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SPACEBORNE COMPUTER MULTI-ELEMENT
. SYSTEM CONFIGURATICN
ARCHITECTURE REFINEMENT: TASK 1 REPORT

SUMMARY

This report comprises an architectural study of a spaceborne computer
system operating in a multi-element configuration (MEC). Sufficieni defail is
present to support the design of an on~-board execulive system. The study has
been based upon computation requirements for extended space missions (little
or no human maintenance) augmented by certain requirements based upon the
Space Station, and upon the assumption that the SUMC (Space Ultrareliable
Modular Computer) is used as the basic computing element. The most dom-~
inant study guideline was that architectural features should have minimal impact
on the SUMC design.

The multi-element configuration is first discussed at the system level
in order to provide an overview and the remainder of the report is then devoted
to the individual element descriptions. The spaceborne computer multi-element
system consisis of several SUMC central processor units (CPUs), several
input/outpul processors (IOPs), a single system control unit (SCU) and several
main memory unils. The intercomnection of these elements by appropriate
system buses can be accomplished under program control, thus achieving a
dynamically reconfigurable system. Provided that a sufficient number of
processors are available, the system could operate in a multiprocessing mode,
TMR (friple-modular-redundant) mode, dedicated simplex mode or comhina-
tions of these.

Main memory for the system will consist of a number of identical
8K x 36 bit memory units, System organization allows any processor (CPU or
IOP) currently operating to access up to 32 main memory units.

The major element of the MEC is the central processor. Since the
system structure as depicted in this report is based upon the -SUMC, the ap-
proach to CPU axchitectural specification is to summarize the baseline SUMC
definition, and then define departures from this baseline. These departures
are shown o be necessary and sufficient for efficient operation in a multi-
processor environment,

The CPU archilecture needed to achieve effjcient multiprocessor opera-
tion is described in terms of modifications to microinstruction fields, main
memory access, process control, input/output, configuration control, and
scratch pad memory organizalion, Additional special instructions are also
discussed which are either required for MEC operation or desirable for addi-
tional programming effectiveness.



The single system control unit acts as a system supervisor and the
functions it performs are principally supporiive. .The SCU could be imple-
mented as a simplex SUMC unit operating as an internally redundant system
controller. The role of the SCU during configuration control, CPU control, and
process control is discussed, and the SCU architecture is defined.

The input/output processors provide the logical interface between the
other elements of the MEC and the variety of peripheral devices that can be
connected to a digital data bus through data bus terminals such as those base-
lined for the space station, Each IOP could also be implemented as a basic
SUMC unit having the capability fo control data transfers, monitor bus opera-
tions, and communicate with system CPUs. The IOP would then free the CPUs
from many of the procedures involving data transfers and I/0 operations.



SECTION 1. INTRODUCTION

This report is submitted in compliance with requirements of NASA
Contract Number NAS8-26638 for an interim report of a spaceborne computer
system operating in a2 multi-element configuralion. The current study is
directed toward architectural refinements w1th subsequent work to be devoted
to design of the software executive,

The computational requirements of an extended space flight mission
such as the Space Station/Base necessitate a processing system of considerable
adaptability, Failure tolerance, power consumption, and throughput represent
parameters which frequently change in value during the mission life-gpan,
Research efforts directed toward achieving this flexibility have resulted in the
design (and current fabricalion} of the Space Ultrareliable Modular Computer
(SUMC) by the Marshall Space Flight Ceuter Astrionics Laboratory. Support-
ing elements and subsystems, at various levels of detail, have been proposed.
It is the purpose of this report to expand the definition of these elements and to
describe their inter-relationships sufficiently to support the development of a
detailed on-board executive system design.

This effort was divided info a basic cycle of two steps. Tirst, for each
elemental system component an element description and functional design (if
available) were chosen flOl‘l’l previous research to represent the baseline
approach. ThlS baselme was used fo estab11sh a framework for d}.scuss:ton and_‘
to derive minimum capability criteria. Second, modifications and additions to
the functional design were incorporated to support the inter-element commun-
ications necessary for performance of basic processing functions as well as
reconfiguration and spares swifching, Where necessary, supplemental detail

was included to elucidate or demonstrate feasibility of the derived approach,

For ons element, the system control unit (SCU), a deviation from the
above pattern occurs. Available literature is characterized by a lack of detail
expleitly describing configuration control mechanisms. In an effort to pro-
pound a viable, coherent approach, an SCU, fabricaled from SUMC logic, is
included as part of the processing system configuration to fill this void.

The initial portion of this report delineates the gross relationships of
the SCU and other elements to the total system. The remainder is devoted to
analysis of the specific organization of each key element of the configuration.
Emphasis is placed on the main memory units (MMUs),. central processing units
(CPUs), SCU, and I/O processors (I0Ps). It was not necessary to devole egual
attention to the remote data acquisilion units (RDAUs) and peripheral devices since
the structure of the IOP is sufficiently {lexible to negate their impact on system
design.



PRECEDING PAGE BLANK NOT FILMED
SECTION II. MULTI-ELEMENT CONFIGURATION (MEC) OVERVIEW

This section provides an overview of the major components comprising
the multi-element configuration (MEC), The purpose of the overview is to
discuss in system-level terminology the functional nature of the various sys-
tem elements and ftheir gross interrelations. This overview provides a frame-
work for functional specifications given in Section III.

A summaty of the"MEC is given first. This summary is based upon a
generic diagram of element interconnections. Buses for inter-element data
and control exchange are discussed, and a scheme for switching is presented:
Based upon this scheme, reconfiguration and spares switching is summarized
and several examples of feasible configurations are presented,

A. Configuration Summary

Figure 1 illustrates the MEC in a generic form. With the exception of
the blocks labeled "V, " "LM, ' and "SCU, " each block represents one or
more copies of the symbolized element. For instance, the block labeled "RI"
represents one or more electronically equivalent main memory units (MMUs),
each having several identical sets of input lines (one set {or each processor
potentially having access to the main memory unit) and corresponding sefs of
output lines. The pairs (input and output) of corresponding processor access
lines are referred to as processor access “ports. " Thus there is a distinect

port for each of several processors that may have access.

The input port set is comprised of both memory input data lines and
processor-to-memory control lines; the output port set is similarly comprised
of memory output data lines and memory-to-processor response (or acknowl-
edge) lines, The main memory unit containg sufficient logic for selection of
one and only one port to establish a communications path to one and only one
processor during a small time interval, By appropriate logic, the selection
criteria can be organized in a number of ways. Preferential logic is usually
empldyed to favor input/output processors over central processors in the
_event that two such processors simultaneously request access.

Except for ihis possible preferential selection, the main memory unit
Tunctions and responds identically in communications with central processing
(labeled "SUMC") and input/output processing (labeled "IOP') units of the MEC
diagram. For this reason, the access ports for SUMCs and IOPs are indis-

* iinguishable,

The Space Ultrareliable Modular Compuler (SUMC) elements function
as the system central processor units (CPUs). The CPUs are (essentially)
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unaltered SUMCs having a single set of main memory access lines connectable
to one of several main memory access buses (MI and MO in figure 1). Connec-
tion of one or more main memory elements to this bus structure through a
corresponding port thus provides the necessary path for CPU access to those
main memory elements,

In addition to the main memory access lines, a set of I/0 lines for
control of one or more IOPs is provided. These lines (I and IO in figure 1)
correspond to the 18 high-numbered PRR bits (18-35) for CPU conitrol and
data output to the IOPs, and the 18 high-numbered MPXB1 bits (18-35) for
IOP status, requests, and data input to the CPU. All IOPs controllable by a
particular CPU are accessible through a unique port functiorally similar to
the main memory ports. Each IOP on the I/0 lines of a CPU is uniquely
addressable thus permitting a CPU-iniliated dialog. An IOP-initiated dialog
is supported through an IOP-to~-CPU "poll request" (interrupt) control line
signal followed by a CPU-controlled poll of all connected IOPs until an acknowl-
edge from the requesting IOP is recognized. When an acknowledge is received,
the CPU 1/0 lines areé set to indicate "busy" wntil the dialog is completed. The
poll request (or I/0 intexrrupt) line is switched between the control logic and
1iming block and MPXEL in the SUMC.

The I/0 lines are used primarily to initiate TOP action and to'check or
sense status. Consequently, this traffic is low. The pair of unidirectional
buses should therefore be adequate to support muitiple I0Ps. Transfer of a
limited volume of device/CPU data (say 156 characters/second for pluggable
computer system console operations) could also be sustained with little or no
system degradation. '

The IOP has multiple access ports for control by several CPUs. In
addition, each IOP is comnectable through one of several buses for access to
main memory elements having a port connected to the-I0OP's memory access
bus,

The "Cs" shown on the IOP block are representative of data bus carrier
frequencies corresponding to several "channels." The IOP contains modem
pairs for each channel frequency. A bit-serial keyed amplitude modulation
scheme is represeniative of the capabilily envisioned,

The TOP is depicted in subsequent text as a modified SUMC micro-
programmed to perform main memory program conirolled input/output. The
main memory program is comprised of a set of spebially formatted I0P
commands (instructions) structured to direct the IOP in the transfer of 1/0
data between main memory elements and daia bus terminals, and in the initia-
tion and control of data transfers between arbitrary devices attached to the
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data bus (assuming the devices have this capability). As is discussed in more
detail later, hardware additions to the basic SUMC to transform it into an IOP
for support of input/output include a channel selection input multiplexer, a
multiplexer for CPU input line selection, selectors (demultiplexers) for both
CPU and channel output, and appropriate control logic and timing fo efficiently
support the input/outpul funcfion.

The depicted IOP is a combined "input/ouiput processor' and "bus
control unit.'" Because of the SUMC stored logic control capability, -and ihe
inherent-ability to monitor data bus activity via the added channel demodula-
tfors, a flexible device with high growth potential can he fabricated using SUMC
chips. This approach seems to offer a cost effective method for achieving
applicability to a broad spectrum of missions.

The system control unit (SCU) block is representative of a functionally
simplex unit having system-level executive control over configuration switch-
ing actions, CPU digpatching (allocation of CPU time {o programmed processes),
and redundant mode operations failure detection, isolation, and spares switching.

The SCU is envisioned {o operate (always) as an internally redundant
(say, TMR with spares) system controller, It maintains a map of the current
configuration and actuates switching networks to accomplish reconfiguration
and spares switching under the direction of executive routine control, I also
performs the dispatching function on the basis of a process ready list. Special
_instructions are defined for execution on the CPUs. These instructions result
in requests made by the CPUs of the SCU.

The SCU has an access port for each CPU consisting of the low-numbered
18 SUMC PRR bits for CPU-to-SCU transfers, and the low-mumhered 18 SUMC
MPXB1 I/0 data input lines to ADL for SCU-to-CPU transfers. Thus, the
36 bit SUMC I/0 data paths are shared by the SCU (high~numbered 18) and
I0Ps (low-numbered 18). An additional "attention' line from the SCU to each
CPU is required. The data and command transfer volume between CPUs and
the SCU is low, being primarily of a control nature. Forv this reason, 18 bits
for each direction is fell to be adequate.

The "Ss'" shown on the SCU block of figure 1 are switch control lines
for the purpose of connecting main memory, central processor, and input/
ouiput processor element plug positions to the various system buses to estab-
lish the communication paths necessary for a given system struciure.

The SCU is envisioned to operate under program control out of the
small local memory block igbeled "LM, " LM ig internally redundant in a
manner consistent with SCU redundancy. It is estimaled that LM will be



about 8000 16 bit words, and that the SCU work load is sufficiently low to
suggest an implementation based upon a 16 bit version of the SUMC with a
small instruction repertoire. The SCU is tentatively shown having no access
to system main memory since system operation can be effected without SCU
access to main memory; but, since the location of SCU programs is somewhat
arbitrary, {inal configuration selection is temporavily left open for [urther
analysis.

The remaining blocks in the diagram labeled "V '' are voting and dis-
agree detection logic to support redundant configurations only. The blocks
are shown having three sets of lines to support a TMR configuration, The
label subscript "xx" has the following meaning:

XX Meaning

MI MMU input bus

MO MMU output bus
-1 IOP inputl bus

10 IOP output bus

11 SCU input bus

S0 SCU output bus

Vi1 and Vgi are identical, as are Vi and Vgp, because the nuraber of
lines involved is identical (and, of course, the functions are identical). Thus,
four distinct voting and disagree detection networks are required, differing
only in data path width, )

Not shown are identical lines from each Vy, going into the SCU for the
purpose of indicating failures and identifying the disagreeing (TMR) path.
(Reference 1 contains a discussion of the concepts involved in failure detection,

configuration control, and switching that is the basis for the MEC scheme dis-
cussed here,)

In order to establish realistic numbers to be uged for the development

of tables, instruction fields, etc., a complement of elements comprising the
MEC is assumed as follows:

1Kennedy, Sr., J. R.: SUMC Multiprocessor Configuration Conirol Analysis
and Specification. Contraclor Report Prepared under NASA Contract
NAS8-18405 by Compuler Sciences Corporation, Huntsville, Alabama,
June 14, 1971.
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Number of Elements Assumed:

CPU - 8 :

op - 4} spares included
MMU - 32 )

SCU - 1 + posgsible spares
VMI - 2 + 6 possible spares
VMO - 2 + 6 possible gpares
VII- - 1 - 7 possible spares
VIO — 1 + 7 possible spares
Vel - 1 + 7 possible spares
VSO - 1 + 7 possible spares

B. System Buses

Data flow is accommodated between subsystems over six sets of buses -
comprising

o Main memory access buses,
e  Input/output processor buses, and
® System conirol unit/SUMC buses.

Main memory access buses provide {or the data paths and control sig-
nals required by the SUMCs and the IOPs {o store and retrieve information
{from the main memory elements, MI is comprised of 32 bits data,’ 18 bits
of address information, 5 bits of control information, and 7 bits for parity,
giving a total of 62, Thirty-two bits for data transfer, 4 conirol bits, and an
additional 4 bits for parity, gives a total width of 40 bils for MO. Buses are
required for each SUMC and each IOP resulting in an assumed total of 12 MI
and MO buses. ; .

m addition to main memory communication buses, there are two other
sets of buses: the input/output processor buses and system control unif buses
which provide for communication capability between the following system
elements: . )

o SUMC/Mmput Output Processor (I0P), and
@ SUMC/System Control Unit (SCU), respectively.

Input lines required for the IOP and SCU total 18, On'the output side

_ the IOP and SCU have 19 lines (18 with parity, 1 control). Table 1L summarizes

the system bus structure.



TABLE 1, COMPUTER SYSTEM BUS COMPLEMENT

No. | Minimum
Bus Linesi No. Buses Remarks
Memory Input (M) 62 12 One for each SUMC and IOP
Memory Qutput; (MO) 39 12 One for each SUMC and IOP
SCU Input (SD) 18 8 - | One each SUMC
SCU Output (SQ) 19 8 One each SUMC
JOP Input (1) . i8 8 One each SUMC
IOP Ouiput (I0) 19 8 One each SUMC

C. Configuration Synthesis and Switching (CSS)

As mentioned previously in the summary, the MEC is capable of agsum-
ing many different configurations. Since the structure depicted is general with
regard {o data path organization, it is possible to operate several configura-
tions simultaneously. These configurations can be similar or not, or function-
ally dedicated or not, depending on the mission requirements {or reliability,
allowable power consumption, throughput, and other identifiable pardmeters
that can in some arbitrary way be associated with a specific conliguration.

The potential {or variability in configuration is limited at any given
time primarily by the number of serviceable system elements of each type,
and the number of usable data paths that can be established, Amn additional
constraint on the variability in configuration is, of course, the existence of
one or more programmed processes for control and allocation of the elements
comprising the various configurations. BSince the purpose of subsequent tasks
is to analyse and define these programmed processes, this report defines a
capability for attaining a high degree of configuration variability, and assumes
that programmed processes can be defined to effectively utilize the capability.

With regard to the CSS function, this report discusses refinements to
the concepts outlined in reference 1. The refinements consist mainly of organ-
izing a set of rather general instructions into a compatiblé 32 bit word instruc-
tion format based upon an assumed number of available system elements of
various types. Addifional refinements are comprised of formatting a system
map that conforms to the assumed element set, and a division of functional
responsibilily between executive routine algorithms executing on a CPU and
executive routine algorithms execuling on the SCU, This division of respons-
ibility unambiguously delineates the CPU/SCU communications dialog required
to accomplish the CSS function.

