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1. INTRODUCTION
 

1.0 Scope and Objectives
 

Two principal types of camera are currently available to photo

grammetrists. The first type is, from a historical viewpoint, the
 

ideal camera for a mapping photogranmetrist, since it usually com

bines low objective distortion characteristics with a high degree
 

of stability. That is, its laboratory calibration can be assumed
 

to apply under a wide range of conditions for an extended time
 

period. The classical cameras of this type are the Wild RC and
 

the Zeiss RMK series of aerial cameras.
 

The second type of camera is comparatively new to photogram

metry. It is characterized by high image quality and information
 

content, but not so stable geometry. The class is typified by
 

the panoramic and focal plane shut F cameras manufactured by
 

Itek and Hycon.
 

Unfortunately, current technology in the design and manufacture
 

of large-format camera systems is such that the two types of camera
 

are almost mutually exclusive. Consequently, while the first group
 

of cameras has been used almost exclusively for mapping purposes,
 

the second group has been used almost exclusively for photointer

pretation tasks. Recently, this distinction has begun to break
 

down 	dramatically, with cameras from the second or non-metric group
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being used more and more in small-scale metric tasks where the
 

amount of information content is paramount.
 

One of the first breaks in class distinction and use occurred
 

in the mid-sixties, when NASA chose a non-metric photo subsystem
 

to accomplish the metric task of mapping the Apollo zone of the
 

moon. Unfortunately, at that time the geometric fidelity and
 

stability of non-metric cameras were incompletely understood. This
 

resulted in data mis-matches and discrepancies for the lunar tri

angulation.
 

The general trend of previous work on non-metric cameras had
 

been directed towards a complete understanding of the optical qual

ity of the resulting image and those factors-which affected it.
 

There was now a need to also understand the geometric fidelity of
 

the image. This study therefore seeks to provide meaningful
 

answers to the following general problems which arise when non

metric cameras are used for metric work.
 

(a) What is the effect of image motion and image motion compen

sation on the location of the principal point?
 

(b) Is it possible to determine the corrections to the cali

brated values of the coordinates (defining the location of the
 

principal point or the fiducial centre) in order to correct for the
 

image motion compensation?
 

(c) What is the effect of the focal plane shutter on the 'dis

tortion and interior geometry (interior orientation parameters)?
 

(d) Can a lack of calibration information be overcome by dynam

ic calibration procedures incorporated in the photographic mission?
 



In view of the relevance of these studies to the particular
 

needs of NASA, the Lunar Orbiter Photographic Subsystem will be
 

used to typify a non-metric system.
 

Chapter 2 details a new mathematical model which takes into
 

consideration image motion and movement of the camera during
 

the exposure interval. The model offers a rigorous relationship
 

between the object space and the image space by incorporating into
 

the well-known collinearity conditions velocitytermsfor the ex

posure station. The model is considered general since it is pos

sible to apply simplifying assumptions to obtain the presently

accepted explanation for image motion. Unfortunately, these gains
 

in generality have been accompanied by increased complexity of the
 

model and consequently possible computational instability problems.
 

Chapter 3 is devoted to some of the problems faced in the solu

tion of large systems of equations. The two principal problems
 

treated are computational stability and the economic solution of
 

such equations by non-iterative methods. The segment on computa

tional stability introduces the concept of matrix and vector norms.
 

The concept is then developed~through perturbation theory into an
 

acceptable method for gauging the stability of a particular solu

tion. The final half of the chapter investigates a number of pos

sible alternative methods for the solution of large matrix systems.
 

Chapter 4 is concerned with numerical testing of the model pro

posed in Chapter 2. The tests are all made with simulated lunar
 

data for which true values of all parameters are known. The chap

ter has three main subdivisions. The first details the method of
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generating the simulated data. The second section discusses the
 

single photo resection tests, while the third section discusses the
 

general intersection problem. Particular attention is given in all
 

tests to the problem of computational stability and to the control
 

of this problem by the choice of the correct weight matrix of the
 

observed quantities.
 

Finally Chapter 5 reviews and summarizes the work of Chapters
 

2, 3 and 4 in terms of the four above-mentioned problems.
 

1.1 Historical Review
 

The Lunar Orbiter program was conceived primarily for the ac

quisition of high-quality photographic data from those portions of
 

the lunar surface under consideration for the Apollo program.
 

Prior to the launching of Lunar Orbiter I, man's photographic
 

coverage .of the moon consisted of earth-based photography by tele

scopes whose maximum resolution on the lunar surface was approxi

mately 20 metres A detailed discussion on the limiting factors
 

for this type of coverage is given in the ACIC report 'Department
 

I .of Defense 1966 Selenodetic Control Data" A.very small amount
 

of additional coverage at greater resolution, but with very high
 

geometric distortion, was obtained from the.Ranger missions. The
 

reduction of this material was accomplished almost exclusively by
 

2
photometric techniques
 

Table 1 summarizes the Lunar Orbiter missions3 .
 



Table 1 

Summary of Lunar Orbiter Missions
 

Lunar Orbit Inclination to Perilune Apolune Date of Quality of
 
Orbiter Period Equatorial Axis Altitude Altitude Photography Photography
 

(hr) (deg) (km) (km) Medium High
 
Resolution Resolution
 

T 3.5 12 and 21 60 1850 August Acceptable Unusable
 

18-29, 1966 IMC failed
 

II 3.5 12 and 21 60 1850 November Good Good
 

18-25, 1966
 

III 3.5 12 and 21 6o 1850 February Excellent Excellent
 

15-23, 1967
 

IV 12 85 2700 61oo May Mediocre Excellent
 

11-26, 1967 to poor
 

V* 8.4 85 200 6000 August Excellent Excellent
 

8.3 85 100 6000 8-18, 1967 Excellent Excellent
 

3.2 85 100 1500 Excellent Excellent
 

* The three values represent the three conditions under which photography was obtained 
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The success of Lunar Orbiters II and III in acquiring the prime
 

Apollo landing site data, coupled with the successful Surveyor
 

flights to the moon, caused a reevaluation of the Lunar Orbiter IV
 

mission. Thus the task of extrapolating the point information of
 

the Surveyor missions and the forthcoming Apollo missions was to be
 

done with the aid of a full lunar coverage obtained by Lunar Orbit

er IV.
 

1.2 The Lunar Orbiter Photographic Subsystem
 

The Lunar Orbiter Photographic Subsystem has been completely
 
4
 

described by the Eastman Kodak Company , subcontractors to The
 

Boeing Company for the Lunar Orbiter program. In addition, specif

ic parts of the Lunar Orbiter Photographic Subsystem have been de

scribed and discussed in the scientific literature, e.g. 
Konecny5
 

Kosofsky6 , and Norman7 . Desvite this wealth of information, it is
 

appropriate to discuss here certain aspects of the system so that
 

a clear understanding of the research discussed in this report is
 

obtained.
 

The Lunar Orbiter Photographic Subsystem incorporated two op

tical systems which imaged on the same 70 mm film. The 80 mm focal
 

length system, often referred to as the medium resolution system,
 

used a between-the-lens shutter system and a 55 x 65 mm format.
 

Image Motion Compensation (IMC) was possible in a single direction,
 

corresponding to the direction of movement of the focal plane shut

ter in the 610 mm system. The magnitude of this compensation was
 

determined by a V/H sensor using an unimaged segment of the high
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resolution imagery. A mechanical reduction linkage between the
 

platen of the 610 mm system, where the determined IM was applied,
 

and the platen of the 80 mm system provided IMG or the 80 mm
 

system.
 

The interior orientation for the 80 mm system was determined
 

by laboratory calibration techniques. The subcontractor for this
 

8 
work was the Fairchild Camera Company . The calibration included 

radial and tangential distortion components at discrete points 

along each of the principal diagonals.
 

The 610 mm system, often referred to as the high resolution
 

system, used a focal plane shutter which traversed the short dimen

sion of the 55 x 219 mm format. As previously indicated, IMC
 

could be applied only in the direction of motion of shutter. This
 

resulted in the IMC device remaining unactivated for the Lunar
 

Orbiter IV mission. Figure 1 illustrates the different configura

tions controlling the applicability of IMC.
 

The camera was only partially calibrated by Brown9 due to
 

operational restrictions. Thus all missions were flown with-non

recoverable photographic systems in which both the decentering
 

distortion of the photographic system and one of the coordinates
 

of the principal point (y) were unknown.
 

All photography derived from the Lunar Orbiter spacecraft was
 

processed on board the spacecraft by the Kodak Bimat process. The
 

resulting image was electronically scanned and transmitted back to
 

earth where it was reassembled. Unfortunately, the framelets suf

fered distortion which can only be minimized. The reduction and
 



POLAR TYPE ORBIT(IV) 

fF 610mm 

SHUTTER DIRECTION 

~VECTOR
 

f VELECJTI 

EQUATORIAL TYPE ORBIT
(I,1I1,1 i1) 

f:610mm 

SHUTTER DIRECTION 

FIGURE 1 
DIAGRAM ILLUSTRATING THE ORBIT AND CAMERA 

ORIENTATION FOR MISSIONS 1,11, III, AND IV 
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elimination of this type of distortion is a comparatively new
 

problem in photogrammetry. Fortunately, a considerable effort is
 

being made into understanding the causes, effects and elimination
 

of this distortion. Interested readers are referred to the work
 

10
 .

of Wong 


Throughout this report, it is assumed that the error sources
 

of this problem have been identified and therefore need not be
 

considered.
 



2. IMAGE MOTION AND IMAGE MOTION COMPENSATION
 

2.0 Introduction
 

In the late fifties and early sixties, considerable technical
 

advances were made in all classes and types of cameras. In par

ticular a new type of camera, the reconnaissance camera, became
 

firmly established. Since this camera stresses image quality over
 

geometric fidelity, it is the natural complement of the survey
 

camera which is geometrically stable but has relatively poor reso

lution. The initial need for high image-quality systems was gen

erated by military surveillance. Today, however, civilian needs
 

for such a system are also very great, especially if the possi

bilities of extraterrestrial photogrammetry and photointerpreta

tion are to be maximized.
 

Unfortunately, the operational requirements which necessitate
 

these high-resolution systems are not favorable to geometric
 

photogrammetry, since the photostatibn cannot be-considered as a
 

unique point in space. This movement of the photostation causes
 

the image to blur. The amount of blur represents the magnitude
 

of image motion present during the exposure interval. This degra

dation of the image cannot be tolerated and hence Image Motion
 

Compensation (IMC) has been incorporated into these systems. The
 

first detailed study of the degrading effects of image motion on
 

10
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l
1
 
a photographic image was reported in 1955 by Wolfe and Lamberts
 

There are three main methods of accomplishing IMC. They are
 

as follows:
 

(a) Movement of the platen-film assembly.
 

(b) Movement of the lens cone.
 

(c) Use of the focal plane shutter.
 

Often method (c) is combined with (a) or (b). Application of
 

method (a) or (b) destroys the interior geometry of the camera
 

as currently c6nceived, while method (c) represents an infinite
 

number of photographs joined side by side from a continuously
 

changing photostation. For these reasons, systems which employ
 

IMC have not been favored by mapping photogrammetrists. An ex

ception is the recently developed Fairchild KC-6A camera.
 

The initial researchers in this new field of image degradation 

due to motion (Wolfe and Lambertsl , Trott1 2 , Rosenau13 ) were all 

primarily concerned with the quality of the image without regard 

to its geometric position. In 1963, Kawachi and Weinflash
1 4
 

derived expressions for image velocities as functions of image
 

position, focal length and rotational velocities. The expressions
 

were not general but provided an acceptable method of determining
 

expected blur distances and hence degradation under certain given
 

conditions. The work of Kawachi and Weinflash was subsequently
 

published in Photogrammetric Engiaeering15 .
 

This article was preceded by a discussion of image motion
 

16

resulting from translations only 1 . Subsequent to these two
 

papers by Kawachi, there are no published investigations on the
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problems of image motion. Unfortunately, this couldbe due to
 

the following statement by Kawachia1Q
 

... An analytical derivation involving matrices was also 
considered since a rotation matrix transforms the coordi
nates of a point in one system to its coordinates in a 

rotated coordinate system. It appears logical, there
fore, that matrices can be applied to obtain the image
 
velocity, since the aircraft motions under consideration
 
are rotational. However the matrix approach is not appro
priate for two reasons: (1) matrices do not describe the
 
actual movement of the image point (unless additional
 
translational terms are introduced to account for the
 
changes in the radius vector), because the image remains
 
in the film plane and hence its motion is not equivalent
 
to holding the image point fixed and rotating the coor
dinate system; and (2) the matrix approach is not simpler
 
than the geometrical approach but actually involves more
 
equations. Multiplications of the matrices would show
 
this ...
 

A similar statement is to be found in the Fairchild Technical Memo
 

Note referenced above.
 

Unfortunately, the engineers and scientists in charge of the
 

Lunar Orbiter Missions chose a photographic system of the recon

naissance type for their mapping program. This decision was, in
 

part, influenced by the resolution of such systems. However, it
 

was to lead to a number of awkward problems. In particular, the
 

problem of image motion and its compensation has severely limited
 

the accuracy of the subsequent triangulations, since Kawachi's for

mulae do not interconnect the object and image spaces. These for

mulae are therefore not applicable for direct incorporation into
 

the mathematical relationships between the two spaces.
 

After failing to adequately incorporate Kawachi's formulae
 

into the mathematical model, it became apparent that a new approach
 

was needed. It was thus decided to investigate the feasibility of
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using the collinearity conditions, since these conditions describe
 

the existing relationships between object and image space systems.
 

2.1 The Collinearity Condition Approach
 

The well-known collinearity condition is, briefly speaking, a
 

functional relationship between points in the object space and the
 

image space systems. A complete derivation of this relationship
 

may be found in most texts on photogrammetry, e.g. Manual of
 

Photogrammetry1 7 . The relationship is often written in a form
 

that is pertinent to the user's particular purpose. In this
 

work, it was desirable to express the collinearity condition in
 

the following form:
 

x -X = f[Ml(xp - X) / M3CXp - Xo0 

(2.1)
 
YP - o -f[M2(Xp - X.) / M3(X - 0o
 
yp 70 = x) /M(X -

That is, given the position and attitude of the camera, it is pos

sible to compute for every object space point a corresponding
 

image space point. There is no restriction as to what type of sur

face the object space field must satisfy.
 

2.11 Augmentation of the Collinearity Condition Relationship
 

Consider a moving photographic platform over a stationary ob-


X1
ject space field. Photograph 1 is taken at X = and yields
 
0 0 

1 1 2
image points x, y . Photograph 2 is taken at X = X and yields 
2 2 

image points x , y for the same object space field Xp. The plat
f p p 

form is assumed to move with a three-dimensional velocity V. It
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is known,from the basic laws of mechanics that X2 - X= V.At,

0 0

2 	 2 
hence alternative expressions for x2, y are:
 

P
 
X2 

x2 	-x 0 -fL (xp vat)/ M3 (x -X - Vt)Jp 0 	 oM 

:(2p2)
2 f0r( 

-
.10 0 

Yp o-- 2p o -X At)/M 3 (Xp-X -Vt-


The displacement of the image due to the movement between the
 

two photostations may be computed as:
 

X1 	 X1A 	 2- 1 -f,[M,(Xp -VAt) / M3(X p - -Vat) 

p p p -o 0 

"M 0(2 . 3) 

Ay y -y1 -fM([MX . X Vat) / MCx - X - -,Vt 
p p L 2 P a 3p a 

2 4 ) / M,(XP - )1) 

Expansion and simplification of equation set (2.3) yields the 

following image displacements: 

M(xp- x1 ,)M - VM3up - Xi)]At 
AX -f P 1 31 

M.3U -x >-VAt)OM3(X P- x) 

AY(xp - 4)M - VM3(xp-x)jAt 

= fM (X - 11l- VAt)1-M (X - -x1)
3 p a 3 p 0
 

Logically, image velocities due to translation of the photo

station may be readily computed from the above expressions as
 

v x and v = AY
 
x - t y At
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Similarly, it is possible to describe image changes due to
 

changes in the attitude rates. It is recognized that
 

M = [Njl 

Then, by virtue of the double angle formulae, it is possible to
 

define
 

= [N
N= 

Thus 

N R ~ R (4K +!-t+tt t 

where S = rate of change of k,
 

= rate of change of t, (See Appendix A)
 

and L = rate of change of w.
 

