb, hub pitch moment (M) 

in.-lb, etc. The deviations of the measured forces from the best fit 

plane through the data D(LIFT), D(t) D(Lsp) etc. are also shown. 

These deviations allow an appreciation of the scatter in the test 

data, and more important an appraisal of the applicability of the 

linear approximation to be made. The rms value of the deviations) 

SIGMA is also shown. 

3. 	The third table HUB OR SWASHPLATE TRIMMED ANGLES AND MOMENTS presents 

the 61c, 6 ls (and 6 and 4) for hub moment trim t = % = 0. 

Residual swashplate and hub moments are also shown. 

4. 	The fourth table, CONTROL MOMENTS, presents the control effectiveness
 

data. The hub roll and pitch moments for zero swashplate moments
 

(in 	 in-lb), Ih, M_ (Lsp = Msp = 0), and the rate of change of hub 

roll and pitch moments with respect to unit swashplate moment are
 

given.
 

d (Lsp' Mp)
 

sp sp
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TABLE III. REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 50 KNOTS
 

ROTOR AnD 

R1'!I:d(0) 

1(L IFT) 

.1g38.on 
-10.3) 
40.23 
34.7R 
q.73 

SUHIIPLATF 

111W1: d(TC) 

d(Lh) 

4086.68 
75S.97 

4118.31 
2772.8) 
2359.112 

OrP IVATIVFS nlr TO CYCI. IC AMI ES 

P113: cd(TS) RPi :d(THI R115 :( P) 

r(Mh) d (Lsp) d(t 4sp) 

1549t. n3 -80.41 510.l9 
-5012.q' 88.71 -47. 56 
I671.25 22.45 124.2 n 

3437.85 -21.66 114.32 
-3048.42 76.5r 18.15 

LOCKED GYRO MODE 
V = 49.38 kts 
q = 7.94 psf 
p = 0.488 

1 T C 

I 1.75q
2 .382 
3 1.507 
II 2.317 
5 2,918 
6 1.6fi5 
7 1.177 

.597 
9 1.708 

10 2.219 
U1 2.616 

SI tIA 

TIS 

-.652 
.051 

-.734 
-1.11n 
-1.7.16 
-.808 

-1.801 
-2.336 

-. r0 
.041 
.701 

TIT 

-1.6r1 
-.161 
-1.597 
-2.51 
-3.387 
-1.762 
-2.471 
-2.669 
-1.572 
-1.21q 
-.306 

Pill 

1.377 
.410 

1.079 
..lfl9,4 

1.920 
1.10I4 
.137 

-.749 
1.303 
2.234 
3.00q 

LI FT n(LI FT) 

95. 1. 
145. 9. 
105. 12. 

70. a. 
45. 6. 
15. -3. 
70. 17. 
45. 7. 
11. -82. 

130. 13. 
1.55. 16. 

26. 

Lh 

1810. 
4284. 
2900. 

8. 
-450.' 
1182.' 

-292n. 
-4132. 
2984. 
648n. 
4a6. 

D(I.h) 

-q2O.
-301. 
696. 

-(030. 
324. 

-837. 
-479. 
940. 
459. 
9546. 
494. 

673. 

Mh 

46886. 
13418. 
6264. 
1155. 

-1q40. 
4761. 
6761. 
9501. 
5670. 
27r,. 

41238. 

rn(1,,h) 

-827. 
-172. 
-37E. 
-660. 

~q3.
-9641. 
25?. 
q75. 
-31. 
908. 
710. 

551. 

Lsp 

92. 
-42. 
42. 
84. 

189, 
42. 
0. 

-113. 
70. 

127. 
134. 

'(.sp) 

31. 
3. 
5. 

-I4. 
8. 

-7. 
16. 

-33. 
14. 
in. 

-31. 

19. 

F1sp 

281. 
500. 
367. 
230. 
174. 
343. 
220. 
211. 
33. 
445. 
475. 

D(rts ) 

-65. 
1. 
19. 

-22. 
16. 
12. 

-11. 
10. 
-6. 
35. 
2. 

26F. 

P11 Or 

TlC 

2.587 

1.774 

SWASHPI.ATF TPIMIMEr) ANOLFS AD IIOMFNTS 

TIS TIIT p!II Lh 

-1.4r7 -2.q4 q 1.733 n. 
-3.429 -41.l435 -.204 -8602. 

tih 

fl. 

798. 

Lsp 

116. 

0. 

Msp 

205. 
0. 

CONTROL MiOMENTS 

Lh(Lspllsp=0) 

-8585.76 

dLh/dI.sp 

22.69 

dl.h/dI'lsp 

28.60q 

ilh(LspI 4sp=0) 

ooq. lq 

dlh/rltsp 

-41.o6 

dtlh/cdlso 

20.25 



TABLE III. CONTINUED 

ROTOR AND 

Rl,11C!(0) 

(LI FT) 

84.00 
-1,.05 
26.58 
24.38 
3.qn 

SWASPI.ATE DERIA/tTIVES 

PW2:d (TC,) Rill:d(TU 

d(Lh) ,1(ih) 

3582.q9 10127.53 
310.00 -241q1.06 

263R.()9 q1 .20 
8,,. 8,0, 1751.78 

1.38c,.01 -1449.58 

DUE TO CYClIC A"PLFS 

fli:l4(TV) RiS:IC(PLI) 

d(Lsp) rlc(lsp) 

-57.51 440. 5 3 

54.10 -14. fl, 
7.55 57.37 

-17.83 I19.5,p 
44.02 13.89 

LOCKED GYRO MODE 
V = 48.04 kts 
q = 7 . 5 1 psf 
t'= 0.771 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

SI 

TIC 

2.1.76 
.949 

-.1!9 
1.200 
3.388 
Ih.230 
1.24q 
1.63q 

.708 
2.670 
3,450 

A 

TIS 

-1.01 
-. 401. 
.16 

-1.2n8 
-).8h 
-2,775 
-1.304 
-2,O07 
-3.437 
-.504 
.780 

THT 

-2.3q 
-1.11. 

.3Ifn 
-2.1;U 
-3.7^2 
-5. l0 
-2.r52 
-?.o72 
-3.631 
-2.n37 
-1.207 

Pill 

1.640 
1.013 

. 083 
1.41F 
.31S 

9.60,) 
1..496 
.532 

-1.271 
2.370 
3.884 

LIFT 0(I.1FT) 

I1. 9. 
77. 1G. 
q2. -2. 
32. 2. 
,. 5. 

-20. 3. 
12. -13. 
17. l. 

-23. -1. 
37. -7. 
62. -8. 

$. 

Lh 

1630. 
2269, 
133l. 
7MI. 
-81. 

-3025. 
467. 

-797. 
-5701. 
3809. 
671q. 

D(Lh) 

21i2. 
-434. 
-131. 
-256. 
110. 

-53q. 
-187. 

430. 
133. 
738. 
24. 

3 7. 

Nh 

40if5. 
(271. 

10302. 
3722. 

61)7. 
-3667. 
3570. 
2037, 
59,59. 
3243. 
1575. 

p"th) 

Itl. 
-42., 
-1h21. 

87. 
103. 

-914. 
gq9. 

-il. 
325. 
1 . 

1q . 

412. 

Lsr 

120. 
23. 

-1113. 
110. 

,4. 
134. 

; ,66. 
28. 

-r7. 
10. 

11S. 

0(C.spl 

63. 
5r, 

_2. 
-l. 

-2.. 
-16. 

2. 
q. 

-11. 
16. 

-2q. 

33. 

!sp 

34. 

3 8f. 
4I,0. 
33'. 
224. 
223. 
322, 
343 
?40 
111, 
h4t. 

n(tlsp) 

-2. 
-10. 
-2?. 
-7. 

-61. 
4. 

-7. 
42. 

7. 
1,2. 
14. 

27 

111 OR SI)SNPLATE TRIMHrfl ANGLES AND MOMENTS 

TIC TIS THT PHI Lh lth ISp $sp 

3.480 
2.062 

-1.751, 
-7.152 

-3.7748 
-8.309 

2.'5P. 
-2.059 

0. 
-1478R. 

0. 
-1443. 

117. 
0. 

289. 
0. 

CONTROL tintiprITS 

Lh(LspNMsp=0 

-12377.23 

dLh/dl.sp 

1.17 

dLh/dsp 

37.86r 

'h(Lsp,t'sp=0) 

-1726.48 

dtih/rdLsn 

-31.0q 

dlh/cltfsp 

20.78 



TABLE III. CONCLUDED 

ROTOR Al'!) SWASHPLATE F)ERII"ATIVFS our TO CYCLIC AWIOLES LOCKED GYRO MODE 
RWL:(1) 

d(LIFT) 

51.28 
-9.01 
23.211 
21.45 
3,13 

Rl!2: d (TCO 

d(Lh) 

1L70.1.77 
-226.8f 
2166.09 
1721.79 
77n,83 

P13:r(TS) 

d (Mih) 

q622.n7 
-1754.52 

PO6.54 
1437.88 
-q31.46 

Q114:dI(TItl 

d(Lsp) 

-21.43 
ig.60 
2.06 

-6.97 
15.13 

R-N:I(PH) 

rl(t4isp) 

477.52 
-2,.q5 
46.19 
43.8q 
4.31 

V = 50.03 ktsV =8.04 psf 
P= 1.055 

p TIC 

1 3.2q7 
2 2.475 
3 1.162 
4 3.308 
5 3.459 
6 4.716 
7 5.041 
8 3.201 
9 2.734 

10 1.851 
11 3.216 
12 3.8,2 
13 4.731 

" InBA 

TIS THT 

-2.088 -3.97F 
-1.572 -2.0 , 
-.5R2 -1.248 

-1.91l -3.806 
-3.689 -5.664 
-2.126 -4.829 
-3.289, -6.174 
-2.032 -3.915 
-2.820 -4,331. 
-4.198 -5.21,q 
-1.q84 -3.82.5 
-1.215 -3.447 

.073 -2.653 

PHI 

2.n83 
1.561 
.822 

2.10Q 
1.324 
3.475 
3.130 
2.11 
1.101 
-. 57f 
2.062 
3.168 
4.762 

LIFT 

-25. 
-10. 
29. 

-21. 
-61. 
-51. 
-66. 
-16. 
-61. 
-61. 
-16. 
-11. 

9. 

D(LIFT) 

2. 
-2. 
2. 
q. 
5. 

-10. 
5. 
10. 

-22. 

8. 
1. 

-1. 

8. 

Lh 

-703. 
1488. 
3001. 
17q. 

-3607. 
-11154. 
-3335. 
-7q5. 

-1735. 
-5169. 
-251, 
1484. 
3758. 

D(Lh) 

-210. 
656. 

-267. 
570. 
370. 

-578. 
134. 

-446. 
196. 

-455. 
-23. 
197. 

-123. 

370. 

1h 

17Ii. 
46911. 
60 10. 
1q95. 
2(2.

-385. 
-2131. 
1515. 
2210. 
27q3. 
112n. 
161q. 
1567. 

0(11h) 

-220. 
323, 

-151. 
-110. 

47. 
174. 
I1. 

-512. 
-8f. 
182. 

-281. 
-1013. 

10$. 

307, 

tsp ",(I sp) 

42. 3. 
49. 2r. 
14. lit. 
35. -4. 
71.. 31. 
A33. -. 
A4. 19. 
42. 3. 
0. -2r. 

-1F. -20. 
21. -17. 
42. -30. 
63. -I. 

17. 

rsn 

201. 
330. 
390. 
327. 
2qI. 
219. 
101. 
250. 
282. 
214. 
35n. 
419. 
4b1. 

n(Isp) 

-21. 
-23. 
-t6. 

7. 
57. 

-62. 
-50. 
-65. 
-8. 
4. 
32. 
7q. 
59. 

49. 

I'R OR 

TIC 

4.5q8 
p.081 

SWASIIPLATE TPIIFVEf 

TIS TIlT 

-1.734 -4.371 
-9.3q4 -111.553 

ANOLF.S AIM OPOn'FITS 

Pt! I Lh Nh 

3.593 0. 9. 
-3.32q -16021. -2451. 

Lsp 

65. 
0. 

I'sp 

30l. 
0. 

CONTROL VOHIENTS 

Lh(I.spilsp=0) 

-100413.54 

dLh/dLsp 

27.15 

dLh/dMsp 

27.23 

Mh( Lsp,Msp=0) 

-53q.q6 

rIIh/dLsp 

-38.16 

rtlh/drisr) 

12.77 



TABLE IV. REDUCED EXPERIMENTAL DATA, NOMNAL VELOCITY = 6O KNoTS 

ROTOR AND SWASHPLATE DERIVATIVES DWE TO CYCLIC A'IOLES LOCKED GYROMODE 

RW1:d(0) RW2:d (T) R113: d (TS) RU4:d(TH) RI5:cI(1FH) 
V = 60.91 kts 
q = 12.18 psf 
p =0.402 

I(LIFT) d(Lh) dc(h) d(Lsp) d(lisp) 

32.03 7653.98 26892.74 -76.31 490.29 
21.88 2884.47 -10307.33 18.74 -69.C6 
74.30 10368.41 4095.34 65.01 213.35 
46.44 ,553.82 801r.73 -33.10 190.94 
48.78 G670.64 -5720.58 170.39 40.29 

:1 TIC TIS THT PHi LIFT rLIFT) Lh D(Lh) th ) t'h) Lso 0(Lsp) "sp D(Isp) 

1 2.062 -.980 -2.17.9 1.4895 0. -4. 2173. -117.. 853. - ;147. 374. 11. 152. 10. 
2 
3 

1.311 
.822 

-. 717 
-.462 

-1.hn8 
-.033 

.89; 

.553 
.. 

28. 
-7. 
12. 

4608. 
434q. 

r02. 
-888. 

11053. 
145 . 

113. 
-l21. 

219.. 
F,. 

87. 
20. 

320. 
201. 

77. 
-40. 

It .217 -. 297 -. 420 .048 28. 13. 5660. 4gO6. 23124. -77. -C!. -6. 407. -11. 
5 2.203 -1.587 -2.84 1.282 -28. 10. -1271. 117r,. -3034. 237. 175. -61. 20. i1. 
6 3.210 -2.30 n -4.151 1.P,78 -55. 14. -722F. -225. -17P82. -79C. 420. 3Q. -243. -22. 
7 
A 

1.866 
1.645 

-1.1?7 
-1.828 

-2,J9r 
-2.767 

1.211 
.587 

-55. 
-83. 

-44. 
-15. 

1187. 
-7381. 

-165. 
-826. 

2827. 
1015. 

4,3. 
-338. 

it.. 
9. 

-35. 
-1F. 

135. 
-34. 

1. 
-26. 

0 .997 -2.899 -3.461 -.r,74 -138. '4. -1870S. '26. 3874. 8r, . -114. -37. -181. 11. 
10 1.599 -.947 -1.863 1.048 0. 3. 3451. 106. 0677. ,708. 130. -34. 183. 0. 
11 2.101 -.142 -1.340 2.011 28. -39. 10448. -1798. 2938. -1133. 20. -51. 30,2. -18. 
12 2.863 .986 -.604 3.419 194. 26. 2569n. -4S0. 1847. -136. 4W'I. -32. 508. 1. 
13 3.234 1.502 -.363 4.085 222. 8. 34015. 1454. 1700. 1090. 633. 1. 5q4. 2. 

rI I1A 21. 967. 82(,. 53. 28. 