11



The role of the CPU executive is to construct a specific configuration
map based upon elemenl and bus availability and statugs, Availabilily and status
information is obtained by a CPU from the SCU which maintains a currenl map
of comnectlions, and element and bus status. This availability and siatus in-
formation is returned to the CPU executive in the form of sense instruction
responsges. Once a map has been constructed by the CPU executive, it is
transferred to the S8CU, The executive rouline algorithms in the SCU use this
map to construct the necessary switch network commands for achieving the
desired system structure. After all switching operations have been carried
out, the SCU forces all active (switched online) CPUs fo fetch their next in-
struction from a CPU executive specified main memory location. This action
completes the transformation from executive control of one system structure
to executive control of another system structure. Subsequent transformations
are accomplished in the same manner,

At least three methods for achieving a specific structure are supported
by the sc}ieme_outlined. The first is a programmed algorithmic method involv-
ing dynamic inventory of system resources and program controlled selection
on the basis of availability, This scheme dynamically constructs a sysiem
map under program control on the basis of program structure, The second
scheme is a prestored or externally constructed method wherein a specific
configuration map is supplied to the CPU executive. The executive will take
the necessary action to achieve the supplied configuration,

The third, and perhaps most interesting, is based upon a combination
of the first two where the program structure is a form of programmed minimiza-
fion of a cost function based on several parameters to determine an optimal
structure, In this method a set of prestored system maps, each having an
associated precalculated measure of reliability, power consumption, through-
put, etc., would be used to dynamically minimize the selected cost function.
There could be different cost functions for each mission but, more importantly,
the applicable cost function could vary within a mission — perhaps on the basis
of phase., Many variations on the last scheme are, of course, possible. In
summary, these three schemes with variations are available for specilying
and achieving configuralion control:

o Program structured,
o System Map structured, and
e Parameterized Optimally structured..

D. Configuration Examples

Several examples of specific configurations based on the generic dia~
gram of figure 1 are given for completeness 1o serve as a hasis for illustrating
principles, and to develop structure-related definitions.



The principal property displayed by these different organizations is
that of "structure.' A system structure can be specified by its Yclass, "
"degree, ' "association," and Yconfiguration, " as follows:

1. Class Specifier:

Uniform
Non-Uniform

2. Degree Specifier:

Maximuin,
Full
Minimum
Partial

3. Association Specifier:

Dedicated
Non-Dedicated

4. Configuration Specifiex:

Simplex

Multiple Simplex
Redundant
Multiprocessor
Mulf;isystem

These terms are defined as follows:

o Uniform - all bus switch setlings are such that bus and
port addresses are linearly related, and there is svmmetry
in the switch settings for input and output buses in a corres-
ponding bus pair.

o Maxdinmm - the largest subset of the total structure, spares
included, that can be logically operated on-line (if elements
have failed, a maximum degree may not be attainable),

o} TFull ~ all operable elements that can be logically operated
on-line are comected (no greater throughput can be obtained
without a change in class, association, and/or configuration).



) Minimmm - the smallest logically operable subset of a total
structure (the entire structure is inoperable if 2 minimum
degree cannot be attained for some class, association, and
configuration combination).

o Partial - between minimum and fuli,

o Dedicated - some ox all of a structure is associated with
some programmed function to the possible exclusion of
other programmed functions.

® Simplex - A single CPU system having no multiple CPU
expansion capability short of reconfiguration.

e Multiple Simplex - several simplex configurations with
. each having no resources allocation capability outside the
domain of ifs own simplex configuration (for instance, no
shared memory; this configuration is dedicated).

® Redundant - a configuration that is functionally simplex but
is comprised of multiple elements of each type performing
the same functions for the purpose of comparison to (at’
least) defect errors.

] Multiprocessor - a configuration having multiple CPUs and
some provision for programmahble shared storage or some
other form of programmable inlerprocessor communication.

8 Multisystem - a siructure configurafion comprised of a
* . combination of configurations. '

Figures 2 and 3 provide examples of two structures illustrating the
flexibility of figure 1 and the specifiers defined above,
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SECTION ill, ELEMENT DESCRIPTIONS

. This section provides a detailed level analysis of the major components
compriging the mulli-element configuration. Particular attention is devoted to
the methodology and content of inter-clement communication and internal ele-
ment functions supporting this function, The confluence of these two areas
has a major impact on the oplimization (size) and efficiency (operating speed)
of the on-board executive system,

Main memory units are discussed first, {ollowed by the central pro-
cessing unit. Considerable functional support delail is included for the CPU,
including recommended special instructions, since it is the focal point of most
system functions. The SCU and 10Ps are discussed along with their role in
the system dialog.

A. Main Memory Units (MMUs)

A baseline memory organization is given in reference 2, described as
the basic operating memory (BOM). The discussion below does not alter the-
derived BOM concepts of mulii-port access to 8K memory modules.

1, Organization. Main memory is distributed among identical units,
each 8K x 36 bits, modularly expandable to 32 units. Figure 4 depicts processor
access gating to a single memory module and figure 5 details a generic memory
module. ’

a. Processor access control. TFigure 1 illustrates two uni-
. directional ports connecting each processor (CPU or IOP) to each MMU. Input
ports consist of:

18 address lines,

32 datla lines,

4 control lines (plus an access request line), and .
7 parity lines for data and address validation.

C @ © o

2East’m, Barl; Shuttle Computation System. Contractor Report SP-233-02562
prepared for MSFC by Sperry Rand Corporation under NASA Confract
NASE-20055, Hunisville, Alabama, June 8, 1870.
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TABLE 2, MEMORY MODULE LEGEND

WAG Word Address Gating
BAG Bank Address Gating
PBG Parity Bils Gating
BAR Bank Address Register -
BAC . Bank Address Comparato.r
WAR- Word Address Register

_ DG Data Gating
DR Data Register
PBR Parity Bits Regisier

T/S Test/Set




Output ports consist of:

@ 32 data lines,
=) 4 control lines, and
© 4 parity lines for data validation.

Memory element/processor access control is accomplished as shown
in figure 4, Access request gates coniinuously monitor the access request
control lines of commected processors. An End Around Shift Register (with one
bit set) sequentially scans for a request and signals the Switch Control when a
processor access request is recognized. The switch confrol is capable of
connecting and disconnecting the input and output ports {rom any processor to
the memory module,

b. Main memory module, Figure 5 and ifs associated legend
(table 2) depict the logical elements required internal to each module. In
addition to an 8K x 36 bit (32 data, 4 parity) storage array with address decod-
ing and sense logic, the functional units are:

o Control Logic and Timing for seguencing and synchronization”
of internal events;

] Word Address Gate (13 bits), Bank Address Gate (5 bits),
and Parity Bits Gate (3 bits) for the routing of information
from the address lines; . ’

© Address Parity Logic for address 'parity validaflion;

@ Bank Address Register (5 hits) for storage of access key
’ of memory module;

v Bank Address Comparator for comparing Bank Address
Register and Bank Address Gate contents;

G Word Address Register (13 bits) for temporary storage
of memory module word address;

e Data Gate (32 bits) and Parity Bits Gate (4 bits) for the
routing of information {from the data input lines;

© Data Parity Logic for data parity validation;

© Test and Set Logic which provides a memory lock-out
{feature to be described: and

21
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o Data Register (32 bits) and Parity Bits Register (4 bits)
for temporary storage of memory/processor transfers
(2 local Data Register enables asynchronous MMU/CPU
operation), :

2. Operation. MMU confrol lines are listed in table 3. Each of four
basic memory operaticns occupy a dedicated input control line, and a fifth pro-
vides a signal path for access request. Four lines provide MMU to processor
control communication.

TABLE 3. CONTROL LINE SETTINGS

Processor to MMU MMU to Processor
Line # Signal Line # Signal
. 1 Access Request 1 Parity
2.- Read 2 Data Ready, or
s | write Test & Set not Locked
4 Test & Set 3 Test & Set Locked |,
5 Change BA 4 Address Match

a. Access request decoding. An End Around Shift Register
(EASR), shown in figure 4, sequentially tests the access request lines of all
connected processor buses via a series of circular shifts. The EASR contains
a shift position for each possible bus connection and a single bit position is set
to one (1). An access request gate is associafed with each processor bus. In-
puts to an access request (AND) gate are the access request line from the pro-
cessor bus and the value of the EASR position assigned to the bus. An access
request is recoghized when the set bit of the EASR coincides with a processor
bus position for which the access request signal is present. Recognition of an
access request effects a temporary halt of the EASR and signals the Switch
Control, providing processor bus identification information, The Switeh Con-
trol connecls the memory module to the bus recognized, but access is not yet
granted. ‘

The memory module (figure 5) compares the contents of its Bank Address
Register (BAR) with the bank address from the address lines (high order five
bits). If the compare is equal, access is granted and z bank address match
signal is transmitted to the processor. The address match signal is used to
reset the access request line, thus other MMUs will not perform a bank address



compare for the recognized processor bus during the remainder of the memory
operation, TFollowing the bank address match signal, the module maintains

the bus conneclion to the requesting processor until the memory operation is
complele, at which time the EASR is enabled and scanning resumes. The
completion of a memory operation is signaled via the data ready control line,
or, in the case of an anomaly, via the bank address mismalch line (AMM),

test and set locked line (TSL), or the parity error line (P).

Any of the following events constitute a continue scanning command to
the EASR.

e Alignment of EASR does not recognize an access request,

® -An address mismateh signal (derived {rom tlie address
match signal described above)} is received from the
. memory module.

® Data ready, parity, or test and set locked signal is
transmitied to processor.

In the latter two cases, a disconnect command is issued to the Swiich Control.

s

The depicted operational characteristics of EASR request scanning is
the most basic configuration. Implementation of a priority recognition arrange-
ment is feasible, but present criteria do not indicate the necessity.”

h. Control decoding. Referring to table 3, control information
- received by the MMU may initiate operations to read, write, test and sel, and
change BA, Completion of each operation results in a positive response (in the
form of a control signal) from the MMU to the processor. Figure 5 (and fig-
ure 6 which is of greater detail} supports the following discussion of the iudivid-
ual operations. :

(1) Read. Affer access is granted fo the memory moduls
and an address match signal {ransmitted fo the processor (which resets the
access request signal), address parity is checked, Invalid parity results in
the transmission of a parity signal to the processor. If parity is valid the
word address bits (lower order 13 bits of address lines) are gated to the WAR
and used to access one of 8,192 words in the storage array. During the read/
restore cycle, the data from memory is validated via parity check and the
parity signal to the processor raised if a parity fault is-detected. Once validity
is asceriained the data (with parify) is transmitted to the processor viz the
36 data out lines with concomitant data ready signal. The EASR resumes iis
scan and disccennection from the memory module occurs after a short delay.

23
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(2) Write. The processor/MMU dialog is analogous to
the read command with two exceptions, Tirst, following the read half of the
clear/write cycle 36 bits are gated from the data in lines to the data register
and associated parity bits register., During this transfer the parity is checked;
invalid parity will result in transmission of the parity signal to the processor.
Second, following completion of the cleaxr/write cycle no data is made available -
via the data out lines, but the data ready signal is transmitted to the processor
to indicate completion.

(3) Testand set. This memory operation provides in
one memory cycle for testing a slorage variable for zero, setling it to all
ones if zero or raising a signal to the processor if not. Thus, complete pro-
tection of global data and code may be effected.

After access is granted, the first half of the cycle is equivalent to the
first half of the read/restore cycle, The test word which has been fetched
from memory will contain all "ones' if “ocked. " After the test word has
been checked for parity -errors, the Test and Sef Logic detects the presence
or absence of all "ones. "

) If the test word does not contain all Yones, " the Data
Register is set tc all "ones" and fhis information
writlen into the test word memory location; the test )
and set not locked signal (which appears as a data
ready signal to the processor) is transmitted.

& If the test word contains all "ones, " it is written back
into memory via the Data Register and the test and set
locked signhal is transmitted to the processor. :

. (4) Change BA. After granting access and checking
address parity, selected lines from the thirteen lower order address bits are
gated to the Bank Address Register, Changing the BAR resets the bank address
maitch signal. Trailing edge detection logic in Conirol Logic and Timing in
conjunction with the change BA control signal then generates the data ready
signal. :

B. Central Processing Units {CPUs)

The major element of the MEC is the central processor. The system

- structure as depicted in this report is based upon the SUMC and, for (his
reason, the approach to CPU architectural specification is 1o summanrize a
prespecified baseline SUMC delinition, and then define necessary and sufficient
deparfures from this baseline. The departures are necessary to enable the
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SUMC to function efficiently in a2 multiprocessor environment; they are suffi-
cient in that, while other features could be added or alternate methods of
implementation could he employed, those departures specified herein will
support efficient multiprocessor operations.

1, SUMC Baseline. All baseline documents are oriented toward
simplex system usage of the SUMC. References 3 and 4 provide brief over-
views to the SUMC Tlogic at a functional block diagram level, In addition,
reference 3 derives an efficient software-oriented organization hased upon
an assumed 24 bit word. The organization is depicted through specification
of formats for a basic instruclion set, register organization, and a stacked
interrupt scheme. Since a 32 bit word size is assumed for the MEC CPU and
main memory, much of the argument presented in reference 3 is invalid,

References 2 and 5 outline the organization of the SUMC data {low and
module functions in addition to specifying the microinstruction word fields and
operations. Microinstruction read-only-memory (MROM) sequences {or sev-
eral selected instructions are given in both references to show the micropro-
gramming capability.

Reference 6 gives a rather exhaustive set of instructions proposed for
a 32 bit version of the SUMC, while reference 7 offers a conventional CPU-
controlled approach to handling I/0O (similar to whal might be found in several

3Kennedy, J. R.: Basic Instruction Set for a Proposed 24 Bit General Purpose
Spaceborne Digital Computer, Contract Report prepared for MSFC by
Computer Sciences Corporation under NASA Contract NAS8-18405, Huntsville
Alabama, August 13, 1969,

3

4 . ' '
Garett, Harrison: Advanced Aerospace Computer Technology. NASA TMX-
64504, Research Achievements Review, pp 37-44, Vol, I, No. 11, MSFC,
_Huntgville, Alabama, 1970.

SBastin, E. L; Litile, G. D.: Romine, M. G.; and Williams, C. A.: MSFC

. Advanced Aerogpace Computer. Contractor Report SP-232-0384 prepared

for MSFC by Sperry Rand Corporation under NASA Contract NAS8-20055,

- Huntsville, Alabama, July 6, 1970.

e"‘I‘hompson, E.; Williams, C, A,; Eastin, E. I.; Little, G. D.: Proposed
Instruction Set for SUMC System., Contractor Report SP-232-0405-1 pre-
pared for MSFC by Sperry Rand Corporation under NASA Contract NAS8-20055,
Huntsville, Alabama, September 4, 1970,

TWilliams, C. A.: A Possible Interruptand I/O Scheme for SUMC, Contractoxr
Report 5P-232-0399, prepared for MSFC by Sperry Rand Corporation under
NASA Contract NAS8-20055, Huntsville, Alabama, Augusi 14,- 1970,



commercial systems). A scheme for interrupt control associated with the I/0
capability is also outlined in reference 7.

a. Block diagram and microinstruction format, Figure 7 is a
block diagram of {he 32 hit simplex SUMC depicted in reference 5. Informaiion
is moved, generally from left {o right, through the ALU, where two multi-
function adders can be used to operate on it, and into the MRU where it can be
looped back through the ALU for further operations, stored in SPM, or made
available for storage in main memory or output to other external devices,
Control of the source of the information, the operations to he performed, and
its disposition once it has reached the MRU are all made by the Control Logic
and Timing (CLT) under the direction of microinstructions obtained from a
{ast read-only-memory (MROM),

The baseline {ormat of each MROM word is given in figure 8, Detailed”
descriptions of fields and subfields are given in references 2 and 5, although
they do not agree completély due to the evolutionary nature of the SUMC.
Figure 8, excerpted from reference 5, is of a later vintage and therefore is
considered as the baseline, A total of 72 bits comprise the full word.

Several areas of interest are worth noting at this point since they will
be influenced by depariures:

6 Only 64 words of SPM are addressable,

o Only "read" and "write" MMU functions are accommodated,

@ No regisiers are provided for efficient program address
relocation.

o No registers are provided for MMU access violation
detection.

e The capability for condition setting and the associated

testing for MROM branch conirol is weak.