Hende the general expressions for image space coordinates of a
 

moving system at any time with respect to a defined epoch,
 

at = 0 are: 

x -X 0 -f[N(Xp - X- Vt) / 3(xp - X - Vt)1 
(2.5)
 

yp- Yo = -f[ 2 (Xp - X -Vt) / N3 (Xp- x0 - Vtt)]
0 


In the above derivations, the rate functions have been assumed to
 

be constant. However, this is a mathematical simplicity that can
 

quickly be removed.
 

By definition, image velocity is Ap and Ip and hence differ

entiation of equation set (2.5) with respect to At yields the
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following instantaneous image velocity expressions:
 

* =-jw([,xp - Xo- vat) - N1VJ [N3(XP - V~t)jXo-


- [kcx 0 - VAt) - N3 [Nx -..0 - V4t1)" 

1 3 (0 a tJ 2(2.6) 

=p -ff[;N2 (Xp - X0 - Vat) - N2VJ.[N3 (Xp - X- -vat)] 

(- X-vat) -N3V] N - Xo - vat) 

3N . 

d1 

where = d- , similarly for N2 and N3. (See Appendix.'k.) 

Equation sets (2.5) and (2.6) are completely general and
 

without restriction as to the initial orientation of the camera,
 

the form of the object space, the time interval,& t, over which
 

computations are to be considered, 'or the magnitudes of the im

pressed rates. They may therefore be called "general" equations
 

for the context of this study.
 

2.2 Comparison of the General Theory with Kawachi's Theory
 

It can be demonstrated numerically that under the same ini

tial ccnditions similar values are obtained for the general theory
 

and the pertinent formulae of Kawachi. However, a stronger case
 

exists by virtue of the fact that it is possible to decompose
 

15, 16

equation set (2.6) into the forms given by Kawachi .This
 

decomposition is demonstrated in Arpendix B using specific
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examples.
 

Thus, equation set (2.6) appears to be the general equation
 

set for all forms and causes of image motion for frame-type
 

cameras where the collinearity condition is the same as that
 

initially assumed. The equation set (2.6) must be modified for
 

panoramic photography, since equation seti(2.1) is not applicable.
 

2.3 Some Implications of the General Theory
 

Equation sets (2.5) and (2.6) were derived without any assump

tions as to camera type (other than those satisfying the basic
 

equation set (2.1)) They are therefore applicable to between-the

lens shutter systems as well as focal plane shutter systems. In
 

the former case, every image point moves during the time interval,
 

At, that the shutter is open, whereas in the case of focal plane
 

shutters each segment may be viewed as an independent exposure
 

during which image blur may or may not occur. If the exposure of
 

each strip is sufficiently short then no detectable image motion
 

will be seen, although image distortion will be present. This
 

distortion is fully explained by equation set (2.5)
 

2.31 The 80 mm System of Lunar Orbiter
 

The 80 mm system of Lunar Orbiter was a between-the-lens
 

shutter system with one component of IMC driven from a V/H sensor
 

designed to detect net forward velocity. Thus the film was ad

vanced or retarded at the required rate to minimize image blur.
 

Variations in this rate have little meaning since it is a between
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the-lens system. The net effect of IMC is to produce a stationary
 

photostation and consequently no photogrammetric reduction prob

lems are envisaged except those resulting from data transmission
 

or from a lack of stability of the interior orientation elements.
 

2.32 The 610 mm System of.Lunar Orbiter
 

The 610 mm system for Lunar Orbiter had a focal plane shutter
 

adjustable for 3 exposure times (1/25, 1/50, and 1/100 sec.).
 

IMG could only be-applied in the direction of flight and was com

puted from an on-board V/H sensor. Thus, the application of IMC
 

is not constant unless the V/H ratio is constant. The photograph
 

therefore suffers from two distortions:
 

(a) That due to the focal plane shutter and predicted by
 

equation set (2.5) if at of each segment from some epoch is known.
 

(b) That due to forward motion IMC. This could be removed 

from the image coordinates'on'a summation asis by multiplying 

the applied IMC rate by At,-the tie lapacfrom epoch to moment 

of consideration. 

In the case of Lunar.Orbiters I,JI, III and V, both (a) and
 

(b) type distortions are present, while for Lunar Orbiter I-V ohly
 

type (a) distortion's are present.. (Acruall_, sole-bluu-is also
 

present du6 to lack of IMC. This is becaue6 the dtr6ction fif
 

appliable IMC was not in the direction of the net forward motion.)
 

That is, for focal plane cameras in which IMC was not used,
 

equation set (2.5) fully describes the relhtionships between the
 

object and image spaces. The important parameter is At, which
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represents the segment exposure time along the x-axis with respect 

to some defined epoch, preferably defined as At = 0 when x = 0.p
 

A suitable method of obtaining At is available from the following
 

data:
 

(a) Exposure interval - controls blind slit width.
 

(b) Blind velocity and direction.
 

However as the blind slit width approaches the dimensions of the
 

format, then the focal plane shutter system becomes equivalent
 

to the between-the-lens shutter system.
 

2.4 Some Experimental Results for Image Motion
 

Using equation set (2.6) a number of computer runs were made
 

simulating the 80 mm and 610 mm systems of the Lunar Orbiter pro

gram. The results of some of these simulations have been collated
 

into Plates I and II; Plate I considers translational velocities
 

and their effects while Plate II considers the rotational veloc

ities. Both studies are made using the assumption that the photo

graphic system was initially vertical. Each plate has four major
 

sub-sections dealing with each system at two different flying
 

elevations. The sub-sections are composed of four separate graphs
 

which indicate the expected magnitudes of the x- and y-directed
 

image motion velocities for four important positions of the format.
 

These positions are as follows, top to bottom and left to right,
 

within each sub-section;
 

(a) xp = 0, yp = max.
 

(b) xp = max, yp = max, an extreme corner.
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(C) x = 0, y =0, center of format.
 

(d) Xp = max, yp = 0.
 

It is apparent from Plates I and II that not all image velocities
 

are plotted. It may be assumed that those not plotted are zero
 

or of such small magnitude that they can be considered as zero.
 

An analysis of Plates I and II readily shows that for rota
 

tional velocities it is the focal length of the camera system
 

that is important, regardless of the scale of the photograph. In
 

the case of translational velocities, it is the scale of the photo

graph that is important in determining the magnitude of the ex

pected image veolcity. Unfortunately, long focal lengths are
 

normally used to increase photographic scale and hence bath effects
 

are present in the Lunar Orbiter systems. It is also most unlikely
 

that the image motion effects can be made to cancel each other.
 

2.5 Conclusions
 

Equation set (2.5) is therefore an adequate representation of
 

the processes controlling the functioning of both the 80 mm and
 

610 mm systems of Lunar Orbiter IV. Should photography from the
 

610 mm system of the other missions be considered for triangula

tion, then equation set (2.6) must also be considered. This
 

would be quite complex, unless some simplifying assumptions could
 

be made.
 

It is suspected from previous experiences that the velocity
 

.terms are heavily correlated with their respective photostation
 

parameters. If this correlation is of such a nature as to make
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the system "singular", then it will be necessary to apply con

ditions on the velocity parameters in order to obtain acceptable
 

solutions for the unknown parameters of equation set (2.5).
 

Equation set (2.6) fully describes the nature and magnitude
 

of any expected image motion due to translation and rotation of
 

the camera during the exposure interval. It therefore represents
 

two functional relationships which describe the nature of image
 

velocity in terms of the elements of interior and exterior
 

orientation.
 



3. MATRIX THEORY
 

3.0 Introduction
 

Methods for solving systems of normal equations date from the
 

Gauss-Legendre era of the early nineteenth century, although the
 

solution of small sets of simultaneous equations was already well

developed at that time. Thus, before the days of even the most
 

modest digital computer, algorithms for either inverting or solv

ing small- to medium-sized systems were well-known. Since the ad

vent of the modern digital computer, the size of such systems has
 

continued to increase, offering a unique field of endeavour for
 

some scientists.
 

Geodetic scientists, in their quest to accurately describe the
 

earth and her near neighbours, have consistently been in the fore

front as users and developers of such systems. However, such use
 

and development has seldom been tempered with an adequate numeri

cal analysis of the problem.
 

In photogrammetry, the problem of inverting and/or solving a
 

large system of equations resulting from a simultaneous, multi

station triangulation is already formidable. The proposed augmen

tation of the collinearity conditions places an even greater bur

den on the algorithms and computing machinery in present use.
 

Furthermore, it has long been recognised that it is not normally
 

a4 
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possible to simultaneously isolate both the camera constant, f,
 

and the elevation of the exposure station, Zo, as these para

meters are strongly correlated. This lack of separation can be
 

shown by investigating the "condition" of the matrix.
 

In this chapter, therefore, methods for detecting and over

coming the problems of size and stability will be discussed.
 

3.01 Review of Matrix Inversion
 

Most texts on matrix algebra, e.g. Faddeev and Faddeeva
18
 

not only provide a rigorous explanation of the matrix inverse, but
 

also provide numerous algorithms for computing the same. Further

more, program libraries such as the IBM Scientific Subroutine
 

Package1 9 already provide the photogrammetrist with the necessary
 

computer software for many of these algorithms, thereby greatly
 

reducing his work.
 

However, once the core storage capacity of the computer is
 

exceeded, then the photogrammetrist must again address himself to
 

the problem of devising adequate computer software. Consider the
 

matrix system (A T 1-A) of normal equations. Classically, this
 

is a banded system. However, in the event of either A or Z -1
 

becoming full, then AT - A-is full. The case where '-l is full
 

rather than block diagonal is especially realistic when satellite
 

orbital data are used to constrain the photostation coordinates.
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Table 2 lists some important references pertaining to the
 

solution of (AT V-1 )-i. Figure 2 depicts diagrammatically the
 

form of the normal equation matrix.
 

Table 2
 

Reference List Pertaining to the Solution of High Order Inverses
 

Matrix Method Name Reference 
Type 

1 Partitioned Regression* 20,21>,Brown2 2 1 

2 Triple Block Method* Snowden22 

2 Elassal's General Algorithm* Elassal23 

3 Triangularization Uotila24 , IBM19 

4 Gauss-Jordan Bei6zin and 

25 
Zhidkov 

IBM
1 9 

5 Partitioning Faddeev and
 
19
 

Faddeeva
 

6 Successive Partitioning Snowden22 ,
 

Berezin and
 

25
 
Zhidkov
 

*These methods use the same fundamental concepts and
 

essentially differ only in name.
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Figure 2 

Some Common Normal Equation Forms
 

XXXXXXXX XX 
XXX Banded Matrix, XXX Banded Matrix, 
XXXX often solved by XXX often solved by 
X XXX Partitioned XXX Partitioned 
X XXX Regression. XXX Regression, 
X XXX XXX Triple Block, 
X XXX XXX or Elassal's 
X XX XX Algorithm. 

XXXXXXXX XXXXXX 
XXXXX Symmetric XXXXXXYU Full Matrix, 
XXXXXX Matrix, often XXXXXXXX often solved by 
XXXXX solved by Tri- XXXXXXXX Triangulariza-
XXXX angularization, XXXXXXXX tion, or Gauss-
XXX or Gauss-Jordan. XXXXXXXX Jordan. 
XX XXXXXXO 

X XXXXXXXX 

XX*X X" XXXXXXYX 
XXXXX=X Partitioned XXXXXXX Positive Semi-
XX~bXXX Full Matrix XXXXXX Definite Matrix, 
'Xi3C5 XkR illustrating -XXXXX often solved by 

XXXj XXnX Successive -XXXX Triangulariza-
XXXXX):X Partitioning XXX tion, or Gauss
k5UXX4ZX Scheme. -XX Jordan. 
XXXXXIXX 0 

It is recognized that Table 2 is not complete and that the
 

literature contains many other algorithms. One such algorithm
 

that appears to be growing in importance is that used to "border"
 

a matrix. This technique allows the use of the positive definite
 

character of the matrix to the stage where the matrix becomes
 

positive semi-definite (see Needham26).
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3.02 Review of Solution Methods
 

As in the case of matrix inversion, a wealth of information
 

can already be found in standard texts, e.g. Faddeev and
 
18
 

Faddeeva , and in the journals. Unfortunately, most methods of 

solution depend on the normal equation matrix being positive
 

definite, a feature that is destroyed when constraints are added
 

to the system. However, these methods have usually proved to be
 

superior to inverse techniques in both time and stability.
 

Unfortunately, the variance-covariance matrix of the adjusted
 

parameters is not easily obtained.
 

A complete description of the following methods can be found
 
in either Faddeev and Faddeeva1 8 or Berezin and Zhidkov2:
 

Gauss Elimination 
r oThese Square Root Method methods are normally used on 

symmetric- and full-type matribes, 
Gauss-Seidel. 

Relaxation 
rather than o banded systems. 

3.1 Vector and Matrix Norms
 

Since the concept of a vector norm is more easily envisaged
 

and understood than that of a matrix norm, it is considered
 

logical to develop the background for the n x 1 vector X before
 

considering the more general matrix A of size n x m.
 

The norm of a vector is defined as a real, non-negative
 

number, expressed as IIXII which represents, in some manner, the 

size of the vector X. The following three manipulative rules are 

important: 
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lII ol{cj = 0, otherwise -o 

jkXjj = jjkffllXll (3.1)
 

lix + Yf Jf +
1xf j 

Consider the following special cases for the n x 1 vector X:
 

(a) n = 1. In this case the size of X is best expressed by 

the modulus fx. However it is not the only estimator. 

(b) n = 2. There is now no single number that accurately
 

gives the size of such a vector. Some of the most logical and
 

significant estimators are:
 

114 IxlI + 1x21 
12J3x
P x112 +-xl
jx-max Ixil 

i=l, 2 

(C) n = 3. As the size of the vector increases, so does the
 

number of logical and significant estimators. Some of these es

timators are as follows:
 

ixil = 1Xll + 2 Ix31
 

Ixj-= [JIx 2 +1x2 + I 3
 

hjj = [I lI3 + ff2!1 + hij ]13 
Ixi11=Max 


A =±12,3' 
From these examples it is readily seen that a general defini

tion, the H6lder norm2 7 , is possible: 

'
11I --[Ix.fk} k (3.2)r 
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The term Euclidean norm is applied to the k = 2 norm, since
 

it represents the length in multidimensional space from the point
 

to the coordinate origin.
 

From the Holder norm and from the above examples, it may
 

readily be deduced that the following inequalities exist between
 

the norms:
 

1ixjf c llxjlI -' ixIfrII 

It is now considered pertinent to consider norms associated
 

with matrices and systems of linear equations. The basic alge

braic rules which follow are similar to those for vector norms
 

(equation set 3.1):
 

II 7,O (1jOJ1 = 0, otherwise0) 

IkAGl = Iki. ]JAfl
 

IA + BIK Ag +fJB (3.3)
 

iAB hjAil .IiBh 
jj AXjj 11jAjl.-11XU 18 

Faddeev and Faddeeva have shown that the following forms corres

pond to the equivalent vector norms. Thus, if the second norm is
 

being used in vector work, then the associated second matrix norm
 

must be used for associated matrix work.
 

= :ax ( a Id) - a column norm 

,i of the matrix ATA AT must be Hermitian
J12 (imax 

n( E'aU:il -a row norm 
ICO= 

i J=l 1
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It is obvious that the computational labour involved in JJA
 

the spectral norm, is immense. Therefore it has been common to
 

use the more easily computed Euclidean norm, which is generally
 

greater than the spectral norm by a factor of up to %rTE.
 

The Euclidean norm is
 

IJAIE =ft Vjai42] 	 (3.4) 

The following identities hold for matrix norms:
 

11ll2 A~lE 4nj11Al 

Two very 	common matrix norms are defined as follows:
 

M(A) = n 	 maf a.j (3.5)
 
i,j
 

N(A) = 1 Iaij1 j =,trace A A (3.6) 

It is evident that the norm M(A) belongs to the k =a class,
 

while N(A) belongs to the k = 2 class. Some important relation

ships between norms are now given:
 

1 M(A) < IAB 
9 M(A) 

n 1
 
1 M(A) 41A I 	 M(A)

M4(A) 4 A)4< M(A)
 

1 M(A) 4 N(A) 
4 M(A)
 
n 

N (A) 4 A11 2 C k(A)
 

NC(A) JAll 4 -fnN(A)
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1 

n111Al , 1 -F.lAl, 

III - (I + 0-1I1 C-A" 
The last two inequalities are proved in Appendix 0.
 

