
NASA CONTRACTOR

REPORT

SPACEBORNE COMPUTER MULTI-ELEMENT

SYSTEM CONFIGURATION ARCHITECTURE

REFINEMENT: TASK 1 REPORT

Prepared under Contract No. NAS8-26698 by

J.R. Kennedy, Sr.

R.T. Cdrran

B.P. Buckles

W.A. Hornfeck

FIELD SERVICES DIVISION
Aerospace Systems Center

Spaceborne Executive Project

For

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER 	 00] 791

Huntsville, Alabama 	 S1Ih V ;
September 3 G971lpt

(CESSION-NUMBER) 	 HU

. (PAGES) 	 (C

U (NASA CR ORTMX OR AD NUMBER) (CATEGORY)'

LNATIONAL ,TECHNIcALi
INORMATION SERVICE

5ptofr~da.22152,

" ECHNICAL REPORT STANDARD TITLE PAGE
1. REPORT HO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

4. TITLE AND SUBTITLE S REPORT DATE
Spaceborne Computer Multi-Element System Configuration September 30, 1971

Architecture Refinement: Task 1 Report S. PERFORMtNG ORGANIZATION CODE

7. AUTHOR(S) J. R. Kennedy, R. T. Curran, B. P. Buckles, and a.PERFORMING ORGANIZATION REPORr

W. A. Hornfeck
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.

Computer Sciences Corporation

Field Services Div. , Aerospace Systems Center 11. CONTRACT OR GRANT NO.

8"300 South Whitesburg Drive NAS8-26698

13. TYPE OF REPORT & PERIOD COVEREDHuntsville. Alabama 35802

12. SPONSORING AGENCY NAME AND ADDRESS
Contractor Report

National Aeronautics and Space Administration-

Washington, D. C. 20546 1-. SPONSORING-AGENCY CODE

15. SUPPLEMENTARY NOTES

Work performed for George C. Marshall Space Flight Center Computaton Laboratory.

S16. ABSTRACT

This report presents an architectural study of a spaceborne computer
system operating in a multi-element configuration. The system is described
in prose and illustrated in functional flowcharts and diagrams. Requirements
for high reliability and minimal SUMC logic impact are the major guidelines-
The system comprises several SUMC central processor units, several input/
output processors, a single system control unit, and several main memory
units. The CPU architecture is described in terms of modifications to micro­
instruction fields, main memory access, process control, input/output,
configuration control, and scratch pad memory organization.

17 KEY WORDS 8. DISTRIBUTION STATEMENT
Architecture, ReconfigurationD

lIultiprocessor Multi-element Config- Unclassified - Unlimited

[ofiputer
Degraded Operation uration
Dnboard Computer Instruction Repertoire
S 6paeborne Cornpuier Microprogram ing ,
ace Ultrareliable Central Processing thit
Modular Computer Memory Unit

)pares Svitchinlg Input/Output Processor

19. SECURITY CLASSIF. (C4 thia 1apat) 120 SECURITY CLASSIF. (of thlo pazg) 121. NO. OF PAGES 22. PRICE

tUnclassified Unclassified 130-

*FC" 196p)Foer, 3292 (May

PRECEDING PAGE BLANK NOT FILMED

FOREWORD

The work reported herein was administered in the Systems Research
Branch, Computer Systems Division, Computation Laboratory, MSFC, with
Bobby C. Hodges assigned as Contracting Officer's Representative. In addi­
tion to his routine duties as Technical Monitor, Mr. Hodges has added signif­
icantly to our insight into and understanding of related NASA programs through
careful planning, coordination with in-house effort, and, encouragement.

Acknowledgement is due C. N. Swearingen and numerous MSFC
Astrionics Laboratory personnel who originated the Space Ultrareliable
Modular Computer design and have been the focal point of subsequent develop­
ment. Their efforts have significantly advanced the state-of-the-art in flight
computer hardware. Numerous discussions and technical interchanges with
them have enhanced our understanding of the concepts of spaceborne computa­
tional hardware. Our appreciation also goes to personnel of the RCA Advanced
Technical Laboratory who are currently fabricating a 16-bit CMOS design
verification model of the SUMC, and have been willing to engage in frequent
informal conversations that have greatly aided our research efforts.

fii

TABLE OF CONTENTS

Page

SUMMARY 1

SECTION I. 	 INTRODUCTION 3

SECTION II. 	 MULTI-ELEMENT CONFIGURATION

(EC) OVERVIEW 5

A. Configuration Summary 5

B.- System Buses 10

C. Configuration Synthesis and Switching (CSS) . . 11

D. Configuration Examples 12

SECTION I1. 	 ELEMENT DESCRIPTIONS.
. 17

A. Main Memory Units (MMUs) 17

1. Organization 	 17

2. Operation 22

B. Central Processing Units (CPUs) 25

1. SUMC Baseline	 26

2. Baseline Departures 33

3. Special Instructions 65

C. System Control Unit (SCU) 88

1. SCU Operations/Functions 90

2. SCU Architecture 98

D. Input/Output Processor (IOP)............ 	 112

1. I/O Operations 112

2. IOP Architecture 114­

iv

LIST OF ILLUSTRATIONS

Figure Title 	 Page

1. Multi-Element Configuration 6

2. Uniform Full Non-Dedicated Multiprocessor Structure 15

3. Uniform Full Dedicated Multiple Simplex Structure 16.

4. Memory Element-Processor Access Control18

5. Multiprocessor Main Memory Module 19

6. Multiprocessor Main Memory Module Detail 24

7. SUMC Block Diagram 28

8. Microinstruction Word Format for MROM 29

9. Main Memory Access Instruction Format. 31

10. Programmable Registers 32

11. Option 1 - Bus Control Instructions 34

12. Option 2 - Bus Control Instructions 	 35

13. 	 Option 1 - Input/Output Processor (IOP) 36

14. 	 Optioff 2 - IOP Block Diagram. 37

15. 	 Bank Register Low Address/Bank Register High

Address Formats 41

16. 	 Address Generation 42

17. 	 Memory Address Routing 44

18. 	 Process Relocation and Phased Addressing 46

19. 	 Process Control Block 48

20. 	 Process Control State Diagram"..... 52

21. 	 CPU Control Bus Communication Output Parameters 56

22. 	 System Dedicated Scratch Pad Memory 61

23. 	 User Related SPM Section -......... ... 62

24. 	 Non-Dedicated Scratch Pad Memory 63

25. 	 IOP Communications Packet 66

26. 	 Interrupt Status Format7

V

LIST OF ILLUSTRATIONS (Continued)

Figure Title 	 Page

27. Arithmetic Fault Mask and Status 68

28. SPM Address Generation 69

29. Stack Implementation 85

30. Enable and Arm Mask for IMS and IAD Instructions 89

31. Svitch Control Word Field Format 92

32. Copy Connect Word Field Format 94

33. SCU Functional Diagram i..100

34. Action Map Connections for Processor/MMU 102

35. MIU Connector Block 103

36. Action Map C onnections for CPU/IOP and CPU/SCU 104

37. TOP Connector Block 105

38. Action Map Connections for VDSCs 106

39. Ready List Structure 108

40. SCU S6ratch Pad Memory 109

41. SCU Instruction Formats 110

42. Overall Block Diagram of SUMC Implemented as an IOP 115

43. 	 IOP State Diagram for CPU-IOP Dialog 116­

44. 	 ECO Command Packets 119

.45. 	 IOP Scratch Pad Memory Configuration for Parameter

Storage 121

vi

LIST OF TABLES

Table Title Page

1. Computer System Bus Complement11

2. Memory Module Legend 20

3. Control Line Settings22

4. Process Control Block Entry Descriptions 49

5. Process State Definitions 51

6. CPU Control Output Parameter Description 57

7. Configuration Control 71

8. Primitives 75

9. Recovery/Trac.e Instructions 78

10. Programmed Control Instruction Definition 80

11. List/Stack Instructions 82

12. Interrupt Processing Instructions 86

13. Svitch Control Word Field Definitions 91

14. SCU Summary 99

15. SCU Basic Instructions Ill

16. Externally Controlled Output Instructions (ECO) 118

vii

DEFINITION OF SYMBOLS

Symbol Definition

ACK Acknowledge

ALU Arithmetic Logic Unit

AM Action Map

ARG Address Request Gating

ASD Auxiliary Storage Devices

BA Bank Address

BCC Bus Channel Controller

BPA Break Point Address

BPO Break -Point Operand

BRHA Bank Register High Address

BRLA Bank Register Low Address

Ci Data Bus Carrier Frequency

CLT Control Logic and Timing

CPU Central Processing Unit

CSS Configuration Synthesis and Switching

CVTV -Concept Verification, Testing tond Validation

DBT Data Bus Terminal

DM A Direct Memory Access

DR- Data jRegister

EASR End Around Shift Register

ECO Externally Controlled Output

FHD Fixed Head Disk

FM Format Memory

IAROM Instruction Address Read Only Iemory

II lOP Input

IO lOP Output

viii

DEFINITION OF 	SYMBOLS (Continued)

Symbol 	 Definition

lOP 	 Input/Output Processor

LM 	 Local Memory

M 	 See MMU

MAR Memory Address Register

MC Multi-Element Configuration

MI Memory Input

MMU 	 Main Memory Unit

MO 	 Memory Output

MROM Microprogrammed Read Only Memory

MRU Multiplexer Register Unit

MUX Multiplexer

PC Program Counter

PCB Program Control Block

PCO Program Controlled Output

PRR Product/Remainder Register

RDAU 	 Remote Data Acquisition Unit

Si 	 Switch Control Line

SCU 	 System Control Unit

SEQ-IC 	 Sequencer/Iteration Counter

SI 	 SCU Input

SM 	 Set-up Map'

SO 	 SCU Output

SPM 	 Scratch Pad Memory

SUMC 	 Space Ultrareliable Modular Computer

TMR 	 Triple Modular Redundant

See VDSC

VDSC 	 Vote, Decision and Svitch Control

WAR Word Address Register

Z Effective Address

ix

V

SPACEBORNE COMPUTER MULTI-ELEMENT

SYSTEM CONFIGURATION

ARCHITECTURE REFINEMENT: TASK 1 REPORT

SUMMARY

This report comprises an architectural study of a spaceborne computer
system operating in a multi-element configuration (lEC). Sufficient detail is
present to support the design of an on-board executive system. The study has
been based upon computation requirements for extended space missions (little
or no human maintenance) augmented by certain requirements based upon the
Space Station, and upon the assumption that the SUMC (Space Ultrareliable
Modular Computer) is used as the basic computing element. The most doin­
inant study guideline was that architectural features should have minimal impact
on the SUMC design.

The multi-element configuration is first discussed at the system level
in order to provide an overview and the remainder of the report is then devoted
to the individual element descriptions. The spaceborne computer multi-element
system consists of several SUMM central processor units (CPUs), several
input/output processors (IOPs), a single system control unit (SCU) arlid several
main memory units. The interconnection of these elements by appropriate
system buses can be accomplished under program control, thus achieving a
dynamically recolfigurable system. Provided that a sufficient number of
processors are available, the system could operate in a multiprocessing mode,
T RI (triple-modular-redundant) mode, dedicated simplex mode or combina­
tions of these.

Main memory for the system will consist of a number of identical
8K x 36 bit memory units. System organization allows any processor (CPU or
IOP) currently operating to access up to 32 main memory units.

The major element of the MEC is the central processor. Since the
system structure as depicted in this report is based upon the -SUMC, the ap­
proach to CPU architectural specification is to summarize the baseline SUMC
definition, and then .define departures from this baseline. These departures
are shown to be necessary and sufficient for efficient operation in a multi­
processor environment.

The CPU architecture needed to achieve efficient multiprocessor opera­
tion is described in terms of modifications to microinstruction fields, main
memory access, process control, input/output, configuration control, and
scratch pad memory organization. Additional special instructions are also
discussed which are either required for MEC operation or desirable for addi­
tional programming effectiveness.

The single system control unit acts as a system supervisor and the
functions it performs are principally supportive. The SCU could be imple­
mented as a simplex SUMC unit operating as an internally redundant system
controller. The role of the SCU during configuration control, CPU control, and
process control is discussed, and the SCU architecturb is defined.

The input/output processors provide the logical interface between the
other elements of the M\4EC and the variety of peripheral devices that can be
connected to a digital data bus through data bus terminals such as those base­
lined for the space station. Each IOP could also be implemented as a basic
SUMC unit having the capability to control data transfers, monitor bus opera­
tions, and communicate with system CPUs. The IOP would then free the CPUs
from many of the procedures involving data transfers and I/O operations.

2

SECTION I. INTRODUCTION

This report is submitted in compliance with requirements of NASA
Contract Number NASS-26698 for an interim report of a spaceborne computer
system operating in a multi-element configuration. The current study is
directed toward architectural refinements with subsequent work to be devoted
to design of the software executive.

The computational requirements of an extended space flight mission
such as the Space Station/Base necessitate a processing system of considerable
adaptability. Failure tolerance, power consumption, and throughput represent
parameters which frequently change in value during the mission life-span.
Research efforts directed toward achieving this flexibility have resulted in the
design (and current fabrication) of the Space Ultrareliable Modular Computer
(SUMC) by the Marshall Space Flight Center Astrionics Laboratory. Support­
ing elements and subsystems, at various levels of detail, have been proposed.
It is the purpose of this report to expand the definition of these elements and to
describe their inter-relationships sufficiently to support the development of a
detailed on-board executive system design.

This effort was divided into a basic cycle of twro steps. First, for each
elemental system component an element description and functional design (if
available) were chosen from previous research to represent the baseline
approach. This baseline was used to establish a framework for-discussion a.nd
to derive minimum capability criteria. Second, modifications and additions to
the functional design were incorporated to support the inter- element commun­
ications necessary for performance of basic processing functions as well as
"reconfiguration and spares switching. Where necessary, supplemental detail
was included to elucidate or demonstrate feasibility of the derived approach.

For one element, the system control unit (SCU), a deviation from the
above pattern occurs. Available literature is characterized by a lack of detail
explicitly describing configuration control mechanisms. In an effort to pro­
pound a viable, coherent approach, an SCU, fabricated from SUMC logic, is
included as part of the processing system configuration to fill this void.

The initial portion of this report delineates the gross relationships of
the SCU and other elements to the total system. The remainder is devoted to
analysis of the specific organization of each key element of the configuration.
Emphasis is placed on the main memory units (MMUs) ,. central processing units
(CPUs), SCU, and I/O processors (lOPs). It was not necessary to devote equal
attention to the remote data acquisition units (RDAUs) and peripheral devices since
the structure of the IOP is sufficiently flexible to negate their impact on system
design.

3

Pk E1DING PAGE BLANK NOT FILMED

SECTION II. MULTI-ELEMENT CONFIGURATION (MEC) OVERVIEW

This section provides an overview of the major components comprising
the multi-element configuration (MEC). The purpose ,of the overview is to
discuss in system-level terminology the functional nature of the various sys­
tem elements and their gross interrelations. This overview provides a frame­
work for functional specifications given in Section III.

A suminary of hi&eMEC is given first. This summary is based upon a
generic diagram of element interconnections. Buses for inter-element data
and control exchange are discussed, and a scheme for switching is presented:
Based upon this scheme, reconfiguration and spares switching is summarized
and several examples of feasible configurations are presented.

A. Configuration Summary

Figure 1 illustrates the MEC in a generic form. With the exception of
the blocks labeled Vxx," "L , t and "SCU, " each block represents one or
more copies of the symbolized element. For instance, the block labeled "IM"
represents one or more electronically equivalent main memory units (MMUs),
each having several identical sets of input lines (one set for each processor
potentially having access to the main inemory unit) and corresponding sets of
output lines. The pairs (input and output) of corresponding processor access
lines are referred to as processor access "ports. " Thus there is a distinct
port for each of several processors that may have access.

The input port set is comprised of both memory input data lines and
processor-to-memory control lines; the output port set is similarly comprised
of memory output data lines and memory-to-processor response (or acknowl­
edge) lines. The main memory unit contains sufficient logic for selection of
one and only one port to establish a communications path to one and only one
processor during a small time interval. By approprfate logic, the selection
criteria can be organized in a number of ways. Preferential logic is usually
employed to favor input/output processors over central processors in the
event that two such processors simultaneously request access.

Except for this possible preferential selection, the main memory unit
functions and responds identically in communications with central processing
(labeled "SUMC') and input/output processing (labeled "IOP") units of the 1[EC
diagram. For this reason, the access ports for SUMACs and lOPs are indis­
tinguishable.

The Space Ultrareliable Modular Computer (SUMC)elements function
as the system central processor units (CPUs). The CPUs are (essentially)

BUSES

SI '
Ii

v

101

C2 ----DlvS

0-'-... '1l- iSo

_ _ __ __ __SO
_ _ _

SO 1

FIGURE 1

MULTI-E LE ME NT CONFIGURATION

unaltered SUMCs having a single set of main memory access lines connectable
to one of several main memory access buses (MI and MO in figure 1). Connec­
tion of one or more main memory elements to this bus structure through a
corresponding port thus provides the necessary path for CPU access to those
main nemory elements.

In addition to the main memory access lines, a set of I/O lines for
control of one or more IOPs is provided. These lines (II and TO in figure 1)
correspond to the 18 high-numbered PRR bits (18-35) for CPU control and
data output to the IOPs, and the 18 high-numbered MPXB1 bits (18-35) for
IOP status, requests, and data input to the CPU. All IOPs controllable by a
particular CPU are accessible through a unique port functionally similar to

the main memory ports. Each IOP on the I/O lines of a CPU is uniquely
addressable thus permitting a CPU-initiated dialog. An IOP-initiated dialog
is supported through an IOP-to-CPU "poll request" (interrupt) control line
signal followed by a CPU-controlled poll of all connected TOPs until.an acknowl­
edge from the requesting IOP is recognized. When an acknowledge is received,
the CPU I/O lines are get to indicate "busy" until the dialog is completed. The
poll request (or I/O interrupt) line is switched between the control logic and
timing block and MPXBI in the SUMC.

The I/O lines are used primarily to initiate IOP action and to"check or
sense status. Consequently, this traffic is low. The pair of unidirectional
buses should therefore be adequate to support multiple IOPs. Transfer of a
limited volume of device/CPU data (say 15 characters/second for pluggable
computer system console operations) could also be sustained with little or no
system degradation.

The IOP has multiple access ports for control by several CPUs. In
addition, each IOP is connectable through one of several buses for access to
main memory elements having a port connected to the-IOP's memory access
bus.

The "Cs" shown on the IOP block are representative of data bus carrier
frequencies corresponding to several "channels. " The IOP contains modem
pairs for each channel frequency. A bit-serial keyed amplitude modulation
scheme is representative of the capability envisioned.