HUR OR SIJASIIPLATF TRII-IIED ANGLFS AN'D 1401.HTS 

TIC TlS TIlT PH I Lh rNh Lsp [isp 

2.017 -1.290 -2.454 1.2 2 0. 0, 220. 7 n . 

I.0R -I.072 -2.52p, -.055 -9671. ltr2. 0. 0. 

CONTROL iOIIP4TS 

Ih(I.spsp=) rLh/dL.sp dlh/d'sr, 'h(Lsp,"sp=O) dVlh/dLsp dilh/r'tisn 

-9121.37 27.05 39. 8 5992.4P -38.66 33.'3 

http:rLh/dL.sp


TABLE IV. CONTINUED 

ROTOR APD 

P.Nl:d(0) 

'[(LIFT) 

SlIAS1IPLATE 

RI12:d(TC) 

d(Lh) 

DERIVATIVES DUE TO CYCLIC AHFI.ES 

RW3:.I(TS) RW4:d(TH) RI15:d(FH) 

d(t0h) d(Lsp) d (:lsp) 

LOCKED GYROMODE 
V = 59.96 kts 
q 11.81 psf 
P= 0.799 

64.57 
-44.34 
r'3.91 
C8.16 
-5.17 

7353.73 
190.37 

4104.55 
3008.12 
1927.75 

16r30q.57 
-3715.34 
1764.31 
2943.79 

-2030.79 

-7q.67 
135.76 
17.37 

-15.50 
57.07 

71.83 
-47.11 
q2.66 
90.25 
4.81 

I TIC 

1 2.425 
2 1.808 
3 1.222 
4 .521 
5 1.875 
6 2.488 
7 3.272 
8 1.879 
9 1.259 

10 .517 
11 1.768 
12 ..233 
13 2.973 
14 3.402 

S I MIA 

TiS 

-. 842 
-. 613 
-.037 
.638 

-1.809 
-2.340 
-2.914 
-1.590 
-2.545 
-3.539 
-1.602 
-. 721 
.042 
.6635 

THT 

-2.233 
-1.651 
-.740 
.336 

-2.880 
-3.761 
-4.783 
-2.(34
-3.264 
-3.822 
-2.612 
-2.002 
-1.667 
-1.294 

PIll 

1.931 
1.44'9 
1.196 
.886 
.027 

1.132 
1.583 
.957 

-.200 
-1.521 

.840 
1.810 
2.985 
3.771 

LIFT 

-83. 
-55. 
-28. 
Ill. 

-111. 
-222. 
-249. 
-138. 
-13". 
-222. 
-111. 
-55. 
-55. 
-83. 

D(LIFT) 

15. 
0. 

-36. 
28. 
25. 

-24. 
21. 

-16. 
19. 

-34. 
7. 

26. 
9. 

-40. 

24. 

Lh 

4207. 
5528. 
6519. 

10159. 
-211. 

-1987. 
-4268. 
1170. 

-2814. 
-69F3. 
1983. 
4777. 
9041. 

1038). 

D(Lh) 

-154. 
347. 

-,15. 
87. 

-4911. 
-210. 
-2P.5. 

-14. 
35. 
172. 
867. 
-44. 
947. 

-341. 

475. 

Mht 

6034. 
8822. 

11277. 
16010. 
6362. 
293q. 
-778. 
6641. 
7341. 
8627. 
7fl10. 
6937. 
64',. 
4911. 

D(f~h) 

-P2. 
13. 

-720. 
211. 
-90. 

-2qq. 
-92. 

-183. 
-65. 
183. 
696. 

-103. 
7GO. 

-233. 

368. 

Lsp 

99. 
46. 
15. 

-,'. 
15. 
38. 
61. 
15. 
-38. 

-114. 
23. 
61. 

1n7. 
145. 

D(Lsp) 

34. 
17. 
15. 

-35. 
3. 

-5. 
-24. 
-1. 
2. 

-7. 
14. 

. 
-1o. 
-11. 

17. 

lisp 

189. 
231. 
309. 
437. 
127. 

71. 
-39. 
152. 
63. 
12. 

151. 
170. 
233. 
273. 

D(Isp) 

4. 
-4. 
-7. 
2F. 
S. 

28. 
8. 

11. 
-18. 
-13. 

8l. 
-35. 
-8. 
-5. 

16. 

PUB OR StIASIIPLATE TRUIHIED ANGLES AID MOMENTS 

TIC TIS THT PHI Lh ih Ilsp l4sp 

3.542 
2.015 

-1.956 
-3.042 

-3.985 
-4.18o 

2.403 
.258 

0. 
-4750. 

0. 
3754. 

119. 
0. 

29. 
0. 

CONTROL IIOHEIITS 

Lh(Lsp,l'sp=0) cLh/dLsp dLh/dllsp lth(LspIIsp=0) drlh/dLsp dIlh/dtcIsn 

-463q.78 71.17 38.12 3822.75 -34.87 25.23 



TABLE IV. CONCLUDED 

ROTOP AIID SUAIIrLAT OEPIVATIVES DIIE TA CYCLIC Ar'ES LOCKED GYRO MODE 
V = 60.02 kts 

MI1:d(')) 

r(I.I FT) 

R22:d(TC) 

d(L hI) 

M13:I(TS) 

c (i h) 

R%14:4(TI) 
(Lsp) 

RU5:d(PII) 
I( sp) 

q = 11.83psf
M= 1.112 

13.54 
-39.5r 

778,.86 
-2 1.21 

141n7.22 
-2742.50 

-15.11 
31.45 

290.15 
-25.97 

50.38 3I3.1& 110i.00 24.51 10.48 
55.1" 2511.62 2021.36 4.78 56.83 
-7.18 115n.58 -158.56 34.33 F.74 

'I Tlr T1S TT Pill ..IFT D(.LIFT) Lh l(Lh) 14h n(0;h) Lsp D(Lsp) Psp D(lisp) 

1 2.623 -1.Q4 -3.4111 1.40r -83. 28. 124. -975. 435r. -353. 23. 4. 52. -51. 
2 1.9IL3 -1.52c -2.60 1.150 -55. 5. 3067. 697. 7995. 81n. 38. 29. 159. 1I. 
3 
4 
5 
3 

1.122 
.271, 

2.678 
3.433 

-.88q 
-. 03'g 

-2.187 
-2.853 

-1.531 
-. 24r6 

-3.718 
-4.815 

.612 

.222 
1.410 
1.771 

-28. 
55. 

-1ll. 
-104. 

-32. 
-23. 
12. 
-8. 

4161. 
8111. 
-13. 

-2451. 

-477. 
68 . 
-84. 

-190. 

0837. 
13;S R. 
427q. 
1515. 

-137. 
320. 
-06. 
73. 

8. 
-23. 
23. 
23. 

-
9. 
11. 
7. 
0. 

229. 
272. 
70. 
1r. 

21. 
-6. 

-20. 
-13. 

7 4.262 -3.457 -5.923 2.240 -305. -54. -3663. 850. -1008. 423. 31. -2. -12. 18. 
8
6 

2.633
1. W 

-1.921 
-3.07f 

-3.437 
-4.1! 

1.48' 
.183 

-111. 
-166. 

-1. 
-27. 

3. 
-300.. 

-732. 
-S41. 

3703. 
481. 

-nf3. 
-521. 

31. 
-15. 

12. 
14. 

65. 
57. 

-37. 
13. 

10 1.383 -4.051 -4.831 -. 951 -138. 27. -5277. Ii3. 6448. 015. -53. 1f. 17, 7. 
1i 
12 
13 

.413 
2.529 
3.00N 

-5.008 
-1. 03 
-1.278 

-5.311 
-3.43. 
-t.M 

-2.529 
1.373 
2.258 

-166. 
-111. 
-55. 

14. 
-4. 
34. 

-7047. 
32. 

290C. 

514. 
-618. 

30. 

7821. 
3S1). 
4121. 

47. 
-lfhp,. 
-352. 

-15s. 
1r. 
4r. 

-10. 
-i. 
-2. 

-7, 
87. 

111,. 

21. 
-18. 

10. 
I' 
15 

3.763 
4.01r 

-.589 
.138 

-2.74 
-2.211 

3.'.11 
4.158 

-55. 
-55. 

30. 
7. 

4924. 
6513. 

110. 
-488. 

317^. 
2810. 

45. 
-108. 

76. 
107. 

-13. 
-10. 

185, 
108. 

28. 
5. 

1O 4.877 1.012 -1.71" 5.440 -55. -7. 1026.C 731. 2720. 8R4. 152. -11. 237. 11. 

SIMA 24. 541. 54. 10. 22. 

,P0 02. S'AS!PI.ATr TRI ;V F A11Q1ES A!") fl'n t;TS 

TIC TI9 T;lT PH 1. Lh tLh Isp lisp 

4315 
3.160 

-2.n55 
-3.450 

-4.528 
-5.259 

3.116 
1.172 

0. 
-4072. 

0. 
1608. 

70. 
0. 

55. 
0. 

CONTROL :IOAEIITS 

Lh(Lsp,tsp=O) dLh/dLsp iLh/rI!sp ,h(Lsptsp=O) dlIh/dLsn ,Ilh/dllsn 

-3q17.52 25.05 40.72 1998.910 -47.50 35.414 



TABLE V. REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 70 KNOTS
 

PnTnr MI l 

:c'o) 

rI(I.1FT) 

29A. 62 
-31.61 

70 . 74 
73.70 
10.8 

S'I!AS' AI.,JT nrrqiPATIVrS nUF TO QYCI.tC ANI.ES 

rB,9 :CTC) PI!' : ri(TS) Pti : rICTI) P,: d(P) 

8(I.h) (0th) ((ILsp) d.Wsp) 

tl05.74 2q259.0i -1n.74 585.62 
1402.4; -N1IZ3.24 165. 0 -ql. 7n 
R,82 -. ,7 4151.2P, ri.P3 165.26 
588,. 701 7527.01 -2n. r5 164.31 
;8n7, .8 -5818.47 153.89 2.79 

LOCKED GYRO MODE 
V = 69.19 kts 
q = 15.58 psf 

I= 0.492 

I TIC 

1 1.06o 
9 .01 

.nn 
i 1.q2
5 1. 47 " 
r 1.0q6 
7 . q71
*o 725 
0r-q .70l 
in 1.1n 
11 i.hr.? 
12 2.n q 

qI MIA 

T1S THT 

-.97q -1.50, 
-.576 -.q11
-.1r3 -. 1fl4 
-. 811 ' -1.5"3 

-1.31 7 -3q 51 
-1.272 -2.3n7 
-1.104 -1.7117 
-1 -2. 73 
-2.6(7 -3. 0)60n 
-.RAI -1.521 
-.17r -I.nl 
.71n -. 111 

DI- I 

.502 

.258 
-.1% 

.778 

.791 
1.2?6 

.281 
-. 3,0 
-.235 
.511 

1.359 
2.1,11 

LIFT 

121.. 
13. 

76,. 
186. 
14r,. 
120. 
17C. 
111,. 
A1. 

lql.
25r'. 
296. 

(I.!I FT) 

-6. 
-3. 
-1. 
-8. 
-2. 
- . 

3. 
-11. 

17. 
-2. 
18. 
4. 

9. 

Lh 

2854. 
4374. 
48q.. 
5109. 

-1071. 
'75. 

-1262. 
-7270. 

-15417. 
715. 

8025. 
15588. 

D(Lh) 

1752. 
462. 
-73. 

2398. 
R1. 

711q. 
-375. 
-250. 

-1467. 
-122q.
-555. 

-1481. 

1151. 

Mh 

15101. 
222q8.
27115. 
131r72. 
8794. 
454. 

1457q.
12812. 
10027. 
13060. 
13WO. 
11205. 

D(h) 

73g. 
1420. 

1C3. 
h13. 

-!no. 
13A4. 

107. 
-1361. 

-194. 
-1314. 
-660. 
-C93. 

8830. 

Lsr 

-64. 
-134. 
,20q.

-35. 
-20. 
49. 

-q9.
-1A3. 
-222. 
-25. 
28. 

1183. 

)C0I.sp) 

17. 
-2. 
-3. 

5, 
7. 
2. 
.0. 
15. 

-2r. 
-17. 
-II. 

-7. 

13. 

Isp fl(Msp) 

27q. -54. 
h82. 46. 
472. -47. 
317. -29. 
206. -28. 
170. -25. 
35. 56.

'105. -16. 
112. 31. 
370. 33. 
IM34. 12. 
542. 22. 

36. 

'MW 011 SI:ASHPLATE 

TIC TIS 

,.i5. -1.315 
2.129 -2.382 

Tr lVIEP 

THT 

-2."t1 
-3.577 

AlI-LES ANn 

Pill 

1.585 
.769 

tI0tP'ITS 

Lh 

0. 
-914Q. 

Ph 

0. 
-2106. 

Lsp 

108. 
0. 

lisp 

153. 
.1. 

Ml'ITRIL t'OMEIITS 

I.h( Lsn,4Isp=0) 

-75147 •*nl 

cl.h/uILsp 

I;. q3. 

dLh/rUsp 

34.72 

'4h(.sp,0lsp=0) 

-3r0.1 

'Hrh/dILso 

-315.52 

dfIh/di'sp 

3.30 



TABLE V. CONTINUED 

nOTOR A10 S IAS"PLATE 

[1II :.(0) R1 2: (TC) 

d (LIFT) dCLh) 

377.03 10473.38 
-1 . no 211 11.7 

79,41 8 q 9 . 2 4 
r,7., 581n.28 
20.g9 r 5n,t o 

OFRIVATIVES DI TO cYct. IC A'Ii.RS 

3:r'(T ()R :cl(Til RI5'I CP:It(P 

d(Ph) d(L p) r (t;sp) 

32513,23 -133.i7 133.q1 
- ,0.83 171.76 -57.20 

1.83n.39 05.22 172.61 
70q3.4 -In.fin 15n.in 

-5558.33 16. 9 24.43 

LOCKED GYRO MODE 
V = 68.45 kts 
q 15.14 osf 

= 0.494 
= 1.5 DEG 

R 

'3 

N Tir 

1 1.8Shl 
9 1.277 
3 .681 
4 .()6 
5 2.230 
C 2.711 
7 2.013 
8 1.668 
9 1.392 

10 2.000 
11 2.175 
12 2.717 
13 3.35 

SI rA 

T1 

-1.375 
-. PCq 
-. 553 

-1.253 
-1.503 
-l.071 
-1.2i 
-1.976 
-2.744 
-1.366 
-.734 
.015 
.7? 

TIlT 

-2.421 
-1.600 
-.q42 

-2.395 
-2.77o 
-3,5(9 
-2.413 
-2.q27 
-1.533 
-2.511 
-1.98'. 
-1.53 
-9.063 

P1I IL 

1.04 
.772 
.361 

1.2F7 
1.357 
1.617 
1.280 
.525 

-.1ql 
1.207 
1.744 
2.705 
3.847 

IPT 

938. 
2(8. 
310. 
253. 
'02. 
968. 
932. 
188. 
143. 
233. 
278. 
323. 
393. 

OLIPT) 

3. 
13. 

-11. 
12. 
-15. 
-3. 
-q. 
-2. 
9. 
1. 

-1. 
-5. 
8. 

8. 

Lh 

13O9. 
4083. 
7908. 
1333. 
217n. 

