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LIST OF SYMBOLS

In the notation associated with this report, a number of
principles have been adhered to.

(a) The symbols &, B, C, D, E are usually matrix quantities
of dimensions (n x m) or (n x n).

(b) The symbols i, j, k, 1, my, n are usually constants.

(¢) The symbols U, V, W, X, ¥, % are usually vector
quantities of dimensions (ﬁ z 1),

(d) Lower case symbols are single quantities, while upper case
symbols usually represent arrays.

(e) Where possible, the normally-accepted nomenclature is used
to represent the gquantity.

(f) Where a symbol has more than one meaning, the meaning »

assigned to a particular section is indicated.

Wk kXK KRR Kk

£ the calibrated focal length of the camera
X
P x and y coordinates of an image point
Jp '
*o
x and y coordinates of the principal point
Yo
AX
image displacements
Ay

yii
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r

“

’

x and y image velocities

x and y instantaneous image velocities

"the exposure epoch

the attitude of the camera axis. The order of the

rotations is tertiary, secondary, primary, respectively

the rates of change of camera axis attitude

a vector of coordinates representing the photostation
X
X = 1Y

Z
- do

a vector of object space coordinates
X

X = |¥
ooz

P

a vector of velocity components of the photostation
v
v = |[vF (used in Chapter 2)
el
Z

the general three-dimensional rotation matrix

M = ReRyR, (used in Chapter 2, Appendices A, F)-



the ith row of the general rotation matrix M:
M, <
* i=1,2 3
the augmented rotation matrix Uged in Chapter 2,
N j :
N = Rka?nth&R&)AtRwRdmt Appendices 4, F

the ith row of the augmented rotation matrix N:

Ni .
i=1, 2, 3
ﬁi the derivative of the ith row of N with respect to at
“XH a vector norm
"A“ a matrix norm
M the Turing M number (used in Chapter 3)
N the Turing N number (used in Chapter 3)
H the Hadamard Condition number (used in Chapter 3)
P the Todd P number (used in Chapter 3)
=1
P the weight matrix P = z: (used in Chapter 4)
L
b
Xoo the approximate values of the parameters
Xa the adjusted values of the parameters
La the adjusted values of the ocbservations
Lb the observed values of the observations

ix



td =]

P

[» 37N

approximate values of the observations computed

through the model

"

a vector of residuals V = L, - L, (used in Chapter &)

b

Ly = I

a discrepancy vector €

i

a vector of Lagrange multipliers

partial differential matrix of function with respect

to observed guantities.

partial differential matrix of function with respect

to parameters

partial differential matrix of function with respect

to elements of exterior orientation

partial differential matrix of function with respect

to survey parameters

the correction vector to be applied to0 the approximate

values to obtain the adjusted values Xa = Xco + A

the correction vector for the elements of exterior

orientation
the correction vector for the survey parameters

the variance~covariance matrix



6 the ij element of the variance~covariance matrix

the general symbolic form of the réduced matrix
N + U=20
system
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1. INFRODUCTION

1.0 Scope and Objectives

Two principal types of camera are currently available to photo-
grammetrists. The first tyﬁe is, from a historical wviewpoint, the
ideal camera for a mapping phetogrammetrist, since it usually com-
bines low objective distortion characteristics with a high degree
of stability. That is, its laboratory calibration can be assumed
to apply under a wide range of conditions for an extendeq time
period. The classical cameras of this type are the Wild RC and
the Zeiss RMK series of aerial cameras.

The second type of camera is comparatively new to photogram-
metry. It is characterized by high image quality and inférmation
content, but not so stable geometry. The class is typifigd by
the panoramic and focal plane shutter cameras manufactured by
Itek and Hycon,

Unfortunately, current technology in the design and manufacture
of 1arge7fo¥mat camera systems is such that the two types of camera
are almost mutually exclusive, Consequently, while the first group
of cameras has been used almost exclusively for mapping purposes,
the second group has been used almost exclusively for photointer-
pretation tasks, ﬁeéently, this distinction has begun to bresk
down dramatically, with cameras from the second or non-metric group

1



being used more and more in small-scale‘metric tasks where the
amount of information content is paramount.

One of the first breaks in class distinction and use occurred
in the mid-sixties, when NASA chose a non-metric photo subsystem
to accomplish the metric task of mapping the Apéllo zone of the
moon. Unfortunately, at that time the geometric fidelify and
stability of non-metric cameras were incompletel& understood. This
resulted in data mis-matches and discrepancies for the lunar tri-
angulation.,

The general trend of previous work on non-metric cameras had
been directed towards a complete understanding of the optical qual-
ity of the resulting image and those factors which affected 1t.
There was now a need to also understand the geometric fidelity of
the image. This study therefore seeks to provide meaningful
answers to the following general problems which arise when non~
metric cameras are used for metriclwork.

(a) What is the effect of image motion and image motion compen-
sation on the location of the principal point?

(b} Is it possible to determine the corrections to the cali-
brated values of the coordinates (defining the location of the
principal point or the fiducial centre) in order to correct for the
image motion compensation?

(¢) What is the effect of the focal plane shutter on the dis-
tortion and interior geometry {(interior orientation parameters)?

(d) Can a lack of calibration information be overcome by dynam~

ic calibration procedures incorporated in the photographic mission?



In view of the relevance of these studies to the particular
needs of NASA, the Lunar Orbiter Photographic Subsystem will be
used to typify a non-metriec system.

Chapter 2 details a new mathematical model which takes into
consideration image motion and movement of the camera during
the expésure interval. The model offers a rigoroﬁs relationship
between the object space and the image space by incorporating into
the well-known collinearity conditions velocity terms for the ex-
posure station. The model is considered general since it is pos=-
sible to apply simplifying assumptions to obtain the presently-
accepted explanation for image motion. Unfortunately, these gains
in generality have been accompanied by increased complexity of the
model and consequently possible computational instability problems.

Chapter 3 is devoted to some of the problems faced in the solu-
tion of large systems of equations. The two principal problems
treated are computational stability and the economic solution of
such equations by non-iterative methods. The segment on computa-
tional stability introduces the concept of matrix and vector norms.
The concept is then developed, through perturbation theory into an
acceptable method for gauging the stability of a particular solu-
tion. The final half of the chapter'investigates a number of pos-
sible alternative methods for the solution of large matrix systems.

Chapter 4 is concerned with numerical testing of the model pro-
posed in Chapter 2, The tests are all made with simulated lunar
data for which true values of all parameters are known. The chap-

ter has three main subdivisions. The first details the method of



N
generating the simulated data. The second section discusses the
single photo resection tests, while the third section discusses the
general intersection problem. Particular attention is given in all
tests to the problem of computational stability and to the control
of this problem by the choice of the correct weight matrix of the
observed quantities.

Finally‘ChaQter 5 reviews and summarizes the work of Chapters -

2, 3 and 4 in terms of the four above-mentioned problems.

1.1 Historical Review

The Lunar Orbiter program was conceived primarily for the ac-
quisition of high-quality photographic data from those portions of
the lunar surface under consideration for the Apollo program,

Prior to the launching of Lunar Orbiter I, man's photographic
coverage .of the moon consisted of earth-based photography by tele-
scopes whose maximum resolution on the lunar surface was approxi-
mately 20 metresl. A detailed discussion on the limiting factors
for this type of coverage is given in the ACIC report hDepartment
of Defense 1966 Selenodetic Control Data"l. A very small amount
of additional coverage at greatgr resolution, but with very high
geometric distortion, was obtained from the. Ranger missiong. The
reduction of this material was accomplished almost exclusively by
photometric tecﬁniquesao

3

Table 1 summarizes the Lunar Orbiter missions”.



Table 1

Summary of Lunar Orbiter Missions

Lunar Orbit | Inclination to Perilune | Apolune Date of Quality of
Orbiter | Period | Equatorial Axis| Altitude | Altitude | Photography Photography
(hr) (deg) (kem) (km) Medium High
4 Resolution .Resolution
T 3.5 12 and 21 60 1850 August Acceptable Unusable
18-29, 1966 IMC failed
II 3.5 12 and 21 60 1850 November Good Good
18-25, 1966
I1I Z.5 1l2 and 21 60 1850 Februagy Excellent Excellent
15-23, 1967
IV 12 85 2700 6100 May Mediocre Excellent
11-26, 1967 to poor
v* 8.4 85 200 6000 August Excellent Excellent
8.5 85 100 6000 8~18, 1967 | Excellent Excellent
3.2 85 100 1300 Excellent Excellent

* The three values represent the

three conditions under which photography was obtained
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The success of Lunar Orbiters II and III in acquiring the prime
Apollo landing site data, coupled with the successful Surveyor
flights to the moon, caused a reevaluation of the Lunmar Orbiter IV
missién. Thus the task of extrapolating the point information of
the Surveyor missions and the forthcoming Apollo missions was to be
done with the aid of a full lunar coverage obtained by Lunar Orbit-

er IV,

1.2 The Lunar Orbiter Photographic Subsystem

The Lunar Orbiter Photographic Subsystem has been completely
des¢ribed by the Eastman Kodak Company#, gubcontractors to The
Boeing Company for the Lunar Orbiter program. In addition, specif-
ic parts of the Lunar Orbiter Photographic Subsystem have been de-
scribed and discussed in the scientific literature,‘e.g. Konecnys,
Kosofsky6, and Norman?; Despite this wealth of information, it is
appropriate to discuss here certain aspects of the system so that
a clear understanding of the research discussed in this reéort is
obtainéd.

The Lunar Orbiter Photographic Subsystem incorporated two op-
tical systems which imaged on the same 70 mm film, The 80 mm focal
length system, often referred to as the medium resolution system,
used a between-the-lens shutter system and a 55 x 65 mm format.
Image Motion Compensation (IMC) was possible in a single direction,
corresponding to the direection of movement of the focal plane shui-
ter in the 610 mm system., The magnitude of this compensation was

determined by a V/H sensor using an unimaged segment of the high



resolution imagery. A mechanical reduction linkage between the
platen of the 610 mm system, where the determined IMG was.applied,
and the platen of the 80 mm system provided IMC for the 80 mn
system. -

The interior orientation for the 80 mm system was determined °
by laboratory calibration technigues. The subcontractor for this
work was the Fairchild Camera Companyg. The calibration included
radial and tangential distortion components at discrete points
along each of the principal diagonals.

The 610 mm system, often referred to as the high resolution
system, used a focal plane shutter which traversed the short dimen~
sion of the 55 x 219 mm format. As previously indicated, IMC
could be applied only in the direction of motion of shutter. This
resulted in the IMC device remaining unactivated for tﬁe Lunar
Orbiter IV mission. Figure 1 illustrates the different configura-
tions controlling the applicability of IMC,

The camera was only partially calibrated by Brown9 due to .,
operational restrictions. Thus all missions were flown with non-
recoverable photographic systems in which both the decentering
distortion of the photographic system and one of the’qobrdinates
of the principal point (y) were unknown.

311 photography derived from the Lunar Orbiter spacecraft was
processed on board the spacecraft by the Kodak Bimat process. The
resulting image was electronically scanned and transmitted back to
earth where it was reassembled. TUnfortunately, the framelets suf-

fered distortion which can only be minimiged., The reduction and
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elimination of this type of distortion is a compa?atively new
problem in photogrammetry. Fortunately, a considerable effort is
being made into understanding the causes, effects and elimination
of this distortion, Interested readers are referred to the work
of Wonglo.

Throughout this report, it is assumed that the error sources

of this problem have been identified and therefore need not be

considered.



2. IMAGE MOTION AND IMAGE MOTION COMPENSATION

2.0 Introduction

In the late fifties and early sixties, considerable technical
advances were made in all classes and types of cameras. In par-
ticular a new type of camera, the reconnaissance camera, became
firmly established. BSince this camera stresées image quality over
geometric fidelity, it is the natural complement of the survey
camera which is geomeitrically stable but has relatively poor reso-
lution. The initial need for high image-quality systems was gen~
erated by military surveillance. Today, however, civilian needs
for such a system are also very great, especially if the possi-
bilities of extraterrestrial photogrammetry and photointerpreta-
tion are to be maximized.

Unfortunately, the operational requirements which necessitate
these high-resolution systems are not favorable to geometrie
photogrammetry, since the photostation cannot be-considered as a
unique point in space. This movement of the photostation causes
the image to blur. The amount of blur represents the magnitude
of image motion present during the exposure interval., This degra-
dation of the image cannot be tolerated and hence Image Motion
Compensation (IMC) has been incorporated into these systems. The

first detailed study of the degrading effects of image motion on

10



11
a photographic image was reported in 1955 by Wolfe and Lambertsll

There are three main methods of accomplishing .IMC. They are
as follows:

éa) Movement of the platen~film ascembly.

(b} Movement of the lens cone,

(¢} Use of the focal plane shutter,

Often method (c} is combined with {(a) or (b). Application of
method (&) or (b) destroys the interior geometry of the camera
as currenfly conceived, while method (¢) represents an 'infinite
nunber of photographs joined side by side from a continuously
changing photostation. For these reasons, systems .which employ
IMC have not been favored by mapping photogrammetrists. An ex-
ception is the recently developed Fairchild KC-6A camera.

The initial researchers in this new field of im;ge degradation
due to motion (Wolfe and Lambertsll, Trottla, Rosenaﬁls) were all
primarily concerned with the guality of the image without regard
to its geometric position. In 1963, Kawachi and Weinflat.'shllF
derived expressions for image velocities as functions of image
position, focal length and rotational velocities. The expressions
were not general but provided an acceptable method of deterpining
expected blur distances and hence degradation under certain given
conditions. The work of Kawachi and Weinflash was subsequently
published in Photogrammetric Engineering}s.

This article was preceded by a discussion of image motion
resulting from translations onlyl6. Subsequent %o these two

papers by Kawachi, there are no published investigations on the
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problems of image motion. Unfortunately, this could be due to
15

the following statement by Kawachi™ .

+s« An analytical derivation involving matrices was also
considered since a rotation matrix transforms the coordi=-
nates of a point in one system to its coordinates in a .
rotated coordinate system. It appears logical, there-
fore, that matrices can be applied to obitain the image
velocity, since the aircraft motions under consideration
are rotational., However the matrix approach is not appro-
priate for two reasons: (1) matrices do not describe the
actual movement of the image point (unless additional
transglational terms are introduced to account for the
changes in the radius vector), because the image remains
in the film plane and hence its motion is not equivalent
to holding the image point fixed and rotating the coor-
dinate system; and (2) the matrix approach is not simpler
than the geometrical approach but actually invelves more
equations, Multiplications of the matrices would show
this se e

A similar statement is to be found in the Faifchild Technical Memo
¥ote referenced above.

Unfortunately, the engineers and scientists in charge of the
Lunar Orbiter Missions chose a photographic system of the.recon-
raissance type for their mapping program. This decision was, in
part, influenced by the resolution of such systems. However, it
was to lead to a number of awkward problems. In particular, the
problem of image motion and its compensation has severely limited
the accuracy of the subsequent triangulations, since Kawachi's fore
mulae do not interconnect the object and image spaces. These for-
mulae are therefore not applicable fof direct incorporation into
the mathematical relationships between the two spaces.

After failing to adequately incorporate Kawachi's formulae
into the mgthematical model, it became apparent that é new approach

was needed. It was thus decided to investigate the feasibility of
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using the collinearity conditions, since these conditions describe

the existing relationships between object and image space systenms.

2.1 The Collinearity Condition Approach

The well-known collinearity condition is, briefly speaking, a
functional relation§hip between points in fthe object space and the
image space systems. A complete derivation of this relationship
may be found in most texts on photogrammetry, e.g. Manual of
Photogrammetryl7. The relationship is often written in a form
that is pertinent to the user's parﬁicular purpose. In this

work, it was desirable to express the collinearity condition in

the following form:

-i‘[Ml(Xp LX)/ Mpx - xo)]

»
§
"
I

(2.1)

e
'
e
1l

—f[Ma(XP - X)) /M - XO)]‘

That is, given the position and attitude of the camera, it is pos~-
sible to compute for every object space point a corresponding
image space point. There is no restriction as to what type of sur-

face the object space field must satisfy.