The IOP is depicted in subsequent text as a modified SUMC micro­
programmed to perforn main memory program controlled input/output. The
main memory program is comprised of a set of specially formatted IOP ­

commands (instructions) structured to direct the IOP in the transfer of I/O
data between main memory elements and data bus terminals, and in the initia­
tion and control of data transfers between arbitrary devices attached to the

7

http:until.an

data bus (assuming the devices have this capability). As is discussed in more
detail later, hardware additions to the basic SUMC to transform it into an IOP
for support of input/output include a channel selection input multiplexer, a
multiplexer for CPU input line selection, selectors (demultiplexers) for both
CPU and channel output, and appropriate control logic and timing to efficiently
support the input/output function.

- The depicted IOP is a combined "input/output processor" and "bus
control unit. " Because of the SUMC stored logic control capability, -and the
inherent-ability to monitor data bus activity via the added channel demodula­
tors, a flexible device with high growth potential can be fabricated using SUMC
chips. This approach seems to offer a cost effective method for achieving
applicability to a broad spectrum of missions.

The system control unit (SCU) block is representative of a functionally
simplex unit having system-level executive control over configuration switch­
ing actions, CPU dispatching (allocation of CPU time to programmed processes),
and redundant mode operations failure detection, isolation, and spares switching.

The ScU is envisioned to operate (always) as an internally redundant
(say, TIAR with spares) system controller. It maintains a map of the current
configuration and actuates switching networks to accomplish reconfiguration
and spares switching under the direction of executive routine control. It also
performs the dispatching function on the basis of a process ready list. Special
instructions are defined for execution on the oPUs. These instructions result
in requests made by the CPUs of the ScU.

The SCU has an access port for each CPU consisting of the low-numbered
18 SUMO PRR bits for CPU-to-SCU transfers, and the low-numbered 18 SUMC
MPXB1 I/o data input lines to ADI for SCU-to-CPU transfers. Thus, the
36 bit SUMC I/O data paths are shared by the SOU (high-numbered 18) and
IOPs (low-numbered 18). An additional "attention" line from the SCU to each
CPU is required. The data and command transfer volume between CPUs and
the SCU is low, being primarily of a control nature. For this reason, 18 bits
for each direction is felt to be adequate.

The "Ss" shown on the SCU block of figure 1 are switch control lines
for the purpose of connecting main memory, central processor, and input/
output processor element plug positions to the various system buses to estab­
lish the communication paths necessary for a given system structure.

The S0U is envisioned to operate under program control out of the
small local memory block labeled 'LM. " LM is internally redundant in a
manner consistent with SOU redundancy. It is estimated that LM will be

8

about 8000 16 bit words, and that the SCU work load is sufficiently low to
suggest an implementation based upon a 16 bit version of the SUMC with a
small instruction repertoire. The SCU is tentatively shown having no access
to system main memory since system operation can be effected without SCU
access to main memory; but, since the location of SCU programs is somewhat
arbitrary, final configuratioi selection is temporarily left open for further
analysis.

The.remaining blocks in the diagram labeled "V xl are voting and dis­
agree detection logic to support redundant configurations only. The blocks
are shown having three sets of lines to support a TMR configuration. The
label subscript "xx" has the following meaning:

xx Meaning

MI MMU input bus
MO MMU output bus

- II IOP input bus
I0 IOP output bu1s
SI SCU input bus
SO SOU output bus

Vii and Vsi are identical, as are Vic and Vso, because the number of
lines involved is identical (and, of course, the functions are identical). Thus,
four distinct voting and disagree detection networks are required, differing
only in data path width.

Not shown are identical lines from each Vxx going into the SCU for the
purpose of indicating failures and identifying the disagreeing (TIR) path.
(Reference I contains a discussion of the concepts involved in failure detection,
configuration control, and switching that is the basis for the MIEC scheme dis­
cussed here.)

In order to establish realistic numbers to be used for the development

of tables, instruction fields, etc. , a complement of elements comprising the

WlC is assumed as follows:

1Kennedy, Sr. , J. R.: SUAIC Multiprocessor Configuration Control Analysis

and Specification. Contractor Report Prepared under NASA Contract

NAS8-18405 by Computer Sciences Corporation, Huntsville, Alabama,

June 14, 1971.

9

Number of Elements Assumed:

IOP - 4 spares included
MMU - 32
SCU - 1 + possible spares
VMI - 2 + 6 possible spares
VMO - 2 + 6 possible spares
VII - 1 + 7 possible spares
VIO .- 1 + 7 possible spares
VSI - 1 + 7 possible spares
VSO - 1 + 7 possible spares

B. System Buses

Data flow is accommodated between subsystems over six sets of buses
comprising

o Main memory access buses,
o Input/output processor buses, and
o System control unit/SUMC buses.

Main memory access buses provide for the data paths and control sig­

nals required by the SUMCs and the IOPs to store and retrieve information
from the main memory elements. MI is comprised of 32 bits data,' 18 bits
of address information, 5 bits of control information, and 7 bits for parity,
giving a total of 62. Thirty-two bits for data transfer, 4 control bits, and an
additional 4 bits for parity, gives a total width of 40 bits for MO. Buses are
required for each SUMC and each IOP resulting in an assumed total of 12 MI
and MO buses.

In addition to main memory communication buses, there are two other

sets of buses: the input/output processor buses and system control unit buses
which provide for communication capability between the following system
elements:

e SUMC/Input Output Processor (IOP), and
" SUMO/System Control Unit (SC U), respectively.

Input lines required for the IOP and SCU total 18. Onbthe output side
the IOP and SCU have 19 lines (18 with parity, 1 control). Table 1 summarizes
the system bus structure.

10

TABLE 1. COMPUTER SYSTEM BUS COMPLEMENT

No. Minimum
Bus Lines No. Buses Remarks

Memory Input (\1) 62 12 One for each SUMC and lOP
Memory Output (MO) 39 12 One for each SUMC and IOP
SCU Input (SI) 18 8 One each SUMC
SCU Output (SO) 19 8 One each SUMC
lOP Input (II) - 18 8 One each SUMC
lOP Output (IO) 19 8 One each SUMC

C. Configuration Synthesis and Switching (CSS)

As'mentioned previously in the summary, the MEC is capable of assum­
ing many different configurations. Since the structure depicted is general with
regard to data path organization, it is possible to operate several configura­
tions simultaneously. These configurations can be similar or not, or function­
ally dedicated or not, depending on the mission requirements for reliability,
allowable power consumption, throughput, and other identifiable parameters
that can in some arbitrary way be associated with a specific configuration.

The potential for variability in configuration is limited at any given
time primarily by the number of serviceable system elements of each type,
and the number of usable data paths that can be"established. An additional
constraint on the variability in configuration is, of course, the existence of
one or more programmed processes for control and allocation of the elements
comprising the various configurations. Since the purpose of subsequent tasks
is to analyse and define these programmed processes, this report defines a
capability for attaining a high degree of configuration variability, and assumes
that programmed processes can be defined to effectively utilize the capability.

With regard to the CSS function, this report discusses refinements to
the concepts outlined in reference 1. The refinements consist mainly of organ­
izing a set of rather general instructions into a compatible 32 bit word instruc­
tion format based upon an assumed number of available system elements of
various types. Additional refinements are comprised of formatting a system
map that conforms to the assumed element set, and a division of functional
responsibility between executive routine algorithms executing on a CPU and
executive routine algorithms executing on the SCU. This division of respons­
ibility unambiguously delineates the CPU/SCU communications dialog required
to accomplish the CSS function.

"i1

The role of the CPU executive is to construct a specific configuration
map based upon element and bus availability and status. Availability and status
information is obtained by a CPU from the SCU which maintains a current map
of connections, and element and bus status. This availability and status in­
formation is returned to the CPU executive in the form of sense instruction
responses. Once a map has been constructed by the CPU executive, it is
transferred to the SCU. The executive routine algorithms in the SCU use this
map to construct the necessary switchnetwork commands for achieving the
desired system structure. After all switching operations have been carried
out, the SCU forces all active (switched online) CPUs, to fetch their next in­
struction from a CPU executive specified main memory location. This action
completes the transformation from executive control of one system structure
to executive control of another system structure. Subsequent transformations
are accomplished in the same manner.

At least three methods for achieving a specific structure are supported
by the scheme outlined. The first is a programmed algorithmic method involv­
ing dynamic inventory of system resources and program controlled selection
on the basis of availability. This scheme dynamically constructs a system
map under program control on the basis of program structure. The second
scheme is a prestored or externally constructed method wherein a specific
configuration map is supplied to the CPU executive. The executive Will take
the necessary action to achieve the supplied configuration.

The third, and perhaps most interesting, is based upon a combination
of the first two where the program structfre is a form of programmed minimiza­
tion of a cost function based on several parameters to determine an optimal
structure. In this method a set of prestored system maps, each having an
associated precalculated measure of reliability, power consumption, through­
put, etc., would be used to dynamically minimize the selected post function.
There could be different cost functions for each mission but, more importantly,
the applicable cost function could vary within a mission - perhaps on the basis
of phase. Many variations on the last scheme are, of course, possible. In
summary, these three schemes with variations are available for specifying
and achieving configuration control:

o Program structured,
o System Map structured, and

0 Parameterized Optimally structured..

fl. Configuration Examples

Several examples of specific configurations based on the generic dia­
gram of figure 1 are given for completeness to serve as a basis for illustrating
principles, and to develop structure-related definitions.

1.2

The principal property displayed by these different organizations is
that of "structure. " A system structure can be specified by its "class,"
"degree," "association," and "configuration," as follows:

1. Class Specifier:

Uniform
Non-Uniform

2. Degree Specifier:

Maximum
Full
Minimum
Partial

3. Association Specifier:

Dedicated
Non-Dedicated

4. Configuration Specifier:

Simplex
Multiple Simplex
Redundant
Multiprocessor
Multisystem

These terms are defined as follows:

o 	 Uniform - all bus switch settings are such that bus and
port addresses are linearly related, and there is symmetry
in the switch settings for input and output buses in a corres­
ponding bus pair.

o Maximum - the largest subset of the total stiucture, spares
included, that can be logically operated on-line (if elements
have failed, a maximum degree, may not be attainable).

o Full - all operable elements that can be logically operated
on-line are connected (no greater throughput can be obtained
without a change in class, association, and/or configuration).

9 	 Minimum - the smallest logically operable subset of a total
structure (the entire structure is inoperable if a minimum
degree cannot be attained for some class, association, and

configuration combination).

e 	 Partial - betveen minimum and full.

o 	 Dedicated - some or all of a structure is associated with
some progranmed function to the possible exclusion of
other programmed functions.

o 	 Simplex - A single CPU system having no multiple CPU
expansion capability short of reconfiguration.

o 	 Multiple Simplex - several simplex configurations with
each having no resources allocation capability outside the
domain of its own simplex configuration (for instance, no
shared memory; this configuration is dedicated).

o 	 Redundant - a configuration that is functionally simplex but
is comprised of multiple elements of each type performing
the same functions for the purpose of comparison to (at-'
least) detect errors.

0 Iultiprocessor - a configuration having multiple CPUs and
some provision for programmable shared storage or some
dther form of programmable inteiprocessor communication.

o 	 AMultisystem - a structure configuration comprised of a
combination of configurations.

Figures 2 and 3 provide examples of two structures illustrating the
flexibility of figure 1 and the specifiers defined above.

14

M
C
I
S
L

- MAIN MEMORY
- CENTRAL PROCESSOR
- INPUT/OUTPUT PROCESSOR
- SYSTEM CONTROL UNIT
- LOCAL MEMORY

-

------ ---

-

____--_L-_-

-­

-­ -.2

BUSES

PROCESSOR

TO
MEMORY

SCU TO CPU

IOP TO CPU

M 0M IM2

. CPU TOIOP

• _____ _ _- - -'- CPU TO SCU

-----­ __ ,,

____. 7
MEMORY

TO
PROCESSOR

FIGURE 2

UNIFORM FULL NON-DEDICATED MULTIPROCESSOR STRUCTURE

M - MAIN MEMORY
C - CENTRAL PROCESSOR
I - INPUT/OUTPUT PROCESSOR
S - SYSTEM CONTROL UNIT
L - LOCAL MEMORY

S ­

"

E.. . .

___ --- ___ --- --- ---

M M M C sO 1 2 0 101L

*-CPU

* __--__t-

IT_
___ * ~-

FIGURE 3

UNIFORM FULL DEDICATED MULTIPLE SIMPLEX STRUCTURE

BUSE-S

f,-PROCESSOR
TO

-- MEMORY

. SCU TO CPU

-- 1 IOP TO CPU

TO 10?

CPU TO SCU

ME__MORY
TO

... PROCESSOR

SECTION III. ELEMENT DESCRIPTIONS

This section provides a detailed level analysis of the major components
comprising the multi-element configuration. Particular attention is devoted to
the methodology and content of inter-element communication and internal ele­
ment functions supporting this function. The confluence of these two areas
has a major impact on the optimization (size) and efficiency (operating speed)
of the on-board executive system.

Main memory units are discussed first, followed by the central pro­
cessing unit. Considerable functional support detail is included for the CPU,
including recommended special instructions, since it is the focal point of most
system functions, The SCU and lOPs are discussed along with their role in
the system dialog.

A. Main Memory Units (MMUs)

A baseline memory organization is given in reference 2, described as
the basic operating memory (BOM). The discussion below does not alter the­
derived BOM concepts of multi-port access to 8K memory modules.

1. Organization. Main memory is distributed among identical units,
each 8K x 36 bits, modularly expandable to 32 units. Figure 4 depicts processor
access gating to a single memory module and figure 5 details a generic memory
module.

a. Processor access control. Figure 1 illustrates two uni­
directional ports connecting each processor (CPU or IOP) to each MMU. Input
ports consist of:

a 18 address lines,
0 32 data lines,
e 4 control lines (plus an access request line), amd
0 7 parity lines for data and address validation.

2Eastin, Earl: Shuttle Computation System. Contractor Report SP-233-0252
prepared for MSFC by Sperry Rand Corporation under NASA Contract
NAS8-20055, Huntsville, Alabama, June 8, 1970.

17

PROCESSOR

#1

PROCESSOR-­
#2

PROCESSOR[-----

ACCESS
REQUEST
LINELS

READY

LINES

0

IN-
LIN_ S AMM MEMORY

MODULE

OU

1 1
*STARTJ

'

.
I

CNE

SWITCH

CONTROL

.

FIGURE 4

AMM
TSL
P

=
=
=

ADDRESS MISMATCH
TEST/SET LOCKED
PARITY ERROR

MEMORY ELEMENT - PROCESSOR ACCESS CONTROL

ADDRESS (21) -
I-- ----

WAG
(13) DDR. PARITY

WAR

BAG Fm.
,5) Ad--

Ki I I 8K x 36-BIT
ARRAY

IBA DECODING

DRIVERS
- SENSE AMPS

DATA
INL

'fiDATAPARITYI I (2

I _ EST/SET --

I __I I , LOGIC iI (

DATA,
OUT

(36) -

IBANK ADDRESS
CONTROL LOGIC AND TIMING IMADRS

REA LDI PA
DAA U RE"A. x

H

WRITJ T/S LOC -s"NtT LOCKED

FIGURE 5

MULTIPROCESSOR lAIN MEMORY MODULE

TABLE 2.

WAG

BAG

PBG

BAR

BAC

WAR-

DG

DR

PBR

T/S

MEMORY MODULE LEGEND

Word Address Gating

Bank Address Gating

Parity Bits Gating

Bank Address Register

Bank Address Comparator

Word Address Register

Data Gating

Data Register

Parity Bits Regisfe6r

Test/Set

20

Output ports consist of:

o 32 data lines,

0 4 control lines, and

e 4 parity lines for data validation.

Memory element/processor access control is accomplished as shown
in figure 4. Access request gates continuously monitor the access request
control lines of connected processors. An End Around Shift Register (with one
bit set) sequentially scans for a request and signals the Switch Control when a
processor access request is recognized. The switch control is capable of
connecting and disconnecting the input and output ports from any processor to
the memory module.

b. Main memory module. Figure 5 and its associated legend
(table 2) depict the logical elements required internal to each module. In
addition toan 8K x 36 bit (32 data, 4 parity) storage array with address decod­
ing and sense logic, the -functionalunits are:

o 	 Control Logic and Timing for sequencing and synchronization'
of internal events;

" 	 Word Address Gate (13 bits), Bank Address Gate (5 bits),

and Parity Bits Gate (3 bits) for the routing of information
from the address lines;­

o 	 Address Parity Logic for address parity validation;

Bank Address Register (5 bits) for storage of access key
of memory module;

o 	 Bank Address Comparator for comparing Bank Address

Register and Bank Address Gate contents;

e 	 Word Address Register (13 bits) for temporary storage

of memory module word address;

" 	 Data Gate (32 bits) and Parity Bits Gate (4 bits) for the

routing of information from the data input lines;

" 	 Data Parity Logic for data parity validation;

" 	 Test and Set Logic which provides a memory lock-out

feature to be described; and

21

Data Register (32 bits) and Parity Bits Register (4 bits)
for temporary storage of memory/processor transfers
(a local Data Register enables asynchronous MMU/CPU
operation).

2. Operation. MMU control lines are listed in table 3. Each of four
basic memory operations occupy a dedicated input control line, and a fifth pro­
vides a signal path for access request. Four lines provide MMU to processor
control communication.

TABLE 3. CONTROL LINE SETTINGS.

Processor to MMU MMU to Processor
Line # Signal Line Signal

1 Access Request 1 	 Parity

2 Read 2 	 Data Ready, or

Test & Set not Locked3 . Write

4 Test & Set 3 	 Test & Set Locked

5 Change BA 4 	 Address Match

a. Access request decoding. An End Around Shift Register
(EASR), shown in figure 4, sequentially tests the access request lines of all
connected processor buses via a series of circular shifts. The EASR contains
a shift position for each possible bus connection and a single bit position is set
to one (1). An access request gate is associated with each processor bus. In­
puts to an access request (AND) gate are the access request line from the pro­
cessor bus and the value of the EASR position assigned to the bus. An access
request is recognized when the set bit of the EASR coincides with a processor
bus position for which the access request signal is present. Recognition of an
access request effects a temporary halt of the EASR and signals the Swvitch
Control, providing processor bus identification information. The Switch Con­
trol connects the memory module to the bus recognized, but access is not yet
granted.