® Pield specifiers for direct (CPU/device) 111put/ output
confrol are inadequate,

b, Instruction set and register organization. Several of the

. previously reflerenced documents propose various instruction repertoires and
register organizations, No specific instruction word formats are claimed to
be optimized to a 32 bit word size as a result of analysis methods similar to

ithose followed in reference 3 for a 24 bit word size. For this reason, itis
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felt that no optimal baseline instruction set exists. For the purpose of support
to subsequent fasks, however, the collective functional capability of all prev-
iously specified repertoires is assumed, and the format shown in figure 9 is
adopted for memory reference instructions (only). When, for the purpose of
estimating program sizes, it becomes necessary to agssume a specific reper-
toire, a specification will be required.

The baseline register set organization is taken to be that of figure 10.
This organization was favored hy reference 3 and mentioned as a viable can-
didate by reference 5.

c. Input/output. Baseline candidate definitions of the IOP
vary in the accorded capability from that of a conventional direct memory
access (DMA) controller to that of simple logic to augment SUMC conirolled
data'transfers. The DMA approach proposed in /7/ adopts the v1ewpomt that
the IOP be des1gned with mlmmal capability. -

Reference 8 outlines a two-option approach to the control of system
input/output, One is referred to as a "Simplex Input/Output Controller” and
the other is called a "Combined Free Running and Integrated/Dedicated Con-
troller." Both are defined with respect to simplex system configurations, and
both are operaticnally controlled by. CPU issued inifiation (called program
controlled ocutput [PCO]) instructions, and stored program input/ouiput com-~
mand sequences (Externally Controlled Qutput [ECO}) fetched from memory
for decoding and execution by the IOP. In addition, both show functional block
diagrams illustrating the modem interfaces with a data bus for various chan-
nels, and ECO commands for memory/ device and device/device transfers and
response/transfer monitoring,

The major difference in the two approaches is that, in the first, ECOs
and device data/control words are fetched from SUMC main memory whereas,
in the second, ECOs and device data/control words are fetched from a "format
buffer" (FM) consisting of a 4K local memory, Also, the second option allows
for commutated word I/0 through the use of a special ECO to address a scraich
pad memory whose words are used functionally like a group of index registers,

In the second option, no facility is indicated for wriling into FM, there-
fore leading to the assumption that it is operationally read only. This implies

8Space Station Newsletter No. IBM/SPE-96. Transmitial of IBM study data
from A. J. Kemp, IBM Huntsville, to H. Ness, MDAC-WD, June 21, 1971.
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oD Operation Code
R: Register Address (one of 16) ‘
B:  Base Register Address (one of 3; ''0'" implies no base used)
X: Index Register Address (one of 3; "0" implies no index used)
D: Displacement Address (one of 65,536 MMU virtual locations)

FIGURE 9

MAIN MEMORY ACCESS INSTRUCTION FORMAT
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SPM
ADDRESS

X00
%01
X02
. X03
X04
X05
X06
X07
X10
X11
X12
X13
X14

X165

X16
X7

AD

Al

A2

A3

Ad

AB

A6

AT

A8

A9 . or X1
AlD or X2
All or X3
Al2

Al3 or Bl
Al4d or B2
AlB or B3

‘\

S ACC OR
INDEX REG.

, ACC OR

BASE REG.

FIGURE 10

PROGRAMMABLE REGISTERS



a prestructured M content suitable for controlling all daia bus transfers.
This scheme, although rather inflexible, provides for (or demands, depending
on the viewpoint) a preconceived and perfectly organized fiow (order, rate and
dirvection) of bus traffic, It appears that a high degree of {lexibility could be
attained by a provision for program controlled allernation of the source of
ECO and device data/control words between main memory and the local FM
(the second option does not depict support for main memory-to-bus lransfers),

TFigures.11l and 12 show the 32 bit bus control instruction candidate
Jormats for the two options. TFigures 13 and 14 depict the organization of the

two options.

The three candidate I/0 schemes outlined above can be summarized
as

<) Entirely CPU programmed controlled,

) Combined CPU programmed initiation and fetched-frorm-
main memory command controlled (Option 1), and

@ Combined CPU programmed and fetched from local (foxrmat)
memory command controlled (Option 2).

Of these three, Option 2 is felt to offer the sirongest baseline from which de-
partures can be made to provide both a desirable degree of {lexibility and the

necessary functional capability.

2. Baseline Departures.

a, Microinstruction fields. Changes {o the SUMC microinstruc- -

tion format are required to support MEC operations. These changes are pri-
marily in the form of expangion to aliow for

Larger SPM

More MMU functions

Two modes of CPU operation
SCU/CPU communications
Larger MROM

@ 0O 0 Q@ 9

The required changes are briefly outlined as follows:

(1)  Add one (1) bit to the "address subfield of the "SPM"
field allowing for 27 = 128 10 addressable scratch pad
meinory locations.
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PROGRAM CONTROLLED OUTPUT (PCO) INSTRUCTIONS

31 20 19 . 8 7 5 4 1 0

STARTING v/ - 1/0 '
ADDRESS /////M CHANNEL 0001 § P | BEGIN 1/O (BIO)

7 5 4 1 0

i}//////////////////; CH;&\% - 0010 | P | STOP 1/0 (SIO)

EXTERNALLY CONTROLLED QUTPUT (ECO) INSTRUCTIONS.

31 20 18 15 14 76 4 3 1 Q ;

/ . 4
a L W CHZ\%EL 010 | P | FETGH (DATA TO SUBSYSTEM)
31 20 19 15 14 76 ¢ 4 3 1 0
7 I/0 :
a K N crmmeL, 100 | P | READ (DATA FROM SUBSYSTEM)
31 20 19 76 4 3 1 0 ' :
a /WW, CHiX/ISNEL | 110 | P | TRANSFER IN COMMAND
31 £3 1 0
Y
- 000 | P | HALT
31 1716 : 2 1 0
COMMAND WORD 1 COMMAND WORD 2 ‘1 | P | COMMAND WORD FORMAT

FIGURE 11

OPTION 1 - BUS CONTROL INSTRUCTIONS
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PROGRAM CONTROLLED QUTPUT (PCQ) INSTRUCTIONS

- ! Op Code
1 i%]iggs(} ! cﬁgREoi CHXI\?NEL oo0L | P
}////////////////////A CHli/N?\IEL 0010 | P

BEGIN /0 (BIO)

STOP 1/0 (SIO)

EXTERNALLY CONTROLLED CGUTPUT (ECQ) INSTRUCTIONS & FORMATS

31 20 19 15 14 76 43 1 0
e |k 777777 cammn) | ®
s 00700 el 0|
000 anenl | ®
o I Ty mo T [0
COMMAND WORD 1 COMMAND WORD 2 P

FIG

OPTION 2 - BUS CONTROL INSTRUCTIONS

URE 12

FETCH (OUTPUT TO SUBSYSTEM)
READ (INP'UTS FROM SUBSYSTEMS)
TRANSFER IN COMMAND

I-IA.LT

SUBCOMMUTATE

LOAD SCRATCHPAD FROM MEMORY

COMMAND FORMAT
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OPTION 1 INPUT/OUTPUT PROCESSOR (I0F)
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FORMAT MEMORY

SCRATCHPAD MEMORY

r—————"

4,006 WORDS .
(FM) 32 5-BIT WORDS
ADDRESS DATA QUT READ DATA OUT DATAIN CONTEOL ATIFES
N 7 N N <
\
BUS N L T
CHANNEL . / / N /
= FM BUFFER - NS, SP BUFTER
CONTROLLER (FMEB) a COUNTERC) (SDE) k
(BCC) DATA|
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INTERFACE N _ N °
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ADDRESS TNETEDC TION BATE
- ONTﬁBL < REGISTER CONTROL CONTROL
i k <_<? -

I PROGRAM CONTROL - REFERRED TO IN OPTION 1

FIGURE 14

OCPTION 2

I0P BLOCK DIAGRAM



(2) Define a one (1) bit binary state ({lip-flop) register, U,
to be located in the CLT module for testing under control
of the "SEQ-IC CONTROL" subfield as indicaled in {3)
and (4) below.

(3) Define a microinsiruction bit {0 be the "MODE'" change
subfield. A one (1) in this subfield will cause U {o be
téggled (state changed), A zero (0) has no effect on U.

(4) Add bits (for a tolal of four [4]) to the "MEM" field to
control main memory accesses as {ollows:

0000 No access request

0001 Read

0010 Write

0100 Change Bauk Address Register
1000 Test and Set

(5) Add control and status lines between main memory and
CLT as follows:

Status (MMU to CPU/CLT)

0001 Parity Check

0010 Data Ready

01090 Test & Set busy (access lockout)
1000 © Bank Address Match

" Control (CPU/CLT to MMU)

00000 No access request

00011 Read

00101 Write

01001 Changs Bank Address Register
10001 Test and set

Note: The main memory access request control line could
be eliminated, since "OR"ing the remaining bits provides
the required degree of control. However, main memory
logic becomes more complex,

(6) Add control line from SCU to CLT fo enable deteciion of an
SCU command to CPU,



()

(8)

)

Add control line from IOPs (one line shared by all IOPs
controlied by the CPU) to enable detection of an IOP
"poll request.

Add logic to CLT to expand the use of the "SEQ-IC" sub-
field of the "CONTROL" field as follows:

SEQ-IC Sequencer(S) teration
Subfield  Conditions Action Counler (IC) Action
(a) 0000 (U)y =0 +1 ‘ None
(0 =1 (M) -8 None

(b)  Add one (1) bit in "SEQ-IC" subfield to support conirol
of branches on the basis of various tests as follows:

Memory Parity Check
. Data Ready

Test and Sel Bugy

SCU Command

IOP Poll Request

Tor the purpose of software concept verification, testing and
validation (CVTV), additional MROM will be required {o enable
incorporation of debugging capabilities, After CVTV, the
additional memory could be removed, Therefore, add one bit
to the "XFER ADDRESS" subfield, all IAROM words, and SCU .
logic io support 2048 MROM words.

b. Main memory access. In a mulfiprocessing environment

where one or more modular memory units are shared, each of the following -
problems must be addressed:

54

Storage allocation for data and CPU processes (programs),

An addressing scheme which allows each processor to
access all available resources,

Protection of data and processes femporarily local to

- one processor from all other processors, and

An access mechanism which provides concurrent
utilization, by two or more processors, of one
modular unit with minimum delay,
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A mamber of solutions, some of considerable merit, exists for all of the above.
Presented here is a paradigm of a system designed to minimize memory
complexity, remain compatible with SUMC architecture, and address each
problem,

(1) Page addressing. Capability for system expansion
frequently dictates thai more address lines fo memory be established than
can be utilized strictly from the portion of the instruction word dedicated to
address selection. Earlier studies indicate this to be the case encountered
by the SUMC. If 256K words of memory are assumed, 18 address lines are
required. It does not seem plausible that 18 hits of each 32 bit memory ref-
erence instruction of the SUMC may be dedicated to address selection while
maintaining an efficient use of Scratch Pad Memory and providing a large
instruction repertoire,

By adding to each address generated by a processor a hardware reloca-
tion register, called the Bank Register Low Address (BRLA), which contains .
the necessary high order bits, this dilemma is resolved, Furthermore, by
extending the BRLA to contain additional portions of the address, a solution
to the storage allocation problem is approached. :

I the BRLA were the same width as the maximum address, each pro-
cess, once construcled, could be loaded into memory and executed at virtually
any beginning location by setting the BRLA to contain the address of that loca-
tion. Attaining this flexibility may not be commensurate with the cost in terms
of SPM storage, memory utilization map updating, and communication required
for process dispatching, It is suggested instead that a 13 hit BRLA he utilized,

- allowing the lower order 5 bits of the address to be generated exclusively by

the instruction.

'The above arrangement would provide the following orgénizati011 of a
256K memory distributed among 8K modular units:

] 32 8¥ banks,
@ - 256 pages per bank, and
® 32 words per page,

Figures 15 and 16 depict the format of the BRLA and its combinaiion with the
instruction generated address, respectively.

Nole that storage allocation always begins on word boundaries that are
multiples of 32, Conversely slated, al most 31 words between program pro-
cesses might not be utilized. This possible loss is considered negligible
compared to other advanfages presented.



- I%

lezi— 5 bits —rdeanr— 8 bils i T

| .
[ | l |

f
! | A
L Bank Page Number
Bank Numbex

FIGURE 15

BANK REGISTER LOW ADDRESS/BANK REGISTER HIGH ADDRESS FORMATS



&y

L

I
i

tz— 5 bits —sdw— 8 bits s 5 bils —e

—_— -

i
i
{1

Program
Generated
Virtual Location

BRLA

-

Bapk Page Number
Bank Number

— Real Address

FIGURE 18

ADDRESS GENERATION




Including the BRLA obviales the requirement for lengthy relocation
procedures each time a process is constructed (prov1ded internal linkage
has previously been accomplished).

The BRLA could be implemented as a location in Seratch Pad Memory
for utilization by MROM microinstructions. Additional MROM cycles might
be saved on each instruction cycle by implementing it as a hardware register,
multiplexed into MPXB2 in the ALU for example, TIts addition to the program
counter is accomplished only once (during process construction) to he used
unchanged until the process is deleted, It must be added to each effective
address generated by an ingtyruction.

(2) DMemory access violation., Processes that occupy
sequential memory locations may generate invalid addresses in only two ways:

o Case 1 - An address less than its lower boundary, or
® Case 2 - An address greafer than its upper boundary.

If each process generate-s addresses relative to zero (i:he recommended ap-
proach) prior to addition of the BRLA, Case 1 may be checked by testing for a
negative address immediately preceding addition.

Case 2 implies an additional operation before a check for validity is
possible. By including a Bank Register High Address (BRHA) in the organ-
ization of Scratch Pad Memory, formatted the same as BRLA (figure 15), it
may be subiracted from the {inal address to obtain a validity check. )

The BRHA may, alternatively, be incorporated as a hardware register
to minimize instruction cycle time (the recommended approach).

{3) Phased addvressing. If more than one processor is
executing processes or accessing data juxtapositioned in a single memory
unit, the memory unit must alternate memory cycles between processors.
An equivalent problem occurs during execution of a re-entrant routine simul-
taneously by several CPUs. - Frequently, memory availability delay has been
minimized by providing phased access ports to each memory unit. An alterna-
tive can be provided which is simpler to implement and decreases memory
access complexity.

If, as in figure 17, the low order two bits ({or four bank phasing) of
the word number portion of the Memory Address Regisler (MAR) of the pro-
cessor are routed to the low ovder bits of the bank address portion of the
memory's-address gating register, and all inlervening bits shifted lower to
compensate, the effect of phasing is obtained. Each set of four sequential
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addresses are distributed among four main memory unifs rather than contiguous-
"1y in one unit, Now assume that two CPUs attempt to execule an instruction
{etch from the same MMU and visualize the sequence of events. (Figure 18
depicts the storage allocation for "N'" processes.) One CPU is granted access
to the first MMU and the others must wait., After completing the first instruc-
tion fetch the CPU continues to the next MMU, allowing another CPU to access
the first MMU, This sequence continues until all CPUs are operating synchro-
nously from different MMUs. Synchronization remains intact until one CPU
performs an instruction resulting in non-sequential instruction execution ox
requires more or fewer memory cycles (data relrieval for example) than the
others., At this time an adjustment is made and synchronization is quickly re-
established,

Thus, by manipulation (merely cross-connecting) of the address paths,
much of the benefits derived from phased access ports may be achieved at no
increase in cost or complexity.

It is interesting, however, to examine the benefits which might accrue
if an opfional non-phased mode were under program control. First, during
periods of reduced memory requirements a larger portion of the system could
be "shut-down" to reduce power consumption. Second, memory diagnostic
procedures for suspected faulty units could be simplified. Third, the element
count required for TMR system mode could be reduced if the TMR process
were resident in less than four (4) memory units, Tinally, a greater degree of
system degradation could be obtained with respect to inoperable memory units.

(4) Alternative approaches, The methods derived above
were directed at solving memory access problems by shifting the onus of
validation to the processor and simplifying the role of memory. A quite
reasonable case may be made for relieving the processor of validation check-
ing in order to reduce instruction cycle time and permit a variety of memory
structures to be considered independent of the CPU, No attempt is made here
to weigh judgment, but it is of interest to assess the costs.