3.2 Stability Indicators and Test Matrices
 

Classically, four quantities are used to express the computa

tional stability of a matrix system. These quantities are:
 

(a) The Turing 8 M and N numbers which are defined as:
 

-
M =LM(A).M(A 1 ) (3.7)
n 

-
N = 1 -N(A)-N(A 1 ) (3.8)

n 

(b) The Todd2 9 P number, defined as:
 

max i.
 

(3.9)intX il , \i of A 

(c) The H number18 defined as:
 

H 
 max ' i
 
H t of A (3.10)
 

It is well-known that these numbers tend to unity as the
 

quality of the matrix increases. The limiting case occurs for
 



33 

orthogonal matrices in which at least P = H = 1. Unfortunately,
 

the upper limit is not bounded and therefore experience in
 

working with systems becomes an important part of the decision
 

process. Much of this experience is gained by experimenting with
 

test matrices.
 

3.21 Orthogonal Test Matrices
 

It is possible to construct orthogonal matrices of any de

sired size for software testing. It is recognized that inverses
 

computed via algorithms which ignore orthogonality should ex

perience minimal roundoff error. This is due to the low magni

tude of the stability numbers. However, such matrices seldom
 

occur in Geodetic Science. A useful test form is given by
 

Newman and Todd30 :
 

(aij) whereaij = 
13 =3 =n+l - s n-i
 

and since A is orthogonal
 

T = A-1
 

3.22 Ill-Conditioned Test Matrices
 

Just as it was possible to construct matrices with highly
 

stable characteristics, it is also possible to construct matrices
 

with highly unstable characteristics. A finite segment of the
 

well-known Hilbert matrix and its variants have been shown to be
 

highly unstable30' 31, 32. For instance, the P number associated
 

with these matrices is approximately e3 "5 n where n is the order
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of the matrix. Thus, this class of matrices, while not repre

sentative of the type of matrix normally encountered, offers the
 

possibility of compcrison between two given algorithms. The
 

form of this matrix is as follows:
 

A = (aij where aij
i+j-l 

then A-1 = (bi where b. (-l)i+(n+i-l)1(n+j-l )!
 
ij j (i+j-l) ) (j l ! 2(-(n-if!' (n-j)! 

3.23 Some Tridiagonal Forms
 

Tridiagonal forms of the normal equation matrix do exist in
 

Geodetic Science 33. (For an example see Appendix D.) Further

more, many tridiagonal forms have known eigenvalues and hence
 

known P numbers, in addition to an algebraic inverse. It is this
 

class of matrices which should be used to investigate computer
 

software performance for geodetic applications. Gregory and
 

Karney34 list a number of suitable forms. However, experience
 

has shown that the computational merits of a particular algorithm
 

are not evident up to an order of at least n = 75. The reason for
 

this is that the test matrices were positive definite and
 

possessed uniformly small elements which could be exactly repre

sented. Under such conditions, many algorithms will yield
 

similar results,
 

e.g. for n = 70 and a tridiagonal ifiatrix given by
 

A = (a..) where aij 2, i j
 

aij 9Ili-il
 
a ij 0, i-ji > 1 
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then A-1 = - . where d = i(n-i+l), i = j 

3ij Ci,j-l-il
 

cij ji, j <i
 

Four representative methods yielded the following values for
 

bll
 
b11
 

Desk calculator 0.985 915 492 957 7465
 

DSINV (IBM19 ) 0.985 915 492 957 748
 

DMIhNV (IBM1 0) 0.985 915 492 957 749
 

VERSOL (See AppendixE) 0.985 915 492 957 748
 

The P number for this problem is approximately 1985. Thus
 

it is seen that,. for this class and size of matrix, these inverse
 

subroutines yield results with minimal roundoff error, despite
 

the large P number.
 

3.24 A Test Matrix
 

A large matrix (370 x 370) resulting from the adjustment of
 

gravity observations was available for testing. This matrix had
 

gravity differences for its basic data. Thus, while the matrix
 

was formed without any regard to a pattern, it could easily be
 

condensed into a variant of the tridiagonal matrix. This matrix
 

therefore became a convenient test matrix, as it was-assumed to
 

be a more representative matrix than the theoretical tridiagonal
 

case due to the size of its elements as well as its order.
 

Since the matrix has an impressed condition, it was capable
 

of being reduced-into two variants-. Table 3.sho*sathe stabilityt.
 

indicators for both variants. As mentioned earlier, ho definitive
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statements can be made regarding the quality of the matrix from
 

these indicators, since they possess no upper bound. However,
 

experience indicates that an acceptable solution to the inverse
 

problem was obtained.
 

Table 3
 

Stability Indicators for the Test Matrix
 

Indicator Variant I Variant 2 
n = 36 9 n = 370 

(no imposed condition) (condition imposed) 

M "3.1 x O4 . 9.2 x 106 

10 3N > 3.4 x > 1.2 x 10 4 

p 4.2 x 1O4 5.5 x 106 

3.3 Perturbation Theory
 

It was shown in Section 3.2 that the classical indicators are
 

of limited use since they have no supremum. For this reason,
 

other indicators of stability have been sought. A successful
 

method based on the exact computation of a perturbed system is
 

.
due to Wilkinson35 The method seeks to place bounds on the per

turbations of the system necessary to perform a computation, rather
 

than to follow the forward error propagation.
 

Consider the following matrix system:
 

AX + Y = 0 (3.11) 

assuming that A is square with a non-zero determinant. 



37 

Then if A is perturbed by an amount E, X is perturbed by the
 

vectoriSX such that the equation of the system becomes
 

(A + E) (X-+ SX) = -Y = Z (3.12) 

or A(I + C) (X + SX) = Z (3.13) 

where AC = E, which implies that, since A-1 exists, C = A-1E. 

Alternatively, jC[+ 1 is a sufficient condition (See Appendix C). 

Solving for bX yields
 

+ C) -	 A- 1SX = (I Z - X 

but from equation (3.1i) X = A-1Z 

HenceSX= [(I + C) - 1 -xIjx 

Application of the norm theory to this expression yields
 

1181 	 = 1[a + c-l~- 4 'Ilk'[( + ar) -1 j: 

4 1IsI + 1 1]l+ 	c111 ] 

But 	C = A-E 

Hence IISXII I E I1 IA-1I *IIEI (3.14) 

71 _X 1-jJA' E 1-DAlj .EQ 

This last equation expresses, in terms of norms, the relative
 

change in a solution vector due to a perturbation in the original
 

matrix A, of size E. It must be stressed that the above expres

sion is an inequality and that only an upper bound has been deter

mined. This bound could be in considerable error if
 

I A-1 El 4 IA-11 "+E 
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It is important to note that the condition number is the 

decisive quantity in determining an upper bound. Consider a con

dition number defined as k = A AUllA11 
-1 ) )
(note M = 1.M(A)'MA - 1 ) and N = 1 N(A)N(A

n n 

and a relative perturbation S defined asS = H 

Then the relative change can be expressed as
 

Iix A-111 -JAI OAIkl1l -_E IA'iI1 - E [ qAj4 I-11 A ] = -kS (3.15) 

Ordinarily S is small, but if kS--l due to large k, 

then LI 11 . This is critical in digital computers where 

Sis a fixed ratio.
 

27,

It is possible to extend this perturbation theory to include
 

perturbation on the constant vector Y. Thus the- erturbation
 

equation (3.12) becomes
 

(A + E) (X SX) = (Z,+ SZ) (3.16) 

Application of the above theory yields the following equivalent 

expression to equation (3.14). Note Jszf = SYIJ 

SX Al _jA-I_'_EH'+ IIA-111 -" kY1 (3.17) 

1- IA-1I-.EII 

The most efficient method of estimating IsX from a computa

tional viewpoint is with the 0 norm. The sacrifices in accuracy
 

made with this norm can be determined, if desired, from the
 

identities of Section 3.1. However, the physical significance of
 

this norm is more important. Thus equation (3.17) becomes
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Sx < dEL. IIiL + IIA-lL- 4y11 (3.18)Al- -

It is to be noted that the following definitions apply to
 

infinity norms which can be physically interpreted as row norms,
 

since the maximum element vector norm is a degenerate case of the
 

more general matrix row norm:
 

IIXII = maxIxil - maximum element norm
 
n
 

I =AUmax ( jai.) - row norm
 
i j=l I 

The perturbation introduced in a digital computer when storing a
 

number is given by 1:2 b where b is the number of bits in a word.
 

For the IBM 360/75 of The Ohio State University Instruction and
 

Research Computer Center (IRCC) the perturbation level is
 

approximately 1 part in 107 for single precision and 1 part in
 

1015 for double precision. Thus, 11EL and IiY&j are governed by
 

the size of the elements of A and Y. For this discussion, it is
 

convenient to view the perturbations as decimals. This is the
 

situation which would exist if row and column normalization of the
 

system were performed prior to solution. It is also convenient to
 

use the double precision mode figures. Hence
 

IIEI W= n10-1 5 

IIsM= 1-15 

For the test matrix (Section 3.24), the following values of
 

JAI. and IX0 were obtained:
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n = 369, 	 IIA-I = 1.2 

n = 370 	 IIAl =
 

1lxl. = 200
 

When these values are substituted into equation (3.18) together 

with the values of IEE. and 6YjJ the following are obtained: 

n = 369s, NSxO C= i0
 

n = 370, U'Xil l0 - 8
 

This indicates that the solution vector is accurate tb 10
 

significant figures for the n = 369 configuration and 8 signifi

cant figures for the n = 370 configuration. It therefore appears
 

that the added condition did not strengthen the stability of the
 

matrix. Moreover, the stability of the matrix is not a direct
 

function of the P, N, and M numbers when the matrix is of a high
 

order.
 

3.4 Matrix Refinement
 
-1
 

This method, which is based on the control computation 
AA


seeks to take an inverse which is known to possess roundoff
 

errors and 	refine it until these errors are no longer of any com

1

putational consequence. The discrepancy between AA- and I is
 

naturally 	an indicator of the degree of stability, for the closer
 

1
AA- is to I, the more stable is the computation. Consider the
 

following 	definition of the discrepancy matrix:
 

C I - AA 1 (3;19) 

It is immediately recognized that for A-0
1 to be an acceptable 

approximation to A-1 , then 10Ik < 1.0 	 The more easily cor
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puted 1st ande order norms are most commonly used, although
 

Hotelling 36 introduced the concept of refinement using N(A).
 

Faddeev and Faddeeva show that the following relationship
 

exists:
 

Am =A ClI +c m l ) (5.20)

-1 M1 1
 

Hence, from equation (3.19),
 
-1
 

I - AA
C = 

m m 

Expanding Cm yields
 

S=I -AA1 (I + C ) 

- I - (I - )(I + Cmi1)
 

C 2 C4 C2
= 
m-1 m-2 0
 

Hence,
 

A-1 = A-1(I - CO ) (3.21)
rn 0
 

-
and in the limit, as C- O A i PA---


This may be re-arranged to yield the following equation on which
 

the computational algorithm has been built:
 

A-1 = 2Am rnAA (3.22)
Arn- 1 


It is now desired-that a single number, rather than the dis

crepancy matrix C, should indicate the quality of- the computations.
 

Thus, the concept of the norm must again be introduced.
 

Consider
 

1
 
D =A-1 -A 



m m 

then
 

=11Dm I =iA 1 - A-] = l-A-1m 
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_ C I - m )
D = -A 1 (I 

m Mr-1 c-1) 0 

-Cml)-lJelIC2l1~ JijJJ;'[l( (3.23) 

and, in particular, if m = 1, k = 1Co0 

1Dl _ k2IAol (3.24) 

The test matrix of Section 3.24 was subjected to this refine

ment process. The initial and final values associated with the
 

test matrix are listed in Table 4. The matrix was subjected to
 

two refinement steps.
 

Table )4
 

Some Values for the Test Matrix Associated with Refinement
 

Initial Final Initial Final
 

x l1-1 " - 20
 Variant 1 4 1 x lO-10 2 x 10 20 2 x 10 
n = 369 

- 3 10 - 1 8 Variant 2 1.2 x lO 2 x 10-10 1.4 x lO-2 4 x 

n = 370
 

It is evident from Table 4 that only Variant 2 benefited
 

from the refinement process. That is, the refinement process
 

roundoff errors were themselves the limiting factor in the
 

369 x 369 case. However the 370 x 370 matrix, which was inverted
 

by using the bordering technique on row 370, did respond to re

finement. This response was due to the fact that the bordering
 



algorithm produced roundoff errors in excess of those restricting
 

the refinement process.
 

A number of test examples of small to moderate order were
 

tested, including finite segments of the Hilbert matrix. Results
 

fromthese tests indicate that refinement is not possible for P
 

levels in excess of 105 , and that system instability occurs for P
 

levels greater than 1010.
 

These findings are consistent with those of Wilkinson 3 5 , who
 

shows that inequalities of the following type exist. (Note: With
 

these inequalities, the quality of the initial approximation must
 

be carefully considered.)
 

(a) Refinement occurs provided
 

1 2 k-l/n < 2 
jJA1 L' 	 1 

where k is the number of machine bits in a ord.
 

(b) The 	gain in precision in binary bits per iteration, m, is
 

m
2-
On2k JA-


(c) Component error level for residuals is approximately
 

4,rn 2j-k 

-
where 2i is the 	maximum component of A
 

(Note: For first iteration, the level isAl/ times above.)
 

(W) Error level 	in solution given by
 

i 

where i is the iteration. 

Three examples illustrating these computations are listed in 

Table 5. These computations are pertinent to the IBM 360/75 of 

- 5 6	 - 1 7
 IRCC, where k ='56, hence 256 7.6 x lO16 and 2 = 1.3 x 10 .
 



Table 5
 

Inequality Tests to Determine Possibility of Refinement
 

-
Matrix IA Refinement Precision Component Solution
 
possible gain error error
 

for residuals i = 2 

= 1.2 Yes Small Small369 x 369' 1.2 A-11 

2k-1/n = 1.3 x 1014
 

Yes
 

Small
370 x 370 100 	 IA-110 = 100 Yes Small 
1 4
 

2k-l/n = 13 x 10O


Yes
 

3 x 1013
10 x 10 3 x 1013 	 IA-11 = Small gain Significant Very great
 

2k-I/n = 7.6 x 1015 possible (0.03) 109
 
Hilbert 


segment Doubtful
 

a4
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Table 5 indicates that any instability in thesystems would
 

not become apparent until the second iteration if the initial
 

inverse choice were good, since the errors present are not of suf

ficient size to unduly perturb the inverse.
 

However, when these errors are augmented with the larger
 

errors of the refinement process, then an inverse quickly ceases
 

to exist. When the-refinement errors are of moderate size, or
 

comparable to the roundoff error, oscillation takes place. Such
 

an oscillating system was observed for the n = 6 segment of the
 

Hilbert matrix.
 

Unfortunately, this technique may be impractical except in
 

special circumstances, as central processing unit (CPU) time was
 

33 minutes per iteration for the 370 x 370 matrix. This time
 

would certainly decrease with higher rates of information transfer
 

between the disk unit and the core. The rate of transfer used in
 

this problem was 312K bytes per second. Additionally, if a greater
 

core region was used, then fewer calls to the IBCOM routines
 

would also reduce CPU time. The present program required 16K
 

bytes of core for storing the associated instructions. The neces

sary four work vectors require additional space which in this case
 

amounted to 16K bytes. This space is determined by the order of
 

the matrix.
 

The method could be useful in extending the core range of the
 

machine, since it i6 theoretically possible to obtain a single
 

precision inverse of limited quality, and thence to refine it to
 

the desired level. However, care must be exercised to ensure that
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the 	inverse is acceptable.
 

The program for accomplishing this work is listed in Appendix
 

E.
 

3.5 	Reinforcement
 

The principle of reinforcement is that the matrix A is con

sidered as the last term of the following sequence:
 

=
A0 = I, A1, A2 ... A-l' § .. An A 

That is, matrix A is obtained by replacing the kth row of Akl
 

with the kth row of A, thereby building up the desired matrix
 

which at this juncture is unspecified.
 