The memory module (figure 5) compares the contents of its Bank Address
Register (BAR) with the bank address from the address 'lines (high order five
bits). If the compare is equal, access is granted and a bank address match
signal is transmitted to the processor. The address match signal is used to
reset the access request line, thus other MMUs will not perform a bank address

22

compare for the recognized processor bus during the remainder of the memory
operation. Following the bank address match signal, the module maintains
the bus connection to the requesting processor until the memory operation is
complete, at which time the EASR is enabled and scanning resumes. The
completion of a memory operation is signaled via the data ready control line,
or, in the case of an anomaly, via the bank address mismatch line (AMM),
test and set locked line (TSL), or the parity error line (P).

Any of the following events constitute a continue scanning command to
the EASR.

o 	 Alignment of EASR does not recognize al access request.

o -An address mismatch signal (derived from the address
match signal described above) is received from the
memory module.

* 	 Data ready., parity, or test and set locked signal is

transmitted to processor.

In the 	latter two cases, a disconnect command is issued to the Switch Control.

The depicted operational characteristics of EASR request scanning is
the most basic configuration. Implementation of a priority recognition arrange­
ment is feasible, but present criteria do not indicate the necessity.'

b. Control decoding. Referring to table 3, control information
received by the MATU may initiate op'erations to read, write, test and set, and
change BA. Completion of each operation results in a positive response (in the
form of a control signal) from the MMU to the processor. Figure 5 (and fig­
ure 6 which is of greater detail) supports the following discussion of the individ­
ual operations.

(1) Read. After access is granted to the memory module
and an address match signal transmitted to the processor (which resets the
access request signal), address parity is checked. Invalid parity results in
the transmission of a parity signal to the processor. 'If parity is valid the
word address bits (lower order 13 bits of address lines) are gated to the WAR
and used to access one of 8,192 words in the storage array. During the read/
restore cycle, the data from memory is validated via parity check and the
parity signal to the processor raised if a parity fault is-detected. Once validity
is ascertained the data (with parity) is transmitted to the processor via the
36 data out lines with concomitant data ready signal. The EASR resumes its
scan and disconnection from the memory module occurs after a short delay.

23

ADDR. IN T
& t

PARITY o~ r -- I1

ADDR.
(5)

OM

BANX

.

PARITY

-- 8K x 36-BIT ARRAYf-

DECODING, DRIVERS,
SENSE AMPS

1
I

H

tD-

DATA'1OUT3(32)
PARI'r

,'-" AI DID RI (.4)

[-----set .

DATA IN r___

(32)
i.

i l lIII
I I

-G---0--,-­
-

CONTROL LOGIC AND TIMING

AA h PARITr

____ DAA T MATCH

ACCESS REQ. T/S9'NOT LOCIKED
FIGURE 6

MULTIPROCESSOR MAIN MEMORY MODULE DETAIL

(2) Write. The processor/MEJ dialog is analogous to
the read command with two exceptions. First, following the read half of the
clear/write cycle 36 bits are gated from the data in lines to the data register
and associated parity bits register. During this transfetr the parity is checked;
invalid parity will result in transmission of the parity, signal to the processor.
Second, following completion of the clear/write cycle no data is made available
via the data out lines, but the data ready signal is transmitted to the processor
to indicate completion.

(3) Test "tndset. This memory operation provides in
one memory cycle for testing a storage variable for zero, setting it to all
ones if zero or raising a signal to the processor if not. Thus, complete pro­
tection of global data and code may be effected.

After access is granted, the first half of the cycle is equivalent to the
first half of the read/restore cycle. The test word which has been fetched
from memory will contain all "ones" if "locked. " After the test word has
been checked for parity -errors, the Test and Set Logic detects the presence
or absence of all "ones. "

o 	 If the test word does not contain all "ones," the Data
Register is set to all "ones" and this information
written into the test word memory location; the test
and set not locked signal (which appears as a data
ready signal to the processor) is transmitted.

* 	 If the test word contains all "ones, " it is written back
into memory via the Data Register and the test and set
locked signal is transmitted to the processor.

(4) Change BA. After granting access and checking
address parity, selected lines from the thirteen lower order address bits are
'gated to the Bank Address Register. Changing the BAR resets the bank address
match signal. Trailing edge detection logic in Control Logic and Timing in
conjunction with the change BA control signal then generates the data ready
signal.

B. Central Processing Units (CPUs)

The major element of the MEC is the central processor. The system
structure as depicted in this report is based upon the SfOMC and, for this
reason, the approach to CPU architectural specification is to summarize a
prespecified baseline SUIC definition, and then define necessary and sufficient
departures from this baseline. The departures are necessary to enable the

25

SUMC to function efficiently in a multiprocessor environment; they are suffi­
cient in that, while other features could be added or alternate methods of
implementation could be employed, those departures specified herein will
support efficient multiprocessor operations.

1. SUMC Baseline. All baseline documents are oriented toward
simplex system usage of the SUMC. References 3 and 4 provide brief over­
views to the SUIVIC logic at a functional block diagram level. In addition,
reference 3 derives an efficient software-oriented organization based upon
an assumed 24 bit word. The organization is depicted through specification
of formats for a basic instruction set, register organization, and a stacked
interrupt scheme. Since a 32 bit word size is assumed for the i\EC CPU and
main memory, much of the argument presented in reference 3 is invalid.

References 2 and 5 outline the organization of the SUC data flow and
module functions in addition to specifying the microinstruction word fields and
operations. Microinstruction read-only-memory (l\/ROM) sequences for sev­
eral selected instructions are given in both references to show the micropro­
gramming capability.

Reference 6 gives a rather exhaustive set of instructions proposed for
a 32 bit version of the SUMC, while reference 7 offers a conventional CPU­
controlled approach to handling I/O (similar to what might be found in several

3

Kennedy, J. H.: Basic Instruction Set for a Proposed 24 Bit General Purpose
Spaceborne Digital Computer. Contract Report prepared for MSFC by
Computer Sciences Corporation under NASA Contract NASS-18405, Huntsville,
Alabama, August 13, 1969.

4Garett, Harrison: Advanced Aerospace Computer Technology. NASA TMX­
64504, Research Achievements Review, pp 37-44, Vol. III, No. 11, MSFC,
Huntsville, Alabama, 1970.

Eastin, E. I.; Little, G. D.; Romine, M. G.; and Williams, C. A.: MSFC
Advanced Aerospace Computer. Contractor Report SP-232-0384 prepared
for MSFC by Sperry Rand Corporation under NASA Contract NAS8-20055,
Huntsville, Alabama, July 6, 1970.

6 Thompson, E.; Williams, C. A.; Eastin, E. I.; Little, G. D.: Proposed
Iistruction Set for SUMC System. Contractor Report SP-232-0405-1 pre­
pared for MSFC by Sperry Rand Corporation under NASA Contract NASS-20055,
Huntsville, Alabama, September 4, 1970.

7Williams, C. A.: A Possible Interrupt and I/O Scheme for SUMC. Contractor
Report SP-232-0399, prepared for MSFC by Sperry Rand Corporation under
NASA Contract NAS8-20055, Huntsville, Alabama, August 14,- 1970.

26

commercial systems). A scheme for interrupt control associated with the I/O
capability is also outlined in reference 7.

a. Block diagram and microinstruction format. Figure 7 is a
block diagram of the 32 bit simplex S0MC depicted in xeference 5. Information
is moved, generally from left to right, through the ALU, where two multi­
function adders can be used to operate on it, and into the ARU where it can be
looped back through the ALU for further operations, stored in SPM, or made
available for storage in main memory or output to other external devices.
Control of the source of the information, the operations to be performed, and
its disposition once it has reached the MIRU are all made by the Control Logic
and Timing (CLT) under the direction of microinstructions obtained from a
fast read-only-memory (MROM).

The baseline format of each MROM word is given in figure 8. Detailed
descriptions of fields and subfields are given in references 2 and 5, although
they do not agree completely due to the evolutionary nature of the SUIMC.
Figure 8, excerpted from reference 5, is of a later vintage and therefore is
considered as the baseline. A total of 72 bits comprise the full word.

Several areas of interest are worth noting at tis point since they will
be influenced by departures:

o 	 Only 64 words of SPM are addressable.

o 	 Only "read" and "write" MMU functions are accommodated.

" 	 No registers are provided for efficient program address
relocation.

o 	 No registers are provided for MMU access violation
detection.

o 	 The capability for condition setting and the associated
testing for lOUOM branch control is weak.

o 	 Field specifiers for direct (C PU/device) input/output
control are inadequate.

b. Instruction set and register organization. Several of the
previously referenced documents propose various instruction repertoires and
register organizations. No specific instruction word formats are claimed to
be optimized to a 32 bit word size as a result of analysis methods similar to
those followed in reference 3 for a 24 bit word size. For this reason, it is

27

co

DATA
ADDRESS­

tI/o

EXPONENT
A"IIIMETIC
LOGIC UNIT

EALU PITOSIT

FEXPONENT
REGISTE2R

(ERE

LOAIG
POINT

MULTIPLEXER

FM

DATA

DAAREGISTERF - -

O NTO
NIT

INSRUCIO
RE ITE

I/O
M TPLX ERBUI A D MU)RR D

SEQUENCERNDE IL.-------------------UOTIEN .V -R_______

UOINTL

TLN FLATO POIN UNINITS)1/

COUNTER) SCRATUI I PAD
(MRO)

SEQUENCUNI

C017TROL~ ~ ~ ~~CNTO LINESYADE

SUTREMC
1B7

MOIL

MEMORY

DAG ARITHMETIC

36EMORT

MUMULTIPLEXER/REGISTER

BI

MUTIPLEXE

FU~IL

REGISTER

(MRU)3

MLIL

MC RO P ROS UMO BL OCKLDI AGRA X

_______czz.ALU MULTIPLEXERS-~ , ALU CONTROL___.

1 S6 S7 S8 S9 510 S11 Al A3 A4 A6 A7 All A12 A14 Al5 A17 A18 A19 A201

ADDEESS AC P E W MPXAl MPXBI MPXB2 ADDER . ADDER 2 I F

SUBFIELD

REGISTER "-MEM A--' CONTROL

N, ,

-- REG.MULTIPLEXER REG. SET

RI R3 R4 R5 R7 R8 R9 RIORIIIR12 R14 MI M2 Cl C4 C5 C6 C7 C16

S MAM MQM MI XFER ADDRESS

FLOATING

POINT

EALTJ F. P

Fl F4 F5 FG P7 ES Eg!

MPXE oC

FIGURE 8

MICROINSTRUCTION WORD FORMAT FOR MROM

felt that no optimal baseline instruction set exists. For the purpose of support
to subsequent tasks, however, the collective functional capability of all prev­
iously specified repertoires is assumed, and the format shown in figure 9 is
adopted for memory reference instructions (only). When, for the purpose of
estimating program sizes, it becomes necessary to assume a specific reper­
toire, a specification will be required.

The baseline register set organization is taken to be that of figure 10.
This organization was favored by reference 3 and mentioned as a viable can­
didate by reference 5.

c. Input/output. Baseline candidate definitions of the IOP
vary in the accorded capability from that of a conventional direct memory
access (DMA) controller to that of simple logic to augment SUMC controlled
data'transfers. The DMA approach proposed in /7/ adopts the viewpoint that
the tOP be designed with minimal capability.

Reference 8 outlines a two-option approach to the control of system
input/output. One is referred to as a "Simplex Input/Output Controller" and
the other is called a "Combined Free Running and Integrated/Dedicated Con­
troller. " Both are defined with respect to simplex system configurations, and
both are operationally controlled by. CPU issued initiation (called program
controlled output [PCO]) instructions, and stored program input/output com­
mand sequences (Externally Controlled Output [ECO]) fetched from memory
for decoding and execution by the 1OP. In addition, both show functional block
diagrams illustrating the modem interfaces with a data bus for various chan­
nels, and ECO commands for memory/device and device/device transfers and
response/transfer monitoring.

The major difference in the two approaches is that, in the first, ECOs
and device data/control words are fetched from SUMC main menory whereas.,
in the second, ECOs and device data/control words are fetched from a "format
buffer" (FM) consisting of a 4K local memory. Also, the second option allows
for commutated word I/O through the use of a special ECO to address a scratch
pad memory whose words are used-functionally like a group of index registers.

In the second option, no facility is indicated for writing into FM, there­
fore leading to the assumption that it is operationally read only. This implies

8 Space Station Newsletter No. mM\/SPE-96. Transmittal of IBM study data
from A. J. Kemp, IBM Huntsville, to H. Ness, MDAC-WD, June 21, 1971.

3O

0

OP

8

7 8

R

4

11 12

B

2

13 14

X

2

15 16

D

16

31

OP:
R:
B:
X:
D:

Operation Code
Register Address (one of 16)
Base Register Address (one of 3; 110 "1implies no base used)
Index Register Address (one of 3; 110"1 implies no index used)
Displacement Address (one of 65,536 MMU virtual locations)

FIGURE 9

MAIN MEMORY ACCESS INSTRUCTION FORMAT

SPM
ADDRESS

X00 AO

X01 Al

X02 A2

-2X03 A3

X04 A4

X05 A5

X06 A6

X07 A7

X10 AS

Xl A9 .or XI

X(12 A10 or X2

X13 All or X3

X14 A12

X15' A13 or BI

X16 A14 or B2

X17 A15 or B3

FIGURE

PROGRAMMABLE

ACC OR
REG.+INDEX

ACC OR

BASE RE G.

10

REGISTERS

a prestructured FM content suitable for controlling all data bus transfers.
This scheme, although rather inflexible, provides for (or demands, depending
on the viewpoint) a preconceived and perfectly organized flow (order, rate and
direction) of bus traffic. It appears that a high degree of flexibility could be
attained by a provision for program controlled alternation of the source of
ECO and device data/control words between main memory and the local FM
(the second option does not depict support for main memory-to-bus transfers).

Figures.11 and 12 show the 32 bit bus control instmction candidate
-formats for the two options. Figures 13 and 14 depict the organization of the
two options.

The three candidate I/O schemes outlined above can be summarized
as

o 	 Entirely CPU programmed controlled,

o 	 Combined CPU programmed initiation and fetched-from­
main memory command controlled (Option 1), and

a 	 Combined CPU programmed and fetched from local (format)
memory command controlled (Option 2).

Of these three,- Option 2 is felt to offer the strongest baseline from which de­
partures can be made to provide both a desirable degree of flexibility and the
necessary functional capability.

2. 	 Baseline Departures.

a. Microinstruction fields. Changes to the SUMC microinstruc- ­

tion format are required to support MEC operations. These changes are pri­
marily in the form of expansion to allow for

o 	 Larger SPM
o 	 More MMU functions
o 	 Two modes of CPU operation
o 	 SCU/C PU communications
o 	 Larger VfOM

The required changes are briefly outlined as follows:

'
(1) 	 Add one (1) bit to the "address subfield of the "SPM i

field allowing for 27 = 12810 addressable scratch pad

memory locations.

33

http:Figures.11

PROGRAM CONTROLLED OUTPUT (PCO) INSTRUCTIONS

31 20 19 8 7 5 4 1 0
STARTING 1 /0 00 BEGIN 1/O (BIO)
ADDRESS CHANNEL 0001 P E

31 8'7 54 1 0'

CHANNEL 0010 P STOP I/O (SIO)

EXTERNALLY CONTROLLED OUTPUT (ECO) INSTRUCTIONS.

31 20 19 15 14 76 4 3 1 0Si/o 01 1 PFEC
K1CHANNEL FETCH (DATA TO SUBSYSTEM)

31 20 19 15 14 7 6 4 3 1 0

a K rt H CHANNEL I00 READ (DATA FROM SUBSYSTEM)

31 20 19 7 6 4 3 1 0
CHNNL01 TRANSFER I OMN

a ~ ~ ~ ~ ~ ioJPI OMNK> 4 HNE
31 4'3 1 0

000 1P1HALT

31 17 16 2 1 0

COMMAND WORD 1 COMMAND WORD 2 1 P COMMAND WORD FORMAT

FIGURE 11

OPTION I - BUS CONTROL INSTRUCTIONS

PROGRAM CONTROLLED OUTPUT (PCO)INSTRUCTIONS

Op Code
STARTING RATE. 1/0 0001 P BEGIN 1(I/O
ADDRESS CONTROL CHANNEL I

CHANNEL 0 STOP I/O (210)

EXTERNALLY CONTROLLED OUTPUT (ECO) INSTRUCTIONS & FORMATS

31 20 19 15 14 7 6' 4,3 1 0

(OUTPUT TO SUBSYSTEMV)~a ~M K/oiopFETCH z CHANNEL

a V/ /// CHANNEL 110 P TRANSFER IN COMMAND
SCHA NNEL "L1P

CHANNEL 000 PHALT

31 20 19 15 14 10 9 7 6 43 1 0
BASE REGISTER INITAL I/O f01 K SUBCOMMUTATE

ADDRESS NUMBER INDEX I//A CHANNEL 00

MEMORY SCRATCH PAD Oil01R

ADDRESS ADDRESSL

COMMAND WORD 1 COMMAND WORD 2 P COMMANDFORMAT

FIGURE 12

OPTION 2 - BUS CONTROL INSTRUCTIONS

- -- - - -----M -- - -- - - -- -

MAIND U . _

MEMORY 	 I/O CHANNEL COMMANDS,_DATA BUS CHANNEL
CONTROL 'iCHANNEL 	 1CONTROL
 KINSTRUCTION STATUS NO. MODEM

_____MU~X 	 NO.__ iNO,

DATA _ _ 	 _

C
CHANNEL COMMANDS, DATA BUS CHANNEL__________I/0

IADDRES OUT CONTROL 	 CONTROL

DTATA MUX NO.2 	 {NO.2

I 	 1/0 CHANNEL - COMMANDS, DATA BUSC CH=A 7,NNEL CHANNEL 2 j
CONTROL 	 ONTROL MODEM

PU 	 NO.3 J ., _ NO.

i/0 CONTROL _______

INITIATE PROGRAM TIMING AND
STATUS CONTROL* OVERHEAD A

OVEREAD ,,AllControl

IZ 	 I _TiTiming

SELF TEST STATUS CHANNEL-3
LFMONITOR STATUS MODEMhI -__ ____ _ _ _

J

* 	Option 2 IOP Block Diagram shows

details of program control.

FIGURE 13

OPTION I U4PUT/OUTPUT PROCESSOR (IOP)

FORMAT MEMORY SCRATCHPAD'MEMORY
4,096 WORDS

DATA "
BUS INN

CHANNEL
CONTROLLER
(JBCC) DATA(MOUT

(FM)

ADDRESS DATA OUT RE AD

-

K FMB F HINST

-- -

._

'I____ I

QLRQI
I

32 5-BIT WORDS

DATA OUT DATA IN CCN=1
~ F 1k

AUl-P2

_

_'

_

MULTIPLEXER A MULTIPLEXER B

MAIN

MEMORY

INTERFACE

OR-

FCR

sum

DEMULTIPLEXER

DATA
ADDRERSS

NTCONTROL
NI

I
R T

RT
F ONTROLIf___ RATE

CONTROL

PROGRAM CONTROL - REFERRED TO IN OPTION 1

OPTION 2

FtGURE 14

iOP BLOCK DIAGRAM

(2) Define a one (1) bit binary state (flip-flop) register, U,
to be located in the CLT module for testing uinder control
of the 'SEQ-IC CONTROL" subfield as indicated in (3)

and (4) below.