2.11 Avgmentation of the Collinearity Condition Relatiomship

Consider a moving photographic flatform over a stationary ob-
ject space field. Photograph 1 is taken at Xo = Xi and yields

image points x;, « Photograph 2 is taken at Xo = Xi and yields

1
P
image points xi, y§ for the same object space field Xp. The plat-

form is assumed to move with a three~dimensional velocity V. It



1k
is known,from the basic laws of mechanics that Xi - Xi = V.4t,

hence alternative expressions for xi, yi are:

2 _ 1 1
X, = ¥ = -f[Ml(XP - X - Vat) / M3(xp -X - VAt)] _
‘ v (262)
2 1
y2 - ¥g = -f[Ma(XP- xi - Uat) / My(X - X - Egtﬂ

The displacement of thé image due to the movement between the

two photostations may be computed as:

> 1 1 1
Ax = - %= -f.[Ml(x? - Xy - VAb) / My(X - X - mt)]
-f[MlQXP - / M (X - xi)]
’ { (2.3)
2 1 : 1 _
Ay = yp - yp = —f[Ma(Xp - Xi - Vat) / MB(XP - Xo thﬂ

1
I LACREE ol AR )

Expansion and simplification of equation set (2.3) yields the
following image displacements:

Ml[(xp - xi)Msv - (X - xii]At

Ax = f T 7
M3(XP - 30'7 vat)emj(xp - X)) .
‘ (3.4)
1o
N M, [(xp - Xi_}MEV - (X ;{xoi] At
My(x, - xi - VL) M (X - X )

Logically, image velocities due to translation of the photo-

station may be readily computed from the above expressions as

L Ax = &%
v o= AL and vy = 2%
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Similarly, it is possible to describe image changes due fo

changes in the attitude rates. It is recognized that

M= M2 = R«RéRw
M
3

Then, by virtue of the double angle formulae, it is possible to

define
Ny
N
Thus
V= R, keat)R( ¢+ &-At)R(w + &eat)
where = rate of change of k,

&
$

and w

rate of change of &, (See Appendix A)

rate of change of w,

Henée the general expressions for image space coordinates of a

moving system at any time with respect to a defined epoch,

At = 0 are:
%, - %, = —f[Nl(Xp - X, - VAY) / Na(X - X, - vat)]
(2.5
Yo = T = ~£[N (X - X - VEE) / Ny (X - X - vat)]

In the above derivations, the rate functions have been assumed to
be constant. FHowever, this is a mathematical simplicity that can
quickly be removed. .

By definition, image velocity is ip and iP and hence differ-

entiation of equation set (2.5) with respect to at yields the
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following instantaneous image v2locity expressions:

e
I

P 'f{[ﬁl(xp - X, - Vat) - N1V]°[N3(XP - X - vat)]
- [r}s(xp - X - Vat) - NBV]-[Nl x, - X, - Vat ]}

. [1\73(xp - X - vat)] -2

(2.6)
5y = -f{[Na(Xp - X - vat) - NEV]'[NB(XP - % - Vﬁt)]

- N - X -vat) - NV [N, (x - -Vt]}'

[B(Xp X, - Vat) 3][2(11 X, - VAt)
-[N (x -x -vat)]™
37p o

] le ' - < +
where Nl = 23 similarly for N2 and NB' (See Appendix-dL)

Equation sets (2.5) and (2.6) are completely general and
without restriction as to the initial orientation of the camera,
the form of the object space, the time interval,& t, over which
computations are to be considered, or the magnitudes of the im- -
pressed rates. They may thefefore be called "general' equations

for the context of this study.

2.2 Comparison of the General Theory with Kawachi's Theory

It can be demonstrgted numerically that under the same ini-
tial ccnditions similar vélues are obtained for the general theory
and the pertinent formulae of Kawachi. However, a stronger case
exists by virtue of the fact that it is possible to decompose

.15, 16

equation set (2.6) into the forms given by Kawachi . -This

decomposition is demonstrated in Arpendix B using specific
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examples.

Thus, equation set (2.6) appears to be the general equation
set for all forms and causes of image motlon for frame-type
cameras where the collinearity condition is the same as that
initially assumed. The eqguation set (2.6) must be modified for

panoramic photography, since equation set.(2.1) is not applicable.

2.3 Some Implications of the General Theory

Equation sets (2.5) and (2.6) were derived without any assump-
tions as to camera type {other than those satisfying the basic
equation set (2.1)) They are therefore applicable to between-the-
lens shutter systems as well as focal plane shuiter systems. In
the former case, every image point moves during the time interval,
At, that the shutter is open, whereas in the case of focal plane
shutters each segment may be viewed as an independent exposure
during which image blur may or ma& not cccur. If the exposure of
each strip is sufficiently short then no detectable image moticn
will be seen, although image distortion will be presené. This

distortion is fully explained by equation set (2.5)

2.31 The 80 mm System of Lunar Orbiter

The 8C mm system of Lunar Orbiter was a between-the~lens
shutter system with one component of IMC driven from a V/H sensor
designed to detect net forward velocity. Thus the film was ad-
vanced or retarded at the required rate to minimize image blur.

Variations in this rate have little meaning since it is a between-
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the-lens system. The net effect of IMC is to produce a stationary
photostation and consequently no photogrammetric reduction prob-

lems are envisaged except those resulting from data transmission

or from a lack of stability of the interior orientation elements.

2.32 The 610 mm System of:Lunar Orbiter

The 610 mm system_fér Lunar Orbiter had a focal plane shutter
ad justable for 3 exposure times (1/25, 1/50, and 1/100 sec.).
IMC could only be-applied in the direction of flight and was conm-
puted from an oan-board V/H sensor. Thus, the application of IMC
is not constant unless the V/H ratio is constant. The photograph
therefore suffers from two distortions:
(a) That due to the focal plane shutter and predicted by
equation set (2.5) if At of each segment from some epoch is known.
(b) That due to forward motion IMC. This could be removed
from the image coordinates on a summation gg;iﬁ by multiplying
the applied IMC rate by-Aﬁ%@%hg/&iﬁemggpgégfgom epoch to moment
of consideraticon.

In the case of Lumar. Orbiters I,.II, IIT and V, both (a) and
(b) type distortions are present, while for Lunar Orbitépj;ﬁ:ﬁﬁiy
type (a) distortioms ~a.z"e present. (Aci—ualr.:i;;g, somebllfnas_&:]iso
present dué to lack of IMC, Tﬁis is becau%g %hé”dirédﬁid§i5f
gppliable I¥MC was not in the direction of the net forward motion.)
That_is, for focal plane cameras in which IMC was not used,

equation set (2.5) fully describes the relationships- between the

object and image spaces. The important parameter is A%, which
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represents the gegment exposure time along the x~axis with respect
to some defined epoch, preferably defined as At = O when x_ = O.
A suitable method of obtaining At is available from the following
data:

(a) Exposure interval - controls blind slit width.

(b) Blind velocity and direction.
However as the blihd s1it width approaches the dimensions of the
format, then the focal plane shutter system becomes equivalent

to the between-the-lens shutter system.

2.t Some Experimental Resuits for Image Motion

Using equation set (2.6) a number of computer runs were made
simulating the 80 mm and 610 mm systems of the Lunar Orbiter pro-
gram, The results of some of these simulations have been collated
into Plates I and II; Plate I considers translational velocities
and their effects while Flate II ccnsiders the rotational veloc-
ities. Both studies are made using the assumption that the photo-
graphic system was initially vertical. Each plate has four major
sub-sections dealing with each system at two different flying
elevations, The sub-sections are composed of four separate graphs
which indicate the expected magnitudes of the x- and y-directed
image motion velocities for four important positions of the format.
Thease positions are as follows, top to bottom and left to right,

within each sub-section:

]

(a) XP 0, yp = max.

(b) X, = WAX, ¥, = maX, an extreme corner.
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(c) %y 0, ¥y = 0, center of format.

P
{d) x_ = max, yp = 0.

p

It is apparent from Plates I and II that not all image velocities
are plotted. 1t may be assumed that those not plotted are zero
or of such small magnitude that they can be considered as zero.

An analysis of Plates I and II readily shows that for rota=
tional velocities it is the focal length of the camera system
that is important, regardless of the scale of the photograph. In
the case of translational velocities, it is the scale of the photo-
graph that is important in determining the magnitude of the ex-
pected image veolcity. Unfortunately, long focal lengths are
normally used to increase photographic scale and hence bath effects

are present in the lunar Orbiter systems., It is alsoc most unlikely

that the image motion effects can be made to cancel each other,

2.5 Conclusions

Equation set (2.5) is therefore an adequate representation of
the processes controlling the functioning of both the 80 mm and
610 mm systems of Lunar Orbiter IV. Should photography from the
610 mm system of the other missions be considered for triangula-
" tion, then equation set (2,6) must also be considered. This
would be quite complex, unless some simplif&ing assumptions could
be made.

It is suspected from previous experiences that the velocity
,térms are hezvily correlated with their respective photostation

paraneters. If this correlation is of such a nature as to make
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the system "singular", then it will be necessary to apply con-
ditions on the velocity parameters in order fo obtain acceptable
solutions for the unknown parameters of equation set (2.5).

Equation set (2.6) fully describes the nature and magnitude
of any expected image motion due to translation and rotation of
the camera during the exposure interval. It therefore represents
two functional relatiopships which describe the nature of image
velocity in terms of the elements of interior and exterior

orientation.



3. HMATRIX THEORY

%.0 Introduction

Methods for solving systems of normal equations date from the
Gauss-Legendre era of the early nineteenth century, although the
solution of small sets of simultaneous equations wasialready well-
developed at that time. Thus, before the days of even the most
modest digital computer, algorithms for either inverting or solv=-
ing small- to medium-sized systems were well-known. Since the ad-
vent of the modern digital computer, the size of such systems has
continued to increase, offering a unigue field of endeavou£ for
some scientists.

Geodetic scientists, in their quest to accurately describe the
earth and her near neighbours, have consistently been in the fore-
front as users and developers of such s;stems. However,-such use
and development has seldom been tempered with an adequate numeri-
czl analysis of the problem.

In photogrammetry, the problem of inverting and/or scolving a
large system of equations resulting from a simultaneous, multi-
station triangulation is already formidable. The proposed augmen-
tation of the collinearity cog@itions places an even greater bur-
den on the algorithms and computing machinery in present use.

Furthermore, it has long been recognised that it is not normally

2k
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?ossible te simultaneocusly isolate both the camera constant, £,
and the elevation of the exposure station, Zo’ as these para-
meters are strongly correlated. This lack of separation can be
. shown by investigating the "condition" of the matrix.

In thig chapter, therefore, methods for detecting and over-

coming the problems of size and stability will be discussed.

3.01 Review of Matrix Inversion

18

Most texts on matrix algebra, e.g. Faddeev and Faddeeva ,
not only provide a rigorous explanation of the matrix inverse, but
also provide numerous algorithms for computing the same. Further-
more, program libraries such as the IBM Scientific Subroutine

Package19

already provide the photogrammetrist with the necessary
computer software for many of these algorithms, thereby greatly
reducing his work.,

However, once the core storage capacity of the computer is
exceeded, then the photogrammetrist must again address himself to
the problem of devising adequate computer software. Consider the
matrix system (A?‘anA) of normal equations. Classically, this
is a banded system. However, in the event of either A or 21-1
becoming full, then 2T 274 is full. The case where 53—1 is full

rather than block diagonal is especislly realistic when satellite

orbital data are used to constrain the photostation coordinates.




Table 2 lists some important references pertaining to the

solution of (AT =iayt, Figure 2 depicts diagrammatically the

form of the normal equation matrix,

Table 2

26

Reference List Pertaining to the Solution of High Order Inverses

Matrix Methed Name Reference
Type
1 Partitioned Regression* Brownzozal;
2 Triple Block Method* Snowden>®
2 Elassal's General Algorithm* E].zaLssa.la3
3 Triangularization Uotilaah, IBM19
4 Gauss-Jordan Berézin and
ZhidkovaB,
IBMY
5 Partitioning Faddéev and
' Faddeeéalg
6 Successive Partitioning Sﬁﬁwdenzz,
Berezin and
Zhidkov25

*These methods use the same fundamental concepts and

essentially differ only in name,
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Figure 2

Some Common Normal Equation TForms

¥ i i I
J XXEAXXX XX
xxx Banded Matrix, XXX Banded Matrix,
F XXX often solved by XXX often solved by
X XXX Partitioned XY Partitioned
X xXxx Regression. XXX Regression,
X XXX XXX Triple Block,
X 9.0 4 XXX or Elassal's
X XX XX Algorithm.
- - - -
XXXXAKAX Prosioor el
LXXLAXX Symmetric VS0 884 Full Matrix,
LXK Matrix, often LAXAEXXX often solved by
KXXXZLX solved by Tri- KXXAXHTL Triangulariza-
AKX angularization, AR tion, or Gauss-
AXX or Gauss~Jordan. | XXXXXXX Jordan.
iX XXEXXIXX
X XXXXXXKXK
o - o o
yoeosced AXAXKXRX
XKXMXXﬁX Partitioned XXXXXZX Positive Semi-
KxxExxx o Full Matrix XXXXXX | Definite Matrix,
XXXXXK | dllustrating XXXXX { often solved by
XXHLXXXX | Successive XXxX { Triangulariza-
XXEXXXXY | Partitioning XXX { tion, or Gauss-
XXﬁkXX@X Schene. XX Jordan.
XUKHKKKA o

It is recognized that Table 2 is not complete and that the
literature contains many other algorithms. One such algorithm
that appears to be growing in importance is that used to "border"
a matrix. This technique allows the use of the positive definite
character of the matrix to the stage where the matrix becomes

26)

positive semi-definite (see Needham
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3,02 Review of Solution Methods

As in the case of matrix inversion, a wealth of information
can already be found in standafd texts, e.g. Faddeev and
Faddeevala, and in the journals. Unfortunately, most methods of
solution depend on the normal equation matrix being positive
definite, % feature that is destroyed when constraints are added
t; the aysfem. However, these methods have usually proved to be
superior to inverse techniques in both time and stability.
Unfortunately, the variance-covariance matrix of the adjusted
parameters is not easily obtained.

A complete description of the following methods can be found

25

in either Faddeev and Faddeeva18 or Berezin and Zhidkov™s:
Gauss Elimination

. ) These methods are normally used on
Square Root Method

symmetric~ and full-type matrices,

Gauss-Seidel . .
) rather than on banded systems.
Relaxation

2.1 Vector and Matrix Norms

Since the concept of a vector norm is more easily envisaged
and understood than that of a matrix norm, it is considered
logical to develop the background for the n x 1 vector X before
considering the more general matrix A of siZe n x m.

The norm of a vector is defined as = real, non-negative
numper, expressed as "X" which represents, in some manner, the
size of the vector X. The following three manipulative rules are

important:
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"X“ 2 0 (“0” = 0, otherwise > Q)

lhexf] - wm-"xﬂ (3.1)
Iz« 2f < |5 ﬂw.

Consider the following special cases for the n x 1 vector X:

(a) n = 1. In this case the size of X is best expressed by
the modulus ]x[. However, it is not the only estimator.

(b) n = 2, There is now no single number that accurately
gives the size of such a vector. Some of the most logical and
significant estimators are:

[l = x| - ]x

ﬂxﬂ' ,x 2 + {x

1 2

4 7 ]
4 = mex [

n

7

(¢} n = 3. As the size of the vector increases, so does the
number of logical and significant estimators. Some of these es-

timators are as follows:

[ lel—+ lle,+ lxﬁl

X|‘ [[xd 2 + ‘xala + xBJa ]%
[|x113 A lx3|3]1/3

max ,xil
i=1,2,3

fl

_ I, ST/
G o
It

From these examples it is readily seen that a general defini-

tion, the Holder norﬁ27, is possibles

.. - [§§1|xi|k]l/k (3.2)
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The term Euclidean norm_is applied to the k = 2 norm, since
it represents the length in multidiménsional space from the point
to the coordinate origin.
From the H6lder norm and from the above examples, it may
readily.be deduced that the following ineéualities exist between

the norms:
[xl.< x|y < 7l
1= o < Iz < vmids

It is now considered pertinent to consider norms associated
with matrices and systems of linear equations. The basic alge-
braic rules which fellow are similar to those for vecter norms
(eguation set 3.1):

"A” >0 (Ilo” - 0, otherwiss»0)

ol = 1]
|+ o< [ < 2] G2
[ 5] < [ Il |2
ENENE

Faddeev and Faddeeva have shown that the following forms corres-
pond to the equivalent vector norms. Thus, if the second ncrm is
being used in vector work, then the associated second matrix norm

must be used for associated matrix work.