The basic problem is lo perform boundary checks of each memory
relerence by each processor sharing a memory unit. This implies, for each
MMU, a set of dynamic boundary registers for cach processor and possibly
an adder. A fast hard-wired or firmware sequence is required fo perform
address validation in a non-destruct (or destruct-restore) fashion. MMU/
processor conlrols are required lo:

e Set or change selected boundary registers, and
i) Signal invalid address.
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Additional controls that may be of value during process debugging and system
diagnostic testing include:

o Digable houndary register, and

[} Return (for inspection by a CPU) the boui'ldary register
contents.

The benefits accrued at the cost of MMU complexity may be extended
beyond reduced instruction cycle time. For instance, memory parity errors
may result only after two or more read attempts in order to compensate for
transient errors. If the MMU is microcoded to perform the above tasks, an
independent self-ftest diagnostic may be included to assist the system in spares
switching decisions and consequent gracelul degradation,

(5) Impact on baseline SUMC. The above described
approach for memory access could be implemented with microcode alone,
thus requiring no changes to the baseline SUMC. However, an increase in
operating speed could be obtained by implementing BRHA and BRLA as hard-
ware registers in the SUMC ALU.

d. Process control. The concept of a process and its construe-
tion is discussed by Kennedy /9/. Briefly, a process is the sequence of actions
performed in order to complete a task, A process may execute code more or
less arbitrarily {rom either executive or application programs and may, in
fact, share code withl other unrelated processes. Traditionally, the onus of
process confrol and communications between related (cooperative) processes
bas been entirely the responsibility of ithe systems programmer. However,
the capability provided by a multiprocessor to distribute functional respons-
ibility and the inherent flexibility of microcoded logic can be utilized by the
system architect to alleviate the burden as will be subsequently demonstrated,
It is necessary to exhibit some basic concepts related to process control, '

(1)  Process control block. Figure 19 shows a possible
structure for a PCB and table 4 explains each enfry. Each CPU contains in
scratch pad memory (SPM) the PCB of the process for which it is executing
code. Processes which have been constructed but are not currently execuling
are maintained at a central location by an executive routine called the "dis-
patcher, " which is discussed below.

S}Keltlnedy, J. R.: Executive Routine Primitives and Process Control.
Contractor Report prepared under NASA Contract NAS8-18405 by Computer
Sciences Corporation, Huntsville, Alabama, March 24, 1871,
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FIGURE 19

PROCESS CONTROL BLOCK
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TABLE 4

PROCESS CONTROL BLOCK ENTRY DESCRIPTIONS

ENTRY DESCRIPTION

PROCESSNAME Unique name for this process.

W Counter showing number of unserviced START primitives invoked for this
process. '

. PRIORITY Relative process priority. -

abc Three bit process state indicator.

CPUnum Hardware address of the CPU associated, during execution, with this
process.

BRHA Bank Register High Address.

BRLA Bank Register Low Address.

STARTENTRY Instruction memory address of first instruction.

RETURNADDRESS Memory address of next instruction in case process activity is stopped;
execution will be resumed at this location. -Initially has value of STARTENTRY.

BREAKPOINTADDRESS Memory address which, if it becomes the argument of an instruction fetch
cycle, will cause an internal processor trap to a predetermined memory
address specified by BPOtrapaddress.

" BREAKPOINTOPERAND Memory address which, if it becomes the argument of a data fetch
' cycle, will cause an internal processor trap to a predetermined memory

address specified by BPOtrapaddress.

MACHINEREGISTERS A block of words resexved for saving all programmable processor registers

when process activity is stopped. Must include all registers depicting process
state information.




- .50

(2) Dispaiching. Once a process is executing code on a
CPU, it may become necessary that the dispatcher seize the CPU for assign-
ment to another, higher priority process. The act of seizing the CPU is called
a "preempt't dispatcher action. Any mechanism that effects this task must
preserve the current state of the program counter and volatile machine regis-
ters. Space in the PCB is reserved for this confingency. Addifionally, the
dispatcher must retrieve the PCB of the halled process and allow it to compete
for CPU time. The act of assigning a process to a CPU is called a "digpatch"
action, Clearly the mechanism for “dispaich" is the inverse function of
"preempt. "

(3) Process states. A process executing code on a CPU
is said to be in the "running" state., A process not executing code but compet-
ing with other processes for CPU time is in the "ready" state. A process that
has been constructed but is not competing for system resources is in the "idle"
state.

Afler a process enters the "running® slate, internal conditions may
dictate that it not proceed until the occurrence of a specific external event,
It may then request that its state be allered until notified by a cooperative
process to continue. This interim condition is referred to as the "waiting"
state. ) g

A process in any of the above stales may be suspended by a cooperalive
process for examination, alteration, or debugging. TFor this reason, each
state has a companion "suspended" state, A process remains suspended until
released by the cooperative process. Table 5 enumerates the salient points
concerning process states.

{4) Process stale iraunsition, A process may proceed
from one state to another by either of two events:

@ Dispaicher action ("preempt," "dispatch'), or

e Execution of certain primitive functions (implemented
as SUMC instructions) by the affected process or a
cooperative process. ’

] Figure 20 illustrates the relationship of the dispatcher and primitives
to state transition. The START primitive increments the "w'' variable in the
PCB which implies a direct iransition from the "idle" state to "ready,'" or
subsequent intervention when ihe process would normally proceed from
"running' 1o "idle." The "w" variable may also serve as a barometer of

the workload backlog as detailed in the above cited report /9/.



TABLE 5

PROCESS STATE DEFINITIONS

DEFINITION

STATE

Idle Process has been constructed but is not currently compeiﬁ"ing' for
system resources. : '

Ready Process is competing for system resources but is not currently
executing on a CPU,

Running Process is executing instructions.

Waiting Process has discontinued execution while awaiting an external
event,

Suspended For each above state there exists a corapanion suspended state to

or from which a process may revert. subject to the action of a
cooperative process.
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A STOP primitive executed by a process in the "running" siate dec-
rements the "w" variable. ¥ w becomes zero the process proceeds fo the
. Midle'" state; if not it returns to the "running' state,

A process, cognizant of a requirement for some external action (such
as 1/0), may request transfer to the "waiting" state by executing a WAIT
primitive, The "waiting'' state is terminated by the performance of a CONTINUE
primitive by a cooperative process, '

SUSPEND and RELEASE primitives may he execuied only by cooperative

processes and effect state transitions between companion suspended, non-suspended

states described above,

Process termination is effected via ABORT or EXIT primitives. EXIT
may be used only for process gelf-termination. ABORT is available for either
self-termination or external termination by a cooperative executive process
cognizant of an anomaly. Either connofes transition to a temporary "terminate”
state prior to subsequent process deletion. In case of ABORT, additional fail-
ure analysis procedures are implemented. For the purpose of simplicity,
ABORT and EXIT primitive action is omitted from figure 20, )

"An additional comment is in order with reference to figure 20% The box
labeled "testing w" is not a process state but an intermediate step in the transi-
tion from "running' to "idle,"

. (5) Implementation. Each primifive discussed can be

" accomplished by manipulation of a process PCB and the transfer of the PCB
from the CPU to the system control unit (to be discussed) or vice versa, Thus,
at the cost of some microcode logic and shared functional résponsibility, a
significant attenuation of system overhead can be achieved,

Each primitive is associated with a unique CPU to SCU command (or
request) that is transmitted upon execution and is followed by pertinent data.
A minor variation of this procedure is invoked by the STOP primifive, The
'w'' yvariable is decremented by the CPU and tested for zero, with a command
to the SCU resulting only if the value is zero. A detailed discussion of SCU
response is given in the section on the system conirol unit,

Relatively few unique SCU to CPU commands are required {or the SCU
to perform dispatcher actions and assist during primitive execution, CPU
responses to SCU commands are as {ollows:

(a) Preempl command. In addition lo supporling
the dispatcher "preempt" aclion, the preempt command is transmitted o a
I P
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CPU (under certain conditions) during execution of a SUSPEND primitive, I
the object process is in the "running" state the CPU response is:

o Delay until system is in the user mode,
o Do not feteh next user instruction,

<] Complete all pending I/0 (where complete may imply
abort or other action),

© Save PC in refurnaddress field of PCE,
o Send PCB to 8CU, and

e} Stop with CPU in user mode (where siop implies a micro-
. instruction idle loop, awaiting the next SCU command).

-(b) Dispatch command., This command assists in
execution of the RELEASE primitive if the object process is in the "'running
suspended" state in addition to supporting the execution of the dispaicher
"dispatch' action. The CPU response is:

Receive PCE from SCU, .
Load PC from the refurnaddress field of the PCB,
Load BRLA and BRHA from the PCE, and

Execute the instruction fetch routine,

e 0 0 6

(c) Increment w command. Execution of a START
primitive for an object process regquires that the "w' variable be incremented.
K the object process is in the "running' state, the SCU must signal the CPU
to effect this change. The CPU response is:

o Discontinue fetch next instruction routine,
@ Add 1 to w field of PCB, and
e - Continue fetch next insiruction routine.

e. Input/output, With regard to CPU functions in support of
system 1/0, the selected baseline provides for two program controlled output
(PCO) instructions as shown in figure 12. Also, simplex system operation
only (single IOP) was considered. Therefore, additions to the baseline related
to CPU functions take two forms: CPU funclions required io commmunicale with
multiple I0Ps; and a broader PCO instruction specification to allow control of
more IOP functions. ’



(1) SUMC to IOP communication. Control of the IOPs is
effected by transmission of control signals and information over the IOP-CPU
conirol buses (II and IO) noted in figure 2, Uniform Full Non-Dedicated
Structure. Data are then transferred to the peripheral devices via the data
huses.

Generation of a data transfer sequence is initiated by the recognition
by the CPU process of an I/O command known as a Program Controlled Opera-
tion (PCO).- This PCO must be translated into a format intelligible to the IOP

and transferred to the IOP via the II {for execution utilizing External Control
Cutput (ECQ) instructions. In the iransfer of data the CPU must resolve con-
flicts that may arise as the subsystems compete for CPU cycles, To resolve
the competing demands within the baseline SUMC capabilities, a poll-response
interaction of the CPUs and IOPs has been recommended,

TFor the CPU to engage an IOP in a control dialog the following sequence
of operations must oceur:
) A CPU raises the POLL line to the Control Logic and
Timing section of each IOP. This signals each IOP {o
expect an address fo he transmitted. Recognifion is
effected before the next FETCH.

o The CPU then transmits the denoted address to all IO]?S.

] Each IOP examines the address, comparing it with its own
designated address., If the addresses generate a mismatch,
the IOP returns to the MISMATCH state, If the addresses
match, the IOP transmiis ACK and prepares to receive
control information, The control sequence can then be sent
by the CPU,

Parameters transferred bhetween a CPU and an IOP are shown in
figure 21, illustrating parameters required in the handshaking sequences
utilized in control of the IOP by the SUMC (C PU). These paramelersg are
defmed in table G
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QUTPUT FROM CPU PRODUCT REMAINDER REGISTER VIA II
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~ e B ~
i8 27 35
| |
* Poll o I0P L--w Parity . -
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Transmit
Reject
EQOM

*Poll signal is routed to all IOP CLTs.

IOP OUTPUT FROM PRR VIA IO
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{5 29 35
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Zo77/h
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Ack : )
Reject
Msg Complete o

FIGURE 21

CPU CONTROL BUS COMMUNICATION OUTPUT PARAMETERS



TABLE 6. CPU CONTROL OUTPUT PARAMETER DESCRIPTION

CPU/IOP Output Parameter Description
CPru IOP Response
Poll Prepare to receive CPU control commands
Injitialize Enter Ready state*
Reset Enter Idle state*
Transmit Send one 32 bit word to CPU
Reject Error
EOM | End of Message, Mismatch IOPs reset CPU

JOP Address Each IOP compares this address with its own

Busy marker

and enters either Match or Mismatch -state.
If Mismatch must set CPU Busy marker,

* JOP State Diagram, figure 43

(2) PCO instruction specilication. Baseline departureé

in this case can be thought of as an elﬂmncement of I/0 capabilities in the
following areas:

G

Communication from Main Memory to the data bus,

Providing the capability to write in the local store (Format
Memory) of the IOP in-order to revise ECO storage and
allow adaptive control of I/0 sequences,

Implementing the capability to retrieve ECOs {rom Main
Memory for execution by the IOP, and

Expanding the sel of PCOs to permit more. diverse directions’
to the IOP from the CPU. Additionally, the addressing
capability of the PCOs denoted in /8/ allows an address

range of 0-4095 words. While usage of a base register in

the address calculation will expand this capability, dedication
of unused subfields in the PCO words permit standard SUMC

base and index modification address computation.
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Considering the preceding factors, the bageline START and STOP PCO
instructions are augmented to provide the following 1/0 commands (defined
further under Special Instructions):

@

&)

START (BEGIN), initiate an I/O Sequence;
TERMINATE (STOP), terminate an I/O Sequence;
GET STATUS, transmit status to CPU;

INPUT DIRECT, fransmit one computer word to the
CPU;

OUTPUT DIRECT, transmitf one computer word to a
peripheral device; and

DIAGNOSE, initiate diagnostic process.

The preceding PCO instructions provide the SUMC with the capability to per-
form the following categories of operations:

]

Initiate/Terminate 1/0 operation of a peripheral device‘:
Input the contents of a selecied group of status indicators.

Perform single word transfers between a SUMC scratch

‘memory location and a designaled peripheral device,

Initiate ’peripheral and I0P diagnostic procedures.

£, Configuration control. By way of summary, the operational

aspects of configuration control, as applied to the MEC of figure 1, are out-

lined here.

The capability of the basic scheme is unchanged from that outlined

in /1/. However, a significant mechanization change is incurred through a
division of responsibility between the SCU and CPU elements.

Configuration control consists of CPU-executed program control that
constructs or selects a system map referred {d as a setup map (SM). After
construction, the SM is transferred over the SI/SO buses from the CPU to
the SCU. The SCU then suspends execution of all CPUs, and uses the SM to
direct the setting of the various switches connecting element plug positions

fo buses,

The contents of the SM is retained by the SCU and, in this retained

form, is known as the action map (AM).



The AM serves as an updatable indicator of not only the structure of
the system but also the unique identification of all elements comprising ihe
structure. The actions of switching-out failed elements and switching-in
replacement spares is used to update the AM and retain associated element
status indications.

Once all SM-indicated switching actions have been accomplished, the
8CU commands all CPUs represented as active, connected CPUs to fetch
their next instruction from a prespecified location in the MMUs, thus trans-
ferring control to the CPU executive(s) for process initiation under the newly
established system structure, '

Most of the configuration control related actions of the CPU are con-
cerned with building a SM and therefore do not imply communications between
the CPU and SCU. Some actions do, however, require SCU cooperation. CPU
initiated communications with the SCU are known as "requests" and are as
follows: ’

(1) Switch and jump request. This request is made as
a part of CPU execution of the SWJ instruction,

(2} Disconnect element request. This reguest is made
as part of CPU execution of one of the following instructions: SOC, SOM,
SOIB, SOII, SQV. .
(3) Copy connect request. This request is made as part
of CPU execution of the following instructions: "CMM, CCC, and CIL.

(4)  Configuration status request. This request is made

as part of CPU execution of the following instructions: SCC, SCP, SCG, SMC, -

SMP, SMG, SIC, SIP, SIG, and SBG.

The response of the SCU to each of these requests and a description of config-
uration control related instructions are covered elsewhere in this repoxt.

SCU initiated communications with a CPU are known as 'Ycommands"
and are described, by way of the response of a CPU, as follows:

(6) Executive transfer cominand. A receiving CPU
responds to this command by taking these actions: -

Do not FETCH nexi instruciion.

Receive MMU transfer address. i
Place it in execulive mode program counter (PC) word in SPM.
Set CPU mode to execufive mode.

Execute FETCH microroutine.

O @ ® 0O ©
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(6) Receive VDSC error indicators. When a VDSC
indicates an error condition to the SCU while operating in 2 redundant system
configuration, the SCU sends this command to the redundant CPUs. The CPlis
respond with these actions:

® Do not FETCH the next instruction,
® Receive the status word from the SCU.