-1172. 
2642. 

-3514. 
-10616. 

2380. 
9445. 

. 9776. 
25139. 

f Lh) 

-Rn1. 
-131,7. 

924. 
-19I. 
385. 
83. 

-86. 
133. 
4192. 

-148. 
883. 
774. 

-332. 

680. 

Ph 

P107. 
1r1f . 
24PS0. 
83F1. 
6,73. 

-3138. 
7407. 
8058. 
9056. 
8151. 
8935. 
6?07. 
3377. 

N(h) 

-683 , 
-770. 

Inr. 
-21G. 
1305. 
374. 

-88. 
-got. 
401. 
86. 
87. 

461 . 
-766. 

678. 

Iso 

9,L. 
-7. 

-41, 
77. 

127. 
1lq. 
In. 
-7. 

-19G. 
77. 

155. 
345. 
542. 

(1 so) 

-'n. 
14 

-2(1, 
5, 

-I, 
I, 
8, 

22. 
-17, 
-23, 
-4. 
21r. 

17. 

lisp 

-2595. 
-194. 

15.1.. 
-240. 
-256. 
-331. 
-234. 
-363. 
-398. 
-231. 
-90. 
-35. 
'8. 

P,(4sp) 

-98. 
-29. 

-24. 
n. 

[1. 
-15. 
-4t4j. 
35. 
5. 

413. 
17. 

-11. 

25. 

'PIP OP 

Ti 

2.6r.8 
.972 

IASHPI.ATF TRIrplF 

Tic; T"T 

-1.80)8 -3.335 
-.317 -.95 

1AtIYAtVf 

n1'iIIh 

lrin 
.740 

IlOl'ENITS 

. 
Q00. 

tih 

n. 
21667. 

LSp 

171. 
9. 

'so 

-358. 
0. 

CONTROl IVIErTS 

Lh(I.sp,'sp=0) 

8875.33 

dLh/,iLsp 

27.51 

(Lh/AtIqp 

37.70 

Ph(Lp,tisp=0) 

21206.2F 

drlh/rlLsp 

-38.41 

Hdh/cI%'Sp 

490.32 



TABLE V. CONTINUED 

ROTOR AND 

RW1I:d(0) 

d(I FT) 

SI)ASHPIATE 

R2:d(TC) 

d(I.h) 

DERIVATIVES DUE TO CYCLIC ANGLES 

RW3 :r(TS) RI14:d(TH) Rl5 :d(PH) 

d(Mh) d(Lsp) d(msp) 

LOCKED GYROMODE 
V = 69.30 kts 
q - 15.63 psf 
1= 0,783 

180.72 
-22.78 
54.05 
50.60 
6.35 

868q.86 
-520.55 
480q.81 
3848.27 
169q.00 

21330.27 
-5375.34 
2430.2q 
4166.96 

-2qql.30 

-q0.42 
64.52 
27.21 
-7.5" 
60.42 

448.20 
-55.19 
121.41 
1.15.41 
11.22 

tO 
0OON 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

UI 
12 

TIC 

1.780 
.92q 
.322 

1.742 
2.142 
2.760 
1.539 
1.008 
.671 

1.672 

1.888 
2.359 

TIS 

-.q02 
-.547 
-.06i 
-.823 

-1.122 
-1.656 
-.864 

-1.580 
-2.087 
-. 798 

-.322 
.342 

THT 

-3.922 
-1.07n 
-.246 

-1.821 
-2.349 
-3.237 
-1.745 
-2.153 
-2.465 
-1.756 

-1.406 
-1.016 

PHI 

1.254 
.611 
.285 

1.261 
1.488 
1.7q7 
1.036 
.095 

-.532 
1.206 

1.696 
2.51,6 

LIFT 

86. 
131. 
166. 
q6.
71. 
?6. 

101. 
71. 
61. 
96. 

116. 
156. 

D(LIFT) 

-5. 
1. 

-4. 
-1. 
0. 
-2. 
2. 

-1. 
8. 

-4. 

-4. 
11. 

Lh 

1725. 
9604. 
107n. 
.84q.

1318. 
-61i8. 
3288. 
2420. 
-10". 
4148. 
608c. 
9637. 

P(LIh) 

293. 
-1980. 

834. 
2015. 

-870. 
57. 

-41L. 
1844. 

-1938. 
158. 
-79. 

-470. 

1h 

q944. 
13753. 
20101. 
11891i. 
6591. 
2398. 

in451. 
13912. 
11296. 
10636. 
9148: 
9504. 

D(Mh) 

375. 
-1259. 

550. 
1923. 

-4l98. 
-71. 

-509. 
1838. 

-1356. 
231. 

-1250. 
21. 

Lsp 

0. 
-50. 
-78. 

7. 
7. 
5. 

-35. 
-64. 
-14. 

-7. 
7. 

49. 

0( Lsp) 

9. 
4. 
2. 

16. 
-1. 

1. 
-11. 
13. 

-21. 
6. 

-7. 
-13. 

Msp 

246. 
319. 
397. 
273. 

161. 
74. 

262. 
237. 
156. 
285. 
274. 
391. 

D(Msp) 

6. 
-12. 
-26. 
21. 

-33. 
-21. 
4. 

36. 
-2. 
26. 

-31. 
31. 

SIVOA 5. 1125. 1043. 11. 24. 

HIMR OR SWASHPLATE TRIrI.!'F.flANLFS AND HOMENTS 

TIC 

3.313 
2.600 

Ti9 

-1.45n 
-2.510 

TN1T 

-3.94q 
-3,995 

Pill 

2.46C 
1.146 

Lh 

0. 
-4728. 

tuh 

0. 
126. 

Lsp 

75. 
0. 

Msp 

80. 
0. 

CONTROL MOMENTS 

Lh(Lsp,Msp=O) 

-4382.48 

dLh/dLsp 

23.02 

dLh/dMsp 

33.53 

fh(Lsp,rlsp=0) 

1380.85 

,Ilh/dLsp 

-50.43 

dt'h/disp 

32.4 



TABLE V. CONTINUED 

ROTOR AND SNASHPLAT7 DERIVATIVES DIJE TA CYC[ IC AtII.FS LOCKED GYRO MODE 
V = 69.40 kts 

RI:d(fl) 

d(LtFT) 

RW2 :dCTO,) 
d(Lh) 

R'13:d(TS) 
d(Mh) 

R!.W:d(TIf) 
ri(Lsp) 

RI'5J:d (P") 
[([isp) 

q - 15.20 psf=1. 125 

123.18 
-18. gB 

5q36,81 
120.36 

16184.33 
-310 0.4r 

-7q.31
494; 

31n.31 
-22.0 

42.71 
40.3c 

3129.64 
2304.42 

1185.88 
2371.31 

22.77 
-4.33 

52.71 
57.05 

4.31 1451.20 -2045.13 47.1n 10.24 

N TIC TI$ THT Pill LIFT O(LIFT) Lh D(Lh) Nh 1Ilh) Ls. P .sp) tlsp n)flsp) 

1 2.515 -1.098 -3.413 1.356 -8. 2. -1573. -1558. 4-989. -1II8. -21. -2f0. 4. -84. 
2 2.214 -1.531 -2.708 1.325 22. 6. 1199. -213. 6747. -q3. -14. -). 162. -2. 
3 1.501 -1.0l01 -I.q53 .866 57. 9. 31134. 740. 10734. 952. -42. -12. 206. -2. 
4 
5 

2.528 
3.39q 

-1.q4'
-2.44n 

-3.394 
-4.314 

1.3q8 
1.913 

-8. 
-48. 

0. 
-4. 

-327. 
-24P.3. 

-470. 
-1134. 

q12'.
S. 

-15?. 
-1li. 

21. 
28. 

20, 
-2. 

127. 
53. 

-4. 
-29. 

6 4.161 -3.05 -5.432 2.30P -73. 8. -2017. 1992. -3nl. l'8t. 4, -8. 41. 15. 
7 2.422 
1192.003 
9 1.450 

-1.884 
- .704 
-3.42q 

-3.1r09 
-3 .9 I 
-4.249 

1.39q 
.440 

-.527 

-8. 
-23. 
-r3. 

-5. 
7. 

-12. 

2393. 
- 2309q 
-4sq0. 

1q92. 
-113. 
-231. 

77r27. 
617Q. 
6018. 

19S3. 
Ih. 

-2CP,. 

0. 
-35, 
-84. 

3. 
7. 
2. 

150. 
82. 
97. 

13. 
-7 
314. 

10 2.484 -1.91Il -3.332 1.375 -3. ,% 237. 583. 5357. -114. 7. 7. 176. 42. 
11 
12 

2.93n 
3.406 

-1.n3q 
-. r.q 

-2.715 
-2. IM 

2.323 
3.192 

17. 
32. 

-7. 
-7. 

9372. 
40.3. 

-,7Q. 
3s, 

1057. 
4;11,. 

-93q. 
191,. 

55. 
77, 

14. 
-1. 

160. 
246. 

-19. 
42. 

SIrHA 7. 944. 841. 11. 33. 

HUB OR SWASHPLATE TRIHHMPD ANOLES AND 0IMEITS 

TIC TS TIlT PI-I Lh rih Lsp Msp 

4.044 -2,052 -4.369 2.847 0. 0. 74. 90. 
3.332 -3.747 -5.648 1.164 -530. 40q. 0. 0. 

CONTROL MOMFNITS 

Lh(Lsp,Mtsp=0) dLh/dLsp dLh/rlt'sp t'h(Lsp,rlsp=0) d.h / Lsp dhlh/dt-lsp 

-4449.27 19.89 34.81 1080.64 -49.87 32.41 



TABLE V. CONCLUDED 
ROTOR AND SWASHPLATE DERIVATIVFS DUE TO CYCLIC ANILFS LOCKED GYRO MODE 

V = 68.66 kts 
RPWI:d(0) 

d(LIFT) 

RW2 :d(TC) 

d(Lh) 

RW3 :l(TS) 

d(Mh) 

fW4:d(TH) 

d(Lsp) 

Rf5:d (PH) 

'(t.lsp) 

q = 15.70 psf 
,L= 1.960 

55.94 7187.20 13915.62 -16.68 342.05 
-11.96 -550.31 -2015.96 18.81 -31.22 
28.95 1688.54 633.17 30.62 53.19 
27.00 1510.77 1353.21 14.88 53:62 
3.58 319.67 -1242.83 27.48 -.39 

N TIC -18 THT PHI LIFT D(LIFT) Lh D(Lh) 1h 0lt(h) Lsp n(I sp) Msp DO0isp) 

1 3.700 -1.611 -3.732 2.758 .- 39. -4. 2028. -402. 53,16. -91. -7. -11. 140. -1. 
2 3.078 -1.212 -2.977 2.169 -42. -26. 3342. -105. 7268. 325. 7. 3. 188. 7. 
3 
4 
5 

2.314 
1.3q7 
3.835 

-.331 
.311 

-1.76q 

-1.660 
-.493 

-3.963 

2.114 
1.570 
2.805 

26. 
55. 

-34. 

7. 
7. 
7. 

6037. 
6818. 
1739. 

683. 
-126. 
-358. 

9O0n. 
11170. 
470r. 

lIrp. 
-127. 
-361. 

R3., 
14. 
7. 

4. 
-q. 
6. 

317. 
303. 
94. 

65. 
-12. 
-35. 

6 4.740 -2,340 -5.057 3.375 -70. -1. -482. -1109. 239.4. -4P.4. 28 . 27. 70. 1. 
7 5.470 -3.003 -6.137 3.721 -qo. 6. 121. 1015. 1358. 379, 14. 20. 50. 48. 
8 3.896 -1.677 -3.qll 2.q16 -39. 0. 2723. 512. 5378. 370. -21. -.2fl. 81. -48. 
9 

10 
11 

3.319 
2.761 
3.769 

-2.254 
-2.96q
-1.611 

-4.154 
-4.545 
-3.772 

2.010 
1.043 
2.827 

-50. 
-5. 
-34. 

-1. 
4. 
2. 

1850. 
-81. 

2881. 

?96. 
-736. 

480. 

5867. 
5881. 
574R. 

71. 
-r.R9 . 
450. 

-4. 
-6,. 
0. 

-1.q. 
-7. 
-5. 

116. 
84. 

148. 

-3. 
-14. 
9. 

12 4.139 -.911 -3.287 3.598 -25. -5. 4266. 85. S846. 850. 14. -lq. 166. 2. 
13 4.755 -.243 -2.975 4.596 -4. 4. 3107. -1053. 3933. -944. 56. -9. 162. -19. 

StGOMA 9. 68h. 478. 20. 29. 

HIM OR SWASHPLATE TRIMMFD ANGLES AND ,i.OHFNTS 

TIC T1 TNT PHI Lh Mlh tsp lisp 

6.2n1 -2.236 -5.792 4.890 o. 0. 32. 30. 
5.806 -3.023 -6.349 4.044 -1112. 297. 0. n. 

CONTROL MOMf,1ENTS 

Lh(Lsp,Msp=0) dLh/dLsp dLh/dMsp Ih(Lsp,Msp=Q) itVh/dl.sp dMh/rilsn 

-1ng6.4q -1.59 25.03 575.44 -41.8n 35.115 



TABLE VI. REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 80 KNOTS
 

ROTOR AND 

RW1:d(O) 

d(LIFT) 

468.39 
-34.45 
169.07 
142.29 
47.56 

SWASHPI.ATE 

RW2:d(TC) 

d(Lh) 

8961.58 
7212.33 

15537.93 
8565.19 

12186.05 

DERIVATIVES DUE TO CYCLIC AGI.ES 

RW3 :d(TS) RW4:d(TH) R15:d(PH) 

d (lh) d(Lsp) d(Msp) 

45669.88 -411.08 659.70 
-17834.31 417.25 -75.33 

9267.72 56.57 378.35 
14732.17 -138.79 317.66 
-91100.90 338.80 107.76 

LOCKED GYROMODE 
V 80.59 kts 
q = 2 1.23 psf 
P= 0.399 

N TIC TIS THT Pill LIFT D(LIFT) Lh D(Lh) Nh DCh) Lsp D(Lsp) lIsp D(Msp) 

1 
2 
3 
1, 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

.529 
3.141 
1.433 
2.142 
.1.395 
1.769 
2.202 
1.493 
1.696 
1.529 
1.337 
1.648 
1.952 
2.255 

-.429 
-1.698 
-1.116 
-1.946 
-.871 
-.861 

-1.233 
-.911 

-1.830 
-2.970 
-.851 
-.464 
.267 
.712 

-.732 
-3.497 
-1.935 
-3.170 
-1.669 
-1.875 
-2.494 
-1.774 
-2.798 
-3.837 
-1.616 
-1.410 
-.857 
-.508 

.281 
2.152 
.786 

1.015 
.889 

1.267 
1.485 
.959 
.637 

-.184 
.842 

1.375 
2.098 
2.702 

332. 
0. 

222. 
55. 
277. 
222. 
194. 
0. 

138. 
28. 

388. 
360. 
499. 
609. 

-46. 
-73. 
-8. 
-11. 
4. 

-40. 
10. 

-262. 
37. 
114. 
110. 
27. 
53. 
84. 

867. 
5088. 
3050. 

-4934. 
4752. 
7237. 
4278. 
3946. 

-8960. 
-23440. 

5606. 
11340. 
27657. 
40317. 