“4‘1 uix {E%i a

14
ol = <&

- a coluwmn nerm

i

i

max (A.),)i of the matrix ATA - AT must be Hermitian

1

- a Iow norm
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It is obvious that the computational labour involved in HA PY
the spectral norm, is immense. Therefore it has been common to
use the more easily computed Euclidean norm, which is generally

greater than the spectral norm by a factor of up to ¢m.

The Buclidean norm is

2]” (3.4)

n

”AHE ) [i_‘l ,El

The following identities hold for matrix norms:
”Allz s MIE < <[4,

42 < [l o]

Two very common matrix norms are defined as follows:

a

ij

1

M{a)

H

n ??§|aij] (3.5)

[}g ,a:.'_‘_jla}}é =</trace ATA (3.6)
ij

It is evident ' that the norm M(A) belongs to the k =eo class,

N(a)

while N(4) belongs to the k = 2 class. Some important relation-

ships between norms are now given:

M(4) € ”A < M(2)
M(A) £ uA‘ 1€ ﬁ(A)
M(a) ¢ ”A < M(4)

M(4) € N(4) € M(a)

N(a) £ []A||2 < N¢a)

HiH S B S B SR

w(a) < | A" < /1 N(4)



32

eI CON PV I S YV
s e |4 < 2
%{ A“a <Ay ¢ & Mz
i <l o}

"(I + c)’lu < 1—_]ﬂ-

nI - (I + c)"l’| €

The last two inequalities are proved in Appendix C.

%.2 Stability Indicators and Test Matrices

Classically, four guantities are used to express the computa-
tienal stability of a matrix system. These quantities are:

(a) The Turing'28 M and N numbers which are defined as:

M = %'-M(A) -M(A’l) (3.7
N = %cl@(ﬂ)-N(A-l) (3.8)
(b} The Todd29 P number, defined as:
max[k.l
i)
P = E’ETK‘:I ’ Xi of A (309)

(¢) The H numberl8 defined as:

y Ay of a%a (3.10)

It is well-known that these numbers tend to unity as the

guality of the matrix increases. The limiting czse occurs for
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orthogonal matrices in which at least P = H = 1. Unforturnately,
the upper limit is not bounded and therefore experience in
working with systems becomes an important part of the decision
process. Much of this experience is gained by experimenting with

test matrices.

3.21 Orthogonal Test Matrices

It is possible to construct orthogonal matrices of any de-
sired size for software testing. 1t is recognized that iﬁverses
cohputed via algorithms which ignore orthogonality should ex-
perience minimal roundoff errocr., This is due to the low magni=-
tude of the stability numbers. However, such matrices seldom
.occur in Geodetic Science. A useful test form is given by

Newman and ToddBO:

2 . iejem
A= (aij) where 24 =T '51n( -Eii—-)

and since A is orthogonal

Z2.22 I11l-Conditioned Test Matrices

Just as it was possible to construct mairices with highly
stable characteristics, it is also possible to construct matrices
with highly unstable characteristics. A finite segment of the

well-known Hilbert matrix and its variants have been shown to be

30, 31, 32_

highly unstable For instance, the P number associated

3.5 n

with these matrices is approximately e y where n is the order
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of the matrix. Thus, this class of matrices, while not repre-
sentative of the type of matrix normally encountered, offers the
possibility of compzrison between two given algorithms. The

form of this matrix is as follows:

1
A = (aij) where aij = T+5-1

i+ . .
then A™% = (b..) where b, = (-1) (n+1-l)1(2+3—1)!
9 7 egen [(-121 o)1) 2amadt ()

3.23 Some Tridiagonal Forms

Iridiagonal forms of the normal equation matrix do exist in
Geodetic Science~2. (For an example see Appendix D.) Further-
more, many tridiagonal forms have known eigenvalues and hence
known P numbers, in addition to an algebraic inverse. It is this
¢lass of matrices which should be used to investigate computer
software performance for geodetic applications. Gregory and
Karneth'list a number of suitable forms. Howevef, exXperience
has shown that the computational merits of a particular algorithm
are not evident up to an order of at leagt n = 75, The reason for
this 1s that the test matrices were positive definite and
possessed uniformly small elements which could be exactly repre-
sented. Under such conditions, many algorithms will yield
similar results,

e.g. for n = 70 and a tridiagonal ﬁatri§ given by

A = (aij) where aij = 24 1 = 3

it

a5 = 1y [1-3] =2

a5 = O [i-3] > 1
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0 n
f

-1 1 . .

then A~ = (bij) = E:i(cij where i3 iln-i+l), i = j
g = €y gup7k I>1
‘45 7 %5, d <

Four representative metheds yielded the following values for

byq .
Desk calculator 0.985 915 492 957 746 5
DSINV (IBM19) 0.985 915 492 957 748
DMINV (IBM19) 0.985 915 492 957 749

VERSOL (See Appendix.B) 0.985 915 492 957 748

The P number for this problem is approximately 1985. Thus.
it is seen thaty for this class and size of matrix, these inverse
subroutines yield results with minimal roundoff error, despite
the large P number.,
\

3,24 A Test Matrix

A large matrix (370 x 370) resulting from the adjustment of
gravity observations was available for testing. This matrix had
gravity differences for its basic data. Thus, while the matrix
was formed without any regard to a pattern, it could easily be
condensed into a variant of the tridiagonal matrix. This matrix
therefore became a convenient test matrix, as it was assumed to
be a more representative matrix than the theoretical tridisgonal
case due to the size of its elements as well as its order.

Since the matrix has an impressed condition, it was capable
of being reduced -into two variants.- Table 3 .showsvthé .stability:.

indicators for both variants. As mentioned earlier, ho definitive
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statements can be made regarding the quality of the matrix from
these indicators, since they possess no upper bound. However,
experience indicates that an acceptable solution to the inverse

problem was obtained.

Table 3%

Stability Indicators for the Test Matrix

Indicator |- Variant 1 . Variant 2
n = 369 n = 370
(no imposed condition) { (condition imposed)
M ~3,1x 10t ~ 9.2 x 10°
N > 3.4 x 10° > 1.2 x 10"
P L,2 x 104 5.5 x 106

3.3 Perturbation Theory

It was shown in Section 3.2 that the classical indicators are
of limited use since they have no supremum. For this reason,
other indicators of stability have been sought. A successful
method 5ased on the exact computation of a perturbed system is
due to Wilkinson35. The method seeks to place bounds on the per-
turgations of the system necessary to perform a computation, rather
than to follow the forward error propagation.

Consider the following matrix system:

X +Y¥=0 T (3.11)

assuming that A is square with a non-zero determinant.
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Then if A is perturbed by an amount E, X is perturbed by the
véctozgSXIsuch that the equation of the system becomes
(4 +E) (X+8X) =-Y = 2 (3.12)
or A(L +C) (X +8X) =2 , _ (3.13)
where AC = E, which implies that, since At exists, C = A1E.
;Alternaéively, “Cﬂ < 1 is a sufficient condition (See Appendix C).
Solving .for X yields
$x = (x+0) T atz o x
but from eguation (3.11) X = A%
Hence $X = [(I + C)"'1 -~I]X

Application of the norm theory to this expression yields

ls=| - l[(I s )™t - I]}{g < jfa+ ot x|

"Sx“ & [ﬂ(l’+ oyt +n E] u u , ':{;;

5X“ < 1+ “(I + C)-lu I [

BN =
But C = A E

Hence ||lel |22z " -lﬂ
“X“ 1-fla” EE 1-’]A'1

Jzl (3.14)

[

This last equation expresses, in terms of norms, the relative

change in a solution vector due to a perturbation in the original
matrix A, of size E. It must be stressed that the above expres=-
sion is an inequality and that only an upper bound has been deter=

mined. This bound could be in considerable error if

HA"lzﬂ < ”A“ll . ﬂEﬂ




38
It is importaﬁt to note that the condition. number is the

decisive quantity in determining an upper bound. Consider a con-

dition number defined as k o= !A“ ﬂ 1"
(note M = %-M(A) M) ana N =L N(A) «N(A™ 1y
and a relative perturbation § defined as § = %%%

Then the relative change can be expressed as

loxl - nﬁ-ln.nﬁu 'JIE'UN 1--|[A-1|.HA]I.%[H|_ =f”f1§? (3.15)

1]
Ordinarily 9 is small, but if k8> 1 due to large k,

then [$X] oo . This is critical in digital computers where
Ix

$is a fixed ratio. .

It is possible to extend this perturbation theoryz?-to include
perturbation on the constant vector Y. Thus the- pexrturbation
equation (3.12) becomes

(A + B) (X +9X) = (2%+52) ' (3.16)
Application of the above theory yields the following equivalent
expression to equation (3.14). Note IBZﬂ = "SY”

5] <)o ﬂllEl Izl L~ ko 3.7)

T

The most efficient method of estimating HSXH from a computa~
tional viewpoint is with the e norm. The sac;rifice's in accuracy
made with this norm can be determined, if desired, from the
identities of Section 3.1. However, thé physical significance of

this norm is more important. Thus equation (3.17) becomes
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Ilsxnmg "A—EH@‘.IEL'"X]& + ”A'lﬂm" ”SY”@ (3.18)

I O A BT

It is to be noted that the following definitions apply to
infinity norms which can be physically interpreted as row norms,
since the maximum element vector norm is a degenerate case of the

more general matrix row norm:

“Xﬂ = maxlx.[ - maximum element norm
oo 1
n
"A]l = max ( 2, lai.l) - row norm
co i §er!

The perturbation introduced in a digital computer when storing a
number is given by 1:2b where b is the number of bits in a word.
For the IBM 360/75 of The Ohio State University Instruction and

Research Computer Center (IRCC) the perturbation level is

aprroximately 1 part in 107

for single precision and 1 part in
10° for double precision. Thus, "EHqo and "SY"@ are governed by
the size of the elements of A and Y., For this discussion, it is
convenient to view the perturbations as decimals. This is the
situation which would exist if row and column normalization of the
system were performed prior to solution. It is also convenient to

use the double precision mode figures., Hence

_I[E”m = n+1071?

HSYﬂ = 10742
R
For the test matrix (Section 3.24), the following values of

ﬂAum and g}{ﬂw were obtained:
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1.2

=]
i

369, ”A“luw
370, [aH], = 4

Ix[_ = 200

fa
it

When these values are substituted into equation (3.18) together

with the values of“Eﬂ“,and HSYHD the following are obtained:
~10

it

369, | sx| = 10

n

-8

n

it

370, ﬂ%x“ ~ 10
This indicates that the solution vector is accurate to 10
significant figures for the n = 369 configuration and 8 signifi-
cant figures for the n = 370 configuration. It therefore appears
that the added condition did not strengthen the stability of the
mztrix. Moreover, the stability of the matrix is not a direct
function of the P, N, and M numbers when the matrix is of a high

order.

3.4 Matrix Refinement

This method, which is based on the control computation AA-l,
séeks to take an inverse which is known to possess roundoff
errors and refine it until these errors are no longer of any com=-
putational consequence. The dis¢repancy between AA~1 and T is
naturaily an indicator of the degree of stability, for the closer
AA“l is to I, the more stable is the computation. Consider the
following definition of the discrepancy matrix:

¢ =1 - Aat o (3.9

0 0
It is imrediately recognized that for A

0

approximation to A"l, then iCOI € k¥ <1l. The more easily com-~

to be an acceptable
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puted 1st and e order norms are most commonly used, although

Hotellin336

introduced the concept of refinement using N(4).
Faddeev and Faddeeva18 show that the following relationship
exists:

-1 -1
A=A (TsC

" ) (3.20)

-1
Hence, from equation (3.19),
C =1~ as"t
m m

Expanding Cm yields

C,=I-a (T+C )

m
=I-@-¢ JIT+c )
2 4 2B
=0Cpq =Cpp = 0 G
Heqce,
-1 -1 ot
AT =4 (1 - Cq ) (3.21)
2" -1 -1
and in the limit, as CO —> 0, A‘m —= A7,

This may be re-arranged to yield the following eguation on which
the computational algorithm has been built:

-1 -1 -1 -]
Ap =28 1 - Am--lAAm-l (3.22)

It is now desired "that a éiﬁgle numbeyr, rather than the dis-
crepancy matrix C, should indicate the quality of. the computations.
Thus, the concept of the norm must again be introduced.

Consider
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-1) %

< o - o)

and, in particular, ifm = 1, k = lcon

-1
D = ﬂ-Am_l(I - Cm

-1 2"
m

m
2 (3.23)
2 ﬂ

“Dlll < |2 oy (3.24)
1-k
The test matrix of Section 3.24 was subjectéd to this refine-
ment process. The initial and final values associated with the

test matrix are listed in Table 4. The matrix was subjected to

two refinement steps.

Table I .

Some Values for the Test Matrix Associated with Refinement

"Go[ o]

Initial Final Initial Final

Variant 1 | 4 x107 2 | 1x1070 f 2 x107%° |2 x107%°

10 8

n = 370

It is evident from Table & that only Variant 2 benefited
from the refinement process. That is, the refinement process
roundoff errors were themselves the limiting factor in the
369 x 359 case. However the 370 x 370 matrix, which was inverted
by using the bordering technique on row 370, did respond to re-

finement, This response was due to the fact that the bordering
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algorithm produced roundoff errors in excess of those restricting
the refinement process.

A number of test examples of small to moderate order were
tested, including finite segments of the Hilbert matrix. Results
from,these tests indicate that refinement is not possible for P
5, and that system instability occurs for P

levels greater than 1010.

levels in excess of 10

These fin@ings are consistent with those of WilkinsonBB, who
shows that inequalities of the following type exist. (Note: With
these inequalities, the quality of the initial approximation must
be carefully considered.) -

{(a) Refinement occurs provided

|+

where k¥ is the number of machine bits in a word.

< 2K lm <t
<o

(b) The gain in precision in binary bits per iteration, m, is

n2™% “A‘q\ < 2™
oo

{¢) Component error level for residuals is approximately

JE 207"
where ZJ is the maximum component of A-l.
(Fote: For first iteration, the level iss/2 times above.)

(&) Error level in solution given by

Y

(n}a 23—3.1{["A-1|L]:L
where i is the iteraticn.

Three examples illustrating these computations are listed in
Table 5. These computations are pertinemt to the IBM 360/75 of

56 16

IRCC, where k = 56, hence 27 = 7,6 x 107 and 2“56 = 1.3 x 10'17.



Table 5

Inequality Tests to Determine Possibility of Refinement

'Matrix “A_l“a, Refinemeﬁt Precision Component Solution
possible gain error error
for residuals 1=2
369 x 369" 1.2 a7, = 12 Yes Small " Small
XLy 2 1.3 x 208
Yes
370 x 370 100 ﬂA‘lﬂm = 100 Yes Small Small
2L 2 1.3 x 108°
Tes
10 x 10 3 x 1013 IAnllw = 3 x 1013 Small gain Significant Very great
Eilbert Kl = 9.6 x 1077 possible (0.03) 10°
segment Doubtful

T
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Table 5 indicates that any ingtability in the systems would
not become apparent until the gecond iteration if the initial
inverse choice were good, since the errors present are not of suf-
fiecient size to unduly perturb the inverse.

Lowever, when these errors are augmented with the larger
errors of ?he refinement process, then an inverse quickly ceases
to exist. When the. refinement errors are of moderate size,lor
comparable %o the roundoff error, cscillation takes place. Such
an oscillating system was observed for the n = 6 segment of the
H&lbert m;trix.

Unfortunately, this technique may be impractical except in
special circumstances, as central processing unit (CPU) time was
33 hinutes per iteration for the 370 x 370 matrix. This time
would certainly decrease with higher rates of information transfer
between the disk unit and the core. The rate of transfer used in
this problem was 312K bytes per second, Additionally, if a greater
core region was used, then fewer calls to the IBCOM routines
would also reduce CPU time., The present program required 16K
bytes of core for storing the associated instructions. The neces-—
sary four work vectors require additional space which in this case
amounted to 16K bytes. This space is determined by the order of
the matrix.

The method could be useful in extending the core range of the
machine, since it is theoretically possible to obtain a single
precision inverse of limited gquality, and thence to refine it to

the desired level. However, care must be exercised to ensure that
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the inverse is acceptable.

The program for accomplishing this work is listed in Appendix

3.5 Reinforcement

The principle of reinforcement is that the matrix A is con-

sidered as the last term of the following sequence:

AO = Ig Al, Aa e Ak-’l, A.k ‘e A = A

7
That is, matrix Ak is obtained by replacing the kth row of Ak-l

with the kth row of Ak, thereby building up the desired mairix

wnich at this juncture is unspecified.

