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SPACEBORNE COMPUTER MULTI-ELEMENT
 
SYSTEM CONFIGURATION
 

ARCHITECTURE REFINEMENT: TASK 1 REPORT
 

SUMMARY
 

This report comprises an architectural study of a spaceborne computer 
system operating in a multi-element configuration (lEC). Sufficient detail is 
present to support the design of an on-board executive system. The study has 
been based upon computation requirements for extended space missions (little 
or no human maintenance) augmented by certain requirements based upon the 
Space Station, and upon the assumption that the SUMC (Space Ultrareliable 
Modular Computer) is used as the basic computing element. The most doin­
inant study guideline was that architectural features should have minimal impact 
on the SUMC design. 

The multi-element configuration is first discussed at the system level 
in order to provide an overview and the remainder of the report is then devoted 
to the individual element descriptions. The spaceborne computer multi-element 
system consists of several SUMM central processor units (CPUs), several 
input/output processors (IOPs), a single system control unit (SCU) arlid several 
main memory units. The interconnection of these elements by appropriate 
system buses can be accomplished under program control, thus achieving a 
dynamically recolfigurable system. Provided that a sufficient number of 
processors are available, the system could operate in a multiprocessing mode, 
T RI (triple-modular-redundant) mode, dedicated simplex mode or combina­
tions of these. 

Main memory for the system will consist of a number of identical 
8K x 36 bit memory units. System organization allows any processor (CPU or 
IOP) currently operating to access up to 32 main memory units. 

The major element of the MEC is the central processor. Since the 
system structure as depicted in this report is based upon the -SUMC, the ap­
proach to CPU architectural specification is to summarize the baseline SUMC 
definition, and then .define departures from this baseline. These departures 
are shown to be necessary and sufficient for efficient operation in a multi­
processor environment. 

The CPU architecture needed to achieve efficient multiprocessor opera­
tion is described in terms of modifications to microinstruction fields, main 
memory access, process control, input/output, configuration control, and 
scratch pad memory organization. Additional special instructions are also 
discussed which are either required for MEC operation or desirable for addi­
tional programming effectiveness. 



The single system control unit acts as a system supervisor and the 
functions it performs are principally supportive. The SCU could be imple­
mented as a simplex SUMC unit operating as an internally redundant system 
controller. The role of the SCU during configuration control, CPU control, and 
process control is discussed, and the SCU architecturb is defined. 

The input/output processors provide the logical interface between the 
other elements of the M\4EC and the variety of peripheral devices that can be 
connected to a digital data bus through data bus terminals such as those base­
lined for the space station. Each IOP could also be implemented as a basic 
SUMC unit having the capability to control data transfers, monitor bus opera­
tions, and communicate with system CPUs. The IOP would then free the CPUs 
from many of the procedures involving data transfers and I/O operations. 
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SECTION I. INTRODUCTION 

This report is submitted in compliance with requirements of NASA 
Contract Number NASS-26698 for an interim report of a spaceborne computer 
system operating in a multi-element configuration. The current study is 
directed toward architectural refinements with subsequent work to be devoted 
to design of the software executive. 

The computational requirements of an extended space flight mission 
such as the Space Station/Base necessitate a processing system of considerable 
adaptability. Failure tolerance, power consumption, and throughput represent 
parameters which frequently change in value during the mission life-span. 
Research efforts directed toward achieving this flexibility have resulted in the 
design (and current fabrication) of the Space Ultrareliable Modular Computer 
(SUMC) by the Marshall Space Flight Center Astrionics Laboratory. Support­
ing elements and subsystems, at various levels of detail, have been proposed. 
It is the purpose of this report to expand the definition of these elements and to 
describe their inter-relationships sufficiently to support the development of a 
detailed on-board executive system design. 

This effort was divided into a basic cycle of twro steps. First, for each 
elemental system component an element description and functional design (if 
available) were chosen from previous research to represent the baseline 
approach. This baseline was used to establish a framework for-discussion a.nd 
to derive minimum capability criteria. Second, modifications and additions to 
the functional design were incorporated to support the inter- element commun­
ications necessary for performance of basic processing functions as well as 
"reconfiguration and spares switching. Where necessary, supplemental detail 
was included to elucidate or demonstrate feasibility of the derived approach. 

For one element, the system control unit (SCU), a deviation from the 
above pattern occurs. Available literature is characterized by a lack of detail 
explicitly describing configuration control mechanisms. In an effort to pro­
pound a viable, coherent approach, an SCU, fabricated from SUMC logic, is 
included as part of the processing system configuration to fill this void. 

The initial portion of this report delineates the gross relationships of 
the SCU and other elements to the total system. The remainder is devoted to 
analysis of the specific organization of each key element of the configuration. 
Emphasis is placed on the main memory units (MMUs) ,. central processing units 
(CPUs), SCU, and I/O processors (lOPs). It was not necessary to devote equal 
attention to the remote data acquisition units (RDAUs) and peripheral devices since 
the structure of the IOP is sufficiently flexible to negate their impact on system 
design. 
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SECTION II. MULTI-ELEMENT CONFIGURATION (MEC) OVERVIEW 

This section provides an overview of the major components comprising 
the multi-element configuration (MEC). The purpose ,of the overview is to 
discuss in system-level terminology the functional nature of the various sys­
tem elements and their gross interrelations. This overview provides a frame­
work for functional specifications given in Section III. 

A suminary of hi&eMEC is given first. This summary is based upon a 
generic diagram of element interconnections. Buses for inter-element data 
and control exchange are discussed, and a scheme for switching is presented: 
Based upon this scheme, reconfiguration and spares switching is summarized 
and several examples of feasible configurations are presented. 

A. Configuration Summary 

Figure 1 illustrates the MEC in a generic form. With the exception of 
the blocks labeled Vxx," "L , t and "SCU, " each block represents one or 
more copies of the symbolized element. For instance, the block labeled "IM" 
represents one or more electronically equivalent main memory units (MMUs), 
each having several identical sets of input lines (one set for each processor 
potentially having access to the main inemory unit) and corresponding sets of 
output lines. The pairs (input and output) of corresponding processor access 
lines are referred to as processor access "ports. " Thus there is a distinct 
port for each of several processors that may have access. 

The input port set is comprised of both memory input data lines and 
processor-to-memory control lines; the output port set is similarly comprised 
of memory output data lines and memory-to-processor response (or acknowl­
edge) lines. The main memory unit contains sufficient logic for selection of 
one and only one port to establish a communications path to one and only one 
processor during a small time interval. By approprfate logic, the selection 
criteria can be organized in a number of ways. Preferential logic is usually 
employed to favor input/output processors over central processors in the 
event that two such processors simultaneously request access. 

Except for this possible preferential selection, the main memory unit 
functions and responds identically in communications with central processing 
(labeled "SUMC') and input/output processing (labeled "IOP") units of the 1[EC 
diagram. For this reason, the access ports for SUMACs and lOPs are indis­
tinguishable. 

The Space Ultrareliable Modular Computer (SUMC)elements function 
as the system central processor units (CPUs). The CPUs are (essentially) 



BUSES
 

SI ' 
Ii
 

v 

101 

C2 ----DlvS 

0-'-... '1l- iSo 

_ _ __ __ __SO 
_ _ _ 

SO .... 1 

FIGURE 1 

MULTI-E LE ME NT CONFIGURATION 



unaltered SUMCs having a single set of main memory access lines connectable 
to one of several main memory access buses (MI and MO in figure 1). Connec­
tion of one or more main memory elements to this bus structure through a 
corresponding port thus provides the necessary path for CPU access to those 
main nemory elements. 

In addition to the main memory access lines, a set of I/O lines for 
control of one or more IOPs is provided. These lines (II and TO in figure 1) 
correspond to the 18 high-numbered PRR bits (18-35) for CPU control and 
data output to the IOPs, and the 18 high-numbered MPXB1 bits (18-35) for 
IOP status, requests, and data input to the CPU. All IOPs controllable by a 
particular CPU are accessible through a unique port functionally similar to 

the main memory ports. Each IOP on the I/O lines of a CPU is uniquely 
addressable thus permitting a CPU-initiated dialog. An IOP-initiated dialog 
is supported through an IOP-to-CPU "poll request" (interrupt) control line 
signal followed by a CPU-controlled poll of all connected TOPs until.an acknowl­
edge from the requesting IOP is recognized. When an acknowledge is received, 
the CPU I/O lines are get to indicate "busy" until the dialog is completed. The 
poll request (or I/O interrupt) line is switched between the control logic and 
timing block and MPXBI in the SUMC. 

The I/O lines are used primarily to initiate IOP action and to"check or 
sense status. Consequently, this traffic is low. The pair of unidirectional 
buses should therefore be adequate to support multiple IOPs. Transfer of a 
limited volume of device/CPU data (say 15 characters/second for pluggable 
computer system console operations) could also be sustained with little or no 
system degradation. 

The IOP has multiple access ports for control by several CPUs. In 
addition, each IOP is connectable through one of several buses for access to 
main memory elements having a port connected to the-IOP's memory access 
bus. 

The "Cs" shown on the IOP block are representative of data bus carrier 
frequencies corresponding to several "channels. " The IOP contains modem 
pairs for each channel frequency. A bit-serial keyed amplitude modulation 
scheme is representative of the capability envisioned. 

The IOP is depicted in subsequent text as a modified SUMC micro­
programmed to perforn main memory program controlled input/output. The 
main memory program is comprised of a set of specially formatted IOP ­

commands (instructions) structured to direct the IOP in the transfer of I/O 
data between main memory elements and data bus terminals, and in the initia­
tion and control of data transfers between arbitrary devices attached to the 
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data bus (assuming the devices have this capability). As is discussed in more 
detail later, hardware additions to the basic SUMC to transform it into an IOP 
for support of input/output include a channel selection input multiplexer, a 
multiplexer for CPU input line selection, selectors (demultiplexers) for both 
CPU and channel output, and appropriate control logic and timing to efficiently 
support the input/output function. 

- The depicted IOP is a combined "input/output processor" and "bus 
control unit. " Because of the SUMC stored logic control capability, -and the 
inherent-ability to monitor data bus activity via the added channel demodula­
tors, a flexible device with high growth potential can be fabricated using SUMC 
chips. This approach seems to offer a cost effective method for achieving 
applicability to a broad spectrum of missions. 

The system control unit (SCU) block is representative of a functionally 
simplex unit having system-level executive control over configuration switch­
ing actions, CPU dispatching (allocation of CPU time to programmed processes), 
and redundant mode operations failure detection, isolation, and spares switching. 

The ScU is envisioned to operate (always) as an internally redundant 
(say, TIAR with spares) system controller. It maintains a map of the current 
configuration and actuates switching networks to accomplish reconfiguration 
and spares switching under the direction of executive routine control. It also 
performs the dispatching function on the basis of a process ready list. Special 
instructions are defined for execution on the oPUs. These instructions result 
in requests made by the CPUs of the ScU. 

The SCU has an access port for each CPU consisting of the low-numbered 
18 SUMO PRR bits for CPU-to-SCU transfers, and the low-numbered 18 SUMC 
MPXB1 I/o data input lines to ADI for SCU-to-CPU transfers. Thus, the 
36 bit SUMC I/O data paths are shared by the SOU (high-numbered 18) and 
IOPs (low-numbered 18). An additional "attention" line from the SCU to each 
CPU is required. The data and command transfer volume between CPUs and 
the SCU is low, being primarily of a control nature. For this reason, 18 bits 
for each direction is felt to be adequate. 

The "Ss" shown on the SCU block of figure 1 are switch control lines 
for the purpose of connecting main memory, central processor, and input/ 
output processor element plug positions to the various system buses to estab­
lish the communication paths necessary for a given system structure. 

The S0U is envisioned to operate under program control out of the 
small local memory block labeled 'LM. " LM is internally redundant in a 
manner consistent with SOU redundancy. It is estimated that LM will be 
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about 8000 16 bit words, and that the SCU work load is sufficiently low to 
suggest an implementation based upon a 16 bit version of the SUMC with a 
small instruction repertoire. The SCU is tentatively shown having no access 
to system main memory since system operation can be effected without SCU 
access to main memory; but, since the location of SCU programs is somewhat 
arbitrary, final configuratioi selection is temporarily left open for further 
analysis. 

The.remaining blocks in the diagram labeled "V xl are voting and dis­
agree detection logic to support redundant configurations only. The blocks 
are shown having three sets of lines to support a TMR configuration. The 
label subscript "xx" has the following meaning: 

xx Meaning 

MI MMU input bus 
MO MMU output bus 

- II IOP input bus 
I0 IOP output bu1s 
SI SCU input bus 
SO SOU output bus 

Vii and Vsi are identical, as are Vic and Vso, because the number of 
lines involved is identical (and, of course, the functions are identical). Thus, 
four distinct voting and disagree detection networks are required, differing 
only in data path width. 

Not shown are identical lines from each Vxx going into the SCU for the 
purpose of indicating failures and identifying the disagreeing (TIR) path. 
(Reference I contains a discussion of the concepts involved in failure detection, 
configuration control, and switching that is the basis for the MIEC scheme dis­
cussed here.) 

In order to establish realistic numbers to be used for the development
 
of tables, instruction fields, etc. , a complement of elements comprising the
 
WlC is assumed as follows:
 

1Kennedy, Sr. , J. R.: SUAIC Multiprocessor Configuration Control Analysis
 
and Specification. Contractor Report Prepared under NASA Contract
 
NAS8-18405 by Computer Sciences Corporation, Huntsville, Alabama,
 
June 14, 1971.
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Number of Elements Assumed: 

IOP - 4 spares included 
MMU - 32 
SCU - 1 + possible spares 
VMI - 2 + 6 possible spares 
VMO - 2 + 6 possible spares 
VII - 1 + 7 possible spares 
VIO .- 1 + 7 possible spares 
VSI - 1 + 7 possible spares 
VSO - 1 + 7 possible spares 

B. System Buses 

Data flow is accommodated between subsystems over six sets of buses 
comprising 

o Main memory access buses, 
o Input/output processor buses, and 
o System control unit/SUMC buses. 

Main memory access buses provide for the data paths and control sig­

nals required by the SUMCs and the IOPs to store and retrieve information 
from the main memory elements. MI is comprised of 32 bits data,' 18 bits 
of address information, 5 bits of control information, and 7 bits for parity, 
giving a total of 62. Thirty-two bits for data transfer, 4 control bits, and an 
additional 4 bits for parity, gives a total width of 40 bits for MO. Buses are 
required for each SUMC and each IOP resulting in an assumed total of 12 MI 
and MO buses. 

In addition to main memory communication buses, there are two other 

sets of buses: the input/output processor buses and system control unit buses 
which provide for communication capability between the following system 
elements: 

e SUMC/Input Output Processor (IOP), and 
" SUMO/System Control Unit (SC U), respectively. 

Input lines required for the IOP and SCU total 18. Onbthe output side 
the IOP and SCU have 19 lines (18 with parity, 1 control). Table 1 summarizes 
the system bus structure. 

10 



TABLE 1. COMPUTER SYSTEM BUS COMPLEMENT 

No. Minimum 
Bus Lines No. Buses Remarks 

Memory Input (\1) 62 12 One for each SUMC and lOP 
Memory Output (MO) 39 12 One for each SUMC and IOP 
SCU Input (SI) 18 8 One each SUMC 
SCU Output (SO) 19 8 One each SUMC 
lOP Input (II) - 18 8 One each SUMC 
lOP Output (IO) 19 8 One each SUMC 

C. Configuration Synthesis and Switching (CSS) 

As'mentioned previously in the summary, the MEC is capable of assum­
ing many different configurations. Since the structure depicted is general with 
regard to data path organization, it is possible to operate several configura­
tions simultaneously. These configurations can be similar or not, or function­
ally dedicated or not, depending on the mission requirements for reliability, 
allowable power consumption, throughput, and other identifiable parameters 
that can in some arbitrary way be associated with a specific configuration. 