<] Simnulate a "redundant operation failure' interrupt to
notify the execufive of a {ailure.

g, Scralch Pad Memory organization. Previous experience
indicates that Scratch Pad Memory (SPM) utilization is less than optimum if
its organizalion is consigned in part {o software. ¥ the software is permitted
access to SPM arbitrarily, and at some point after implementation a reorgan-
ization of SPM is effected, much reprogramming will be necessary. For these
reasons, SPM should be addressable only from dedicated instruction fields
(such as register designation) or implicitly via special instructions. If is
requisite under an SPM organization directed by this philosophy that each cell
be associated with a specific function, Cell assignments ave based on {requen-
cy of use and occasionally on response requirements.

A minimum of 1281y locations are required for allocation of variables
that occur in the above two classes. The following discussion is based on an
SPM of this size, Specification is partially complete and space is available

for expansion.

(1) Major sections, TFigures 22, 23 and 24 depict a
candidate SPM organization, Locations 0-63;( are "system mode dedicated, " .
that is, addressable only when the CPU is in the system mode,  Cell assign-
ments in this area represent funclions unavailable to instructions executed in
the uger mode. '

Locations 6410-821¢-are "user mode related." Although accessible
during system mode operation, they provide the register set and variables
primarily referenced during user mode operation. A-similarly ordered set
of SPM locations is defined at the beginning of the system mode dedicated
section,

Locations 831 to 1271 form the '"mon-dedicated"” section. Assign-
mentis to this area represent functions or events that can oceur (irregardiess
of CPU mode) in a more or less stochastic fashion. Examples of this are an
IOP status message or the occurrence of a CPU "jump'' instruction. )



SPM . SPM SPM

. ADDERESS ADDRESS ADDRES
8 AQ 000 ? Boundary Violation 025 052
Al 001 ' Tilegal Instruction 026
A2 002 Axith. Fault 027 14 SPARES
A3 003 Real Time Clock 030
Ad 004 ’ IOP Confrol Error 031
SYSTEM © Lab . 005 IOP Data BExrror 032
MODE AbB 006 pRIORITY [(Memory Parity 33
REGISTERS |AY 007 INTERRUPTS|gystem Initiator 034
8 010 Stall Alarm ‘ 035
A9 or Xi " 011 External 038
ALl or X2 012 Power Tail 037
All or X3 ' 013 System Contrcl Unit 040
_{A12 014 I0P 1 Complete 041
Al3 or Bl 1 015 _ I10OP #2 Complete 042 0849
Al4 or B2 016  1OP #3 Complete 043 070
071
¥ Al5 or B3 017 i 10P #4 Complete 044 .
System PC* 020 Executive Request 045 PROCESS 072
P T CONTROL 073
System BREHA 021 4 Spares 046 BLOCK 074
Svsiem BRLA 022 075
Stack SV** Tahle Ptr, 1023 076
Last Stack 8V o 024 : 451
) 077
*  Program Counter
% Siate Variable
FIGURE 22
(22
H SYSTEM DEDICATED SCRATCH PAD MEMORY
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SPM
ADDRESS

1004
101
102
103
104
105
106
107
110
111
112
113
114
115

116
117

120
121

122 .

USER RELATED 3PM SECTION

3

AQ
Al
A2
A3
Ad
A5
AS
A7 |
A3
A9 or X1
AlD or X2
411 or X3
ALY
A13 or Bl
Ald or B2
A15 or B3
User PC
User BREA
User BRLA
FIGURE 23
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SCU CONTROL WORD

REAL TIME CLOCK

[LLEG, INST. INDICATOR

INTERRUPT STATUS

AFS*

iCP 1 PACKET

iOP 2 PACKET

SPM

ADDRESS

123
124
125
126
127
130

10P 3 PACKET

IOP 4 PACKET

1

4 SPARES

* ARITHMETIC FAULT MASK Al\‘TD STATUS INDICATOR

FIGURE 24

SPM
ADDRESS

1142

143
144
145
146
147
150
151
152
153
154

187

NON-DEDICATED SCRATCH PAD MEMORY "

16 SPARES

ADDRES:

16¢
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~

(2) Register organization, The format definition for
memory reference instructions presented earlier in this section (figure 9)
precludes a detailed discussion of the number and types of registers. Overlap
between accumulators and base registers and between accumulators and index
registers was judged essential since indexing algorithms are frequenily derived
using arithmetic procedures. Orientation of the regisier sets relative to the
beginning of SPM and to each other was dictated in part by the "OR"ing proce-
dure used to combine the SPM address field of the microword insiruction with
the offset obtained from the register designator field of the CPU instruction.

A separate (and congruent) register set is allocated {or system mode
operétion. This provision reduces the (software) overhead entailed by mode
changes, Evidence does not indicate that the optimum systemn register set
is congruent to the optimum user register set, but a trade study determining
the optimum system register set is beyond the scope of this report. A non-
congruent system register set requires the reorganization of the format of a
large number of CPU instructions, resulting in a vastly different instruction
set for system mode use which is costly in terms of microcode requirements,
Nevertheless, if further research indicates unusual benefits, a system 1eg~
ister get may be defined at a later date,

(3) Interrupts. The sixteen (16) interrupt levels depicted
in figure 22 are arranged in order of assumed priorily. Definition of soft-
ware alterable levels is possible, hut there is presently insufficient justifica-
tion., A rearrangement of the priorities is feasible for each mission, partially
negating the benefits of a more flexible priority interruptl structure.

Priority within the 1/0 interr.upt levels is based on the type of I/0
involved. I/0 directly hetween the device and the CPU is given highest prior-
ity since it can be expected to be of low volume and is the most likely form of
astronaut/pilot command communications during manned missions. Device to
device I/0 is given lowest priority with the assumption that it is the least
likely to precipitate process idle time prior to completion, Within each I/O
type, input has uniformly higher priority than output.

Other SPM locations associated with the interrupt structure are as
follows:

A five (5) word communications packet for each ICP,

A fifty (50) bit interrupt status indicator,

A fourteen (14) bit arithmetic fault mask/status indicator, and
An SCU control word,

@ @ @ @



An IOP packet (figure 25) is used fo communicate to the CPU the cur-
renl IOP status, associated channel status, the last channel operation executed,
requests for service, and pre-selected data items. The "P" bit of the packet
(lirst word, bit 0) is always received as a one (1), and reset by the microcode

- interrupt service routine when service (by the system Exec) is granted or such
service is deemed unnecessary (i.e., "P" is a ""protect” bif that prevents the
packet from heing destroyed before its contents are accessed).

The formats of the interrupt status and arithmetic fault mask/status
indicators are illustrated in figures 26 and 27. A note of explanation is in
order concerning the "queued" status entries. An interrupt is queued for sub-
sequent service after a request is received that cannot be immediately pro-
cessed due to ils priority level or "disarmed" status. A complete definition
of "enabled, " "disabled,! "armed, ' and "disarmed' is delayed until the defini-
tion of instructions associated with interrupt processing.

The SCU control word is used fc retain the current status of those
operations that require a multiple-step CPU/SCU dialog. Is format varies
between and within operations.

As noted, SPM is not divectly addregsable. Specific instructiong are
provided to access the interrupt status and arithmetic fault mask/status indica-
tors, Portions of the IOP communications packet meaningful to the software
executive are provided through the interrupt service entrance mechanism,

(4) Addressing scheme. TFigure 28 illustrates an SPM
addressing gcheme, utilizing the U-flip-flop defined earlier which permits
access only to user mode related and non-dedicated sections during uger mode
operation and all SPM Iocations during system mode operation. If cell assign-
ments are gelected by function, this mechanism (or a similar one) is sufficient - -
to perform all tasks involving scrafch pad memory.

3. Special Instructions., In addition to the spectrum of instructions
referenced in the discussion of the SUMC baseline, other instructiong are cut-
lined here. These additional instructions fall into one of two classes: "required"
for MEC operation or "desirable" for additional programming effectiveness.
Those which are required have to do with configuration, interrupt, process,
input/output, and lockout control, while increased effectiveness is gained by
special instructions for recovery and trace, dehug execution and system mode
control, list and stack manipulation, and preogram linkage,

a. Configuration control. A method for configuration control
has been oullined conceptually elsewhere /1/ and summarized previously in
this report. Slight modifications io the related instruclions are incorporated
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N

32 >
P IOP Status
Reserved for
10P/CPU Communications
Message ID Last Command
DBT Status Device Status
I/O State Last MMU Address

P - Protect Bit

FIGURE 25

T0P COMMUNICATIONS PACKET

IOP Dependent

Device Dependent



SPM

ADDRESS 0 23 56 89 1112 1415 1718 2021 2324 2627 2930 31
126 A IS S A 7R I P U S I S I SO N S A
127 i | he | fe | Ta | Ts | he | (

Ii — (1= RELATIVE PRIORITY OF INTERRUPT)

=000 - DISABLED
=001 ~- ENABLED AND DISARMED
=010 - ARMED
= 011 - QUEUED AND DISARMED
= 100 - QUEUED AND ARMED

=101 - ACTIVE
= 110 - EXECUTION DISCONTINUED
=111 - NOT USED

FIGURE 26

INTERRUPT STATUS FORMAT
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SPM
ADDRESS

127 /—”/

Fl FZ FB F4 F5 FG F’? Fl F2 F3 F4 F5

IF MASK BIT F, =1-

MASK STATUS

¥. - ADD/SUBTRACT OVERFLOW
- ADD/SUBTRACT UNDERFLOW
~ DIVIDE ERROR

- MULTIPLY OVERFLOW
F_ - FLOATING POINT ERROR
F, - IMPROPER SQUARE ROOT

3.",7 ~ IMPROPER TRIGONOME TRIC FUNCTION

T
F
T

O')U!l-PCOL\'JI—‘

THE CONDITION DESIGNATED BY "i'' WILL GENERATE

AN ARITHME TIC FAULT INTERRUPT,

THE CONDITION DESIGNATED BY "i'" WILL BE IGNORED

BY THE INTERRUPT SYSTEM.

FIGURE 27

ARI’I‘HME":[‘IC FAULT MASK AND STATUS
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into the instructions depicted in table 7. While SCU bus connections to CPUs
could have been included, this was not done since the connections can be made
in the SCU at switch time with no loss in generality.

The instructions are grouped under four functional headings:

o] Connection,

® Disconnection,

[ Status Determination, and
o Miscellaneous.

b. Process control. The reader may wish to refer at this
point to an earlier discussion during which basic conceptual ideas relating to
process conirol were reviewed, Executive control of processes is facilitated
by the definition of a set of primitives. An approach to implementation can he
found in an earlier cited report /9/.

Execution of a primitive effects an immediate or subsequent state tran-
sition of a process. Table 8 contains the salient points of each primitive in-
struction. )

(1)  Start, Execution of a START primitive for a process
in the "idle" state results in its immediate transition fo the "ready' state,
(See table 5 for process state definitions.) Concurrently, the PCB variable
"w, " known as the work variable, is incremented. .

When a process is not in the "idle" staté, execution of the START prim-
itive results only in the incrementing of the work variable, The START prim-
ifive specifies the object process name as an argument,

(2)  Stop. The STOP primitive is invoked by a process to
indicate execution completion, The PCB startaddress entry is copied into the
returnaddress entry and the work variable, "w,' is decremented. I "w" is
zero the process refurnsg to the "idle" state. I "w' ig not zero if ig returned
to the "running' state, the next instruction fetch address being in refurnaddress
of the PCB. The STOP primitive comnotes the implied argument, processname,
of the invoking process. -

(3) Wait, This primilive is executed by a process when
in the "running" state and cannot proceed until some arbitrary, requested
event bas occurred. The process is placed in the "waiting" state until a coop-

" eraflive process executes the CONTINUE primifive at which time a transition

occurs to the "ready™ state.
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TABLE 7

CONFIGURATION CONTROL (1 of 4)

CONNECTION INSTRUCTIONS

MNEMONIC
CODE ARGUMENTS MAP MEANING
PC CP, MI, MO, SM* Place CPU in SM; make an entry in the SM showing the central processor
I, 10 element in plug position CP connected to MMU buses MI and MO, and IOP
buses II and 10,
PI IP; MI, MO SM Place I0P in SM; make an entry in the SM showing the input/output processor
element in plug position IP connected to MMU buses MI and MO.
CM MM, IA, OA, SM Connect MMU to buses; make an enfry in the SM showing the main memory
MI1, MO element in plug position' MM connected through its input access port TA and
its output access port OA to the main memory buses MI and MO, respectively.
CI IP, TA, OA, SM Connect IOP to buses; make an entry in the SM showing the input/output pro-
II, IO cessor element in plug position IP connected through its input access port IA
~and its output access port OA to the input/ouiput buses II and IO, respectively.
PV T, V, IC1, SM Place VDSC in SM; make an entry in the SM showing the VDSC element in plug

. IC2, IC3, OC1,
-0C2, OC3

position V with its input chamels 1, 2, and 3 connected to buses IC1, IC2, and
IC3, respectively, and its output chamnels 1, 2, and 3 connected to buses OC1,
OC2, and OC3, respectively. The type of VD3C is specified, thus, by T:

T TYPE
000 VMI
001 VMO
010 VII
011 VIO

© 100 VST
101 VSO

* SM - Systemn Map
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TABLE 7

CONFIGURATION CONTROL (2 of 4)

DISCONNECTION INSTRUCTIONS

MNEMONIC
CODE ARGUMENTS

MAP

ME ANING

SOC CPk, B, IO

SOM MM, A, IO

SOIB P, B

SC1I IP, A, IO

SOV T, V,C

AM

AM

AM

- AM

AM

Switch-out CPU; switch-out the central processor in plug position CP dis-~
connecting it from all buses (B = 00), the MMU bus only (B = 01), or the IOP

" bus only (B = 10). IO specifies both input and output (= 00), input only (01),

or output only (10).

Switch-out MMU;. switch-out the main memory in plug position MM disconnect-
ing it at its accegs port number A (A = 0 implies all ports). 10 is interpreted
as in the SOC instruction,

Switch-out IOP from buses; switch-out the input/output processor located in
plug position IP from =all buses (B = 0), the MMU input bus only (B = 01), the
MMU output bus only (B = 10), or both MMU buses (B = 11).

Switch-out IOP from IOP buses; switch-out the input/output processor located
in plug position IP disconnecting it at its access port number A (A = 0 implies
all ports). IO is interpreted as in the SOC instruction.

Switch-out VDSC, The VDSC Type T in plug position V is disconnected from
its buses as indicated by C:

if C =01, input C1 only,
if C =10, input C2 only,
if C = 11, input C3 only,
if C =00, all input and output.
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TABLE 7

CONFIGURATION CONTROL (3 of 4)

STATUS DETERMINATION

INSTRUCTIONS
MNEMONIC .
CODE ARGUMENTS MAP ME ANING
SCC cPp AM _ Sense central processor-connect status; if central processor plug position CP is
connected to a set of buses, skip the next instruction. (When a processor plug
position is vacant, it is assumed that it is disconnected from all buses. The dis~
connect operation should oceur automatically upon manual unplugging or under
program control.)
SCP CP AM Sense central processor plugged-in status; if central processor plug position CP
has an element plugged in, skip the next instruction.
SCG CP AM Sense central processor good status; if central processor plug position CP has
a good element plugged in, skip the next instruction.
SMC MM AM Sense memory connect status; similar to SCC.
SMP MM AM . Sense mermory plugged-in status; similar to SCP.
SMG MM AM Sense memory good status; similar to SPG,
SIC 1P AM Sense input/output processor connect status; similar to SCC.
SIP Ir AM Sense input/output processor plugged~in status; similar to SCP.
. SIG ip AM Sense input/output processor good statlis; similar to SCG.
SBG B, BN AM Sense bus-good status; if bus number BN in bus group
if B = 000, all bus groups, if B = 100, IO only,
if B =001, MI only, if B =101, Sionly,
if B =010, MO only, if B =110, SO only.
if B =011, I only,
is marked good, skip the next instruction. Note: If B = 00, ail buses must be
good to cause a skip.
LFI R1 AM Load failure indicators. The R, 8, and L status indicators for all bus sets are
' loaded into register R1 for program testing (no specific. field format for R1 is
assumned at this time),
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TABLE 7

CONFIGURATION CONTROL (4 of 4)

MISCELLANEQUS
INSTRUCTIONS
MNEMONIC ,

CODE ARGUMENTS MAP - MEANING

CMM M1, M2 AM "Connect MemoryuMemory; connect memory plug position M1 as indicated in
the Action Map for memory plug position M2.