(3) Define a microinstruction bit to be the "MODE" change
subfield. A one (1) in this subfield will cause U to be
toggled (state chanuged). A zero (0) has no effect on U.

(4) Add bits (for a total of four [4]) to the "II\EM" field to
control main memory accesses as follows:

0000 No access request
0001 Read
0010 Write
0100 Change Bank Address Register
1000 Test and Set

(5) Add control and status lines between main memory ard

CLT as follows:

Status (MMU to CPU/CLT)

0001 Parity Check

0010 Data Ready
0100 Test & Set busy (access lockout)
1000 Bank Address Match

Control (CPU/CLT to MMU)

00000 No access request
00011 Read
00101 Write
01001 Change Bank Address Register
10001 Test and set

Note: The main memory access request control line could
be eliminated, since "OR"ing the remaining bits Provides
the required degree of control. However, main memory
logic becomes more complex.

(6) Add control line from SCU to CLT to enable detection of an
SCU command to CPU.

38

(7) 	 Add control line from IOPs (one line shared by all IOPs
controlled by the CPU) to enable -detection of an IOP
"poll request. "

(8) 	 Add logic to CLT to expand the use of the "SEQ-IC"i sub­
field of, the "CONTROL" field as follows:

SEQ-IC Sequencer(S) Iteration
Subfield Conditions Action Counter (IC) Action

(a) 	 0000 (U) = 0 +1 None
(U) = 1 (M) - S None

(b) 	 Add one (1) bit in "SEQ-IC" subfield to support control
of branches on the basis of various tests as follows:

M6mory Parity Check
- Data Ready

Test and Set Busy
SCU Command
IOP Poll Request

(9) 	 For the purpose of software concept verification, testing and
validation (CVTV), additional MROM will be required to enable
incorporation of debugging capabilities. After CVTT,' the
additional memory could be removed. Therefore, add one bit
to the "XFER ADDRESS" subfield; all IAROM words, and SCU
logic to support 2048 MROM words.

b. Main memory access. In a multiprocessing environment
where one or more modular memory units are shared, each of the following
problems must be addressed:

o 	 Storage allocation for data and CPU processes (programs),

o 	 An addressing scheme which allows each processor to
access all available resources,

o 	 Protection of data and processes temporarily local to
one processor from all other processors, and

o" 	 An access mechanism which provides concurrent

utilization, by -two or more processors, of one

modular unit with minimum delay.

39

A number of solutions, some of considerable merit, exists for all of the above.
Presented here is a paradigm of a system designed to minimize memory
complexity, remain compatible with SUMC architecture, and address each
problem.

(1) Page addressing. Capability for system expansion
frequently dictates that more address lines to memory be established than
can be utilized strictly from the portion of the instruction word dedicated to
address selection. Earlier studies indicate this to be the case encountered
by the SUMC. If 256K words of memory are assumed, 18 address lines are
required. It does not seem plausible that 18 bits of each 32 bit memory ref­
erence instruction of the SUMC may be dedicated to address selection while
maintaining an efficient use of Scratch Pad Memory and providing a large
instruction repertoire.

By adding to each address generated by a processor a hardware reloca­
tion register, called the Bank Register Low Address (BRLA), which contains
the necessary high order bits, this dilemma is resolved. Furthermore, by
extending the BRLA to contain additional portions of the address, a solution
to the storage allocation problem is approached.

If the BRLA were the same width as the maximum address, each pro­
cess, once constructed, could be loaded into memory and executed at virtually
any beginning lpcation by setting the BRLA to contain the address of that loca­
tion. Attaining.this flexibility may not be commensurate with the cost in terms
of SPM storage, memory utilization map updating, and communication required
for process dispatching. It is suggested instead that a 13 bit BRLA be utilized,
allowing the lower order 5 bits of the address to be generated exclusively by
the instruction.

The above arrangement would provide the following organization of a
256K memory distributed among 8K modular units:

e 32 8K banks,

e 256 pages per bank, and

0 32 words per page.

Figures 15 and 16 depict the format of the BRLA and its combination with the
instruction generated address, respectively.

Note that storage allocation always begins on word boundaries that are
multiples of 32. Conversely stated, at most 31 words between program pro­
cesses might not be utilized. This possible loss is considered negligible
compared to other advantages presented.

40

5 s 8bitsBbits

I , I 1 I ' " I 1 I I I ,

Bank Page Number

Bank Number

FIGURE 35

AR FORM.ATS
ANK REGISTER LOW ADDRESS/BANKI REGISTER HIGH ADDRESS

LIZ,

55bits 8~~---Sbits 5 bits

I I , , ii A-A-PI -A-r

S II I I I , ' t

Program
Generated
Virtual Location

BRLA

Bank Page Number
Bank Numiber

Real Address

FIGURE 16

ADDRESS GENERATION

including the BRLA obviates the requirement for lengthy relocation
procedures each time a process is constructed (provided internal linkage
has previously been accomplished).

The BRLA could be implemented as a location in Scratch Pad Memory
for utilization by MROM microinstructions. Additional MROM cycles might
be saved on each instruction cycle by implementing it as a hardware register,
multiplexed into MPXB2 in the ALU for example. Its addition to the program
counter is accomplished only once (during process construction) to be used
unchanged until the process is deleted. It must be added to each effective
address generated by an instruction.

(2) Memory access violation. Processes that occupy
sequential memory locations may generate invalid addresses in only two ways:

a Case I - An address less than its lower boundary, or

e Case 2 - An address greater than its upper boundary.

If each process generates addresses relative to zero (the recommended ap­
proach) prior to addition of the BRLA, Case 1 may be checked by testing for a
negative address immediately preceding addition.

Case 2 implies an additional operation before a check for validity is
possible. By including a Bank Register High Address (BbflA) in the organ­
ization of Scratch Pad Memory, formatted the same as BRLA (figure 15), it
may be subtracted from the final address to obtain a validity check.

The BRHA may, alternatively, be incorporated as a hardware register
to minimize instruction cycle time (the recommended approach).

(3) Phased addressing. If more than one processor is
executing processes or accessing data juxtapositioned in a single memory
unit, the memory unit must alternate memory cycles between processors.
An equivalent problem occurs during execution of a re-entrant routine simul­
taneously by several CPUs. - Frequently, memory availability delay has been
minimized by providing phased access ports to each memory unit. An alterna­
tive can be provided which is simpler to implement and decreases memory
access complexity.

If, as in figure 17, the low order two bits (for four bank phasing) of
the word number portion of the Memory Address Register (MAR) of the pro­
cessor are routed to the low order bits of the bank address portion of the
memory's-address gating register, and all intervening bits shifted lower to
compensate, the effect of phasing is obtained. Each set of four sequential

43

18 bits

I , Memory Address Register
(Processor)

Address Lines

C,Address.Gating
I ,IMain Memory Unit)

FIGURE 17

MEMORY ADDRESS ROUTING

addresses are distributed among four main memory units rather than contiguous­
ly in one unit. Now assume that two CPUs attempt to execute an instruction
fetch from the saine MMU and visualize the sequence of events. (Figure 18
depicts the storage allocation for "N" processes.) One CPU is granted access
to the first MMU and the others must wait. After completing the first instruc­
tion fetch the CPU continues to the next MMU, allowing another CPU to access
the first MMII. This sequence continues until all CPUs are operating synchro­
nously from different MMUs. Synchronization remains intact until one CPU
performs an instruction resulting in non-sequential instruction execution or
requires more or fewer melory cycles (data retrieval for example) than the
others. At this time an adjustment is made and synchronization is quickly re­
established.

Thus, by manipulation (merely cross-connecting) of the address paths,
much of the benefits derived from phased access ports may be achieved at no
increase in cost or complexity.

It is interesting, however, to examine the benefits which might accrue
if an optional non-phased mode were under program control. First, during
periods of reduced memory requirements a larger portion of the system could
be "shut-down" to reduce power consumption. Second, memory diagnostic
procedures for suspected faulty units could be simplified. Third, the element
count required for TMR system mode could be reduced ifthe TMR process
were resident in less than four (4) memory units. Finally, a greater degree of
system degradation could be obtained with respect to inoperable nfemory units.

(4) Alternative approaches. The methods derived above
were directed at solving memory access problems by shifting the onus of
validation to the processor and simplifying the role of memory. A quite
reasonable cage may be made for relieving the processor of validation check­
ing in order to reduce instruction cycle time and permit a variety of memory
structures to be considered independent of the CPU. No attempt is made here
to weigh judgment, but it is of interest to assess the costs.

The basic problem is to perform boundary checks of each memory
reference by each processor sharing a memory unit. This implies, for each
MMU,a set of dynamic boundary registers for each processor and possibly
an adder. A fast hard-wired or firmware sequence is required to perform
address validation in a non-destruct (or destruct-restore) fashion. MMIIU/
processor controls are required to:

0 Set or change selected boundary registers, and

(Signal invalid address.

45

BANK XXXOO BANKXXX01 BANKXXX1I0 BANK XXXII

BRLA- VL-0 VL-1 VL-2 VL-S

PROCESS VL-4 VL-5 VL-6 __VL-7

1

PROCESS VL-4 VL-5 VL-6 - VL-7

2

VL-O - VL-1 VL-2 -

PROCESS VL-4 VL-5 - VL-6 VL-7

N

VL - VIRTUAL LOCATION

FIGURE 18

PROCESS RELOCATION AND PHASED ADDRESSING

Additional controls that may be of value during process debugging and system

diagnostic testing include:

o 	 Disable boundary register, and

* 	 Return (for inspection by a CPU) the boundary register

contents.

The benefits accrued at the cost of MMU complexity may be extended
beyond reduced instruction cycle time. For instance, memory parity errors
may result only after two or more read attempts in order to compensate for
transient errors. If the MMU is microcoded to perform the above tasks, an
independent self-test diagnostic may be included to assist the system in spares
switching decisions and consequent graceful degradation.

(5) Impact on baseline SUMC. The above described
approach for memory access could be implemented with microcode alone,
thus requiring no changes to the baseline SUMC. However, an increase in
operating speed could be obtained by implementing BRHA and BRLA as hard­
ware registers in the SUMC ALU.

d. Process control. The concept of a process and its construc­
tion is discussed by Kennedy /9/. Briefly, a process is the sequence of actions
performed in order to complete a task. A process may execute code more or
less arbitrarily from either executive or application programs and -may, in
fact, share code with other unrelated processes. Traditionally, the onus of
process control and communications between related (cooperative) processes
has been entirely the responsibility of the systems programmer. However,
the capability provided by a multiprocessor to distribute functional respons­
ibility and the inherent flexibility of microcoded logic can be utilized by the
system architect to alleviate the burden as will be subsequently demonstrated.
It is necessary to exhibit some basic concepts related to process control.

(1) Process control block. Figure 19 shows a possible
.structure for a PCB and table 4 explains each entry. Each CPU cbntains in
scratch pad memory (SPh) the PCB of the process for which it is executing
code. Processes which have been constructed but are not currently executing
are maintained at a central location by an executive routine called the "dis­
patcher," which is discussed below.

9 Kenmedy, J. R.: Executive Routine Primitives and Process Control.
Contractor Report prepared under NASA Contract NASB-18405 by Computer

Sciences Corporation, Huntsville, Alabama, March 24, 1971.

47

PROCESSNAME

w I PRIORITY

a JbIc ICPUanm BRLA

STARTENTRY

RE TURNADDRESS

BREAK POINTADDRESS .BPATRAPADDRE SS

BREAKPOINTOPERAND BPOTRAPAODPLESS

MACHINEREGISTERS

FIGURE 19

PROCESS CONTROL BLOCK

ENTRY

PROCESSNAME

w

PRIORITY

a b c

CPUnum -

BRHA

BRLA

STARTENTRY

RETURNADDRESS

BREAKPOINTADDRESS

BREAKPOINTOPERAND

MAOHINEREGISTERS

TABLE 4

PROCESS CONTROL BLOCK ENTRY DESCRIPTIONS

DESCRIPTION

Unique name for this process.

Counter showing number of unserviced START primitives invoked for this

process.

Relative process priority.

Three bit process state indicator.

Hardware address of the CPU associated, during execution, with this

process.

Bank Register High Address.

Bank Register Low Address.

Instruction memory address of first instruction.

Memory address of next instruction in case process activity is stopped;

execution will be resumed at this location. Initially has value of STARTENTRY.

Memory address which, if it becomes the argument of an instruction fetch
cycle, will cause an internal processor trap to a predetermined memory

address specified by BPOtrapaddress.

Memory address which, if it becomes the argument of a data fetch

cycle, will cause an internal processor trap to a predetermined memory

address specified by BPOtrapaddress.

A block of words reserved for saving all programmable processor registers
when process activity is stopped. Must include all registers depicting process
state information.

(2) Dispatching. Once a process is executing code on a
CPU, it may become necessary that the dispatcher seize the CPU for assign­
ment to another, higher priority process. The a&t of seizing the CPU is called
a tpreempt"-dispatcher action. Any mechanism that effects this task must
preserve the current state of the program counter and volatile machine regis­
ters. Space in the PCB is reserved for this contingency. Additionally, the
dispatcher must retrieve the PCB of the halted process and allow it to compete
for CPU time. The act of assigning a process to a CPU is called a "dispatch"
action. Clearly the mechanism for "dispatch" is the inverse function of
"preempt."

(3) Process states. A process executing code on a CPU
is said to be in the "running" state. A process not executing code but compet­
ing with other processes for CPU time is in the "ready" state. A process that
has been constructed but is not competing for system resources is in the "idle"
state.

After a process enters the "running" state, internal conditions may
dictate that it not proceed until the occurrence of a specific external event.
It may then request that its state be altered until notified by a cooperative
process to continue. This interim condition is referred to as the "waiting"
state.

A process in any of the above states may be suspended by a cooperative
process for examination, alteration, or debugging. For this reason, each
state has a companion "suspended" state. A process remains suspended until
released by the cooperative process. Table 5 enumerates the salient points
concerning process states.

(4) Process state transition. A process may proceed
from one state to another by either of two events:

o Dispatcher action ("preempt," "dispatch"), or

o Execution of certain primitive functions (implemented
as SUMC instructions) by the affected process or a
cooperative process.

Figure 20 illustrates the relationship 6f the dispatcher and piimitives
to state transition. The START primitive increments the "w" variable in the
PCB which implies a direct transition from the "idle" state to "ready," or
subsequent intervention when the process would normally proceed from
"running" to "idle. " The "v" variable may also serve as a barometer of
the workload backlog as detailed in the above cited report /9/.

- 50

STATE

Idle

Ready

Running

Waiting

Suspended

TABLE 5

PROCESS STATE DEFINITIONS

DEFINITION

Process has been constructed but is not currently competing for
system resources.

Process is competing for system resources but is not currently
executing on a CPU.

Process is executing instructions.

Process has discontinued execution while awaiting an external
event.

For each above state there exists a companion suspended state to
or from which a process may revert, subject to the action of a
cooperative process.

d = dispatch r
p = preemapt unn r = release idle
s = suspend ,,sp--e

FIGURE 20

PROCESS CONTROL STATE DIAGRAM

A STOP priimitive executed by a process in the "running" state dec­
rements the "w" variable, if w becomes zero the process proceeds to the

. "idle" state; if not it returns to the "running" state.

A process, cognizant of a requirement for some external action (such

as I/O), may request transfer to the "waiting" state by executing a WAIT

primitive. The "waiting" state is terminated by the performance of a CONTINUE

primitive by a cooperative process.

SUSPEND and RELEASE primitives may be executed only by cooperative
processes and effect state transitions between companion suspended, non-suspended
states described above.

Process termination is effected via ABORT or EXIT primitives. EXIT

may be used only for process self-termination. ABORT is-available for either

self-termination or external termination by a cooperative executive'process

cognizant of an anomaly. Either connotes transition to a temporary "terminate"

state prior to subsequent process deletion. In case of ABORT, additional fail­
ure analysis procedures are implemented. For the purpose of simplicity,

ABORT and EXIT primitive action is omitted from figure 20.

'Anadditionai comment is in order with reference to figure 20. The box

labeled "testing w" is not a process state but an intermediate step in the transi­
tion froma "ruming" to "idle. "

(5) Implementation. Each primitive discussed can be

accomplished-by manipulation of a process PCB and the transfer of the PCB

from the CPU to the system control unit (to be discussed) or vice versa. Thus,

at the cost of some microcode logic and shared functional r6sponsibility, a

significant attenuation of system overhead can be achieved.

Each primitive is associated with a unique CPU to SCU command (or

request) that is transmitted upon execution and is followed by pertinent data.

A minor variation of this procedure is invoked by the STOP primitive. The

"w" variable is decremented-by the CPU and tested for zero, with a command

to the SCU resulting only if the value is zero. A detailed discussion of SCU

response is given in the section on the system control unit.

Relatively few unique SOU to CPU cominands are required fo'r the SOU

to perform dispatcher actions and assist during primitive execution. CPU

responses to SCU commands are as follows:

(a) Preempt command. In addition to supporting

the dispatcher "preempt" action, the preempt command is transmitted to a

53

CPU (under certain conditions) during execution of a SUSPEND primitive. If
the object process is in the "lunning" state the CPU response is:

o 	 Delay until system is in the user mode,

e 	 Do not fetch next user instruction,

o 	 Complete all pending I/O (where complete may imply
abort or other action),

o 	 Save PC in returnaddress field of PCB,

e 	 Send PCB to SCU, and

o 	 Stop with CPU in user mode (where stop implies a micro­
instruction idle loop, awaiting the next SCU command).

. (b) Dispatch command. This command assists in
execution of the RELEASE primitive if the object process is in the "running
suspended" state in addition to supporting the execution of the dispatcher
"dispatch" action. The CPU response is:

o 	 Receive PCB from SCU,
o 	 Load PC from the retnrnaddress field of the PCB,
o Load BRLA and BRHA from the PCB, and
e Execute the instruction fetch routine.