The following derivation is due to Faddeev and Faddeeval8

Consider the matrix A te be non-singular and with known inverse,

and consider the colump vectors U and V defined such that

ul ulvl ulV2 s e s ulvn 1
UV = u, [Vl' Vo e vn]‘= u,vy uav2 sre UV (3.25)
Lun j Lunvl unV’2 PR unvn l

Clearly, UV has rank 1, since every row of equation (3.25) is a

linear combination of another row.

Then it has been shown by Dwyer and Waugh37 that for the

matrix
B = A + UV (3026)
7t o a7t - —— a7t (3.27)
1+Va U

-]
provided that 1 + VA "U £ 0
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where a
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That is, it is possible to find the inverse of B, given a matrix
A with known inverse which differs from B by a matrix of rank 1.
In particular, if the UV matrix is constructed as

R

[Vl 'VE s vk vaen Vn]

Ooesslt aesa O OO

then only the elements of the kth row are being changed.

Using these concepts, eguation (3.27) becomes

7l - a7t L d ak(va‘l) (3.28)
: 1+Vak :

. is the kth column of AL,

It is now reccgnised that VA_l is a row vector resulting from a

sumcation over a column. Hence, the following holds:

a, {Va.)
b, =a, - i (3.29)

J J (1+Vak)

1

where bs and a; are the jth columns of 2"t ana 37 respectively.

Finally, the series concept is added, which provides a known
inverse for A.

Thus, equation (3.29) becomes

(k-1) (-1)
RGNNSO NS (3.30)
j ]
1+Vbék-l)

which is the working algorithm for the solution of the inverse.

(k=-1)

It should be noted that the only B for which an inverse



48

is known is the identity matrix I. This matrix differs from the
given matrix, A, by n rows of the form (vl Vo ees Vi oees vn).
Hence, the kth vector of v's is the kth row of the given matrix,
with the excéptiop that éhe kth element must be zero to maintain
the desired linear relastionships. Thus,

v becomes Vk = (al a2 tese ak—l’o,ak-!-l, .o an)k

It therefore becomes necessary to pre-multiply A by Ea-type
elementary transformations to achieve unit diagonal terms to
satisfy the above conditions. This, in turn, necessitates post-
multiplic-stion of B by Eantype transformations to return the de-
sired inverse. It is alsc noted that the method applies specifi-‘
cally to positive definite forms, which is a considerable draw-
back.

A computer program utilizing the above method is given in
Appendix E. This program makes use of the disk storage and there-
fore may be used to invert any full positive definite matrix,
since only six vectors of the order of the matrix are needed to
accomplish the inversion.

Unfertunately, the method is very slow. Inversion of the
369 x 369 test matrix required 210 minutes of CPU time. Moreover,
the number of significant digits obtained, when compared to the
refined solution, was suéh that the proc;ss could be termed "un-
stable”. Only four significant digits were obtained. Thus, it
seems that until faster transfer rates can be realized together
with increased word bit size, this method must be passed over as

"2 mathematical curiosity.

2 G~
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3.6 Solution by the Square Root Method

" This standard method of obtainiﬁg a solution vector is very
stable for positive definite matrices and quité fé;t, computation-
aily, on éigital compu£ers. Furthermore, since it is essentially
a row process; ié is readily adaptable for unlimitéd size by inter-
locking the'auxiliary disk storage facility with‘the magnetic core.
It can be extended to positive semi~definite matrices by simply
defining A as a hermitian matrix, rather than as a real Qafrix.
Furthermore, this change of definition need not be invoked coméu-
tatiorally until the positive definite character of the matrix is
destroyed:

Consider the following matrix system:

AX +:Y =0
Then A can be‘triangulafized such that A = BBT
where B ié triangular.
Then solve B¢z = -Y by substitution for 2

and finally BTX

Z by substitution to determine X, the
solution vector.

In the above,

o i-1 > ¥
B = (bij) = la;; - jﬂ_bij (1% 1)
I -

= ) J (3 >4)
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The main difficulty in this efficient procedure is that the
variance-covariance matrix of the adjusted parameters is not de-
"termined. Thus, other methods of determining the inverse must be

undertaken.

5.7 The Monte Carlo Method

+se The Monte Carlo method may briefly be described as
the device of studying an artificial stochastic model of
a physical or mathematical process. The device is cer-
tainly not new. Moreover, the theory of stochastic proc-
esses has been a subject of study for quite some time,
and the novelty lies rather in the suggestion that where
an eguation ardising in a nonprobabilistic context demands
a numerical solution noi easily obtainsble by standard
numerical methods, there may exist a stochastic process
with distributions ¢r parameters which satisfy the equa-
tion, and it may actually be more efficient to construct
"a process and compute the statistics than to attempt to
use those standard méthods ... 38
Householder

The Monte Carloe methﬁd appears to offer a conveniént method
of overcoming the lack of an inverse when a solution method is
used. The theory and deéelopment of Oswa1d39 was c;nverted for
application to the IRCC system, but as yet suitable and consistent
resultg have not been obtained on medium scale test matrices. The
reasons for this‘are likely to be many, but the problem appears to
lie in the random number generator or its application.

At present, several thousand walks are required for 3 and &
digit accuracies, thus giving rise to fairly lengthy execution
times. A'reduction in calls to the random number generator and
better random numbers would materially aid in the solution of

these problems. However, for the moment, this task does not
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warrant further pursual, although it should not be forgotten.

An interesting aspect of the Monte Carlo method is that if
the-finite variance condition is fulfilled, as it m&st be for an
inverse to be obtained, then roundoff error plays an extremely
small part in the computational process. Rather, the limiting
factor appears to be the number of walks necessary to achieve a
desired level for the elements of the 'variance-covariance matrix.

In many cases, three significant digits would suffice.

3.8 Coneclusions

In summary, it is to be noted that the inversion methods in-
vestigated in this chapter do not appear to appreach the speed or
accuracy of those commonly used and mentioned in the review. How-
ever, this should not foreclose the possibility of further work on
this subject. In particular, methods for quickly and accurately
obtaining elements of the variance-covariance mairix associated
with a solution vector should receive attention. The Monte Carlo
method is but one suitzble method which may be able to yield
suitable results in wmoderate CPU times.

With regard to the problem of stability, it has been forcibly
pointed out that the classical indicators are df limited use and,
in general, it is fgr better to compute the norm of the solution
vector and to compare this norm with the required precision levels.
Should the precision of the solution be unacceptable, then refine-
ment may be attempited, if feasible, or ancother solution tried.

Alternatively, the computational stability of the matrix may be -
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improved by applying suitable constraints to the normal eguation
set. This may upset the positive definite nature of the matrix,
but this is of no great importance. Should the stability decrease,
then critical consideration should be given fo the desirability
and necessity for the constraint, and to the efficiency of the

computational process used.



4. NUMERICAL TESTING

L.0 Introduction

In Chapter 2 the augmented collinearity condition eguations
(2.5) were proposed. Chapter 3 developed a number of numerical
coﬁcepts and tests to provide a rigorous mathematical basis for
determining whether or not the collinearity conditions can be satis-
factorily augmented with additional parameters. It is therefore
the purposé of this chapter to link the previous two sections by
means of numérical tests as well as by a clear demonstration of
the advaﬁtages of the augmented system.

Two principal methods of testing are available to research
workers. The first method invelves testing with simulated data.
In essence, this method consists of mathematically generating ar-
tificial point data according to some defined réiétionships, then
using this data to test and check the new functions and associated
computer software. The resulting estimated parameters may be com-
pared against the true or known values of the parameters.

The second method uses real data derived from the observation
process. The parameters estimated in this way cannot be compared
against known standard values, since these do not exist. The ul-
timate object of the method is the determination of these unknown

parameters to within a given confidence interval. The smaller the

23
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given confidence interval, the more accurately is the unknown
parameter determined.

In general, the first method allows a greater variety of tests
to be made. However, there is always a small probability that the
simulated data conform to the proposed model, whereas the real
data are not represented by the proposed model. Thus model testing
is not complete without real data tests, even though tremendous
insight and understanding may be gained when simulated data are
used. Unfortunately, real data are often most difficult to obtain,
and even more difficult to implement initially. The Lunar Orbiter
IV mission is not an exception in these matters, as contractual
difficulties have delayed the furnishing of such real data. Thus
only simulated tests can be described in this report.

The tests to be described in this chapter fall into two cate-
gories. The first is concerned with single photo tests, while the
second section builds the single photo tests into a multiple photo

block.

4L.,1 Generating the Simulated Data

The well-known collinearity condition equations (2.1) have long
been recognised as the mathematical expressions by which object
space points are connected to image space points by way of the lens
nodal points. It was therefore natural to chocse these equations
as the basis on which the simulated data were generated.

The object space field was selected from the Department of
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Defense Selenodetic Control System 19661. It consisted of all
points between OON and 30°N and between lOOW and 10°E. These
points were then transformed into a right-handed X, Y, Z cartesian
system. The selected object space field roughly corresponds to
the area recorded on photographs numbered 109 and 102 of Lunar Or-
biter IV, Figure 3 illustrates the area-chosen and the linitsr
of the photographic coverage.

Photostation positions approximating the position of exposures
109 and 102 were computed in the X, Y, Z system, together with
attitudes in the omega, phi, kappa rotation system. It was there-
fore possible to compute the corresponding image coordinates for
each object point at each of the two assumed photostations for a
610 mm focal length system. Figure 4 illustrates the density
and location of image points for a photograph similar to photo
number 109. The same object space field was transformed into an
image space for slightly different photostations corresponding to
pseudo-velocities. Next, the image space was split into eleven
equal sections corresponding to a at time interval of 0.0l sec.
It was assumed that the focal plane shutter progressed from posi-
tive y to negative y at a rate of 1 m/séc. The positions of those
points which fell in a particular at interval were therefore com~
puted for the photostation corresponding to that pseudo-velocity
times at. The initial epoch, at = O, was assumed to occur when
the shutter crossed the midpoint of the image space. This is il-

lustrated in Figure L.
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FIGURE 3

LUNAR ORBITER v PHOTO INDEX

(MEAR sIDE)
WITH OUTLINE OF AREA USED IN

GENERATING THE SIMULATED DATA




FIGURE 4

TYPICAL SET OF SIMULATED DATA POINTS
ILLUSTRATING THE UNIFORM DISTRIBUTION
AND THE ELEVEN 0.01 SEC. EPOCHS INTO'
WHICH THE -PHOTOGRAPH WAS DIVIDED
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Thus an image space field with a corresponding object space
field was Eonstructed without resorting to the proposed moael,
although the concepts are similar. As is the case with such simu-
lated data, the determined parameters possessed true values against
which they could be testéd. The total number of points in the ob-
_Jject test area was L6, 32 of which are shown in Figure 4, The
exact number and location of points used varied from test to test,

depending on the particular requirements of the test.

4,2 8ingle Photo Tests - The Resection Problem

Usually space resection problems are concerned only with the
elements of exterior orientation. However, in the case of the
Lunar Orbiter missions where the coordinates of the principal point
must be bénsidered as unknown, it is necessary to include these
quantities amongst the unknown parameters or quantities to be ad-
justed. Fur%hermore, there is evidence to suggest that these quan-
tities are not fixed, unlike the case of frame cameras used in
conjunction with recoverable film, It is therefore convenient for
the purpoée of this study to consider the unknown coordinates of
theé principal point as part of the exterior orientation elements.

There are three principal subdivisions to the space resection
problem. These subdivisions are made according to the amount of

observational data that are available. They are as follows:-

Case (a), characterized by ~ observations on photopoints.
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Case (b), claracterized by

observations on photopoints.
- observations on elements of

exterior orientation.
[ 3

Case (c), characterized by - observations on photopoints.
- observations on elements of
exterior orientation.

- observations on survey points.

4,21 Case (a)

In accordance with the above description of this case, the
general mathematical system F(La,Xa) = 0 was chosen. This éxpres—
sion is linearized according to the usual Taylor series expansion
method to yield:

AV + BA+€ =0 (4.1)

In this case,

. .
Fip Tl ry
' 3%y Vg
A = = = I
F 13
‘iraa Fal |, .
L ° % ¥y |

Hence, (4.1) becomes
EE
V+BAo+e =0
The system is completely general for n points. Under such con-

ditions, the dimensions are as follows,
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E B
v + B =+ A + € =0 {(&.2)
(2n x 1) (2n x 6) (6 x 1) (2n x 1)

and the solution or correction vector is the well-known form

E Ep E -1 Ep
= -|B" P B B" P& (4.3)
E
The correction vector A is now added to the approximate value
vector Xoo and the process repeated until the correction vector is

small. A complete description of this elementary adiustment pro-

cedure is given by Richardus4o and Uotila24, among others.

k.22 Case (b)

h1,42 in 1959 and sub-

This case was first described by Brown
sequently fully detailed in 1964, There are two observation sets
with the 'same unknown parameters. These sets can be symbolically

written as follows:

i
@)

rl,x )
a 2
(&)

no
O

.2
a(tf,x,)

The first set of obse;vations results from plate observations and
uses the coilinearity conditions, equation set (2.5), as the mathe-
maticai function. The second equation s;t originates from obser-
vations on the eléments of exterior orientation. These observa-

tions are made to conform to the following-concept under minimum

variance:
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¥  -X.=0
ai ai
where Xai ig the adjusted or theoretical value of the parameter i,
Yai is the adjusted observation on the parameter i,

and i ig the parameter Xor Tos W b K eees

The solution of such a set of equations follows a well-defined
routine, commencing with the linearization of the two symbolic

matrix equations:

EE -
Alvl + BlA +El =0
EE (&.5)
A2V2 + B2A +62 =0
It is noted that by definition Al = I and A2 = I, and that
B
B2 = -I. Hence the observations can be represented by
V‘l + BlA +Gl =0 - 2n equations
B (h.6)
v, - A+€,=0 - 14 eguations

The minimum variance solution of these two equations is obtained
E .
by minimizing the variables Vl, V2 and A in the following function:

E E
1 Ve ¢V B Vs B) A +€;)

T - G i
¢=‘vlpv....vpv-2klcvl+ 1

T E
- 21\2(V2 -A +62) =0 &.7)

Differentiation with respect to the variables in (4.7) yields:
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Hence, the necessary information for a solution is as follows:

. B E .
V+B1£L+€l=0

V"A+€2=0

(4.8)
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This equation set can be simplified by substituting the first
lines into the last line from which.z\l and Xa have been removed by

substitution of lines 3% and 4. That is,

E E
v, == (B B +€)
E
V2 = -(-A+€2)

are substituted into
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which yields

ET E E E
BJ Pl(_ B, & -ei) + P2(- A +€2) =0

Simplification yields

En E E Ep
(B P. B +P2)A+BlPl€

1 P By €.=0

1 - 5%

E E E

T a1 B
or A = -(131 P, B+ Pa) (13l Plel - PZGZ) (4.9)

The corrections are applied and a new iteration commenced with
the updated approximate value vector, Xoo'
Uotila43 has suggested the following alternative computational

algorithm:

Lines 2 and 3 of (4.8) may be expressed as
E
A=V, +&,

~-1
v, =B )\1
Substitution of these into line 1 yields

5
-1
P] ,\1 + B (¥, +€a_) +€4 =0 (4.10)

Similarly, line 5 of (4.8) may be expressed .as
E

Ay = 331_‘ A

which can be substituted into line &4 to yield

Ep
PV, - Bl Ay = 0 (4.11)
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Regrouping equations (4.10) and (4.11) yields

r ] Eqor 1 r B N
Py B }‘1 - B &,-€
E .
T

-B -PZ V2 O J

The solution to this equation set in terms of V2 is as follows:

ET E E

v -(-p, -B- P B) LB (ge c.)
a[ 2111 11'12+C1]

Eq E -1 Bq E
-(Bl pl Bl + Pa) B1 Pl (13162 +€,

it

) (4.13)

This is normally further simplified by assuming that X_,, the
approximate value vector, equals Lb’ the observation vector.
Under such assumptions, equation (4.13) reduces to

Ep B -1 Egp
v, = -(131 P, B, + Pa) B P €, (4.24)

A new a:proximate value vector may be computed as X0°= Lb + VE'
the respective partials re-evaluated, and a new residual vector for
v, computed according to (4.13). This process is continued until

the residuals meet prescribed limits or become constant.