755. 
-149. 
1088. 

0q. 
-742. 

-1101. 
-1417. 
-1501. 
-1715. 
2711. 
224. 

-2295. 
470. 

2784. 

31729. 
-27239. 

9132. 
-P731. 
15048. 
4020. 

-7540. 
7170. 

-3619. 
-5061. 
13254. 
12515. 
14750. 
15653. 

-522. 
-1151. 
-639. 
1843. 
2323. 

-2115. 
-2509. 
-3352. 
-2085. 
4065. 
-685. 
542. 

1424. 
2862. 

-130. 
870. 
153. 
3t7. 
99. 
2q8. 
41?. 
145. 
175. 
15. 
92. 

206. 
3U3. 
5PA. 

84. 
66. 
29. 
24. 

-23. 
20. 

-26. 
-15. 
-18. 
-44. 
-7. 

-44, 
-53, 
5. 

402. 
-303. 

85. 
-I08. 
211. 
170. 
-25. 
148. 

-202. 
-420. 

265. 
355. 
651. 
903. 

-55. 
-84. 
-45. 
40. 

-14. 
-31. 
-52. 
-51. 
-42. 
150. 
28. 
-5. 
47. 

114. 

SIGMA 91. 1510. 2149. 40. F6. 

1UB OR SWASHPLATE TRIMMED ANGLES AND HOMENTS 

TIC TIS TIIT PH I Lh Nh Lsp fsp 

1.822 
1.190 

-1.422 
-1.507 

-2.464 
-2.185 

.997 

.318 
0. 

-5872. 
0. 

10491. 
269. 
0. 

-16. 
0. 

CONTROL MOMENTS 

Lh(Lsp,tisp=O) dLhfdLsp dLh/dIlsp 1h( Lsp,t'sp=0) dMh/dLsp dHh/dMsp 

-5877.91 24.35 36.91 10236.14 -36.10 20.63 



TABLE VI. CONTINUED 
....... ,,.,or,. . u , ,.......... LOCKED GYRO MODE 

RV1:rI(0) 

d(LIFT) 

RI'2:d(TC) 

d(Lh) 

RW3:d(TS) 

d(Mh) 

RW4:d(TH) 

d(Lsp) 

RW5:d(PH) 

d(49n) 

V = 82.76 kts 
q =21.84 psf 
A= 0.527 

157.40 
-4.07 
77.00 
59.75 
30.41 

12528.95 
2873.52 
11907.86 
7785.62 
7379.77 

37029.13 
-12928.82 

675q.10
10710.48 
-6797.47 

-242.21 
220.87 
42.75' 

-63.82 
184.91 

540.26 
-87.63 
298.98 
263.24s 

3.qq 

N TIC TIS THT PHI LIFT D(LIFT) Lh D(Lh) Mh D(Mh) Lsp P(Lsp) Msp D(Nsp) 

O 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1.812 
1.968 
.686 

1.812 
1.811 
.890 
.24n 

1.950 
2.869 
1.691 
1.312 
1.186 
1.q25 
1.976 
1.644 

-1.255 
-1.129 
-.431 

-1.028 
-1.126 
-.820 
-.48n 

-1.191 
-1.796 
-.927 

-2.313 
-3.51"t 
-1.246 
-.277 
1.100 

-2.292 
-2.257 
-.824 

-2.066 
-2.163 
-1.328 
-.617 

-2.307 
-3.438 
-1.896 
-3.058 
-4.181 
-2.348 
-1.412 

.150 

1.083 
1.11 
.435 

1.214 
1.156 
.415 

-.037 
1.258 
1.829 
1.152 
-.023 
-.840 
1.201 
1.808 
2.270 

0. 
40. 

137. 
27. 
27. 

110. 
82. 
55. 
55. 
55. 
0. 

-55. 
0. 

137. 
329. 

-53. 
-22. 
16. 

-44. 
-36. 
19. 

-37. 
-3. 
48. 

-24. 
26. 
63. 

-54. 
9. 

94. 

2371. 
4870. 
7762. 
6544. 
3953. 
3956. 
8438. 
3750. 

-1325. 
6492. 

-12497. 
-24747. 

3843. 
13530. 
3219. 

-307. 
234. 

-1563. 
1144. 
-267. 

-1297. 
982. 
-97. 

-554. 
224. 

-1048. 
1474. 
728. 

-1353. 
1701. 

4917. 
3563. 

25234. 
7930. 
5599. 

18535. 
31788. 
2780. 

-11216. 
10504. 
3141. 

-1302. 
3789. 
7872. 

23909. 

-202. 
-384. 
-14. 

1277. 
-404. 

-1445. 
1111. 
-991. 
q51. 

1608. 
-1290. 

745. 
74. 

-17s4. 
707. 

92. 
148. 
-10. 

81. 
75. 

-88. 
-224. 
145. 
391. 
63. 

-44. 
-95. 
135. 
194. 
213. 

-13. 
4. 
9. 

-33. 
-35. 
-7. 

-14. 
7. 
6. 

-28. 
7. 

35. 
5. 

12. 
45. 

-1. 
11. 

347. 
96. 
48. 

188. 
328. 
-7. 

-291. 
153. 

-266. 
-558. 

5. 
259. 
796. 

-8. 
-19. 
-4. 
22. 
3. 

-29. 
-48. 
-21. 
-43. 
38. 
0. 

55. 
5. 

-25. 
71. 

SI MA 43. 1017. 1018. 22. 33. 

HUB OR SWASHPLATE TRIMMEr ANGLES AND MOMENTS 

TIC TIS THT PHI Lh Mh Lsp Msp 

2.060 
1.369 

-1.538 
-1.406 

-2.716 
-2.187 

1.168 
.555 

. 0. 
-405. 

0. 
q830. 

147. 
0. 

-100. 
0. 

CONTROL MOMENTS 

Lh(Lsp,Msp=O) dl-h/dIl.sp dLh/dtlsp Mh(Lsp,Msp=O) dMh/dLsp dtMh/dMsp 

-330.61 26.49 35.94 9798.55 -L6.2R 29.21 



TABLE VI. CONTINUED 

ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC ANGLES LOCKED GYROMODE 
V 82.78 kts 

RW1:d(0) RW2td(TC) RW3:d(TS) RWh:d(TH) RW5S:d(PIA) q 21.85 psf
 
P= 0.807
 

d(LIFT) d(Lh) d(Mh) d(Lsp) d(Msp)
 

-5.44 13031.94 24265.98 -117.74 409.95
 
18.28 -52.41 -5735.67 97.33 -59.01
 
54.92 6764.76 3472.80 26.71 176.63
 
33.41 5116.90 5108.65 -22.20 158.66
 
37.65 2901.42 -2809.43 84.90 32.35
 

q TIC T1S THT PHI LIFT D(LIFT) Lh D(Lh) Mh DTMh) Lsp D(Lsp) Msp (Msp)
 

1 1.373 -.931 -1.717 .832 -55. -24. 6622. -40. 13366. 206, -31. -22. 166. 1.
 
2 .736 -.521 -.942 .433 0. 21. 9612. 145. 18268. 33, -49. 11. 264. -10.
 
3 2.210 -1.264 -2.530 1.474 -82. -48. 5057. 693. 7115. -87. 35. -2). 59. 2.
 
4 2.666 -1.554 -3.081 1.762 -82. -40. 2388. 11. 2497. -1077, 137. 37. -18. 4.
 
5 3.226 -2.109 -3.956 2.001 -55. 7. -1313. 94. -547. 1018, 125. -15. -15q. -6.
 
6 1.534 -2.1ft6 -3,020 .294 -110. -15. -1811. -244. 7774. -240, -21. 5. -64. -5.
 
7 1.342. -2.931 -3.691 -.349 -110. 32. -7090. -223. 6798. 408. -60. 6. -172. 15.
 
8 2.814 -1.106 -2.719 2.166 -27. -12. 4989. -415. 3679. -609. 12n. -7. 35. -13.
 
9 2.800 -1.080 -2.686 2.168 55. 69. 5899. 321. 4185. -268. 134. 8. 51. -3.
 
i0 2.849 .469 -1.171 3.108 82. 10. 15714. -342. 10169. 617. 178. 6. 340. 15.
 

SIGMA 33. 318. 574. 18. 9.
 

H1R OR SWASHPLATE TRItEfl ANRLES AN MOMENITS
 

TiC TIS THT PHI Lh .h Lsp Msp 

3.079 -1.903 -3.665 1.972 0. 0. 131. -108.
 
1.692 -1.756 -2.721 .675 1065. 8466. 0. 0 

CONTROL MOMENTS
 

Lh(Lsp,Msp=O) dLh/dLsp dLh/dlsp Mh(LspIsp=O) dMh/dLsp dMh/drlsp
 

1137.73 19.56 35.09 8405,75 -41.95 26.11
 

http:24265.98
http:13031.94


PABLE VI. CONTINUED 

ROTOR AND 

RW1:d(n) 

d(LIFT) 

45,J2 
-11.20 
73.54 
60.25 
23.54 

SWASHPLATE 

RV2 :d (TC) 

d(lh) 

13083.84 
-571.0 
5428.0 
4335.80 
1929.76 

DERIVATIVES DIIE TO CYCLIC AHOLES 

R3: d(TS) R'14:r(TiI) R,15 : d (PH) 

lW(Mh) d(Lsp) d(Msp) 

23487,76 -82.49 383.62 
-5016.34 72.65 -64.81 
3008.52 30.25 140.30 
4446.31 -8.81 133.83 

-2469.58 67.86 12.19 

LOCKED GYRO MODE 
V 82.68 kts 
q =21.80 pf 
P= 1.120 

N 

1 
2 
3 
4 
5 
6 
7
8 
q 

10 
11 
12 

TIC 

2.503 
2.042 
1.563 
2.295 
2.889 
3.907 
2.630
2.108 
1.817 
2.610 
2,7RA 
2.832 

TIS 

-1.394 
-2.146 
-.790 

-1.525 
-1.967 
-2.9 40 
-1.631
-2.42" 
-3.362 
-1.127 
-.251 
.823 

THT 

-2.828 
-2.315 
-1.685 
-2.839 
-3.621 
-8.175 
-3.137
-3.1327 
-4.394 
-2.62h 
-1.841 
-.809 

PHI 

1.691 
1.375 
1.102 
1.409 
1.746 
2.201 
1.681
.706 

-.124 
1.952 
2.612 
3.2q4 

LIFT 

-55. 
-55. 
0. 

-55. 
-137. 
-1q2. 
-137. 
-137. 
-274. 
-82. 
-27. 
55. 

D(LIFT) 

30. 
7. 

30. 
38. 
-5. 
23. 

-33. 
20. 

-52. 
-15. 
-23. 
-19. 

Lh 

4249. 
6393. 
6602. 
5149. 
1754. 

-5638. 
213n.

-108. 
-6288. 
4187. 
9338. 

16753. 

D(Lh) 

161. 
694. 

-1301. 
1653. 
909. 

-528. 
-598. 
271. 
-83. 

-1287. 
-801. 
821. 

kh 

6836. 
9961. 

12392. 
848S. 
3q57.

-54006. 
4732. 
S825. 
4435. 
57Q8. 
8919. 

1295. 

D(tlh) 

07. 
163. 

-880. 
l09, 
881. 

-448. 
-658. 
207. 
178. 

-1209. 
71. 

4n4. 

Lsp 

66. 
59. 
21. 
;5, 
62. 

134. 
31. 
3. 

-sq. 
51. 
q0. 
1 2. 

O(Lsp) 

9. 
23. 
14. 
-4. 
-6. 
22. 

-2. 
5. 
-1. 
-2,2. 
-21. 
14. 

lisp 

18. 
70. 

154. 
29. 

-77. 
-285. 

-43. 
-88. 

-16q. 
26. 

377. 
357. 

D(lsp) 

-8. 
-20. 
-18. 

8. 
3. 

-3. 
-28. 
5. 

41. 
-30. 

8. 
"2. 

SI rf4A 28. 895. 659. 17. 22. 

HUB OR SWASfIPLATE TRIMMED ANGLES AND MOMENTS 

TIC 

3.455 
1.907 

TIS 

-2.047 
-1.854 

THT 

-4.025 
-2.942 

PHI 

2.264 
.833 

Lh 

0. 
1934. 

Mh 

0. 
8347. 

Lsp 

107. 
0. 

lsp 

-127. 
0. 

CONTROL MD1ENTS 

Lh(l.sp,llsp=0) 

1993.86 

dLh/dLsp 

21.31 

dI.h/d?'sp 

33.64 

Hh(Lsp,tsp=O) 

8106.94 

S4Hh/disp 

-37.24 

dfth/drsp 

2q.73 



TABLE VI. CONTINUED
 

ROTOR AND SWASIIPLATE DERIVATIVES DUE TO CYCLIC ANGLES LOCKED GYRO MODE 
V = 82.88 kts 

RWI:d(0) RW2:d(TC) R143:d(TS) RWi4:rl(TH) RWS:d(Pit) q=21.91 psf 
A= 2.129 

d(LIFT) d(Lh) d(Mh) d(Lsp) d(Msp) 

144.93 
-23.34 

11004.34 
14.17 

17396.04 
-2015.78 

13.q5 
36.79 

178.62 
-l.92 

40.85 3594.56 1705.21 41.74 118.41 
Ii0.91 2700.68 2160.42 15.43 97.82 

.18 1573.35 -776.64 45.85 36.48 

N Tir T11 THIT PHI LIFT )(I.IFT) Lh D(Lh) D1hDlqh) Lsp n(LsP) Hsp nl(Msp) 

1 
2 
3 
4 
5 
6 
7 
8 

3.862 
3.n13 
2.589 
1.ql 
3.276 
4.317 
3.271 
2.847 

-2,227 
-1.281 
-.991 
-.379 

-1,659 
-2.741 
-1.5q6 
-2.675 

-4.439 
-3.008 
-2.376 
-1.517 
-3.535 
-5.212 
-3.471 
-4.303 

2.566 
2.264 
2.066 
3.755 
2.3N9 
2.724 
7.340 
1.298 

-27. 
27. 
55. 
82. 

-27. 
-55. 
27. 

-27. 

q. 
5'. 
7. 
-1. 

-28. 
13. 
24. 
4. 

3011. 
6377. 
8374. 
9090. 
7010. 

707. 
4710. 
281. 

-43. 
-67. 
536. 

-57Q. 
1922. 
-506. 
-602. 

-1150. 

5q62. 
920l. 

11IF3. 
12248. 
9Oql. 
3751. 
7599. 
6457. 

149. 
152. 
509. 

-500. 
112r. 
-2rq. 
-480. 
-630 . 

41. 
614. 
F. 
75. 
82. 
67. 
60. 
4. 

-2.2. 
-7. 
-. 
11.4 

17. 
Q 

-8. 
-3. 

-175. 
-?5. 
31. 

. 
-70, 

-219. 
-8q. 

-220. 

-13. 
8. 

in. 
1. 
7. 

33. 
-14. 
-25. 

9 2.673 -3.,758 -5.230 .501 -82. -11. -1731. 735. 58q0. 280. -41. 4. -305. 15. 
10 4.161 -1.339 -3.726 3.374 -27. -20. 5525. -726. 6243. -483. 122. 11. -56. -3. 
11 4.822 -.770 -3.539 4.360 0. -1. 8787. 4181. 6371. 160. 157. -2. -6. 3. 