The potential for variability in configuration is limited at any given 
time primarily by the number of serviceable system elements of each type, 
and the number of usable data paths that can be"established. An additional 
constraint on the variability in configuration is, of course, the existence of 
one or more programmed processes for control and allocation of the elements 
comprising the various configurations. Since the purpose of subsequent tasks 
is to analyse and define these programmed processes, this report defines a 
capability for attaining a high degree of configuration variability, and assumes 
that programmed processes can be defined to effectively utilize the capability. 

With regard to the CSS function, this report discusses refinements to 
the concepts outlined in reference 1. The refinements consist mainly of organ­
izing a set of rather general instructions into a compatible 32 bit word instruc­
tion format based upon an assumed number of available system elements of 
various types. Additional refinements are comprised of formatting a system 
map that conforms to the assumed element set, and a division of functional 
responsibility between executive routine algorithms executing on a CPU and 
executive routine algorithms executing on the SCU. This division of respons­
ibility unambiguously delineates the CPU/SCU communications dialog required 
to accomplish the CSS function. 

"i1
 



The role of the CPU executive is to construct a specific configuration 
map based upon element and bus availability and status. Availability and status 
information is obtained by a CPU from the SCU which maintains a current map 
of connections, and element and bus status. This availability and status in­
formation is returned to the CPU executive in the form of sense instruction 
responses. Once a map has been constructed by the CPU executive, it is 
transferred to the SCU. The executive routine algorithms in the SCU use this 
map to construct the necessary switchnetwork commands for achieving the 
desired system structure. After all switching operations have been carried 
out, the SCU forces all active (switched online) CPUs, to fetch their next in­
struction from a CPU executive specified main memory location. This action 
completes the transformation from executive control of one system structure 
to executive control of another system structure. Subsequent transformations 
are accomplished in the same manner. 

At least three methods for achieving a specific structure are supported 
by the scheme outlined. The first is a programmed algorithmic method involv­
ing dynamic inventory of system resources and program controlled selection 
on the basis of availability. This scheme dynamically constructs a system 
map under program control on the basis of program structure. The second 
scheme is a prestored or externally constructed method wherein a specific 
configuration map is supplied to the CPU executive. The executive Will take 
the necessary action to achieve the supplied configuration. 

The third, and perhaps most interesting, is based upon a combination 
of the first two where the program structfre is a form of programmed minimiza­
tion of a cost function based on several parameters to determine an optimal 
structure. In this method a set of prestored system maps, each having an 
associated precalculated measure of reliability, power consumption, through­
put, etc., would be used to dynamically minimize the selected post function. 
There could be different cost functions for each mission but, more importantly, 
the applicable cost function could vary within a mission - perhaps on the basis 
of phase. Many variations on the last scheme are, of course, possible. In 
summary, these three schemes with variations are available for specifying 
and achieving configuration control: 

o Program structured, 
o System Map structured, and
 
0 Parameterized Optimally structured..
 

fl. Configuration Examples 

Several examples of specific configurations based on the generic dia­
gram of figure 1 are given for completeness to serve as a basis for illustrating 
principles, and to develop structure-related definitions. 
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The principal property displayed by these different organizations is 
that of "structure. " A system structure can be specified by its "class," 
"degree," "association," and "configuration," as follows: 

1. Class Specifier: 

Uniform 
Non-Uniform 

2. Degree Specifier: 

Maximum 
Full 
Minimum 
Partial 

3. Association Specifier: 

Dedicated 
Non-Dedicated 

4. Configuration Specifier: 

Simplex 
Multiple Simplex 
Redundant 
Multiprocessor 
Multisystem 

These terms are defined as follows: 

o 	 Uniform - all bus switch settings are such that bus and 
port addresses are linearly related, and there is symmetry 
in the switch settings for input and output buses in a corres­
ponding bus pair. 

o Maximum - the largest subset of the total stiucture, spares 
included, that can be logically operated on-line (if elements 
have failed, a maximum degree, may not be attainable). 

o Full - all operable elements that can be logically operated 
on-line are connected (no greater throughput can be obtained 
without a change in class, association, and/or configuration). 



9 	 Minimum - the smallest logically operable subset of a total 
structure (the entire structure is inoperable if a minimum 
degree cannot be attained for some class, association, and 

configuration combination). 

e 	 Partial - betveen minimum and full. 

o 	 Dedicated - some or all of a structure is associated with 
some progranmed function to the possible exclusion of 
other programmed functions. 

o 	 Simplex - A single CPU system having no multiple CPU 
expansion capability short of reconfiguration. 

o 	 Multiple Simplex - several simplex configurations with 
each having no resources allocation capability outside the 
domain of its own simplex configuration (for instance, no 
shared memory; this configuration is dedicated). 

o 	 Redundant - a configuration that is functionally simplex but 
is comprised of multiple elements of each type performing 
the same functions for the purpose of comparison to (at-' 
least) detect errors. 

0 Iultiprocessor - a configuration having multiple CPUs and 
some provision for programmable shared storage or some 
dther form of programmable inteiprocessor communication. 

o 	 AMultisystem - a structure configuration comprised of a 
combination of configurations. 

Figures 2 and 3 provide examples of two structures illustrating the 
flexibility of figure 1 and the specifiers defined above. 
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SECTION III. ELEMENT DESCRIPTIONS 

This section provides a detailed level analysis of the major components 
comprising the multi-element configuration. Particular attention is devoted to 
the methodology and content of inter-element communication and internal ele­
ment functions supporting this function. The confluence of these two areas 
has a major impact on the optimization (size) and efficiency (operating speed) 
of the on-board executive system. 

Main memory units are discussed first, followed by the central pro­
cessing unit. Considerable functional support detail is included for the CPU, 
including recommended special instructions, since it is the focal point of most 
system functions, The SCU and lOPs are discussed along with their role in 
the system dialog. 

A. Main Memory Units (MMUs) 

A baseline memory organization is given in reference 2, described as 
the basic operating memory (BOM). The discussion below does not alter the­
derived BOM concepts of multi-port access to 8K memory modules. 

1. Organization. Main memory is distributed among identical units, 
each 8K x 36 bits, modularly expandable to 32 units. Figure 4 depicts processor 
access gating to a single memory module and figure 5 details a generic memory 
module. 

a. Processor access control. Figure 1 illustrates two uni­
directional ports connecting each processor (CPU or IOP) to each MMU. Input 
ports consist of: 

a 18 address lines, 
0 32 data lines, 
e 4 control lines (plus an access request line), amd 
0 7 parity lines for data and address validation. 

2Eastin, Earl: Shuttle Computation System. Contractor Report SP-233-0252 
prepared for MSFC by Sperry Rand Corporation under NASA Contract 
NAS8-20055, Huntsville, Alabama, June 8, 1970. 
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TABLE 2. 

WAG 


BAG 


PBG 


BAR 


BAC 

WAR-

DG 

DR 

PBR 

T/S 

MEMORY MODULE LEGEND 

Word Address Gating 

Bank Address Gating 

Parity Bits Gating 

Bank Address Register 

Bank Address Comparator 

Word Address Register 

Data Gating 

Data Register 

Parity Bits Regisfe6r 

Test/Set 
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Output ports consist of: 

o 32 data lines,
 
0 4 control lines, and
 
e 4 parity lines for data validation.
 

Memory element/processor access control is accomplished as shown 
in figure 4. Access request gates continuously monitor the access request 
control lines of connected processors. An End Around Shift Register (with one 
bit set) sequentially scans for a request and signals the Switch Control when a 
processor access request is recognized. The switch control is capable of 
connecting and disconnecting the input and output ports from any processor to 
the memory module. 

b. Main memory module. Figure 5 and its associated legend 
(table 2) depict the logical elements required internal to each module. In 
addition toan 8K x 36 bit (32 data, 4 parity) storage array with address decod­
ing and sense logic, the -functionalunits are: 

o 	 Control Logic and Timing for sequencing and synchronization' 
of internal events; 

" 	 Word Address Gate (13 bits), Bank Address Gate (5 bits), 

and Parity Bits Gate (3 bits) for the routing of information 
from the address lines;­

o 	 Address Parity Logic for address parity validation; 

Bank Address Register (5 bits) for storage of access key 
of memory module; 

o 	 Bank Address Comparator for comparing Bank Address
 
Register and Bank Address Gate contents;
 

e 	 Word Address Register (13 bits) for temporary storage
 
of memory module word address;
 

" 	 Data Gate (32 bits) and Parity Bits Gate (4 bits) for the
 
routing of information from the data input lines;
 

" 	 Data Parity Logic for data parity validation; 

" 	 Test and Set Logic which provides a memory lock-out
 
feature to be described; and
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Data Register (32 bits) and Parity Bits Register (4 bits) 
for temporary storage of memory/processor transfers 
(a local Data Register enables asynchronous MMU/CPU 
operation). 

2. Operation. MMU control lines are listed in table 3. Each of four 
basic memory operations occupy a dedicated input control line, and a fifth pro­
vides a signal path for access request. Four lines provide MMU to processor 
control communication. 

TABLE 3. CONTROL LINE SETTINGS. 

Processor to MMU MMU to Processor 
Line # Signal Line Signal 

1 Access Request 1 	 Parity 

2 Read 2 	 Data Ready, or 

Test & Set not Locked3 . Write 

4 Test & Set 3 	 Test & Set Locked 

5 Change BA 4 	 Address Match 

a. Access request decoding. An End Around Shift Register 
(EASR), shown in figure 4, sequentially tests the access request lines of all 
connected processor buses via a series of circular shifts. The EASR contains 
a shift position for each possible bus connection and a single bit position is set 
to one (1). An access request gate is associated with each processor bus. In­
puts to an access request (AND) gate are the access request line from the pro­
cessor bus and the value of the EASR position assigned to the bus. An access 
request is recognized when the set bit of the EASR coincides with a processor 
bus position for which the access request signal is present. Recognition of an 
access request effects a temporary halt of the EASR and signals the Swvitch 
Control, providing processor bus identification information. The Switch Con­
trol connects the memory module to the bus recognized, but access is not yet 
granted. 

The memory module (figure 5) compares the contents of its Bank Address 
Register (BAR) with the bank address from the address 'lines (high order five 
bits). If the compare is equal, access is granted and a bank address match 
signal is transmitted to the processor. The address match signal is used to 
reset the access request line, thus other MMUs will not perform a bank address 
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compare for the recognized processor bus during the remainder of the memory 
operation. Following the bank address match signal, the module maintains 
the bus connection to the requesting processor until the memory operation is 
complete, at which time the EASR is enabled and scanning resumes. The 
completion of a memory operation is signaled via the data ready control line, 
or, in the case of an anomaly, via the bank address mismatch line (AMM), 
test and set locked line (TSL), or the parity error line (P). 

Any of the following events constitute a continue scanning command to 
the EASR. 

o 	 Alignment of EASR does not recognize al access request. 

o -An address mismatch signal (derived from the address 
match signal described above) is received from the 
memory module. 

* 	 Data ready., parity, or test and set locked signal is
 
transmitted to processor.
 

In the 	latter two cases, a disconnect command is issued to the Switch Control. 

The depicted operational characteristics of EASR request scanning is 
the most basic configuration. Implementation of a priority recognition arrange­
ment is feasible, but present criteria do not indicate the necessity.' 

b. Control decoding. Referring to table 3, control information 
received by the MATU may initiate op'erations to read, write, test and set, and 
change BA. Completion of each operation results in a positive response (in the 
form of a control signal) from the MMU to the processor. Figure 5 (and fig­
ure 6 which is of greater detail) supports the following discussion of the individ­
ual operations. 

(1) Read. After access is granted to the memory module 
and an address match signal transmitted to the processor (which resets the 
access request signal), address parity is checked. Invalid parity results in 
the transmission of a parity signal to the processor. 'If parity is valid the 
word address bits (lower order 13 bits of address lines) are gated to the WAR 
and used to access one of 8,192 words in the storage array. During the read/ 
restore cycle, the data from memory is validated via parity check and the 
parity signal to the processor raised if a parity fault is-detected. Once validity 
is ascertained the data (with parity) is transmitted to the processor via the 
36 data out lines with concomitant data ready signal. The EASR resumes its 
scan and disconnection from the memory module occurs after a short delay. 
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(2) Write. The processor/MEJ dialog is analogous to 
the read command with two exceptions. First, following the read half of the 
clear/write cycle 36 bits are gated from the data in lines to the data register 
and associated parity bits register. During this transfetr the parity is checked; 
invalid parity will result in transmission of the parity, signal to the processor. 
Second, following completion of the clear/write cycle no data is made available 
via the data out lines, but the data ready signal is transmitted to the processor 
to indicate completion. 

(3) Test "tndset. This memory operation provides in 
one memory cycle for testing a storage variable for zero, setting it to all 
ones if zero or raising a signal to the processor if not. Thus, complete pro­
tection of global data and code may be effected. 

After access is granted, the first half of the cycle is equivalent to the 
first half of the read/restore cycle. The test word which has been fetched 
from memory will contain all "ones" if "locked. " After the test word has 
been checked for parity -errors, the Test and Set Logic detects the presence 
or absence of all "ones. " 

o 	 If the test word does not contain all "ones," the Data 
Register is set to all "ones" and this information 
written into the test word memory location; the test 
and set not locked signal (which appears as a data 
ready signal to the processor) is transmitted. 

* 	 If the test word contains all "ones, " it is written back 
into memory via the Data Register and the test and set 
locked signal is transmitted to the processor. 

(4) Change BA. After granting access and checking 
address parity, selected lines from the thirteen lower order address bits are 
'gated to the Bank Address Register. Changing the BAR resets the bank address 
match signal. Trailing edge detection logic in Control Logic and Timing in 
conjunction with the change BA control signal then generates the data ready 
signal. 

B. Central Processing Units (CPUs) 

The major element of the MEC is the central processor. The system 
structure as depicted in this report is based upon the SfOMC and, for this 
reason, the approach to CPU architectural specification is to summarize a 
prespecified baseline SUIC definition, and then define necessary and sufficient 
departures from this baseline. The departures are necessary to enable the 
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SUMC to function efficiently in a multiprocessor environment; they are suffi­
cient in that, while other features could be added or alternate methods of 
implementation could be employed, those departures specified herein will 
support efficient multiprocessor operations. 

1. SUMC Baseline. All baseline documents are oriented toward 
simplex system usage of the SUMC. References 3 and 4 provide brief over­
views to the SUIVIC logic at a functional block diagram level. In addition, 
reference 3 derives an efficient software-oriented organization based upon 
an assumed 24 bit word. The organization is depicted through specification 
of formats for a basic instruction set, register organization, and a stacked 
interrupt scheme. Since a 32 bit word size is assumed for the i\EC CPU and 
main memory, much of the argument presented in reference 3 is invalid. 

References 2 and 5 outline the organization of the SUC data flow and 
module functions in addition to specifying the microinstruction word fields and 
operations. Microinstruction read-only-memory (l\/ROM) sequences for sev­
eral selected instructions are given in both references to show the micropro­
gramming capability. 

Reference 6 gives a rather exhaustive set of instructions proposed for 
a 32 bit version of the SUMC, while reference 7 offers a conventional CPU­
controlled approach to handling I/O (similar to what might be found in several 

3
 
Kennedy, J. H.: Basic Instruction Set for a Proposed 24 Bit General Purpose 
Spaceborne Digital Computer. Contract Report prepared for MSFC by 
Computer Sciences Corporation under NASA Contract NASS-18405, Huntsville, 
Alabama, August 13, 1969. 

4Garett, Harrison: Advanced Aerospace Computer Technology. NASA TMX­
64504, Research Achievements Review, pp 37-44, Vol. III, No. 11, MSFC, 
Huntsville, Alabama, 1970. 