"L4,23 Case (c)
Case (c¢) is a further generalization of case (b). This gener-
‘alization is achieved by adding a third set of observations on the

object space points. Thus the system now becomes
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-F(Ll,x ) = ©
a a

615 x) =0 (4.15)
a a2 ]
3

H(La, xa)‘ =0

The last set of observations, which may be viewed as a further
set ;f conditicens, is extremely powerful, for now the object space
point, the lens point and the image point are free to move so that
the collinearity condition is fitted in a minimum variance manner
at three points.on the ray under consgideration. Since only two
points in space.afe necessary to- define a line, any additional
points along the iine do not contribute further information. How-
ever all observations are subject to.errors, and some observations
are more easily and more précisely obtained than ;thers. The in-
corporation of the additional information, by minimum variance
technigues, into a general model, allows the least precisely ob-
served quantities to be determined with a precision approaching
that of the quantities defining the line. &Since the most diffi-
cult and expensive observations are usually those associated with
the object space, it is possible to relax the precision require-
ments on these quantities by enforcing the collinearity condition

in this general manner,
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Linearization of equation set (4.15) yields:

EE 88
AV, + BpaA+BA+E, =0

1) 1
E .
A2V2 + B, A +€, =0 (4.16)
S
A5V5 + :33:.\. + e3 =0

which is readily simplified, by virtue of

A =T, 8, =TI, Ay = I, By = I, By = -I,
EE S8
£0 Vl + BA +BA+ el =0
B .
v, - & €, =0 (4.17)
s
V3 - A+ 63 =0

The solution of such a system of eguations is exactly anal-
gous to that discussed in Section 4.22 for case (b). It there-

fore suffices to write the solution as follows:

FET E , By S M e [, )

B'P,B+P,| B P B A B P €, - P, €,

........... l'rﬁﬂﬁu,-___- ———d Y e L ____}]=0

3 o, 3 ;gTPIS?:+P E 2o e, - p.e

L 1 1 1 | R { 171 37 3]
(4.18)

It is evident that as Py —» 0, then case (¢) is reduced to
case (b), and that as P, —» O further restrictions reduce case {(v)

to case (a).
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4 24 Numerical Results -

Since the commonly~used collinearity condition techmiques may
be applied to the numerical solytion of the theoretical models
discussed.in Section 4.23, it is not considered pertiﬁent'to pre;
sent ﬂere a detailed_discussion of the numerical methods. However,
unique features of these numerical solutions, e.g. the analytical

differentiation of the partials, may be found in Appendix F.

L.241 Case (a)

Two pfincipal ¢lasses of tests were performed in this case.
The first class .involved points where the exposure epoch differed
by a constant amount from the tracking epoch., It was assumed that
all points were exposed simultaneously by a camera system using a
between-the-lens type shutter system., The second class of teéts
involved points imaged at differing times corresponding to the
passage of a fﬁcal plane shutter across the image area.

It was éuickly recognised that while solutions can be obtained
with the P = 1 uﬁit weight concept, the guality of .these solutions
leaves much to be desired. In a class one test with unit weight,
an acceptable determination for the unknown parameters was obtained.
However the variance—cévariance matrix of the adjusted parameters-

2% for ”N_J'Jl o

Furthermore, the symmetric characteristics of this matrix had heen

had exceedingly large norms, of the order of 10

destroyed. The large value for the infinity norm can be directly

attributed to the fact that no row-column normalization was per-
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formed prior to inversion. When the correct weight matrix,

P = lO12 * I, was used, the order of the infinity norm was reduced
to 1012, while the symmetric characteristics of the variance-
covariance matrix were retained. By hppiying the correct weight
matrix, some degree of normalization is achieved, and this results
in better computational stability.

Class two tests all yielded very satisfactory determinations
of the unknown parameters. The quality of the determination was,
however, dependent on a number of factors. Of these, the most im-
ﬁor%ant was the knowledge of At for a point. As indicated pre-
viously, the image space was sectioned into eleven regions, each
of 8t = 0.01. This allowed an image smear of approximately 5
micrometers in x and 1 micrometer in y. However these values were
not considered unreasonable, since blind velocity was a nominal
1000 mm/sec, compared with 1200 mm/sec for Lunar Orbiter IV. The
quality of the determination increased as A£ for a point became
more refined, This refinement was achieved by reducing the slit
width, It therefo?e seems that increasing the exposure interval
by increasing the slit width is less desirable than reducing the
velocity of the blind, even though this will increase geometric
distortion., It was also found that the initial approximations to
the unknown parameters had to be reasonable, otherwise no conver-
gence occurred due to the non-linearity of the model.

The principal results of case (a) tests are summarized in

Table 6.



Summary of Case (a) Numerical Results

Table 6
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Parameter [ Simulated § Class 1 - Class 2
Values (Sum smear)
s
Principal X, (mm) 0.2000 0.1999 ‘ 0.1996
Point Yo (mm) 0,2000 0.1998 0.1997
J
Photostation X (m) 4320000. | 4320000, 4320000.
Position ¥ (m) -2opooo. -200000. ~200000.,
Z (m) 922000, 922000. 921999,
© Camera k (deg) O.E) 0. 0.
Attitude b (deg) 80.0 80. 80.
w (deg) 10.0 .10. 10.
Photostation |V, (m/sec) | 100.0 159. 97.‘
Velocities |V, (m/sec) | -100.0 -99. ~106,
v, (m/sec) | 2000. 2003, 2008,
Camera 1{ (0/560) 0.0 0. 0.
Attitude é (°/sec) | ©.0 0. 0.
Velocities w (°/sec) | 0.0 0. 0.
"N’JL[L,° 10t ~10%2
i v e
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4,242 Case (b)

This class of tests was concerned with the effects of weighting
the unknown parameters by observations on ithe parameters. It was
possible to test with a wide range of weights, both reasonable and
unreasonable,

2 -1

It is known from elementary adjustmént theory that P = mOZL )

. b

and under the assumption that mi = 1 and that

. Eillis diagonal, tpen'P is also diagonal with elements according

b
1 1
to P,, = =/ = === .
ii G;. 6;2

The use of reasonable weights greatly improved the stability
of the system, when compared to case {a). The results of an un-
reaéongble case are tabulated in Table 7, from-whicﬂ it is
réadily seen that excellent agreement betwegn the simulated values
and the adjusted values is possible. In the tabulated example, the
position of the principal point and the attitude of the camera can
be considered as known gquantities to which almost no correction
can be applied. It is most enlightening to compare the norms for
these severe cases with those for case (a) tests. However, due to
the number of variable% involved, it is too difficult to display
the reduction in size as a function of increased knowledge of the
unknown parameterg. It therefore must suffice to say that drama-
tic changes in stability occur when observations on some of the’

unknown parameters can be incorporated into the model.
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An Fxample of Case (b) Results
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] Precision Simulated Adjusted
Parameter | of Obser- |Weight| Values Values
vation
Plate x, (mm) 1072 10°
Coordinates Tp (mm) 1072 106
Principal X (mm) 0.001 106 0.2000 0.2000
Point Yo (mm) 0.001 106 0.2000 0.2000
Photostation| X (m) 3 1071 | 4320000, | 4320000.
Position Y (m) 3 107 | -200000. ~-200000.
Z (m) 3 107 | 922000. | “922000.
Camera KX (rza) 0,001 106 0.0 0.0
/
 Attitude ¢ (rad) 0.001 10° 80.0 80.0
w (rad) 0.001 106 10.0 10.0
Photostation | V_ (m/sec) | 10 1072 100, 100.
Velocities Vy {m/sec)i 10 lO'-2 1 -100. ~100.
' V, (n/sec) | 10 107 1 2000. 2000,
Camera k (rad/sec ¥ 0.01 lOLP 0.0 0.0
Attitude $ (rad/sec)| 0.01 10% 0.0 0.0
Velocities | @ (rad/sec)] 0.01 104 0.0 0.0
-1| 7
B l.o 10
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4.243% Case (c¢)

Tests on this case were done in conjunction with the multiple
photo tests, since n = 1 is a special case of the general n x m
photo block. The principal‘difference is that observations are
now available on all gquantities. As would be expected from the
previous discussion, good solutions with stable inverses are pos-
sible under a wide range of conditions. In particular, if the
welghts of the observed quantities are correctly entered then,
since the expected value of mi is 1, the variance-covariance matrix

of the adjusted quantities is approximately known. The upper bound

of the matrix norm "A_l co 021 be estimated to be the quantity
n.mgx(agi),'since correlation is s1q . Consequently, for this
case, the guality of the solution can be estimated prior to execu-
tion and, if Qarranted, precautions taken to ensure ihat an accep-

table solution is obtained.

The reader is referred to Section 4.3 for numerical data.

4,3 The n x m Photo Block -~ The Intersection Problem

The case of the intersection problem is built upon the single
photo resection problem. Associated with each photograph is a set
of observations on plate coordinates symbolically expressed as

FLY®, %) =0
a a

_..1b _
F(La , Xa) =0
. (4.19)
FL, x ) =0
a a
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which can be expressed as
1
The same concept can be extended to observations associated with

the elements of exterior orientation:

a(1®, x ) = 0
a a
a(12®, x ) = 0
a a
. (4.20)

»

e, ¥y=o0
a a

Again, this system can be simplified by using the matrix equation

2 .
E(La, xa) = p

Finally, the observations on the survey coordinates can be
expressed as
H(LB, X) =0 (&.21)
a a
Thus, the matrix system associated with the interseéction prob-

lem may be expressed as

1 .
D(La, xa) =0
2
E(LS, X ) =0 (4.22)
a a
3 .
H(La, xa) = 0

which corresponds to equation set (4.15) of Section 4.23. The
gsolution to equation set (4.15), namely (4.18), is therefore also
the solution to (4.22). However the sub-blocks are now built from

data associated with more than one photograph. It is therefore
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considered pertinent to restate the solution to equation set
(4.19) and then to discuss the composition of the sub-blocks in

this new context.

- . - - — = -
ET E i ET 3] E ET .
BP; B + P, E B P B A B Plel-PEG.a
——;'——n-----—-..-:----—-.----------.-- ————f - e e sm e e = 0
S E | S, S . 8 S
! - .
_ B" P, B | B P B+ Py A_ B P, €, - P;€,
(4.23)
E, E . . _
The segment B P1 B+ P2 is formed by augmenting equation set’

(4.19) 'with equation set (4.20). It is noted that the elements of
exterior orientation appear only in funétions concerned with a par-
ticular photo. That is, the differentials of elements of photo i
are 7610 éxcépt in photo i. The following matrix describes the
situatioﬁ for a twéiphoto case:

. E E
B

Bla . 1 . . 'Bl a + Paa ‘ [§)

(T4x2n) (2nx2n) (enxl4) (1h4x1h) ¢

E . - B

. T
0 ‘ B1b . Pl . Blb + P2b

(14x2n) (2nx2n) (gnx14) (Lhxil)

-

. 8. 8
The sub-element B™ P B + P_ is a square 3n x 3n matrix formed

1 3
by augmenting equation set (4,19) with (4.21). Unlike the exteri~-

or elements, ground points are not confined to imaging on a single
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photograph. Hence, under the assumption that the points are un-

correlated, the sub-element may be expressed as follows:

S S

T
B . Pl - P3 =
(3nx2n) (2nx2n) (2nx3n) (3nx3n)

- 1+ r g
PO .. B,
s 5
T ST
e e * e P =
[ Bla Paa °© Py Boal ¥ 73

ST 5 ST S

Bla Pia Big * Bip Pop Bap * o0 F3

E 5 S E
The sub-element B Pl B and its transpose B P1 B combine parts

of the previous two sub-elements. It is readily seen that the

EIII s
dimensions of B Pl B are

{(no. of photos times 14 x 2n) . (2n x 2n) . (2n x 3n)

and hence

gT P ~ 1
la "1 la
E S 8 E E s
T T iy T
B Pl B = (B Pl B)" = Blb Pl Blb

Either by expansion or by applying the above principles to the

U section of the normal eguation matrix, it may readily be deduced
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that thé following equations hold:

- 1
Ep _
Bla Plaela - Pzaeaa
o gT P €. -P.€
B P €y =P, &, = 10 1€ 10 T Tov €
o
gTPG - P& =}§T P, € +}83T‘P €.+ ... D€
161 " F3€ 5 =8, P1. €3, * Byp F1p€1p * - 3€ 3

" The strﬁcture of both the normal equation matrix and the con-
stant vector are unique under the special conditions of diagonal
weight matrices.. Ag-the size of the matrices increases, this
unique étructure‘must be exploited more and more in order that the
size of the probiem does not ou%strip the capabilities of the com=-
puting facilities.' In the numerical work associated with the
testing of this modei, sufficient core was available so that par-

titioning schemes were not necessary.

h,.3] Numerical Tests,

v The numerical tests associated with this section were per-
formed on a block of two photographs. The photographic data were
generated according té the method described in Section 4.1 for
poéitions and attitudes approximating Lunar Orbiter IV photographs
102 and 109. Tﬁe ground data and exterior orientation data neces-
;sary to accomplish the data generation process were then assumed

to be equivalent to the required observation parameters.
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The two photographs had a nominal 60% overlap with a total of

24 ground points appeaéing in the overlap area. For convenience,
it was .assumed that the variance~covariance matrices for the ob-

served quantities were diagonal in nature. Table 8 gives a typi=-
‘cal set of standard deviations associated with the observed guan-

tities.

Table 8

A Typical Set of Standard Deviations for Observed Quantities

Observed Standard
Parameter | Deviation (=)
Plate %y (mm) 0.001
Coordinates Vo (mm) 0.001
Survey Xp (m) 1000
Coordinates YP {(m) 1000
Zz_ (m) 1000
P ,
Principal Point X, (mm) 0.05
Position Yo (mm) 0.05
Camera X (m) 3
Station Y (m) 3
Z (m) 3
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Taple 8
(Continued)
Observed Standard
Parameter |Deviation (¥)
Canera * - (rad) 0.001
Attitude b (rad) 0.001 -
w (rag) 0.001
Camera v, (m/sec) 10
Velocity Vy (m/sec) 10
v, (n/sec) 10
Camera Attitude | % (rad/sec) 0.01
Rates é (rad/sec) 0.01
w (rad/sec) 0,01

In thg exampie giveﬁ in Tabie 8, the ?otation'e;emehts are
conside;ed very well-known. However, tests run with these values
relaxed yielded similar results. It should be noted that camera
attitude in the Apollo J missions will be well-known from the
coupled stellar_camera.

As mentioned éarliér? the most striking feature of these'tests
was thé_form éf.the‘reéulting variance-covariance matrix of ?heAadm
justed.quantities. f?he éarianqes of the adjusted quantities were‘

very similar to those used in the weighting matrices. This corres-
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fpondence between the variance-covariance matrix of the ad justed
quaﬁtities and that associated with the observed quan%ities allows
stability computations'or estimates to be made prior to-the solu-
tion of-the system. The correct egtimation of the precision of
the observationai‘brocess is therefore of great importance.
Consider the norm theéry of Chapter 3 aqd in particular

equation (3.18):

TN o 00 R 3 L MR
T I WP S

It is noted from Chapter 3 that l]E"°° = n.10"

(3.18)

15 and that

|[5Y"m = 1071 for the IRCC 360/75 in the double precision mode.
Then HAnlum = BN-l"m and an upper limit for "anna can be

_estimated as n.max(Gzi) where Gzi is ‘the variance of -an obser=

vation.
Similarly, "X"w = ”U”ca = mix(ui), hence 'the above equation
becomes:
=15 ) ‘ o "15
, n.mgx(qzi).n.lo .mgx(ui) + n.mgx( ii)'lo
i i. ‘i
lsx],, - —=2
oo T -15
upper limit . 1 - n.max(ﬁzi).n.lo

which 'yields:

2 «l5 ~15 o
? .10 .mngGEi).mgx(ui) + n.10 .mzx( ii)

1| sx :
upJLr J&Eit 1l - na.lo-ls.max(ézi)
) i
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‘In the tests associated with this chapter, the following condi-

‘tions applied:

n =100
nax(C> ) = 106
R 1
max{(u.) = 10
. a.
1
Hence,
sxll. - 10%.107%.10%.10% + 102.107%%,10°
[8Xlle = T 15 8
upper limit i-10 .10 .10
107 v 1077 L3
= ————--——_-5- R 0
1 - 10
ive.  [8x] =107

upper limit

This value applies to corrections to the survey coordinates-
and is of the.sgme order as their ;stimated standard deviaiions,
'iﬁd%cating that the adjustment procedure may not further improve
known values.