The following derivation is due to Faddeev and Faddeeval
8 :
 

Consider the matrix A to be non-singular and with known inverse,
 

and consider the column vectors U and V defined such that
 

uI 	 U1V1 U1V2 ** UlV
n
 

uv= u2 [v1. v 2 ... vJ u2 v1 u2 v2 ... U2vn (3.25) 

...............................
 

Su	 UnV UnV2 ... unv
n 	 n
 

Clearly, UV has rank 1, since every row of equation (3.25) is a 

linear combination of another row. 

Then it has been shown by Dwyer and Waugh37 that for the 

matrix 

B = A + UV (3.26) 

B- 1 = A- 1 - 1 A-1UVA-1 (3.2?) 
I+VA U 

-
provided that 1 + VA 1 U / 0 



47 

0 

That is, it is possible to find the inverse of B, given a matrix
 

A with known inverse which differs from B by a matrix of rank 1.
 

In particular, if the UV matrix is constructed as
 

trV = 0 Il v 2 ... v k ... Vn]
 

0
 

then only the elements of the kth row are being changed.
 

Using these concepts, equation (3.27) becomes
 

B-1 =A-1 1 ak(VA-1) (3.28)
 
l+Vak
 

where ak is the kth column of A-1 .
 

It is now recognised that VA-1 is a row vector resulting from a
 

surmcation over a column. Hence, the following holds:
 

b. = a - ak(Vaj) (3.29)

J i (l+Vak)
 

where bj and a. are the jth columns of A and B 1 respectively.
 

Finally, the series concept is added, which provides a known
 

inverse for A.
 

Thus, equation (3.29) becomes
 

S(k-1) b(k-l) 
(330)
b1 = b 


k-l )
 (+Vb 

lVk
 

which is the working algorithm for the solution of the inverse.
 

It should be -noted that the only B(k-l) for which an inverse
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is known is the identity matrix I. This matrix differs from the
 

given matrix, A, by n rows of the form (vI v2 ... vk ... vn).
 

Hence, the kth vector of v's is the kth row of the given matrix,
 

with the exception that the kth element must be zero to maintain
 

the desired linear relationships. Thus,
 

V becomes Vk = (aI a2 ... aklOak+l, ... an)k 

It therefore becomes necessary to pre-multiply A by E2 -type
 

elementary transformations to achieve unit diagonal terms to
 

satisfy the above conditions. This, in turn, necessitates post

multiplic-ition of B by E2-type transformations to return the de

sired inverse. It is also noted that the method applies specifi

cally to positive definite forms, which is a considerable draw

back.
 

A computer program utilizing the above method is given in
 

Appendix E. This program makes use of the disk storage and there

fore may be used to invert any full positive definite mitrix,
 

since only six vectors of the order of the matrix are needed to
 

accomplish the inversion.
 

Unfortunately, the method is very slow. Inversion of the
 

369 x 369 test matrix required 210 minutes of CPU time. Moreover,
 

the number of significant digits obtained, when compared to the
 

refined solution, was such that the process could be termed "un

stable". Only four significant digits were obtained. Thus, it
 

seems that until faster transfer rates can be realized together
 

with increased word bit size, this method must be passed over as
 

a mathematical curiosity.
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3.6 Solution by the Square Root Method
 

This standard method of obtaining a solution vector is very
 

4 
stable for positive definite matrices and quite fast, computation

ally, on digital computers. Furthermore, since it is essentially
 

a row process, it is readily adaptable for unlimited size by inter

locking the auxiliary disk storage facility with the magnetic core.
 

It can be extended to positive semi-definite matrices by simply
 

def ning A as a Hermitian matrix, rather than as a real matrix.
 

Furthermore, this change of definition need not be invoked compu

tatiozally until the positive definite character of the matrix is
 

destroyed.
 

Consider the following matrix system:
 

AX +Y= 0
 

= BBT
Then A can be triangularized such that A 

where B is triangular. -

Then solve B.Z = -Y by substitution for Z 

Tand finally B X = Z by substitution to determine X, the
 

solution vector.
 

In the above, 

"[ i-1 2 ] 

B = (b.j) = [a. - ibij j] (i ) 

[11 

aij - ikbjl
= ,j j > i) 

12. j 

-0 (i> j) 



50 

The main difficulty in this efficient procedure is that the
 

variance-covariance matrix of the adjusted parameters is not de

termined. Thus, other methods of determining the inverse must be
 

undertaken.
 

3.7 The Monte Carlo Method
 

... The Monte Carlo method may briefly be described as
 
the device of studying an artificial stochastic model of
 
a physical or mathematical process. The device is cer
tainly not new. Moreover, the theory of stochastic proc
esses has been a subject of study for quite some time,
 
and tte novelty lies rather ii the suggestion that where
 
an equation arising in a nonprobabilistic context demands
 
a numerical solution not easily obtainable by standard
 
numerical methods, there may exist a stochastic process
 
with distributions cr parameters which satisfy the equa
tion, and it-may actually be more efficient to construct
 
a process and compute the statistics than td attempt to
 
use those standard methods ... Householder38
 

The Monte Carlo method appears to offer a convenient method
 

of overcoming the lack of an inverse when a solution method is
 

used. The theory and development of Oswald3 9 was converted for
 

application to the IRCC system, but as yet suitable and consistent
 

results have not been obtained on medium scale test matrices. The
 

reasons for this are likely to be many, but the problem appears to
 

lie in the random number generator or its application.
 

At present, several thousand walks are required for 3 and 4
 

digit accuracies, thus giving rise to fairly lengthy execution
 

times. A reduction in calls to the random number generator and
 

better random numbers would materially aid in the solution of
 

these problems. However, for the moment, this task does not
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warrant further pursual, although it should not be forgotten.
 

An interesting aspect of the Monte Carlo method is that if
 

the finite variance condition is fulfilled, as it must be for an
 

inverse to be obtained, then roundoff error plays an extremely
 

small part in the computational process. Rather, the limiting
 

factor appears to be the number of walks necessary to achieve a
 

desired level for the elements of the variance-covariance matrix.
 

In many cases, three significant digits would suffice.
 

3.8 Conclusions
 

In summary, it is to be noted that the inversion methods in

vestigated in this chapter do not appear to approach the speed or
 

accuracy of those commonly used and mentioned in the review. How

ever, this should not foreclose the possibility of further work on
 

this subject. In particular, methods for quickly and accurately
 

obtaining elements of the variance-covariance matrix associated
 

with a solution vector should receive attention. The Monte Carlo
 

method is but one suitable method which may be able to yield
 

suitable results in moderate CPU times.
 

With regard to the problem of stability, it has been forcibly
 

pointed out that the classical indicators are of limited use and,
 

in general, it is far better to compute the norm of the solution
 

vector and to compare this norm with the required precision levels.
 

Should the precision of the solution be unacceptable, then refine

ment may be attempted, if feasible, or another solution tried.
 

Alternatively, the computational stability of the matrix may be
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improved by applying suitable constraints to the normal equation
 

set. This may upset the positive definite nature of the matrix,
 

but this is of no great importance. Should the stability decrease,,
 

then critical consideration should be given to the desirability
 

and necessity for the constraint, and to the efficiency of the
 

computational process used.
 



4. NUMERICAL TESTING
 

4.0 Introduction
 

In Chapter 2 the augmented collinearity condition equations
 

(2.5) were proposed. Chapter 3 developed a number of numerical
 

concepts and tests to provide a rigorous mathematical basis for
 

determining whether or not the collinearity conditions can be satis

factorily augmented with additional parameters. It is therefore
 

the purpose of this chapter to link the previous two sections by
 

means of numerical tests as well as by a clear demonstration of
 

the advantages of the augmented system.
 

Two principal methods of testing are available to research
 

workers. The first method involves testing with simulated data.
 

In essence, this method consists of mathematically generating ar

tificial point data according to some defined relationships, then
 

using this data to test and check the new functions and associated
 

computer software. The resulting estimated parameters may be com

pared against the true or known values of the parameters.
 

The second method uses real data derived from the observation
 

process. The parameters estimated in this way cannot be compared
 

against known standard values, since these do not exist. The ul

timate object of the method is the determination of these unknown
 

parameters to within a given confidence interval. The smaller the
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given confidence interval, the more accurately is the unknown
 

parameter determined.
 

In general, the first method allows a greater variety of tests
 

to be made. However, there is always a small probability that the
 

simulated data conform to the proposed model, whereas the real
 

data are not represented by the proposed model. Thus model testing
 

is not complete without real data tests, even though tremendous
 

insight and understanding may be gained when simulated data are
 

used. Unfortunately, real data are often most difficult to obtain,
 

and even more difficult to implement initially. The Lunar Orbiter
 

IV mission is not an exception in these matters, as contractual
 

difficulties have delayed the furnishing of such real data. Thus
 

only simulated tests can be described in this report.
 

The tests to be described in this chapter fall into two cate

gories. The first is concerned with single photo tests, while the
 

second section builds the single photo tests into a multiple photo
 

block.
 

4.1 Generating the Simulated Data
 

The well-known collinearity condition equations (2.1) have long
 

been recognised as the mathematical expressions by which object
 

space points are connected to image space points by way of the lens
 

nodal points. It was therefore natural to choose these equations
 

as the basis on which the simulated data were generated.
 

The object space field was selected from the Department of
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Defense Selenodetic Control System 19661. It consisted of all
 

points between 00N and 30°N and between 100W and 100E. These
 

points were then transformed into a right-handed X, Y, Z cartesian
 

system. The selected object space field roughly corresponds to
 

the area recorded on photographs numbered 109 and 102 of Lunar Or

biter IV. Figure 3 illustrates the area-chosen and the limit
 

of the photographic coverage.
 

Photostation positions approximating the position of exposures
 

109 and 102 were computed in the X, Y, Z system, together with
 

attitudes in the omega, phi, kappa rotation system. It was there

fore possible to compute the corresponding image coordinates for
 

each object point at each of the two assumed photostations for a
 

610 mm focal length system. Figure 4 illustrates thttnsity
 

and location of image points for a photograph similar to photo
 

number 109. The same object space field was transformed into an
 

image space for slightly different photostations corresponding to
 

pseudo-velocities. Next, the image space was split into eleven
 

equal sections corresponding to a At time interval of 0.01 sec.
 

It was assumed that the focal plane shutter progressed from posi

tive y to negative y at a rate of 1 m/sec. The positions of those
 

points which fell in a particular At interval were therefore com

puted for the photostation corresponding to that pseudo-velocity
 

times at. The initial epoch, at 0, was assumed to occur when
 

the shutter crossed the midpoint of the image space. This is il

lustrated in Figure 4. 
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FIGURE 3 
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FIGURE 4 
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Thus an image space field with a corresponding object space
 

field was constructed without resorting to the proposed model,
 

although the concepts are similar. As is the case with such simu

lated data, the determined parameters possessed true values against
 

which they could be tested. The total number of points in the ob

ject test area was 46, 32 of which are shown in Figure 4. The
 

exact number and location of points used varied from test to test,
 

depending on the particular requirements of the test.
 

4.2 Singld Photo Tests - The Resection Problem
 

Usually space resection problems are concerned only with the
 

elements of exterior orientation. However, in the case of the
 

Lunar Orbiter missions where the coordinates of the principal point
 

must be considered as unknown, it is necessary to include these
 

quantities amongst the unknown parameters or quantities to be ad

justed. Furthermore, there is evidence to suggest that these quan

tities are not fixed, unlike the case of frame cameras used in
 

conjunction with recoverable film. It is therefore convenient for
 

the purpose of this study to consider the unknown coordinates of
 

the principal point as part of the exterior orientation elements.
 

There are three principal subdivisions to the space resection
 

problem. These subdivisions are made according to the amount of
 

observational data that are available. They are as follows:-


Case (a), characterized by - observations on photopoints.
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Case (b), characterized by - observations on photopoints.
 

- observations on elements of
 

exterior orientation.
 

Case (c),' characterized by - observations on photopoints.
 

- observations on elements of
 

exterior orientation.
 

- observations on survey points.
 

4.21 Case (a)
 

In accordance with the above description of thiscase, the 

general mathematical system F(LaX) = 0 was chosen. This expres

sion is linearized according to the usual Taylor series expansion 

method to yield: 

AV + BA +E = 0 (4.1) 

In this case, 

1F ol
 
lp p 1A = 
 xp 


=y 

= I0
 

Lp p 

Hence, (4.1) becomes
 

EE 
V + B + = 0 

The system is completely general for n points. Under such con

ditions, the dimensions are as follows, 



6o
 

E E 
V + B • A + E 0 (4.2) 

(2n x l) (2n x 6) (6 x 1) (2n xl) 

and the solution or correction vector is the well-known form
 

B P B B P G (4. 3 ) 
E 

The correction vector A is now added to the approximate value
 

vector X and the process repeated until the correction vector is
 

small. A complete description of this elementary adjustment pro

cedure is given by Richardus and Uotila24 , among others.
 

4.22 Case (b)
 

4 2 
This case was first described by Brown41 , in 1959 and sub

sequently fully detailed in 1964. There are two observation sets
 

with the same unknown parameters. These sets can be symbolically
 

written as follows:
 

F(L1X ) = 0
 
a a
 

(4.4)
= 
G(LX 

)a 
o 

The first set of observations results from plate observations and
 

uses the collinearity conditions, equation set (2.5), as the mathe

matical function. The second equation set originates from obser

vations on the elements of exterior orientation. These observa

tions are made to conform to the following-concept under minimum
 

variance:
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Y .- X .=0
 

am ai
 

where Xa is the adjusted or theoretical value of the parameter i,
 

Y . is the adjusted observation on the parameter i,'
ai
 

and i is the parameter xo, Yol W 1 1 .... 

The solution of such a set of equations follows a well-defined
 

routine, commencing with the linearization of the two symbolic
 

matrix equations:
 

EE '
 
AIV1 + BI +A = 0 

(4.5)
E E 

A2 2 2 + 0
 

It is noted that by definition A1 = I and A = 1, and that
 
E
 
B2 = -I. Hence the observations can be represented by
 

EE
 
V- + B1 AA+ =0 - 2n equations
 

(4..6)
E 

V2 -A + E2 =0 - 14 equations
 

The minimum variance solution of these two equations is obtained
 
E
 

by minimizing the variables V1' V2 and 4 in the following-function:
 

E E
T T 

)
P VI + v2 p v - 2 AT(v + B1 I ( 
E
T 

)
2A 2 -A +2 = (4.7)2 (V 0 


Differentiation with respect to the variables in (4.7) yields:
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V 2P_V 

2 
 P2V2 2X2
 

-ET
 

E 2B1 1 +2
 

Hence, the necessary information for a solution is as follows:
 

E E
 
V1 + BIA + E I = 0
 

E 
V2 -A+E 2 =0 

PiV1 - A1 = 0 (4.8)
 

P2V2 - X2 = 0 

This equation set can be simplified by substituting the first 

lines into the last line from which A and A2 have been removed by 

substitution of lines 3 and 4. That is, 

E E
 
V1, (B1 b + 6 ) 

V2 -( E +E)
V2 = (-A +6 2 ) 

are substituted into
 

E
BT1 P1 V1 - P2V2l = 0
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which yields
 

ET E E E 
B1 P (- BA -1) + P2 (- + 2) 

Simplification yields
 

ET EB ET
 
= (B1 P1 B1 + P2 ) A + B1 P1 I- P2 S2 0 

= E_T - T (4P6)

or A =-(B p)i BP - 2 ( '9)1 


The corrections are applied and a new iteration commenced with
 

the updated approximate value vector, Xo0.
 

Uotila 43 has suggested the following alternative computational
 

algorithm:
 

Lines 2 and 3 of (4.8) may be expressed as
 
E 

V2 +E 2 

VlI p!1 

Substitution of these into line 1 yields
 

EP-1 

(4.1o)P1 1 + BcV 2 +6 2 ) +E 1 = 0 

Similarly, line 5 of (4.8) may be expressed as 

ET 

X2 B1 

which can be substituted into line 4 to yield
 

E

T
 x
 

P2V2 - BII = 0 (4.11)
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Regrouping equations (4.10) and (4.11) yields
 

E E
 

(4.12)
 
BT -P2 V2J
 

The solution to this equation set in terms of V2 is as follows:
v22
 
r 2 T -1 T 1
V2 = P2 -BB~CPB) B1 PL B 2 +C )
 

1ET Ei(B
-

+ P2 )= -(B1 P 1 B1 P1 (BE62 +ri) (4.13) 

This is normally further simplified by assuming that 100, the
 

approximate value vector, equals Lb, the observation vector.
 