CCC Ci, C2 AM Connect Central Processor-Central Processor; conpect processor plug
position C1 as indicated in the Action Map for processor plug position C2.

Cil IrP1, IP2 AM Connect input/output processor-input/output processor; connect the I0P
located in plug position IP1 as indicated in the Action Map for IOP in plug
position 1P2,

SWJ A, BA AM Switch and jump; transfer Setup Map information to the SCU switch control

* logic for switching and save it in the Action Map. Status indicators are set

in AM to show associated connections and SM is cleared. Control of all
connected processors is transferred simultaneously to memory location A
of the memory element whose bank address is BA.

SMB MM, BA AM | Set the bank address of the memory element located in plug position MM to
contain BA.
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TABLE 8

PRIMITIVES (1 of 2)

_ *% Optional

PC ~ Program Counter

PRIMITIVE ARGUMENTS DESCRIPTION PCB ACTION

START PROCESSNAME Process is fransferred to "ready" | w+ 1 —2w
state if in "idle" state. Trans- If{abe)=(x00)
ferred to "ready suspended' state (x01)—=>(abe)
if in "idle suspended! state.

STOP PROCESSNAME#* The work variable, "w," is dec- w—- 1w
remented. If > 0 execution is STARTADDRESS —»
restaried. Otherwise the process RETURNADDRESS
is transferred to the "idle" state. Tw>0;

(010)—>(abo)
Tw=10;
(000)—>(abc)
. WAIT PROCESSNAME* * The process is tranaferred to (011 —(abec)
Atk the "waiting' state. PC — RETURNADDRESS

CONTINUE PROCESSNAME Process is transferred from the (x01) —(abe)
"waiting'' state to the "ready"
state. I currently suspended it
is transferred to the "ready
suspended" state.

EXIT PROCESSNAME* Process is transferred from the (000) —+(abec)

: ' . "running” state to the "idle" 0 —w
state and subsequently deleted.

* Impled
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TABLE 8

PRIMITIVES (2 of 2)

PRIMITIVE ARGUMENTS DESCRIPTION PCB ACTION

ABORT PROCE SSNAME ** Process is transferred from the (x00) —(abc)
"running' state to the "idle" 0 —>w
state and subsequently deleted.

If suspended, the process is
" transferred to the "idle sus-
pended" state,

SUSPEND PROCESSNAME The process is transferred from (1xx)—~{(abe)
its current state to its compan- PC — RETURNADDRESS
ion suspended state.

RELEASE PROCESSNAME The process is transferred from (0xx)—r(abc)

its current suspended state to its
" companion non-suspended state.

(abe)=(010);
RETURNADDRESS
—» PC

*% Optional

PC -~ Program Counter




The WAIT primitive may optionally specify a delay, at, the expiration
of which will result in the CONTINUE primitive being invoked. The implied
argument of the WAIT primitive is the name of the invoking process.

(4) Continue., Execution of the CONTINUE primitive
efiects a transition of the ohject process from the "waiting" state to the "ready"
state. Subsequent execution of the object process resumes at the instruction
sequence following the point at which the WAIT primitive was invoked, The
CONTINUE primitive must specify the name of the object process as an execu-
tion parameter. :

(6) Exit. The EXIT primitive is invoked by a process
for the purpose of self-termination. The process is temporarily transferred
to a "terminate" state followed by release of its allocated main memory and
PCB residence. Again, the implied argument of this primitive is processname,.

(6) Abort. This primitive has all the effects of an EXIT
and additional capability.to perform or request actions to aid in debugging or
failure isolation. Execution of an ABORT primitive wilh an argument, process-
name, is used by a cooperative process that is aware of an anomaly in the
object process. If the processname is not specified, it is implied to be that
of the invoking process. . d

(7)  Suspend. Execution of the SUSPEND primitive allows
the invoking executive process to effect a non-destructive suspension of an
object process. While suspended the object process relinguishes its PCB to
be examined or altered dynamically by the invoking process., The state trans-
ition of the object process is to companion suspended states for "idle, " "'ready,"
"runhing, " and "waiting." ‘The concepiual effects of the START, CONTINUE,

and ABORT primitives are preserved during suspension by incrementing ''w, ' - -

transition to "ready suspended," and transition to "idle suspended, ' respectively,

Suspension is terminated by execution of its converse, the RELEASE
primitive. Arn argument, processname, is reguired for execution of SUSPEND.

(8) Release. The act of invoking the RELEASE primitive
will cause the object process to reverl back to its companion non-suspended
state. The RELEASE primilive must specify the processname of the ohject
process.

. c. Memory access lockout. A main memory unit global data
file structure may require that one process prevent access from all other
processes for the duration of an operation (an uplink file being compacted, for
example). Analogously, an olherwise re-entrant routine may require that a

Y
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portion of itself not be executed simultaneously by more ihan one process,
The only effective non-~aleatory procedure is memory test and set, TS, utiliz-
ing a unigue control line to MMU (see earlier discussion of MMU).

TS is a privileged instruction, that may he implemented as an execufive
request in the user mode., The format is equivalent to a standard memory ref-
erence instruction. Operation is as follows:

© _ The relerenced memory location is vetrieved and tesied
by MMU,
e . I not all ones, it is set to all ones and the instruction

following TS is skipped,

) If all ones, it is restored and the instruction following
. TB is execuled.

A TS condition is cleared by storing zero in the test and set location.

d. . Recovery/trace, Table 9 lists three instructions which aid
the development of an automatic "checkpoint/restart" procedure executed to
recover from transient and intermititent errors. Each instruction in the table
enables a program to determine a preceding point of the current instruction
sequence,

TABLE 8. RECOVERY/TRACE INSTRUCTIONS

INSTRUCTION
MNEMONIC OPERANDS - DESCRIPTION

LCA . R The address from which the last subprog-
ram call originated is stoved in the register
designated by R. .

LJA R The address from which the last jump orig-
inated (not a subprogram call) is stored in
the register designated hy R.

LPC R The address of the instruction executed

) immediately preceding the current instruc-

tion is stored in the register designated
by R.




An additional application exists in the area of error analysis and debug-
ging aids. The following examples illustrate this:

e Under process abort conditions, a "walk-back' listing
giving machine condifions at selected pomts in the
instruction path, and

e} Determining which of several sequences is entering a
given sequence under erroneous conditions.

e. Program and concept verification. Ultimate reliability
(and cost) of software can be improved by facilities aiding the programmer
during checkout. Among those that relate to hardware/firmaware include:

® Breakpoint address - a CPU halt upon encountering a
- previously specified program address as a result of an
instruction fetch;

© Breakpoint operand - a CPU half upon encountering a
previously specified instruction operand (effective
address); and

) Data pattern break - a CPU halt upon encountering a
previously specified operand value,

Implementation might be in the form of a CPU "debug" mode that can
be conirolled externally (or internally under program control}. An alternative
is a separate SUMC model dedicated to software verification.

1. Input/output. Input/output instructions, referred {o as
Program Controlled Cuiput (PCO), are commands fo the IOP to execute an
1/0 sequence. In order to specily the instruction the following items are
necessary:

¢ ~  Operational specifications,
® IOP degignation, and
e Buffer address or pointer to the Turther 1niormat10n required,

The Operational specification or op code designates the particular ac-
tion required of the IOP. The following actions defined in table 10 have been
found desirable:

o Start nput/Outpul (SO)
) Terminate Input/Cutput (T'O)
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TABLE 10

PROGRAMMED CONTROL INSTRUCTION DEFINITION

MNEMONIC ' :
CODE OPERANDS DESCRIPTION
SO IOP, Class*, The IOP delineated is commanded to perform the 1/0 operation designated by the
Address Class operand. Class indicates the localion of the ECOs (Main Memory or
Format Memory). Address designates the first word address (FWA) of the ECO
commmand packet ihat specifies the operation.
TO I0P, Class, The 1/0 operation defined by the operands is terminated. Sub‘sequent actions are
Address defined by the command packet.
GS IOP, R, The status indicator variable designated by the address operand is received
Address from the IOP and stored into the SPM register defined by "R."
D 0P, R, One 32 b;'.t word is sent to the CPU register "R'" by IOP, from the device
Address designated in the operand address.
0D 0P, R, One 32 bit word is sent from CPU register "R'" by IOP, to the device denoted by
’ Address .the contents of the address operand.
DIDk* B, X, D, The diagnostic process located at effective address is executed upon the device
" Device Ad= specified by Device Address.
dress

* (lass indicates location of ECOs (MMU or Format Memory)
#% DD iz a two word instruction; fir_st word contains conventional SUMC Base, Index, Displacement terms for
effective address calculation; second word contains device address,




Get Status (GS)

Input Divect (ID)
Output Direct (OD)
Diagnose Device (DD)

@ e 8 @

The IOP designation is the select code for the IOP that will execute the opera~
tional sequence. Similarly the buffer address or pcinter is the main or format
memory address of further specification data.

g. List/stack operations. Definition of a set of list/stack
operations alleviates the execution overhead for dynamic storage allocation,
assists in processing real-time interrupts, and provides convenient, least-
-redundant methods for implementing re-entrant/recursive routines. Table 11
is a self-explanatory set of list/stack instructions.

Figure 29 depicts a modified ring structure illustrating a viable approach
to implementation, The state variable "S, " the stack ID, is contained in 2 main
memory table to which there is a pointer in SPM. The format of S depends upon
the detailed implementation scheme, Pointers within the 1ist structure are trun-
cated to 16 bits, suggesting stack residence in the lower 65K of memory unless
a compensaling mechanism is used, for instance, allotting a stack base address.
Since the required memory addresses do not conform to normal boundary check-
ing procedures, it is suggested that the list/stack operations be privileged and
incorporated as executive requests in the user mode,

h, Interrupt processing. ‘Selection of instructions lo facilitate
interrupt processing was directed by the criteria that SPM not be directly
addressable using the procedure for addressing MMUs, but rather be addressed
via micrologic decoding of the instruction op code. Table 12 lists candidate op
codes to set and sense associated SPM locations and provide capability for the
executive to respond to a priority interrupt. The following candidate instruc-
tions have been identified:

Interrupt Mask Set (IMS},
Interrupt Arm/Disarm (IAD),
Clear Interrupt (CLI),

Reset Interrupts (RIN),

Set Interrupt Address (SLA},
Read Interrupt Indicator (RID),
Set Arithmetic Fault Mask (SAI),
Enter Interrupt State (EIS), and
Exit Interrupt State (EFS).

9 0 8 & ¢ 0 & @ O

As noled, these instructions are discussed in table 12,
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TABLE 11

LIST/STACK INSTRUCTIONS (1 of 3)

MNEMONIC
OP CODE

OPERAND

ME ANING

08

CS

PU

PO

RE

TP

s, W, L

Open Stack. Define a stack whose address is S (an arbitrary n-bit integer)
with a- single entry consisting of W words and a maximum length of I. entries.
Future references to S do not require specification of W and L.

Close Stack. Destroy the definition and existence of the stack whose address
is 8. This allows S to be redefined.

Push. Place the W words beginning at A on the top of the stack S. If this
new eniry will exceed the specified maximum length L ignore the instruction
and fetch the next instruction; otherwise skip the next instruction after
execution. -

Pop. Copy the top entry on stack S into the W words beginning at A and
remove the top entry from the stack thus making the next entry the new top.
H prior to performing the PO there are no entries on the stack, ignore the
instruction and fetch the next instruction; otherwise skip the next instruction
after execution.

Read Entry. Copy the top entry on stack S into the W words beginning at A.
It prior to performing the RE there are no entries on the stack, ignore the
instruction and fetch the next instruction; otherwise skip the next instruction
after execution. ’

Top. Move a logical poiri%er to the top entry on stack 8. If the stack has no
entries, ignore the instruction and fetch the next instruction; otherwise skip
the next instruction after execution,
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TABLE 11

LIST/STACK INSTRUCTIONS (2 of 3)

MNEMONIC
OP CODE OPERAND MEANING
RW S, R, N Read Word. Copy the contents of the Nth word (0 < NZL W - 1) of the stack
* (S) entry pointed to by the logical pointer (referenced to henceforth as the
"logical entry") into register R.

WW S, R, N Write Word. Replace the contents of the Nth word (0 < N W ~ 1) of the
stack (S) logical entry by the contenls of register R.

MD S Move Down. Move the Jogical pointer to the nexi lower entry on the stack
S. If there is no next entry, ignore the instruction and fetch the next
instruction; otherwise skip the next instruction after execution.

MU 3 Move Up. Move the logical pointer to the next higher entry on the stack S.

' If no next higher ‘entry exists (pointer is at the top) ignore the instruction
and fetch the next instruction; otherwise skip the next instruction after
execution.

- DL S5, R, N Down Less-than, Beginning with the logical element, scan each succeeding
(lower) element until one is found whose Nth word has contents numerically
less-than the contents of register R. If the stack is exhausted before the
test is safisfied, {etch the next instruction; otherwise, define the satisfying
element to be the new logical element and skip the next instruction.

DE 5, R, N Down Equal. Same as DL but test for equivalence of contents,

‘DG S5, R, N Down Greater Equal. Same as DL but test for word contents greater than

or equal to register contents.
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TABLE 11

. LIST/STACK INSTRUCTIONS (3 of 3)

MNEMONIC
OP CODES

OPERANDS

ME ANING

BT

oT

IN

LP

s

Bottom. Position the logical pointer to the last element on the stack. If the
stack is empty, fetch next instruction; otherwise skip the next instruction
after execution.

Cut. Remove and destroy the logical entry from the stack, closing the two
adjacent entries together to reform the stack without changing the relative
order of remaining entries. Define the logical entry to be the entry which
previously followed {he removed logical entry. I no euntry previously followed
the removed logical entry define the top entry (this alsoc may not exist) on the
stack to be the logical entry and fetch the next instruction. Otherwise, skip
the next instruction,

In. Insert a copy of the W words beginning at A info the stack as the entry
following the logical entry. Redefine the logical entry to be the newly added
entry. If the stack is empty prior fo the IN instruction; the new entry will
be inserted on the stack and defined to be the logical entry.

Logical Pointer. . Places address of logical pointer for stack S into register R.
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TABLE 12 .

INTERRUPT PROCESSING INSTRUCTIONS (1 of 2)

MNEMONIC
OP CODE OPERANDS DESCRIPTION

STA R, I Set Interrupt Address. Store the contents of register R into the SPM
interrupt location of which the immediate operand I is the relative priority
level. '

RII A Read Interrupt Indicator. Store the contents of the interrupt status and
arithmetic fault words (SPM 125 and 126) info locations A and A + 1,

SAIL R Set Arithmetic Fault Mask. Store the contents of register R (bits 25-31)
into the mask portion of the arithmetic fault indicator. The initial condition
of this register is all ones. A bit set for a particular copdition will allow
an arithmetic fault interrupt if that condilion occurs. "

EIS Enter mterrupt State. A higher priority level interrupt has ccourred. Clear
interrupt; set Executive mode ff, Branch to process to isolate interrupt
source, Consequent action depends on state of system at instant of interrupt
arrival.

EFS Exit from Interrupt. Arm selected interrupts, PCB (Program Counter) — PC,
set user mode ff, FETCH. It should be noted that the PCB must contain the
appropriate process parameters.

IMS B, I, A Interrupt Mask Set: Location 2 =B 4 I+ A containg a mask which is used to

enable or disable selected interrupt levels where 1 = enabled. The initial
state of all interrupts is ""disabled. " An occurrence of a disabled interrupt
is ignored (i.e., nuil processed). The preceding is accomplished by storing
the contents of the effective address in the SPM Interrupt Mask location.
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TABLE 12

INTERRUPT PROCESSING INSTRUCTIONS (2 of 2)-

MNEMONIC )
OP CODE OPERANDS DESCRIPTION
IAD B.X, D Interrupt Arm/Disarm. Location Z = B + X+ D contains 2 mask which is used
to arm or disarm selected 1nterrupt levels. An occurrence of a disarmed
interrupt is "remembered' but not serviced until armed.
CLI Clear Intexrupt. The active (highest) interrupt level is reset, allowing queued
lower (or equal) interrupt levels to be serviced after execution of the following
CPU instruction.
RIN Reset Interrupts., Pending interrupt service requests are cleared. To obtain

service the signal must be reinitiated.
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Instructions IMS and TAD (enable/ disable, arm/disarm, respectively)
require the following definitions:

2 An interrupt level that is enabled will be given CPU
service time according to its priority and "armed"
status upon each occurrence; ’

o An interrupt level that is disabled will be ignored;

o An interrupt level that is armed will compete {or CPU
service time on the basis of priorify upon occurrence;

) An interrupt level that is disarmed and requesting service
will not be allowed CPU time unti]l armed. In contrast to
the disabled siate, however, it will be queued for later
service,

IMS and IAD submit a mask woxrd, as depicted in figure 30, for interpretation,
The left half of the mask selects the interrupt levels to be affected and the
right half selects the appropriate status redesignation.