An analysis of “8X“°I> after adjustment reduced its value to

“s}("m % 10, which indicates the level of si:gné.ficancerf the
‘solution to be approximatelj 1l part in lOé. It should also he
noted that row, column normalization was nof performed on the nor=-
mél'eduaﬁionimaérix prior 'to inversion. This normalization should
be @one if the most representative norms are to be obtained.

In general, the probedure adopted required three iteratiomns to
converge to stable answers. The time for each iteration was 2

minutes 10 seconds for a total of twenty-four points. The greater
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part of the time was spent in performing the analytical differen-
tiation reqﬁired for the partial différentials. One test‘was:per-
formed to compage-the-time required to determine the partial by

numerical techniques. The following principles were applied:

aFl
Assume that ng Was required. .
37, (Fl)o +8 (F)o
Then o R
K S

where (Fl)o is Fl evaluated for assumed values of the param- -
eters. ‘

(Fl)o +5 is Fl evaluated for the assumed values of the param-
‘eters with a small delta increment added to the differential
parameter under investigation.

The numerical pfocedure was found to be an order of magnitude
faster th;n_the analytical differentiation and yielded the same
numerical values. However the numerical aé;eeﬁent is depehdent on
the & increment chosen. Tﬁis concept requi?es fur£her iﬁvestiga-
tion as it was not feasible to continue this investigation.-

In these block tests it was also noted #hat the coordinate
values of the principal peint did not seem to be as responsive to .
adjustment as they were in the single photo testé. This was in
pa;t overcome Sy using better estimatés than_héd been initially
-contemplated; That is, the variance was decreased fronm 10“2 to

3

2.5 x 1077 for observations on these parameters.
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In the numerical tests, it was determined that a practical |
limit of 3 iferations was necessary for the moderately perturbed
iest'data._ As the‘perturbations became large, it was. necessary
to complete more iterations to achieve the same level of precision.

‘ This level of precision, theoretically speaking, should have
been extremely high, as it ﬁaé assumed that T = L for these
* tésts. Hence, the residﬁals, V, are defined as V = L, - La = 0.
However, because of a number of factors, this will only be reached )
in the 1limit. The brincip%l factors affecting this condition are
as follows:

(a) fhe'augmgnted'collinearity-condition equations are non-
linear in nature. Thq susceptibility of "these équations to - this
non-linearity was indicated in Section 4.241.

(b} The u;eights assb;:'iated with the survey stations did not

- truly repreéent the situations since no randgm errors were im-
pressed’upon these values. Tﬁus, the convergence rate was slowed
dowﬁ’due to this incorrect weight. Ideally, welghts should accu-
fétély reflect the observational preéis;on.

(é))The ¥ céopdiﬁate of the survey coordinate data appeared to
1%g behind.both the X and % coordinates in reaching the 10 meter
residual level.

(d) The séébiiity‘level of the solution was approximately 1
part in 106, hence unit accuracy in the adjusted surﬁey positions
ié all that may be obtained.

Table 9 lists some typical values for tests associated with

this section of the work. ‘Since the precision of the adjusted
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Typical Values Associated with the n x m Photo Block
with Fully Observed Parameters

Approximate

. True Corrections
Parameter Value Value from first
iteration
x, (mm) 0.200 0.200 ’ 0.0095-
¥y, (mm) 0.225 0,240 -0.0149
X, (m) 4320000. 4219900, 108.1
¥ (m) -200000. -199990. -19.8
z; (m) 922000, | 921900. bz.b
Parameters w Céeg) 10. 9.9 0.10
Associated | $ .(deg) 80. 79.9 ' 0.10
- with K (deg) 0. 0.0 0.
Photostation- Vx (m/sec) 100. 90. 10,0
1 Vy (m/sec) -100. =95. -5.0
§z (m/sec) 2000, 1995. 5.0
w (%/sec) | 0. 0. 0.0
$ (°/sec) | 0. 0. 0.0
'ﬁ:(o/sec) 0. 0. 0.0
Parameters | x_ (mm) 0.200 0.200 0.00k45
Associated ¥, (mm) 0.225 0.240 fo.0085
with © [ X (m) 14320000, | 4319900. 114.6
Photostation Y (m) 200000. 199990. -1.5
2 z_ (m) 922000. 921900, 69.9
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Table 9
(Continued)
) True Approximate Corrections
Parameter Value Vaiue from first
iteration
w (deg) 10, 9.9 0.10
b (deg) 80. 79.9 0.10
Parameters % (deg) 0. b. 0.0
Associated |V (m/sec) |100. 90. 210.0
with vy (m/sec) {100. 95. 5.0
Photostation vz (m/sec) |2000. 1995. 5.0
2 @ (°/sec) |o. 0. 0.0
& (°/sec) |oO. 0. 0.0
% (°/sec) |oO. 0. 0.0
Survey X (m) 1731858.7 1731800. 61.6
Station 1 Y (m) 157282.2 157200, 46.9
Z (m) -152983.5 52900, 29.k4
Survey X (m) 1696658 .2 1696600., 40,2
Station 2 -_Y {m) iagoza.? 129000. 0.3
- z (m) 344260.9 344200, 63.4
Survey X (m) 17265722 1726500. 58.3
St‘at‘ion 3 Y (m) -106756.7 -106700. ~42.9
192865.9 192800.

. 2 (m)

k.5
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values after 3 iterations has already been mentioned, it was de-
cided to presen£ instead the corrections to be applied to the
approximate vélues on completion of the first iteration. Thus
the table illustrétes, in a limited manner, the convergence

characteristics of the solution,



5. SUMMARY

5.1 Conclusions

5.11 Principal Conclusions

The principal aim of the research presented in this report
was to obtain, if possible, answers to those questions which were
presented in the introductory section, Chapfer 1. (

However, before elaborating on the conclusions reached by the
adoption of the model presented in Chapter 2, it is‘appropriate to
mention briefly the pitfalls encountered in two abortive attempts
“to resolve the problems.

_Preliminary attempts to correct for image motion by using
Kawachi‘sl6 formulae were abandoned, as the expressions became
unmanageable if the cause of image moﬁion was not known. Work
then continued with the aim of reducing this unmanageability by
combining the individual corrections inte a single uniform model,
the existence of wﬁich had been intimated by KawachilG. Unfortu-
nately, this model could not be constructed. Consequently, the '
correction of image positions to a single uniform epoch corresgpond-
ing to a central projection failed.

- The second set of experiments involved some recently-published
monomorphic relationships by Dashu. These models -dineluded compensa-
tory terms for focal plane shutters and image motion. However, a ‘

86
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large number of conditions exist under which the equations become
singular. Testing of these equations indicated that these con-
ditions would need to be completely understood before they could
be successfully developed further.

In general, the collinearity condition equations do not exhib-
it singularity and, since they relate the object space to the
image space, it was decided to augmenit these equations to handle
a moving platform. The augmentation of the collinearity conditions
with velocity and epoch of exposure does not alter the definition
of the ﬁrincipal point which can be expressed as

s+e the point in a photograph or camera focal plane which

is chosen as the centre of the image for relating the geom-

etry of the image to the geometry of the object space. If

the camera is distortion-free so that the geometry of the
image is the same as that of a perspective projection of

the object, then the principal point is the foot of the per-

pendicular to the image plane from the centre of projection.

k5

National Mapping Council of Australia
Consequently, the position of the principal point remains as des-
cribed, since the perspective geometry gemains unaltered.

Image motion and image motion compensation do not alter the
calibration of the interior orientation elements of the camera, of
which the principal point is a component. However the resulting
imagery may be deformed, such that the mathematical relationshibs
between the image épace and the object space are destroyed. 1In
those instances when the product of exposure interval and image
velocity is such that the expected blur is well below tolerable
limits, the regular collinearity conditions can be used. However,

for focal plane shutter systems where the travel time of the shut-
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ter is considerably greater than the exposure interval, the aug-
mented collinearity conditions should be used. In the event of the
image motion being such that IMC needs to be applied, it is pos=-
sibie to correct the observed image coordinates. This correction
is obtained by multiplying the exposure epoch, 8t, by the rate at
which IMC was applied, then summing over the epochs.

With reference to the problem of incomplete calibration of the
photographic system, it seems reasonable to expect that Yo? the
unknown coordinate of the principal point, can be recovered dyname-
ically from the block adjustment of the photographs. Recovery of
this parameter is possible.due to the unique nature of both the
lunar surface and the photocoverage, resulting in very large vari-
ations in all three coordinates across the model. It is also due
in part to the mathematical model used, especially the incorpora-
tion of observations on the elements of exterior orientation.
However, there were also indications that the paramefer recovered
would be more exact if approximate values were first obtained by

single photo space resection procedures.

5,12 Minor Conc¢lusions

In addition to the solutions obtained for the main problem, a
number of important features were observed during the work des-
cribed above. They are as follows:

(a) The matrix norm theory appears to offer a stable method
with upper bounds for determining the expected and actual precision

of matrix solution methods. The conventional P, N or M numbers,
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on the other hand, have no supremum. The matrix norm theory ap~
pears to offer "pre-inversion" insight for those situations where
all pérameters nay be treated as observations; it also appears
feasible to extend this theory to include other models.

“(b) For large matrix syétems, solution methods are faster and
more_stable than inverse methods. Hoﬁever, the variance-covariance
matrix must be determined by secondary methods, such as the Monte.
Carlo method,

(c) Differentiation of complex analytical functions by numeri-
ca; methods is very much faster than evaluation through their as-
sociated analytical expressions. The accuracy of such a process

is dependent on the & increment chosen for the evaluation Process.

5.2 Recommendations

5.21 Recommendations Concerning Principal -Conclusions

The principal conclusions were drawn, in part, from numerical
tests using fictitious data. £t is therefore recommended that a
small real data test be performed so that the‘validity of the pro=-
posed model and the conclusions are confirmed. I%¥ is not recom=
mended that a full %riangulation with Lunar Orbiter photography be
attempted, since photography using recovered imagery will shortly
become available from the Apolle J missions. However, many of the
ideas expressed in this report are directly aﬁblicable to the

Apollo J missions and therefore warrant continued investigations.
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5.22 Recommendations Concerning Minor Conclusions

It is recognised that the conclusions presented in Section
5.12 are based on insufficient data sets. There is, therefore, a
need to increase the data base to ensure that the conclusions are
justified. In addition, continued research should be conducted
into the problems of stability and speed of execution, since the
size of matrix systems in practical use continues to grow.

It is therefore strongly recommended that theoretical and prac-
tical research continue in the following areas:

(a) Stability indicators.

(b) Stable and efficient solution techniques.

(¢) FEconomic formation of the necessary partials.

5.221 Recommendations on Stability Indicators

In view of the apparent success of the norm theory in indicat~
ing the stability characteristics of a fully-observed system, this
approach should continue to receive attention so that stability
indicators can be established for more general systems. In par-'
ticular, investigations should be made into the possibility of es-
tablishing stability parameters for soluti;ns obtained by non-

inverse methods, such as the square root method of Section 3.6.

5.222 Recommendations on Stable and Efficient Solution Technigues

In Chapter 3, a number of technigues for the solution of large
systems of equations were tested on the same large real systen.

Work of this nature must continue with all of the available algo~
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rithms so that a complete understanding of the peculiarities of
each algorithm can be obtained.

Recent d;velopments in the discipline of Numerical Analysis
iﬁdicate that it may soon be possible to accomplish much of this
analysis by algebraic techniques, as well as by computational. tech=-
niques.

" Thus, with continued theoretical and practical work, an order
for computational algorithms based on size of system, desired sta-
bilit& and economy may be established. This work must not be con-
sidered outéide the écofe of the Geodetic Scientist and left to the

more abstract Mathematician.

5.223 Recommendationé on the Economic Formation of Partials.

In this report, a single CPU time test was conducted on the
effiéiency of numerically evaluatiné the required partials. This
tést indicated that numerical evaluation could be achieved in 1/10
of tbe time required for analytical evaluation, without loss in
accuracy; It is'éherefore recommended that the well-known‘block
triangulgtion p?éc;dures using the collinearity conditions be re-
writtep using numerical evaluation of the partials, rather than
analytical evaluations. The procedures are readily adaptable for
different § increments and, using the appropriate statistical
methodg, the guality of the resulting solption may be compared
against that obtained tﬁrough an analytical evaluation of the par=-

tials.



APPENDIX A

THE ROTATION MATRIX

The well-known rotation matrix has many variants.

the following form is common in CGeodetic Sciences

cos* sink Of|cosd O -sind|ll 0
i.e:. M =| -sinx® cosk O - 0 1 0 0 cosw
O 0 1 sindé O cos¢|]|0 -sinw

which yields on expansion:.
cos ¢ cosk coswsink sinw sink
M= ~cos¢ sink COSW COBX sinw cosk

sing ~ sinw cosé¢ cosw cos¢

+ sinw sin$ cosk =~ cosw sind cos%k

- sinw sin¢ sink + cosw singd sinw

However

0
sinw
cosw

It is now proposed to write the rotation matrix as a sum of two

rotations o +[,J,

deee M= W= Rig, ga) B¢+ dat) B(we sat)

i-e- N=R«R7€At R¢ R‘bbtR R.

L wat

Proof that R(d+P y = RKRp

) cost sint O
Given that Rx = R‘k ={ -sin% cos% O
o o] 1
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and Rp = R*'At

then R‘*RP =

cos (% + Fat)

. —sir;'. (% + *at)

0

= R(‘K+’l€‘4t)

cos Kat sin Kat O

=| -sin kat cos B O

0 0 1
cosk cos KAt cos 4 sin €&t
~gin & sin %at +8in k¥ cos %at
-sinX cos %at -sin‘* sin Kat
-cosK sin Rat +c0s K cos kat

0 0

sin (x +%at)
cos (% + *at)

0

R(ac +@)

Similarly, it can be proved that

RoRep =

and

Ry R-.'mt

Rig+bat)

= Ru Lwat)

93

Hence, N may be written explicitly in the form given on the

following page, from which it is evident that the concept of N

is analdgous to that of the general rotation matrix M.



cos(d+dat)cos{r+xat)

—cos(¢+dat)sin(k+Kat)

sin(¢+dat)

cos{w+wat)sin(k+kat)

+sin{ew+dat)sin(d+dat)cos(x+Kat)

cos(w+wat)cos{%+%at)

~sin{wsoat)sin(b+at)sin(a+kat)

~sin(w+wat)cos($+dat)

‘sin(w+east)sin(k+%Kat)

~cos(wt+wat)sin(g+éat)cos(n+%at)
. i

gin{w+wat)cos (x+Kat)

+cos(wiwat)sin(é+dat)sin(x+xat)

cos(wraat)cos{d+dat)

46
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The rotation matrix can be differentiated readily either from
the basic elemental rules or via skew symmetric matrices, E,.
Computationally, the elemental method is superior.to the skew
symmetric method. However, algebraically the skew symmeiric idea

46

has many advantages (gsee Lucas ).

The following definitions should be noted for differentiation

by skew symmetric matrices:

dR
_3_43. -
T aw 1373 7 34 R5Ts
dR '
—2 .2 . _ L
— =% P,Ry = 3= RyP,
de -
> . Sy
=3 R = PR

ages

»
Hence, using skew symmeiric matrices, the N matrix can be

expressed as:

. ) o b}
N=2_PRRR +R -2 PRR +RR, 2 RP
dat 35ttt B dat 2%e™y * B5% éAtRll

kPBRBRaRl - ¢R3P2R2Rl 00 23321?1111

Table 10 lists the matrix components necessar& to evaluate
N by the skew symmetric method. The elemental expansion of N is

given on page 97.