Eastin, E. I.; Little, G. D.; Romine, M. G.; and Williams, C. A.: MSFC 
Advanced Aerospace Computer. Contractor Report SP-232-0384 prepared 
for MSFC by Sperry Rand Corporation under NASA Contract NAS8-20055, 
Huntsville, Alabama, July 6, 1970. 

6 Thompson, E.; Williams, C. A.; Eastin, E. I.; Little, G. D.: Proposed 
Iistruction Set for SUMC System. Contractor Report SP-232-0405-1 pre­
pared for MSFC by Sperry Rand Corporation under NASA Contract NASS-20055, 
Huntsville, Alabama, September 4, 1970. 

7Williams, C. A.: A Possible Interrupt and I/O Scheme for SUMC. Contractor 
Report SP-232-0399, prepared for MSFC by Sperry Rand Corporation under 
NASA Contract NAS8-20055, Huntsville, Alabama, August 14,- 1970. 
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commercial systems). A scheme for interrupt control associated with the I/O 
capability is also outlined in reference 7. 

a. Block diagram and microinstruction format. Figure 7 is a 
block diagram of the 32 bit simplex S0MC depicted in xeference 5. Information 
is moved, generally from left to right, through the ALU, where two multi­
function adders can be used to operate on it, and into the ARU where it can be 
looped back through the ALU for further operations, stored in SPM, or made 
available for storage in main memory or output to other external devices. 
Control of the source of the information, the operations to be performed, and 
its disposition once it has reached the MIRU are all made by the Control Logic 
and Timing (CLT) under the direction of microinstructions obtained from a 
fast read-only-memory (MROM). 

The baseline format of each MROM word is given in figure 8. Detailed 
descriptions of fields and subfields are given in references 2 and 5, although 
they do not agree completely due to the evolutionary nature of the SUIMC. 
Figure 8, excerpted from reference 5, is of a later vintage and therefore is 
considered as the baseline. A total of 72 bits comprise the full word. 

Several areas of interest are worth noting at tis point since they will 
be influenced by departures: 

o 	 Only 64 words of SPM are addressable. 

o 	 Only "read" and "write" MMU functions are accommodated. 

" 	 No registers are provided for efficient program address 
relocation. 

o 	 No registers are provided for MMU access violation 
detection. 

o 	 The capability for condition setting and the associated 
testing for lOUOM branch control is weak. 

o 	 Field specifiers for direct (C PU/device) input/output 
control are inadequate. 

b. Instruction set and register organization. Several of the 
previously referenced documents propose various instruction repertoires and 
register organizations. No specific instruction word formats are claimed to 
be optimized to a 32 bit word size as a result of analysis methods similar to 
those followed in reference 3 for a 24 bit word size. For this reason, it is 
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felt that no optimal baseline instruction set exists. For the purpose of support 
to subsequent tasks, however, the collective functional capability of all prev­
iously specified repertoires is assumed, and the format shown in figure 9 is 
adopted for memory reference instructions (only). When, for the purpose of 
estimating program sizes, it becomes necessary to assume a specific reper­
toire, a specification will be required. 

The baseline register set organization is taken to be that of figure 10. 
This organization was favored by reference 3 and mentioned as a viable can­
didate by reference 5. 

c. Input/output. Baseline candidate definitions of the IOP 
vary in the accorded capability from that of a conventional direct memory 
access (DMA) controller to that of simple logic to augment SUMC controlled 
data'transfers. The DMA approach proposed in /7/ adopts the viewpoint that 
the tOP be designed with minimal capability. 

Reference 8 outlines a two-option approach to the control of system 
input/output. One is referred to as a "Simplex Input/Output Controller" and 
the other is called a "Combined Free Running and Integrated/Dedicated Con­
troller. " Both are defined with respect to simplex system configurations, and 
both are operationally controlled by. CPU issued initiation (called program 
controlled output [PCO]) instructions, and stored program input/output com­
mand sequences (Externally Controlled Output [ECO]) fetched from memory 
for decoding and execution by the 1OP. In addition, both show functional block 
diagrams illustrating the modem interfaces with a data bus for various chan­
nels, and ECO commands for memory/device and device/device transfers and 
response/transfer monitoring. 

The major difference in the two approaches is that, in the first, ECOs 
and device data/control words are fetched from SUMC main menory whereas., 
in the second, ECOs and device data/control words are fetched from a "format 
buffer" (FM) consisting of a 4K local memory. Also, the second option allows 
for commutated word I/O through the use of a special ECO to address a scratch 
pad memory whose words are used-functionally like a group of index registers. 

In the second option, no facility is indicated for writing into FM, there­
fore leading to the assumption that it is operationally read only. This implies 

8 Space Station Newsletter No. mM\/SPE-96. Transmittal of IBM study data 
from A. J. Kemp, IBM Huntsville, to H. Ness, MDAC-WD, June 21, 1971. 

3O
 



0 

OP 

8 

7 8 

R 

4 

11 12 

B 

2 

13 14 

X 

2 

15 16 

D 

16 

31 

OP: 
R: 
B: 
X: 
D: 

Operation Code 
Register Address (one of 16) 
Base Register Address (one of 3; 110 "1implies no base used) 
Index Register Address (one of 3; 110"1 implies no index used) 
Displacement Address (one of 65,536 MMU virtual locations) 

FIGURE 9 

MAIN MEMORY ACCESS INSTRUCTION FORMAT 



SPM
ADDRESS 

X00 AO
 

X01 Al 

X02 A2 

-2X03 A3 

X04 A4 

X05 A5
 

X06 A6
 

X07 A7
 

X10 AS 

Xl A9 .or XI 

X(12 A10 or X2 

X13 All or X3 

X14 A12 

X15' A13 or BI 

X16 A14 or B2 

X17 A15 or B3 

FIGURE 

PROGRAMMABLE 

ACC OR
REG.+INDEX 

ACC OR
 
BASE RE G.
 

10 

REGISTERS 



a prestructured FM content suitable for controlling all data bus transfers. 
This scheme, although rather inflexible, provides for (or demands, depending 
on the viewpoint) a preconceived and perfectly organized flow (order, rate and 
direction) of bus traffic. It appears that a high degree of flexibility could be 
attained by a provision for program controlled alternation of the source of 
ECO and device data/control words between main memory and the local FM 
(the second option does not depict support for main memory-to-bus transfers). 

Figures.11 and 12 show the 32 bit bus control instmction candidate 
-formats for the two options. Figures 13 and 14 depict the organization of the 
two options. 

The three candidate I/O schemes outlined above can be summarized 
as 

o 	 Entirely CPU programmed controlled, 

o 	 Combined CPU programmed initiation and fetched-from­
main memory command controlled (Option 1), and 

a 	 Combined CPU programmed and fetched from local (format) 
memory command controlled (Option 2). 

Of these three,- Option 2 is felt to offer the strongest baseline from which de­
partures can be made to provide both a desirable degree of flexibility and the 
necessary functional capability. 

2. 	 Baseline Departures. 

a. Microinstruction fields. Changes to the SUMC microinstruc- ­

tion format are required to support MEC operations. These changes are pri­
marily in the form of expansion to allow for 

o 	 Larger SPM 
o 	 More MMU functions 
o 	 Two modes of CPU operation 
o 	 SCU/C PU communications 
o 	 Larger VfOM 

The required changes are briefly outlined as follows: 

'
(1) 	 Add one (1) bit to the "address subfield of the "SPM i


field allowing for 27 = 12810 addressable scratch pad
 
memory locations.
 

33 

http:Figures.11


PROGRAM CONTROLLED OUTPUT (PCO) INSTRUCTIONS 

31 20 19 8 7 5 4 1 0 
STARTING 1 /0 00 BEGIN 1/O (BIO)
ADDRESS CHANNEL 0001 P E 

31 8'7 54 1 0' 

CHANNEL 0010 P STOP I/O (SIO) 

EXTERNALLY CONTROLLED OUTPUT (ECO) INSTRUCTIONS. 

31 20 19 15 14 76 4 3 1 0Si/o 01 1 PFEC
K1CHANNEL FETCH (DATA TO SUBSYSTEM) 

31 20 19 15 14 7 6 4 3 1 0 

a K rt H CHANNEL I00 READ (DATA FROM SUBSYSTEM) 

31 20 19 7 6 4 3 1 0 
CHNNL01 TRANSFER I OMN 

a ~ ~ ~ ~ ~ ioJPI OMNK> 4 HNE 
31 4'3 1 0 

000 1P1HALT 

31 17 16 2 1 0 

COMMAND WORD 1 COMMAND WORD 2 1 P COMMAND WORD FORMAT 

FIGURE 11 

OPTION I - BUS CONTROL INSTRUCTIONS 



PROGRAM CONTROLLED OUTPUT (PCO)INSTRUCTIONS 

Op Code
STARTING RATE. 1/0 0001 P BEGIN 1(I/O
ADDRESS CONTROL CHANNEL I 

CHANNEL 0 STOP I/O (210) 

EXTERNALLY CONTROLLED OUTPUT (ECO) INSTRUCTIONS & FORMATS 

31 20 19 15 14 7 6' 4,3 1 0 

(OUTPUT TO SUBSYSTEMV)~a ~M K/oiopFETCH z CHANNEL
 

a V/ /// CHANNEL 110 P TRANSFER IN COMMAND 
SCHA NNEL "L1P 

CHANNEL 000 PHALT 

31 20 19 15 14 10 9 7 6 43 1 0 
BASE REGISTER INITAL I/O f01 K SUBCOMMUTATE

ADDRESS NUMBER INDEX I//A CHANNEL 00 

MEMORY SCRATCH PAD Oil01R
 
ADDRESS ADDRESSL 

COMMAND WORD 1 COMMAND WORD 2 P COMMANDFORMAT 

FIGURE 12 

OPTION 2 - BUS CONTROL INSTRUCTIONS 



- -- - - -----M -- - -- - - -- -


MAIND U . _ 


MEMORY 	 I/O CHANNEL COMMANDS,_DATA BUS CHANNEL 
CONTROL 'iCHANNEL 	 1CONTROL 
 KINSTRUCTION STATUS NO. MODEM 

_____MU~X 	 NO.__ iNO, 

DATA _ _ 	 _ 

C
CHANNEL COMMANDS, DATA BUS CHANNEL__________I/0 

IADDRES OUT CONTROL 	 CONTROL 

DTATA MUX NO.2 	 {NO.2 

I 	 1/0 CHANNEL - COMMANDS, DATA BUSC CH=A 7,NNEL CHANNEL 2 j
CONTROL 	 ONTROL MODEM 

PU 	 NO.3 J ., _ NO. 

i/0 CONTROL _______ 

INITIATE PROGRAM TIMING AND 
STATUS CONTROL* OVERHEAD A

OVEREAD ,,AllControl 

IZ 	 I _TiTiming 

SELF TEST STATUS CHANNEL-3 
LFMONITOR STATUS MODEMhI -__ ____ _ _ _

J 

* 	Option 2 IOP Block Diagram shows
 
details of program control.
 

FIGURE 13 

OPTION I U4PUT/OUTPUT PROCESSOR (IOP) 



FORMAT MEMORY SCRATCHPAD'MEMORY 
4,096 WORDS 

DATA " 
BUS INN 

CHANNEL 
CONTROLLER 
(JBCC) DATA(MOUT 

(FM) 

ADDRESS DATA OUT RE AD 

-

K FMB F HINST 

-- -

._ 

'I____ I 

QLRQI 
I 

32 5-BIT WORDS 

DATA OUT DATA IN CCN=1 
~ F 1k 

AUl-P2 

_ 

_' 

_ 

MULTIPLEXER A MULTIPLEXER B 

MAIN 

MEMORY 

INTERFACE 

OR-

FCR 

sum 

DEMULTIPLEXER 

DATA 
ADDRERSS 

NTCONTROL 
NI 

I 
R T 

RT 
F ONTROLIf___ RATE 

CONTROL 

PROGRAM CONTROL - REFERRED TO IN OPTION 1 

OPTION 2 

FtGURE 14 

iOP BLOCK DIAGRAM 



(2) Define a one (1) bit binary state (flip-flop) register, U, 
to be located in the CLT module for testing uinder control 
of the 'SEQ-IC CONTROL" subfield as indicated in (3) 

and (4) below. 

(3) Define a microinstruction bit to be the "MODE" change 
subfield. A one (1) in this subfield will cause U to be 
toggled (state chanuged). A zero (0) has no effect on U. 

(4) Add bits (for a total of four [4]) to the "II\EM" field to 
control main memory accesses as follows: 

0000 No access request 
0001 Read 
0010 Write 
0100 Change Bank Address Register 
1000 Test and Set 

(5) Add control and status lines between main memory ard 

CLT as follows: 

Status (MMU to CPU/CLT) 

0001 Parity Check 

0010 Data Ready 
0100 Test & Set busy (access lockout) 
1000 Bank Address Match 

Control (CPU/CLT to MMU) 

00000 No access request 
00011 Read 
00101 Write 
01001 Change Bank Address Register 
10001 Test and set 

Note: The main memory access request control line could 
be eliminated, since "OR"ing the remaining bits Provides 
the required degree of control. However, main memory 
logic becomes more complex. 

(6) Add control line from SCU to CLT to enable detection of an 
SCU command to CPU. 
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(7) 	 Add control line from IOPs (one line shared by all IOPs 
controlled by the CPU) to enable -detection of an IOP 
"poll request. " 

(8) 	 Add logic to CLT to expand the use of the "SEQ-IC"i sub­
field of, the "CONTROL" field as follows: 

SEQ-IC Sequencer(S) Iteration 
Subfield Conditions Action Counter (IC) Action 

(a) 	 0000 (U) = 0 +1 None 
(U) = 1 (M) - S None 

(b) 	 Add one (1) bit in "SEQ-IC" subfield to support control 
of branches on the basis of various tests as follows: 

M6mory Parity Check 
- Data Ready 

Test and Set Busy 
SCU Command 
IOP Poll Request 

(9) 	 For the purpose of software concept verification, testing and 
validation (CVTV), additional MROM will be required to enable 
incorporation of debugging capabilities. After CVTT,' the 
additional memory could be removed. Therefore, add one bit 
to the "XFER ADDRESS" subfield; all IAROM words, and SCU 
logic to support 2048 MROM words. 

b. Main memory access. In a multiprocessing environment 
where one or more modular memory units are shared, each of the following 
problems must be addressed: 

o 	 Storage allocation for data and CPU processes (programs), 

o 	 An addressing scheme which allows each processor to 
access all available resources, 

o 	 Protection of data and processes temporarily local to 
one processor from all other processors, and 

o" 	 An access mechanism which provides concurrent
 
utilization, by -two or more processors, of one
 
modular unit with minimum delay.
 

39 



A number of solutions, some of considerable merit, exists for all of the above. 
Presented here is a paradigm of a system designed to minimize memory 
complexity, remain compatible with SUMC architecture, and address each 
problem. 

(1) Page addressing. Capability for system expansion 
frequently dictates that more address lines to memory be established than 
can be utilized strictly from the portion of the instruction word dedicated to 
address selection. Earlier studies indicate this to be the case encountered 
by the SUMC. If 256K words of memory are assumed, 18 address lines are 
required. It does not seem plausible that 18 bits of each 32 bit memory ref­
erence instruction of the SUMC may be dedicated to address selection while 
maintaining an efficient use of Scratch Pad Memory and providing a large 
instruction repertoire. 

By adding to each address generated by a processor a hardware reloca­
tion register, called the Bank Register Low Address (BRLA), which contains 
the necessary high order bits, this dilemma is resolved. Furthermore, by 
extending the BRLA to contain additional portions of the address, a solution 
to the storage allocation problem is approached. 

If the BRLA were the same width as the maximum address, each pro­
cess, once constructed, could be loaded into memory and executed at virtually 
any beginning lpcation by setting the BRLA to contain the address of that loca­
tion. Attaining.this flexibility may not be commensurate with the cost in terms 
of SPM storage, memory utilization map updating, and communication required 
for process dispatching. It is suggested instead that a 13 bit BRLA be utilized, 
allowing the lower order 5 bits of the address to be generated exclusively by 
the instruction. 

