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ABSTRACT
 

Electrically propelled spacecraft designs for a Comet Halley Ren­

dezvous mission, using thermionic reactors as the electrical power
 

source were investigated. Four spacecraft designs were prepared. The
 

four spacecraft designs include two external-fuel reactor concepts
 

(heat pipe cooled didde and independently pumped diode) providing 120
 

kWe at 40 VDC to the thrust subsystem and two internal-fuel reactor
 

concepts (10 VDC and 40 VDC) providing 120 kWe to the thrust subsystem.
 

The impact of integration with the Space Shuttle, the use of U-233
 

fueled reactors, alternate EM pumps and main radiator systems is assessed
 

for each of the four spacecraft designs.
 

The three 40 VDC spacecraft designs are nearly the same size
 

(1.14 m diameter by 20 m to 22 m long) with specific weights from
 

26 to 30 kg/kWe. The 10 VDC spacecraft design is 27 m long, with a
 

specific weight of about 33 kg/kWe. Integration into the Space Shuttle
 

adds 2 kg/kWe to the 40 VDC spacecraft designs, and 6 kg/kWe to the
 

10 VDC spacecraft. The use of U-233 fueled reactors reduces the speci­

fic weight by 5 kg/kWe for a spacecraft design except the 10 VDC
 

internal-fuel concept.
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EXTERNAL FUEL REACTOR SPACECRAFT DESIGN
 

This section provides the design definition of the external fuel
 

reactor spacecraft as summarized inVol. I, Section 4. The external fuel
 

reactor characteristics, on which all the external fuel reactor space­

craft designs are based, are to be presented. The design definitions
 

of the baseline external fuel reactor spacecraft are presented. The
 

first baseline design utilizes a reactor where an independently pumped
 

liquid metal loop cools each diode. The second baseline spacecraft
 

utilizes a reactor whose diodes are independently cooled by means of
 

heat pipes.
 

Alternate powerplant design studies are presented. These pertur-"
 

bations to the baseline designs, include launch by the ALS to low
 

Earth orbit, the use of DC EM pumps in the primary coolant loop, and
 

replacing the single loop radiator with a radiator of four independent
 

coolant loops, one of which is redundant in rejecting reactor waste
 

heat.
 

1.0 EXTERNAL FUEL REACTOR CHARACTERISTICS 

Characteristics of the external fuel reactor as used in this 

study have been provided by JPL (Reference 1-1). The core-length 

external fuel element concept is illustrated in Figure 1-1. Each
 

thermionic cell consists of a fuel element which surrounds a cylin­

drical collector separated from the emitter by a 10 mil gap. Inside
 

the collector is the liquid metal coolant. This configuration is
 

different from the flashlight reactor concept in that the fuel is
 

external to the emitter.
 

Performance of the external fuel reactor is based on a maximum
 

emitter temperature of 20000K, a collector temperature of 10000K, and
 

a cesium-reservoir temperature of 6200K. Emitter area of each fuel
 
2
element is maintained at 111.5cm. Reactor efficiency is presented in
 

Figure 1-2 and voltage per number of fuel elements in parallel is
 

presented in Figure 1-3. These data are presented as a function of
 

thermal power per TFE, and for collection temperatures of 10000K,
 

1150 K, and 1300 K. For this study, diodes of a four-diode group are
 

connected in parallel after which all groups are connected in series
 

to provide a total reactor output voltage of approximately 40 volts.
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The independently pumped diode (IPD) reactor and heat pipe cooled
 

diode (HCD) reactor design points are indicated in Figures 1-2 and
 

1.3, where the IPD reactor consists of 288 TFE's and the HCD reactor
 

consists of 280 TFE's. The IPD design requires eight more TFE units
 

to meet the increased coolant pump work requirements, as discussed in
 

paragraph 2.0 below.
 

