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SYMBOLS

sum of the observed stimulus levels in first n blocks
(see Eqs. 2 and 3)

step size (distance between adjacent stimulus levels)
efficiency (see Eq. 9).

probability of correct response due to sensory mechanism
(see Eq. 4)

probability of correct response due to guessing (see Eq. k)
trial block length

number of trial blocks

probability of correct response (see Eq. 5)

probability of decreasing the stimulus level following a
block of trials

probability of increasing the stimulus level following a
block of trials

probability of remaining at the same stimulus level following

a block of trials

decrease gtimulus level if number of correct responses in a
block is > r

relative efficiency (see Eq. 10)

increase stimulus level if number of correct responses in a
block is < s

a general fixed stimulus level
ith stimulus level fixed prior to an experiment
stimulus level used in (j+1)st trial block

initial stimulus level

phasing factor; distance from wu to the fixed stimulus level

closest to wu

true threshold value



estimator of u (Eq. 1)

>

™. asymptotic frequency of stimulus level 1
o standard deviation of the underlying normal distribution F(x)
SUMMARY

The block up-and-down, two—élternative, forced-choice exﬁeri-
nental design for the estimaﬁion of sensory thresholds is investigated.
A mathematical model of the procedure is developed and recursion for~
muias are derived for bias and mean-square error of the sample average
estimator. Block designs for various step sizeg are compared on the
basis of two measures of efficiency: (1) éfficiency expressed as the
reciprocal of the mean-square error of the average estimator per trial
and (2) relative efficiency of the average estimator with respect to

the problit estimator based on fixed stimulus levels.

INTRODUCTION

Up-and-down or "staircase" designs have been extensively analyzed
and applied during the past few years to psychophysical expe]:‘]'.men'l;s.1"8
These experimental designs, widely used in other fields such as bio-
assay and explosives research,9"13 were developed to estimate points
on a response function where responses are guantal; that is, responses
are categorized as occurring or not occurring following a stimulus.
In the application considered in this report, this function is the
probability of correct response and is assumed to be in the form of a
gaussian psychometric function adjusted by a correction for guessing.

The up-and-down method consists in giving the experimental subject a



series of stimuli at a fixed number of sequential trials according to
the following rule: (a) following a nonresponse, increase the stimu-
lus to the next higher stimulus level for the next trial, (b) follow-
ing a response, decrease the stimulus to the next lower stimulus level.
This procedure tends to concentrate testing around a fixed point on /
the response function whose corresponding stimulus level may be defined
as a "threshold," or point of subjective equality. The block up-and-
dqwn mgthod is an extension of the classical up-and-down method in
which the decision tq raise or lower the stimulus level is based on
the outcome of a block of several’trials rather than on the outcome of
just one trial. - |

Recenﬁ work in this area has been concentrated on developing
efficient sequential methods:- experimental designs in which the num-
ber of trials is a random variable that depends on the past history of-
the trial seqmence.a’g’lz’1""15 Nonsequential designs are sometimes
easier to apply experimenta%ly, however, and are still used in
psychometric test:'mg.l"“’5

Up-and-down designs, when used to determine sensory thresholds
for human subjects, are usually applied within the framework of &
two-alternative, forced-choice procedure; that is, the subject is
required to give one of two types of response to a stimulus presented
in the two categories with equal probabilities. For example, Clark
and Stewart,® in a study of angular acceleration, required a subject
in a centrifuge to respond right or left, depending on which diree-

tion he subjectively perceived that he was accelerating. The



difficulty in using an up-and-down design with the restriction of

forced choice is that the probability of responding "corréctly"bﬁo
a stimalus varies from 0.5 to 1 as the stimulus level is increased,
rather than from O to 1 which is assumed in other contexts, such as

10,12,13 mpe probability of 0.5 at zero stimulus level

bioassay.
arises from the assumption of random guessing under the restriction
of an equally probable forced (binary) choice.