The above arrangement would provide the following organization of a 
256K memory distributed among 8K modular units: 

e 32 8K banks,
 
e 256 pages per bank, and
 
0 32 words per page.
 

Figures 15 and 16 depict the format of the BRLA and its combination with the 
instruction generated address, respectively. 

Note that storage allocation always begins on word boundaries that are 
multiples of 32. Conversely stated, at most 31 words between program pro­
cesses might not be utilized. This possible loss is considered negligible 
compared to other advantages presented. 
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including the BRLA obviates the requirement for lengthy relocation 
procedures each time a process is constructed (provided internal linkage 
has previously been accomplished). 

The BRLA could be implemented as a location in Scratch Pad Memory 
for utilization by MROM microinstructions. Additional MROM cycles might 
be saved on each instruction cycle by implementing it as a hardware register, 
multiplexed into MPXB2 in the ALU for example. Its addition to the program 
counter is accomplished only once (during process construction) to be used 
unchanged until the process is deleted. It must be added to each effective 
address generated by an instruction. 

(2) Memory access violation. Processes that occupy 
sequential memory locations may generate invalid addresses in only two ways: 

a Case I - An address less than its lower boundary, or
 
e Case 2 - An address greater than its upper boundary.
 

If each process generates addresses relative to zero (the recommended ap­
proach) prior to addition of the BRLA, Case 1 may be checked by testing for a 
negative address immediately preceding addition. 

Case 2 implies an additional operation before a check for validity is 
possible. By including a Bank Register High Address (BbflA) in the organ­
ization of Scratch Pad Memory, formatted the same as BRLA (figure 15), it 
may be subtracted from the final address to obtain a validity check. 

The BRHA may, alternatively, be incorporated as a hardware register 
to minimize instruction cycle time (the recommended approach). 

(3) Phased addressing. If more than one processor is 
executing processes or accessing data juxtapositioned in a single memory 
unit, the memory unit must alternate memory cycles between processors. 
An equivalent problem occurs during execution of a re-entrant routine simul­
taneously by several CPUs. - Frequently, memory availability delay has been 
minimized by providing phased access ports to each memory unit. An alterna­
tive can be provided which is simpler to implement and decreases memory 
access complexity. 

If, as in figure 17, the low order two bits (for four bank phasing) of 
the word number portion of the Memory Address Register (MAR) of the pro­
cessor are routed to the low order bits of the bank address portion of the 
memory's-address gating register, and all intervening bits shifted lower to 
compensate, the effect of phasing is obtained. Each set of four sequential 
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addresses are distributed among four main memory units rather than contiguous­
ly in one unit. Now assume that two CPUs attempt to execute an instruction 
fetch from the saine MMU and visualize the sequence of events. (Figure 18 
depicts the storage allocation for "N" processes.) One CPU is granted access 
to the first MMU and the others must wait. After completing the first instruc­
tion fetch the CPU continues to the next MMU, allowing another CPU to access 
the first MMII. This sequence continues until all CPUs are operating synchro­
nously from different MMUs. Synchronization remains intact until one CPU 
performs an instruction resulting in non-sequential instruction execution or 
requires more or fewer melory cycles (data retrieval for example) than the 
others. At this time an adjustment is made and synchronization is quickly re­
established. 

Thus, by manipulation (merely cross-connecting) of the address paths, 
much of the benefits derived from phased access ports may be achieved at no 
increase in cost or complexity. 

It is interesting, however, to examine the benefits which might accrue 
if an optional non-phased mode were under program control. First, during 
periods of reduced memory requirements a larger portion of the system could 
be "shut-down" to reduce power consumption. Second, memory diagnostic 
procedures for suspected faulty units could be simplified. Third, the element 
count required for TMR system mode could be reduced ifthe TMR process 
were resident in less than four (4) memory units. Finally, a greater degree of 
system degradation could be obtained with respect to inoperable nfemory units. 

(4) Alternative approaches. The methods derived above 
were directed at solving memory access problems by shifting the onus of 
validation to the processor and simplifying the role of memory. A quite 
reasonable cage may be made for relieving the processor of validation check­
ing in order to reduce instruction cycle time and permit a variety of memory 
structures to be considered independent of the CPU. No attempt is made here 
to weigh judgment, but it is of interest to assess the costs. 

The basic problem is to perform boundary checks of each memory 
reference by each processor sharing a memory unit. This implies, for each 
MMU,a set of dynamic boundary registers for each processor and possibly 
an adder. A fast hard-wired or firmware sequence is required to perform 
address validation in a non-destruct (or destruct-restore) fashion. MMIIU/ 
processor controls are required to: 

0 Set or change selected boundary registers, and
 
( Signal invalid address.
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Additional controls that may be of value during process debugging and system 

diagnostic testing include: 

o 	 Disable boundary register, and 

* 	 Return (for inspection by a CPU) the boundary register
 
contents.
 

The benefits accrued at the cost of MMU complexity may be extended 
beyond reduced instruction cycle time. For instance, memory parity errors 
may result only after two or more read attempts in order to compensate for 
transient errors. If the MMU is microcoded to perform the above tasks, an 
independent self-test diagnostic may be included to assist the system in spares 
switching decisions and consequent graceful degradation. 

(5) Impact on baseline SUMC. The above described 
approach for memory access could be implemented with microcode alone, 
thus requiring no changes to the baseline SUMC. However, an increase in 
operating speed could be obtained by implementing BRHA and BRLA as hard­
ware registers in the SUMC ALU. 

d. Process control. The concept of a process and its construc­
tion is discussed by Kennedy /9/. Briefly, a process is the sequence of actions 
performed in order to complete a task. A process may execute code more or 
less arbitrarily from either executive or application programs and -may, in 
fact, share code with other unrelated processes. Traditionally, the onus of 
process control and communications between related (cooperative) processes 
has been entirely the responsibility of the systems programmer. However, 
the capability provided by a multiprocessor to distribute functional respons­
ibility and the inherent flexibility of microcoded logic can be utilized by the 
system architect to alleviate the burden as will be subsequently demonstrated. 
It is necessary to exhibit some basic concepts related to process control. 

(1) Process control block. Figure 19 shows a possible 
.structure for a PCB and table 4 explains each entry. Each CPU cbntains in 
scratch pad memory (SPh) the PCB of the process for which it is executing 
code. Processes which have been constructed but are not currently executing 
are maintained at a central location by an executive routine called the "dis­
patcher," which is discussed below. 

9 Kenmedy, J. R.: Executive Routine Primitives and Process Control. 
Contractor Report prepared under NASA Contract NASB-18405 by Computer
 
Sciences Corporation, Huntsville, Alabama, March 24, 1971.
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ENTRY 

PROCESSNAME 

w 

PRIORITY 

a b c 

CPUnum -

BRHA 

BRLA 

STARTENTRY 

RETURNADDRESS 

BREAKPOINTADDRESS 

BREAKPOINTOPERAND 

MAOHINEREGISTERS 

TABLE 4 

PROCESS CONTROL BLOCK ENTRY DESCRIPTIONS 

DESCRIPTION 

Unique name for this process.
 

Counter showing number of unserviced START primitives invoked for this
 
process.
 

Relative process priority.
 

Three bit process state indicator.
 

Hardware address of the CPU associated, during execution, with this
 
process.
 

Bank Register High Address.
 

Bank Register Low Address.
 

Instruction memory address of first instruction.
 

Memory address of next instruction in case process activity is stopped;
 
execution will be resumed at this location. Initially has value of STARTENTRY. 

Memory address which, if it becomes the argument of an instruction fetch 
cycle, will cause an internal processor trap to a predetermined memory
 
address specified by BPOtrapaddress.
 

Memory address which, if it becomes the argument of a data fetch
 
cycle, will cause an internal processor trap to a predetermined memory
 
address specified by BPOtrapaddress.
 

A block of words reserved for saving all programmable processor registers 
when process activity is stopped. Must include all registers depicting process 
state information. 



(2) Dispatching. Once a process is executing code on a 
CPU, it may become necessary that the dispatcher seize the CPU for assign­
ment to another, higher priority process. The a&t of seizing the CPU is called 
a tpreempt"-dispatcher action. Any mechanism that effects this task must 
preserve the current state of the program counter and volatile machine regis­
ters. Space in the PCB is reserved for this contingency. Additionally, the 
dispatcher must retrieve the PCB of the halted process and allow it to compete 
for CPU time. The act of assigning a process to a CPU is called a "dispatch" 
action. Clearly the mechanism for "dispatch" is the inverse function of 
"preempt." 

(3) Process states. A process executing code on a CPU 
is said to be in the "running" state. A process not executing code but compet­
ing with other processes for CPU time is in the "ready" state. A process that 
has been constructed but is not competing for system resources is in the "idle" 
state. 

After a process enters the "running" state, internal conditions may 
dictate that it not proceed until the occurrence of a specific external event. 
It may then request that its state be altered until notified by a cooperative 
process to continue. This interim condition is referred to as the "waiting" 
state. 

A process in any of the above states may be suspended by a cooperative 
process for examination, alteration, or debugging. For this reason, each 
state has a companion "suspended" state. A process remains suspended until 
released by the cooperative process. Table 5 enumerates the salient points 
concerning process states. 

(4) Process state transition. A process may proceed 
from one state to another by either of two events: 

o Dispatcher action ("preempt," "dispatch"), or 

o Execution of certain primitive functions (implemented 
as SUMC instructions) by the affected process or a 
cooperative process. 

Figure 20 illustrates the relationship 6f the dispatcher and piimitives 
to state transition. The START primitive increments the "w" variable in the 
PCB which implies a direct transition from the "idle" state to "ready," or 
subsequent intervention when the process would normally proceed from 
"running" to "idle. " The "v" variable may also serve as a barometer of 
the workload backlog as detailed in the above cited report /9/. 
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STATE 

Idle 

Ready 

Running 

Waiting 

Suspended 

TABLE 5 

PROCESS STATE DEFINITIONS 

DEFINITION 

Process has been constructed but is not currently competing for 
system resources. 

Process is competing for system resources but is not currently 
executing on a CPU. 

Process is executing instructions. 

Process has discontinued execution while awaiting an external 
event. 

For each above state there exists a companion suspended state to 
or from which a process may revert, subject to the action of a 
cooperative process. 
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A STOP priimitive executed by a process in the "running" state dec­
rements the "w" variable, if w becomes zero the process proceeds to the 

. "idle" state; if not it returns to the "running" state. 

A process, cognizant of a requirement for some external action (such
 
as I/O), may request transfer to the "waiting" state by executing a WAIT
 
primitive. The "waiting" state is terminated by the performance of a CONTINUE
 
primitive by a cooperative process.
 

SUSPEND and RELEASE primitives may be executed only by cooperative 
processes and effect state transitions between companion suspended, non-suspended 
states described above. 

Process termination is effected via ABORT or EXIT primitives. EXIT
 
may be used only for process self-termination. ABORT is-available for either
 
self-termination or external termination by a cooperative executive'process
 
cognizant of an anomaly. Either connotes transition to a temporary "terminate"
 
state prior to subsequent process deletion. In case of ABORT, additional fail­
ure analysis procedures are implemented. For the purpose of simplicity,
 
ABORT and EXIT primitive action is omitted from figure 20.
 

'Anadditionai comment is in order with reference to figure 20. The box
 
labeled "testing w" is not a process state but an intermediate step in the transi­
tion froma "ruming" to "idle. "
 

(5) Implementation. Each primitive discussed can be
 
accomplished-by manipulation of a process PCB and the transfer of the PCB
 
from the CPU to the system control unit (to be discussed) or vice versa. Thus,
 
at the cost of some microcode logic and shared functional r6sponsibility, a
 
significant attenuation of system overhead can be achieved.
 

Each primitive is associated with a unique CPU to SCU command (or
 
request) that is transmitted upon execution and is followed by pertinent data.
 
A minor variation of this procedure is invoked by the STOP primitive. The
 
"w" variable is decremented-by the CPU and tested for zero, with a command
 
to the SCU resulting only if the value is zero. A detailed discussion of SCU
 
response is given in the section on the system control unit.
 

Relatively few unique SOU to CPU cominands are required fo'r the SOU
 
to perform dispatcher actions and assist during primitive execution. CPU
 
responses to SCU commands are as follows:
 

(a) Preempt command. In addition to supporting
 
the dispatcher "preempt" action, the preempt command is transmitted to a
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CPU (under certain conditions) during execution of a SUSPEND primitive. If 
the object process is in the "lunning" state the CPU response is: 

o 	 Delay until system is in the user mode, 

e 	 Do not fetch next user instruction, 

o 	 Complete all pending I/O (where complete may imply 
abort or other action), 

o 	 Save PC in returnaddress field of PCB, 

e 	 Send PCB to SCU, and 

o 	 Stop with CPU in user mode (where stop implies a micro­
instruction idle loop, awaiting the next SCU command). 

. (b) Dispatch command. This command assists in 
execution of the RELEASE primitive if the object process is in the "running 
suspended" state in addition to supporting the execution of the dispatcher 
"dispatch" action. The CPU response is: 

o 	 Receive PCB from SCU, 
o 	 Load PC from the retnrnaddress field of the PCB, 
o Load BRLA and BRHA from the PCB, and 
e Execute the instruction fetch routine. 

(c) Increment w command. Execution of a START 
primitive for an object process requires that the "w" variable be incremented. 
If the object process is in the "running" state, the SCU must signal the CPU 
to effect this change. The CPU response is: 

o Discontinue fetch next instruction routine, 
e Add 1 to v field of PCB, and 
e Continue fetch next instruction routine. 

e. 	 Input/output. With regard to CPU functions in support of 
system I/O, the selected baseline provides for tvo jrogram contrqlled output 
(PCO) instructions as shown in figure 12. Also, simplex system operation 
only (single lOP) was considered. Therefore, additions to the baseline related 
to CPU functions take two forms: CPU functions required to connnunicate with 
multiple IlOPs; and a broader PCO instruction specification to allow control of 
more IOP functions. 
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(1) SUMC to IOP communication. Control of the IOPs is 
effected by transmission of control signals and information over the IOP-CPU 
control buses (II and 10) noted in figure 2, Uniform Full Non-Dedicated 
Structure. Data are then transferred to the peripheral devices via the data 
buses. 

Generation of a data transfer sequence is initiated by the recognition 
by the CPU process of an I/O command known as a Program Controlled Opera­
tion (PCO).- This PCO must be translated into a format intelligible to the IOP 
and transferred to the IOP via the II for execution utilizing External Control 
Output (ECO) instructions. In the transfer of data the CPU must resolve con­
flicts that may arise as the subsystems compete for CPU cycles. To resolve 
the competing demands within the baseline SUMC capabilities, a poll-response 
interaction of the CPUs and IOPs has been recommended. 

For the CPU to engage an IOP in a control dialog the following sequence 
of operations must occur: 

o 	 A CPU raises the POLL line to the Control Logic and 
Timing section of each IOP. This signals each IOP to 
expect an address to be transmitted. Recognition is 
effected before the next FETCH. 

o 	 The CPU then transmits the denoted address to all IOPs. 

o 	 Each 1OP examines the address, comparing it with its own 
designated address. If the addresses generate a mismatch, 
the IOP returns to the MISMIATCH state. If the addresses 
match, the IOP transmits ACK and prepares to receive 
control information. The control sequence can then be sent 
by the CPU. 

Parameters transferred betveen a CPU and an IOP are shown in 
figure 21, illustrating parameters required iii the handshakifg sequences 
utilized in control of the IOP by the SUMC (CPU). These parameters are 
defined in table 6. 
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TABLE 6. CPU CONTROL OUTPUT PARAMETER DESCRIPTION 

CPU/IOP Output Parameter Description 

CPU 	 IOP Response 

Poll 	 Prepare to receive CPU control commands 

Initialize 	 Enter Ready state* 

Reset 	 Enter Idle state* 

Transmit 	 Send one 32 bit word to CPU 

Reject 	 Error 

EOM End of Message, Mismatch IOPs reset CPU 
I Busy marker 

IOP Address 	 Each IOP compares this address with its own 
and enters either Match or Mismatch-state. 
If Mismatch must set CPU Busy marker. 