Under such assumptions, equation (4.13) reduces to
 

T E 

) - ET=-(B1 P1 i 1 +P2 BI PiE1 (4.14)V2 

A new a proximate value vector may be computed as X,,= Lb + V2 1
 

the respective partials re-evaluated, and a new residual vector for
 

V2 computed according to (4.13). This process is continued until
 

the residuals meet prescribed limits or become constant.
 

-4.23 Case (c)
 

Case (c) is a further generalization of case (b). This gener

-alization is achieved by adding a third set of observations on the
 

object space points, Thus the system now becomes
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-F(L ,x ) = 0 
a 	 a 

G(L	2X 0 (4.15) 
a a 

H(LOt ) = 0 
a a 

The last set of observations, which may be viewed as a further
 

set of conditions, is extremely powerful, for now the object space
 

point, the lens point and the image point are free to move so that
 

the collinearity condition is fitted in a minimum variance manner
 

at three points-on the ray under congideration. Since only two
 

points in space. are necessary to- define a line, any additional
 

points along the line do not contribute further information. How

ever all observations are subject to errors, and some observations
 

are more easily and more precisely obtained than others. The in

corporation of the additional information, by minimum variance
 

techniques, into a general model, allows the least precisely ob

served quantities to be determined with a precision approaching
 

that of the quantities defining the line. Since the most diffi

cult and expensive observations are usually those associated with
 

the object space, it is possible to relax the precision require

ments on these quantities by enforcing the collinearity condition
 

in 	this general manner.
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Linearization of equation set (4.15) yields:
 

BE S S
 =AIV + B a + 13 A + e, 0 

A2V2 + 32 A +E2 = 0 (4.16)- S 
=A3V3 + 3 3 0 

which is readily simplified, by virtue of 

A = I, A2 = I, A= I, B2 = -I, B= -I, 

EE S 
to VI + BA + B A + =0 

V - A- (4.17) 

S
 

V5 - A+ E = 0
 

The solution of such a system of equations is exactly anal

gous to that discussed in Section 4.22 for case (b). It there

fore suffices to write the solution as follows:
 

ET ET S ET
BT Pl B + P2 BTP B A B P~ 2 

ST E ST S S ST 
-I- - - - - -------------- 0 

B P1 B BT P1 B + P3 BT PI1 P3 E3 

(4.18) 

It is evident that as P3 - 0, then case (c) is reduced to 

case (b), and that as P2 -* 0 further restrictions reduce case (b) 

to case (a). 
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4.24 Numerical Results-


Since the commonly-used collinearity condition techniques may
 

be applied to the numerical solution of the theoretical models
 

discussed in Section 4.23, it is not considered pertinent to pre

sent here a detailed discussion of the numerical methods. However,
 

unique features of these numerical solutions, e.g. the analytical
 

differentiation of the partials, may be found in Appendix F;
 

4.241 Case (a)
 

Two principal classes of tests were performed in this case.
 

The first class .involved points where the exposure epoch differed
 

by a constant amount from the tracking epoch. It was assumed that
 

all points were exposed simultaneously by a camera system using a
 

between-the-lens type shutter system. The second class of tests
 

involved points imaged at differing times corresponding to the
 

passage of a focal plane shutter across the image area.
 

It was quickly recognised that while solutions can be obtained
 

with the P = I unit weight concept, the quality of these solutions
 

leaves much to be desired. In a class one test with unit weight,
 

an acceptable determination for the unknown parameters was obtained.
 

However the variance-covariance matrix of the adjusted parameters,
 

had exceedingly large norms, of the order of 1024 for INiIIW
 

Furthermore, the symmetric characteristics of this matrix had been
 

destroyed. The large value for the infinity norm can be directly
 

attributed to the fact that no row-column normalization was per
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formed prior to inversion. When the correct weight matrix,
 

P = 1O 12 
. I, was used, the order of the infinity norm was reduced
 

12
to 10 2 , while the symmetric characteristics of the variance

covariance matrix were retained. By applying the correct weight
 

matrix, some degree of normalization is achieved, and this results
 

in better computational stability.
 

Class two tests all yielded very satisfactory determinations
 

of the unknown parameters. The quality of the determination was,
 

however, dependent on a number of factors. Of these, the most im

portant was the knowledge of At for a point. As indicated pre

viously, the image space was sectioned into eleven regions, each
 

of kt = 0.01. This all6wed an image smear of approximately 5
 

micrometers in x and 1 micrometer in y. However these values were
 

not considered unreasonable, since blind velocity was a nominal
 

1000 mm/sec, compared with 1200 mm/sec for Lunar Orbiter IV. The
 

quality of the determination increased as At for a point became
 

more refined. This refinement was achieved by reducing the slit
 

width. It therefore seems that increasing the exposure interval
 

by increasing the slit width is less desirable than reducing the
 

velocity of the blind, even though this will increase geometric
 

distortion. It was also found that the initial approximations to
 

the unknown parameters had to be reasonable, otherwise no conver

gence occurred due to the non-linearity of the model.
 

The principal results of case (a) tests are summarized in
 

Table 6.
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Table 6
 

Summary of Case (a) Numerical Results
 

Parameter Simulated 
Values 

Class 1 Class 2 
(5Am smear) 

Principal x (mm) 0.2000 0.1999 0.1996 

Point y (mm) 0.2000 0.1998 0.1997 

Photostation X m) 4320009. 4320000. 4320000. 

Position Y m) -20PO00 . -200000. -200000. 

Z Cm) 922000. 922000. 921999. 

Camera A (deg) 0.1 0. 0. 

Attitude '(deg) 80.0 80. - 80. 

W (deg) 10.0 10. 10. 

Photostation Vx (m/sec) 100.0 159. 97. 

Velocities V r(m/sea) -100.0 -99. -106. 

V (m/sec) 2000. 2003. 2008. 

Camera 7(°/sec) 0.0 0. 0. 

Attitude (C/sec) 0.0 0. 0. 

Velocities w (0/sec) 0.0 0. .0. 

-., 14 _1013 
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4.242 Case (b)
 

This class of tests was concerned with the effects of weighting
 

the unknown parameters by observations on the parameters. It was
 

possible to test with a wide range of weights, both reasonable and
 

unreasonable.
 

m o
It is known from elementary adjustment theory that 
P = 


and under the assumption that m 
2 = 1 and that
 

•ZLbis diagonal, then P is also diagonal with elements according
 

1 1
 

The use of reasonable weights greatly improved the stability
 

of the system, when compared to case (a). The results of an un

reasonable case are tabulated in Table 7, from-which it is
 

readily seen that excellent agreement between the simulated values
 

and the adjusted values is possible. In the tabulated example, the
 

position of the principal point and the attitude of the camera can
 

be considered as known quantities to which almost no correction
 

can be applied. It is most enlightening to compare the norms for
 

these severe cases'with those for case (a) tests. However, due to
 

the number of variables involved, it is too difficult to display
 

the reduction in size as a function of increased knowledge of the
 

unknown parameters. It therefore must suffice to say that drama

tic changes in stability occur when observations on some of the
 

unknown parameters can be incorporated into the model.
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Table 7
 

An Example of Case (b) Results
 

Precision Simulated Adjusted 
Parameter of Obser- Weight Values Values 

vation 

Plate Xp (mm) 103 106 

doordinates y (mm) l0-3  106 

Principal x (mm) 0.001 106 0.2000 0.2000 

Point Yo (mm) 0.001 106 0.2000 0.2000 

Photostation X (m) 3 l0- 4320000. 4320000. 

Position Y (m) 3 10-1 -200000. -200000. 

Z (m) 3 10-1 922000. 922000. 

Camera * (ra&) 0.001 106 0.0 0.0 

Attitude * (rad) 0.001 106 80.0 80.0 

W (rad) 0.001 l0 10.0 10.0 

Photostation V (m/sec) 10 10 100. 100. 

Velocities V (m/sec) 10 10- -100. 

Vz (m/sea) 10 10 2 2000. 2000. 

Camera * (rad/seo) 0.01 104 0.0 0.0 

Attitude 4(rad/sec) 0.01 104 0.0 0.0 

Velocities ' (radoec), 0.01 104 0.0 0.0 

1N11.iliac___ ______ 10?____ 
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4.243 Case (c-)
 

Tests oh this case were done in conjunction with the multiple
 

photo tests, since n = 1 is a special case of the general n x m 

photo block. The principal difference is that observations are 

now available on all quantities. As would be expected from the 

previous discussion, good solutions with stable inverses are pos

sible under a wide range of conditions. In particular, if the 

weights of the observed quantities are correctly entered then,
 

2
 
since the expected value of mc is 1, the variance-covariance matrix
 

0 

of the adjusted quantities is approximately-known. The upper bound 

of the matrix norm 1A-11can be estimated to be the quantity 

n.max(a),'since correlation is -lll Consequently, for this 

case, the quality of the solution can be estimated prior to execu

tion and, if warranted, precautions taken to ensure that an accep

table solution is obtained.
 

The reader is referred to Section 4.3 for numerical data.
 

4.3 The n x m Photo Block - The Intersection Problem
 

The case of the intersection problem is built upon the single
 

photo resection problem. Associated with each photograph is a set
 

of observations on plate coordinates symbolically expressed as
 

F(Lla X ) = 0
 
a a
 

F(Llb Xa ) = 0
 

(4.19)
 

F(Ll
a 
i, X ) = 0 a 
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which can be expressed as 

D(L, X ) = 0 
a a 

The same concept can be extended to observations associated with 

the elements of exterior orientation: 

G(L aX ) = 0 

G(L2b X) = 0 

(4.20)
 

L2 j x ) 0
 
a a
 

Again, this system can be simplified by using the matrix equation 

E(L2 , Xa) = 0 

Finally, the observations on the survey coordinates can be 

expressed as 

H(L3 , La) = 0 (4.21) 

Thus, the matrix system associated with the intersection prob

lem may be expressed as 

D(L1 , X) = 0 

E(L2 , Xa) = 0 (4.22) 

H(L, Xa) = 0 
a a
 

which corresponds to equation set (4.15) of Section 4.23. The
 

solution to equation set (4.15), namely (4.18), is-therefore also
 

the solution to (4.22). However the sub-blocks are now built from
 

data associated with more than one photograph. It is therefore
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considered pertinent to restate the solution to equation set
 

(4.19) and then to discuss the composition of the sub-blocks in
 

this new context.
 

E E E T S E E T
 
,BTP B + P B P B A BT PIC
1 2'11
 

E + 
S E S S g S
 
B P1 B BT Pl B + P13 BT P3 P3E3 

(4.23)
 
ET E . 

The segment BT P1 B + P2 is formed by augmenting equation set 

(4.19) with equltion set (4.20). It is noted that the elements of
 

exterior orientation appear only in functions concerned with a par

ticular photo. That is, the differentials of elements of photo i
 

are zero except in photo i. The following matrix describes the
 

situation for a two photo case:
 

E E
BT P1 B + P 2 


ET E
 
Bla Pi Bla + P2a
 

(14x2n) (2nx2n) (2nx14) (14xl4)
 

lb I- la 2a
 

E
ET
0 BB P1 Bl + P
 

(14x2n) (2nx2n) (2nx14) (14x14 )
 

S S
 
The sub-element BT P' B + P is a square 3n x 3n matrix formed
1 3 

by augmenting equation'set (4.19) with (4.21). Unlike the exteri

or elements, ground points are not confined to imaging on a single
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photograph. Hence, under the assumption that the points are un

correlated, the sub-element may be expressed as follows:
 

ST S
 
BT P1 B + P3
 

(3nx2n) (2nx2n) (2nx3n) (3nx3n)
 

S
 

Pla 
 0 ... 
 Bla
 

ST S1T S
 
Bla B2a J 0 Plb .*. 
 B2a 3 

ST S ST S
 

Bla Pla Bla + B lb Plb Blb+ ' 3
 

E S S E
 
The sub-element B P1 B and its transpose B P B combine parts
 

of the previous two sub-elements. It is readily seen that the
 
E S
 

dimensions of B P1 B are
 

(no. of photos times 14 x 2n) . (2n x 2n) . (2n x 3n)
 

and hence
 

ET S
 
Bla P1 Bla
 

E S S E ET S
 
BT P1 B =(BT P T = Blb P1 Blb
 

Either by expansion or by applying the above principles to the
 

U section of the normal equation matrix, it may readily be deduced
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that the following equations hold:
 

E P
 
Bla Pla la - 2a C 2a
 

E TE
 T
 
BPE C pC B PG - p C

1 1 2 2 lb lb lb 2b 2b
 

ST ST ST
 
B PIC1 3C3 la PlaE la + Blb PlbE lb + . P 3E 

The structure of both the normal equation matrix and the con

stant vector are unique under the special conditions of diagonal
 

weight matrices. As-the size of the matrices increases, this
 

unique structure must be exploited more and more in order that the
 

size of the problem does not outstrip the capabilities of the com

puting facilities. In the numerical work associated with the
 

testing of this model, sufficient core was available so that par

titioning schemes were not necessary.
 

4.31 Numerical Tests,
 

The numerical tests associated with this section were per

formed on a block of two photographs. The photographic data were
 

generated according to the method described in Section 4.1 for
 

positions and attitudes approximating Lunar Orbiter IV photographs
 

102 and 109. The ground data and exterior orientation data neces

:sary to accomplish the data generation process were then assumed
 

to be equivalent to the required observation parameters.
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The two photographs had a nominal 60% overlap with a total of
 

24 ground points appearing in the overlap area. For convenience,
 

it was assumed that the variance-covariance matrices for the ob

served quantities were diagonal in nature. Table 8 gives a typi
 

cal set of standard deviations associated with the observed quan

tities.
 

Table 8
 

ATypical Set of Standard Deviations for Observed Quantities
 

Observed Standard
 
Parameter Deviation (±)
 

Plate x (mm) 0.001
 
p
 

Coordinates yP (mm) 0.001
 

Survey x (m) 1000
 

Coordinates Y 
P 

(m) 1000 

z (m) 1000 

Principal Point x (mm) 0.05
 

Position y (mm) 0.05
 

Camera X (m) 3 

Station Y (m) 3 

z (m) 3 
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T4kle 8 

(Continued)
 

Observed Standard
 
Parameter Deviation (W)
 

Camera 1r (rad) 0.001 

Attitude . (rad) 0.001 

to(rad) 0.001 

Camera V (m/sec) 1o
 x 

Velocity V (m/see) 10
 
Y
 

Vz (m/sec) 10
 

Camera Attitude * (rad/sec) 0.01 

Rates * (rad/sec) 0.01 

(rad/sec) 0.01 

In the example given in Table 8, the rotation elements are
 

considered very well-known. However, tests run with these values
 

relaxed yielded similar results. It should be noted that camera
 

attitude in the Apollo J missions will be well-known from the
 

coupled stellar camera.
 

As mentioned earlier', the most striking feature of these tests
 

was the form of the resulting variance-covariance matrix of the ad

justed quantities. The variances of the adjusted quantities were
 

very similar to those used in the weighting matrices. This corres
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pondence between the variance-covariance matrix of the adjusted
 

quantities and that associated with the observed quantities allows
 

stability computations or estimates to be made prior to the solu

tibn of-the system. The correct estimation of the precision of
 

the observational process is therefore of great importance,.
 

Consider the norm theory of Chapter 3 and in particular
 

equation (3.18):
 

-!Al-_JIdfxjf- ; 'IIl * js j 
-1IXxL A J * ,~!EliE 1WII (3-18) 

11i A-15.JI 

It is noted from Chapter 3 that jjEj1. = n.lO'l1 and that 

-IIy-. 10 15 for the IRCC 360/75 in the double precision mode. 

1Then I = NA aid an upper limit for IN-11. can beON-11. 

,.estimated as n.max(Gr.) where r. is'the variance of-an obser
11 1 

vation.
 