(c) Increment w command. Execution of a START
primitive for an object process requires that the "w" variable be incremented.
If the object process is in the "running" state, the SCU must signal the CPU
to effect this change. The CPU response is:

o Discontinue fetch next instruction routine,
e Add 1 to v field of PCB, and
e Continue fetch next instruction routine.

e. 	 Input/output. With regard to CPU functions in support of
system I/O, the selected baseline provides for tvo jrogram contrqlled output
(PCO) instructions as shown in figure 12. Also, simplex system operation
only (single lOP) was considered. Therefore, additions to the baseline related
to CPU functions take two forms: CPU functions required to connnunicate with
multiple IlOPs; and a broader PCO instruction specification to allow control of
more IOP functions.

54

(1) SUMC to IOP communication. Control of the IOPs is
effected by transmission of control signals and information over the IOP-CPU
control buses (II and 10) noted in figure 2, Uniform Full Non-Dedicated
Structure. Data are then transferred to the peripheral devices via the data
buses.

Generation of a data transfer sequence is initiated by the recognition
by the CPU process of an I/O command known as a Program Controlled Opera­
tion (PCO).- This PCO must be translated into a format intelligible to the IOP
and transferred to the IOP via the II for execution utilizing External Control
Output (ECO) instructions. In the transfer of data the CPU must resolve con­
flicts that may arise as the subsystems compete for CPU cycles. To resolve
the competing demands within the baseline SUMC capabilities, a poll-response
interaction of the CPUs and IOPs has been recommended.

For the CPU to engage an IOP in a control dialog the following sequence
of operations must occur:

o 	 A CPU raises the POLL line to the Control Logic and
Timing section of each IOP. This signals each IOP to
expect an address to be transmitted. Recognition is
effected before the next FETCH.

o 	 The CPU then transmits the denoted address to all IOPs.

o 	 Each 1OP examines the address, comparing it with its own
designated address. If the addresses generate a mismatch,
the IOP returns to the MISMIATCH state. If the addresses
match, the IOP transmits ACK and prepares to receive
control information. The control sequence can then be sent
by the CPU.

Parameters transferred betveen a CPU and an IOP are shown in
figure 21, illustrating parameters required iii the handshakifg sequences
utilized in control of the IOP by the SUMC (CPU). These parameters are
defined in table 6.

55

OUTPUT FROM CPU PRODUCT REMAINDER REGISTER VIA II

CONTR OL LINES DATA LINES

18 27 351-11!1111 111=-1T II;V
* Poll op Parity

Initialize - ID

Reset

Transmit

Reject

EOM

*Poll signal is routed to all lOP CLTs.

tOP OUTPUT FROM PRR VIA 10

CONTRQL LINES DATA LINES

8 2 35

Poll Request Parity

Ack

Reject

Msg Complete

FIGURE 21

CPU CONTROL BUS COMMUNICATION OUTPUT PARA1VIETERS

TABLE 6. CPU CONTROL OUTPUT PARAMETER DESCRIPTION

CPU/IOP Output Parameter Description

CPU 	 IOP Response

Poll 	 Prepare to receive CPU control commands

Initialize 	 Enter Ready state*

Reset 	 Enter Idle state*

Transmit 	 Send one 32 bit word to CPU

Reject 	 Error

EOM End of Message, Mismatch IOPs reset CPU
I Busy marker

IOP Address 	 Each IOP compares this address with its own
and enters either Match or Mismatch-state.
If Mismatch must set CPU Busy marker.

*ITOP 	 State Diagram, figure 43

(2) 	 PCO instruction specification. Baseline departures
in this case can be thought of as an enhancement of I/o capabilities, in the
following areas:

o 	 C ommuni cation from Main Memory to,the data bus,

o 	 Providing the capability to write in the local store (Format
Memory) of the IOP inorder to revise ECO storage and
allow adaptive control of I/O sequences,

o 	 Implementing the capability to retrieve ECOs from Main

Memory for execution by the IOP, and

o 	 Expanding the set of PCOs to permit more. diverse directions
to the IOP from the CPU. Additionally, the addressing
capability of the PCOs denoted in /8/ allows an address
range of 0-4095 words. While usage of a base register in
the address calculation will expand this capability, dedication
of unused subfields in the PCO words permit standard SUMC
base and index modification address computation.

57

Considering the preceding factors, the baseline START and STOP PCO
instructions are augmented to provide the following I/O commands (defined
further under Special Instructions):

o 	 START (BEGIN), initiate an I/O Sequence;

e 	 TERMINATE (STOP), terminate an I/O Sequence;

o 	 GET STATUS, transmit status to CPU;

o 	 INPUT DIRECT, transmit one computer word to the
CPU;

o 	 OUTPUT DIRECT, transmit one computer word to a
peripheral device; and

o 	 DIAGNOSE, initiate diagnostic process.

The preceding PCO instructions provide the SUMC with the capability to per­
form the following categories of operations:

o 	 Initiate/Terminate I/O operation of a peripheral device.

0 	 Input the contents of a selected group of status indicators.

o 	 Perform single word transfers between a SUMC scratch
"memory location and a designated peripheral device.

o 	 Initiate peripheral and IOP diagnostic procedures.

f. Configuration control. By way of summary, the operational
aspects of configuration control, as applied to the MEC of figure 1, are out­
lined here. The capability of the basic scheme is unchanged from that outlined
in /i/. However, a significant mechanization change is incurred through a
division of responsibility between the SCU and CPU elements.

Configuration control consists of CPU-executed program control that
constructs or selects a system map referred to as a setup map (SM). After
construction, the SM is transferred over the SI/SO buses from the CPU to
the SCU. The SCU then suspends execution of all CPUs, and uses the SM to
direct the setting of the various switches connecting ele'ment plug positions
to buses. The contents of the SM is retained by the SCU and, in this retained
form, is known as the action map (AM).

58

The AM serves as an updatable indicator of not only the structure of
the system but also the unique identification of all elements comprising the
structure. The actions of switching-out failed elements and switching-in
replacement spares is used to update the AM and retain associated element
status indications.

Once all SM-indicated switching actions have been accomplished, the
SCU commands all CPUs represented as active, connected CPUs to fetch
their next instruction from a prespecified location in the MIMUs, thus trans­
ferring control to the CPU executive(s) fqr process initiation under the newly
established system structure.

Most of the configuration control related actions of the CPU are con­
cerned with building a SM and therefore do not imply communications between
the CPU and SCU. Some actions do, however, require SCU cooperation. CPU
initiated communications with the SCU are known as "requests" and are as
follows:

(1) Switch and jump request. This request is made as
a part of CPU execution of the SWJ instruction.

(2) Disconnect element request. This request is made
as part of CPU execution of one of the following instructions: SOC, SOM,
SOIB, SOH, SQV.

(3) Copy connect request. This request'is made as part
of CPU execution of the following instructions: "CMM\, CCC, and CII.

(4) Configuration status request. This request is made
as part of CPU execution of the following instructions: SCC, SCP, SCG, SMC,
SMP, SMG, SIC, SIP, SIG, and SBG.

The response of the SCU to each of these requests and a description of config­
uration control related instructions are covered elsewhere in this report.

SCUinitiated communications with a CPU are known as "commands"
and are described, by way of the response of a CPU, as follows:

(5) Executive transfer command. A receiving CPU
responds to this command by taking these actions:­

o Do not FETCH next instruction.

o Receive MMU transfer address.

e Place it in executive mode program counter (PC) word in SPIA.

e Set CPU mode to executive mode.

o Execute FETCH microroutine.

59

(6) Receive VDSC error indicators. When a VDSC
indicates an error condition to the SCU while operating in a redundant system
configuration, the SCU sends this command to the redundant CPUs. The CPUS
respond with these actions:

o 	 Do not FETCH the next instruction.

0 	 Receive the status word from the SCU.

o 	 Simulate a "redundant operation failure" interrupt to
notify the executive of a failure.

g. Scratch Pad Memory organization. Previous experience
indicates that Scratch Pad Memory (SPM) utilization is less than optimum if
its organization is consigned in part to software. If the software is permitted
access to SPM arbitrarily, and at some point after implementation a reorgan­
ization of SPM is effected, much reprogramming will be necessary. For these
reasons, SPM should be addressable only from dedicated instruction fields
(such as register designation) or implicitly via special instructions. It is
requisite under an SPM organization directed by this philosophy that each cell
be associated with a specific function. Cell assignments are based on frequen­
cy of use and occasionally on response requirements.

A minimum of 12810 locations are required for allocation of variables
that occur in the above two classes. The following discussion is based on an
SPM of this size. Specification is partially complete and space is available
for expansion.

(1) 	 Major sections. Figures 22, 23 and 24 depict a
candidate SPM organization. Locations 0 - 6 310 are "system mode dedicated,
that is, addressable only when the CPU is in the system'mode." Cell assign­
ments in this area represent functions unavailable to instructions executed in
the user mode.

Locations 6 4 10- 8 2 10 -are "user mode related." Although accessibl6
during system mode operation, they provide the register set and variables
primarily referenced during user mode operation. A-similarly ordered set
of SPM locations is defined at the beginning of the system mode dedicated
section.

Locations 8 3 10 to 12 7 10 form the "non-dedidated" section. Assign­
ments to this area represent functions or events that can occur (irregardless
of CPU mode) in a more or less stochastic fashion. .Examples of this are an
IOP status message or the occurrence of a CPU "jump" instruction.

60

052 AO

Al

A2

AS

Ak4

SYSTEM A5

MODE A6
REGISTERS A7

A8

A9 or XI

A10 or X2

All or X3

A12
A13 or BI

A14 or B2

A15 or B3

System PC*

Sstem' BRHA .

System BRLA

.Stack SV** Table Ptr,

Last Stack SV

* Program Counter

** State Variable

H

SPM SPM
ADDRESS ADDRESS

000 Boundary Violation 025

001 Illegal Instruction 026

002 Arith F.ault 027

003 Real Time Clock 030

004 TOP Control Error 031
005 IOP Data Error 032

006 PRIORITY Memory Parity 033

007 INTERRUPTS System Initiator 034

010 Stall Alarm 035

011 External 036

012 Power Fail 037

013 System Control Unit 040

014 IOP #1 Complete 041

015 lOP #2 Complete 042

016 IOP #3 Complete 043

017 OP #4 Complete 044

020 Executive Request 045

021 4 Spares 046

022

023]076

024 051

FIGURE 22

SYSTEM DEDICATED SCRATCH PAD MEMORY

SPM
ADDRES

14 SPARES

067

PROCESS

CONTROL
BLOCK

070
]071071

072
073
074
075

___ ______ ___ ___ ___ ___077

SPM

ADDRESS

100 8 o

101 Al

102 A2

103 A3

104 A4

105 -A5

106 A6

107 A7

110 AS
i1 A9 or Xl

112 A10 orX2

113 All or X3

114 A12

115 A13 or B1

116 A14 or B2

117 -A15or B3

120 User PC

121 User BRHA

122 . IUer BRLA

FIGUBE 23

USER RELATED 3PM SECTION

SPM SPM SPM
ADDRESS ADDRESS ADDRE S!

SCU CONTROL WORD 123 IOP 3 PACKET 142 1Gc

REAL TIME CLOCK 124 143
FLLEG.
INTERRUPT STATUS 126 145 16 SPARES

INST. INDICATOR 125 144

KAFS* 127 146

IOP I PACKET 130 lOP 4 PACKET 147

131
 I150

132 151

133 152

134 153

IOP 2 PACKET 135 4 SPARES 154

136

137

140

141 1157

ARITHMETIC FAULT MASK AND STATUS INDICATOR

FIGURE 24

NON-DEDICATED SCRATCH PAD MEMORY

(2) Register organization. The format definition for
memory reference instructions presented earlier in this section (figure 9)
precludes a detailed discussion of the number and types of registers. Overlap
between accumulators and base registers and between accumulators and index
registers was judged essential since indexing algorithms are frequently derived
using arithmetic procedures. Orientation of the register sets relative to the
beginning of SPM and to each other was dictated in part by the "OR"ing proce­
dure used to combine the SPM address field of the microword instruction with
the offset obtained from the register designator field of the CPU instruction.

A separate (and congruent) register set is allocated for system mode
operation. This provision reduces the (software) overhead entailed by mode
changes. Evidence does not indicate that the optimum system register set
is congruent to the optimum user register set, but a trade study determining
the optimum system register set is beyond the scope of this report. A non­
congruent system register set requires the reorganization of the format of a
large number of CPU instructions, resulting in a vastly different instruction
set for system mode use which is costly in terms of microcode requirements.
Nevertheless, if further research indicates unusual benefits, a system reg­
ister set may be defined at a later date.

(3) Interrupts. The sixteen (16) interrupt levels depicted
in figure 22 are arranged in order of assumed priority. Definition of soft­
ware alterable levels is possible, but there is presently insufficient justifica­
tion. A rearrangement of the priorities is feasible for each missidn, partially
negating the benefits of a more flexible priority interrupt structure.

Priority within the I/O interrupt levels is based on the type of I/O
involved. I/O directly between the device and the CPU is given highest prior­
ity since it can be expected to be of low volume and is the most likely form of
astronaut/pilot command communications during manned missions. Device to
device I/O is given lowest priority with the assumption that it is the least
likely to precipitate process idle time prior to completion. Within each I/a
type, input has uniformly higher priority than output.

Other SPM locations associated with the interrupt structure are as
follows:

e A five (5) word communications packet for each IOP,
o A fifty (50) bit interrupt status indicator,
o A fourteen (14) bit arithmetic fault mask/status indicator, and
o An, SCU control word.

64

An IOP packet (figure 25) is used to commuicate to the CPU the cur­
rent IOP status, associated channel status, the last channel operation executed,
requests for service, and pre-selected data items. The "P" bit of the packet
(firstword, bit 0) is always received as a one (1), and reset by the microcode
interrupt service routine when service (by the system.Exec) is granted or such
service is deemed unnecessary (i. e. , "PI is a "protect" bit that prevents the
packet from being destroyed before its contents are accessed).

The formats of the interrupt status and arithmetic fault mask/status
indicators are illustrated in figures 26 and 27. A note of explanation is in
order concerning the "queued" status entries. An interrupt is queued for sub­
sequent service after a request is received that cannot be immediately pro­
cessed due to its priority level or "disarmed" status. A complete definition
of "enabled, "1"disabled, " "armed, " and 'disarmed" is delayed until the defini­
tion of instructions associated with interrupt processing.

The SCU control word is used to retain the current status of those
operations that require a multiple-step CPU/SCU dialog. Its format varies
between and within operations.

As noted, SPM is not directly addressable. Specific instructions are
provided to access the interrupt status and arithmetic fault mask/status indica­
tors. Portions of the IOP communications packet meaningful to the software
executive are provided through the interrupt service entrance mechanism.

(4) Addressing scheme. Figure 28 illustrates an SPM
addressing scheme, utilizing the U-flip-flop defined earlier which permits
access only to user mode related and non-dedicated sections during user mode
operation and all SPII locations during system mode operation. If cell assign­
ments are selected by function, this mechanism (or a similar one) is sufficient
to perform all tasks involving scratch pad memory.

3. Special Instructions. In addition to the spectrum of instructions
referenced in the discussion of the SUMC baseline, other instructions are out­
lined here. These additional instructions fall into one of tvo classes: "required"
for VEC operation or "desirable" for additional programming effectiveness.
Those which are required have to do with configuration, interrupt, process,
input/output, and lockout control, while increased effectiveness is gained by
special instructions for recovery and trace, debug execution and system mode
control, list and stack manipulation, and program linkage.

a. Configuration control. A method for configuration control
has been outlined conceptually elsewhere /i/ and summarized previously in
this report. Slight modifications to the related instructions are incorporated

65

V 32

P lOP Stabus

P IOP tatusTOP
Reserved for

IOP/CPU Communications

Message ID Last Command

DBT Status Device Status

1/0 State Last MMU Address

>

Dependent

Device Dependent

P - Protect Bit

FIGURE 25

IOP COMMUNICATIONS PACKET

SPM
ADDRESS 0 2 3 5 6 8 9 11 12 14 15 17 18 20 21 23 24 2627 2930 31

126

127
127I1

I1

2

12

3

II
I13

4

I14 .

5

15

6

I16

17

..

18 19 10

Ii - (i = RELATIVE PRIORITY OF INTERRUPT)

= 000 - DISABLED
= 001 - ENABLED AND DISARMED
= 010 - ARMED
= 011 - QUEUED AND DISARMED
= 100 - QUEUED AND ARMED
= 101 - ACTIVE

= 110 - EXECUTION DISCONTINUED
= 111 - NOT USED

FIGURE 26

:INTERRUPT STATUS FORMAT

SPM
ADDRESS

127 . F11F21F 1F 41F51F 1 1T F1F7

MASK I STATUS

F1- ADD/SUBTRACT OVERFLOW

F - ADD/SUBTRACT'UNDERFLOW2

F - DIVIDE ERROR

F4- MULTIPLY OVERFLOW

F - FLOATING POINT ERROR

F - IMPROPER SQUARE ROOT

F - IMPROPER TRIGONOMETRIC FUNCTION

IF MASK BIT F. = I - THE CONDITION DESIGNATED BY "i'T WILL GENERATEAN ARITHM\E TIC FAULT INTERRUPT.

= 0 - THE CONDITION DESIGNATED BY "i" WILL BE IGNORED
BY THE INTERRUPT SYSTEM.

FIGURE 27

ARITHMETIC FAULT MASK AND STATUS

IADDRESS FIELD

ADDRESSFILD IVIICROWORD INSTRUCTION

SPM

SPI
I ADDRESS

DECODE

I

-__ __CONTROL LOGIC & TIMING

FIGURE 28

SPM ADDRESS'GENERATION

into the instructions depicted in table 7. While SCU bus connections to CPUs
could have been included, this was not done since the connections can be made
in the SCU at switch time with no loss in generality.

The instructions are grouped under four functional headings:

o Connection,

e Disconnection,

o Status Determination, and
o Miscellaneous.

b. Process control. The reader may wish to refer at this
point to an earlier discussion during which basic conceptual ideas relating to
process control were reviewed. Executive control of processes is facilitated
by the definition of a set of primitives. An approach to implementation can be
found in an earlier cited report /9/.

Execution of a primitive effects an immediate or subsequent state tran­
sition of a process. Table 8 contains the salient points of each primitive in­
struction.

(1) Start. Execution of a START primitive for a process
in the "idle" state results in its immediate transition to the "ready" state.
(See table 5 for process state definitions.) Concurrently, the PCB variable
"w," known as the work variable, is incremented.

When a process is not in the "idle" state, execution of the START prim­
itive results only in the incrementing of the work variable. The START prim­
itive specifies the object process name as an argument.

(2) Stop. The STOP primitive is invoked by a process to
indicate execution completion. The PCB startaddress entry is copied into the
returnaddress entry and the work variable, "w, " is docremented. If "w" is
zero the process returns to the "idle" state. If "w" is not zero it is returned
to the "ruming" state, the next instruction fetch address being in returnaddress
of the PCB. The STOP primitive connotes the implied argument, processname,
of the invoking process.