Selection of the optimum number of TFE's within the reactor of
 

each baseline spacecraft design was accomplished with the aid of
 

Figure 1-4, which describes net reactor voltage and reactor waste
 

heat as a function of number of TFE's for a particular reactor elec­

trical output power. For the IPD reactor spacecraft, the design
 

point of 288 TFE's corresponds to reactor output voltage of 38.2 v
 

and reactot -waste heat of 1175 kw. This configuration provides the
 

required 135 kWe of reactor electrical output power. Similarly, a
 

280 TFE configuration of the heat pipe cooled diode reactor provides
 

130 kWe of electrical power, which corresponds to reactor output
 

voltage of 38.7 v and reactor waste heat of 1110 kWt . The preceding
 

design points were selected such that for each baseline spacecraft,
 

the sum of reactor weight and heat rejection system weight is mini­

mized. Since half of the electrical power is extracted from each end
 

of the reactor and then joined in a common bus, net reactor voltage.
 

as indicated in Figure 1-4 for the IPD reactor, and in-Figure 1-5
 

for the HCD reactor, is the product of voltage per TFE's in parallel
 

(Figure 1-3) and the number of parallel diode sets and then diminished
 

by the internal reactor circuit voltage loss given by:
 
-5
6V = ITFE x NTFE x (0.855 + 0.124 x N p) x 10


where: 

LV = interconnection voltage loss, v 

ITFE = total thermionic fuel element current, amp 

number of thermionic fuel elementsNTFE 


N = number of thermionic fuel elements connected in parallel 

Reactor weight and core radius and single TE diameter are shown
 

in Figure 1-6 as a function of number of TFE's for the baseline U-235
 

fueled external fuel reactor. The reactor radius is 11.7 cm greater
 

than the indicated core radius.
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Although the baseline spacecraft designs are based on reactors
 

fueled with U-235, an alternative spacecraft design has been generated
 

for a reactor fueled with U-233. Basically, the external fuel -reactor
 

performance characteristics- are identical for U-233 and U-235 fueled
 

reactors; however, for the same number of U-233 fueled TEE's reactor
 

weight, core radius, and TFE diameter is given in Figure 1-7.
 

2.0 INDEPENDENTLY PUMPED DIODE,REACTOR SPACECRAFT
 

This section describes the external fuel reactor spacecraft in
 

which each reactor diode has its own independent coolant tube and the
 

coolant is circulated by a multi-ducted DC EM pump. A design layout
 

of the IPD reactor spacecraft is presented in Figure 2-1. A detailed
 

weight breakdown for the baseline IPD reactor spacecraft is presented
 

in Table 2-1. The total spacecraft weight at launch is 8690 kg.
 

The launch vehicle adapter and shroud are jettisoned during launch,­

shortly prior to injection to Earth-escape. The initial spacecraft
 

weight at-Earth escape is as follows:
 

e Propulsion System 3552 kg
 

* Mercury Propellant 3660 kg 

* Low Thrust Propellant Inerts 110 kg 

*- Net Spacecraft 662 kg 

The low thrust propellant weights, which include a ten percent ullage
 

allowance, and the allowable net spacecraft weights were determined
 

from mission analysis for the baseline 940-day Comet Halley rendezvous
 

mission.
 

The total power delivered to the thrust system is the guideline
 

value of 120 kWe, which is the power level on which propulsion system
 

specific weight, U , is based. About 95 percent of the 120 kWe is
 

provided to supply power to the 4000 VDC ion engine screen grid, and
 

about 5 percent supplies power to miscellaneous ion engine loads.
 

After allowances of 5.5 kWe power loss from the low voltage cable,
 

7.5 kWe required by the DC EM pump and the other power requirements
 

associated with al the 120 We spacecraft designs, a total of 135.7
 

kWe reactor output power is necessary to supply 120 kWe to the thrust
 

system and subsequently, 100 kWe to ion engine beam power. Power
 

balance and distribution for the IPD reactor spacecraft is given in
 

Figure 2-2.
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FIGURE 1-7 
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TABLE 2-1
 

WEIGHT SUMMARY
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FIGURE 2-2 

EXTERNAL FUEL INDEPENDENTLY PUMPED DIODE SPACECRAFT - 120 kWe 
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Spacecraft subsystem components are discussed in the following
 

sections.
 

2.4 POWER SYSTEM
 

The power system o'f the IPD reactor spacecraft is comprised of the
 

reactor, heat rejection, tield, and EM pump low voltage cable subsystems.
 

Total weight of the power system is 2714 kg.
 