Experience with empirical response curves hés shown that this
restriction results in a probability-of-correct-response function
that is not symmetric about the threshold; that is, the probability
of increasing a_step when below threshold is not equal to the_proba—
bility of decreasing a step when above threshold. This lack of sym-
metry can also be deduced from the mathematical model to be developed
below. Since classical up-and-down designs assume symmetry of the
response function, we undertook to determine how the asymmetry induced
by the forced-choice technique affects bias and precision of the
average estimator of threshold. This method involves averaging
observed stimulus levels over a series of trialsl0s13 to estimate
threghold, and is found quite frequently in the psychometric
literature.ls4»5:7,8

This report summarizes an investigation of the bias and precision
of the average stimulus level estimator (the dose average estimator
of Ref. 13) for a block up-and-down, two-alternative, forced-choice
design (BUDTIF). A mathematical model of the forced-choice procedure

is developed, and well-known recursion formulas for exact bias and



mean-square error of the average estimator are modified to handle
the forced-choice case. Since this was not intended to be an exten-
sive parametric study, the main results are presented in terms of
optimal block design, that is, the number of trials at a given stimu-
lus level and the appropriate decision procedure to raise or lower
the following stimulus level, which maximizes some measure of effi-
ciency of the average estimator. The measure of efficiency chosen,
and one that incorpbraxeévthe influence of most of the relevant
parameters, is‘thé'reciprocal dfvthe‘mean—square error of the average
estimator per trial.

The parameters that influence the up-and-down procedure are:
(1) initial stimulus level, (2) step size (i.e., the fixed distance
between stimulus levels), (3) number of trial blocks, (k4) block
design (described below), and (5) phasing factor. All these parameters,
except the phasing factor,‘W111 be discussed. The phasing factor,A
which is the distance from the threshold to the stimulus level nearest
the threshold, was found to have a slight but insignificant effect on
mean—sqﬁare error”and bias for moderate trial sequence lengths.
Because of this small effect on mean-square érror and bias of the
threshold estimator, and since the phasing factor cannot he known to
the experimehter in practice, all results are presented for a phasing

factor of zero.



I. MODEL OF THE EXPERIMENTAL PROCEDURE

The general psychophysical method of interest is an expansion
of the BUDTIF procedure developed by Campbells and the multiple up-
and-down (MUD) procedure used in 'b:i.oza.sszzamy.“*12 The rules for
manipulating the independent variables are:

‘1. Choose a set of stimulus levels that are equally spﬁced

(usually in log units of physical magnitudes).

2. Perform a sequence of trials in‘blocks of length k. After
each block of trials is completed at a given stimulus level,
select the stimulus level for the next block as follows:

a. Incregse to the next higher level following s or fewer
correct responses in the present block.

b. Decrease to the next lower level following r or more
correct responses (r > s).

c. Remain at the same stimulus level following a number of
-correct responses.between s and r (not including s or r).

3. Terminate the experiment after n blocks of trials.
These parameters determine the block design (k, s, r).

This rule for changing the‘sﬁimulus level after a trial block is
more general than Campbell's in that he considered only the case in
which the decision to r&ise, lower, or keep the stimulus level the same
was based on whether the proportion of correct responses (x/k) was less
than, greater than, or equal to the desired proportion (p) of correct
respéﬁses, respectively. In confining himself to this rule, he assumed

that the condition x/k = p had to be a possible outcome, where x is



the number of correct responses in a block of k trials, and p is
some target percentage correct which is ' being tracked. This .con-
dition necessarily confined him to block lengths that are multiplés
of 4 when p = 0.75, an unnecessary restriction whén the above rule
is used.

Various suggestions have been made concerning the best way to
avoid the bias that results in the threshold estimate when the first
stimulus value is far away from the true threshold. Campbell 8 sug-
gested using only those levels, in the threshold calculation, that
have been used at least twice within the trial sequence; Brownleel3
suggested calculating threshold from those levels used after the first
reversal (change of direction) of the staircase; Hsil? suggested
beginning a sequence with single-trial blocks and then switching to
k~trial blocks after the first stimulus reversal. Since all these
methods are designed to place the initial trial block for the cal-
culation of the threshold estimate. in the vicinity of the threshold,
a suggestion of Hsil? was followed and in- the computer study the
starting stimulus level was confined to within three standard devia-

tions of the true (simulated) threshold.