(3) Wait. This primitive is executed by a process when
in the "running" state and cannot proceed until some arbitrary, requested
event has occurred. The process is placed in the "waiting" state until a coop­
erative process executes the CONTINUE primitive at which time a transition
occurs to the "ready" state.

70

TABLE 7

CONFIGURATION CONTROL (I of 4)

CONNECTION INSTRUCTIONS
MNEMONIC

CODE ARGUMENTS MAP MEANING

PC CP, MI, MO, SM* Place CPU in SM; make an entry in the SM showing the central processor
11, 10 element in plug position CP connected to MMU buses MI and MO, and IOP

buses II and TO.

P1 IP MI, MO SM 	 Place IOP in SM; make an entry in the SM showing the input/output processor
element in plug position IP Ponnected to MMU buses MI and MO.

CM MM,, IA, OA, SM Connect MMU to buses; make an entry in the SM showing the main memory
MI, MO element in plug position'MM connected through its input access port IA and

its output access port CA to the main memory buses MI and MO, respectively.

CI IP, IA, OA, SM Connect IOP to buses; make an entry in the SM showing the input/output pro-
II, 10 cessor element in plug position IP connected through its input access port IA

and its output access port OA to the input/output buses II and 10, respectively.

PV 	 T, V, IC1, SM Place VDSC in SM; make an entry in the SM showing the VDSC element in plug
IC2, IC3, OC1, position V with its input channels 1, 2, and 3 connected to buses ICI, IC2, and
OC2, OC3 IC3, respectively, and its output channels 1, 2, and 3 connected to buses OC1,

OC2, and OC3, respectively. The type of VDSC is specified, thus, by T:

T 	 TYPE

000 VMI
001 VMO
010 	 VII
011 	 VIO

100 	 VSI
101 	 VSO

* SM - System Map

TABLE 7

CONFIGURATION CONTROL (2 of 4)

DISCONNECTION INSTRUCTIONS
MNEMONIC

CODE ARGUMENTS MAP VEANING

SOC CP, B, 10 AM Switch-out CPU; switch-out the central processor in plug position CP dis­
connecting it from all buses (B = 00), the MMU bus only (B = 01), or the IOP
bus only (B'- 10). 10 specifies both input and output (= 00), input only (01),
or output only (10).

SOM MM, A, 10 AM Switch-out MMU; switch-out the main memory in plug position MM disconnect­
ing it at its access port number A (A = 0 implies all ports). 10 is interpreted
as in the SOC instruction.

SOIB IP, B AM Switch-out IOP from buses; switch-out the input/output processor located in
plug position IP from all buses (B = 0), the MMU input bus only (3 = 01), the
MMU output bus only (B = 10), or both MMU buses (B = 11).

SII IP, A, 10 AM Switch-out IOP from IOP buses; switch-out the input/output processor located
in plug position IP disconnecting it at its access port number A (A 0Qimplies
all ports). 10 is interpreted as in the SOC instruction.

SCV T, V, 'C AM Switch-out VDSC. The VDSC Type T in plug position V is disconnected from
its buses as indicated by C:

.

if C = 01, input C1 only,
if C = 10, input C2 only,
if C = 11, input C3 only,
if C = 00, all input and output.

TABLE 7

CONFIGURATION CONTROL (3 of 4)

STATUS DETERMINATION
INSTRUCTIONS

MNEMONIC
CODE ARGUMENTS MAP MEANING

SCC OP AM Sense central processor-connect status; if central processor plug position CP is
connected to a set of buses, skip the next instruction. (When a processor plug
position is vacant, it is assumed that it is disconnected from all buses. The dis­
connect operation should occur automatically upon manual unplugging or under
program control.)

SCP CP AM Sense central processor plugged-in status; if centril processor plug position CP
has an element plugged in, skip the next instruction.

SCG CP AM Sense central processor good status; if central processor plug position CP has
a good element plugged in, skip the next instruction.

SMO MM AM Sense memory connect status; similar to SCC.

SMP MM AM Sense memory plugged-in status; similar to SCP.

SMG MM AM Sense-memory good status; similar to SPG.

SIC IP AM Sense input/output processor connect status; similar to SCC.

SIP IP AM Sense input/output prdcessor plugged-in status; similar to SCP.

SIG IP AM Sense input/output processor good status; similar to SCG.

SBG B, BN AM Sense bus-good status; if bus number BN in bus group

if B = 000,
if B = 001,
if B= 010,
ifB = 011,

all bus groups,
MI only,
MOonly,
II only,

if B = 100,
if B = 101,
if B = 110,

1O only,
SI only,
SO only.

is marked good, skip the next instruction.
good to cause a skip.

Note: If B = 00, all buses must be

LFI Ri AM Load failure indicators. The R, S, and L status indicators for all bus sets are
loaded into register RI for program testing (no specific field format for R1 is
assumed at this time).

TABLE 7

CONFIGURATION CONTROL (4 of 4)

MISCELLANEOUS
INSTRUCTIONS

MNEMONIC
CODE ARGUMENTS MAP MEANING

CMM M1, M2 AM 'Connect Memory-Memory; connect memory plug position Ml
the Action Map for memory plug position M2.

as indicated in

CCC Cl, C2 AM Connect Central Processor-Central Processor; connect processor plug
position C1 as indicated in the Action Map for processor plug position C2.

Cil IPl, IP2 AM Connect input/output processor-input/output processor; connect the IOP
located in plug position IPI as indicated in the Action Map for IOP in plug
position IP2.

SWJ A, BA AM Switch and jump; transfer Setup Map information to the SCU switch control
logic for switching and save it in the Action Map. Status indicators are set
in AM to show associated connections and SM is cleared. Control of all
connected processors is transferred simultaneously to memory location A
of the memory element whose bank address is BA.

SMB MM, BA AM Set the bank address of the memory element located in plug position MM to
contain BA.

TABLE 8

PRIMITIVES (I of 2)

PRIMITIVE ARGUMENTS DESCRIPTION PCB ACTION

START PROCESSNAME Process is transferred to "ready" w + 1 -1 w
state if in "idle" state. Trans- If (a b c) = (x 0 0);
ferred to "ready suspended" state (x 0 1) - (a b c)
if in "idle suspended" state.

STOP PROCESSNAME* The work variable, "w," is dec- w - I -­iw
remented. If > 0 execution is STARTADDRESS -
restarted. Otherwise the process RETURNADDRESS
is transferred to the "idle" state. If w > 0;

(0 1 0) --- (a b c)
Ifw = 0;

(0 0 0) -­>(a b c)

VAIT PROCESSNAME* The process is transferred to (0 1 1) - (a b c)
t** the "waiting" state. PC -4, RETURNADDRESS

CONTINUE PROCESSNAME Process is transferred from the (x 0 1) -' (a b c)
"waiting" state to the "ready"
state. If currently suspended it
is transferred to. the "ready
suspended" state.

EXIT PROCESSNAME* Process is transferred from the (0 0 0) - (a b c)
"running" state to the "idle" 0 -­ w
state and subsequently deleted.

* Implied

** Optional PC - Program Counter

TABLES

PRIMITIVE 1ARGUMENTS

PRIMITIVES (2 of 2)

DESCRIPTION PCB ACTION

ABORT PROCESSNAME** Process is transferred from the
"running" state to the "idle"

(x 0 0)
0 ->'w

--- (a b c)

state and subsequently deleted.
If suspended, the process is
tiansferred to the "idle sus­
pended" state.

SUSPEND PROCESSNAME The process is transferred from
its current state to its compan-

(I x x) --i (a b c)
PC --lRETURNADDRESS

ion suspended state.

RELEASE PROCESSNAME The process is transferred from
its current suspended state to its
companion non-suspended state.

(0 x x) -- (a b c)
If (a b c) = (0 10);

RETURNADDRESS
-- PC

* Optional PC - Program Counter

The WAIT primitive may optionally specify a delay, At, the expiration
of which will result in the CONTINUE primitive being invoked. The implied
argument of the WAIT primitive is the name of the invoking process.

(4) Continue. Execution of the CONTINUE primitive
effects a transition of the object process from the "waiting" state to the "ready"
state. Subsequent execution of the object process resumes at the instruction
sequence following the point at which the WAIT primitive was invoked. The
CONTINUE primitive must specify the name of the object process as an execu­
tion parameter.

(5) Exit. The EXIT primitive is invoked by a process
for the purpose of self-termination. The process is temporarily transferred
to a "terminate" state followed by release of its allocated main memory and
PCB residence. Again, the implied argument of this primitive is processname.

(6) Abort. This primitive has all the effects of an EXIT
and additional capability. to perform or request actions to aid in debugging or
failure isolation. Execution of an ABORT primitive with an argument, process­
name, is used by a cooperative process that is aware of an anomaly in the
object process. If the processname is not specified, it is implied to be that
of the invoking process.

(7) Suspend. Execution of the SUSPEND primitive allows
the invoking executive process to effect a non-destructive suspensidn of an
object process. While suspended the object process relinquishes its PCB to
be examined or altered dynamically by the invoking process. The state trans­
ition of the object process is to companion suspended states for "idle," "ready,"
"running," and "waiting. " The conceptual effects of the START, CONTINUE,
and ABORT primitives are preserved during suspension by incrementing "w, " - ­
transition to "ready suspended," and transition to "idle suspended," respectively.

Suspension is terminated by execution of its converse, the RELEASE
primitive. An argument, processname, is required for execution of SUSPEND.

(8) Release. The act of invoking the RELEASE primitive
will cause the object process to revert back to its companion non-suspended
state. The RELEASE primitive must specify the processname of the object
process.

c. Memory access lockout. A main memory unit global data
file structure may require that one process prevent access from all other
processes for the duration of an operation (an uplink file being compacted, for
example). Analogously, an otherwise re-entrant routine may require that a

77

portion of itself not be executed simultaneously by more than one process.
The only effective non-aleatory procedure is memory test and set, TS, utiliz­
ing a unique control line to MMU (see earlier discussion of MMU).

TS is a privileged instruction, that may be implemented as an executive
request in the user mode. The format is equivalent to a standard memory ref­
erence instruction. Operation is as fqllows:

o 	 The referenced memory location is retrieved and tested
by MMU,

o 	 If not all ones, it is set to all ones and the instruction
following TS is skipped,

o 	 If all ones, it is restored and the instruction following
TS is executed.

A TS condition is cleared by storing zero in the test and set location.

d. . Recovery/trace. Table 9 lists three instructions which aid
the development of an automatic Icheckpoint/restart" procedure executed to
recover from transient and intermittent errors. Each instruction in the table
enables a program to determine a preceding point of the current instruction
sequence.

TABLE 9. RECOVERY/TRACE INSTRUCTIONS

INSTRUCTION

MNEMONIC OPERANDS DESCRIPTION

LCA R 	 The address from which the last subprog­
ram call originated is stored in the register
designated by R.

LJA R 	 The address from which the last jump orig­
inated (not a subprogram call) is stored in
the register designated by R.

LPC R 	 The address of tle instruction executed
imnediately preceding the current instruc­
tion is stored in the register designated
by R.

78

An additional application exists in the area of error analysis and debug­
ging aids. The following examples illustrate this:

o 	 Under process abort conditions, a f"walk-back" listing

giving machine conditions at selected points in the

instruction path, and

o 	 Determining which of several sequences is entering a

given sequence under erroneous conditions.

e. Program and concept verification. Ultimate reliability
(and cost) of software can be improved by facilities aiding the programmer
during checkout. Among those that relate to hardware/firmnware include:

o 	 Breakpoint address - a CPU halt upon encountering a

previously specified program address as a result of an

instruction fetch;

o 	 Breakpoint operand - a CPU halt upon encountering a

previously specified instruction operand (effective

address); and

o 	 Data pattern break - a CPU halt upon encountering a

previously specified operand value.

Implementation might be in the form of a CPU "debug" mode that can
be controlled externally (or internally under program control). Al alternative
is a separate SUMC model dedicated to software verification.

f. Input/output. Input/output instructions, referred to as
Program Controlled Output (PCO), are commands to the IOP to execute an
i/O sequence. In order to specify the instruction the following items are
necessary:

o Operational specifications,

0 IOP designation, and

o 	 Buffer address or pointer to the further information required.

The operational specification or op code designates the particular ac­
tion required of the IOP. The following actions defined in table 10 have been
found desirable:

o 	 Start Input/Output (SO)
o 	 Terminate Input/Output (TO)

79

TABLE 10

PROGRAMMED CONTROL INSTRUCTION DEFINITION

MNEMONIC
CODE OPERANDS

SO TOP, Class*,
Address

TO IOP, Class,
Address

GS lOP, R,
Address

ID TOP, R,
Address

OD TOP, R,
Address

DD** B, X, D,
Device Ad"
dress

DESCRIPTION

The TOP delineated is commanded to perform the I/O operation designated by the
Class operand. Class indicates the location of the ECOs (Main Memory or
Format Memory). Address designates the first word address (FWA) of the ECO
command packet that specifies the operation.

The I/O operation defined by the operands is terminated. Subsequent actions are
defined by the command packet.

The status indicator variable designated by the address operand is received
from the TOP and stored into the SPM register defined by "i. T

One 32 bit word is sent to the CPU register "R11 by TOP, from the device
designated in the operand address.

One 32 bit word is sent from CPU register "R" by TOP, to the device denoted by
the contents of the address operand.

The diagnostic process located at effective address is executed upon the device
specified by Device Address.

* 	 Class indicates location of ECOs (MMU'or Format Memory)
** 	 DD is a two word instruction; first word contains conventional SUMC Base, Index, Displacement terms for

effective address calculation; second word contains device address.

o Get Status (GS)

" Input Direct (ID)

" Output Direct (OD)

o Diagnose Device (DD)

The IOP designation is the select code for the IOP that will execute the opera­
tional sequence. Similarly the buffer address or pointer is the main or format
memory address of further specification data.

g. List/stack operations. Definition of a set of list/stack
operations alleviates the execution overhead for dynamic storage allocation,
assists in processing real-time interrupts, and provides convenient, least­
-redundant methods for implementing re-entrant/recursive routines. Table 1i
is a self-explanatory set of list/stack instructions.

Figure 29 depicts a modified ring structure illustrating a viable approach
to implementation. The state variable "S," the stack ID, is contained in a main
memory table to which there is a pointer in SPM. The-format of S depends upon
the detailed implementation scheme. P6inters within the list structure are trun­
cated to 16 bits, suggesting stack residence in the lower 65K of memory unless
a compensating mechanism is used, for instance, allotting a stack base address.
Since the required memory addresses do not conform to normal boundary check­
ing procedures, it is suggested that the list/stack operations be privileged and
incorporated as executive requests in the user mode.

h. Interrupt processing. 'Selection of instructions to facilitate
interrupt processing was directed b3 the criteria that SPM not be directly
addressable using the procedure for addressing i-IMIUs, but rather be addressed
via micrologic decoding of the instruction op code. Table 12 lists candidate op
codes to' set and sense associated SPM locations and provide capability for the
executive to respond to a priority interrupt. The following candidate instruc­
tions have been identified:

0 Interrupt Mask Set (IMS),

Se0 Interrupt Arm/Disarm (IAD),

o Clear Interrupt (CLI),

" Reset Interrupts (RIN),

o Set Interrupt Address (SIA),

" Read Interrupt Indicator (RII),

o Set Arithmetic Fault Mask (SAX),
- Enter Interrupt State (EIS), and
o Exit Interrupt State (EFS).

As noted, these instructions are discussed in table 12.

81

co

TABLE 11

LIST/STACK INSTRUCTIONS (I of 3)

MNEMONIC
OP CODE OPERAND MEANING

OS S, W, L Open Stack. Define a stack whose address is S (an atbitrary n-bit integer)
with a.single entry consisting of W words and a maximum length of L entries.
Future references to S do not require specification of W and L.

CS S Close Stack. Destroy the definition and existence of the stack whose address
is S. This allows S to be redefined.

PU S, A Push. Place the W words beginning at A on the top of the stack S. If this
new entry will exceed the specified maximum length L ignore the instruction
and fetch the next instruction; otherwise skip the next instruction after
execution.

PO S, A Pop. Copy the top entry on stack S into the W words beginning at A and
remove the top entry from the stack thus making the next entry the new top.
If prior to performing the PO there are no entries on the stack, ignore the
instruction and fetch the next instruction; otherwise skip the next instruction

R ,after execution.

RE S, A Read Entry. Copy the top entry on stack S into the W words beginning at A.
If prior to performing the RE there are no entries on the stack, ignore the
instruction and fetch the next instruction; otherwise skip the next instruction
after execution.

TP S Top. Move a logical pointer to the top entry on stack S. If the stack has no
entries, ignore the instruction and fetch the next instruction; otherwise skip
the next instruction after execution.

TABLE 11

LIST/STACK INSTRUCTIONS (2 of 3)

MNEMONIC
OP CODE OPERAND MEANING

RW S, R, N Read Word. Copy .the contents of the Nth word (0 9 N W - 1) of the stack
(S) entry pointed to by the logical pointer (referenced to henceforth
"logical entryt ") into register R.

as the

WW S, R, N Write Word. Replace the contents. of the Nth word (0 < N W - 1) of the
stack (S) logical entry by the contents of register R.

MD S Move Down. Move the logical pointer to the next lower entry on the stack
S. If there is, no next entry, ignore the instruction and fetch the next
instruction; otherwise skip the next instruction after execution.

MU S Move Up. Move the logical pointer to the next higher entry on the stack S.
If no next higher 'entry exists (pointer is at the top) ignore the instruction
and fetch the next instruction;
execution.

otherwise skip the next instruction after

DL S, R, N' Down Less-than. Beginning with the logical element, scan each suaceeding
(lower) element until one is found whose Nth word has contents numerically
less-than the contents of register R. If the stack is exhausted before the
test is satisfied, fetch the next instruction; otherwise, define the satisfying
element to be the new logical element and skip the next instruction.

DE S, R, N Down Equal. Same as DL but test for equivalence of contents.

DG S, R, N Down Greater Equal. Same as DL but test for word contents greater than

or equal to register contents.

C_ _ _ _ _ _ _ _ _ __ _ _ _ _ V

TABLE 11

LIST/STACK INSTRUCTIONS (3 of 3)

MNEMONIC
OP CODES OPERANDS . MEANING

BT S Bottom. Position the logical pointer to the last element on the stack. If the
stack is empty, fetch next instruction; otherwise skip the next instruction
after execution.

OT S Out. Remove and destroy the logical entry from the stack, closing the twvo
adjacent entries together to reform the stack without changing the relative
order of remaining entries. Define the logical entry to be the entry which
previously followed the removed logical entry. If no entry previously followed
the removed logical entry define the top entry (this also may not exist) on the

stack to be the logical entry and fetch the next instruction. Otherwise, skip
the next instruction.