Table 10

Some Principal Components of the Matrices N and N

oR

‘Rd. i Rb.‘At AL PO(
aat
- r ) ) - i ) i - . ™
'cos® sink O coz (%¥at) sin (Fat) O ~%sin (¥at) %Kcos (¥at) O 0 1 0
-sink cosk O -sin (%at) cos (#¥at) 0. ~fcos (%at) ~Ksin (Fat) Of|-1 0 'O
0 0 1] 0 0. -1 o 0 .offo oo
] 1T, - _ v ) ] . _ ) 7 "
cosd O -sind cos (Pat) .0 -sin’ (¢at) -psin {(¢2t} O ~fcos (¢at) 0 0 -1
o -1 O o 1 0 0 0 "0 0 0 0
sing © cos¢ sin (bat) 0  cos (éﬁﬁ) écos ($at) © -ésin (&Qt)] 1 0 QJ
- [ ' d 1
1 0 0 1 0 0 0 0 0 o 0 0
0 cogw sinw|]| 0 cos (9at) sin (wat) || O -ésin (@at) wcos (wat) || 0 0 1
L 0 ~sinw cosw 0 -sin (Wat) cos Ghntli 0 wcos {¢9t) —wsin (wat) I 0 -1 0]

o
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-d;sin (d+dot)cos(k+Kat)

-kcos(¢+¢ot)sin (ksfat)

¢ sin(4+éat) sin(k+Kat)

+koos(d+§at)cos(n+hat)

dcos(d+dot)

The N Matrix

-osin(w+wat)sin(rk+kat)
+Kcos(w+vat)cos (t:+16 at)
+bcos (;t-i-dmt Yein(d+¢at)cos{k+Kat)
+dsin(w+iat)cos(d+§at)cos(k+hot)
~-tsin{w+wat)sin(¢+4at)sin(k+Rat)
~agin(w+wat)cos (x+Kat)
~keos(widat)sin(tkat)
~acos({wrvat)sin($+d ot) sin (x +%at)
-¢sin(w+iat)cos(b+doat)sin (k+Kat)

~ksin (w+oat)sin (+dat)cos(f+Kat)

~woos (wivat) COS'(‘!"*‘&’ﬁt)

+psin(wraat)sin(+dat)

wcos(wrdat)sin (%+Kat)
+%s5in (widat)cos(wikat)
+Wsin (U+a'mt)sin({>:f-;}nt) cos(k+%kat)
-qiccs (we+wat)cos(§+éat)cos(n+xat)

+kcos(w+bat)sin($+dat)sin (x +Rat)

dcog(wsdat)cos (kvkat)
~ksin(w+wat)sin (‘k;'ﬁat)
~bsin(w+dat)sin(p+dat) sin (k+kat)
+dcos(wreat)cos (¢+¢at)sin (k+kat)
Kcos(v+sat)sin($+dat)cos(#+Rat)
~bsin(wrist)cos b+ at).

_écos (w+ﬂlht) Bin (¢+ éﬁt)
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APPENDIX B
TWO DECOMPOSITION EXAMPLES

The decomposition of equation set (2.6) to the specific forms

of .Kawachilu‘l5 is illustrated by the following two cases.

Case 1: Vertical vhotography, translation along flight direction

only
The following conditions apply:

1c=4>=w=0 L N=1
ﬁ:é:lb:O :.I&:I
v
VvV = Ox
0
At:O r
[ X X] v v
then % = -{{{[1 0 o]{[¥f - |¥| -[0®}-0) -2 00]fo .
7 Z 0 0
- A p o
F X] [ X v
[001] ¥l -1x] - |oX|-0l}) -
z z 0
iy 1,
[ x [ x [v v
[001]3{ . -Ox’o-[OOIJOX'
2|, 2], Lo 0
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.}{q -X- 'v" k
[1 0 o] ] -yl -|0o%f.0 .
Z Z 0
b-P © L = L
A 1 [v] v 2
[o 0 1] Tp -ty -1o*|o}
z % 0
| “lp o LTV

g [Cx) - x, - vz - 2) - (3 -3 )X - xo)]
5
)

Hence x. =
P (z_ -2
» 0

£V (2, - 2) LT S 1
. 2 = = h
) (zp - zo)

(2. -2
P [+]

The minus sign is a result of the equations being formulated
for the diapositive position with elevation up.
cf. Kawachi: ip = %?, h being defined as modulus h.

It is obvious that yp = 0 since N2 = N2 = [0 1 O], hence the

numerator of the function equals zero.

Case 2: Vertical photography, platform pitching (¢)

The following conditions apply:

k‘=¢=w=0 -..N‘z:[

K= W =0
§ 4o
V=0



then X
P

Now

Hence

100

1 4 XY
- -1 <[o o_ﬁlB](.aZrL -[EZEL - o) -[100]0p-
X] X
feealf, 119
X X |
<[ﬁ31 0 o]([ EL -[EL - o) - [o 0 1]-0
t B4 [ %] )
{10 cﬂ( g - g -0 .
A | “lp. L7do
| %] [ x| -2
{[o 0 1]( g - g - o)
‘ | “ip L “do
13 v from Appendix D.
iy =
-f ["é(zp' z,) (3 -2 - é(xp - X)) 0 (X - xoﬂ
) (zP - zo)2

. - _ 2
£z, -2 -y -n) . x) - 3)7] -

Js

(x_ - x )2
(2. - 2)
P o

P

b

- 7
o

)2
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X - X X_ - X
Now for vertical photography R Z° = 5 by virtue
f
of similar triangles.
fe + (x_ - xo)e ;
Hence x_ = - Sb
F £
f2 + x2 .
cf. Kawachi: ip = ¢

The y image velocity can be treated in a similar fashion.



APPENDIX C
MATRIX NORMS
It is required to prove the following thrze identities of
Section 3.1.
(a) Proof that (I + C) is non-singular if HC“ < 1.
Consider the eigenvalue equation CX = AX.

Applying the rules stated in Chapier 3 to each side of {he eigen-
value .eguation

x| < Tef -]
< el

Now, (I + C) non-singular implies

o ana ] - 2] o)

Hence, A

i

i=n
(I +C) = |i| (L+A) #£0
where Ai is the eigenvalue of matrix C
and if IA. |< "C" < 1, then A must lie between -1 +€& and 1 ~-€&,.
iz=n

where € is a small quantity. Hence, I l (1 +-) ) £ 0, which

implies I(I + C)I # 0, and therefore the statement

x| < el < 1 is vrue.

Using the previously stated identities, it is now mseful to
derive an inequality for the matrix C = A - B.

Consider 4] = fJa-3+3] < Ja -3} + "B"
then [a] - |B] <« fa - 3
el > 4] - [l
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Moreover, "A - B" = "B - A,' 3."3" - "A"
wa s [o-s] 5 | - |l
(b) Proor [[(1 + c)'1“- < —

1 - o]

Let @ = (1 + )%
Then. (I +C) « G =1 or I =G- (-1)CG

Taking norms in the prescribed manner,

Iz} = Jle - (-1)cef
1> el - | -ce|
1 » e - ||c“ - |6]

1> el - [2 - lel]

1
1 - cf

and hence UG“ = “(I + C)-l“ £

(e} Proot - a0 - l_ﬂg%gi

Let G =T - (I +0)7F

Then (I + C) » G =G + C& = G - (-1)C@G
and (I + C) « (T - (I + c)'l),z (I+¢C)=-I=C
Hence C =G - (~1)CG

Taking norms of both sides as prescribed,

leh > Jeb - e
> lel - e
> lef -+ [2 -l
and hence [G] = "I - (I + C)-l" £ el

1 - lef

QED -

QED

103



APPENDIX D
AN EXAMPLE OF A TRIDIAGONAL FORM IN GEODETIC SCIENCE
Consider the following difference network where station O is

known:

T -] - .24
Then the solution is given by . -(A"PA) 1 APL, Uotila .

Assuming P = I, then

[ 1 "5 6]
I 0 000 O
-1 1 0 0 0
< A = 0-1 1 0 °0
0 0-1 1 O
0 0 0«1 1°
b o
1-1.0 0 0] 2-1 00 o]
T 0 1-2 0 O -1 2-1 0 O T
A= O 01 -1 O 0-1 2 -1 0| = (A"IA) which is
0- 0 0 1 -1 0 0-1 2 -1 )
0 0 0 0 I 0 0 0-1 1 tridiagonal
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APPENDIX E
REFERENCED COMPUTER PROGRAMS

(FORTRAN IV)
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(2 T TR LR T PFEIET e 1 S PRI S P TR PP 2 3 o g e g e e e 2

s X knizizialializkziaialslatalalaiataln

THE REINFGRCEMENY METHCU OF INVERTING A MATRIX BY P.MORGAN JULY 157G

THIS IS A PETHCEC CF INVERTING LARGE MATRICES OUTSIDE THE CORE REGIEN.
THE OIRELT ACCESS FACILITY IS INVOKED TO HOLD THE NORMAL EQUATION
MATRIX AND ITS INVERSE.

REFERENCE FRCLCEEV AND FACDEEVA PP 173

THIS SUBRCUTINL IS NOT UNIVERSAL WITHOUT CHANGES TO THE NECESSARY .
INTEGER CONSTANTS.THIS COULU BE CFANGEC EF PARAMETER TRANSMISSION

VIA THE CALLING SECUENCE wAS ACCEPTABLE TO THE USER.

UNET 3 IS ASSUFED TO PAVE THE NORMALS WHILE UNIT 4 wWILL HAVE INVERSE
THE SUBRCUTINE HAS NO CALLING PARAMETERS AND DATA TRANSMISSION,WHERE
NECESSARY IS UNGER A VARIABLE FORMATs COUBLE PRECISION IS USED.

ALL STATEMENTS PRCCEEDED #Y A C/*/ CARD MUST BE MCDIFYIED 1O SUIT JLB.
K IS GRCER CF MAIRIX .THIS GOVERNS THE NUMBER OF RECURDS IN THE FILE
THERE BEING CNE RECORD PER ROW.

R AEBEXDRFXFEAREILRRRERRRARFLLEIRRTEEIFABERAGGRERRB LR A RS R UL ISR LLERER SRR LR

SUBRCUTINE LINVRT

Crx/

Crx/

C/x/

12

13

11

IFPLICIT REAL *8 {A-F,0-211}

DIFENSION BU(75)+VIT75)4B(75)4RHO{T7S5)+BSIT5)4H{T5) .
THE MUMBER OF ROWS AND/OR COLUMNS OF NGRMALS IS DEFINED
N=75

LCALL SCLOK1

THE FILES ARE CEFINED

OEFINE FILE 3(755150,U,NN)s4(75,15C,U,NN)

LOAD FILE & WITH A UNIT MATRIX

CC .11 I=1,A
UC 12 I2=1,N
AlI2) =0.CC
CCAT{NUE
ACI)  =l.CC
KRITE(4°T) {A[[4},14=1,N)
REAC(3'1)(2(14),14=1,N)
IF(I.LT.N) FING (37141)
W(I)=A(I)

DC 13 I4=1,K
ALT4)=AL14)/w(1)

WRITE(3T[) (A(14),14=1,4N)
COAT INUE :
CC 5C 110 = L,A
READ(3*110,ERR=1CGC) (V{I1L1}.110=1,N}
IF(IL0.LT.N) FINC [3°[10+1 }
VIILG) =0.L0
CC 55 115 = Leh



36

51

46
4%

52
85

53

61

60

5¢C

15

16

14

1ccc
100t
La62

9498

RHC(I15) = €.CO

UC 51 112 = 1,A
REAC(4*1124ERR=1001) (A{113},113=1,N}
IF{I12.LT.N}  FIND (4'112+1)
BlI12) = A(I1S)

COAT INGE i

IF(I1G.NELI15) GC TG 45

DG 46 112 =1,k

BS(I12) = B(I12)

CCATINUE

EC 92 112 =i,N

RHC(ILS5) =RHE{I15) +8(112)% V{[12)
CONTINUE

CCATENLE

RHCKPL = RFO{I10) + l.CO

BO 53 I17 =1,4

RHC{1171= RHCII17)/ RHOKP1

CCATINUE

DO 60 [20 =1,110
REAG{4"120,ERR=1002) {A(E18),[1B=1,N)
IF(120.L1.110) FIND (49120+1 )

DO 61 121 =1,N

AUI21) = AtI2E) - RFO{121)#85(120)

CONT £KUE

RRITE(47120) (A(I18},118=14N)

CCATINUE

TINE={RCLOKL(LE.))/60.0

WRITE(6,998) K10,TIVE

CONTLNUE

DG 14 I=i,k

READ(3'E) (ACLL5),F15=1,N)

IF ([.LT.N} FEND (3'1+1)

DO 15 [15=1,N

ALELS)=ALI15)%nf1)

WRITE(3'[} (AC{T115),115=1,N)
REAC(4*F) (A(I15),115=1,N}
IF{I.LT.N) FINC {4'(0+41)

DO 16 115=1,N

A{IL5)=ACEL51/W(1L5)

WRITE(4'1) (ACLL5),4115=1,R)

CCNTINGE

WRITE(6,+999}

RETURN,

hRITE(6,1010)}

CALL EXIT

WRITEL6,1011)

CALL EXIT

WRITE(6,1C12)

CALL EXIT

FURMAT (1X,"FUPLE NULMBER *,I3,' NCw EXECUTED. TOTAL EXECUTION TIKE
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http:IF(IIO.NE.lb

1 ELAPSEC In FINUTES IS '"+FiG.3 )
992 FORMAT {lh1.5X,?*NORMAL EXIT FRCHM LINVRT ACCOMPLISHED * )
1010 FLRMAT{1X, *PRCCRAMMERS ERROR MESSAGE: ERROR IN READING DIRECT ACCE
1SS CEVICE FUR V MATRIX.EXECUTION TERMINATED H* ¥k aFddyddppdnpiyg’
2/ 91X 12C1LE%Y /) .
1011 FCRFMAT{LA,*PRCGRANMMERS ERRGR MESSAGE: ERROR IN READING DIRECT ACCE
158 CEVICE FCR A MATRIX USED TO FCRM B MATRIX.EXECUTION TERMINATED®
2/ 41X512010L%),/)
1012 FCRMAT(1X,'PRCGRANMMLRS ERROR MESSAGE: ERROR IN REACING DIRECT ACCE
155 CEVICE FOR A MATR1X USED TO ACE CORRECTIONS TOLEXECUTION TERMI?
27 vl Xy -NATEC. "o 1E4(1H%), /)
RETURN
ENC
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(22 LR T F RSP L R P L R L b I R L P I R 2 s P R AR R S RS L 2 L L S

[aXgEnl [« EuinEaXaEalz Xzl lalnRalslaEnlaRel

i3

t1

MATRIX INVERSE EY REFINEMENT.P.MORGAN SEPTEMBER 1970

THIS [S A COUBLE PRECISICN SUBRGUTINE WITH 2 ENTRY PUINTS FOR REFINING
THE INVERSE LF A GIVEN MAFRIX AND [TS INVERSE.

THE FAIN JCL MUST PROVIDE IWG DISK WORK SPACES:UNKTS 1 .AND 2 . THESE
WURK SPACES SHCULEL BE SUCH THAT THE RECORD LENGTH EQUALS THE LENGTH
CF A RCW. ALL CATA TRANSMISSIUN IS ACCORDING TO THE VARIABLE FORMAT
RULES.

DISK UNITS 3 AND &4 +CLD THE GIVEN MATRIX AND ITS INVERSE ACCGRDING TC
RULES ESVABLISFLO FCR THE WORK SPACES.

K IS CRCER OF NATRIX

MAX IS5 MAXIMUM NUFEER CF ITTERATICNS

ACC IS ACCURACY LEVEL .