*ITOP 	 State Diagram, figure 43 

(2) 	 PCO instruction specification. Baseline departures 
in this case can be thought of as an enhancement of I/o capabilities, in the 
following areas: 

o 	 C ommuni cation from Main Memory to,the data bus, 

o 	 Providing the capability to write in the local store (Format 
Memory) of the IOP inorder to revise ECO storage and 
allow adaptive control of I/O sequences, 

o 	 Implementing the capability to retrieve ECOs from Main
 
Memory for execution by the IOP, and
 

o 	 Expanding the set of PCOs to permit more. diverse directions 
to the IOP from the CPU. Additionally, the addressing 
capability of the PCOs denoted in /8/ allows an address 
range of 0-4095 words. While usage of a base register in 
the address calculation will expand this capability, dedication 
of unused subfields in the PCO words permit standard SUMC 
base and index modification address computation. 
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Considering the preceding factors, the baseline START and STOP PCO 
instructions are augmented to provide the following I/O commands (defined 
further under Special Instructions): 

o 	 START (BEGIN), initiate an I/O Sequence; 

e 	 TERMINATE (STOP), terminate an I/O Sequence; 

o 	 GET STATUS, transmit status to CPU; 

o 	 INPUT DIRECT, transmit one computer word to the 
CPU; 

o 	 OUTPUT DIRECT, transmit one computer word to a 
peripheral device; and 

o 	 DIAGNOSE, initiate diagnostic process. 

The preceding PCO instructions provide the SUMC with the capability to per­
form the following categories of operations: 

o 	 Initiate/Terminate I/O operation of a peripheral device. 

0 	 Input the contents of a selected group of status indicators. 

o 	 Perform single word transfers between a SUMC scratch
"memory location and a designated peripheral device. 

o 	 Initiate peripheral and IOP diagnostic procedures. 

f. Configuration control. By way of summary, the operational 
aspects of configuration control, as applied to the MEC of figure 1, are out­
lined here. The capability of the basic scheme is unchanged from that outlined 
in /i/. However, a significant mechanization change is incurred through a 
division of responsibility between the SCU and CPU elements. 

Configuration control consists of CPU-executed program control that 
constructs or selects a system map referred to as a setup map (SM). After 
construction, the SM is transferred over the SI/SO buses from the CPU to 
the SCU. The SCU then suspends execution of all CPUs, and uses the SM to 
direct the setting of the various switches connecting ele'ment plug positions 
to buses. The contents of the SM is retained by the SCU and, in this retained 
form, is known as the action map (AM). 
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The AM serves as an updatable indicator of not only the structure of 
the system but also the unique identification of all elements comprising the 
structure. The actions of switching-out failed elements and switching-in 
replacement spares is used to update the AM and retain associated element 
status indications. 

Once all SM-indicated switching actions have been accomplished, the 
SCU commands all CPUs represented as active, connected CPUs to fetch 
their next instruction from a prespecified location in the MIMUs, thus trans­
ferring control to the CPU executive(s) fqr process initiation under the newly 
established system structure. 

Most of the configuration control related actions of the CPU are con­
cerned with building a SM and therefore do not imply communications between 
the CPU and SCU. Some actions do, however, require SCU cooperation. CPU 
initiated communications with the SCU are known as "requests" and are as 
follows: 

(1) Switch and jump request. This request is made as 
a part of CPU execution of the SWJ instruction. 

(2) Disconnect element request. This request is made 
as part of CPU execution of one of the following instructions: SOC, SOM, 
SOIB, SOH, SQV. 

(3) Copy connect request. This request'is made as part 
of CPU execution of the following instructions: "CMM\, CCC, and CII. 

(4) Configuration status request. This request is made 
as part of CPU execution of the following instructions: SCC, SCP, SCG, SMC, 
SMP, SMG, SIC, SIP, SIG, and SBG. 

The response of the SCU to each of these requests and a description of config­
uration control related instructions are covered elsewhere in this report. 

SCUinitiated communications with a CPU are known as "commands" 
and are described, by way of the response of a CPU, as follows: 

(5) Executive transfer command. A receiving CPU 
responds to this command by taking these actions:­

o Do not FETCH next instruction.
 
o Receive MMU transfer address.
 
e Place it in executive mode program counter (PC) word in SPIA.
 
e Set CPU mode to executive mode.
 
o Execute FETCH microroutine. 
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(6) Receive VDSC error indicators. When a VDSC 
indicates an error condition to the SCU while operating in a redundant system 
configuration, the SCU sends this command to the redundant CPUs. The CPUS 
respond with these actions: 

o 	 Do not FETCH the next instruction. 

0 	 Receive the status word from the SCU. 

o 	 Simulate a "redundant operation failure" interrupt to 
notify the executive of a failure. 

g. Scratch Pad Memory organization. Previous experience 
indicates that Scratch Pad Memory (SPM) utilization is less than optimum if 
its organization is consigned in part to software. If the software is permitted 
access to SPM arbitrarily, and at some point after implementation a reorgan­
ization of SPM is effected, much reprogramming will be necessary. For these 
reasons, SPM should be addressable only from dedicated instruction fields 
(such as register designation) or implicitly via special instructions. It is 
requisite under an SPM organization directed by this philosophy that each cell 
be associated with a specific function. Cell assignments are based on frequen­
cy of use and occasionally on response requirements. 

A minimum of 12810 locations are required for allocation of variables 
that occur in the above two classes. The following discussion is based on an 
SPM of this size. Specification is partially complete and space is available 
for expansion. 

(1) 	 Major sections. Figures 22, 23 and 24 depict a 
candidate SPM organization. Locations 0 - 6 310 are "system mode dedicated, 
that is, addressable only when the CPU is in the system'mode." Cell assign­
ments in this area represent functions unavailable to instructions executed in 
the user mode. 

Locations 6 4 10- 8 2 10 -are "user mode related." Although accessibl6 
during system mode operation, they provide the register set and variables 
primarily referenced during user mode operation. A-similarly ordered set 
of SPM locations is defined at the beginning of the system mode dedicated 
section. 

Locations 8 3 10 to 12 7 10 form the "non-dedidated" section. Assign­
ments to this area represent functions or events that can occur (irregardless 
of CPU mode) in a more or less stochastic fashion. .Examples of this are an 
IOP status message or the occurrence of a CPU "jump" instruction. 
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(2) Register organization. The format definition for 
memory reference instructions presented earlier in this section (figure 9) 
precludes a detailed discussion of the number and types of registers. Overlap 
between accumulators and base registers and between accumulators and index 
registers was judged essential since indexing algorithms are frequently derived 
using arithmetic procedures. Orientation of the register sets relative to the 
beginning of SPM and to each other was dictated in part by the "OR"ing proce­
dure used to combine the SPM address field of the microword instruction with 
the offset obtained from the register designator field of the CPU instruction. 

A separate (and congruent) register set is allocated for system mode 
operation. This provision reduces the (software) overhead entailed by mode 
changes. Evidence does not indicate that the optimum system register set 
is congruent to the optimum user register set, but a trade study determining 
the optimum system register set is beyond the scope of this report. A non­
congruent system register set requires the reorganization of the format of a 
large number of CPU instructions, resulting in a vastly different instruction 
set for system mode use which is costly in terms of microcode requirements. 
Nevertheless, if further research indicates unusual benefits, a system reg­
ister set may be defined at a later date. 

(3) Interrupts. The sixteen (16) interrupt levels depicted 
in figure 22 are arranged in order of assumed priority. Definition of soft­
ware alterable levels is possible, but there is presently insufficient justifica­
tion. A rearrangement of the priorities is feasible for each missidn, partially 
negating the benefits of a more flexible priority interrupt structure. 

Priority within the I/O interrupt levels is based on the type of I/O 
involved. I/O directly between the device and the CPU is given highest prior­
ity since it can be expected to be of low volume and is the most likely form of 
astronaut/pilot command communications during manned missions. Device to 
device I/O is given lowest priority with the assumption that it is the least 
likely to precipitate process idle time prior to completion. Within each I/a 
type, input has uniformly higher priority than output. 

Other SPM locations associated with the interrupt structure are as 
follows: 

e A five (5) word communications packet for each IOP, 
o A fifty (50) bit interrupt status indicator, 
o A fourteen (14) bit arithmetic fault mask/status indicator, and 
o An, SCU control word. 
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An IOP packet (figure 25) is used to commuicate to the CPU the cur­
rent IOP status, associated channel status, the last channel operation executed, 
requests for service, and pre-selected data items. The "P" bit of the packet 
(firstword, bit 0) is always received as a one (1), and reset by the microcode 
interrupt service routine when service (by the system.Exec) is granted or such 
service is deemed unnecessary (i. e. , "PI is a "protect" bit that prevents the 
packet from being destroyed before its contents are accessed). 

The formats of the interrupt status and arithmetic fault mask/status 
indicators are illustrated in figures 26 and 27. A note of explanation is in 
order concerning the "queued" status entries. An interrupt is queued for sub­
sequent service after a request is received that cannot be immediately pro­
cessed due to its priority level or "disarmed" status. A complete definition 
of "enabled, "1"disabled, " "armed, " and 'disarmed" is delayed until the defini­
tion of instructions associated with interrupt processing. 

The SCU control word is used to retain the current status of those 
operations that require a multiple-step CPU/SCU dialog. Its format varies 
between and within operations. 

As noted, SPM is not directly addressable. Specific instructions are 
provided to access the interrupt status and arithmetic fault mask/status indica­
tors. Portions of the IOP communications packet meaningful to the software 
executive are provided through the interrupt service entrance mechanism. 

(4) Addressing scheme. Figure 28 illustrates an SPM 
addressing scheme, utilizing the U-flip-flop defined earlier which permits 
access only to user mode related and non-dedicated sections during user mode 
operation and all SPII locations during system mode operation. If cell assign­
ments are selected by function, this mechanism (or a similar one) is sufficient 
to perform all tasks involving scratch pad memory. 

3. Special Instructions. In addition to the spectrum of instructions 
referenced in the discussion of the SUMC baseline, other instructions are out­
lined here. These additional instructions fall into one of tvo classes: "required" 
for VEC operation or "desirable" for additional programming effectiveness. 
Those which are required have to do with configuration, interrupt, process, 
input/output, and lockout control, while increased effectiveness is gained by 
special instructions for recovery and trace, debug execution and system mode 
control, list and stack manipulation, and program linkage. 

a. Configuration control. A method for configuration control 
has been outlined conceptually elsewhere /i/ and summarized previously in 
this report. Slight modifications to the related instructions are incorporated 
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into the instructions depicted in table 7. While SCU bus connections to CPUs 
could have been included, this was not done since the connections can be made 
in the SCU at switch time with no loss in generality. 

The instructions are grouped under four functional headings: 

o Connection,
 
e Disconnection,
 
o Status Determination, and 
o Miscellaneous. 

b. Process control. The reader may wish to refer at this 
point to an earlier discussion during which basic conceptual ideas relating to 
process control were reviewed. Executive control of processes is facilitated 
by the definition of a set of primitives. An approach to implementation can be 
found in an earlier cited report /9/. 

Execution of a primitive effects an immediate or subsequent state tran­
sition of a process. Table 8 contains the salient points of each primitive in­
struction. 

(1) Start. Execution of a START primitive for a process 
in the "idle" state results in its immediate transition to the "ready" state. 
(See table 5 for process state definitions.) Concurrently, the PCB variable 
"w," known as the work variable, is incremented. 

When a process is not in the "idle" state, execution of the START prim­
itive results only in the incrementing of the work variable. The START prim­
itive specifies the object process name as an argument. 

(2) Stop. The STOP primitive is invoked by a process to 
indicate execution completion. The PCB startaddress entry is copied into the 
returnaddress entry and the work variable, "w, " is docremented. If "w" is 
zero the process returns to the "idle" state. If "w" is not zero it is returned 
to the "ruming" state, the next instruction fetch address being in returnaddress 
of the PCB. The STOP primitive connotes the implied argument, processname, 
of the invoking process. 

(3) Wait. This primitive is executed by a process when 
in the "running" state and cannot proceed until some arbitrary, requested 
event has occurred. The process is placed in the "waiting" state until a coop­
erative process executes the CONTINUE primitive at which time a transition 
occurs to the "ready" state. 
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TABLE 7
 

CONFIGURATION CONTROL (I of 4)
 

CONNECTION INSTRUCTIONS 
MNEMONIC 

CODE ARGUMENTS MAP MEANING 

PC CP, MI, MO, SM* Place CPU in SM; make an entry in the SM showing the central processor 
11, 10 element in plug position CP connected to MMU buses MI and MO, and IOP 

buses II and TO. 

P1 IP MI, MO SM 	 Place IOP in SM; make an entry in the SM showing the input/output processor 
element in plug position IP Ponnected to MMU buses MI and MO. 

CM MM,, IA, OA, SM Connect MMU to buses; make an entry in the SM showing the main memory 
MI, MO element in plug position'MM connected through its input access port IA and 

its output access port CA to the main memory buses MI and MO, respectively. 

CI IP, IA, OA, SM Connect IOP to buses; make an entry in the SM showing the input/output pro-
II, 10 cessor element in plug position IP connected through its input access port IA 

and its output access port OA to the input/output buses II and 10, respectively. 

PV 	 T, V, IC1, SM Place VDSC in SM; make an entry in the SM showing the VDSC element in plug 
IC2, IC3, OC1, position V with its input channels 1, 2, and 3 connected to buses ICI, IC2, and 
OC2, OC3 IC3, respectively, and its output channels 1, 2, and 3 connected to buses OC1, 

OC2, and OC3, respectively. The type of VDSC is specified, thus, by T: 

T 	 TYPE 

000 VMI 
001 VMO 
010 	 VII 
011 	 VIO
 
100 	 VSI 
101 	 VSO
 

* SM - System Map 



TABLE 7
 

CONFIGURATION CONTROL (2 of 4)
 

DISCONNECTION INSTRUCTIONS 
MNEMONIC 

CODE ARGUMENTS MAP VEANING 

SOC CP, B, 10 AM Switch-out CPU; switch-out the central processor in plug position CP dis­
connecting it from all buses (B = 00), the MMU bus only (B = 01), or the IOP 
bus only (B'- 10). 10 specifies both input and output (= 00), input only (01), 
or output only (10). 

SOM MM, A, 10 AM Switch-out MMU; switch-out the main memory in plug position MM disconnect­
ing it at its access port number A (A = 0 implies all ports). 10 is interpreted 
as in the SOC instruction. 

SOIB IP, B AM Switch-out IOP from buses; switch-out the input/output processor located in 
plug position IP from all buses (B = 0), the MMU input bus only (3 = 01), the 
MMU output bus only (B = 10), or both MMU buses (B = 11). 

SII IP, A, 10 AM Switch-out IOP from IOP buses; switch-out the input/output processor located 
in plug position IP disconnecting it at its access port number A (A 0Qimplies 
all ports). 10 is interpreted as in the SOC instruction. 

SCV T, V, 'C AM Switch-out VDSC. The VDSC Type T in plug position V is disconnected from 
its buses as indicated by C: 

. 

if C = 01, input C1 only, 
if C = 10, input C2 only, 
if C = 11, input C3 only, 
if C = 00, all input and output. 



TABLE 7 

CONFIGURATION CONTROL (3 of 4) 

STATUS DETERMINATION 
INSTRUCTIONS 

MNEMONIC 
CODE ARGUMENTS MAP MEANING 

SCC OP AM Sense central processor-connect status; if central processor plug position CP is 
connected to a set of buses, skip the next instruction. (When a processor plug 
position is vacant, it is assumed that it is disconnected from all buses. The dis­
connect operation should occur automatically upon manual unplugging or under 
program control.) 