IN- S, A In. Insert a copy of the W words beginning at A into the stack as the entry

following the logical entry. Redefine the logical entry to be the newly added

entry. If the stack is empty prior to the IN instruction- the new entry will
be inserted on the stack and defined to be the logical entry.

LP S, R Logical Pointer.. Places address of logical pointer for stack S into register R.

Jh ENTRYth

wWords

j Ih ENTRY
S0

BOTTO TOPw Words

.ols ITR

FIGURE 29

STACK IMPLE IENTATION

o

TABLE 12

INTERRUPT PROCESSING INSTRUCTIONS (I of 2)

MNEMONIC
OP CODE OPERANDS DESCRIPTION

SIA R, I Set Interrupt Addregs. Store the contents of register R into the SPM
interrupt location of which the immediate operand I is the relative priority
level.

RE A Read Interrupt Indicator. Store the contents of the interrupt status and
arithmetic fault words (SPM 125 and 126) into locations' A and A + 1.

SAI R Set Arithmetic Fault Mask. Store the contents of register R (bits 25-31)
into the mask portion of the arithmetic fault indicator. The initial condition
of this register is all ones. A bit set for a particular condition will allow
an arithmetic fault interrupt if that condition occurs.

EIS Enter Interrupt State. A higher priority level interrupt has occurred. Clear
interrupt; set Executive mode ff. Branch to process to isolate interrupt .
source. Consequent action depends on state of system at instant of interrupt
arrival.

EFS Exit from Interrupt. Arm selected interrupts, PCB (Program Counter) - PC,
set user mode ff, FETCH. It should be noted that the PCB must contain the
appropriate process parameters.

IMS B, I, A Interrupt Mask Set. Location 2 = B + I + A contains a mask which is used to
enable or disable selected interrupt levels where 1 = enabled. The initial
state of all interrupts is "disabled. " An occurrence of a disabled interrupt
is ignored (i. e. , null processed). The preceding is accomplished by storing
the contents of the effective address in the SPM Interrupt Mask location.

MNEMONIC
OP CODE OPERANDS

LAD B. X, D

CLI

RIN

TABLE 12

INTERRUPT PROCESSING INSTRUCTIONS (.2 of 2)-

DESCRIPTION

Interrupt Arm/Disarm. Location Z = B + X+ D contains a mask which is used
to arm or disarm selected interrupt levels. An occurrence of a disarmed
interrupt is "remembered" but not serviced until armed.

Clear Interrupt. The active (highest) interrupt level is reset, allowing queued
lower (or equal) interrupt levels to be serviced after execution of the following
CPU instruction.

Reset Interrupts. Pending interrupt service requests are cleared. To obtain
service the signal must be reinitiated.

Instructions IMS and IAD (enable/disable, arm/disarm, respectively)
require the following definitions:

o 	 An interrupt level that is enabled will be given CPU
service time according to its priority and "armed"
status upon each occurrence;

o 	 An interrupt level that is disabled will be ignored;

o 	 An interrupt level that is armed will compete for CPU
service time on the basis of priority upon occurrence;

* 	 An interrupt level that is disarmed and requesting service
will not be allowed CPU time until armed. In contrast to
the disabled state, however, it will be queued for later
service.

IMS and TAD submit a mask word, as depicted in figure 30, for interpretation.
The left half of the mask selects the interrupt levels to be affected and the
right half selects the appropriate status redesignation.

Arithmetic fault interrupts may be prevented for specific conditions
via an SAI (Set Arithmetic fault Indicator). The format of the required operand
mask may be obtained from figure 30.

i. Program linkage. 'Specification of program linkage instruc­
tions (CALL, RETURN, Executive Request) might be influenced by definition
of the CPU progran structure. Multiple entry points are a simple example of
a program structure capable of being facilitated by linkage instructions. More
elaborate structures might include programmed "filters, ' invoked upon entisr
and exit from a program, which perform parameter checks and set execution
conditions. This framework creates a closer functional relationship between
program entry and exit instructions. Time requirements for the present study
do not permit a thorough evaluation of the program structures required, thus
it might be necessary to give complete program linkage specification at a later
time.

C. System Control Unit (SCU)

This section summarizes the role of the system control unit and sug­
gests an approach to its architecture. The SCU acts as. a system supervisor
at the lowest level at which such control is usually found in the form of an
executive routine. That is, the next successive lower level of control is
typically found in stored or digital logic. Because the functions allocated to

88

.112 	 115161121

IF EQUAL 0, IGNORE 	 =I - ARM OR ENABLE
= 0 - DISARM OR DISABLE

I. - RELATIVE INTERRUPT LEVEL1

LEFT HALF OF REGISTER IS USED TO SELECT INTERRUPT LEVELS

RIGHT HALF IS USED TO SELECT STATE

FIGURE 30

ENABLE AND ARM MASKS FOR IMS AND IAD INSTRUCTIONS

the SOU comprise an important part of the interface with what is frequently
referred to as "hardware," they become prime candidates for microprogram
or digital logic implementation.

The functions allocated to the SCU are principally supportive in that
events, occurring under program control at one or more of the system's CPUs,
initiate action of the SOU. The SCU maintains state information on all of the
hardware elements and software elements. The software elements, referred
to as processes, are scheduled for allocation of certain hardware resources by
the SCU. The methodology and schema by which CPU time is allocated are
known collectively as process control. Through process control implicit con­
trol of CPU resources is achieved.

In addition to process control, the SOU maintains a map of the physical
system, known as the action map (AVI), wherein all topological information
regarding the connection of elements to other elements within the system is
kept. This map serves also as a basis for determining the availability of all
elements, including spare . These functions are discussed below in a way
that illustrates the relation of the SOU to CPUs.

1. SOU Operations/Functions. Configuration control, CPU control
(by way of process control), and process control are summarized as-follows.

a. Configuration control. Special instructions to be executed
by CPUs under executive control were itemized in a prior section (table 7).
With respect to certain of these instructions, requests by the executing CPU
are made of the SOU as follows:

(1) Switch and jump request. This request is made as a
result of CPU execution of the SWJ instruction. The response of the SOU is to

o 	 Receive and save the jump address parameters -from the
CPU,

" 	 Receive the setup map (SM) from the CPU,

Transform the SM into switch commands and switch
all affected elements as required,

o 	 Set the AM to reflect SM settings, and

o 	 Send an "Executive Transfer" command to all active

OPUs along with the associated jump address parameters.

90

(2) Disconnect element request. This request is made
as part of the CPU execution of an SOC, SOM, SOIB, SOII or SOV instruction.
The SCU response is to

o Receive an element switch control word from the CPU,

" Construct associated switch control command(s),

• 	 Issue the switch command(s), and
o 	 Update the AM as required.

A tentative control word format is given in figure 31. The symbols are
interpreted as shown in table 13.

TABLE 13. SWITCH CONTROL WORD FIELD DEFINITIONS

SYMBOL VALUE 	 MEANING

R 	 00 Central Processor (Ignore P)

01 Main Memory (P specifies port)

10 Input/Output (P specifies port)

11 VDSC (Ignore P; C gives TMR channel)

P 	 0 All Ports

N Port N only

B 	 00 All Buses

01 Processor Input Bus

10 Processor Output Bus

11 Spare

C 	 00 All

01 Input C1

10 Input C2

11 Input C3

E 	 N Unit Address

(3) Copy connect request. This request results from CPU
execution of a CMM, CCC, or CII instruction. The SCU response is to

0 	 Receive a copy control word from the CPU,

o1 	 Search the AM for all element E2 bus connections and

save them,

91

Bus/

Type Port Chan. Element Name

T P B/C E Symbol

2 3 2 5 # Bits

FIGURE 31

SWITCH CONTROL WORD FIELD FORMAT

o 	 Disconnect element E2,

o 	 Connect element El in the same way element E2 was
connected, and

o 	 Update the AM appropriately.

Figure 32 shows a tentative copy connect word format wherein T and El/E2
have the same meaning as the T and E, respectively, of figure 31.

(4) Configuration status request. " Tis request is made
by a CPU as a result of having executed an SCC, SCP, SCG, SMC, SMP, SMG,
SIC, SIP, SIG, SBG, or LFI instruction. SCU response is to

o 	 Receive the status type code word (format not specified),

* 	 Search the AM to get required status,

o 	 Form an appropriate status response word (format not
specified), and

o 	 Send this word to the requesting (waiting) CPU.

Status can be requested for the following Boolean parameters: bus good, cen­
tral processor connected, memory connected, input/output process'or connected,
element disconnected, element plugged-in, and element good.

In addition to the responses of the SCU to CPU initiated requests, the
SCU initiates commands to a CPU as follows (CPU responses to these com­
mands are detailed elsewhere):

(5) Executive transfer command. Tis command is
issued as the final SCU action in response to a switch and jump request,

(6) Receive VDSC error indicators command. Whenever
a VDSC indicates a disagreement in TMR majority voting, this command is
issued by the SCU simultaneously to the three active TMR system CPUs.

b. Process control. The role of processes and their control
via a set of system primitives defined as SUMC instructions were previously
reviewed. It was stated that the functional responsibility for prilmlitive execu­
tion was shared by the CPU and the SCU. Three related SCU to CPU commands
(preempt, dispatch, increment w) were described by delineating CPU response.
Each primitive is assigned a unique command which is transmitted as part of

93

Name Type Element 1 Element 2

Symbol: T El E2

Bits : 2 5 5

FIGURE 32

COPY CONNECT WORD FIELD FORMAT

its execution by a CPU to the SCU. An argument, processname, identifies the
object process and is received by the SCU following the command. Additional
response to the command by the SCU is frequently based on the state of the
object process.

(1) Start process request. This command results from
the execution by a CPU of a START printive. The following response is
evoked from the SCU.

* 	 The SCU locates (in its memory) the PCB of the object
process.

* 	 If the process state is "idle, " the w field of the PCB is
incremented, the process state bits are set to indicate
the "ready" state, an entry is made in the "ready" list,
and the dispatcher routine is executed by the SOU.

* 	 If the process state is "ready," "waiting," "ready
suspended," "running suspended," or "waiting suspended,'
the w field of the PCB is incremented.

o 	 If the process state is "idle suspended," the w field of the
PCB is incremented and the -process state bits are set to
indicate the "ready suspended" state.

o 	 If the process state is "running" the w field of the PCB is
incremented,, the OPU number is identified by fetching it
from the PCB, and an "increment w" command is sent to
the CPU.

(2) 	 Stop process request. This command originates with
the execution by a CPU'of a STOP primitive for a process with zero in the PCB
w field after decrementing. The following SCU response is executed.

0 	 The PCB is received from the CPU.

" 	 The CPU number field of the PCB is cleared.

0 The process state bits are set to indicate the "idle"
- state and the process' ready list entry is deleted.

e The dispatcher is executed.

95

(3) Wait process request. Execution of a WAIT primitive
by a CPU transmits this command to the SCU. The following SCU response is
effected.

e 	 The POE is received from the CPU.

o 	 The CPU number field of the PCB is cleared.

" 	 The process state bits are set to indicate the "waiting"
state and the process' ready list entry is deleted.

(4) Continue process request. This command corresponds
to execution of the CONTINUE primitive by a CPU and initiates the following

S0U response.

* If the process is in the "waiting" state, the process state
bits are set to indicate the "ready" state and an entry is
made in the "ready" list; the dispatcher is executed.

* 	 If the process is in the "waiting suspended" state, the
process state bits are set to indicate the "ready suspended"
state.

(5) Suspend process request. This command is trans­
mitted to the SCU during execution of the SUSPEND primitive by. a CPU. The
SCU responds in the following manner.

o 	 If the object process is in the "running" state, a "preempt"
command is sent to its associated CPU, and the SCU receives
the process PCB. The process "ready" list entry is removed.
If the object is not in the "running" state, this step is sldpped.

The state bits of the PCB are set to indicate a companion
suspended state.

o 	 A copy of the PCB is sent to the CPU executing the SUSPEND
primitive.

(6) Release process request. Execution of a RELEASE
primitive by a CPU generates this command to the SCU. The response of the
S0U is dependent on the state of the object process.

o 	 If the process state is "running suspended," the process
state bits are changed to indicate the "running" state, the

96

identity of the object process CPU is ascertained, and a

"dispatch" command issued to the CPU. The process
"ready" list entry is inserted and the dispatcher is
executed.

o 	 If the process state is "idle suspended," "ready suspended,"
or "waiting suspended," the PCB state bits are changed to
indicate the companion non-suspended state. In the case
when the companion state is "ready," a ready list entry is
inserted and the dispatchertis -exec-aIed.

(7) Exit process request. The EXIT primitive, executed
for process self-termination, causes this command to be sent to the SCU. The
SCU responds in the following manner.

o 	 The PCB is stored in a temporary "terminate" list froin
which the system allocator may retrieve the CPU number
and main memory locations to be released. The process'
"ready" list entry is removed.

o 	 The dispatcher is executed.

(8) Abort process request. This command corresponds
to execution of the ABORT primitive and initiates the following SCU response.

&" 	 If the piocess is in the "running" state, a "preempt" command
is sent to the object process CPU and the PCB is received.

o 	 The object process POB is stored in a temporary "terminate"
list from which the system allocator may retrieve the C PU
number and main memory locations to be released. Addition­
ally, error analysis procedures may be initiated from the
allocator.

o 	 The process' "ready" list entry is removed and the dispatcher
isexecuted.

c. 	 CPU control. Control of system CPUs by the SCU is
accomplished through the collective actions outlined above. These are sum­
marized here to emphasize the total impact of the SCU.

(1) CPU availability. The SCU makes CPU elements
available as a computational resource through the accomplishment of switching
actions that bring an element on-line to a specific configuration.

97

(2) CPU resource allocation. Through the complementary
actions of dispatching and preempting CPUs according to an SCU executed allo­
cation algorithm, computational time is distributed among all competing program
processes.

(3) CPU replacement. By accomplishing the determination
of an element's topographical connections with other system elements, the SCU
can effect replacement with similar spares.

y and isolation. Through the
ability to structure internally redundant system subsets and recognize notifica­
tion of disagreements with a majority, the SCU can separate transient and
apparent hard failures and initiate corrective action.

2. SCU Architecture. The functional nature of the SCU must be exam­
ined in greater detail before an optimal architecture can be specified. Very
little arithunetic capability seems necessary. This is indicated by the predom­
inantly logical nature of the tasks having to do with process and configuration
control. The dispatching function may or may not require arithmetic capabil­
ities depending on the details of the associated process selection algorithm.

On the other hand, if the IMEC specification is to be general enough to
satisfy a broad spectrum of mission profiles, it is clear that a high degree of
flexibility in the form of open-endedness is desirable. A rather open-ended
approach results from postulating that the SCU will be implemented with a
general purpose computer such as the SUMAC. As a baseline, the SUMC rep­
resents a strong departure point and is therefore assumed in this report.

. In order to provide a tangible implementation basis,, the functional
nature of the SCU is discussed below in somte detail by way of emphasizing
peculiarities. In particular, the action map is rough drawn, a summary of
functions is given, basic instructions are specified, and a list of SUMC­
oriented specifications comprising an implementation framework are provided.
Table 14 gives a summary of the SCU characteristics derived from these
considerations.

a. Functional overview. Figure 33 depicts a functional diagram
of the SCU. The major data structures, located in local memory, are seen to
be the action map (AM), process control blocks (PCBs), and ready list (RL).
Inputs to the control and timing function from a clock, CPUs, or TM1R VDSCs
cause activation of the Process Control, Configuration Control, or Faults
functions. The functions Insert, Remove, Dispatcher, Exit, Abort and Faults
can be invoked by the Process Control function and have to do with control of
software processes and allocation of CPU time. The Configuration Control

'8

TABLE 14

SCU SUMMARY

LOCAL MEMORY:

Word Size (bits)

Cycle Time (nanoseconds)

Number of Words

SUMC/SCU:

Data/Register Path Width
Word Size (bits) of SPM
Cycle Time (nanoseconds) of SPM
Number of Words in SPM
Number of Words in IAROM
Word Size (bits) of IAROM
Bit Width of Seq. Cntrl. Unit
Number of Words in IVROM
Word Size (bits) of MROM

18
500-1000
8192

16
16
50
8
64
9
9
512
50

LOCAL MEMORY

°FAULTS N

ACTION
MAP

CONFIG.
CONTROL

SWITCHvitch
CONTROL

FFs

CONTROLSBLOCKS

__

---- PROCESS
CONTROL

- t ENCODE/DMUX

1
To CPUs

*INSERTRISTREMOVE
COMMUN.

DECODE/ From CPUs

DISPATCHER
DISPATCHER

CONTROL
&

TIMING

Clock

EXIT IVDSC
ABORT

FIGURE 33

SCU FUNCTIONAL DIAGRAM

ERRORINDICATORS

"
From VDSCs

function, which handles switching of system elements, can be invoked either
by Faults or a CPU under program control. A summary of SCU functions
includes:

p Configuration Mapping,
o Configuration Switching,

e Configuration Status Reporting,

o Process Dispatching (CPU Allocation),
o Process State Error Analysis and Recovery,
* Process State Transition Monitoring,
o Ready List (Job Stack) Manipulation,
o Adaptive Process Control, and
o Adaptive Configuration Control.

. b. Action map structure. To support an estimate of LM size,
this section describes a feasible structure for the action map. Figure 34 shows
how a record is maintained showing which processor plug position is connected
to each MI and MO bus. - In addition, the M and AP fields designate one memory
plug position and its connected access port. A main memory unit connector
block, as shown in figure 35, is used to record the connection (to a given bus)
of additional MMUs. Each (M, AP) pair serves to specify a unique connector
block and the unique location within the block of another (M, AP) pair connected
to the same bus. Thus, the designator pairs form a chain linking together all
M Us connected to a particular bus. Two connector blocks (one each for MI
and MO connections) are required for each MMU. The MMIn is depicted.as
having twelve (12) access ports, one for each of eight (8) CPUs and four (4)
lOPs.

Figure36 contains bus connection data for CPU/IOP and CPU/SCU;
connection is via the fl/IO and SI/SO buses, respectively. The (I, IP)pairs
serve to link together multiple IOPs connected to a common bus. The scheme
is identical to that discussed above for MMUs and requires two (2) connector
blocks, as shown in figure 3'7, for each IOP.

Finally, figure 38 shows a possible data structure for recording and
maintenance of VDSC connections when system operation is redundant.