II. STATISTICAL METHOD
Recursion Formulas for Bias and Mean Square Error
The average estimator is defined as follows: Let X4 be the

ith stimulus level, fixed prior to the experiment, i = 1, 2, .

where X1 > X, for all 1, and let yj, J f 0,1,2, .. ., be



the stimulus level used in the j+1 trial block. If up 1is the true

threshold, consider estimatihg 1 by 1, where

n n
f= D ky./ok= Y, y./n (1)
=t ¢ =17

and k 1is the number of trials per block in a sequence of n blocks.
As in Reference 13, the initial stimulus level Yo is not included
since it was chosen by the experimenter, and the level Y, is
included since it was selected on the basis of the experiment.
Recursion formulas for the exact bias and mean-square error of
ﬁ are given by_Hsi.12 Hsi generalized to the case of k > 1 the
formulas developed by Brownlee ef 8l.13 for k = 1. The only modifi-
cation of Hsi's formulas that is required is the definition of P+,
Po’ and P_, the probabilities of increasing the stimulus level after
a block of trials, staying at the same level, and decreasing the
level, respectively. These probabilities will be derived later. The
recursive formulas for the bias and mean-square error, as given in

Reference 12, are as follows (given that p = 0):

ElC ., () lymx; 1 = BlC1(x)] + pElC (xy, )] + P EIC, (x,)] (2)

~ TR 2
ElC, . )]y =x{]

B2[0y(x, ) J+p,BIC (x,, ) 1+ E[C2(x,)]
+P E[C2(x; )1+2kx {E[C__ (x,)]-E[C)(x,)]}

+2k{(Xi+1—xi)P++E[Ch(Xi+1)]—(¥i_xi—1)P—E[Cn(xi—l)]}

(3)
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where

n
Cn(y) = Jz:; kyj

A computer program was written to compute the exact bias and mean-
square error using the sbove formulas. On a "per trial" basis, the

result is

Bias E[Cn+l(y)|yo=xi]/kn

MSE

E[C

—x 12 /k2p2
w1 () [7=%;12/1n

Statistical Model
The probabilities P+, Po’ P_ may be derived as follows: In a
forced~choice procedure, a correct response at a given stimulus l;vel
x . is the result of a correct response due to the actual sensory mech~
anism under study, or is due to some random response process. If the
probabilities associated with these two events are represented by

F(x) and G(x), respectively, and if we represent the probability of a

correct response by P(x), then
P(x) = F(x) + [1 - F(x)]a(x) (k)

where 0.5 5 G(x) £ 1 and 0 s F(x) < 1. The psychological interpreta-
tion of this equation is: with probability F(x), the subject detects
the signal (perceives the stimulus); with probability 1 - F(x), he
does not, and if he does not then he responds with a probability of
G(x). The inequalities imply that 0.5 < P(x) < 1. The case con-

sidered in this report occurs when G(x) is independent of x and is
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completely random (i.e., guessing). In such case, G(x) = 0.5 for
all x and P(x) = [1 + F(x)]/2. The term F(x) is referred to in
the literature as the psychometric function and is commonly assumed
to be described by the normal cumulative distribution. The same

assumption is made here; thus,

P(x) = %31 + [X (2no2)-1/2 exp[— %(P—;-Eﬂdt} (5)

Since F(x) represents the actual sensory mechanism under study, by
definition its mean (in this case also its median) u is the threshold
value of interest. If u 1is substituted for x in Eq. 5,
P(u) = 0.75. This is the reason for the T75% target percentage correct
that is commonly estimated in forced-choice situations.?

Now, the probability of increasing, decreasing, or keeping the
same stimulus level following a trial block may be represented by the
binomial distribution partial sums. Thus,

P = probabilityrof increasing the stimulus level following a block of
length k

= probability of s or fewer correct responses in the block

S
=Y [Jreeorn - ey

m=0

P = probability of decreasing the stimulus level following a block of
length k

= probability of r or more correct responses in the block

k
=Z(§)[P(x)]m[l - p(x)ET

mn=r
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]
i

probability of remaining at the same stimulus level following
a block of length k

|

probability of between s and r correct responses
1 - P+ -P_

i

Without loss of generality, the standardized form is assumed (p and
o were taken to be O and 1, respectively). The step size a was
taken to be constant for a‘given trial sequence (a4 = xi - xi_lbfor
all i).
Asymptotic Frequency Distribution of Stimulus Levels

The up-and-down method can be thought of and modeled as a random
walk on the real line with fixed step size. This way of treating the
‘problem is useful for deriving the asymptotic frequency distribution
of stimulus levels, that is, the relative frequency with which each
stimulus level is visited in an infinitely long trial sequence.
Tsutakawall derived this distribution for the bioassay case, and the
only modification of his formulas that we require is the interpreta-
tion of P+ and P_, the probabilities of increasing_a step and decreas-
ing a step. As shown above, these are the probabilities of the tails
of a binomial density function.