SCP CP AM Sense central processor plugged-in status; if centril processor plug position CP 
has an element plugged in, skip the next instruction. 

SCG CP AM Sense central processor good status; if central processor plug position CP has 
a good element plugged in, skip the next instruction. 

SMO MM AM Sense memory connect status; similar to SCC. 

SMP MM AM Sense memory plugged-in status; similar to SCP. 

SMG MM AM Sense-memory good status; similar to SPG. 

SIC IP AM Sense input/output processor connect status; similar to SCC. 

SIP IP AM Sense input/output prdcessor plugged-in status; similar to SCP. 

SIG IP AM Sense input/output processor good status; similar to SCG. 

SBG B, BN AM Sense bus-good status; if bus number BN in bus group 

if B = 000, 
if B = 001, 
if B= 010, 
ifB = 011, 

all bus groups, 
MI only, 
MOonly, 
II only, 

if B = 100, 
if B = 101, 
if B = 110, 

1O only, 
SI only, 
SO only. 

is marked good, skip the next instruction. 
good to cause a skip. 

Note: If B = 00, all buses must be 

LFI Ri AM Load failure indicators. The R, S, and L status indicators for all bus sets are 
loaded into register RI for program testing (no specific field format for R1 is 
assumed at this time). 



TABLE 7 

CONFIGURATION CONTROL (4 of 4) 

MISCELLANEOUS 
INSTRUCTIONS 

MNEMONIC 
CODE ARGUMENTS MAP MEANING 

CMM M1, M2 AM 'Connect Memory-Memory; connect memory plug position Ml 
the Action Map for memory plug position M2. 

as indicated in 

CCC Cl, C2 AM Connect Central Processor-Central Processor; connect processor plug 
position C1 as indicated in the Action Map for processor plug position C2. 

Cil IPl, IP2 AM Connect input/output processor-input/output processor; connect the IOP 
located in plug position IPI as indicated in the Action Map for IOP in plug 
position IP2. 

SWJ A, BA AM Switch and jump; transfer Setup Map information to the SCU switch control 
logic for switching and save it in the Action Map. Status indicators are set 
in AM to show associated connections and SM is cleared. Control of all 
connected processors is transferred simultaneously to memory location A 
of the memory element whose bank address is BA. 

SMB MM, BA AM Set the bank address of the memory element located in plug position MM to 
contain BA. 



TABLE 8 

PRIMITIVES (I of 2) 

PRIMITIVE ARGUMENTS DESCRIPTION PCB ACTION 

START PROCESSNAME Process is transferred to "ready" w + 1 -1 w 
state if in "idle" state. Trans- If (a b c) = (x 0 0); 
ferred to "ready suspended" state (x 0 1) - (a b c) 
if in "idle suspended" state. 

STOP PROCESSNAME* The work variable, "w," is dec- w - I -­iw 
remented. If > 0 execution is STARTADDRESS -
restarted. Otherwise the process RETURNADDRESS 
is transferred to the "idle" state. If w > 0; 

(0 1 0) --- (a b c) 
Ifw = 0; 

(0 0 0) -­>(a b c) 

VAIT PROCESSNAME* The process is transferred to (0 1 1) - (a b c) 
t** the "waiting" state. PC -4, RETURNADDRESS 

CONTINUE PROCESSNAME Process is transferred from the (x 0 1) -' (a b c) 
"waiting" state to the "ready" 
state. If currently suspended it 
is transferred to. the "ready 
suspended" state. 

EXIT PROCESSNAME* Process is transferred from the (0 0 0) - (a b c) 
"running" state to the "idle" 0 -­ w 
state and subsequently deleted. 

* Implied 

** Optional PC - Program Counter 



TABLES 

PRIMITIVE 1ARGUMENTS 

PRIMITIVES (2 of 2) 

DESCRIPTION PCB ACTION 

ABORT PROCESSNAME** Process is transferred from the 
"running" state to the "idle" 

(x 0 0) 
0 ->'w 

--- (a b c) 

state and subsequently deleted. 
If suspended, the process is 
tiansferred to the "idle sus­
pended" state. 

SUSPEND PROCESSNAME The process is transferred from 
its current state to its compan-

(I x x) --i (a b c) 
PC --lRETURNADDRESS 

ion suspended state. 

RELEASE PROCESSNAME The process is transferred from 
its current suspended state to its 
companion non-suspended state. 

(0 x x) -- (a b c) 
If (a b c) = (0 10); 

RETURNADDRESS 
-- PC 

* Optional PC - Program Counter 



The WAIT primitive may optionally specify a delay, At, the expiration 
of which will result in the CONTINUE primitive being invoked. The implied 
argument of the WAIT primitive is the name of the invoking process. 

(4) Continue. Execution of the CONTINUE primitive 
effects a transition of the object process from the "waiting" state to the "ready" 
state. Subsequent execution of the object process resumes at the instruction 
sequence following the point at which the WAIT primitive was invoked. The 
CONTINUE primitive must specify the name of the object process as an execu­
tion parameter. 

(5) Exit. The EXIT primitive is invoked by a process 
for the purpose of self-termination. The process is temporarily transferred 
to a "terminate" state followed by release of its allocated main memory and 
PCB residence. Again, the implied argument of this primitive is processname. 

(6) Abort. This primitive has all the effects of an EXIT 
and additional capability. to perform or request actions to aid in debugging or 
failure isolation. Execution of an ABORT primitive with an argument, process­
name, is used by a cooperative process that is aware of an anomaly in the 
object process. If the processname is not specified, it is implied to be that 
of the invoking process. 

(7) Suspend. Execution of the SUSPEND primitive allows 
the invoking executive process to effect a non-destructive suspensidn of an 
object process. While suspended the object process relinquishes its PCB to 
be examined or altered dynamically by the invoking process. The state trans­
ition of the object process is to companion suspended states for "idle," "ready," 
"running," and "waiting. " The conceptual effects of the START, CONTINUE, 
and ABORT primitives are preserved during suspension by incrementing "w, " - ­
transition to "ready suspended," and transition to "idle suspended," respectively. 

Suspension is terminated by execution of its converse, the RELEASE 
primitive. An argument, processname, is required for execution of SUSPEND. 

(8) Release. The act of invoking the RELEASE primitive 
will cause the object process to revert back to its companion non-suspended 
state. The RELEASE primitive must specify the processname of the object 
process.
 

c. Memory access lockout. A main memory unit global data 
file structure may require that one process prevent access from all other 
processes for the duration of an operation (an uplink file being compacted, for 
example). Analogously, an otherwise re-entrant routine may require that a 
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portion of itself not be executed simultaneously by more than one process. 
The only effective non-aleatory procedure is memory test and set, TS, utiliz­
ing a unique control line to MMU (see earlier discussion of MMU). 

TS is a privileged instruction, that may be implemented as an executive 
request in the user mode. The format is equivalent to a standard memory ref­
erence instruction. Operation is as fqllows: 

o 	 The referenced memory location is retrieved and tested 
by MMU, 

o 	 If not all ones, it is set to all ones and the instruction 
following TS is skipped, 

o 	 If all ones, it is restored and the instruction following 
TS is executed. 

A TS condition is cleared by storing zero in the test and set location. 

d. . Recovery/trace. Table 9 lists three instructions which aid 
the development of an automatic Icheckpoint/restart" procedure executed to 
recover from transient and intermittent errors. Each instruction in the table 
enables a program to determine a preceding point of the current instruction 
sequence.
 

TABLE 9. RECOVERY/TRACE INSTRUCTIONS 

INSTRUCTION
 
MNEMONIC OPERANDS DESCRIPTION
 

LCA R 	 The address from which the last subprog­
ram call originated is stored in the register 
designated by R. 

LJA R 	 The address from which the last jump orig­
inated (not a subprogram call) is stored in 
the register designated by R. 

LPC R 	 The address of tle instruction executed 
imnediately preceding the current instruc­
tion is stored in the register designated 
by R. 
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An additional application exists in the area of error analysis and debug­
ging aids. The following examples illustrate this: 

o 	 Under process abort conditions, a f"walk-back" listing
 
giving machine conditions at selected points in the
 
instruction path, and
 

o 	 Determining which of several sequences is entering a
 
given sequence under erroneous conditions.
 

e. Program and concept verification. Ultimate reliability 
(and cost) of software can be improved by facilities aiding the programmer 
during checkout. Among those that relate to hardware/firmnware include: 

o 	 Breakpoint address - a CPU halt upon encountering a
 
previously specified program address as a result of an
 
instruction fetch;
 

o 	 Breakpoint operand - a CPU halt upon encountering a
 
previously specified instruction operand (effective
 
address); and
 

o 	 Data pattern break - a CPU halt upon encountering a
 
previously specified operand value.
 

Implementation might be in the form of a CPU "debug" mode that can 
be controlled externally (or internally under program control). Al alternative 
is a separate SUMC model dedicated to software verification. 

f. Input/output. Input/output instructions, referred to as 
Program Controlled Output (PCO), are commands to the IOP to execute an 
i/O sequence. In order to specify the instruction the following items are 
necessary:
 

o Operational specifications,
 
0 IOP designation, and
 
o 	 Buffer address or pointer to the further information required. 

The operational specification or op code designates the particular ac­
tion required of the IOP. The following actions defined in table 10 have been 
found desirable: 

o 	 Start Input/Output (SO) 
o 	 Terminate Input/Output (TO) 
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TABLE 10
 

PROGRAMMED CONTROL INSTRUCTION DEFINITION
 

MNEMONIC 
CODE OPERANDS 

SO TOP, Class*, 
Address 

TO IOP, Class, 
Address 

GS lOP, R, 
Address 

ID TOP, R, 
Address 

OD TOP, R, 
Address 

DD** B, X, D, 
Device Ad" 
dress 

DESCRIPTION 

The TOP delineated is commanded to perform the I/O operation designated by the 
Class operand. Class indicates the location of the ECOs (Main Memory or 
Format Memory). Address designates the first word address (FWA) of the ECO 
command packet that specifies the operation. 

The I/O operation defined by the operands is terminated. Subsequent actions are 
defined by the command packet. 

The status indicator variable designated by the address operand is received 
from the TOP and stored into the SPM register defined by "i. T 

One 32 bit word is sent to the CPU register "R11 by TOP, from the device 
designated in the operand address. 

One 32 bit word is sent from CPU register "R" by TOP, to the device denoted by 
the contents of the address operand. 

The diagnostic process located at effective address is executed upon the device 
specified by Device Address. 

* 	 Class indicates location of ECOs (MMU'or Format Memory) 
** 	 DD is a two word instruction; first word contains conventional SUMC Base, Index, Displacement terms for 

effective address calculation; second word contains device address. 



o Get Status (GS)
 
" Input Direct (ID)
 
" Output Direct (OD)
 
o Diagnose Device (DD) 

The IOP designation is the select code for the IOP that will execute the opera­
tional sequence. Similarly the buffer address or pointer is the main or format 
memory address of further specification data. 

g. List/stack operations. Definition of a set of list/stack 
operations alleviates the execution overhead for dynamic storage allocation, 
assists in processing real-time interrupts, and provides convenient, least­
-redundant methods for implementing re-entrant/recursive routines. Table 1i 
is a self-explanatory set of list/stack instructions. 

Figure 29 depicts a modified ring structure illustrating a viable approach 
to implementation. The state variable "S," the stack ID, is contained in a main 
memory table to which there is a pointer in SPM. The-format of S depends upon 
the detailed implementation scheme. P6inters within the list structure are trun­
cated to 16 bits, suggesting stack residence in the lower 65K of memory unless 
a compensating mechanism is used, for instance, allotting a stack base address. 
Since the required memory addresses do not conform to normal boundary check­
ing procedures, it is suggested that the list/stack operations be privileged and 
incorporated as executive requests in the user mode. 

h. Interrupt processing. 'Selection of instructions to facilitate 
interrupt processing was directed b3 the criteria that SPM not be directly 
addressable using the procedure for addressing i-IMIUs, but rather be addressed 
via micrologic decoding of the instruction op code. Table 12 lists candidate op 
codes to' set and sense associated SPM locations and provide capability for the 
executive to respond to a priority interrupt. The following candidate instruc­
tions have been identified: 

0 Interrupt Mask Set (IMS),
 
Se0 Interrupt Arm/Disarm (IAD),
 
o Clear Interrupt (CLI),
 
" Reset Interrupts (RIN),
 
o Set Interrupt Address (SIA),
 
" Read Interrupt Indicator (RII),
 
o Set Arithmetic Fault Mask (SAX), 
- Enter Interrupt State (EIS), and 
o Exit Interrupt State (EFS). 

As noted, these instructions are discussed in table 12. 
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TABLE 11 

LIST/STACK INSTRUCTIONS (I of 3) 

MNEMONIC 
OP CODE OPERAND MEANING 

OS S, W, L Open Stack. Define a stack whose address is S (an atbitrary n-bit integer) 
with a.single entry consisting of W words and a maximum length of L entries. 
Future references to S do not require specification of W and L. 

CS S Close Stack. Destroy the definition and existence of the stack whose address 
is S. This allows S to be redefined. 

PU S, A Push. Place the W words beginning at A on the top of the stack S. If this 
new entry will exceed the specified maximum length L ignore the instruction 
and fetch the next instruction; otherwise skip the next instruction after 
execution. 

PO S, A Pop. Copy the top entry on stack S into the W words beginning at A and 
remove the top entry from the stack thus making the next entry the new top. 
If prior to performing the PO there are no entries on the stack, ignore the 
instruction and fetch the next instruction; otherwise skip the next instruction 

R ,after execution. 

RE S, A Read Entry. Copy the top entry on stack S into the W words beginning at A. 
If prior to performing the RE there are no entries on the stack, ignore the 
instruction and fetch the next instruction; otherwise skip the next instruction 
after execution. 

TP S Top. Move a logical pointer to the top entry on stack S. If the stack has no 
entries, ignore the instruction and fetch the next instruction; otherwise skip 
the next instruction after execution. 



TABLE 11 

LIST/STACK INSTRUCTIONS (2 of 3) 

MNEMONIC 
OP CODE OPERAND MEANING 

RW S, R, N Read Word. Copy .the contents of the Nth word (0 9 N W - 1) of the stack 
(S) entry pointed to by the logical pointer (referenced to henceforth 
"logical entryt ") into register R. 

as the 

WW S, R, N Write Word. Replace the contents. of the Nth word (0 < N W - 1) of the 
stack (S) logical entry by the contents of register R. 

MD S Move Down. Move the logical pointer to the next lower entry on the stack 
S. If there is, no next entry, ignore the instruction and fetch the next 
instruction; otherwise skip the next instruction after execution. 

MU S Move Up. Move the logical pointer to the next higher entry on the stack S. 
If no next higher 'entry exists (pointer is at the top) ignore the instruction 
and fetch the next instruction;
execution. 

otherwise skip the next instruction after 

DL S, R, N' Down Less-than. Beginning with the logical element, scan each suaceeding 
(lower) element until one is found whose Nth word has contents numerically 
less-than the contents of register R. If the stack is exhausted before the 
test is satisfied, fetch the next instruction; otherwise, define the satisfying 
element to be the new logical element and skip the next instruction. 

DE S, R, N Down Equal. Same as DL but test for equivalence of contents. 

DG S, R, N Down Greater Equal. Same as DL but test for word contents greater than 

or equal to register contents. 

C_ _ _ _ _ _ _ _ _ __ _ _ _ _ V 



TABLE 11 

LIST/STACK INSTRUCTIONS (3 of 3) 

MNEMONIC 
OP CODES OPERANDS . MEANING 

BT S Bottom. Position the logical pointer to the last element on the stack. If the 
stack is empty, fetch next instruction; otherwise skip the next instruction 
after execution. 