Similarly, iJxJ.= I-UJIu= max(ui), hence -the above equation

i1
 

becomes:
 

n.max(C't).n.10-15 .max(u.) + n.max(C.).1O-15 

1 5 
upper limit 1 - n.max(C-.).n.10


i 31
 

which'yields:
 

+ n.lO_-15.max( enn2.10-15.max(C..).max(u.)

*1 1 aa2 

-15
 
upper limit 1 . 10 .max( 6n.)-n 


http:n.max(C-.).n.10


8o
 

-In the tests associated with this chapter, the following condi

tions applied:
 

n = 100
 

max(C) = 106
 
i 

8 
max(u.-) = 10
i . 

Hence, 

lsXflm = I 0 .±10 5.lo6 .108 + 102.1015 .106 

upper limit 1 - 10 .10-1 5 .106 

l03 + lO-? l03 

I - l0- 5 

i.e. 1k11 0 r 3 

upper limit
 

This value applies to corrections to the survey coordinates

and is of the-same order as their estimated standard deviations,
 

ifdicating that the 'adjustmentprocedure may not further improve
 

kngwn values.
 

An analysis of 16XI after adjustment reduced its value to
 

I$xnI 10, which indicates the level of significance of the
Z 


6
solution to be approximately 1 part in 10,. It should also be
 

noted that row, column normalization was not performed on the nor

mal 'equa.tion.matrix prior to inversion. This normalization should
 

be done if the .most representative norms are to be obtained.
 

In general, the procedure adopted required three iterations to
 

converge to stable answers. The time for each iteration was 2
 

minutes 10 seconds for a total of twenty-four points. The greater
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part of the time was spent in performing the analytical differen

tiation required for the partial differentials. One test was'per

formed to compare the-time required to determine the partial by
 

numerical techniques. The following principles were applied:
 

aF
 1
 

Assume that -WaS required.
 

1F (FI) 0 + --(F)0
 
0+ 0Then 


where (FI)0 is F1 evaluated for assumed values of the param- 

eters.
 

(F1)0 +S is F1 evaluated for the assumed values of the param

eters with a small delta increment added to the differential
 

parameter under investigation.
 

The numerical procedure was found to be an order of magnitude 

faster than the analytical differentiation and yielded the same 

numerical values. However the numerical agreement is dependent on 

the S increment chosen. This concept requires further investiga

tion as it was not feasible to continue this investigation. 

In these block tests it was also noted that the coordinate
 

values of the principal point did not seem to be as-responsive to
 

adjustment as they were in the single photo tests. This was in
 

part overcome by using better estimates than had been initially
 

-
contemplated. That is, the variance was decreased from 10 2 to
 

2.5 x l0-3 for observations on these parameters.
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In the numerical tests, it was determined that a practical
 

limit of 3 iterations was necessary for the moderately perturbed
 

test data. As the perturbations became large, it was-necessary
 

to complete more iterations to achieve the same level of precision.
 

This level of precision, theoretically speaking, should have
 

=
been extremely high, as it was assumed that La Lb for these
 

tests. Hence, the residuals, V, are defined as V = = 0.Lb - La 


However, because of a number of factors, this will only be reached
 

in the limit. The principal factors affecting this condition are
 

as follows:
 

(a) The augmented collinearity -condition equations are non

linear in nature. The susceptibility of these equations to this
 

non-linearity was indicated in Section 4.241.
 

(b) The weights associated with the survey stations did not
 

.truly represent the situationt since no random errors were im

pressed'upon these values. Thus, the convergence rate was slowed
 

down due to this incorrect weight. Ideally, weights should accu

rately reflect the observational precision.
 

(c) The Y coordinate of the survey coordinate data appeared to
 

lag behind both the X and a coordinates in reaching the 10 meter
 

residual level.
 

(d) The stability level of the solution was approximately 1
 

6
part in 10, hence unit accuracy in the adjusted survey positions
 

is all that may be obtained.
 

Table 9 lists some typical values for tests associated with
 

this section of the work. Since the precision of the adjusted
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Table 9
 

Typical Values Associated with the n x m Photo Block
 
with Fully Observed Parameters
 

True Approximate Corrections
 
Parameter Value Value from first
 

iteration
 

x (mm) 0.200 0.200 0.0095
0 

ye (mm) 0.225 0.240 -0.0149
 

Xo m) 4320000. 4319900. 108.1
 
0 

Y m) -200000. -199990. -19.8,
 

Z Cm) 922000. 92190o. 43.4
 

Parameters W (deg) 10. 9.9 0.10
 

Associated : 80. 0.10
:(deg) 79.9 


with * (deg) 0. 0.0 0.
 

Photostation V (m/sec) 100. 90. 10.0
 x
 

1 V (msec) -100. -95. -5 .0
 
.y
 

V (m/sec) 2000. 1995 - 5.0 z 

Li (0/sec) 0. 0. 0.0 

(°/sec) 0. 0. 0.0 

(C0/sec) 0. - 0. 0.0 

Parameters x (mm) 0.200 0.200 0.0045
 

Associated y (mm) 0.225 0.240 -0.0085
 

*0
with X.0 om) 4320000. 4319900. 114.6
 

Photostation Y (M) 200000. 199990. -1.5
 

2 z0m)° 922000. 921900. 69.9
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Table 9 

(Continued) 

True Approximate Corrections 

Parameter Value Value from first 
iteration 

w (deg) 10. 9.9 0.10 

(deg) 80. 79.9 0.10 

Parameters i (deg) 0. 0. 0.0 

Associated V (m/sec) 100. 90. 10.0 

with V (m/sec) 100. 95. 5.0 

Photostation V-Z (m/sec) 2000. 1995. 5.0 

2 (o(/sea) 0. 0. 0.0 

(0/sec) 0. 0. 0.0 

(0/sec) 0. 0. 0.0 

Survey X (m) 1731858.7 1731800. 61.6 

Station 1 Y (i) 157282.2 157200. 46.9 

Z m) 52983.5 52900. 29.4 

Survey X Cm 1696658.2 1696600.. 40.2 

Station 2 Y m) 129022.7 129000. 0.3 

z (m) 344260.9 344200. 63.4 

Survey X Cm) 1726572.2 1726500. 58.3 

Station 3 Y m) -106750.7 -106700. -42.9 

z *m) 192865.9 192800. 44.5 
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values after 3 iterations has already been mentioned, it was de

cided to present instead the corrections to be applied to the
 

approximate values on completion of the first iteration. Thus
 

the table illustrates, in a limited manner, the convergence
 

characteristics of the solution.
 



5. SUMMARY
 

5.1 Conclusions
 

5.11 Principal Conclusions
 

The principal aim of the research presented in this report
 

was to obtain, if possible, answers to those questions which were
 

presented in the introductory section, Chapter 1.
 

However, before elaborating on the conclusions reached by the
 

adoption of the model presented in Chapter 2, it is appropriate to
 

mention briefly the pitfalls encountered in two abortive attempts
 

to resolve the problems.
 

Preliminary attempts to correct for image motion by using
 

Kawachi's1 6 formulae were abandoned, as the expressions became
 

unmanageable if the cause of image motion was not known. Work
 

then continued with the aim of reducing this unmanageability by
 

combining the individual corrections into a single uniform model,
 

.
the existence of which had been intimated by Kawachi1 6 Unfortu

nately, this model could not be constructed. Consequently, the
 

correction of image positions to a single uniform epoch correspond

ing to a central projection failed.
 

The second set of experiments involved some recently-published
 

44..
monomorphic relationships by fas4 These models included compensa

tory terms for focal plane shutters and image motion. However, a
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large number of conditions exist under which the equations become
 

singular. Testing of these equations indicated that these con

ditions would need to be completely understood before they could
 

be successfully developed further.
 

In general, the collinearity condition equations do not exhib

it singularity and, since they relate the object space to the
 

image space, it was decided to augment these equations to handle
 

a moving platform. The augmentation of the collinearity conditions
 

with velocity and epoch of exposure does not alter the definition
 

of the principal point which can be expressed as'
 

... the point in a photograph or camera focal plane which
 
is chosen as the centre of the image for relating the geom
etry of the image to the geometry of the object space. If
 
the camera is distortion-free so that the geometry of the
 
image is the dame as that of a perspective projection of
 
the object, then the principal point is the foot of the per
pendicular to the image plane from the centre of projection.
 

45
 
National Mapping Council of Australia


Consequently, the position of the principal point remains as des

cribed, since the perspective geometry remains unaltered.
 

Image motion and image motion compensation do not alter the
 

calibration of the interior orientation elements of the camera, of
 

which the principal point is a component. However the resulting
 

imagery may be deformed, such that the mathematical relationships
 

between the image space and the object space are destroyed. In
 

those instances when the product of exposure interval and image
 

velocity is such that the expected blur is well below tolerable
 

limits, the regular collinearity conditions can be used. However,
 

for focal plane shutter systems where the travel time of the shut
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ter is considerably greater than the exposure interval, the aug-


In the event of the
mented collinearity conditions should be used. 


image motion being such that IMC needs to be applied, it is pos

sible to correct the observed image coordinates. This correction
 

is obtained by multiplying the exposure epoch, ht, by the rate at
 

which IMC was applied, then summing over the epochs.
 

With reference to the problem of incomplete calibration of the
 

photographic system, it seems reasonable to expect that y0 , the
 

unknown coordinate of the principal point, can be recovered dynam

ically from the block adjustment of the photographs. Recovery of
 

this parameter is possible due to the unique nature of both the
 

lunar surface and the photocoverage, resulting in very large vari

ations in all three coordinates across the model. It is also due
 

in part to the mathematical model used, especially the incorpora

tion of observations on the elements of exterior orientation.
 

However, there were also indications that the parameter recovered
 

would be more exact if approximate values were first obtained by
 

single photo space resection procedures.
 

5.12 Minor Conclusions
 

In addition to the solutions obtained for the main problem, a
 

number of important features were observed during the work des

cribed above. They are as follows:
 

(a) The matrix norm theory appears to offer a stable method
 

with upper bounds for determining the expected and actual precision
 

of matrix solution methods. The conventional P, N or M numbers,
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on the other hand, have no supremum. The matrix norm theory ap

pears to offer "pre-inversion" insight for those situations where 

all parameters may be treated as observations; it also,appears 

feasible to extend this theory to include other models. 

(b) For large matrix systems, solution methods are faster and
 

more stable than inverse methods. However, the variance-povariance
 

matrix must be determined by secondary methods, such as the Monte.
 

Carlo method.
 

(c) Differentiation of complex analytical functions by numeri

cal methods is very much faster than evaluation through their as

sociated analytical expressions. The accuracy of such a process 

is dependent on the S increment chosen for the evaluation process. 

5.2 Recommendations
 

5.21 Recommendations Concerning Principal-Conclusions
 

The principal conclusions were drawn, in part, from numerical
 

tests using fictitious data. It is therefore recommended that a
 

small real data test be performed so that the validity of the pro

posed model and the conclusions are confirmed. It is not reco

mended that a full triangulation with Lunar Orbiter photography be
 

attempted, since photography using recovered imagery will shortly
 

become available from the Apollo J missions. However, many of the
 

ideas expressed in this report are directly applicable to the
 

Apollo J missions and therefore warrant continued investigations.
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5.22 Recommendations Concerning Minor Conclusions
 

It is recognised that the conclusions presented in Section
 

5.12 are based on insufficient data sets. There is, therefore, a
 

need to increase the data base to ensure that the conclusions are
 

justified. In addition, continued research should be conducted
 

into the problems of stability and speed of execution, since the
 

size of matrix systems in practical use continues to grow.
 

It is therefore strongly recommended that theoretical and prac

tical research continue in the following areas:
 

(a) Stability indicators.
 

(b) Stable and efficient solution techniques.
 

(c) Economic formation of the necessary partials.
 

5.221 Recommendations on Stability Indicators
 

In view of the apparent success of the norm theory in indicat

ing the stability characteristics of a fully-observed system, this
 

approach should continue to receive attention so that stability
 

indicators can be established for more general systems. In par

ticular, investigations should be made into the possibility of es

tablishing stability parameters for solutions obtaiied by non

inverse methods, such as the square root method of Section 3.6.
 

5.222 Recommendations on Stable and Efficient Solution Techniques
 

In Chapter 3, a number of techniques for the solution of large
 

systems of equations were tested on the same large real system.
 

Work of this nature must continue with all of the available algo
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rithms so that a complete understanding of the peculiarities of
 

each algorithm can be obtained.
 

Recent developments in the discipline of Numerical Analysis
 

indicate that it may soon be possible to accomplish much of this
 

analysis by algebraic techniques, as well as by computatiqnal tech

niques.
 

- Thus, with continued theoretical and practical work, an order
 

for computational algorithms based on size of system, desired sta

bility and economy may be established. This work must not be con

sidered outside the scope of the Geodetic Scientist and left to the
 

more abstract Mathematician.
 

5.223 Recommendations on the Economic Formation of Partials.
 

In this report, a single CPU time test was conducted on the 

efficiency of numerically evaluating the required partials. This 

test indicated that numerical evaluation could be achieved in 1/10 

of the time required for analytical evaluation, without loss in 

accuracy- It is therefore recommended that the well-known block 

triangulation procedures using the collinearity conditions be re

written using numerical evaluation of the partials, rather than 

analytical evaluations. The procedures are readily adaptable for 

different S increments and, using the appropriate statistical 

methods, the quality of the resulting solution may be compared 

against that obtained through an analytical evaluation of the par

tials. 



APPENDIX A
 

THE ROTATION MATRIX
 

The well-known rotation matrix has many variants. However
 

the following form is common in Geodetic Science:
 

R =.M = R23 R2 R = RI Ro RW 

[cosT sintc 0ol sc 0 -sin±14]r 0 
i.e. 	M= -sint cos 0j[ 0 1 0 110 coS sinJ 

0 0 1 sink 0 Cos4 0 -sin cosw 

which yields 	on expansion:.
 

Cos coslc cosssinc 	 sins sink 
+ sina sin4 cosk - cosw sin4 eos
 

M = -cost sin cosw cos sinw coslt
 
- sinW sin# sinr + cos sin$ sint 

sino - sinw cost coso cos@ 

It is now proposed to write the rotation matrix as a sum of two
 

rotations A +
 

i.e. M = N = R(* +4*4t) R(+ at) R( w+ cot) 

i.e. N = R 	R*t R Rt R, R4t 

Proof that R(, +) = R # 

03s* sin* 0
Given that R = R ms cos 0 

X 'k0 09 1 
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coS *t sin *At 0 

and R R t = -sin 'Rat COS tAt 0

[ 0 	 10 


COslt COS IlAt COS* sin at 
-sin I( sin *At + sin I COs t 

then RR= 	 -sinI cos WAt -sin sin xAt 0 
-cost sin -at +COSC cos RAt 

001 

cos (*+*At) sin (4+*At) 0 

= -sin *+at) cos (t+ *At) 0 

0 0 1 

RR( C+ -XAt ) R e(+/3) 

Similarly, it can be proved that
 

R oR~ t = R( 	 C +$At ) 

and 

RW +d'aZt)R44t(= 

Hence, N may be written explicitly in the form given on the
 

following page, from which it is evident that the concept of N
 

is analagous 	to that of the general rotation matrix M.
 



cos (0+4tat)cos(*+l&nt) cos(W+ ,At)sin(+iAt) sin(w+wat )sin (t+lit) 

+sin(w + at) sin (+at) cos (*+ht) -cos (w+4At) sin( +4't) cOs (*+*at) 

-coS (o +4at)sin (*+ At) C0 s (w+.at) c s (+-*,At) sin (+Cat) c o s (-c+Wat) 

-sin(w+4 at)sin(0+4t)sin(a+ At) +cos (wflat)sin(#++at)sin(*+Wt) 

sin(f+4at) -sin(w+rnt)cos (4+At) COS(W+,5At)cos(+At) 
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The rotation matrix can be differentiated readily either from
 

the basic elemental rules or via skew symmetric matrices, P .
 

Computationally, the elemental method is superior~to the skew
 

symmetric method. However, algebraically the skew symmetric idea
 

has many advantages (see Lucas46).
 