SIGMA 14. 829. 512. 11. 12. 

PUR OR SWASIIPI.ATE TPIIMED AN(ILES AN tIOIEtITS 

Tr TIS THT PilI Lh Mh Lsp Nsp 

6.020 -3.085 -6.534 4.222 0. 0. 107. -3n7. 
1.11n -1.320 -1.qsR .355 r274. 12891. 0. 0. 

CONTROL MOMEHTS 

Lh(Lsp,Isp=0) dL.h/dLsp dLh/dlisp tAh(Lsp,Msp=n) dfh/dlsp dtlh/drlsp 

6339.26 13.5? 25.66 12704.37 -37.33 27.7n 



TABLE VI. CONTINUED 

ROTOR AND 

RW,11: d (0) 

d(LIFT) 

240.56 
73.39 

136.34 
70.77 

114.54 

SWASHPLATFL 

RI12: d(T) 

d(Lh) 

10953.69 
5816.50 

19184.52 
9224.18 

12169.07 

DERIVATIVES DIUE TO CYCLIC AtIOLES 

R3: d (TS) RW4:r(TH) RW5: d (PH) 

(4h) d(Lsp) d(msp) 

41377.30 -391.63 523.48 
-16508.33 388.25 -37.79 

9455.81 61.52 406.85 
14297.35 -122.46 322.80 
-8320.62 319.11 148.41 

FREE GYRO MODE 
V = 81.67 kts 
q =21.28 psf 
1-0.404 

N 

1 
2 
3 
It 
5 
6 
7 
8 
9 

10 
11 
12 

TIc 

1.606 
.461 
.177 

1.673 
3.580 
1.570 
2.086 
1.975 
1.673 

1.648 
1.424 
1.762 

TIS 

-1.201 
-1.198 
-1.3q9 
-1.042 
-. 885 

-1.lq5 
-2.453 
-3.248 
-1.128 

-.107 
.312 

-1.143 

TIlT 

-2.120 
-1.458 
-1.496 
-2.000 
-2.940 
-2.093 
-3.643 
-4.371 
-2.085 

-1.054 
'-.508 
-2.151 

PHI 

.908 
-.23n 
-.628 
1.067 
3.056 
.876 
.667 
.099 

1.018 

1.580 
1.5q8 
1.097 

LIFT 

194. 
83. 
98. 

194. 
332. 
166. 
Ill. 
-28. 
221. 

360. 
470. 
194, 

D(LIFT) 

-1. 
-28. 
-35. 
-27. 
-51. 
-27. 
52. 
29. 
11. 

13. 
82. 

-20. 

Lh 

1708. 
-7280. 

-10177. 
3842. 

20156. 
2560. 

-13699. 
-26178. 

3886. 

19390. 
30310. 
3027. 

D(Lh) 

-746. 
-1979. 

309. 
-1647. 
-868. 
251. 
83?.. 

1978. 
-225. 

-1969. 
4601. 

-1437. 

h 

1536. 
22149. 
27534. 
142Q. 

-24649. 
2412. 

-140 4. 
-21096. 

1634. 

12669. 
24558. 
-607. 

D(0h) 

-1974. 
-2. 
231Q. 

-2467. 
1441. 

-1749. 
2189. 
846. 

-1457. 

-502. 
3740. 

-2095. 

Lsp 

135. 
-325. 
-431. 
1114. 
932. 
93. 
203. 
240. 
207. 

250. 
216. 
195. 

(CLsp) 

-23. 
-39. 
-1. 

-50. 
-12. 
81). 

-r.1. 
65. 
18. 

8, 
36. 

-27. 

Msp 

-74. 
-71. 
-64. 
-45. 
-37. 
32. 

-q11.
-784. 
-43. 

445. 
756. 
-41. 

f(Msp) 

-48. 
-8 
-12. 
-81. 
-65. 
55. 
42. 
89. 

-45. 

27. 
159. 
-33. 

SIGMA 38. 1759. 1976. 44. 73. 

HIB OR 

TlC 

1.707 
1.195 

SWASHPLATF. 

TIS 

-1.396 
-1.176 

TRIMME, 

THT 

-2.372 
-1.858 

"M6LES AND 

.89 

.514 

MOMENTS 

Lh 

0. 
71. 

th 

0. 
10934. 

Lsp 

185. 
0. 

Msp 

-109. 
0. 

CONTROl. MOMFNT. 

Lh(Lsp,Msp=O) 

158.85 

on/dl.sp 

20.42 

dLh/d4sp 

35.75 

Mh(Lsp,tisp=0) 

10489.47 

dh/dLsp 

-39.40 

dMh/dtsjp 

29.27 



TABLE VI. CONCLUDED
 

ROTOR AND 

RWI:d(0) 

d(LIFT) 

18.10 
61.5h 
90.57 
41.49 
85.71 

SUASHPLATE 

RW2:d(TC) 

d(Lh) 

11870.22 
3208.5 

11309.25 
7121.38 
7332.77 

DERIVATIVES DUE TO CYCLIC ANGLES 

RH3:d(TS) RW4:d(TI) RW5:d(PH) 
d(Mh) d(Lsp) d(Msp) 

34963.05 -330.18 399.17 
-11646.87 258.7q -44.25 

6103.25 76.80 260.14 
9659.30 -92.33 215.13 

-6117.23 206.53 79.77 

FREE GYRO MODE 
V = 81.26 kts 
q =21.07 psf
MA=0.520 

\', 
\,n 

N TIC 

1 1.917 
2 .490 
3 -.003 
4 1.888 
5 3.130 
6 3.971 
7 1.904 
8 3.445 
9 1,910 

10 1.952 
11 1.91n 
12 1.913 
13 1.891 
14 1.431 

SIGIMA 

TIS 

-1.377 
-1.397 
-1.306 
-1.592 
-1.078 
-.500 

-1.4q8 
-.742 

-1.583 
-2.710 
-3.3q1 
-1.685 

.068 
959 

THT 

-2.473 
-1.674 
-1.299 
-2.671 
-2.874 
-2.781 
-2.587 
-2.720 
-2.675 
-3.822 
-4.476 
-2.778 
-1.020 

.132 

PHI 

1.117 
-.315 
-.754 
.965 

2.498 
3.667 
1.0 5 
3.005 
.992 
.387 

-.047 
.937 

1.922 
1.977 

LIFT DCLIFT, 

28. 17. 
-69. 9, 
-138. -38. 

0. 10. 
124. 11. 
208. -q. 
-14. -14. 
124. -39. 
0. 8. 

-83. 24. 
-194. -23. 

0. 17. 
180. 39. 
180. -13. 

22. 

Lh 

2824. 
-397. 
-4341. 
2171. 

10476. 
17216. 
2205. 

13092. 
936. 

-12235. 
-21774. 

402. 
1qO23. 
27554. 

D(Lh) 

376. 
-1627. 
-1430. 
2252. 
757. 

-1744. 
1165. 

-1444. 
840. 
274. 

-1425. 
1445. 
520. 
242. 

1254. 

Mh 

3470. 
20069. 
27327. 
5036. 

-6471. 
-15320. 

3581. 
-10214. 

4932. 
-4961. 
-9725, 
3275. 

13534. 
22902. 

DMh) 

-768. 
-653, 
300, 

1779. 
1606. 
-988. 
-61. 

-523. 
1181. 
-646. 

-1742. 
880. 
181. 

-1246. 

1117. 

Lsp 

136. 
-225. 
-394, 
126. 
432. 
723. 
128. 
508. 
75, 

100. 
114. 
103. 
143. 
1n3. 

r(Ltsp) 

7. 
16. 

-18. 
10. 

-19. 
39. 
6. 

-34. 
-47. 
-3. 
41. 

-17. 
-18. 
37. 

2r. 

sp 

-33. 
-24. 
-40. 
-44. 
-13. 
10. 

-46. 
-3. 

-48. 
-378. 
-598. 
-74. 
452. 
560. 

D(Msp) 

11. 
-37. 
-99. 
55. 
7. 

-84. 
29. 

-57. 
50. 
14. 

-31. 
50. 

119. 
-25. 

58. 

HUR OR SWIASI-PLATE 

TIC TIS 

2.135 -1.G55 
1.410 -1.295 

TRIMMFD ANGLES AND MOMENTS 

TIrT PHI Lh 

-2.876 1.174 0. 
-2.1nO .660 1753. 

1h 

0. 
10541. 

Lsp 

178. 
0. 

Msp 

-126. 
0. 

CONTROL OMENTS 

Lh(Lsp,t4sp=O) 

172'.78 

dLh/rLsD 

19.52 

dLh/dMsp 

40.49 

Mh(Lsp,Msp=O) 

10563.77 

dhh/dLsp 

-3q.91 

dHh/dlsp 

26.90 



TABLE VII. REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 90 ENOTS 

ROTOR ANID 

RflI':t(O) 

d(LIFT) 

SVASPI.AT8 

fW2:d(TC) 

d(Lh) 

OERIVATIVES DIhE TO CYCLIC ANOI.E 

013:d(TS) RW4:d(TH) RWS:d(PH) 

ri(Mh) d(Lsp) d(tlsp) 

LOCKED GYRO MODE 
V = 89.80 Its 
q = 26.22 psf 
I'= 0.493 

442.03 
-20.71 
15n.3? 
122.2n 
49.76 

q403.61 
4315.51 

13024.64 
7q3l.q4 
8q1.102 

4741.88 
-17241 p.57 

8722.06 
14064.88 
-9194.01 

-431.24 
329.32 
74.57 

-87.01 
280.41 

6q5.qq 
-90.83 
367.04 
315.88 
91.16 

\8 
0'\ 

N TIC 

1 1.898 
2 1.513 
3 .362 
4 1.974 
5 3.183 
6 3.571 
7 2.220 

2.420 
q 2.189 

10 1.722 
11 1.860 
12 2.n00 

SI MIA 

TIS 

-1.236 
-1.402 
-.691 

-1.654 
-1.918 
-1.865 
-1.184 
-2.009 
-1.'04 
-.985 
-.317 
.199 

THT 

-2.322 
-2.266 
-.896 

-2.783 
-3.741 
-3.911 
-2.456 
-3.392 
-2.557 
-1.q71 
-1.386 
-.q52 

PHI 

1.180 
.701 

-. 036 
1.015 
2.068 
2.485 
1.530 
1.255 
1.431 
1.148 
1.671 
2.107 

LIFT 

242. 
178. 
305. 
178. 
76. 
76. 

227. 
61. 

221. 
287. 
377. 
401. 

n(LIFT) 

25. 
-22. 
-26. 
26. 

-12. 
-12. 
9. 

-29. 
20. 
29. 
21. 

-30. 

23. 

Lh 

770. 
-3655. 
2576. 

-1646. 
-2252. 
1309. 
2490. 

-7476. 
3356. 
4441. 

12344. 
209q6. 

D(Lh) 

-727. 
-1332. 

606. 
1q78. 
-414. 
787. 

-1070. 
-1157. 
1488. 
435. 

-q58. 
365. 

1053. 

Vh 

4582. 
8802. 

36889. 
2888. 

-23085. 
-28633. 
-2324. 

-141q2. 
-qn7. 
8667. 
11563. 
16148. 

D(!lh) 

146. 
-830. 
1216. 
3425. 
5q8. 

1281. 
-1661. 
-7882. 

272. 
-998. 

-1531. 
9I2. 

1616. 

I.Sp 

98. 
-57. 

-324. 
77. 

450. 
661. 
211. 
1qn. 
218. 
63. 

140. 
231. 

D(L.sp) 

-4. 
-11. 
39. 

-19. 
-24. 
55. 
0. 

-26. 
26. 
1. 

-19. 
-11. 

26. 

rsp 

-47. 
1. 

433. 
-43. 

-326. 
-303. 
31. 

-213. 
84. 

171. 
433. 
q95. 

0(Msp) 

-117. 
-43. 
23. 
47. 

-29. 
10. 

-28. 
48. 
65. 
-7. 
22. 
8. 

48. 

HIM OR SlIASHPLATF TRIVi4EOF AtIrLES AND MOMENTS 

TIC T1S TIlT Pill Lh Mh Lsp Msp 

2.068 
1.647 

-1.407 
-1.4Rq 

-2.591 
-2.430 

1.251 
.784 

0. 
-2881. 

0. 
6562. 

145. 
0. 

-8. 
0. 

CONTRni. MOMENTS 

l.h(LspMsp=0) dl.h/dt.sp dLh/dtsp Mh(LspMsp=0) dMh/dLsp dMh/drtsp 

-9685.31 20.88 30.11 6563.04 -43.15 31.q8 



TABLE VII. CONTINUED
 

ROTOR AND 

RWII:d(O) 

d(LIFT) 

167.36 
-1.72 
45.63 
35.11 
18.54 

SWASIIPLATE 

RW2:d(TC) 

d(Lh) 

14490.53 
-1053.07 
6407.46 
5282.87 
1992.55 

nERIVATIVES DUE TO CYCLIC ANGLES 

RW3 :d(TS) RW4:d(TH) R1I'5: d (PH) 

d(Mh) d(Lsp) d(Msp) 

32884.23 -151.97 531.39 
-720q.37 78.60 -72.52 
4390.53 142.78 151.84 
6440.41 -1.95 145.87 

-3520.21 77.79 11.40 

LOCKED GYRO MODE 
V = 89.37 kts 
q = 26.01 psf 
, = 1. 072 

N TiC 

1 2.176 
2 1.602 
3 1.101 
4 2.173 
s 2.156 
6 2.561 
7 1.q24 
8 1.616 
9 1.304 

10 1.q50 
11 2.070 
12 2.406 

SIGA 

TIS 

-1.010 
-.788 
-.527 

-1.060 
-1.198 
-1.4q3
-1.085 
-1.833 
-2.178 
-1.168 
-.590 
.090 

T4T 

-2.257 
-1.706 
-1.158 
-2.276 
-2.434 
-2.099 
-2.187 
-2.755 
-2.q19 
-2.285 
-1.778 
-1.2q3 

PHI 

1.58 
1.142 
.793 

1.505 
1.45q 
1.692 
1.2q2 
.556 
.047 

1.271 
1.723 
2.448 

LIFT 

102. 
137. 
107. 
203. 
97. 
47. 
q7. 
60. 
87. 

127. 
157. 
162. 

D(LIFT) 

-16. 
8. 

-34. 
88. 

-1. 
-48. 
-18. 
-21. 
21. 
16. 
20. 
-5. 

34. 

Lh 

5941. 
8263. 

Ini00. 
4634. 
4607. 
2713. 
6199. 
384. 

-898. 
5311. 
7690. 

12417. 

D(Lh) 

211. 
511. 
146. 

-832. 
66. 

483. 
689. 

-662. 
-63. 
4n7. 

-839. 
-117. 

505. 

Mh 

111365. 
18108. 
22075. 
11410. 
17486. 
7816. 

15011. 
131n7. 
14282. 
14404. 
15624. 
16493. 

O(lh) 

-1101. 
233. 

-560. 
-1488. 

410. 
-54. 
761. 
-80. 
358. 
709. 
256. 
556. 

681. 

I.sp 

-21. 
-29. 

-106. 
-41. 
-21. 
-21. 
-4q. 

-120. 
-134. 
-90. 
-7. 
35. 

D(Lsp) 

3. 
31. 
-71. 
-13. 
13. 
-6. 
-2. 
-17. 