Arithmetic fault interrupts may be prevented for specific conditions
via an SAT (Set Ayxithmetic fault Indicator). The format of the reguired operand
mask may be obtained from figure 30,

i, Program linkage. 'Specification of program linkage instruc-
tions (CALL, RETURN, Executive Request) might be influenced by definition
ol the CPU program structure. Multiple entry points are a simple example of
a program structure capable of being facilitated by linkage instructions., More
elaborate structures might include programmed "filters, " invoked upon entry
and exit from a program, which perform parameter checks and set execution
conditions. This framework creates a closer functional relationship between
program enfry and exit instruections. Time requirements for the present study
do not permit a thorough evaluation of the program structures required, thus
it might be necessary to give complete program linkage specification at a later
time. :

C. BSystem Control Unit (SC[i)

This section summarizes the role of the system control unit and sug-
gests an approach to its architecture. The SCU actls as a system supervisor

" at the lowest level at which such control is usually found in the form of an

executive routine. That is, the next successive lower level of control is
typically found in stored ox digilal logic. Because the functions allocated to
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the SCU comprise an important part of the interface with what is frequently
referred to as "hardware, " they become prime candidates for microprogram
or digital logic implementation. :

The [unctions allocated to the SCU are principally supportive in that
events, occurring under prograin conirol at one or more of the system's CPUs,
initiate action of the SCU. The SCU maintains state information on all of the
hardware elements and soffware elements. The software elements, referred
to as processes, are scheduled for allocation of ceriain hardware resources by
the SCU, The methodology and schema by which CPU time is allocated are
known collectively as process contrel. Through process control implicit con-
trol of CPU resources is achieved.

In addition to process control, the SCU maintains a map of the physical
system, known as the action map (AM), wherein all topological information
regarding the commection of elements to other elements within the system is
kept. This map serves also as a hasis for determining the availability of all
elements, including spares. These functions are discussed below in a way
that illustrates the relation of the SCU to CPUs,

1. SCU Operétions/ Functiong, Configuration control, CPU control
(by way of process control), and process conirel are summarized as-follows.

a. Configuration control, Special instructions to be execuied
by CPUs under execulive conirol were itemized in a prior section (table 7).,
With respect to ceriain of these instructions, request& by the executing CPU
are made of the SCU as follows:

(1)  Switch and jump request. This request is made as a
result of CPU execution of the SWJ instruction. The response of the SCU is to .

o - Receive and save the jump address parameters-from the
CPU,

® Receive the sefup map (SM) from the CPU,

® Transform the SM into switch commands and switch
all affected elements as required,

e Set the AM to reflect SM settings, and

) Send an "Executive Transfer" command to all active
CPUs along with the associated jump address parameters.



2)

Disconnect element request, This request is made

as part of the CPU execution of an SOC, SOM, SOIB, SOH or SQV instruction,
The 3CU response is to ’

o @ 0 @

Receive an element switch control word from the CPU,
Construct associated switch control command(s),

Issue the switch command(s), and

Update the AM as required. '

A tentative control word format is given in figure 31. The symbols are
interpreted as shown in tabhle 13.

TABLE 13. SWITCH CONTROL WORD FIELD DEFINITIONS

SYMBOL | VALUE MEANING
R ¢o Central Processor (Ignore D)
01 Main Memory (P specifies port)
10 Input/Qutput {P specifies port)
11 VDSC (Ignore P; C gives TMR channel)
P 0 All Ports ‘
N Port N only
B 00 All Buses
01 Processor Iput Bus
10 Processor Output Bus
11 Spare
C 00 All
01 Input C1
10 Input C2
11 Input C3
BE N Unit Address

(3)

Copy comnect request. This request results from CPU

execution of a CMM, CCC, or CII instruction. The SCU response is to

s}

O .

Receive a copy control word [rom the CPU,

Search the AM for all element E2 bus connections and

save them,

91



26 -

Bus/
Type Port . Chan. Element
T P B/C B
2 3 2 5
FIGURE 31

SWITCH CONTROL WORD FIELD FORMAT

Name
Syrabol
# Bits



o Discomnect ciement E2,

e Connect element E1 in the same way element E2 was
connected, and

e Update the AM appropriately.

Tigure 32 shows a tentative copy connect word format wherein T and E1/E2
have the same meaning as the T and E, respectively, of figure 31,

(4y Configuration status request. ~ This request is made
by a CPU as a result of having executed an SCC, SCP, SCG, SMC, SMP, SMG,
SIC, SIP, SIG, SBG, or LFIinstruction, SCU response is to

el Receive the status type code word (format not specified),
) Search the AM to get required status,

& Form an appropriate status response word (format not
specified), and

‘e~ Send this word to the requesiing (waiting) CPU.

Status can be requested for the following Boolean parameters: bus good, cen-
tral processor connected, memory connected, input/outpul processor connected,
. element disconnected, element plugged-in, and element good.

In addition to the responses of the SCU to CPU initiated requests, the
SCU initiates commands to a CPU as follows (CPU responses to these comi-
mands are detailed elsewhere):

(5) Executive transfer command. This command is
issued as the {inal SCU action in response to a switch and jump request.

(6) Receive VDSC error indicators command. Whenever
a VDSC indicates a disagreement in TMR majority voting, this command is
issued by the SCU simultaneously to the three active TMR system CPUs.

h. Process control. The role of processes and their control
via a set of system primitives defined as SUMC instructions were previously
reviewed. It was stated that the functional responsibility for primitive execu-

" tion was shared by the CPU and the SCU. Three related SCU to CPU commands
(preempt, dispatch, incremeni w} were described by delineating CPU response,
Each primitive is assigned a unique command which is transmitfed as part of
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its execution by a CPU to the SCU. An argument, processname, identifies the
object process and is received by the SCU following the command. Additional
response to the command by the SCU is frequently based on the state of the
object process.

(1)  Start process request, This command results from

the execution by a CPU of a START primitive, The following response is
evoked from the SCU,

L

The SCU loecates (in its memory) the PCB of the object
process,

If the process state is "idle, ' the w field of the PCB is
incremented, the process state hits are set to indicale
the "ready" state, an entry is made in the ''ready' list,

_and the dispatcher routine is executed by the SCU.

I the process state is "ready," "waiting," "ready
suspended, " "running suspended, " or "waiting suspended,’
the w field of the PCB is incremented.

If the process state is "idle suspended,' the w field of the
PCB is incremented and the-process state bits are set fo
indicate the "ready suspended" state.

If the process state is "running' the w field of the PCB is ' ’
incremented,.the CPU number is identified by fetching it
from the PCB, and an "increment w¥ command ig sent to
the CPU,

(2)  Stop process request. This command originates with

the execution by a CPU of a STOP primitive {for a pr ocess with zero in the PCB
w field after decremenhng The following SCU response is executed,

@

The PCBRB is received from the CPU,
The CPU number field of the PCRB .is cleared.

The process state bits are set to indicate the "idle"

- state and the process' ready list entry is deleted.

The dispatcher is executed.
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(3) Wait process request. Execution of a WAIT primitive
by a CPU transmits this command to the SCU, The following SCU response is
effected.

o) The PCR is received from the CPU.
% The CPU number field of the PCB is cleared,

e The process state bits are set to indicate the "waiting"
state and the process’ ready list énfry is deleted.

(4)  Continue process request. This command corresponds
to execution of the CONTINUE primitive by a CPU and initiates the following
SCU response,

o If the process is in the "waiting" state, the process state
bits are set to indicate the "ready" state and an entry is
made in the "ready' list; the dispatcher is executed.

[ If the process is in the "waiting suspended' state, the
process state bits are set to indicate the "ready suspended"
state,

) (5) Suspend process request. This command is trans-
mitted to the SCU during execution of the SUSPEND primitive by a CPU, , The
SCU responds in the following manner,

e If the object process is in the "running” state, a "preempt"
’ command is sent to its associated CPU, and the SCU receives
the process PCB. The process "ready" list entry is removed.
If the object is not in the "running" stale, this step is skipped.

=) The state bifs of the PCB are sef to indicate a companion
suspended state.

o A copy of the PCB is sent to the CPU exeéuting the SUSPEND
primitive,

(6) Release process request, Execution of a RELEASE
primitive by a CPU generates this command to the SCU, The response of the
SCU is dependent on the state of the object process.

o If the process stale is "running suspended, " the process
state bits are changed to indicate the "rumning" siate, the



identity of the object process CPU is ascertained, and a
"digpatch" command issued to the CPU, The process
"ready' list entry is inserted and the dispatcher is
executed,

e If the process state is "idle suspended, ' "ready suspended,™
or "waiting suspended, " the PCB state bifs are changed to
indicate the companion non-suspended state. In the case
when the companion state is "ready,' a ready list entry is
inserted and the dispatcher-is exeduted.

(7)  Exit process request. The EXIT primitive, execuled
for process seli-termination, causes this command to be sent to the SCU. The
SCU responds in the following manner,

o The PCB is stored in a temporary "terminate' list from
which the system allocator may retrieve the CPU number
and mzain memory locations to be released. The process'
"ready' list entry is removed,

o The dispatcher is executed.

{8) Abort process request. This command corresponds
to execution of the ABORT primitive and initiates the following SCU response.

e If the process is in the "running" siate, a "preempt" comm.é.nd
is sent to the object process CPU and the PCB is received,

e} The object process PCB is stored in a temporary 'terminate"
list from which the system allocator may retrieve the CPU
number and main memory locations to be released. Addition~
ally, error aﬁalysis procedures may be initiated from the
allocator.

o The process' "ready' list entry is removed and the digpatcher
is executed.

c. CPU control. Control of system CPUs by the SCU is
accomplished through the collective actions outlined above. These are sum-
marized here to emphasize the total impact of the SCU.

(1) CPU availability, The SCU makes CPU elements
available as a compulational resource through the accomplishment of switching
actions that bring an elementi on-line to a specific configuration.



{2) CPU resource allecation, Through the complementary
actions of dispatching and preempting CPUs according to an SCU executed allo-
cation algorithm, computatlional time is distributed among all compeling program
processes. ’

(3) CPU replacement. By accomphshmg the determination
of an element's topographical connections with other system elements, the SCU
can effect replacement with similar spares.

RE) R T sy re<defection and isolation. Through the
abilify to structure internally redundant system subsets and recognize notifica-
tion of disagreements wiih a majority, the SCU can separate transzent and
apparent hard failures and initiate corrective action.

2, SCU Architecture. The functional nature of the SCU must be exam-~
ined in greater detail before an optimal architecture can be specified. Very
little arithmetic capability seems necessary. This is indicated by the predom-
inantly logical nature of the tasks having to do with process and configuration
control. The dispatching funciion may or may not require arithmetic capabil-
ities depending on the details of the associated process selection aigorithm.

On the other hand, if the MEC specification is to be general enough to
satisfy a broad spectrum of mission profiles, it is clear that a high degree of
flexibility in the form of open-endedness is desirable. A rather open-ended
approach resulfs from postulating that the SCU will be implemented with a
general purpose computer such as the SUMC. As a baseline, the SUMC rep-
resents a strong departure point and is therefore assumed in this feport.

" In order to provide a tangible implementation basis, . the funclional
nature of the SCU is discussed below in sorhe detail by way of emphasizing
peculiarities, In particular, the action map is rough drawn, a summary of
Tunctions is given, basic instructions are specified, and a list of SUMC-
oriented specifications comprising an implementation framework are provided,
Table 14 gives a summary of the SCU characteristics derived from these
considerations.

a. Functional overview. Figure 33 depicts a functional diagram
of the SCU. The major data structures, located in local memory, are seen to
be the aclion map (AM)}, process control blocks (PCBs), and ready list (RL).
Tnputs to the control and timing function from a clock, CPUs, or TMR VDSCs
cause aclivalion of the Process Control, Configuration Control, or Faults

" funclions, The functions Insert, Remove, Digpatcher, Exit, Abort and Faults

can be invoked by the Process Conirol function and have to do with control of
soltware processes and allocation of CPU time, The Configuration Control
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TABLE 14

SCU SUMMARY

LOCAL MEMORY:

~Word Size (bits)
Cycle Time (nanoseconds)
Number of Words

SUMC/SCU:

Data/Register Path Width

Word Size (bits) of SPM

Cycle Time (nanoseconds) of SPM
Number of Words in SPM
Number of Words in TAROM
Word Size (bits) of JAROM

Bit Width of Seq. Cntrl. Unit
Number of Words in MROM

Word Size (bits) of MROM

18
500-1000
8192

16
16
50

64

512
50
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function, which handles swiiching of system elements, can be invoked either
by Faults or a CPU under program control. A suinmary of SCU functions
includes: '

Configuration Mapping,

Configuration Switching,

Configuration Status Reporting,

Process Dispatching (CPU Allocation),
Process Stale Evror Analysis and Recovery,
Process State Transition Monitoring,

Ready Ligt (Job Stack) Manipulation,
Adaptive Process Control, and

Adaptive Configuration Control.

9 ¢ QO @ @ O e 0 Q

. b. Action map structure. To support an estimate of LM size,
thls section describes a {easible structure for the aclion map. Figure 34 shows
how a record is maintained showing which processor plug position is connected
to each MI and MO bus. - In addition, the M and AP fields designate one memory
plug position and its connected access port. A main memory unit connector
bilock, as shown in figure 35, is used to record the comection (to a given bus)
of addifional MMUs. FEach (M, AP) pair serves to specify a unique connecior
block and the unique location within the block of another (M, AP) pair connected
to the same bus, Thus, the designator pairs form a chain linking together all
MMUs connected to a particular bus. Two connector blocks (one each for MI
and MO connections) are required for each MMU, The MMU is depicted as
having twelve (12) access ports, one for each of eight (8) CPUs and four (4)

ICPs,

Figure 36 conlains bus connection data for CPU/IOP and CPU/SCU;
connection is via the II/I0 and SI/SO buses, respectively. The (I, IP) pairs
sexve to link together multiple IOPs connected to a common bus, The scheme
is identical to that discussed above for MMUs and requires two (2) connector
blocks, as shown in figure 37, for each IOP,

Finally, figure 38 shows a possible daia structure for recording and
maintenance of VDSC connections when system operation is redundant,

The system action map is seen to require somewhat under thirly-two
(32) words (based on a 32 bit word) not including comnecior blocks. Asswumning
thirty-two (32) MMUs and four (4) I0Ps, and packing the blocks, approximate-
ly two hundred eighty (280) additional words are required. Although status
indicators (not shown) must also he maintained for all elements, these can be
packed into the unused space of the aclion map, Therefore, the tofal (32 bif
wide) space required for the AM is three hundred twelve (312) words. A six-
leen (16) bit wide space of six hundred tweniy-four (624) is adequate.
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PROCESSOR/MEMORY -5
MI MO
B U P M AP US U P M AP Us
0
1
2
3
4
5
8
!7 '
10
11
12
13
# Bits: 2 3 5 4 2 2 3 5 4 2
LEGEND

B Bus Number P Processor Position #
U Usage M Memory Position #
=00 Not Used (Good Spare) AP Access Port#

=01 Pis CPU MI Memory Input Bus
=10 P is IOP MO Memory Output Bus
=11 Not Good US TUnused Space

FIGURE 34

ACTION MAP CONNECTIONS FOR PROCESSOR/MMU
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# Bits:

M AP Access Port #

[o2 T I S WU O I S

FIGURE 35

MMU CONNEC TOR BLOCK



¢ CPU/IOP : ¢ PU/SCU———3
il IO SI SO -
BIG| C{I{Ip G| Cy I IR C |SP |G| C | 8P
0
1
2
3
4
5
$)
7 .
#Bitst 1 38 2 3 1 3 2 3 3 3 1 3 3
LEGEND
G Good Indicator IP IOP Access Port #
=0 Good II IOP Input Bus
=1 Not Good IC I0P Culput Bus
C CPU Position # SI  SCU Input Bus
I IOP Position # S0 SCU Qutput Bus
FIGURE 38

ACTION MAP CONNECTIONS FOR CPU/IOP AND CPU/SCU



GOT

I P Access Port #

0
1
2
3
4
5
6.
7
# Bits: 2 3

FIGURE 37

IOP CONNECTOR BLOCK
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l———PROC/MEM 3t CPU/IOP sle CPU/SCU )
MI MO I 10 s S0
BIVMI| VC | VMO | VC1 VI | VC | VIO | VC | V8L | VC { VSO | VC |US
0
1
2
3
4
5
G
7 .
10 ] Ii ] ! | I I i :
i § I ; i 1
11 | ; 1 | | | ; | :
12 ! ! ! ! : ! ! I !
H | | i ! 1
13 : ! : ! ! | ! t !
# Bitss 3 2 3 2 3 2 38 2 3 2 3 2 2
LEGEND
VMI VDSC MI Bus V80  VDSC 80O Bus
VMO VDSC MO Bus vC VDSC Channel
ViI VDSC II Bus =00 Not Connected
VIO VDEC 10 Bus =01
VSI VDSC SI Bus =10 } TMR Channel
=11
FIGURE 38

ACTION MAP CONNECTIONS FOR VDSCs



c. PCBs and ready list. In addition to the AM discussed
above, a process control block (PCB) is required in the SCU's local memory
for each MEC system process. Referring to figures 19 and 23, it is seen that
each PCB takes twenty-{ive (25) 32 bit words (including one word to link them
together)., The determination of the number of software processes requires
a knowledge of mission requirements,

Figure 39 depicts a flexible structure for the ready list (RL) where n
integral priority levels aré accommodated. Bach entry is comprised of com-
‘ponents for maintenance of a ring at each priority level, a sub-priority indica-
tor, and a pointer fo the associated PCB. This ready list structure can accom-
modate a relatively sophisticated dispatcher and may be considered, at three
(3) 32 bit words per entry, to be a liberal structure. The average number of
entries in the list is a random variable that is dependent on the mission and

cannot, therefore, be estimated without suitable simulation or queueing analysis,

d. Local memory. Based on the above discussion, an expres-
sion for the size of a 32 .bit LM is availahle as

LMgg = 812 + 25p + n + 3e +s/2, where
P = nurmnber of software processes,
n = number of priovity levels,

e = number of entries in RL, and

s, = number of software instructions.