If we let p* be the value of p that makes P, =P , then it

+
can be shown that for p* > 1/2:

P, >P_ if p < p*

P, <P_ if p>p*

indicating that the stimulus series will not drift to plus or minus

infinity, and that the asymptotic distribution of stimulus levels will
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have a finite mean. Therefore, Tsutakawa's formulas can be applied.
Table I lists the asymptotic distributions that were calculated for
different combinations of k, s, and r, along with their means and
varisnces. Since §I converges in probability to the asymptotic mean,
for u = 0 this mean is the asymptotic bias of the block up-and-down

procedure (as n + «).

IIT. VRESULTS AND DISCUSSION
Formulas 1 and 2 were used to compute exact bias and mean-square
error (MSE) of the threshold estimator i. The parameters that
determine bias and precision of i are: (1) the block design (k,s,r),
(2) the initial stimulus level Voo (3) the step size d, (4) the num-
bér of trial blocks n, and (5) the phasing factor. The phasing factor
was discussed earlier and eliminated from consideration. Although the
. remaining four parameters are under the control of the experimenter,
he seldom has enough prior information about the true values of n
and 0 to allow him to select Yos d, and n optimally. This study
concentrates, therefore, on finding block designs that are good over
wide ranges of Yoo d, and n. Some sample curves of bias and MSE are
included, in special cases, to provide some insight into the relative
influence of these parameters.
The block design (k,s,r) will be considered first. Not all com-
‘binations (k,s,r) are feasible. Since the up-and-down method concen-
trates testing around a so-called target percentage correct, we must

see what percentile of the function P(x) is actually tracked by the
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procedure. If the two tail probabilities of the binomial distribution
discussed in the previous section are equated, and the resulting equa-~
tion is solved for the binomial parameter p, the result is the prob-
ability of correct response tracked by the up-and-down procedure.
Table II gives this value of p as a.function of (k,s,r) along with
the normalized stimulus level that yields the probability p; that is,

the value of 2z 1is found by numerically solving the equation

_+2
hw =2 /2 af = p (8)

Ve

for 2z, given p. The stimulus level that yields p is then

X = u+ zo. Because of the asymmetry of the response function, x is

- not exactly eqdal to the asymbtotic value of § listed in Table I.
However, these two numbers are expected to be close for suitasble step
sizes d; combinations (k,s,r) chosen from Table II for further investiga-
tion were those that yielded values close to 0.75 for p. As shown in the
derivation of P{(x), the inequality of 0.5 < p < 1 must hold, which
accounts for the missing entries (k,s,r) in the table. ' The futilify

of considering combinations (k,s,r) that do not appear in Table II

can also be shown by the asymptotic behavior of the up-and-down

series in this case. It can easily be shown that for p < 0.5, Where

p is the probability thét equates the two tail probabilities dis~

cussed above, the probability of the stimulus level x decreasing on

the next trial following a given trial is greater than the probabiliﬁy

of increasing (i.e., P_ > P+), Therefore, the
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process tends to drift to -», and the absolute bias and MSE increase
without bound.

A reasonable way to choose the best s and r for a given block"
size, k, or to choose the best k for a fixed total number of trials,
is to base comparisons on the amount of information (reciprocal of

MSE)- per trial.!3 This measure is called the efficiency BE:

E = ——r= (9)

" where k- is thé block size, n is the number of trial blocks, and

MSE is the observed mean-square error averaged over gll initial

stimulus levels,‘yo. Figures 1 through 3 give E as a function of

the total trial sequence length nk for step sizes 4 = 1/2, 1, and

2. The values of s and r chosen for each k were those that gave

" the highest efficiencies over the range of trial lengths considered.

Whenever no single combination of . s and r was uniformly best for

v all trial lengths, one of the two best was plotted. The figures show

very strikingly the relatively poor performence of k = 2, the value

of k very often used in psychometric work, especially for long sequence

lengths and large step size. On the other hand, the uniformly good

performance of k = 5 is surprising. Note that a block size of 5

would be ruled out if the criterion stated on page 1177 of Reference 2

were followed (the rule that it must be possible for the proportion of

correct responses out of the block of five to be exactly equal to 0.75).
Another way of looking at the up-and-down method is to compare

its performance to that of a fixed stimulus level design (e.g., the
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classical z-score method of threshold estimation). A fixed-level
method very similar to the z-score method, and that has served as a
basis for comparison with the up-and-down method in bioassay,l0s12513
is the method of probits developed by Finney. 16 This method is based
on a maximum likelihood estimate of threshold, and is therefore known
to be asymptotically efficient. The fixed-level design chosen was
based on an egqual number of trials at each of five stimulus levels,
and the fbrmula for the variance of ﬁ given in Reference 16 was
used, with o assumed to be 1 and the weights adjusted to conform to
the response function in this report, P(x). The relative efficiency