OT S Out. Remove and destroy the logical entry from the stack, closing the twvo 
adjacent entries together to reform the stack without changing the relative 
order of remaining entries. Define the logical entry to be the entry which 
previously followed the removed logical entry. If no entry previously followed 
the removed logical entry define the top entry (this also may not exist) on the 

stack to be the logical entry and fetch the next instruction. Otherwise, skip 
the next instruction. 

IN- S, A In. Insert a copy of the W words beginning at A into the stack as the entry 

following the logical entry. Redefine the logical entry to be the newly added 

entry. If the stack is empty prior to the IN instruction- the new entry will 
be inserted on the stack and defined to be the logical entry. 

LP S, R Logical Pointer.. Places address of logical pointer for stack S into register R. 
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TABLE 12 

INTERRUPT PROCESSING INSTRUCTIONS (I of 2) 

MNEMONIC 
OP CODE OPERANDS DESCRIPTION 

SIA R, I Set Interrupt Addregs. Store the contents of register R into the SPM 
interrupt location of which the immediate operand I is the relative priority 
level. 

RE A Read Interrupt Indicator. Store the contents of the interrupt status and 
arithmetic fault words (SPM 125 and 126) into locations' A and A + 1. 

SAI R Set Arithmetic Fault Mask. Store the contents of register R (bits 25-31) 
into the mask portion of the arithmetic fault indicator. The initial condition 
of this register is all ones. A bit set for a particular condition will allow 
an arithmetic fault interrupt if that condition occurs. 

EIS Enter Interrupt State. A higher priority level interrupt has occurred. Clear 
interrupt; set Executive mode ff. Branch to process to isolate interrupt . 
source. Consequent action depends on state of system at instant of interrupt 
arrival. 

EFS Exit from Interrupt. Arm selected interrupts, PCB (Program Counter) - PC, 
set user mode ff, FETCH. It should be noted that the PCB must contain the 
appropriate process parameters. 

IMS B, I, A Interrupt Mask Set. Location 2 = B + I + A contains a mask which is used to 
enable or disable selected interrupt levels where 1 = enabled. The initial 
state of all interrupts is "disabled. " An occurrence of a disabled interrupt 
is ignored (i. e. , null processed). The preceding is accomplished by storing 
the contents of the effective address in the SPM Interrupt Mask location. 



MNEMONIC 
OP CODE OPERANDS 

LAD B. X, D 

CLI 

RIN 

TABLE 12 

INTERRUPT PROCESSING INSTRUCTIONS (.2 of 2)-

DESCRIPTION 

Interrupt Arm/Disarm. Location Z = B + X+ D contains a mask which is used 
to arm or disarm selected interrupt levels. An occurrence of a disarmed 
interrupt is "remembered" but not serviced until armed. 

Clear Interrupt. The active (highest) interrupt level is reset, allowing queued 
lower (or equal) interrupt levels to be serviced after execution of the following 
CPU instruction. 

Reset Interrupts. Pending interrupt service requests are cleared. To obtain 
service the signal must be reinitiated. 



Instructions IMS and IAD (enable/disable, arm/disarm, respectively) 
require the following definitions: 

o 	 An interrupt level that is enabled will be given CPU 
service time according to its priority and "armed" 
status upon each occurrence; 

o 	 An interrupt level that is disabled will be ignored; 

o 	 An interrupt level that is armed will compete for CPU 
service time on the basis of priority upon occurrence; 

* 	 An interrupt level that is disarmed and requesting service 
will not be allowed CPU time until armed. In contrast to 
the disabled state, however, it will be queued for later 
service. 

IMS and TAD submit a mask word, as depicted in figure 30, for interpretation. 
The left half of the mask selects the interrupt levels to be affected and the 
right half selects the appropriate status redesignation. 

Arithmetic fault interrupts may be prevented for specific conditions 
via an SAI (Set Arithmetic fault Indicator). The format of the required operand 
mask may be obtained from figure 30. 

i. Program linkage. 'Specification of program linkage instruc­
tions (CALL, RETURN, Executive Request) might be influenced by definition 
of the CPU progran structure. Multiple entry points are a simple example of 
a program structure capable of being facilitated by linkage instructions. More 
elaborate structures might include programmed "filters, ' invoked upon entisr 
and exit from a program, which perform parameter checks and set execution 
conditions. This framework creates a closer functional relationship between 
program entry and exit instructions. Time requirements for the present study 
do not permit a thorough evaluation of the program structures required, thus 
it might be necessary to give complete program linkage specification at a later 
time. 

C. System Control Unit (SCU) 

This section summarizes the role of the system control unit and sug­
gests an approach to its architecture. The SCU acts as. a system supervisor 
at the lowest level at which such control is usually found in the form of an 
executive routine. That is, the next successive lower level of control is 
typically found in stored or digital logic. Because the functions allocated to 
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the SOU comprise an important part of the interface with what is frequently 
referred to as "hardware," they become prime candidates for microprogram 
or digital logic implementation. 

The functions allocated to the SCU are principally supportive in that 
events, occurring under program control at one or more of the system's CPUs, 
initiate action of the SOU. The SCU maintains state information on all of the 
hardware elements and software elements. The software elements, referred 
to as processes, are scheduled for allocation of certain hardware resources by 
the SCU. The methodology and schema by which CPU time is allocated are 
known collectively as process control. Through process control implicit con­
trol of CPU resources is achieved. 

In addition to process control, the SOU maintains a map of the physical 
system, known as the action map (AVI), wherein all topological information 
regarding the connection of elements to other elements within the system is 
kept. This map serves also as a basis for determining the availability of all 
elements, including spare . These functions are discussed below in a way 
that illustrates the relation of the SOU to CPUs. 

1. SOU Operations/Functions. Configuration control, CPU control 
(by way of process control), and process control are summarized as-follows. 

a. Configuration control. Special instructions to be executed 
by CPUs under executive control were itemized in a prior section (table 7). 
With respect to certain of these instructions, requests by the executing CPU 
are made of the SOU as follows: 

(1) Switch and jump request. This request is made as a 
result of CPU execution of the SWJ instruction. The response of the SOU is to 

o 	 Receive and save the jump address parameters -from the 
CPU, 

" 	 Receive the setup map (SM) from the CPU, 

Transform the SM into switch commands and switch 
all affected elements as required, 

o 	 Set the AM to reflect SM settings, and 

o 	 Send an "Executive Transfer" command to all active 

OPUs along with the associated jump address parameters. 
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(2) Disconnect element request. This request is made 
as part of the CPU execution of an SOC, SOM, SOIB, SOII or SOV instruction. 
The SCU response is to 

o Receive an element switch control word from the CPU,
 
" Construct associated switch control command(s),
 
• 	 Issue the switch command(s), and 
o 	 Update the AM as required. 

A tentative control word format is given in figure 31. The symbols are 
interpreted as shown in table 13. 

TABLE 13. SWITCH CONTROL WORD FIELD DEFINITIONS 

SYMBOL VALUE 	 MEANING 

R 	 00 Central Processor (Ignore P)
 
01 Main Memory (P specifies port)
 
10 Input/Output (P specifies port)
 
11 VDSC (Ignore P; C gives TMR channel)
 

P 	 0 All Ports
 
N Port N only
 

B 	 00 All Buses
 
01 Processor Input Bus
 
10 Processor Output Bus
 
11 Spare
 

C 	 00 All
 
01 Input C1
 
10 Input C2
 
11 Input C3
 

E 	 N Unit Address 

(3) Copy connect request. This request results from CPU 
execution of a CMM, CCC, or CII instruction. The SCU response is to 

0 	 Receive a copy control word from the CPU, 

o1 	 Search the AM for all element E2 bus connections and
 
save them,
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o 	 Disconnect element E2, 

o 	 Connect element El in the same way element E2 was 
connected, and 

o 	 Update the AM appropriately. 

Figure 32 shows a tentative copy connect word format wherein T and El/E2 
have the same meaning as the T and E, respectively, of figure 31. 

(4) Configuration status request. " Tis request is made 
by a CPU as a result of having executed an SCC, SCP, SCG, SMC, SMP, SMG, 
SIC, SIP, SIG, SBG, or LFI instruction. SCU response is to 

o 	 Receive the status type code word (format not specified), 

* 	 Search the AM to get required status, 

o 	 Form an appropriate status response word (format not 
specified), and 

o 	 Send this word to the requesting (waiting) CPU. 

Status can be requested for the following Boolean parameters: bus good, cen­
tral processor connected, memory connected, input/output process'or connected, 
element disconnected, element plugged-in, and element good. 

In addition to the responses of the SCU to CPU initiated requests, the 
SCU initiates commands to a CPU as follows (CPU responses to these com­
mands are detailed elsewhere): 

(5) Executive transfer command. Tis command is 
issued as the final SCU action in response to a switch and jump request, 

(6) Receive VDSC error indicators command. Whenever 
a VDSC indicates a disagreement in TMR majority voting, this command is 
issued by the SCU simultaneously to the three active TMR system CPUs. 

b. Process control. The role of processes and their control 
via a set of system primitives defined as SUMC instructions were previously 
reviewed. It was stated that the functional responsibility for prilmlitive execu­
tion was shared by the CPU and the SCU. Three related SCU to CPU commands 
(preempt, dispatch, increment w) were described by delineating CPU response. 
Each primitive is assigned a unique command which is transmitted as part of 
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its execution by a CPU to the SCU. An argument, processname, identifies the 
object process and is received by the SCU following the command. Additional 
response to the command by the SCU is frequently based on the state of the 
object process. 

(1) Start process request. This command results from 
the execution by a CPU of a START printive. The following response is 
evoked from the SCU. 

* 	 The SCU locates (in its memory) the PCB of the object 
process.
 

* 	 If the process state is "idle, " the w field of the PCB is 
incremented, the process state bits are set to indicate 
the "ready" state, an entry is made in the "ready" list, 
and the dispatcher routine is executed by the SOU. 

* 	 If the process state is "ready," "waiting," "ready 
suspended," "running suspended," or "waiting suspended,' 
the w field of the PCB is incremented. 

o 	 If the process state is "idle suspended," the w field of the 
PCB is incremented and the -process state bits are set to 
indicate the "ready suspended" state. 

o 	 If the process state is "running" the w field of the PCB is 
incremented,, the OPU number is identified by fetching it 
from the PCB, and an "increment w" command is sent to 
the CPU. 

(2) 	 Stop process request. This command originates with 
the execution by a CPU'of a STOP primitive for a process with zero in the PCB 
w field after decrementing. The following SCU response is executed. 

0 	 The PCB is received from the CPU. 

" 	 The CPU number field of the PCB is cleared. 

0 The process state bits are set to indicate the "idle" 
- state and the process' ready list entry is deleted.
 

e The dispatcher is executed.
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(3) Wait process request. Execution of a WAIT primitive 
by a CPU transmits this command to the SCU. The following SCU response is 
effected. 

e 	 The POE is received from the CPU. 

o 	 The CPU number field of the PCB is cleared. 

" 	 The process state bits are set to indicate the "waiting" 
state and the process' ready list entry is deleted. 

(4) Continue process request. This command corresponds 
to execution of the CONTINUE primitive by a CPU and initiates the following 

S0U response. 

* If the process is in the "waiting" state, the process state 
bits are set to indicate the "ready" state and an entry is 
made in the "ready" list; the dispatcher is executed. 

* 	 If the process is in the "waiting suspended" state, the 
process state bits are set to indicate the "ready suspended" 
state. 

(5) Suspend process request. This command is trans­
mitted to the SCU during execution of the SUSPEND primitive by. a CPU. The 
SCU responds in the following manner. 

o 	 If the object process is in the "running" state, a "preempt" 
command is sent to its associated CPU, and the SCU receives 
the process PCB. The process "ready" list entry is removed. 
If the object is not in the "running" state, this step is sldpped. 

The state bits of the PCB are set to indicate a companion 
suspended state. 

o 	 A copy of the PCB is sent to the CPU executing the SUSPEND 
primitive. 

(6) Release process request. Execution of a RELEASE 
primitive by a CPU generates this command to the SCU. The response of the 
S0U is dependent on the state of the object process. 

o 	 If the process state is "running suspended," the process 
state bits are changed to indicate the "running" state, the 
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identity of the object process CPU is ascertained, and a 

"dispatch" command issued to the CPU. The process 
"ready" list entry is inserted and the dispatcher is 
executed. 

o 	 If the process state is "idle suspended," "ready suspended," 
or "waiting suspended," the PCB state bits are changed to 
indicate the companion non-suspended state. In the case 
when the companion state is "ready," a ready list entry is 
inserted and the dispatchertis -exec-aIed. 

(7) Exit process request. The EXIT primitive, executed 
for process self-termination, causes this command to be sent to the SCU. The 
SCU responds in the following manner. 

o 	 The PCB is stored in a temporary "terminate" list froin 
which the system allocator may retrieve the CPU number 
and main memory locations to be released. The process' 
"ready" list entry is removed. 

o 	 The dispatcher is executed. 

(8) Abort process request. This command corresponds 
to execution of the ABORT primitive and initiates the following SCU response. 

&" 	 If the piocess is in the "running" state, a "preempt" command 
is sent to the object process CPU and the PCB is received. 

o 	 The object process POB is stored in a temporary "terminate" 
list from which the system allocator may retrieve the C PU 
number and main memory locations to be released. Addition­
ally, error analysis procedures may be initiated from the 
allocator. 

o 	 The process' "ready" list entry is removed and the dispatcher 
isexecuted.
 

c. 	 CPU control. Control of system CPUs by the SCU is 
accomplished through the collective actions outlined above. These are sum­
marized here to emphasize the total impact of the SCU. 

(1) CPU availability. The SCU makes CPU elements 
available as a computational resource through the accomplishment of switching 
actions that bring an element on-line to a specific configuration. 
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(2) CPU resource allocation. Through the complementary 
actions of dispatching and preempting CPUs according to an SCU executed allo­
cation algorithm, computational time is distributed among all competing program 
processes.
 

(3) CPU replacement. By accomplishing the determination 
of an element's topographical connections with other system elements, the SCU 
can effect replacement with similar spares. 

y and isolation. Through the 
ability to structure internally redundant system subsets and recognize notifica­
tion of disagreements with a majority, the SCU can separate transient and 
apparent hard failures and initiate corrective action. 

2. SCU Architecture. The functional nature of the SCU must be exam­
ined in greater detail before an optimal architecture can be specified. Very 
little arithunetic capability seems necessary. This is indicated by the predom­
inantly logical nature of the tasks having to do with process and configuration 
control. The dispatching function may or may not require arithmetic capabil­
ities depending on the details of the associated process selection algorithm. 

On the other hand, if the IMEC specification is to be general enough to 
satisfy a broad spectrum of mission profiles, it is clear that a high degree of 
flexibility in the form of open-endedness is desirable. A rather open-ended 
approach results from postulating that the SCU will be implemented with a 
general purpose computer such as the SUMAC. As a baseline, the SUMC rep­
resents a strong departure point and is therefore assumed in this report. 