The system action map is seen to require somewhat under thirty-two
(32) words (based on a 32 bit word) not including connector blocks. Assuming
thirty-two (32) MMUs and four (4) IOPs, and packing the blocks, approximate­
ly two hundred eighty (280) additional words are required. Although status
indicators (not shown) must also be maintained for all elements, these can be
packed into the unused space of the action map. Therefore, the total (32 bit
wide) space required for the AM is three hundred twelve (312) words. A six­
teen (16) bit wide space of six hundred twenty-four (624) is adequate.

10:

http:depicted.as

B
0

U
MI

P M

PROCESSOR/MEMORY

AP US U P
MO
M AP US

2

3
4
5
6
7
10
1112
13

Bits: 2 3 5 4 2 2 3 5 4 2

LEGEND

*
U

Bus Number ""P
Usage
= 00 Not Used (Good Spare)
= 01 P is CPU
= 10 p is IOP
= 11 Not Good

M
AP
MI
MO
US

Processor Position#
Memory Position#
Access Port #
Memory Input Bus
Memory Output Bus
Unused Space

FIGURE 34

ACTION MAP CONNECTIONS FOR PROCESSOR/MMU

M AP Access Port #
0
1

2

4

3

5

6

'7

10

11

12

13

#Bits: 5 4

FIGURE 35

MMU CONNECTOR BLOCK

CPU/OP -- -CPU/SCU

II1O SI SO

3 I I I _S CS

2
3

4
5 _ _ " _

7- 3

Bits: 1 3 2 3 1 323 3 1 3 3

LEGEND

G 	 Good Indicator IP TOP Access Port#
= 0 Good TI TOP Input Bus

= 1 Not Good IC lOP Output Bus
C CPU Position f SI SCU Input Bus

I lOP Position # SO SCU Output Bus

FIGURE 36

ACTION MAP CONNECTIONS FOR CPU/IOP AND CPU/SCU

I IP 	 Access Port#

0

1

2

3

4

5

7

Bits: 2 3

FIGURE 37

.IOPCONNECTOR BLOCK

0
B

2
3
4

-PROC/MEM --
MI MO

VMI VC VMO VC VII

C PU/xOp----r-- CPU/SCU
II IO SI SO

VC VIC VC VSI VC VSO VC U

101
11

12I

__ __ __

I

I

_____ I,
I

#Bits: 3 2 3 2 3 2 3 2 3 2 3 2 2

LEGEND

VMI
VMO
VII
VO

VDSC MI Bus'
VDSC MO Bus
VDSC H Bus
VDSC 10 Bus

VSO
VC

S

VDSC SO Bus
VDSC Channel
= 00 Not Connected
VO

VSI VDSC SI Bus = 10
= 11

TMR Channel

FIGURE 38

ACTION MAP CONNECTIONS FOR VDSCs

c. PCBs and ready list. In addition to the AM discussed
above, a process control block (PCP) is required in the SCU's local memory
for each IVEC system process. Referring to figures 19 and 23, it is seen that
each PCB takes tventy-five (25) 32 bit words (including one word to link them
together). The determination of the number of software processes requires
a knowledge of mission requirements.

Figure 39 depicts a flexible structure for the ready list (RL) where n
integral priority levels are accommodated. Each entry is comprised of con­
'ponents for maintenance of a ring at each priority level, a sub-priority indica­
tor, and a pointer to the associated PCB. This ready list structure can accom­
modate a relatively sophisticated dispatcher and may be considered, at three
(3) 32 bit words per entry, to be a liberal structure. The average number of
entries in the list is a random variable that is dependent on the mission and
cannot, therefore, be estimated without suitable simulation or queueing analysis.

d. Local memory. Based on the above discussion, an expres­
sion for the size of a 32.bit LM is available as

=LM32 312 + 25p + n + 3e +s/2, where
p = number of software processes,
n number of priority levels,
e = number of entries in 1L, and
s = number of software instructions.

As an example, assume p = 30, n = 10, e = 10, and s = 1000. Thus,

LA13V2 1602 (assuming 16 bit instructions), and
LM16 = 3204.

From this admittedly crude analysis it appears that provisions for an 8K 16 bit
LM are necessary for reasonable mission spectrum coverage.

e. Scratch pad memory (SPM). Because of the relatively small
LM word size compared to the number of words required, SPM will be required
for indexing to access the data structures discussed above. Thirteen (13) bit
words would be adequate for this purpose but, since a 16 bit SPM would allow
LM and temporary data storage also, this greater width is preferred. See
figure 40 for a layout of the eight word SPM.

f. Instructions. The formats shown in-figure 41 are recom­
mended for software instructions. These formats were derived from the basic
instruction repertoire given in table 15.

1­

0o

P ARRAYPC

2 PROITY

FIGURE 39

READY LIST STRUCTURE

Word
0 'A
1 X1
2 X2
3 X3
4 Q
5 PC
6 SCRATCH

7 SCRATCH

FIGURE 40

Accumulator/Index 0
Index 1
Index 2
Index 3
Quotient
Program-Counter

SCU SCRATCH PAD MEMORY

FORMAT 6 10

1 OP CODE [L L = Constant

6 2

X = Index register ID2 OP CODE
OCOEK = Index constant

6 ~ 2 3 5X Index register ID=

3 OP CODE _X w W C = CU ID

W = Counter

FIGURE 41

SCU INSTRUCTION FORMATS

TABLE 15. SCU BASIC INSTRUCTIONS

OPERATION ARGUMENTS FORMAT 'NOTATION MEANING

ENA L I L -A Enter A
SAR L 1 (A)R -L Store rightmost (10 bits of) A
ENQ L ,1 L'-Q Enter Q
SQR L 1 (Q)R'-L Store rightmost Q
J L I L -PC Jump
JR L I (PC) - L; L+1-PC Jump Return
JI L 1 (L) -PC Jump Indirect
ENX X, K 2 IH-X Enter Index
XA X 2 (X) -A Index to A
AX X 2 (A) -X A to Index
SAQ 1 (A) .. Q; (Q) -A Swap A and Q
IA L 1 (A)+L -A Increase A
IX X, K 2 (X)+K '-X Increase X
L X, K 2 ((X)+K) -A Load A
S X, K 2 (A) -(X)+K Store A
AD X, K 2 ((X)+K) + (A) -A Add to A
SU X, K 2 (A) - ((X)+K') '-A Subtract from A
M X, K 2 (A) x ((X)+K) -AQ Multiply
D X, K 2 (AQ) - ((X)+K) -A; R -Q Divide
OR X 2 (X)v(A) -A. Or X with A
AND X 2 (X)/\(A) -A And X with A
EOR X 2 (X)@(A) -A Exclusive - Or X with A
ML X, K 2' ((X)+K)A(Q) -A Masked Load'
SRA W 3 (A) x 2 - w -A Shift Right A end off
RA W 3 (A) x 2w + (A) x 2- w -A Rotate A Left (end around)
SLAQ
RQ

L
W

I
3

(AQ) x 2 L -AQ
(Q) x 2w + (Q) x 2- -Q

Shift Left AQ end off
Rotate Q Left (end.around)

SAE L 1 If (A) = L, Skip Skip A equal
SXZ I, .K 2 If (X) = K, Skip Skip X equal
0C C, X, W 3 Output W words beginning at (X) to CPU C Out to CPU
IC C, X, W 3 Input W words beginning at (X) from CPU C In from CPU

-DC C 3 Dispatch CPU a Dispatch CPU
PC C 3 Preempt CPU C Preempt CPU

H SC L I Signal CPUwith Command L Signal CPU

D. Iaput/Output Processor (IOP)

The IOP frees the CPU from the procedures required to accomplish
data transfers. The significance of lOPs is shown in figure 1, Multi-Element
Configuration.

The lOPs, then, initiate and monitor the following categories of data
transfers upon command of a CPU:

e" CPU-peripheral device,
e Peripheral device-main memory, and
* 	 Peripheral device-peripheral device.

In the above a peripheral device is considered to be a device that is
connected to a DBT. This section outlines lOP operations, instructions, and
an architecture for the IOP.

1. I/O Operations. Since the TOP is dedicated solely to this, purpose
it is germane to permit operation on a polling basis. This will be Acooperative
venture between the IOP and the attached DBTs. Trade studies are required
to determine whether or not variable polling sequences are required. However,
whatever the sequence, the TOP will interrogate each DBT in turn for an I/O
demand or response. The device will respond either with an ACK, Reject, or
by transmitting the buffered message. Upon successful receipt of the message,
the OP will in turn reply to allow the device to clear its buffer and'accumulate
further data.

a. Data transfers. For CPU-peripheral device bidirectional
transfer, which is considered to be a transfer using the Input Data Direct (ID)
and Output Data Direct (OD) instructions to communicate with SPM, the. follow­
ing events must occur:

o 	 The IOP detects the request from the CPU by interpretation
of the transmitted data.

o 	 If the request is an OD, the IOP initializes the peripheral
device by transmitting an appropriately encoded command.
The TOP then raises the POLL REQUEST signal to the CPU.
The CPU, after recognition and service of the signal, out­
puts the first word from its PRR to the access port of the
lOP. The IdJP perfomns the appropriate reformatting and
outputs the encoded message to the peripheral device which
acknowledges receipt. If the CPU command requires notifica­
tion of a termination condition, the IOP inputs status from the
DBT and then signals either successful completion or a failure.

L12

o 	 If the request is an ID, the IOP inputs the information from
the device DBT buffer, assembles the word and signals the
CPU. After the CPU has polled the IOP, the data is.made
available on the access port for the appropriate CPU, which
can then input the word and signal successful completion or
failure to the lOP.

For communication between peripheral devices and main memory, the
following factors must be accounted for:

o 	 Upon detection of the request, the TOP activates the appropriate
data path between memory and the peripheral device.

e 	 For a read to memory operation the DBT device control buffer
is loaded with the device transfer address, the number of words
to transfer, and the destination address. Upon command of the
IOP, the device begins transmission. The LOP receives each
word, and -executes the required formatting operations. When
the word is assembled, the IOP requests a memory access.
When the memory word is written, the IOP indicates ready
for the next word. Termination can be invoked either from
the device or from the TOP.

o 	 For an output from memory to a device, the approximate
converse of the above operations takes place after initial­
ization of the DBT/device control buffers. The IOP requests
access to memory and upon receipt of the word, changes the
data to data bus format and outputs to the bus. Upon receipt
of transmission, the DBT performs any required reformatting
of the information into device-amenable format, and transfers
the buffered data to the device. Each transmission is acknowl­
edged. Error and/or completion notification signals to the CPU
are generated upon termination by the IOP.

o 	 To initiate peripheral device to peripheral device transfer the
IOP commands a destination device to be ready to accept data
over a defined data path, and acknowledge completion of the
transfer. The source device is then commanded to transfer
a prescribed number of words.

b. Bus operations monitoring. The IOP must provide for'bus
operations monitoring of message and hardware statis. Message statistics are
accumulated to provide a measure of system loading based on queue length.

113

In a similar way hardware status and activity monitoring must be
performed to permit possible reconfiguration in the event of device failure.

These status queues must be available to the CPU in a terse but intel­
ligible format. Status information is transmitted from the IOP to the CPU
upon demand. This collated information is based on raw status information
transmitted by the DBT to the IOP upon:

" 	 Demand,
o 	 Termination due to completion,
o 	 Termination due to failure, and
• 	 Termination upon command of the CPU.

2. IOP Architecture. An overview of the IOP resulting from the
allocation of functions among the different hierarchies of subsystems involved
in data transfer is shown in figure 42, Overall Block Diagram of SUMC Imple­
mented as aft I/O Processor (IOP).

Although minimu-m modifications to the basic SUMC, including an
additional memory access port for format memory, are required to implement
the IOP, optimal performance will require restructuring of the micrologic in
the MROM and the addition of appropriate control and status lines between the
SUMC and the i/O multiplexers. While Adder 2 is apparently not required for
the IOP, a substantial redesign of the SUMC is required to eliminate it, which
is beyond the scope of this report.

In order to delineate the LOP capability required, the following topics
must be analysed:

o 	 LOP to CPU communication,
o 	 lOP program commands, and
* 	 lOP Scratch Pad layout.

a. IOP to CPU communication, As illustrated in figure 43,
IOP State Diagram for CPU-IOP Dialog, the following considerations are
relevant:

o 	 The dormant or OFF state is exited by applying power to
the LOP, sending it to the IDLE state.

0 	 Transition to the READY state is effected b3y a CPU
initialization signal.

-14

MAIN FORMATMEMORY MEMORY

\/ /

ALU MRU M

INPUT
MPXR

SUMCs*

q'-'

INPUT
MPXR

CHANNELS

--

OUTPUT
MPXR

SUMCS**

-.-I
OUTPUT

MPXR
CHANNELS

CPU
0

CPU
7

Channel
0

Channel
7:'

CPU
0

CPU
7

Channel
0

Channel
7

*

**

From PRR (16-31) of each CPU
To MPXBI (16-31) of each CPU

FIGURE 42

OVERALL BLOCK DIAGRAM OF SUMC IMPLEMENTED AS AN IOP

Nos at chrW Input a

P0 cr
f

OFF
C r e

Mismatch
Ract ChaP

Poe r Address AIIKM

.O. SizTTE F C-OPDILO

Idle Ready I ,T petgI

/f TestP0 Compleotlee

-------------------Ir.. anuti 'g les E _ OEx cuti n E
FIUR 43 Rciv ac

,-'
Output.

Testin
B

"FIGURE 43

IOP STATE DIAGRAM FOR CPU-IOP DIALOG

o 	 If the CPU desires to transmit information to the IOP, it
utilizes the Poll signal. This causes the IOP to enter the
ADDRESS RECEIVE state. Receipt'of an address from the
CPU will cause the IOP to compare it with its own ID. Here
a match will cause the IOP to enter the INPUT state and
transmission may proceed. Conversely a mismatch implies
that the CPU has a dialog with a different IOP. Therefore
the CPU BUSY marker for the appropriate CPU must be set.

* 	 If the IOP must transmit to the CPU, the POLL REQUESTING
state is entered, after the CPU becomes available, causing
the Poll Request signal to be output and a transition to the
READY state invoked. The CPU ACK signal will cause the
OUTPUT state to be convoked, in which information transfer
to the CPU can proceed.

o 	 The CPU EOM signal must reset the CPU BUSY signal in

each IOP to indicate CPU available.

o 	 The IOP may enter the EdO state from either the INPUT

or OUTPUT states.

0 	 Successful higher state terminations lead to the READY

state for further CPU commands.

o 	 Anomalies evidenced by a Reject signal cause transition

to a higher state ERROR. This state is presently not

defined.

Signals utilized in the preceding discussion are shown in figure 21, CPU Control -
Bus Communication Output Parameters.

b. IOP program commands (ECOs). In a similar manner to
PCOs, additional ECOs are recommended to expand capability of baseline /8/.
Recommended ECOs are shown in table 16 as follows:

o WRITE (Output to destination device) (WO),

§ READ (Input to destination device) (RI),

o TRANSFER (Source to destination device) -(XF),

" TRANSFER IN COMMAND (Jump) (JU),

117

I­co

TABLE 16. EXTERNALLY CONTROLLED OUTPUT INSTRUCTIONS (ECO)

MNEMONIC
CODE OPERANDS DESCRIPTION

WO Command
Packet
(figure 44)

The data path designated by the Command Packet is established.
from the source to the destination device is initiated.

Data transfer

RI Command
Packet

The denoted data path is established.
source device is initiated.

Data transfer from destination device to

XF Command
Packet

A data path is established from source device to destination device. The source
device is commanded to transfer the number of words denoted in the Command
Packet.

JU Address Contents of Address - PC, FETCH ECO.

HA - IOP enters idle state.

ACK CPUID An acknowledge signal is sent to the denoted CPU.

RJ CPUID An error signal is sent to the CPU.

P0 CPUID A poll request signal is sent to the designated CPU.

LS R, N, Address N words of format buffer memory are loaded into SPM beginning at location R,
if N > k the instruction is skipped and the succeeding instruction executed, if
N k the instruction is executed and the succeeding instruction skipped where k
will be derived by future study.

*IIU- Peripheral

0 2 3 6 7
Readl Chan I

.0
Nr of Words

9 10

11 12 13 14 15 16 16
B I x Displacement

Device Address
DBT Freq Internal

17.18 21 22

31

I

31

0 2 3 6 7
[Wate I Chan _I

.0 9 10

INr of Words (1024)1

12 13 14 15 16 16
B I X Displacement

Device Address

31

31

Peripheral- Peripheral

0 23 6 7
XFR I Chan I

910,
I Device Address (Source)

31

0
Nr Words

9 10
Device Address (Destination)

31

FIGURE 44

ECO COMMAND PACKETS

" HALT (Halt) (HA),

e ACKNOWLEDGE (ACK),

o REJECT (RJ),

" POLL REQUEST (PO),

o 	 LOAD SCRATCHPAD (SPM] FROM MEMORY (LS)

and, in addJtten to the ECOs,

" 	 COMMAND FORMAT (Kernel for output to data bus).

C. TOP scratch pad layout. Based on the -preceding discussions,
a storage requirements analysis for parameter storage is presented in figure 45,
lOP Scratch Pad Memory Configuration.

Parameter storage falls into three areas:

a 	 Variables required to support TOP operations; for

example, Program Counter, Index Registers, etc.

o 	 Variables concomitant with maintenance of hardware
status information, and

G 	 Variables associated with message status and SUMC­
TOP-peripheral device communications.

Presently 256 words of SPM for an TOP appear adequate.

.20

_ _ _ _ _ _ _ _ _ _ _

* 0 Registers and

Accumulators

15 _ _ _ _ _ _ _ _ _ _ _ _ 159
16 Program Counter, 160
17 BRLA
18 BRHA 167
19 Interrupt Structure

168Associated Variables

2 18026 S 181
27 Spare

188

31 189
32 DBT Status Words

252

* Note address shown as example only.

FIGURE 45

IOP SCRATCH PAD MEMORY CONFIGURATION

Channel Status Words,
_

_

Spare

SUMC Direct

Communication

Message Status

Information

FOR PARAMETER STORAGE

APPROVAL

SPACEBORNE COMPUTER MULTI-ELEMENT

SYSTEM CONFIGURATION

ARCHITECTURE REFINEMENT: TASK 1 REPORT

By

'J.R. Kennedy

R. T. Curran
B. P. Buckles
W. A. Hornieck

The information in this report has been reviewed for security classifica­
tion. Review of any information concerning Department of Defense or Atomic
Energy Commission programs has been made by the MSFC Security Classifica­
tion Officer. This report, in its entirety, has been determined to be unclassi­
fied.

This document has also been reviewed and approved for technical
accuracy.

Dr. H. Hoelzer
Director, S&E-COIVP

- - _____-i' a- it

-~~~~~~ t7 ,- amfftr-

Fif ii­

* -ril­