FRET IS A RETURN MESSAGE COBE: 0412

AESSSESB LRSI LA I A ARSI RS SR ARG E R RS TR AT AR TSRS E R AR e e AR E RS S AR R SRS IRE FEXK

SUBRCUTINE REFINE! NeMAX,ACC+MRET,NOP)
THIS ENTRY PGINT ALLOWS LCOPING wITHIN THE SUBROUTINE. DETAILED CUTPUT
AFTER EACH STAGE CF THE CCMPUTATIECNS.
NCTE*IF AGP=1 THE PRCGRAM SWITCHES TO EFFICIENT VERSION OF SUBROUTINE
INMPLICIT RLAL *8  |A~H,0~Z)
DIFENSION A{5)4B{S)C(5)iG(5)
REmIND 1
REWING 2
REWIND 3
REKIAND 4
IREP = 0
If (NCF.EC.1} GO TC 716
REWIND 4
REAL (4) B
REWIAND 4
Be = B{1)
NCCUNT = O
SCCUNT = NCOUNT + |
OO LY I=Ll.MN
REAC (3) A
CC 12 (1 =1.N
REAC (4) #
Ci{I1})=C.C0
UL 13 12 =1,M
CI{Il) = ci{ilr+0120%R(12)
CCATINUE
CCNTINLE
REWIMNG 4
WRITE{2) ¢
CONTINUE


http:C(II)=O.GO

110

REWIND 2
REWIND 3
REWIND 4
WRITEL6,701)

/01 FORFAT (LH1,'PROCUCT AG*,//)
BO TGO I=1,N
WRITE(6,101) I
READ (2) C

70€ WRITE(6,102) €
REWING 2
LG 15 I=1,N
REAC (2) C
DE 16 Il=1,N
C{I1) = - C{I1}

16 CORTINUE
C{I) = ClI)+1.C0
WRITE(L) €

15 CONTINLE

REWINE 1
REWIND 2
DO 17 I=L,N
REAG (1) C
WRITE {2) C
WRITE(8) C

17 CONTINULE
REWIAD 1
RERIND 2
REWIND 8
WR{TE(64/05)

705 FORMAT (1H1,*UNIT MATRIX ~ AD '4//}
0B 706 I=1.N
WRITE(6,101) I
RFAC (2} C

706 WRITE(6,102) C.
REWING 2
DC 21 I=1,K
READ (4) 6
0C 22 11=1,4N
C{I1)=0.C0
LC 26 12=1,N
REAC (2) C

26 Al12)=CiIL)
REWING 2.

DC 23 12=1.N

23 D{11)=C(I1)+BLI2)%AlL2)

22 COGNTINUE
WRITE-{1} C

21 LGNTINUE
RERIND 1
RERIND 2


http:D(II)=O.CO
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REWING 3
REWING 4
RRITEL6+709)
709 FCRMAT (1HI,'C#{I-AC) *).
PO 710 I=1,N
WRITE(&,101) I
REAC 1) C
71C wRITEL6,1002) C
REWING 1
D0 3C f=l,N
REAGC (1) C
READ (4) B
OC 31 Il= 1,N
B(El) sE(IL)+4C{I1}
31 CONTENUE -
WRITE(2) B
2C CCATIALE
REWING 1
REWIAE 2
REWIND 4
BC 32 I[=1,A
READ (2) C
WRITE(4) C
32 CCNTINLE
REWIND 1
REWING 2
REWINDG &
A REFINEMENT FAS KCW BEEN ACCOMPL [SHED
WRITF CUT TFL INVERSE
WR1TE (6+1C0J NCCUNT
DC.35 [ = L.N
WRITE (641C1) 1
REAC (4) 8§
WRITE(6,102 } {BUIE)sIl=1,N}
35 CCMTINUE
REWIAD 4
LF(MCCLNT.GTLMAX) GO TG 36
REMC [4) B
BBE = B(1)
RERING 4 .
IF { DABS{BB~BET).LT. CABS{BB*S.C~14)) GO TO 36
BE = pe!
6C TC 1
36 DC 4C 1 =1.N
Lil1) = C.[CG
REAL {81 &
BC 41 I1=1,N
D({) = CUL) + CABS(ACIL})
41 COMTIALE
4C LCATINLE
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REWIND 8

APBX = C(1)

B0 42 [ =1+N

1F { AMAXLLTLCUL)) amax= L)
42 CONTINLE ’

DL 43 [=L,.N
G{i) = 0.0G0
READ {4) A

DE 44 1=l
D{I} = C{1) + CABS{A(IL))}
44 CCATINUE
43 CUNTINUE
BMAX = C{1)
DC 45 I=1,N
IF ( BMAX.LT.CUE)} BMAX= D(I)
45 CONTINUE ] .
ACCUR =  BMAX%® AMAX¥AMAX/(1.DC-AMAX)
IF ( AMAX .6T. 1.CC ) GO 10 60C
IF ( ACCUR.GT. ACC ) GO TO 601
"WRITE{6,107) NCGUNT, ACCUR
FRET = ©
RETURN
601 WRITE(6,104) MAK,ACCUR,ACC
IREP <[REP+L :
IF{IREP.GE.2) GO TC 603
WRITE(6,105) :
6 TC 2
603 WRITE(64106)
MRET = 2
RETURN
60 WRITEL6,103)
MRET = 1
RETURN

ENTRY REFIN (NoFAX{ACC,MRET,NOP)
THIS IS A SINGLE ITTERATICN REFINEMENT WITHOUT INTERMEDIATE-RESULTS.
. ITS IS CCNSICERABLY MORE EFFICIENT.TIMEWISE, THAN THE GENERAL VERSICN.
71680 711 I=l.N
REAC(4) B
CC 712 I[1=1.N
REAC (3) &
Ctil)=C.5C
DC 713 [2=1,A
713 Ctil)=CUibl+alI2¥*8{12)
112 CCATINLE
REWIND 3
wRITEL2) C
711 CGATINUE
REWIND 2
REWIND 3


http:C(II)=C.DC
http:ACCUR.GT

REWIAD 4
DG 721 1=1,N
READ(4) B ’
GO 722 Il=1:N
DlI1)=C.LO
REAL(2) A
DO 723 12=1+N
723 D{11)=CLIL)+A(I2}%B{12}
722 CONTINLE
REWIND 2
WRITEL(L} O
721 COMTINUE

REWIND 1
REWING 2
REWIMNC 4
DO 730 1=i,N
READ (4) A
READ(L) B
DG 731 11=1.N
731 DUILY=A(1L)}+A(LL)-BLIL)
WRITE(2) C
T3C CONTINLE
REWIND 1
REWIAND 2
REWIND 4
£0 735 I=1,4N
READ (2) T
735 WRITE(4) C
REWIND 2
REWIND 4
MRET=5
RETURN

1CC FCRFAT (LHle//s1X,*THE REFENED [NVERSE MATRIX:ITTERATION NUMBERT,
Li3s/7 X7 {Lk%}/2/7) ~

101 FURNMAT (/75X "HCW NUMBER', [44 /45Xy V' ——————~ ——————— /)

102 FCRNMAT (1X45E25.16 )

L0O3 FORMAT (lhle//olXy'EXECUTION TERMINATING: REFINEMEAT NOT POSSIBLE.
1TRY A NEW FIRST QUESS', /21X, 73(LR-1)) .

104 FORWVAY (1lH1+//41X,"FATLEC TQ REACF DESIRED ACCURACY IN SPECIFIED I
LTTERATICNS ' ¢ LXs57(1P=1 2/ /2 SXy " ITTERATIONS SPECIFIED ='4[3+/+5X,s'C
2CHPUTEC ACCURACY =%,G1243:/+5X«'SPECIFIED ACCURACY =%y Gl2.34// )

LOS FCRNMAT {(//.9X+'REPEAT MOEE INVOKEC:ITTERATION COUNTER RESET TIC ZER
10.' l M

106 FURMAT (/745X *CONVERGENCE TOU SLCwiRE-EXAMIN SITUATICON'+/,S5X'EXEC
LUTICN TERMINATING.Y)

LO7 FCRMAT{ //,5X,*'SATISFACTCRY CONVERGENCE OBTAINED:*, F+5% 434 LH) -

Le//7 5%+ "NUMBER GF I[TTERATIONS MADE ',12,/+5Xs"ATTAINED ACCURACY WA
25 'y GL2.3 }
EMC
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s Yol x]

A NCN CESTRUCTIVE INVERSE SUBROUTINE ESPECIALLY SUITED TG POSTIVE
OEFINITE MATRICES. MAXIMUM SIZE GF THIS VERSION IS 1GO.

TVPLICIT REAL *8 (A-H.0-1}
DIFERSICN AlI,M)4BlI+4),P(100)

N=1-1
T Ml=b~1
Co1l J=i,1
DC 1 K=1,1
BlJsK) =A(J4K)
¥ ¥} 5 K= 1|I
OC 2 4= 1,¥I
P{J) = B(l.J45}/708(141)
Pi{F) = L1 CC JE{L:1)
DG 4 L =14N
pe 3 J =1'FI

B{LsJ} = B{L+14J41)~ BL+1,1)%P(J)
BI{Ly¥) =-Bil+ly L I¥P(M)

DG 5 J =L,¥
BlIsd} = P(J)
RETURN

ENC
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APPENDIX F
ANALYTICAL FORMATION COF THE B MATRIX

(a) Introduction

The most difficult task in photogrammetric adjustments is the
formation of the B matrix, more correctly termed the partial

matrix of the functions with respect to the unknown parameters.

o function
d parameter

i-e- B =

The mathematical functions under comsideration, equation set (2.5},
are conveniently condensed to the following form:

=F

X =x =T 1

P o

=id

) o) 2
where T = Nl(X - Xo - Veat)
vV = NZ(XP - Xo - Veist)
W= N_ (X =X = Veat
3( P o )
Then 331 = —f-W' ou - LAl . W"a
d parameter i é parameter oparameter
aFe - —f-W 3V -V AW W . w"a
dparameter i dparameter g parameter

for those cases where Xos Yoo and f can be considered known,
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Thus, the problem reduces to the formation of

3T, u }F,
d parameter and 3 parameter
where the parameters are:
camera attitudess Kk, d, w
attitude rate change: %, é. dJ‘
photostation: Xo’ Yo, Zo

and photostation velocities: Vk, V&, Vz

(b) The Partials for the Translational and Linear Velocity Com=-

ponents of the Photostation

Differentiation of U = Nl(XP - X - Vat) yields:

1] [ -1 ]
ol ayu _ L
.E:_X- Nl Q = -nll 'S-.'V.—" = Nl Olat = <At nll
.0 \ 0 x 0
0] ’ [ o1
au - 3T _
il Nl -1 2 fnla v O© Nl -1 jat = -4t nla
o 0] h's 0
F o) \ " 0]
3u 1] .
= = == e = O - - .
35 Nl 0 n13 3V Nl at at n13
o] -lJ z =1 .
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Differentiation of .V = N (xp - X = Vat) yields

2

av 1] dY =17
= = N 0] = =n e = N Oj&t = =aten
3T, T 2l 21 3V 2] o 21
a 01 a 3 O-!

v v :
o= N j=1l] = -n — N_|{=1]8&t = =Aten
3 21 22 v, T 2T 22

" 0] ol

v AV
o= = N . ]=1]| = =n e = N O{at = =Aten
3%, 2175 23 W, T 2|, 23

Differentiation of W = NE(X - X - Vedt) yields
My _-%1 = -n : Wy -—é. at = -aten
3% 3_ 0| 31 W_ 773, 31

- o' - 04
aw oW
aW o o onlaals o o = N_|~1|at = -aten
A Wy T 3% 52
o] -
W AW
— = N 0= -n = N Qiat = -aten
3%, 73| 117 33 W, " 3| ) 33

Then, following the rules of differentiation established at the

beginning of this appendix,

if; e S # 5 i{é L en, v ny, D
X_ W 11 * B3 W X, T W ar T n W
JF AF

1 _ =T Lif _2_=f v
3T T W (wny, + ngy 3p) 3T, W (naz*%aw)
ii = -.-:E {-n + I E) -—aFa i (-n + n E)
32 T W 13 = "33 W 2~ W 23 35 W

o
Q
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oF, 1 U oF, | zbtef vy
3V. - W 11 * 83 F Y 2 Boy * B3y 5t
3F AF
1 2
= Abege = Aboo——
5X = O3
2 T S G bFa A S ES
SV, W 12 7 B2 i WoTTW Top * Bz i
—_ A .?i - Atca_F.|—2
3, 3T,
'aFl - =btf (-n,, + n H) AFE o Bt E (-t + n V)
évz W 13 33 W avz =W 23 33 W
= A ';‘g‘i = & ’A—;‘_
[+ a [»]

(¢c) The Partials for the Attitude and Attitude Velocity Components

-0f the Photostation

The derivatioﬁ of the-rotation_terms is analegous to that of
the éranslational and linear velocity components.
"It is again convenient to use the compreésed notation of
Section (a) of this appendix. That is,
U

v
W

N(XP - X, - VAt)

= RaRpatRoRontBuRias Xy = X, - vat)
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Hence — = = (X -X -~ Vat)
P o

L p

It is also necessary, therefore, to form similar expressions for:

O8N AN 3N XN N
P Jw' ' OV W

This can be greatly simplified by using skew symmetric matrices.

The differentiation is as follows:

3N bRk
§§-= 3?; Rfdt.R¢ Rébt.Rw'Rmat = P3N
8N 3R ﬁﬁt « R R *R.
-3?(:' = R'k. 31‘ ¢ W Twat
= At'Rﬁ'P3' ﬁAt.R¢.R¢At.Rw'RwAt
R, «P_+R.eR R, *R; .. +R,°R
= ALeRgePyeRyeRarRuay "Ro Roay *Ruw Ruag
= Ot«Q. *N where Q. = R,*P -RT
- 1 1T KO3 UK
3R
SN ¢,
E = RpoRp g ® acb CPM: "Ryt Rw.e.t

= . . . 'y R .
= Re"Reuy *PpoRByoRy, Ry Ry

T T
= Rp*Repe *Po Rear R B Beny R¢°R§mt'Rw'Raat

T RT

= N =
e where Q) = Ry Ry PR Ry
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3N 2Bt
an Rﬁ.RﬁAt.R¢ —S-;r-.Ru.thﬁt

<

1l

ARy Reag "By “Foat T2 "R Raat

L] [ T L To . . -
At'Rﬁ'RﬁAt':RQ'Rq'ab.t Ru'Rt&At RwAt Ry Pa Rm R.:mt

L ] ‘ — T [ ] T. . *
teNeQy where Qg = Ry oR Py R Ry

)R,
e A N TR TS

|

Ry *Riat "R "Riag “RuwPy *Byay

iy
Riat Py *Bat

R*.R'ﬁﬂt.R¢.Réﬂt.Rw.R‘:lﬂt.

1l

N.Qz* Where Q’LP = Rznt.Pl.Ru'iﬂt

AR,
N o e W&t
5T = Ry Rﬂt-Ré Ré'ﬁ?v R, vl At-N-Pl

Hence the partials of U, V and W with respect to the attitudes

and attitude rate changes are!

- - [ Ny

2 2T
K %

RLA P *Ne(X - X - - VALt) W AteQ. *We{X « X « VAL)
ok 1 T 71 D o : ok | T 1 P )

3w Y

| 3% | | ok
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. -
3y 2u ]
3 %
3V | oW WV | el
55 |7 &N (xp - X - vat) % |- At+N QB(XP - X, - Vat)
3 Y
¢ % |
[ 30 | By
Iw Yy
av — [ ] ﬁ - ) » . - -—
3= |2 Feq, (xP - X, - Vat) ST |= ateN Pl(Xp X, vat)
W ou
| dw ] | 9o |

Substitution of these expressions into the following quotient

rule formulae will yield the appropriate terms,

Wy -ef2w v o elw _vaw
dk W {3k W 3k Ik W | ox ~ W
oz _uw o 2w _vaw
e W ¥ T W Ik W | ® T W w
3y orfw o Fo z{w _vaw
2 Wl W 36 W |3 T W 3%
0y ¥ 3w o el v
W W |3 WP 3 T W W ¥R
Wy e _uw W _ el v
dw W |3 W 2w dw T W 3w W iw
¥ _~r (¥ U o £ v
WS Wl Wb Yo W dwe W dwm
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(d) Partials Associated with the Survey Data

It is also necessary to form the partials with respect to the

ground coordinates for application in the total block situation.

The same quotient rules that were used to determine the partials

with respect to the

Differentiation

r-
2y |o| -
DXP 1 0

.0.
3y
—_— =N 1 =
BYP 1 0

.—0‘1
U
— = N o] =
azp 1 1
Differentiation

11
%E— = N2 0 =

P ¢]

o7
3V
—— = N 1 =
Y 2

? | O

-O.

-g-y—-zNa 0 =
P 1

unknowns are used here with the s%me notation.

of U =»N1(XP - X, - VAt) yields
11
12

n13

of V = Na(xp - X - Vat) yields

2l

22

23



and

Differentiation

1.
%%-NE 0 =
P ]

o]
i—w—:‘NB 1 =
P ]

-O-
W
— = N 0 =
_BZP 3 .l‘
hence
Efl =X (. -

3 5 W ‘M

i -bFl
bxo
iEl I A SR
Y T W 12
P
) —aFl
aYo
°F -2 (n
72 W 13 ~
p) o 3
!
Y/

f W=0N - - i
o 3(XP X, Vat) yields

2r

33

31 W

32 W

33 W

o/

o
N

Qs

F

(]

L« I 13V

e B 1AV

]

fl

en ¥
21 21 W
in ¥
22 32 W
ca ¥
23 33 W
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