. In order to provide a tangible implementation basis,, the functional 
nature of the SCU is discussed below in somte detail by way of emphasizing 
peculiarities. In particular, the action map is rough drawn, a summary of 
functions is given, basic instructions are specified, and a list of SUMC­
oriented specifications comprising an implementation framework are provided. 
Table 14 gives a summary of the SCU characteristics derived from these 
considerations. 

a. Functional overview. Figure 33 depicts a functional diagram 
of the SCU. The major data structures, located in local memory, are seen to 
be the action map (AM), process control blocks (PCBs), and ready list (RL). 
Inputs to the control and timing function from a clock, CPUs, or TM1R VDSCs 
cause activation of the Process Control, Configuration Control, or Faults 
functions. The functions Insert, Remove, Dispatcher, Exit, Abort and Faults 
can be invoked by the Process Control function and have to do with control of 
software processes and allocation of CPU time. The Configuration Control 
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TABLE 14 

SCU SUMMARY 

LOCAL MEMORY: 

Word Size (bits) 

Cycle Time (nanoseconds) 

Number of Words 


SUMC/SCU: 

Data/Register Path Width 
Word Size (bits) of SPM 
Cycle Time (nanoseconds) of SPM 
Number of Words in SPM 
Number of Words in IAROM 
Word Size (bits) of IAROM 
Bit Width of Seq. Cntrl. Unit 
Number of Words in IVROM 
Word Size (bits) of MROM 

18 
500-1000 
8192 

16 
16 
50 
8 
64 
9 
9 
512 
50 
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function, which handles switching of system elements, can be invoked either 
by Faults or a CPU under program control. A summary of SCU functions 
includes: 

p Configuration Mapping, 
o Configuration Switching,
 
e Configuration Status Reporting,
 
o Process Dispatching (CPU Allocation), 
o Process State Error Analysis and Recovery, 
* Process State Transition Monitoring, 
o Ready List (Job Stack) Manipulation, 
o Adaptive Process Control, and 
o Adaptive Configuration Control. 

. b. Action map structure. To support an estimate of LM size, 
this section describes a feasible structure for the action map. Figure 34 shows 
how a record is maintained showing which processor plug position is connected 
to each MI and MO bus. - In addition, the M and AP fields designate one memory 
plug position and its connected access port. A main memory unit connector 
block, as shown in figure 35, is used to record the connection (to a given bus) 
of additional MMUs. Each (M, AP) pair serves to specify a unique connector 
block and the unique location within the block of another (M, AP) pair connected 
to the same bus. Thus, the designator pairs form a chain linking together all 
M Us connected to a particular bus. Two connector blocks (one each for MI 
and MO connections) are required for each MMU. The MMIn is depicted.as 
having twelve (12) access ports, one for each of eight (8) CPUs and four (4) 
lOPs. 

Figure36 contains bus connection data for CPU/IOP and CPU/SCU; 
connection is via the fl/IO and SI/SO buses, respectively. The (I, IP)pairs 
serve to link together multiple IOPs connected to a common bus. The scheme 
is identical to that discussed above for MMUs and requires two (2) connector 
blocks, as shown in figure 3'7, for each IOP. 

Finally, figure 38 shows a possible data structure for recording and 
maintenance of VDSC connections when system operation is redundant. 

The system action map is seen to require somewhat under thirty-two 
(32) words (based on a 32 bit word) not including connector blocks. Assuming 
thirty-two (32) MMUs and four (4) IOPs, and packing the blocks, approximate­
ly two hundred eighty (280) additional words are required. Although status 
indicators (not shown) must also be maintained for all elements, these can be 
packed into the unused space of the action map. Therefore, the total (32 bit 
wide) space required for the AM is three hundred twelve (312) words. A six­
teen (16) bit wide space of six hundred twenty-four (624) is adequate. 
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c. PCBs and ready list. In addition to the AM discussed 
above, a process control block (PCP) is required in the SCU's local memory 
for each IVEC system process. Referring to figures 19 and 23, it is seen that 
each PCB takes tventy-five (25) 32 bit words (including one word to link them 
together). The determination of the number of software processes requires 
a knowledge of mission requirements. 

Figure 39 depicts a flexible structure for the ready list (RL) where n 
integral priority levels are accommodated. Each entry is comprised of con­
'ponents for maintenance of a ring at each priority level, a sub-priority indica­
tor, and a pointer to the associated PCB. This ready list structure can accom­
modate a relatively sophisticated dispatcher and may be considered, at three 
(3) 32 bit words per entry, to be a liberal structure. The average number of 
entries in the list is a random variable that is dependent on the mission and 
cannot, therefore, be estimated without suitable simulation or queueing analysis. 

d. Local memory. Based on the above discussion, an expres­
sion for the size of a 32.bit LM is available as 

=LM32 312 + 25p + n + 3e +s/2, where 
p = number of software processes, 
n number of priority levels, 
e = number of entries in 1L, and 
s = number of software instructions. 

As an example, assume p = 30, n = 10, e = 10, and s = 1000. Thus, 

LA13V2 1602 (assuming 16 bit instructions), and 
LM16 = 3204. 

From this admittedly crude analysis it appears that provisions for an 8K 16 bit 
LM are necessary for reasonable mission spectrum coverage. 

e. Scratch pad memory (SPM). Because of the relatively small 
LM word size compared to the number of words required, SPM will be required 
for indexing to access the data structures discussed above. Thirteen (13) bit 
words would be adequate for this purpose but, since a 16 bit SPM would allow 
LM and temporary data storage also, this greater width is preferred. See 
figure 40 for a layout of the eight word SPM. 

f. Instructions. The formats shown in-figure 41 are recom­
mended for software instructions. These formats were derived from the basic 
instruction repertoire given in table 15. 
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TABLE 15. SCU BASIC INSTRUCTIONS 

OPERATION ARGUMENTS FORMAT 'NOTATION MEANING 

ENA L I L -A Enter A 
SAR L 1 (A)R -L Store rightmost (10 bits of) A 
ENQ L ,1 L'-Q Enter Q 
SQR L 1 (Q)R'-L Store rightmost Q 
J L I L -PC Jump 
JR L I (PC) - L; L+1-PC Jump Return 
JI L 1 (L) -PC Jump Indirect 
ENX X, K 2 IH-X Enter Index 
XA X 2 (X) -A Index to A 
AX X 2 (A) -X A to Index 
SAQ 1 (A) .. Q; (Q) -A Swap A and Q 
IA L 1 (A)+L -A Increase A 
IX X, K 2 (X)+K '-X Increase X 
L X, K 2 ((X)+K ) -A Load A 
S X, K 2 (A) -(X)+K Store A 
AD X, K 2 ((X)+K) + (A) -A Add to A 
SU X, K 2 (A) - ( (X)+K') '-A Subtract from A 
M X, K 2 (A) x ((X)+K) -AQ Multiply 
D X, K 2 (AQ) - ((X)+K) -A; R -Q Divide 
OR X 2 (X)v(A) -A. Or X with A 
AND X 2 (X)/\(A) -A And X with A 
EOR X 2 (X)@(A) -A Exclusive - Or X with A 
ML X, K 2' ((X)+K)A(Q) -A Masked Load' 
SRA W 3 (A) x 2 - w -A Shift Right A end off 
RA W 3 (A) x 2w + (A) x 2- w -A Rotate A Left (end around) 
SLAQ 
RQ 

L 
W 

I 
3 

(AQ) x 2 L -AQ 
(Q) x 2w + (Q) x 2- -Q 

Shift Left AQ end off 
Rotate Q Left (end.around) 

SAE L 1 If (A) = L, Skip Skip A equal 
SXZ I, .K 2 If (X) = K, Skip Skip X equal 
0C C, X, W 3 Output W words beginning at (X) to CPU C Out to CPU 
IC C, X, W 3 Input W words beginning at (X) from CPU C In from CPU 

-DC C 3 Dispatch CPU a Dispatch CPU 
PC C 3 Preempt CPU C Preempt CPU 

H SC L I Signal CPUwith Command L Signal CPU 



D. Iaput/Output Processor (IOP) 

The IOP frees the CPU from the procedures required to accomplish 
data transfers. The significance of lOPs is shown in figure 1, Multi-Element 
Configuration. 

The lOPs, then, initiate and monitor the following categories of data 
transfers upon command of a CPU: 

e" CPU-peripheral device, 
e Peripheral device-main memory, and 
* 	 Peripheral device-peripheral device. 

In the above a peripheral device is considered to be a device that is 
connected to a DBT. This section outlines lOP operations, instructions, and 
an architecture for the IOP. 

1. I/O Operations. Since the TOP is dedicated solely to this, purpose 
it is germane to permit operation on a polling basis. This will be Acooperative 
venture between the IOP and the attached DBTs. Trade studies are required 
to determine whether or not variable polling sequences are required. However, 
whatever the sequence, the TOP will interrogate each DBT in turn for an I/O 
demand or response. The device will respond either with an ACK, Reject, or 
by transmitting the buffered message. Upon successful receipt of the message, 
the OP will in turn reply to allow the device to clear its buffer and'accumulate 
further data.
 

a. Data transfers. For CPU-peripheral device bidirectional 
transfer, which is considered to be a transfer using the Input Data Direct (ID) 
and Output Data Direct (OD) instructions to communicate with SPM, the. follow­
ing events must occur: 

o 	 The IOP detects the request from the CPU by interpretation 
of the transmitted data. 

o 	 If the request is an OD, the IOP initializes the peripheral 
device by transmitting an appropriately encoded command. 
The TOP then raises the POLL REQUEST signal to the CPU. 
The CPU, after recognition and service of the signal, out­
puts the first word from its PRR to the access port of the 
lOP. The IdJP perfomns the appropriate reformatting and 
outputs the encoded message to the peripheral device which 
acknowledges receipt. If the CPU command requires notifica­
tion of a termination condition, the IOP inputs status from the 
DBT and then signals either successful completion or a failure. 
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o 	 If the request is an ID, the IOP inputs the information from 
the device DBT buffer, assembles the word and signals the 
CPU. After the CPU has polled the IOP, the data is.made 
available on the access port for the appropriate CPU, which 
can then input the word and signal successful completion or 
failure to the lOP. 

For communication between peripheral devices and main memory, the 
following factors must be accounted for: 

o 	 Upon detection of the request, the TOP activates the appropriate 
data path between memory and the peripheral device. 

e 	 For a read to memory operation the DBT device control buffer 
is loaded with the device transfer address, the number of words 
to transfer, and the destination address. Upon command of the 
IOP, the device begins transmission. The LOP receives each 
word, and -executes the required formatting operations. When 
the word is assembled, the IOP requests a memory access. 
When the memory word is written, the IOP indicates ready 
for the next word. Termination can be invoked either from 
the device or from the TOP. 

o 	 For an output from memory to a device, the approximate 
converse of the above operations takes place after initial­
ization of the DBT/device control buffers. The IOP requests 
access to memory and upon receipt of the word, changes the 
data to data bus format and outputs to the bus. Upon receipt 
of transmission, the DBT performs any required reformatting 
of the information into device-amenable format, and transfers 
the buffered data to the device. Each transmission is acknowl­
edged. Error and/or completion notification signals to the CPU 
are generated upon termination by the IOP. 

o 	 To initiate peripheral device to peripheral device transfer the 
IOP commands a destination device to be ready to accept data 
over a defined data path, and acknowledge completion of the 
transfer. The source device is then commanded to transfer 
a prescribed number of words. 

b. Bus operations monitoring. The IOP must provide for'bus 
operations monitoring of message and hardware statis. Message statistics are 
accumulated to provide a measure of system loading based on queue length. 
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In a similar way hardware status and activity monitoring must be 
performed to permit possible reconfiguration in the event of device failure. 

These status queues must be available to the CPU in a terse but intel­
ligible format. Status information is transmitted from the IOP to the CPU 
upon demand. This collated information is based on raw status information 
transmitted by the DBT to the IOP upon: 

" 	 Demand, 
o 	 Termination due to completion, 
o 	 Termination due to failure, and 
• 	 Termination upon command of the CPU. 

2. IOP Architecture. An overview of the IOP resulting from the 
allocation of functions among the different hierarchies of subsystems involved 
in data transfer is shown in figure 42, Overall Block Diagram of SUMC Imple­
mented as aft I/O Processor (IOP). 

Although minimu-m modifications to the basic SUMC, including an 
additional memory access port for format memory, are required to implement 
the IOP, optimal performance will require restructuring of the micrologic in 
the MROM and the addition of appropriate control and status lines between the 
SUMC and the i/O multiplexers. While Adder 2 is apparently not required for 
the IOP, a substantial redesign of the SUMC is required to eliminate it, which 
is beyond the scope of this report. 

In order to delineate the LOP capability required, the following topics 
must be analysed: 

o 	 LOP to CPU communication, 
o 	 lOP program commands, and 
* 	 lOP Scratch Pad layout. 

a. IOP to CPU communication, As illustrated in figure 43, 
IOP State Diagram for CPU-IOP Dialog, the following considerations are 
relevant: 

o 	 The dormant or OFF state is exited by applying power to 
the LOP, sending it to the IDLE state. 

0 	 Transition to the READY state is effected b3y a CPU 
initialization signal. 
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o 	 If the CPU desires to transmit information to the IOP, it 
utilizes the Poll signal. This causes the IOP to enter the 
ADDRESS RECEIVE state. Receipt'of an address from the 
CPU will cause the IOP to compare it with its own ID. Here 
a match will cause the IOP to enter the INPUT state and 
transmission may proceed. Conversely a mismatch implies 
that the CPU has a dialog with a different IOP. Therefore 
the CPU BUSY marker for the appropriate CPU must be set. 

* 	 If the IOP must transmit to the CPU, the POLL REQUESTING 
state is entered, after the CPU becomes available, causing 
the Poll Request signal to be output and a transition to the 
READY state invoked. The CPU ACK signal will cause the 
OUTPUT state to be convoked, in which information transfer 
to the CPU can proceed. 

o 	 The CPU EOM signal must reset the CPU BUSY signal in
 
each IOP to indicate CPU available.
 

o 	 The IOP may enter the EdO state from either the INPUT
 
or OUTPUT states.
 

0 	 Successful higher state terminations lead to the READY
 
state for further CPU commands.
 

o 	 Anomalies evidenced by a Reject signal cause transition
 
to a higher state ERROR. This state is presently not
 
defined.
 

Signals utilized in the preceding discussion are shown in figure 21, CPU Control -
Bus Communication Output Parameters. 

b. IOP program commands (ECOs). In a similar manner to 
PCOs, additional ECOs are recommended to expand capability of baseline /8/. 
Recommended ECOs are shown in table 16 as follows: 

o WRITE (Output to destination device) (WO),
 

§ READ (Input to destination device) (RI),
 

o TRANSFER (Source to destination device) -(XF),
 

" TRANSFER IN COMMAND (Jump) (JU),
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TABLE 16. EXTERNALLY CONTROLLED OUTPUT INSTRUCTIONS (ECO) 

MNEMONIC 
CODE OPERANDS DESCRIPTION 

WO Command 
Packet 
(figure 44) 

The data path designated by the Command Packet is established. 
from the source to the destination device is initiated. 

Data transfer 

RI Command 
Packet 

The denoted data path is established. 
source device is initiated. 

Data transfer from destination device to 

XF Command 
Packet 

A data path is established from source device to destination device. The source 
device is commanded to transfer the number of words denoted in the Command 
Packet. 

JU Address Contents of Address - PC, FETCH ECO. 

HA - IOP enters idle state. 

ACK CPUID An acknowledge signal is sent to the denoted CPU. 

RJ CPUID An error signal is sent to the CPU. 

P0 CPUID A poll request signal is sent to the designated CPU. 

LS R, N, Address N words of format buffer memory are loaded into SPM beginning at location R, 
if N > k the instruction is skipped and the succeeding instruction executed, if 
N k the instruction is executed and the succeeding instruction skipped where k 
will be derived by future study. 
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" HALT (Halt) (HA),
 

e ACKNOWLEDGE (ACK),
 

o REJECT (RJ),
 

" POLL REQUEST (PO),
 

o 	 LOAD SCRATCHPAD (SPM] FROM MEMORY (LS)
 
and, in addJtten to the ECOs,
 

" 	 COMMAND FORMAT (Kernel for output to data bus). 

C. TOP scratch pad layout. Based on the -preceding discussions, 
a storage requirements analysis for parameter storage is presented in figure 45, 
lOP Scratch Pad Memory Configuration. 

Parameter storage falls into three areas: 

a 	 Variables required to support TOP operations; for
 
example, Program Counter, Index Registers, etc.
 

o 	 Variables concomitant with maintenance of hardware 
status information, and 

G 	 Variables associated with message status and SUMC­
TOP-peripheral device communications. 

Presently 256 words of SPM for an TOP appear adequate. 
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