As an example, assume p =30, n=10, e = 10; and s = 1.000. Thus,

L3y = 1602 (assuming 16 bit instructions), and
LMyg= 3204, ' . '

From this admittedly crude analysis it appears that provisions for an 8K 16 bit
LM are necessary for reasonable mission spectrum coverage,

] e. Scrateh pad memory (SPM). Because of the relatively small
LM word size compared to the number of words required, SPM will be required
for indexing lo access the data structures discussed above. Thirteen (13) bit
words would be adequate for this purpose but, since a 16 bit SPM would allow
LM and temporary data storage also, this greater width is preferred. See
figure 40 for a layout of the eight word SPM.

1. Instructions. The formats shown in{igure 41 are recom-
" mended for software instructions. These formats were derived {rom the basic
instruction repertoire given in table 15.

in
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Word

A

X1

X2

X3

<

PC

SCRATCH

=1 O U W N D

SCRATCH

FIGURE 40

Accumulator/Index 0
Index 1
Index 2
Index 3

Quotient

Program Counter

SCU SCRATCH PAD MEMORY

60T
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FORMAT 6 - 10
1 OP CODE L I, = Constant
6 2 8
X = Index register ID
2 OF CODE X 3 K = Index constant
6 2 3 2 X = Index register D
3 OP CODE X C W | C=CPUID
W = Counter
FIGURE 41

SCU INSTRUCTION FORMATS
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TABLE 15. SCU BASIC INSTRUCTIONS
OPERATION { ARGUMENTS | FORMAT | NOTATION MEANING
ENA L 1 L—A Enter A
SAR L 1 (A)p —L Store rightmost (10 bits of) A
ENQ L 1 L>Q Enter Q
SQR L 1 (@R —L Store rightmost @
J L 1 L~PC Jump
JR L 1 (PC) = L; L+1 —PC Jump Return
JI L 1 - (L) —PC Jump Indirect
ENX X, K 2 K —X Enter Index
XA X 2 Xy —A Index to A
AX X 2 (Ay —X A to Index
SAQ 1 (A) =@Q; (Q) —A Swap A and @
1A L 1 (A)+L —A Increase A
X X K 2 (X)+K —X Increase X -
L X, X 2 ( (X)+K ) —A Load A
S XK 2 (A) —(X)+K Store A
" AD X, K 2 ( 4K ) + (A) —A Add to A

' SU X, K 2 (A) - ( (X)+K) —A Subtract from A
M X, K 2 (A) X ((X)+K ) —AQ ) Multiply
D X, K 2 (AQ) = ( (XK ) ~A; R~Q Divide
OR X . 2 (XN(A) —A Or X with A
AND X 2 (X)/\(A) —A And X with A
EGCR X 2 (X)B(A) —A Exclusive - Or X with A
ML X, K 2- ( (X)+RIAQ@) —A Masked Load
SRA W 3 (A) x 27V —p Shift Right A end off
RA . W 3 Ay x 2% +(A) x27 W —a Rotate A Left (end around)
ST.AQ T 1 AQ) x 25~ 40 Shift Left AQ end off
RQ W 3 Q 2" +(Q x277" ~Q Rotate @ Left (end around)
SAE L 1 I (A) = L, Skip Skip A equal
SXZ XK 2 X =X, Skip . Skip X equal
oC cC, X, W 3 Output W words beginning at (X) to CPU C Qut to CPU
iC cC, X, W 3 Input W words beginning at (X) from CPU C In {rom CPU

-DC c 3 Dispatch CPU a Dispateh CPU
PC C 3 Preempt CPU C Preempt CPU

- 8C L 1 Signal CPU.with Command L Signal CPU
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D, Inpui/Output Processor (IOP)

The IOP frees the CPU from the p'rocedures recuired to accomplish
data transfers. The significance of IOPs is gshown in figure 1, Multi-Element
Configuration.

The 1I0Ps, then, initiate and monitor the following categories of data
transfers upon command of a CPU:

& CPU-peripheral device,
] Peripheral device-main memory, and
@ Peripheral device-peripheral device.

In the above a peripheral device is considered to be a device that is
connected to a DBT. This seclion outlines I0P operations, instructions, and
an architecture for the IOP,

1. 1/Q Operations. Since the IOP is dedicated solely to this purpose -
it is germane to permit operation on a polling basis. This will be a cooperative
venture between the IOP and the attached DBTs. Trade studies are required
to determine whether or not variable polling sequences are required. However,
whatever the sequence, the I0P will interrogate each DBT in turn for an I/0
demand or response. The device will respond either with an ACK, Reject, or
by transmitting the buffered message. Upon successiul receipt of the message,
the I0P will in turn reply to allow the dev1ce to clear its bulfer and accumulate
further data.

a. Data transfers. For CPU-perxipheral device bidirectional
transfer, which is considered to be a transfer using the Input Data Direct (ID)
and Output Data Direcl (OD) instructions to communicate with SPM, the [ollow-
ing events must occur:

o The IOP detects the request from the CPU by 1nterpretat10n
of the transmitted data.,

© If the request is an OD, the IOP initializes the peripheral
device by transmitting an appropriately encoded command.
The IOP then raises the POLL REQUEST signal to the CPU,
The CPU, affer recognition and service of the signal, out-
puts the first word from its PRR fo the access port of the
I0P. The IOP performs the appropriate reflormatting and
oulpuls the encoded message to the pervipheral device which
acknowledges receipt. If the CPU command requires notifica-
tion of a termination condition, the I0P inpuls status {rom the
DBT and then signals either successful complefion or a failure,



If the request is an ID, the IOP inputfs the information {rom
the device DBT bufier, assembles the word and signals the
CPU. After the CPU has polled the IOP, the data is.made
available on the access port for the appropriate CPU, which
can then input the word and signal successful complefion or
Tailure to the ICP.

For commmunication between peripheral devices and main memory, the
following factors must be accounted for:

@

operations monitoring of message and hardware stafus.

Upon detection of the request, the IOP activates the appropriate
data path between memory and the peripheral device,

For a read to memory operation the DBT device control buffer
is loaded with the device transfer address, the number of words
to transfer, and the destination address. Upon command of the
IOP, the device begins transmission. The IOP receives each
word, and executes the required fermatting operations. When
the word is assembled, the IOP requests a memory access.
When the memory word is written, the IOP indicates ready

for the next word, Termination can be invoked either from

the device ov from the I0OP. 7

For an output from memory to a device, the approximate
converse of the above operations takes place after initial- |
ization of the DBT/device control buffers. The IOP requests
access to memory and upon receipt of the word, changes the
data to data bus format and outpuls to the bus. Upon receipt

of transmission, the DBT performs any required reformatting
of the information info device-amenable format, and transfers
the buffered data o the device. Each fransmission is acknowl-
edged. Error and/or completion notification signals to the CPU
are generated upon termination by the IOP,

To initiate peripheral device to peripheral device transfer the
IOP commands a destination device to be ready to accept data
over a defined data path, and acknowledge completion of the
transfer. The source device is then commanded to transfer
a prescribed number of words.

b. Bus operations monitoring. The IOP must provide for bus

accumulated to provide a measure of system loading based on queue length,

Message statistics are

113
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In a similar way hardware status and activity monitoring must be
performed to permit possible reconfiguration in the event of device failure,

These status queues must be available io the CRPU in & terse but intel-
ligible format. Status information is fransmitted from the IOP to the CPU
upon demand. This collated information is based on raw status information
transmitied by the DBT to the IOP upon:

Demand,

Termination due to completion,
Termination due to {ailure, and
Termination upon command of the CPU.

® 0 & @

2. IOP Architecture, An overview of the IOP resulting {rom the
allocation of functions among the different hierarchies of subsystems involved
in data transfer is shown in figure 42, Overall Block Diagram of SUMC Imple-
mented as ah I/Q Processor (IOP). .

Although minimum modifications to the basic SUMC, including an
additional memory access port for format memory, are required to implement
the IOP, optimal performance will require restructuring of the micrologic in
the MROM and the addition of appropriate control and status lines between the
SUMC and the I/0 multiplexers, While Adder 2 is apparently not reguired for
the IOP, a substantial redesign of the SUMC is required to eliminate it, which
is beyond the scope of this report.

In order to delineate the IOP capab.ility required, the following topics
must be analysed: .

] IOP fo CPU communication,
o I0P program commands, and
o I0P Scratch Pad layout.

a. 1I0P to CPU communication, As illustrated in figure 43,
I0P State Diagram for CPU-IOP Dialog, the following considerations are
relevant: ’

o The dormant or OFF siale is exited by applying power to
the IOP, sending il to the IDLE siate.

©  Transition to the READY state is effected by a CPU
initialization signal.
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5 {
| ami | [ wme
‘ 7 N
/
MAIN FORMAT
SPM . cu MEMORY MEMORY
N /N I NN 7
' PRE ¢ %
ALU. >t MRy (MARL
- VAR
MOR
N
INPUT INPUT OUTPUT OUTPUT
MPXR MPXR MPXR MPXR
SUMCeg* CHANNELS SUMCs** CHANNELS
e e M
CPU CPU ' Channel Channel CPU CPU Chamnel Channel
o) 7 0 7. o) 7 0 7
* From PRR (16-31) of each CPU
#* To MPXB1 (16-31) of each CPU
FIGURE 42

OVERALL BLOCK DIAGRAM OF SUMC IMPLEMENTED AS AN IOP
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" FIGURE 43

IOP STATE DIAGRAM FOR CPU-IOP DIALOG



Signals utilized in the preceding discussion are shown in figure 21, GPU Control -

i the CPU desires to transmit information to the IO, it

" utilizes the Poll signal. This causes the IOP to enter the

ADDRESS RECEIVE state., Receiptof an address from the
CPU will cause the IOP to compare it with its own ID. Here
a match will cauge the IOP to enter the INPUT state and
transmission may proceed. Conversely a mismaich implies
that the CPU has a dialog with a different IOP. Therefore
the CPU BUSY marker {for the appropriale CPU must be set,

If the JOP must transmit to the CPU, the POLL REQUESTING
state is entered, alter the CPU becomes available, causing
the Poll Request signal to be output and a transition to the
READY stale invoked. The CPU ACK sgignal will cause the

. OUTPUT sizte to be convoked, in which information transfer

to the CPU can proceed.

The CPU EOM signal must reset the CPU BUSY signal in
each IOP to indicate CPU available.

The IOP may enter the ECO state from either the INPUT

. or QUTPUT states.

Successiul hlgher state terminations lead to the READY
state for further CPU commands.

Anomalies evidenced by a Reject sighal cause iransition
to a higher state ERROR. This state is presently not
defined,

Bus Communication Output Parameters.

b. IOP program commands (ECOs). D a similar manner to
PCOs additional ECOs are recommended to expand capability of baseline /8/.

Recommended ECOs are shown in table 16 as follows:

G

&

@

®

WRITE (Output to destination device) (WO},
READ (Input to destination device) (RI),
TRANSFER (Source to destination device) {XF),

TRANSFER IN COMMAND (Jump) (JU),

117
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TABLE 16. EXTERNALLY CONTROLLED OUTPUT INSTRUCTIONS (ECO)
MNEMONIC
~_CODE OPERANDS DESCRIPTION
WO Command The data path designated by the Command Packet is cstablished, Data transfer
Packet from the source to the deslination device is initiated.
(figure 44)
RI Command The denoted data path is established. Data transfer from destination device to
Packet source device is initiated.
XF Command A data path is established from source device to destination device. ‘The source
Packet device is commanded to transfer the number of words denoted in the Command
Packet,
Ju Address Contents of Address — PC, FETCH ECO.
HA - IOP enters idle state,
ACK CPUID An acknowledge signal is sent to the denoted CPU.
RJ CPUID An error signal is sent to the CPU.
PO CPUID A poll request signal is sent to the designated CPU.
LS R, N, Address N words of format buffer memory are loaded into SPM beginning at location R,

if N >k the instruction is skipped and the succeeding instruction executed, if
Nk the insiruction is executed and the succeeding instruction skipped where k
will be derived by future study.




MMU~Peripheral

16

0 23 6 7 11 12 13 14 15 16 31
[Read] Chan | | B 1 X ] Displacement |
.0 910 . 31
Nr of Words Device Address .
- .DBT | Freq | Internal
17.18 21 22
. 16
0 23 67 11 12 13 14 15 16 31
[Write] Chan | | B | x| Displacement |
0 910 31
Ny of Words (1024)] Device Address }
Peripheral-Peripheral
0 23 67 910 . 31
iXFR| Chan | ] Device Address (Source) j
0 9 10 31
| Nr Words | Device Address (Destination) ]

FIGURE 44

ECO COMMAND PACKETS

61T
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o  HALT (Halt) (HA),

¢  ACKNOWLEDGE (ACK),
"o REJECT (RJ),

¢  POLL REQUEST (PO),

e LOAD SCRATCHPAD (SPM) FROM MEMORY (LS)
and, in adds*icn to the ECOs,

e COMMAND FORMAT (Kernel for output to data bus).
c. IOP scratch pad layout. Based on the preceding discussions,

a storage requirements analysis for parameter storage is presented in figure 45,
I0P Scrateh Pad Memory Configuration.

Parameter sforage falls into three areas:

e Variables required fo support IOP operations; for
example, Program Counter, Index Regisiers, etc.

G| Variables concomitant with maintenance of hardware
status information, and

® Variables associated with message status and SUMC-
I0P-peripheral device communications,

Presently 256 words of SPM for an IOP appear adequate,
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*0 Registers and \/\

Accumulators
15 ' 159
18 Program Counter , . 160 | Channel Status Words"
17 BRLA
18 BREA : 167
19 Interrupt Structure 168 | Spare
Associated Variables
180
26 '181 | SUMC Direct
21 Spare Communication
. , 188
31 18% | Message Siatus
32 | DBT Status Words Information
252

* Note address shown as example only.

FIGURE 45

IOP SCRATCH PAD MEMORY CONFIGURATION FOR PARAMETER STORAGE
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