9, 
-1. 
7. 

-6. 

13. 

lisp 

158. 
312. 
361. 
20. 
?40. 
134. 
189. 
183. 
84. 
225. 
310. 
381. 

D(Msp) 

-62. 
16. 

-11. 
-14. 
47. 
-5. 

-38. 
47. 

-22. 
12. 
18. 
10. 

31. 

H11R OR 

TIC 

3.538 
3.046 

SWASHPLATF 

TIS 

-1.680 
-2.045 

TRIMMED 

THT 

-3.7n8 
-3.788 

ANI.F.S AND 

Pill 

2.558 
1.858 

MOMENTS 

Lh 

0. 
-181q. 

Mh 

0. 
Iq45. 

Lsp 

54. 
0. 

Msp 

20. 
0. 

CONTROL. MOMENTS 

f.h(Csp,tsp=O) 

-372.28 

dLh/d?.sp 

23.36 

dI1h/dMsp 

30.83 

Mh(Lsp,Msp=0) 

3712.35 

d&h/dLsp 

-42.46 

dtth/dflsp 

37.65 



TABLE VII. CONTINUED
 

ROTOR AND SJASIPLATE DFRIVATIVES DIIF To CYCLIC ANIL.ES LOCKED GYROMODE 

RJl:r(O) RW2:d(TC) RI'13 :, (TS) R14 :d(TH) RWS:d(PFI1 V = 89.56 kts 
q = 2 5.79 psf 

d(LIFT) d(Lh) d(Mh) d(Lsp) d(Nsp) P= 1.079=.0 DEG 

326,27 16761.49 34171.09 -122.90 180.41 
-31.93 46.16 -5671.78 95.53 -54.23 
80.4 6691.00 4671.92 30.00 151.02 
74.47 5018.51 5983.87 -18.q4 137.30 
10.93 2943.58 -2240.02 84.98 24.82 

I! TIC TIS THT PHI LIFT D(LIFT) Lh 0(L1h) fh l)(I'll) Lsp D(Lsp) lisp 0(Msp) 

1 
2 
3 
4 

2.863 
2.131 
1.388 
2.804 

-1.961 
-1.405 
-.873 

-1.752 

-3.59( 
-2.616 
-1.667 
-3.358 

1.723 
1.316 
.881 

1.785 

81. 
132. 
221. 
81. 

4. 
-13. 
9. 

-15. 

3512 
6351. 

10715. 
4192. 

-260. 
-1105. 
-271. 
-q85. 

7603. 
158q6. 
21208. 
q144. 

-1171. 
386. 

-1012. 
-n-7. 

113. 
35. 
-7. 
84. 

21. 
-it. 
9. 

-n. 

-283. 
-168. 
-43. 
-235. 

-12. 
-21. 
-16. 

1. 

6 
7 
8 

33.367 
3.938 
2.733 
9.376 

-2.242 
-q.817 
-
-2,r43 

-4.1f0 
-5.071 
3,.2-3. 
-1,nO 

2.065 
2.303 
1.01.828 

.004 

31. 
-18. 
122. 
46. 

-7. 
8. 
8. 
0. 

1345. 
-2298. 
82q0. 
-9r6. 

-573. 
-39n. 
1806. 
-840. 

1078. 
-1795. 
12Rrn. 
8472. 

-51. 
-3q6. 
lh55. 
-341. 

141. 
ll. 
9o. 
23. 

q, 
0. 
7. 

-7. 

-7356. 
-476. 

-149. 
-346. 

-15. 
-17. 

54. 
-13. 

9 
10 

2.25f 
2.6014 

-3.1U2 
-1:87ft 

-4.446 
-3.3c,4 

.427 
1.515 

. 
q1. 

2. 
-1. 

-3043. 
5038. 

1291. 
694. 

803q. 
10382. 

1423. 
-266. 

-7. 
63. 

-5. 
-7. 

-383. 
-202. 

36. 
-18. 

11 
12 

2.P2! 
3.2q7 

-l.020 
-.622 

-2.47 
-q.15 

2.218 
2.927 

157. 
172. 

4. 
1. 

10200. 
1324. 

1q3. 
489. 

14111,. 
13192, 

752. 
628. 

106). 
160. 

-10. 
-5. 

-111. 
-80. 

q. 
13. 

SItMIA 8. 872. 873. 9. 23. 

HUB OR SWASHPLATE TRIMMFD ANGLES AND MOMENTS 

TIC TIS THT PHi Lh Nh Lsp lsp 

3.939 -2.532 -4.787 2.4137 0. 0. 178. -416. 
1.490 -.659 -1.514 i.105 12418. 22637. n. 0. 

CONTROL HOMENITS 

Ih(Lsp,Msp=0) dt.h/dLsp dl.h/rlsp Mh(I.sp,M.1sp=O) dh/dl.sp dth/d'sp 

12376.57 12.68 39.44 22552.57 -37.42 38.10 



TABLE VII CONCLUDED
 

ROTOR AND SASIIPI.ATE 

RWI:d(O) R112 :d(TC) 

d(LIFT) d(Lh) 

126.37 0915.97 
-19. 23 -338.74 
46.87 3076.24 
43.66 243.73 
5.90 1082.27 

DFRIVATIVFS 

RW3:c(TS) 

4(lh) 

21606.48 
-2942.87 
1590.90 
2477.41 

-1524.44 

OURE TO CYCLIC ArM.E', 

RII'I :d(TII) RI'J;:d(PH) 

d(Lsp) rI(Msp) 

-l3.5 289.15 
51.56 -30.34 
58.72 100.89 
21.RO (5.94 
64.35 24.92 

LOCKED GYRO MODE
V = 88.28 kts 
q 25.29 psf 
tt= 2.018 

I) TIC 

1 3.244 
2 2.7?6 
3 1.8q 
4 3.3n 
q 3.W 
r 4.316 
7 3.186 
8 2.820
9 2.340 

O 3.n54 
11 3.3(0 
12 3.804 

SIMIA 

TIS 

-2.210 
-l.r'37 
-1.175 
-2.287 
-2.921 
-2.0q0 
-2.125 
-2.51,8
-3,0s5 

-1. q2O 
-1.7NP 
-.877 

TIlT 

-1t.n1 
-1.2gP, 
-2.207 
-4.178 
-4.57q 
-5.440 
-3.949 
-I.16O
-4.3890 

-3.728 
-3.654 
-3.nCO 

PiI 

1.0.S0 
1.740 
1.236 
1.077 
2.1i5 
9.535 
1.95 2 
1..44 

.974 

1.qn3 
2.400 
3.285 

LIr-T n(LIFT) 

-4r. -6. 
-1.. 5. 
34. -3. 

-37. 7. 
-56. 5. 

-101. -5. 
-311. -2. 
-46. 1. 
-66. -4. 

-22. 3. 
-16. 1. 

8. -4. 

4. 

Lh 

1534. 
2q4 . 
F047. 
868. 

1766. 
-r,73. 
1143. 
1370. 

70. 

1'243. 
3233. 
6434. 

D(Lh) 

-4114. 
-828. 

231. 
-394. 
R23. 
38. 

-1157. 
248. 
34q. 

1453. 
-278. 
501. 

731. 

Ph 

8272. 
10441.0. 
14359. 
7510. 
7710. 
112n4. 
73148. 
q42U.

11107. 
1n1, 
87Qr.. 
10265. 

D0lh) 

-30,2. 
-5. 

7. 
-P229. 
58q. 
38. 

-1501. 
84;. 

1151. 
4,53. 

-18q, 
1158. 

758. 

1.sn 

-11'. 
-lnr, 
-qq. 

-11. 
-gq. 
-78. 

-14". 
-1F. 
-!ig. 

-78. 
-57. 
14. 

F(I.sp) 

-i.. 
-7. 

9, 
-q. 
4. 
IL. 

-4,. 
-1;. 
15. 
29. 
8. 
q. 

17. 

tlsp 

-23. 
-3. 
81. 
q?. 

-!6. 
-183. 
-121. 

-8S. 
-F11 . 

21L. 
51. 

I0. 

D(lsp) 

28. 
-24. 
-28. 
-in. 
-20. 
-15. 
-81. 

-7. 
53. 
44. 
59 . 

27. 

39. 

HIM OR SWASHPLATE TRIirn AHrII.ES AND tliHEhITS 

TIC 

5,q08 
4.347 

TIS 

-9.5r4 
-1.438 

TIfT 

-5,qqr0 
-3.q32 

PH I 

4.11-9 
3.512 

Lh 

n. 
40ol. 

Ih 

n. 
661r. 

Lsp 

18. 
0. 

tisp 

-171. 
0. 

rNTPROi. !OHEINTS 

Lh(.S, Msp=0) 

4091.65 

dlI.h/dl.sp 

n.71 

dLh/Ilisp 

10.82 

Ph Lsp,lsp-o 

7086.00 

11Mh/dI.so 

-10.q5 

dt'h/dt'sp 

3,9.44 



TABLE VIII. REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 100 MOTS
 

ROTOR ANlD 

RWI:d (0) 

4I(LI FT) 

703.93 
37.85 

222.23 
150.09 
125.11 

S'IASIIPI.ATr 

rl19 :,[ (Tr) 

d(Lh) 

14292.28 
1250.3" 
23753.95 
12410.65 
19813.77 

ER1IVATIVES DUE TO CYCLIC AIPILES 

R'13 :d (TS) RIA :d (Tl) RiS : d (PPH) 

d (PI) c(Lsp) l(Hlsp) 

F3184.32 -423.32 059.18 
-28496.51 592.62 -3.09 
1.4265.31 34.57 583.79 
23130.8t -231.60 440.96 

-15257.28 461.29 i5sj.40 

LOCKED GYROMODE 
V - 101.91 kts 
q = 33.16 psf 
A= 0.410 

N TIC 

1 1.735 
2 .721 
3 .q75 
8 .209 
5 1.482 
1, 2.292 
7 3.016 

1.30" 
' 1.655 

101 1.42.1 
11 1.217 

q IOIAA 

TUb 

-1.433 
-i.Ohl 
-.800 
-.911 

-1.230 
-1.480 
-2.441 
-1.081 
-2.107 
-1. 108 
-.153 

TIT 

-2.425 
-1.452 
-1.1411 
-1.027 
-2.007 
-2.70 
-4 . Ir 
-1.08213 
-3.050 
-1,185 
-.853 

PHI 

.904 
.119 
.477 

-.316 
.757 

1.42p 
.1l 
.07" 
.437 
.752 

1.32; 

LIFT 

401. 
42. 
481. 
503. 
535. 
508. 
201. 
588 
371. 
508. 
722. 

D(LIFT) 

-50. 
-72. 
-. ,. 
-1. 
53. 
48. 

-75. 
75. 
76. 
10. 
r. 

56. 

Lh 

1405. 
-1205. 

2456. 
-7155. 
7645. 
68 7. 

-81o4. 
*828. 

-1210. 
q10. 

26784. 

D(Lh) 

-701. 
97. 

-36pW . 
-2440. 
4383. 
-85. 

-2500. 
1304. 
?712. 

157. 
795. 

2297. 

Nh 

-7764. 
2801?. 
23474. 
410p7. 
5111. 

-2144'. 
-603CO. 

11k. 
-13153. 

7547. 
24477. 

D(rlh) 

-1072. 
229. 
353. 

-234:7. 
107R. 
1.72. 

-27rC. 
07. 
004. 

1740. 
-!827. 

lrq1. 

ILsp 

595. 
-2. 

103. 
-31C. 
3110. 
250. 

131r. 
307. 
4r7. 
35r. 
318,. 

(I-sp) 

40. 
30. 

-22. 
15. 

-'4. 
-33. 
3r. 
-4. 

-17. 
-27. 
25. 

20. 

lisp 

-245. 
45. 

120. 
5. 

-21. 
-250. 
-7001. 

9.. 
-41,. 

-12. 
C15. 

0 (14sp) 

-,2. 
-41. 

-34. 
-42. 

514. 
-43. 
-14. 

4. 
77. 
15. 
9. 

43. 

IIIJBOR 

TIC 

1.514 

.780 

.SASHPLATF 

T!S 

-1,405 

-1.125 

TRIMIED 

THT 

-2.270 

-1.569 

ANGLES AND 

PHI 

.700, 

.130 

HOPIEtITS 

Lh 

0. 

-2605. 

th 

0. 

24909. 

Lsp 

425. 

0. 

risp 

-10. 

0. 

CONTROL OIIFNTS 

Lh (ILspsp=O) 

-2533.90 

rLLh/dl.sp 

21.28 

cLh/dclsp 

39.37 

Mh (Lsp, tsp=0) 

24985.fl 

d'h/dLsp 

-48.28 

dplh/dt'sn 

26.r0 



TABLE VIII. CONTINUED 

ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC AiNfLES 	 LOCKED GYROMODE
 
V = 101,87 kts
RW1:d(0) RW2:dCTC) RW3:d(TS) RW4:d(TH) RVI5id(PH) q = 33.13 psf
 
M= 0.512
 

d(LIFT) d(Lh) d(f4h) d(Lsp) d(Msp)
 

430.37 23083.47 55673.83 -304.37 739.21
 
4.35 5068.40 -18548.64 358.33 -43.45
 

124,03 17143.65 12753.82 -35.68 4f49.21
 
91.51 10706.40 17567.87 -182.65 357.16
 
57.19 11269.65 -8423.29 254.33 162.57
 

N TiC TIS TNT PHI LIFT D(LItT) Lh D(Lb) Mh DfMh) Lsp D(Lsp) Msp D(msp)
 

1 1.637 -1.584 -2.519 .719 267. 26. 4539. 322. 4901. -206. 388. 49. -23. 21. 
2 1.209 -1.339 -2.02q .434 267. -3. 6935. 683. 15806. -372. 210. 34. 86. 1. 
3 .372 -I.073 -1.283 -.247 321. 22. 6223. -349. 35300. 209. -124, 9, 209. -32. 
4 1,791 -1.396 -2.421 .981 294. 2q. 7854. -567. 4876. 235. 369. -18. 24. -10. 
5 2.531 -2.036 -3.483 1.350 201. 
 12. 650. -350. -18190. -949. 720. 45. -326. -41.
 
6 1.924 -1.S75 -2.775 .953 24I. 10. 5044. 933. -244. 1150. 407. -38. -89. 8. 
7 2.010 -2.900 -4.044 .334 53. -26. -17457. -1014, -18298. 287. 487. -32. -632. 19.
 
8 1.479 -1.516 -2.360 .601 227. -22. 6181. 1596. 7808. -1104. 274. -6. 4. 10. 
9 1.583 -.995 -1.892 1.011 294. -21. 13891. -330. 15293. 1552. 273. -25, 233. 5.
 

10 1.132 -.482 -1.131 .851 3118. -28. 10443. -1123. 27744. -782. 101. -18. 493. 19.
 

SIGMA 	 22. 822. 823. 
 31. 20.
 

HUB OR SWASHPLATE TRIMMED ANGLES AND MOMENTS 

TIC TIS TiT PHi Lh Ilh Lsp Nsp
 

1,725 -1.856 -2.841 .651 O. 0. 380. -170.
 
.692 -1.579 -1.970 r.218 -472. 22701. 0. 0.
 