The following definitions should be noted for differentiation
 

by skew symmetric matrices:
 

dR3 a3 
aoc 60 3 3ac 3 3 

dR2 
 4 
d = . PR Ra_L 


dot 2R2 22
 

Hence, using skew symmetric matrices, the N matrix can be
 

expressed as:
 

2 = P R R R +2R R R + RR X~Rlp
3 2 3 2t 3 2 1332t 

- P3 R3RR + 4Rn3 P2nR2 R + , 3R2,P 1 

Table 10 lists the matrix components necessary to evaluate
 

by the skew symmetric method. The elemental expansion of N is
 

given on page 97.
 



Table 10 

Some Principal Components of the Matrices N and 

cosS 

-sinl 

0 

sinl( 

cos 

0 

0 

0 

1 

cos (Iatl sin 

-sin (1At) cos 

.0 

('Rot) 

(*at) 

0. 

0 

0. 

1 

-jsin ('9t) 

-*CoS (Wit) 

0, 

Wcos (*At) 

-1isin (*At) 

00 

0 

0 

0 1 

-1 0 

000 

0 

'0 

2 

cos4 

0 

sin4 

0 

"1 

0 

-sino 

0 

Csn 

COS, (at), 

0 

sin (oJt) 

.0 

1 

0 

-sin; (At) 

0 

cos &0cos 

-$sin ( &t) 

0 

(At) 

0 

0 

0 

-4cos (&t) 

0 

-sin (t) 

0 

0 

1 

0 -1 

0 0 

0 1 

1 

1 

0 
0 

0 0 

cos sinw 

-sin wcosw 

1 

0 

0 

Cs 

-sin 

0 

( 

(0 

00 

t) sin ()cos 

t) cos ( 

)tat) 

At). 0 ;)cos 

0 

( Jt) -casin 

0 

(,t) 

(,"At) 

0 

0 

0 

0 

0 

-1 

0 

1 

0 

\ol
O" 



The N Matrix 

-Ccos C#+4&~t)sin(16+ *At) +Wcos CW+6 at) Cos (*+1i At) +-*sin (w+at)cos (*i.*ot) 

+Wicos(w+tt)sin( +4at) Gas (k+1iAt ) ±c6sin(w+at)sin(0+ at) Cos(N**At) 

+4sin(w+&4at)cos(4 +*At)oos(*+*ht) -4cos (w+,zat) Cos(4+iat)CosOcat) 

-sin(w+%mt) sin(4+4At) sin (fc+ At) 4 Cos(W+ At)sin (++$At) in (1,+*t) 

$sin(4+46&t) sin (*+fiAt) -s inC(. 4,nt)co s (c+i,%t) .Cos (W+.At)CosC*Wat) 

+*Cos(++4at)Cos(it+6fat) AIcos (w+,;nt) sin(*+Wat) -*hsin (w+,dat) sin*+4&*At) 

uCos(-+-:,at) sin(04at) sin (*+*at) -ijsin(w+CmAt)sinC 4at)sin (,+14at) 

-+sin (w+that) cos(++at) sin(ai+at) +400s(0+4At)oos(t++at)siniC*+iat) 

-Asin6'+4at )sinC44a&t) cos(1A+1iat) 4scos (w+4ot) sin i44at) cos(*k+fct) 

4COS(4+4at) -(aos (w-stat)cos(+4 t) 74.sin o+t3t)cos(44AtY 

sinw+~atminA++jAt -4COS(W+4-At)sin(++4At) 

-,3 



APPENDIX B
 

TWO DECOMPOSITION EXAMPLES
 

The decomposition of equation set (2.6) to the specific forms
 

of'Kawachi14h15 is illustrated by the following two cases.
 

Case 1: Vertical photography, translation along flight direction
 

only
 

The following conditions apply:
 

,'k 4,= Lo 0 ' N 

At =0 

then : = 0lO2([1J [lO ] -f [o-- ra-o }. 

0 l]Y-
 -o)-} 
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{roo oJ ILa
 

fVX~ [ *Cz~ fVo 
-en e - ]x - v0z p - z0)0 - (z - - x)1 
x -2 

P (Z - z )2 

x [Va 


f' - (Zp 'xfV 2
x o 


(z -z) 2 (z -z ) h
 

p a p o 

The minus sign is a result of the equations being formulated 

for the diapositive position with elevation up. 

cf. Kawachi: *p = R, h being defined as modulus h. 

It is obvious that p = 0 since N2 N2 = [0 1 0], hence the 

numerator of the function equals zero.
 

Case 2: Vertical photography, platform pitching (+) 

The following conditions apply: 

u== 0 ".N= I 

=0
 

V= 0
 

,at = 0 
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then xp -f{ -0 )- 0 0 . 

- -a0Io}.=4.- a) ooo]([]n0 ] 1 0• 

Ip o 

L-Oz l P a pZY p1 o 

Now nl3 £rom Appendix fl
 
31 = ] 

Hence - [- -Z o) • (z - zo) - (xp - X ) ( X. - Xo) 
p a 

P (z - z ) 

= t [(z z) (- zo) 

p 

+ cp 

o 

- z)2 ](t-o 

f31 + 
(zp -X)2 j
f[ 
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Now for vertical photography I I by virtneZp -0 ° f 

of similar triangles. 

Hence xp = [ ) 

cf. Kawachi: 
v 
 [f? + x2]
 

The y image velocity can be treated in a similar fashion.
 



APPENDIX C
 

MATRIX NORMS
 

It is required to prove the following three identities of
 

Section 3.1.
 

(a) Proof that (I + C) is non-singular if l1CII< 1. 

Consider the eigenvalue equation CX = AX.
 

Applying the rules stated in Chapter 3 to each side of the eigen

value -equation
 

Iioxli _ lol- l XJ and DJxxOJ =JI UXAI
Hence, Ai I 
Now, (I + C) non-singular implies
 

i=n
 
)(I + C) =T (1 +xi X 0 

where Ai is the eigenvalue of matrix C 
and i IA i I< [1C1 < l, then X, must lie between -1 +E and 1 -. ,o 

i=n 

where S is a small quantity. Hence, E (1 + Xi) / 0, which 
implies 1(I + C)1 0, and therefore the statement
 

[JI < oll < 1 is true. 

Using the previously stated identities, it is now useful to
 

derive an inequality for the matrix C = A - B.
 

Consider IA11 - iIA- B+ nfJ < 1A - B11 + jiB11 

Then iVAI! - 1iB1I < nJ
or jA JB'f11> IJAJI -

-

IA 
102
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Moreover, 

and so 

hA 

jJB 

- BIJ 

- A 

= JJB - Alf 

>, IAII - IBII 

JJB - A 

(b) Proof (I + or'ff1 1 

Let G = (I + 0 - 1 

Then (I + C) • G = I or I = G - (-1)CG 

Taking norms in the prescribed manner, 

1 

1 

IG-1I - 1A(-i)OjII 

[ljof- Il~A*~f 

and hence [OGII= 11(i+ +>-ll 1 --i -leDl QED

(c) Proof 

Let G 

I,- (I + 0 111 

= I - (I + 0 - 1 

-
,-

ell 
eill 

Then (I + C) G0 = G + CG = G- (-i)CG 

and (I + C) (I - (I + C)-l) = (I + C) - I = 

Hence C = G - (-i)CG 

Taking norms of both sides as prescribed, 

llCl JIll - jj(-l)CG
.IG+II IIoGi[ 

J. uo. [i- el] 
and hence hloli = III - (I + 0')1 < 11C111  11ll 

C 

QED 



APPENDIX D
 

AN EXAMPLE OF A TRIDIAGONAL FORM IN GEODETIC SCIENCE
 

Consider the following difference network where station 0 is
 

known:
 

AH1 &H2 4H3 H4 6H5 

0"1 1 2 3 4- .5
 

T -1- 24
 
Then the solution is given by; -(A PA)- APL, Uotila
 

Assuming P'= I, then
 

AA=0 - 001 0(
 
[ 1 0 ]
 

ii-ii220
AT -i0 0 71 1 0 '0 

1 1 

A 0 0 1 -1 O' 0 -1 2 -1 0 =(ATIA4 which is 

0-0 0 


0-0 0 1-1 0 0-1 2-1 
00 0 0 1 0' 0 0 -1 1 tridiagonal 
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APPENDIX E
 

REFERENCED COMPUTER PROGRAMS
 

(FORTRAN IV) 
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C
 
C THE REINFORCEMENr PErHCD OF INVERTING A MATRIX BY P.MORGAN JULY t970
 
-C
 
C THIS IS A PETHED CF INVERTING LARGE MATRICES OUTSIDE THE CORE REGION.
 
C THE DIRECT ACCESS FACILITY IS INVOKED TO HOLD THE NORMAL EQUATION
 
C PATRIX AND ITS INVERSE.
 
C REFERENCE FACCEEV AND FACDEEVA PP 173
 
C THIS SUBRCUT IN IS NOT UNIVERSAL WIT-OUT CHANGES TO THE NECESSARY
 
C INTEGER COKSEANTS.TI-IS COULD BE CFANGEC IF PARAMETER TRANSMISSION
 
C VIA THE CALLING SEQUENCE wAS ACCEPTABLE TO THE USER.
 
C UNIT 3 IS ASSUMEC TO HAVE THE NORMALS WHILE UNIT 4 WILL HAVE INVERSE
 
C TIHE SUBROUTINE HAS NO CALLING PARAMETERS AND DATA TRANSMISSION,WHERE
 
C NECESSARY IS UNDER A VARIABLE FORMAT, DOUBLE PRECISION IS USED.
 
C ALL STATEMENTS PRECEEDED BY A C/*I CARD MUST BE MODIFIED TO SUIT JIB.
 
C N IS ORDER CF rAtRIX .THIS GOVERNS THE NUMBER OF RECORDS IN THE FILE
 
C THERE BEING ONE RECORD PER ROW.
 
C
 

C
 
SUBRCUTINE LINVRT
 
IPPLICIT REAL *8 (A--,C-Z)
 

C/*i
 
OIENSION A(75),V(75,B(75),RHO(75),BS(75),W(75)
 

C/*I 	 THE NUMBER OF ROWS AND/OR COLUMNS OF NORMALS IS DEFINED
 
N=75
 
CALL SCLOKI
 

C/ti 	 THE FILES ARE DEFINED
 
DEFINE FILE 3(75,150,U,NN),4(75.15o,U,NN)
 

C
 
C LOAD FILE 4 WITH A UNIT MATRIX
 
C
 

DO 12 12=1,N
 
AJ12) =O.CO
 

12 CONTINUE
 
A([) =I.CG
 
WRITE(4'I) (AC14).I4=I,N3
 
REA (311) (A 14),[4=1,N)
 
IF(I.LT.N) FINC (3'141)
 
W(I)=A(I)
 
DC 13 14=1,N
 

13 A(14)=A(I4)/W(I)
 
WRITE(3'I) (Ai14),I4=IN)
 

II CONIiNUE
 
De 50 110 IN
 
READ(31IOERR=IOC) (V(I1I1),I1i=IN)
 
IF(IIO.LT.N) FIND (3'I1O+1
 
V~llt) =0.10
 
Or 55 115 = IN
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RHC(115) = O.DO
 
CC 51 112 = 1,N
 
READ(4lI2,ERR=1001) (Al13),113=1,N)
 
IF(1I2.LT.N) FIND (4'I12t1)
 
8(112) = A(lis)
 

51 	CONTINUE
 
IF(IIO.NE.lb) GC TO 45
 
DO 46 112 =1,N
 
8S(112) = E(112)
 

46 CCNTINUE
 
45 CC 52 112 =1,N


RHC(115) =PHC(IIS] +8(112}* V(112)
 

52 CONTINUE
 
55 CCTfiNLE
 

RHCKPI = R"O(110) + 1.DO
 
00 53 1iT =1,h
 
RHC(1171= RHC(l17)/ RHOKP1
 

53 CCNTINUE
 
DO 60 120 =1,110
 
READ(4'I20,ERR=1002) (A(i1),18=1,N)
 
IF(120.LI.11I) FIND (40120+1
 
DO 61 121 =I,N
 
A(121) = A(121) - RFO(121)*BS(120)
 

61 CONTINUE
 
kRITEI4'I20) (A(118),II=1,N)
 

60 CClINUE
 
TIIE=(RCLOK1(I.l))6O.O
 
WRITE(6.998) 110,TIPE
 

5C CONTINUE
 
DC 14 I=,
 
READ(3 ) (A(115),115=t,N)
 
IF (I.LT.N) FIND (3'1+i)
 
Do 15 1I5=1.N
 

15 Al15)=A(II5)*%fI)
 
WRITE(3'I). (AlI5),II5=,N)
 
REACI4'1) (Ac[15),[15=l,N)
 
IF(I.LT.N) FIND (0141)
 
DO t6 I15=1,N
 

16 A(II5)=A(15)/( I15)
 
WRITE4'I) (A(1L5),Ii5=1,N)
 

14 CCrI1NUE
 
WRITt(6,999)
 
RETURN.
 

ICOC hRITE(6,1010)
 
CALL EXIT
 

1001 MRITt(6,101t)
 
CALL EXIT
 

102 kRITE(6,I12)
 
CALL EXIT
 

998 FURPAT (IX,'IUPLL NLP'ER '13,' NCW EXECUTED. TOTAL EXECUTION TIME'
 

http:IF(IIO.NE.lb
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I ELAPSEC IN PINUTES IS ',FLO.3
 
999 FORPAT (Ihl,5X,N*ORMAL EXIT FRCM LINVRr ACCOMPLISHED
 
1010 FCRNAT(IX,'PRCCRANPERS ERHOR MESSAGE: ERROR IN READING DIRECT ACCE
 

ISS CEVICE FOR V MAIRIX.EXECUTION IERMINATED.********************'
 
2/,lX,12C(LF*),/)
 

1011 FCRMAI(LX,'PRCGRAMERS ERROR MESSAGE: ERROR IN READING DIRECT ACCE
 
15S DEVICE FCR A MATRIX USED TO FORM B MATRIX.EXECUTION TERMINATED'
 
2/,IX,120(t-*),/)
 

1012 FCRPAT(1X,'PRCGRAPERS ERROR MESSAGE: ERROR IN READING DIRECT ACCE
 
1SS CEVICE FOR A MATRIX USED TO AED CORRECTIONS TO.EXECUTION TERMI'
 
2/ ,X, -A E . , I (H ,/
 

REIURN
 
END
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C
 

C
 
C PATRIX INVERSE BY REFINEMENT.P.MOAGAN SEPTEMBER 1910
 

C THIS IS A DOUBLE PRECISION SUBROUTINE WITH 2 ENTRY POINTS FOR REFINING
 
C THE INVERSE LF A GIVEN MAIRIX AND ITS INVERSE.
 
C THE PAIN JCL 1UST PROVIDE TWO DISK WORK SPACES:UNITS IAND 2 . THESE
 
C WURK SPACbS SHCULC BE SUCF THAT TFE RECORD LENGTH EQUALS THE LENGTH
 
C OF A RCW. ALL CATA TRANSMISSLUN IS ACCORDING TO THE VARIABLE FORMAT
 
C RULES.
 
C DISK UNITS 3 AND 4 FOLD THE GIVEN MATRIX AND ITS INVERSE ACCORDING TO
 
C RULES ESTAELISLU FCR THE WORK SPACES.
 
C N IS DRCER OF VAIRIX
 
C VAX IS PAXIMUM NUPeER OF ITTERATICNS
 
C ACC IS ACCURACY LEVEL
 
C FRET IS A RETURN MESSAGE CODE: O,1t2
 
C
 

C
 

SU8RCUTIE REFINE[ N,WAX,ACCMRETNOP)
 
C THIS ENTRY POINT ALLOWS LCOPING WITHIN THE SUBROUTINE. DETAILED CUTPUT
 
C AFTER EACH STAGE OF TI-E CCHPUTATICNS.
 