(RE) of the BUDTIF method is defined as

MSE (PROBIT)
MSE (BUDTIF)

(10)

Representative efficiency curves in Fig. 4 show that the BUDTIF method
is relatively efficient for starting levels away from threshold and
for small trial sequence lengths. Even for starting levels at threshold,
-the BUDTIF method seems to be more efficient than the probit estimator
for large block sizes. Relative efficiencies were averaged over start-
ing levels, y_, for various (k,s,r) and are shown in Table III for
step size d = 1,

Bias and MSE of the estimator 1 are shown in Fig. 5 for k = 8
and d = 1.5. Mean-square error based on a constant total trisl
sequence length (nk = 20) is plotted in Fig. 6 for various combina-

tions (k,s,r). It is obvious that starting stimulus levels far awsay
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from threshold inflaste the bias and MSE; however, it is not uniformly
true that threshold is the best starting position. Because of the
particular response function assumed, the bias for starting leve;s at
threshold tends to be negative and becomes worse as the trial seguence
length increases. The block size of k = 8, however (Fig. 5), is
remarkably stable and has a uniformly small positive bias up to moderate
sequence lengths. Table IV shows that the asymptotic mean stimulus
level is negative for most values of (k,s,r), explaining why the bias
goes negative with increasing trial sequence lengths.

fhe effect of step size d, as shown in Fig. 6, is similar fo that
previously shown for the bioassgy case. If Y, is far from threshold,
the MSE increases with 4. A small 4 gives a very precise threshold
estimate if Yo is close to u, but a large d is more stable with

respect to MSE as Yo gets farther from u.

IV. CONCLUDING REMARKS

Much of the past research on sampling properties of statistical
estimates of sensitivity thresholds has been based on lengthy and
inaccurate Monte Carlo computations that required repeated sampling
of the responses of a simulated human subject. Although the Monte
Carlo approach is necessary for analyzing some of the proposed
sequential procedures that are analytically intractable, the methods
described in this paper are adequate for computing exact bias and
precision for fixed-length block designs in which an average estimator
is used. This makes possible the rapid search of many more parameters

than is practical with Monte Carlo procedures.
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This investigation of the block-up-and-down design has shown that
the design often used in the past, based on a trial sequence length of
two, is one of the worst from the standpoint of sampling efficiency.
Efficiency curves were provided to assist the expefimenter in choosing

an appropriate block design.
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TABLE II. True probability, p, of correct response
tracked by the design (k,s,r); stimulus level that yields
this p is z.

k s r D Z k s r D Z
2 1 2 0.7071 -0.2167 6 T 0.7989 0.2475
3 1 3 .6527 -.5089 8 .8620 L5947
2 3  .7937 .2209 | . T 8 .9170 L9701
Yy 1 4 6245 -.67T5 9 1 9 .5707 -1.07k2
2 3  .6143  -.T7h37 2 8 .5600 -1.1748
L .,7336 -.0822 9 .6301 -.6h2T
3 4 .8ko9 ot 3 7T .5555 =1.2211
5 1 5 6066  -.T957 8 .6150 -.T7386
2 L .5943 -.8827 9 .6839 -.3375
5 .6980 -.2636 kL 6 .5537 -1.2408
3 b 6862 ~.3256 7T .6087 -.T7808
5  .7839 1707 8 .6673 -.hoTh
L 5 .8706 .6L6T 9 .734k  -,078k
6 1 6 .5939 -.886L 5 6 .6069 -.T7932
2 5 ,5815 -.9818 7 .6611 -.4618
6 .6736 -.3928 8 .7181 -.1607
3 4 .5786 -1.0061 9 .7827 L1646
5 .6587 -.h752 6 T .7138 -.1827
6 .Th72  -.0143 8 .7686 .093k
L 5 .7355 -.0725 9 ,8298 .k115
6 .8182 .3488 7 8 .820k . 3605
5 6 .8909 L7783 9 .8768 .6860
7 1 7 .5843 -.9597 8 9 .9259 1.0Lko
2 6 .572h -1.0588 {10 1 10 .5656 -1.1206
T .6555 -.4929 2 9 .5556 -1.2207
3 5 .568k -1.,0948 10 .6207 -.T016
6 .6398 -.5837 3 8 .5511 -1.26904
7 .7206 -.1L479 9 6062 -.7978
L 5 .6359 -.6075 10 .6705 -.h4096
6 .7053 -.2258 L 7 .5489 -1.2937
7T .T782k4k .1633 8 .5997 -.8439
5 6 .T715 .1080 9 .6541 -.5009
7 .8L31 .4850 10 L7171 -.1659
6 T .9057 .8832 5 6 .5483 -1.3011
8 1 8 .5768 -1.0213 7 .5969 -.8638
2 7T .5655 -1.1217 8 .64k70 -.5418
8 .61k -,5743 9 .7003 -.2518
3 6 .5611 -1.16k42 10 .761k .0573
T .6259 -.6688 6 7 .6kho -.55h0
8 .7002 -.2522 8 .6939 -.2850
Y 5 .5598 -1.1765 9 .ThsT -.0218
6 .6203 -.7043 10 .8043 .2759
7 .6838 -.3384 7 8 .7thik  -.0L430
8 .7556 .0280 9 .7910 .2072
5 6 .6795 -.3612 10 .8465 .50kh
7 .7h08 -.0kL62 8 9 .8377 .b551
8 .8090 .300L 10 .8888 . 7640
g 10 .9330 1.1080