CONTROL MOMENTS
 

Lh(LsPMsP=O) dLh/dLsp dLh/dMsp Mh(LspMsnO) dIfh/dILs dMh/dMsn 

-327.48 18.49 39.3n 22301.35 -47.50 21.19
 

http:22301.35
http:11269.65
http:17567.87
http:10706.40
http:12753.82
http:17143.65
http:18548.64
http:55673.83
http:23083.47


TABLE VIII. CONTINUED
 

ROTOR AND 

RWI:d(O) 

d(LIFT) 

840.19 
41.39 

290.17 
200.52 
157.32 

SWASHPLAT 

RW2 :d(TC) 

d(Lh) 

10373.26 
12270.63 
25561.09 
13913.99 
20352.58 

DEPIVATIVES DUE TO CYCLIC ANGLES 

RI13: d(TS) RV4:d(TH) R-5 :d (PI) 

d(Mh) d(Lsp) d(l sp) 

66067.44 -309.59 809.84 
-23089.54 531.4A -49.86 
20600.33 104.69 745.85 
25550.69 -152.22 583.33 
-8431.59 44,.74 28r.71 

FREE GYRO MODE 
V = 102.93 kts 
q = 33.33 psf 
M= 0.413 

tN TIC 

1 . 1.66i 
2 1.211 
3 .729 
4 1.707 
5 2.161 
6 2.427 
7 1.656 
8 1.795 
9 1.626 

10 1.525 
11 1.589 
12 1.675 

SlIl,IA 

TIS THT 

-1.157' -2.110 
-1.255 -1.946 
-1.121 -1.535 
-1.206 -2.182 
-1.008 -2.246 
-1.115 -2.506 
-1.022 -I.q70 
-1.759 -2.781 
-1.580 -2.509 
-1.098 -1.q70 
-.805 -1.71S 
-.200 -1.162 

PIll 

.992 

.484 

.082 
1.007 
1.973 
1.776 
1.062 
.778 
.711 
.888 

1.120 
1.554 

LIFT D(LIFT) Lh 

428. -1115. 2298. 
562. 36. -3881. 
575. 30. -8020. 
615. 54. 1427. 
655. 18. 10754. 
G69. 52. 14921. 
589. -23,. 2299. 
401. -4. -13177.
401. -48. -1341. 
642. 57. 150. 
669. -3. 8465. 
829. -23. 24770. 

55. 

)(Lh) 

1078. 
2972. 
1305. 
924. 

-375. 
3257. 

-2275. 
-705. 

-3418. 
-876. 
-832. 

-1055. 

1898. 

Hh 

5531. 
16697. 
26228. 
6403. 

-7751. 
-9416. 
4468. 

-10785. 
-0721. 
6479. 

10292. 
23602. 

DC h) 

1733. 
4434. 

74. 
458r. 

-3169. 
3516. 

-2327. 
757. 

-5090. 
-1761. 
-2495. 

333. 

3080. 

Lsp 

513. 
20n. 
-5. 

439. 
764. 
917. 
397. 
377. 
369. 
465. 
475. 
484. 

D(Lsp) 

59. 
-2. 
35. 

-32. 
31. 
53. 

-66. 
-84. 
-20. 
79. 
24. 

-76. 

53. 

t.sp 

-92. 
-92. 
-96. 
-91. 

-105. 
-120. 
-90. 

-539. 
-562. 
-117. 

96. 
604. 

DCMsp) 

44. 
95. 

-33. 
83. 

-55. 
22. 

-55. 
50. 

-112. 
-32. 
-34. 
27. 

60. 

HUB OR 

TIC 

1.750 
.786 

SWASHPLATE 

TIS 

-1.246 
-1.033 

TRIPHED 

THT 

-2.247 
-1.481 

ANGLES AND 

PHI 

1.026 
.189 

MOMENTS 

Lh 

0. 
-6392. 

rlh 

0. 
26633. 

Lsp 

490. 
0. 

Nisp 

-207. 
0. 

CONTROL MOIENTS 

Lh(Lsp,Msp=0) 

-6274.88 

dLh/dLsp 

25. 65 

dl.h/dflsp 

30.41 

Mh(Lsp,Msp=O) 

25502.88 

'Mh/dLsp 

-37.76 

dtlh/dMsp 

33.49 



TABLE VIII. CONCLUDED 

ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC AIGLES FREE GYRO MODE 

RWIId(0) RW2:d(TC) R3:d(TS) R4:d(TH) R5:r(PII) 
V = 102,95 kisV = 33.28 pkf 
k= 0.520 

d(LIFT) d(Lh) 4(hth) d(Lsp) d (lisp) 

487.82 
45.52 

15504.08 
5104.37 

62470.91 
-20554.10 

-306.39 
396.03 

796.4(3 
-14153 

204.00 17024.74 12027.68 99.97 432.,3 
133.83 
122.96 

10601.22 
11245.05 

17q92.91 
-10249.15 

-96.89 
341.69 

387.32 
11.50 

1: TIC TIS TNT PHI LIFT D(LIFT) Lh DCLh) ?Ih 00Th) Lsp D(Lsp) lsp D(Nisp) 

1 1.978 -1.304 -2.437 1.220 334. .2. 3963. 571. R078. -47. 342. -5. -18. 30. 
2 
3 
4 

1.250 
.892 

2.518 

-1.426 
-1.554 
-1.043 

-2.139 
-2.060 
-2.51r 

.425 
-.005 
1.958 

267. 
214. 
401. 

13. 
.3. 
1. 

-3132. 
-6507. 
10201. 

-737. 
-113. 
-650. 

1n005. 
24834. 
-2742. 

-618. 
-513, 
129. 

52. 
-811. 
576. 

6. 
24. 

-3r. 

-25. 
-31. 
-30. 

-28, 
-29. 
-12. 

5 3.210 -.77S -2.619 2.751 4181. S. 18681. 8. -13747. -99. 930. 43. -26. -33. 
63 1.948 -1.112 -2.227 1.301 294. -56. 3579. -2045. 7243. -1911. 2?9. -62. -51. -'30. 
7 2,200 -2.004 -3.340 .R93 160. -3. -8861. -116. -F640. 11G2. 325. -31. -364. 52. 
S 2.197 -2.541 -3.794 .727 R0. 11. -15025. 914 -12307. 931). 331. 21. -593. 21. 
9

10 
1.899
1.792 

-1,375' 
-.570 

-2.461
-1.598 

1.101 
1.457 

294. 
415. 

0. 
-38. 

4113. 
13761. 

2320. 
-1192, 

8087,
15903. 

1180. 
-2882.' 

327. 
368. 

1q.
22. 

-26. 
248. 

41,
-!18. 

11 1.676 .085 -.879 1.719 615. 34. 271448. 1393. 32504. 34136. 360. -6. 91. 95. 

SIGMA 24, 1395. 1613. 20. 51. 

PUR OR SWASHPLATE TRIM -r6) AFIGLES AND 11WI0ITS 

TIc TS TilT PHI Lh MH Lsp !hsp 

2.132 -1.550 -2.77,0 1.233 0. 0. 3113. -176. 
1.144 -1,467 -2.11n .796 -3627. 21310. 0. 0. 

CONTROL P'0)EITS 

Lh(Lsplsp=O) cllh/dtsp dLh/dMsp th(Lsp t'sp=0) vhbh/,iLsP d'h/dftsp 

-3603.95 "4.81 33,21 211r3.92 -38.33 36,£0 



TABLE IX. REDUCED EXPERIMENTAL DATA, NOMINAL VELOCITY = 120 KNOTS
 

ROTOR AND SWASHPLATE DERIVATIVES DUE TO CYCLIC ANGLES 

RWI:d(O) RW2:d(TC) RW3:d(TS) RW4:d(TH) R1:d (PH) 

d(LIFT) d(Lh) d(IMh) d(Lsp) d(Isp) 

1882.30 -4926.97 78877.55 -475.29 664.12 
67.40 30133.22 -33622.27 730.13 68.13 

614.15 30029.25 32834.72 -64.69 964.31 
433.17 9513.17 39342.60 -366.13 696.54 
317.75 35746.26 -11044.41 521.69 470.52 

FREE GYRO MODE 
V = 120.54 kts 
q=46.83 psf 
d= 0.365 

N TIC TIS THT PHI LIFT D(LIFT) Lh D(Lh) Mh D(Mh) Lsp D(Lsp) Msp D(Msp) 

wj
0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1.275 
.773 

1.227 
.675 

1.366 
1.714 
1.936 
1.266 
1.281 
1.167 
1.340 
1.439 
1.379 

-1.055 
-.914 

-1.142 
-1.073 
-1.001 
-1.298 
-.990 

-1.016 
-1.557 
-1.856 
-1.043 
-.547 
-.527 

-1.784 
-1.354 
-1.843 
-1.457 
-1.782 
-2.278 
-2.099 
-1.740 
-2.287 
-2.519 
-1.809 
-1.372 
-1.318 

.663 

.244 

.566 

.056 

.785 

.961 
1.359 
.676 
.380 
.096 
.735 

1.119 
1.070 

1188. 
1241. 
1293. 
1372. 
1267. 
1293. 
1320. 
1372. 
1134. 
765. 

1320. 
1662. 
1768. 

-132. 
-132. 

29. 
103. 
-93. 
92. 

-85. 
28. 

122. 
-56. 
a12. 
19. 

116. 

-179. 
-11536. 
-3535. 

-15100. 
2360. 

12811. 
20113. 
3525. 

-13085. 
-24059. 

2489. 
20141. 
28366. 

-1974. 
-2447. 
-1293. 
1702. 

-3808. 
5043. 

-3566. 
828. 
13. 

1418. 
-1630. 
-1861. 
7574. 

2720. 
18286. 
4660. 

22077. 
-3788. 

-15263. 
-25790. 

-441. 
-14098. 
-22914. 

712. 
14419. 
18434. 

1340. 
-4612. 
4558. 
1142. 

-3879. 
6108. 

-7074. 
-3408. 
1207. 

-1612. 
1127. 
1883. 
3219. 

615. 
484. 
352. 
-95. 
491. 
901. 

1099. 
528. 
535. 
513. 
528. 
535. 
535. 

91. 
336. 

-143. 
-182. 
-96. 
41. 
97. 
14. 

-25. 
16. 

-42. 
-76. 
-30. 

-297. 
-294. 
-315. 
-257. 
-312. 
-310. 
-313. 
-290. 
-713. 

-1037. 
-285. 
233. 
452. 

-31. 
-130. 

39. 
68. 

-104. 
160. 

-154. 
-61. 
37. 
9. 

-35. 
-2. 
202. 

SIGMA 89. 3202. 3704. 125. 101. 

HUB OR SWASHPLATE TRIMMED ANGLES AND MOMENTS 

TIC TIS THT PHI Lh Mh Lsp Msp 

1.266 
.586 

-1.106 
-.730 

-1.830 
-1.064 

.625 

.164 
0. 

-9186 
0. 

35192, 
5-2,0. 
0. 

-316. 
0. 

CONTROL MOMENTS 

Lh(Lsp,Msp=O) dLh/dLsp dLh/dMsp Mh(Lsp,Msp=O) dMh/dLsp dMh/dMsp 

-5015.13 31.02 34.86 28976.66 -38.46 28.80 



ROTOR AND 

RI:d(O) 

d(LIFT) 

1092.32 
-3.35 

265.49 
201.38 
112.89 

SWASHPLATE 

RW2:rl(TC) 

d(Lh) 

12935.90 
9392.78 

20946.27 
1168q.96
16179.22 

TABLE IX. 

DERIVATIVES DliF TO CYCLIC AtIOLES 

R3 :dITS) RW4:d(TH) RW5:d(PH) 

d(hh) d(Lsp) dtlsp) 

78940.44 -550.03 883.59 
-28798.41 517.89 -105.75 
15622.81 60.1 585.73 
24284.28 -179.14 487.05 

-14894.50 410.15 175.00 

CONTINUED 
FREE GYRO MODE 
V = 119.92 kts 
q = 46.1 psf 
A= 0.503 

LU 
0 

N TIC 

1 1.938 
2 1.454 
3 1.170 
4 .994 
5 1.947 
6 2.403 
7 2.993 
8 1.933 
9 2.145 

10 2.236 

11 1.854 
12 1.859 
13 1.924 

SI MhA 

TIS 

-1.480 
-1.390 
-1.401 
-1.626 
-1.567 
-I.080 
-1.128 
-1.380 
-2.077 
-2.744 

-1.355 
-.703 
-.145 

TIlT 

-2.588 
-2.220 
-2.0 8 
-2.191 
-2.680 
-2.463 
-2.845 
-2.48F 
-3.302 
-4.019 

-2.415 
-1.769 
-1.251 

PHI 

1.079 
.649 
.360 
.055 

1.038 
1.7Cq 
2.332 
1.132 

.942 

.649 

1.067 
1.447 
1.833 

LIFT 

739. 
713. 
713. 
360. 
686. 
739. 
818. 
660. 
475. 
369. 

818. 
871. 

105. 

D(LIFT) Lh 

46. 1014. 
-5. -3191. 
-4. -8709. 

3. -10988. 
lfi. 3214. 

-57. 11435. 
35. 16977. 
-60. 3627. 
-59. -15283. 
13. -23173. 
92. 5505. 

-28. 13876. 
11. 27886. 

42. 

D(Lh) 

1476. 
-663. 

-129E, 
804. 

4817. 
-131n. 
-439. 
1437, 

-4861, 
371. 

3534. 
-1785. 

-77. 

2493. 

1,1h 

3929. 
14117. 
20,270. 
26595. 
3825. 

-13732. 
-22758. 

807. 
-21735. 
-25748. 

5124. 
14328. 
2065. 

Dh) 

3q17. 
-1241. 
-3082. 

liror. 
5436. 

-Cr,07. 
2121. 
-(115.

-6444. 
25901. 

731. 
-05. 

1798. 

3 4q2. 

Lsp 

4ll. 
161. 
-19. 

-101. 
4511. 
7(q. 
qn2. 
381. 
36. 
374. 
337. 
315. 
337. 

D Lsp) 

4If. 
47. 
i. 

-2". 
90. 
lhO. 
-30. 
13. 

-70. 
-6q. 

9. 
-S5. 

-1nl. 

66. 

I1sp 

-144. 
-131. 
-233. 
-143. 
-149, 
-139. 
-833. 

-131. 
-F76. 
-P71. 
-84. 
2C8. 
603. 

D(IsD) 

44. 
-47. 
-72. 

31. 
91. 

-132. 
11. 
-2. 

-116. 
89. 
22. 
-7. 
88. 

71. 

(113 OR 

TIC 

I.(35 
1.212 

SWASIPLATE 

T1S 

-1.485 
-1.290 

TRIMFrD 

TT 

-2.592 
-1.981 

ANGLES AND 

PfI 

1.073 
.465 

MOMENTS 

Lh 

0. 
-26q9. 

fNh 

0. 
23891. 

Lsp 

363. 
0. 

fMsp 

-1.1. 
0. 

CONTROl. 1I10DENTS 

Lh (Lp,Misp=0) 

-2571.08 

dLh/dLsp 

24.83 

dl.h/dihsp 

33.15 

Uh(Lsp,t'sp=0) 

22739.4r 

d(Ih/dLsp 

-45.87 

itih/ritsp 

31.711 



ROTOR AND 

RW1l:d(O) 

d(LIFT) 

652.00 
-12.70 
195.84 
153.00 
75.58 

SWASIPLATE 

RW2:d(TC) 

d(Lh) 

22325.48 
2010.75 

14851.94 
10309.93 
7970.85 

TABLE IX. 