C NCTE:IF hCP=1 THE PRCGRAM SWITCFES TO EFFICIENT VERSION OF SUBROUTINE
 

IPPLICIT RLAL *8 IA-H,O-ZJ
 
DIPENSION A(5),B(5),C(5)i0(5)
 
REtIND I
 
REWIND 2
 
REWIND 3
 
REWIND 4
 
IREP = 0
 
IF (NCF.EC.l) GO TC 716
 

2 REWIND 4
 
READ (4) H
 
REWIND 4
 
BE = 2(l)
 
NCCUNT = 0
 

I NCCUNT = NCOUNT + I
 
cc 11 1=1,h
 
READ (3) A
 
CC 12 11 =I,N
 
READ (4) B
 

C(II)=O.GO
 
UC 13 12 1I.N
 
CIII) = C(Il)tA(12)*C(12)
 

13 	CCNTINLE
 
12 	CENTINLE
 

REWIND 4
 
WRITE(2) C
 

11 	CCN'TINUE
 

http:C(II)=O.GO
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REWIND 2
 
REWIND 3
 
REWIND 4
 
WRITE(6,101)
 

101 FORrAT (IHI,'PROCUCT AD',//)
 
DO 700 I=I,N
 
RITE(6,I0I) I
 

READ (2) C
 
70C hRITE(6,102) C
 

REWIND 2
 
DO 	15 I=I,N
 
READ (2) C
 
DC 16 l1=1,N
 
CM[I) = - CIII)
 

16 CONTINUE
 
C(I) = C(I)+I.DO
 
WRITECI) C
 

15 CONTINUE
 
REWIND I
 

REWIND 2
 
DO 17 I=t,N
 
READ (1) C
 
WRITE (2) C
 
WRITE(8) C
 

L7 	CONTINUE
 
REWINo I
 
REWIND 2
 
REWIND 8
 
WRITE(6,105)
 

705 	FORNAT (IHI,'UNIT MATRIX - AD I,//) 
DO 706 I=IN 
WRITE(6,101) I 
RFAD (2) C 

706 	WRITE(6,102) C.
 
REWINC 2
 
OC 21 I=L,N
 
READ (4) 0
 
DC 22 I1=1,N
 
D(II)=O.CO
 
DC 26 12=1,N
 
READ (2) C
 

26 	A(I2)=C(It)
 
REWIND 2.
 
OC 23 12=l,N

23 D(II)=C([I)+8(I2)*A(I2)
 
22 	CUNTINUE
 

WRITE'() C
 
21 	LGNIINLE
 

REWIND I
 
REWINU 2
 

http:D(II)=O.CO
http:C(I)+I.DO


REhINO 3
 
REWINC 4
 
hRIyc(6,709)
 

709 	FCRFAT (1H1,'C*(I-AC) 1).
 
DO 710 I=,N
 
WRITL(6,L01) I
 
READ (1) C
 

71C 	hRITE(6,102) C
 
REWINC I
 
DO 3D 1=Ih
 
READ (1) 6
 
READ (4) a
 
DC 31 It= I,N
 
B(II) =e( 1)4C{11)
 

31 	CONTINUE
 
WRITE(2) B
 

3C 	CCNTINLE
 
REWINC I
 
REWIND 2
 
REM1NO 4
 
DC 32 I=I,h
 
READ (2) C
 
WRITE(4) C
 

32 CCNT[NLF
 
REWIND I
 
REWINC 2
 
REWIND 4
 

C 	 A REFINEMENU IAS NCW BEEN ACCOMPLISHED
 
C 	 WRITE CUT 11- INVERSE
 

WRITE (6,1CO) NCCUNT
 
DC-35 I = 1,N
 
WRITE (6,LC1) I
 
READ (4) B
 
WRITE(6,IG2 ) (8(11),I1=1,N)
 

35 	CCNTINUE
 
REWINC 4
 
IF(NCCLNT.GT.PAX) GO TO 36
 
READC (4) b
 
861 = 2(1)
 
REWIC 4
 
IF I DABS(BB-O8T).LT. CABS(8845.C-14)) GO TO 36
 
be = eel
 

GC TC 1
 
36 UC 4C I =I,N
 

UlI) = 0."C
 
REAC (8) A
 

DG 4L Il=1,N
 
O(1) = C([) + CA S(A(I ))
 

41 CCNTINLE
 
4C LCNTINLF
 

http:DABS(BB-O8T).LT
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REWIND 8
 
APAX = C(l)
 
00 42 1 =l,N
 
IF I APAX.LT.C(l)) AMAX= CCI)
 

42 CONTINUE
 
DL 43 I=1,N
 
DCI) = 0.00
 
READ (4) A
 
DO 44 11=1,N
 
D(I) = C(I) + CABSCA(II))
 

44 CONTINUE
 
43 CONTINUE
 

BMAX = CBi)
 
DC 45 I=,N
 
IF ( BPAX.LT.Cil)) BMAX= D(l)
 

45 	CONTINUE
 
ACCUR = SPAX* AMAX*AMAXI(l.0O-AMAX)
 
IF ( APAX .GT. I.CG ) GO TO 600
 
IF I ACCUR.GT. ACC ) GO TO 601
 
WRITE(6,107) NCOUNT, ACCUR
 
FRET = 0
 
RETURN
 

601 	WRIIE(6,104) PAA,ACCURACC
 
IREP =IREP+i
 
IF(IREP.GE.2) GO TO 603
 
WRITE(6,105)
 
GO TC 2
 

603 	WRITE(6,
4 106)
 
MRET = 2
 
RETURN
 

60C 	WRITEC6,103)
 
FRET = 1
 
RETURN
 

C_
 
ENTRY REFIN (NPAXiACC;MRET,NOP) 

C IHIS IS A SINGLE ITT RArION REFINEMENT WITHOUT INTERMEDIATE-RESULTS. 
C 11S IS CQNSICERAeLY MORE EFFICIENT.TIMEWISE, THAN THE GENERAL VERSION. 

716'CG 711 I=1,N
 
REAC(4) 8
 
CC 	712 11=1,N
 
READ (3) A
 
C(II)=C.DC
 
DC 713 [2=1,N
 

713 C(II)=CIL)4+AtI2)*EII2)
 
712 CCNTINLE
 

REjIND 3
 
wRITE(2) C
 

711 CONTINUE
 
REWIND 2
 
REWIND 3
 

http:C(II)=C.DC
http:ACCUR.GT


113 

REWIND 4
 
DO 721 I=1,N
 
READ(4) 6
 
00 722 II=1,N
 
0(11)=0.CO
 
REA(2) A
 
00 723 12=1,N
 

123 D(1l)=C(II)+A(I2)*8{12)
 
722 CONTINLE
 

REINO 2
 
WRITL(I) 0
 

721 CONTINUE
 
C
 

REWIND I
 
REWIND 2
 
REWIC 4
 
DO 730 I=L,N
 
READ (4) A
 
READ(l) B
 
DO 731 I1=1,N
 

731 UC11)=A(Il)+A(l1)-8(I1)
 
WRITEC2) C
 

73C CONTINUE
 
REkIND I
 
REWIND 2
 
REWIND 4 
CC 735 I=I,N 
READ (2) E 

735 bRITE(4l C 
REWIND 2 
RE61ND 4 
MREI=5 
RETURN 

IOC FCRAT CIHI,//,lX,'lHE REFINED INVERSE MATRIX:ITTERATION NUMBER', 
113,/,LX,47(LF ),///) 

101 FURFAI (//,5XtmRCW NUmBERIA4,/,5X .--------------- ) 
102 FCRrAr (-IX,5EC25.6 ) 
103 FOR'AT (Ihl,//,X,.EXECUTIUN TERINATING: REFINEMENT NOT POSSIBLE, 

ITRY A NEW FIRST CUESS,/,IXt3(l-)) 
104 FORFAT (lht,//,IX,'FAILEC FO REA)- DESIRED ACCURACY IN SPECIFIED I
 

ITTERATICNS.tIX,57(IH-),//,5X,'ITTERATIONS SPECIFIED =1,13,/,5X t C
 
2CMPUFEC ACCURACY =',1G2.3,/,5X.'SPECIFIED ACCURACY =, G12.3,//I)


105 FCRrAT (//,5X,'REPEAF MOtE INVOKEC:ITTERATION COUNIER RESET TC ZER
 
10.' 1
 

106 FLRVAT (//,5XICCNVERGENCE TOO SLCbimRE-EXAMIN SITUATION',/,5X'EXEC

= )
IaTICN TERMINAIING.
 

107 FCRNATC //,SX,'SAIISFACTORY CONVERGENCE OBTAINED:'. /,SX,34(lH*)"
 
It//,bX,.NUBMER OF ITTERAIIONS MADE ',12,/,5X,'ATTAINED ACCURACY WA
 
2S 's G12.3
 
ENC
 

http:0(11)=0.CO
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C 
C A NON CESTRUCTIVE INVERSE SUBROUTINE ESPECIALLY SUITED TO POSTIVE 
C DEFINITE PATRICES. MAXIFUM SIZE OF THIS VERSION IS 1GO. 
C 

IPPLICIT REAL *8 (A-HO-Z) 
DIPEkSICN A(U,M),8([IM),PCIOC) 
N=I-1 

Do 1 J=Ii 
DC I K=I,I 

I BtJ,K) =A(J,K) 
DO 5 K= 1,1 
OC 2 J= i,iI 

2 PhJ) = 8(1JIjI)/B(hI) 
P(P) = I.C /B(IL) 
DC 4 L =I,N 
00 3 J =I,tI 

3 8(LJ) = L(L+I,J+1)- DIL4I,1}*P(J) 
4 B(L,P) =-BCL+1t I )*P(tA) 
DO 5 J =I,P 

5 B(I,J) = P(J) 
RETURN 
END 



APPENDIX F
 

ANALYTICAL FORMATION OF THE B MATRIX
 

(a) Introduction
 

The most difficult task in photogrammetric adjustments is the
 

formation of the B matrix, more correctly termed the partial
 

matrix of the functions with respect to the unknown parameters.
 

function
 
parameter
 

B.
 

The mathematical functions under consideration, equation set (2.5),
 

are conveniently condensed to the following form:
 

X =x -f = F 
p 0 W~ 1 

o V 2Yp 

where U = NI(X -X - V-t)
 

V = N2(X -X - V*t)
 

W = N3(X - X - V-at) 

-2
W
-U-U
-f W
Then 1 

parameter - L aparameter bparameter 

-f W IV V _W W-2
 

aparame-ter L parameter aparameter
 

for those cases where x, Yo, and f can be considered known.
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Thus, the problem reduces to the formation of
 
~F1 	 aF2

F I a&nd b
 

aparameter aparameter
 

where the parameters are:
 

camera attitudesJ I 3, w 

attitude rate change: I . , 

photostation: X,0 Yo0 Z0 

and photostation velocities: V , Vy, Vz
 

(b) The Partials for the Translational and Linear Velocity Com

ponents of the photostation 

Differentiation of U = N (Xp - X - Vat) yields: 

I- 1 -n= 	 :-tnll
 
N r = -nl2 AU N 1 - t = -at

sn N0*10au 
 1- 01 

u 	 11 1 0]At = -At-n2Eo 

n= 	 N -1 = -n12 -T 01 

N,li-I =-n 13N 0 At = -Aton 
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Differentiation of V N (X X. m Vat) yields 

~2p 0
 

=-n. V = N 0}tt= -&ten3xo 2 -1 2 ] 21 

-r 01 
V N2V 1 = 
 N 2. &t = -At.n2 

Ty 2 -1 ="n22 2[t L 
av =N -fl=-n 2 3 a = -tn2 
zo 2[Vz =-3N1 _
N2 I 
 V2 0A 


Differentiation of W = N3(X - X0 - V.At) yields 

0 =N 3 nN 3 OAt=-t On31 [
NX 0 -n3=
 

1W N IW = N -1 at = - tn2 
- N33V V= i32 32 

0 * 03 

bw w=__ 

Z0= N 1 n = N [jAt = -Atn 3 3 -=-33 


Then, following the rules of differentiation established at the
 

beginning of this appendix, 

FI1 )F -f V-f F2 

2 - 21 + V)X - (-n +1 

W- 1 21=t-f '31lW31 W + 
IF1 -f 
 IF 2 f2
 

Y n2 32 ) a W 22 32 W 
0 0 

aF -f F
 

aZ0- 13 33 W 0 W 23 "33 W 



i8
 

ar 1 -At (- U F2 -At~f (-V 

w-(r-n +.n (-n + n -).SVx = 31 W aVx W 21 31W 

= F1 F2 

a0 ax0 
3F1 =-At-f (n + n2 IF 2 -At-f (22+ V 

Vy W 12 32 W v----y- 32 W
n22 


'IF, bF 2 
A.?
0 
 At-. 0
a 


F1 = -t W (-n 1-3 + n33 w ) 4Vz -otf ( 
+ '33 W )aV z n F2 W -23 n
 

zz
 
F 1 A F2
 

= tt 
- F 

(c) The Partials for the Attitude and Attitude Velocity Components
 

of the Photostation.
 

The derivation of the rotation terms is analQgous to that of
 

the translational and linear velocity components.
 

It is again convenient to use the compressed notation of
 

Section (a) of this appendix. That 'is,
 

= N(X - X t - VAt) 

= R*R*AtR.TRi VUw~ t(X - X - VAt) 
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Hence =V (X - X - Vt)
 

It is also necessary, therefore, to form similar expressions for:
 

N N IN N IN
I-9-, T, ,-U 

This can be greatly simplified by using skew symmetric matrices.
 

The differentiation is as follows:
 

N R11
 

S= T "Rt-R 4.R&t W -R t =3
 

IN R*t R R. *Rt'.R.
 

WPk4= &t 0 t'
 

= At • 33.R-Nt "R • R t "R "Rw
 t
 

= At•Rt P. RT . At R 'Rat R2. t
 

= &t.QI'N where Q1 = RitP3"RT 

- R*R*At, Rt. *RR
 
~ 2*1cM 4 *M 

t 
t'~WAt
 

= R*O* .*R .t 
 R "R
 

T T *. .Rl*
 

P2 R t 4t W WAt
 

- N where =R ?_4.2. T2
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RR 
 Et'R 
 -
 " *R I&
t
 

at-Rkp*tR *RAt 2*ORvt 
=At-R'R~kt-R@ "R• • .- .R &tOWR•R2"RRa*P.R .R . 

T 
"R . '- " 

=at * t2 w P2 -R W t 

~~ T u 

=
t.N.Q where q RT tRT 2 R 'at
 

= R R g&t'r-R "*IR 

= RI tsAP 24At'RwPgR' At 

R**R* At *Rat, &Ct (,AtRO*R't*R W ,1,, 

NQ4 where Q4 = RTt-P1 R .t
 

=Rk*R*AEAttR R towo = at.N.Pl 

Hence the partials of U, V and W with respect to the attitudes
 

and attitude rate changes are:
 

-p P1 (X --Po0 - VAt) -aftV ot*Q 1 *N*(X - X - VAt) 
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Un
 

av = . -(X X - VAt) At.N.Q(X - vt) 
vw 

° 

V=N.Q4 .(X p  X° - VAt) @ =A..IX o-Vt
 

av cV 
aw 
 w
 

Substitution of these expressions into the following quotient
 

rule formulae will yield the appropriate terms.
 

F1 -ft nU uW\ 2 =ft ~V :v 

)F1 -fl aF -f V W
 

IF -f (ii ulw\ F :-f IV y aw
U 

Fi -w U Uw )F -w W Vw2-
=f_ W -f yF2
 

__ -f l_ bF2 -f [IV V W~
 

iTW-i =7 ,: XZW59ao 
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(d) Partials Associated with the Survey Data
 

It is also necessary to form the partials with respect to the
 

ground coordinates for application in the total block situation.
 

The same quotient rules that were used to determine the partials
 

with respect to the unknowns are used here with the same notation. 

Differentiation of U = N (X - X - VAt) yields 

0 1p 

bU = N1 0 1 

au1?1 
p [0] 3
 

-- N 0 n1
 

Differentiation of V = N2 (Xp - X - VAt) yields 

v0
 

- N2 
 = 21 

N2 22 

z Nf 0 n23
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Differentiation of W = N3(X - X0 - VAt) yields 

Sp- N3 0 n3 

-Z Nn1= 
 32
 

Iz= N3 3]1

p 

and hence
 

f (n -1n UF) 2 -f n) 
X p -- 11 31 W ) - W 21 31 W 

- -) 2 -f V 

-1-f -uF 

Y- W-(n12 n2W -f (n n )12 32 W)W 22 32 W 
p p 

-)F1 - F 2 
- Yo 
 - Yo
 

-f -f IF2V
 
S (n ) - _ (n n )WZpf 13 33 W azp w 23 33 W 
-F I -F 2
 

a.o1,%
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