TABLE ITII. Relative efficiency of the average
estimator with respect to the probit estimator
gveraged over all starting levels Vo5 4 = 13
RE = MSE(PROBIT) /MSE(BUDTIF).

(k,s,r) 5 10 20 25 50

(2,1,2) L4.36 3.03 1.72 1.k7 0.9k
(4,2,4) 3.76 3.63 -~ 3.22  am-
(5,3,5) 3.56 L4.10 5.03 ——m -
(6,4,6) 2,93 —me mee e oo
(8,4,8) 2.19 e e e o
(10,6,9) -—= 3.26 —ee  amm -




TABLE IV.

Means and variances of the asymptotic frequency
distribution of stimulus levels.

23

da=1/2 a= a = 1-1/2

(k,s,r) Mean Var. Mean Var. Mean Var.
(2,1,2) -0.3552 0.614k2 -0.5408  1.6412 -0.7557 3.1L4T76
(3,2,3) .1686 .4210 .10k45 1.0267 .0320 1.838
(4,2,4) -.1306 L2737  -.1938 6764 -.2653 1.25h4
(5,3,5)  .1448 -~ .2340  .1118 5725  .0853 1.056
(6,3,6) =~.03663 .1784 -.07123 .4382  -.1132  .8072
(7,5,6) .0691 .3081 .02839 LT61T .001% 1.399
(8,4,8)  .0188  '.1327 -.005628 .3192 -.0368 .5658
(9,4,9) -.0862 L1127 -.1082 .2550 ~.1390  .L335
(10,6,9) -.0LL6 .1649  -.07208 = .h2ks  ~.0943  .8293




Fig.
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Fig.
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FIGURE LEGENDS
1. Efficiency E = 1/kn (MSE) versus trial sequence length (kn)
for step size d = 0.5. Mean-square error (MSE) was averaged
over all starting stimuiﬁs levels Yo Numbers in parentheses
are (k,s,r).
2. Efficiency E = 1/kn (MSE) versus trial sequence length (kn)
for step size d = 1. Mean-square error (MBE)‘was’averaged
over all starting stimulus levels Vo Numbers in parentheses

are (k,s,r).

3, Efficiency E = 1/kn (MSE) versus trial sequence length (kn)

for step size d = 2. Mean-square error (MSE) was averaged over
all starting stimulus levels Yo Numbers in parentheses are
(k,s,r).

Lk, Relative efficiency (RE) of the average estimator with
respect to the probit estimator for nk = 40. Triplets in paren-
theses are (k,s,r) and od=1.

5. (a) Bias of the estimator 1 versus initial stimulus Y,

and sample size n; (k,s,r) = (8,4,8) and 4 =1.5. (b) MSE of
the estimator 1 versus initial stimulus Yq and sample size n;j;
(k,s,r) = (8,4,8) and 4 = 1.5.

6. Mean-square error of the average estimator 3 for constant
trial sequence length (nk = 20) for k = 2, 4, and 10. Numbers

in parentheses denote (k,s,r).
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