DERIVATIVES DUE TO CYCLIC ANGLES 

R1'3 :d ITS) RW4:d(TH) RW5:d(PH) 

d(0Ch) d(Lsp) d(Msnl 

57164.11 -492.34 1097.90 
-13284.34 269.83 -154.62 
11179.65 22.64 486.51 
14193.88 -100.26 433.58 
-5143.42 213.03 95.07 

CONCLUDED 

FREE GYRO MODE
V =119.98 kts 
q 46,.5 pf 

0.787 

N TIC 

1 2.791 
2 2.036 
3 1.336 
4 2.799 
5 3.649 
6 3.606 
7 2.644 
8 2.823 
9 2.776 

10 2.732 
11 2.532 
12 2.696 
13 2.837 

SIM4A 

TiS 

-1.557 
-2.023 
-1.955 
-1.820 
-.967 

-1.552 
-1.803 
-2.014 
-2.169 
-1.682 
-1.329 
-1.029 
-1.026 

THT 

-3.155 
-3.186 
-2.715 
-3.422 
-3.061 
-3.619 
-3.316 
-3.629 
-3.757 
-3.247 
-2.779 
-2.575 
-2.653 

PHI 

1.884 
.865 
.206 

1.741 
3.079 
2.699 
1'597 
1.653 
1.517 
1.754 
1.758 
2.094 
2.235 

LIFT 

343. 
237. 
237. 
290. 
317. 
396. 
370. 
158. 
132. 
237. 
343. 
422. 
448. 

D(LIFT) 

31. 
7. 

-15. 
30. 

-99. 
94. 

105. 
-64. 
-60. 
-51. 
-17. 
6. 

33. 

58. 

Lh 

3752. 
-2760. 
-6444. 
2884. 
8739. 
9436. 
1126. 
-133. 

-6949. 
2248,
7412. 

12834. 
18190. 

D(Lh) 

-1059. 
866. 

-2421. 
1956. 

-6564. 
2911. 
256. 

1778. 
-2637. 
-586. 
-272. 
370. 

5399. 

2815. 

Mh 

918. 
7180. 

16486. 
2465. 

-6330. 
-6266. 
1754. 

-1097. 
-4726. 
-832. 
8504. 

11544. 
11233. 

D(lh) 

-1767. 
-320. 

-1080. 
2821. 

-4206. 
1828. 
-130. 
1752. 
-767. 
-2889. 
-170. 
1704. 
3223. 

2125. 

Lsp 

227. 
59. 

-198. 
183. 
425. 
520. 
205. 
149. 
212. 
205. 
198. 
220. 
234. 

D(Lsp) 

2. 
48. 

-22. 
-39. 
-45. 
74. 
25. 

-75. 
5. 
-2. 
37. 
8. 

-16. 

39. 

Msp 

-207. 
-192. 
-109. 
-145. 
-127. 
-109. 
-151. 
-308. 
-437. 
-138. 

17. 
212. 
335. 

D(Msp) 

-116. 
9. 

-49. 
.75. 

-190. 
106. 
37. 
10. 

-50. 
5. 

-43. 
32. 

175. 

90. 

HUB OR SWASHPLATE TRIMMED ANCLES AND MOMENTS 

TIC TIS TIlT PHI Lh 

2.727 -1.872 -3.433 1.640 0. 
1.962 -1.633 -2.755 1.015 2013. 

tih 

0. 
12846. 

Lsp 

201. 
0. 

Msp 

-235. 
0. 

CONTROL MOMENTS 

Lh(Lsp,rlsp=O) 

2242.79 

dLh/dLsp 

22.88 

lLh/dMsp 

28.85 

bhLhsp,Msp=0) 

12513.88 

dMh/dLsp 

-33.67 

dMh/dMsp 

24.27 



TABLE X. REDUCED EXPERIMENTAL DATA, NONDIMENSIONAIIZED DERIVATIVES (a) LOCKED SWASHPIATE
 

Vkt MU RPM dCL/dTlC (dCl)h/dTlC (dCm)h/dTlC (dCl)sp/dTlC (dCm)sp/dTlC 
49.38 
48.04 
50.03 

.488 

.771 
1.055 

98.7 
60.8 
46.3 

-.151817E-02 
-.156462E-02 
-.129414E-02 

.5621835E-03 

.2437467E-03 
-.164570E-03 

-.372815E-02 
-.192722E-02 
-.127277E-02 

.6597344E-04 

.4253774E-04 

.1421833E-04 

-.354446E-04 
-.115426E-04 
-.151977E-04 

Vkt 11J RPM dCL/dTIS (dCl)h/dTIS (dCm)h/dTIS (dCl)sp/dTlS (dCm)sp/dTIS 

49.38 
48.04 
5n.03 

.488 

.771 
1.055 

98.7 
60.8 
46.3 

.59239 5 5 EZ 02  

.4138065E-02 

.3343804E-02 

.3062778E-02 

.2090n02E-02 

.1571315F-02 

.1242913E-02 

.7165053E-03 

.6503727E-03 

.1669602E-04 

.5936412E-05 

.1494376E-05 

.92434211-04 

.L510887E-04 

.3350739E-04 

Vkt MU RPM dCL/dTIC (dCl)h/dTlC (dCm)h/dTlC (dCl)sp/dTaC (dCm)sp/dTlC 
60.91 
59.96 
60.02 

.402 

.799 
14.12 

147.9 
73.3 
52.7 

.2100305E-02 
-.438963E-02 
-.390979E-02 

.1398414E-02 

.9518437E-04 
-.148852E-03 

-.499708E-02 
-.185766E-02 
-.136892E-02 

.9150266E-04 

.3287978E-04 

.1569831E-04 

-.337717E-04 
-.235548E-04 
-.129630E-04 

Vkt Mi RPM dCL/dTIS (dl)h/dTIS (cCm)h/dTlS CdCl)sp/dTIS (dCm)sp/dTIS 

60.91 
59.96 
60.02 

.402 

.799 
1.112 

147.9 
73.3 
52.7 

.7132204R-02 
;6426048E-02 
.4979155E-02 

.5026688F-02 

.2052262E-02 

.1578896E-02 

.2276338E-02 

.8821492F-03 

.5495657E-03 

.3151737E-04 

.8684943E-05 

.1223420E-04 

.1034338E-03 

.4632970E-04 

.3018868E-04 



TABLE X. CONTINUED (b) LOCKED SWASHPLATE
 

Vkt MU RPM dCL/dT1C (dCl)h/dTIC (dCm)h/dTIC (dCI)sp/dT1C (dCm)sp/dTlC 

69.19 .492 137.4 -.237288E-02 .5315413E-03 -.383680E-02 .6257061E-04 -.347551E-04 
68.45 
69.30 

.494 

.783 
135.3 
86.4 

-.13q7O,O-02 
-.170403E-02 

.8353375E-03 
-.196662E-03 

-.374026E-02 
-.203079E-02 

.6699050E-04 

.2437544E-04 
-.2620q6E-04 
-.208506E-04 

69.40 1.125 60.2 -.145609E-02 .4675797E-04 -.132103E-02 .191q112E-04 -.87797,;E-05 
68.66 1.960 34.2 -.89n664E-03 -.206978E-03 -.758227E-03 .7074670E-05 -.117422E-04 

Vkt MU RPM dCL/dT1S (dCl)h/dTlS (dCm)h/dTIS (dCl)sp/dT1S (dCrm)sp/dTIS 

69.19 .492 137.4 .5983qm2E-02 .3270685E-02 .1573373E-02 .2578399E-04 .6263504E-04 
68.45 .494 135.3 .613241SE-02 .34q1587E-02 .1493916E-02 .3323783E-04 .57322M2E-04 
69.30 
69.40 

.783 
1.125 

86.4 
60.2 

.4043142E-02 

.328524,8E-02 
.18171302-02 
.1215816E-02 

.9181554E-03 

.4606957E-03 
.1027185E-04 
.8845787E-05 

.h86829qE-04 

.2436185E-04 
68.66 1.960 34.2 .2155913E-02 .6350805E-03 .2381429E-03 .1151655E-04 .2000541E-04 

Vkt MU RPM dCL/dTlC (dCl)h/dT1C (dCm)h/dTlC (dCl)sp/dT1C (dCm)sp/dTlC 

80.5q .399 197.2 -.189724E-02 .2006054E-02 -.496048E-02 .1160549E-03 -.209525E-04 
82.76 .527 153.2 -.21788'3E-03 .7769242E-03 -.349561E-02 .5971744E-04 -.236928E-04 
82.78 .807 100.2 .9781534E-03 -.141638E-04 -.155006E-02 .2630343E-04 -.159474E-04 
82.68 1.120 72.1 -.600681E-03 -.154680E-03 -.135877E-02 .1967869E-04 -.175551E-04 
82.88 2.129 38.0 -.124549E-02 .3818955E-05 -.543273E-03 .9915268E-05 -.536864E-05 

Vkt 14U RPM dCL/dTIS (dCl)h/dT1S (dfm)h/dTIS (dCl)sp/dTIS (dCm)sp/dTlS 

80.59 .399 197.2 .9311053E-02 .4321756E-02 .2577745E-02 .157345E-04 .1052351E-03 
82.76 .527 153.2 .4122117F-02 .3243906E-02 .1827483E-02 .1155847E-04 .8083632E-04 
82.78 .807 100.2 .2038741-02 .1828176E-02 .9385240E-03 .7218376E-05 .4773425E-04 
'82.68 1.120 72.1 .3944113C-02 .1470303E-02 .8149172E-03 .8193811E-05 .3800303F-n4 
82.88 2.129 38.0 .2179877E-02 .9687694E-03 .4595709E-03 .1124934E-04 .31912662-04 



TABLE X. CONTINUED (c) LOCKFI SWASHPLATE 

Vkt fMUj RPM dCL/dTlC (dCl)h/dTlC (dCm)h/dT1C (dCl)sp/dTlC (dCm)sp/dTiC 

89.80 .493 177.7 -.q23485E-03 .9718885E-03 -.388362E-02 .7416559E-04 -.204557F-04 
89.37 1.072 81.4 -.773162E-Ot -.239075E-03 -.163;72E-02 .1784429E-04 -.164240E-04 
89.56 1.079 81.0 -.144754E-02 .1056894E-04 -.129863E-02 .218728,E-04 -.124167E-04 
88.28 2.018 42.7 -.889022E-03 -.790924E-04 -.687131E-03 .1203874E-04 -.708409E-05 

Vkt mij RPH dCL/dTIS (dCl)h/dTIS (dCm)h/dTIS (dCl)sp/dTIS (dCm)so/dTIS 

89.80 .493 177.7 .6702955F-02 .2933257E-02 .1964280E-02 .1C79378E-04 .8266045E-04 
89.37 1.072 81.4 .2051126E-02 .1454664E-02 .9967670E-03 .9712197E-05 .3447172E-04 
89.56 1.079 81.0 .3647631E-02 .1531993E-02 .1069698E-02 .6868896E-05 .3457802E-04 
88.28 2.018 42.7 .2166848E-02 .7181712E-03 .3714779E-03 .1371053E-04 .2565821E-04 

Vkt t-11) RPM dCL/dTlC (dCl)h/dTlO (dCm)h/dTlC (dCl)sp/dTlO (dCm)sp/dTlC 

101.91 .410 242.6 .1334546E-02 .2243456E-02 -.507451E-02 .1002419E-03 -. 550251E-06 
101.87 .512 194.1 .1535147E-03 .9033717E-03 -.330604E-02 .6386733E-04 -.774436E-05 

Vkt fi) RPM dCL/HTIS (dCl)h/dTlS (dCm)h/dTIS (dCl)sp/idTIS (dCm)sn/dT1s 

101.91 .410 242.6 .78355672-D2 .4229980fE-02 .2540307F-02 .F155n47E-05 .1039583r-03 
101.87 .512 Iq4.1 .4377111E-02 .3055617E-02 .2273191E-n2 -. 3594GF 05 .R006513E-n4 



TABLE X. CONCLUDED (d) FREE SWASHPIATE 

Vkt 

81.67 
81.26 

MU 

.404 

.520 

RPM 

197.2 
152.6 

dCL/dTlC 

.4032250E-02 

.3414878E-02 

(dCl)h/dTIC 

.1891502E-02 

.8992384E-03 

(dCm)h/dTlC 

-.458088E-02 
-.326409E-02 

(dCl)sp/dTlC 

.1077350E-03 

.7252705E-04 

(dCm)sp/rTIC 

-.104861E-04 
-.124013E-04 

Vkt 

81.67 
81.26 

MU 

.404 

.520 

RPM 

197.2 
152.6 

ICL/dTIS 

.7490898E-02 

.5025764E-02 

(dCl)h/dTIS 

.4491023E-02 

.3169468E-02 

(dCm)h/dTJS 

.2623881E-02 

.1710466E-02 

(dCl)sp/dTlS 

.1707111E-04 

.7510819E-05 

(dCm)sp/dTIS 

.1128963E-03 

.7290539E-04 

0 

VI'A 

102.q3 
102.85 

MIJ 

.413 

.520 

RPM 

243.4 
193.1 

dCL/dTlC 

.1451919E-02 

.1599194E-02 

(dCl)h/dT1C 

.2173945E-02 

.9056823E-03 

(dCm)h/dTIC 

-.409069E-02 
-.364697E-02 

(dCl)sp/dT1C 

.9416048E-04 

.7026868E-04 

(dCm)sp/dTlC 

-.883352E-05 
-. 251121E-n4 

Vkt 

102.93 

102.85 

MU 

.413 

.520 

RPM 

243.4 

193.1 

dCL/dTIS 

.1017887E-01 

.7166863E-02 

(dCl)h/dTIS 

.45285702-02 

.3020746E-02 

(dCm)h/dTIS 

.3649689E-02 

.2134104E-02 

(dCl)sp/dTIS 

.1854757E-04 

.1773795E-04 

(dCm)sp/dT1S 

.13213q7E-03 

.7676272E-04 

\/kt 

120.54 
119.92 
11q.98 

MIJ 

.365 

.503 

.787 

RPM 

322.4 
232.9 
14R.8 

dCL/dTIC 

.1682744E-02 
-.849623E-04 
-.321747F-03 

(dCl)h/dT1C 

.3799605E-02 

.1203124E-02 

.2572785E-03 

(dCr)h/dTlC 

-.423955E-02 
-.362880E-02 
-.!69975E-02 

(dC1)sp/dTI 

.9206469E-04 

.6633667E-04 

.3452515E-04 

(dCr)sp/dT1C 

.8590754E-05 
-.135455F-04 
-.lq7839E-04 

Vkt 

120.54 
119.92 
119.98 

MU 

.365 

.503 

.787 

RPM 

322.4 
232.9 
148.8 

dCL/dTIS 

.1533319E-01 

.6733324E-02 

.4961488E-02 

(dCl)h/dTIS 

.3786495E-02 

.2683013E-02 

.1900328E-02 

(dCm)h/dTIS 

.4140247E-02 

.2001130E-02 

.1430453E-02 

(dCl)sp/dTIS 

-.81569qE-05 
.7705910E-05 
.2896822E-05 

(dCm)sp/dTIS 

.1215933E-03 

.7502531E-04 

.6224968E-04 
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