2.1.1 Reactor Subsystem
 

Performance characteristics of the external fuel reactor are pre­

sented in Section 1.1. For the baseline IPD reactor spacecraft 135.7 kWe
 

of reactor output electrical power are required in order that 120 kWe
 

are supplied to the thrust system. Selection of the number of TFE's
 

that would provide the required reactor outnut power for a minimum weight
 

condition has been presented on Figure 1-4. For the IPD reactor space­

craft 288 TFE's supplies 135 kWe (168.8 kWe BOL) at a voltage level of
 

approximately 38.2 V and heat rejection of 1175 kWh. This data corres­

ponds to'the external fuel reactor characteristics discussed in Section
 

1.1 for-reactor diode emitter temperature of 20000K and diode collector
 

temperature of 10000K. The curves of Figure 1-4 are for a particular
 

power requirement where only the number of TFE's has been varied. Since
 

groups of 4 TFE's are connected in parallel and the groups subsequently
 

connected in series, the total number of TFE's must be a multiple of
 

four'. A decrease in the number of TFE's from the baseline value of 288
 

to 284 reduces reactor weight, but there is a more significant increase
 

in reactor waste heat generated, hence, required radiator area. Con­

versely, an increase in the number of TFE's from the baseline value to
 

292 causes a larger increase in reactor weight while the reactor waste
 

heat rejection rate does not decrease appreciably.
 

Characteristics of the external fuel reactor used for the IPD space­

craft is presented in Table 2-2. Reactor size and weight have been
 

obtained from the data on Figure 1-6 in Section I.I. Reactor weight
 

for the IPD reactor spacecraft is 1410 kg, total reactor diameter includ­

ing core and reflectors is approximately 0.85 m, and the diameter of
 

each TFE is 3.4 cm.
 

*In addition, in establishing a good symmetric reactor design, certain
 

numbers of TFE's are preferrable. For this study, the final adjustment
 

to one of these numbers was not made; however, the influence on the final
 

design will be small.
 

2-9
 



TABLE 2-2
 

EXTERNAL FUEL REACTOR CHARACTERISTICS FOR 

IPD REACTOR SPACECRAFT 

PARAMETER VALUE 

REACTOR OUTPUT POWER CAPABILITY
 

BOM 170 kWe
 

EOM 135 kWe 

OUTPUT VOLTAGE 38.2
 

EFFICIENCY 13.4 % 

NUMBER OF TFE'S 288 
36.5 w/cm2 

DIODE THERMAL POWER 

DIODE EMITTER TEMPERATURE 20000K
 

DIODE COLLECTOR TEMPERATURE 1000°K
 

CESIUM RESERVOIR TEMPERATURE 620 K 

TFE DIAMETER 3.4 cm 

CORE RADIUS 31.5 cm 

REACTOR RADIUS 43.2 cm 

REACTOR WEIGHT 1410 kg 
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2.1.2 Shield Subsystem
 

In accordance with the established guidelines for this study,
 

payload and power conditioning electronics have been shielded to'neutron
 

and gamma integrated dose limits of 1012 nvt (En> 1 Mev) and 107 rids,
 

respectively. Data on which both the neutron and gamma shields are
 

based have been obtained -from Reference 2, as a result of analyses
 

conducted by Oak Ridge National Laboratory.
 

2.1.2.1 Neutron Shield
 

The neutron shield consists of a lithium hydride stainless steel
 

honeycomb enclosed in a stainless steel can. The lithium hydride'per­

forms most of the required neutron shielding with additional shielding
 

neutron attenuation contributed by the mercury propellant. For the
 

940-day Comet Halley rendezvous mission, which is characterized by
 

666 days of low thrust propulsion time, the neutron shield requirements
 

as a functfon of separation distance between the reactor and radiation-­

sensitive equipment are presented in Figure 2-3. Since the separation
 

distance for.the IPD reactor spacecraft as well as the other 120 kWe
 

spacecraft is-4.9 m, 51 cm of lithium hydride is required. Consequently,
 

the'neutron shield subsystem is composed of 393 kg of lithium hydride
 

and 126 kg of stainless steel, about three percent of the lithium
 

hydride by volume,
 

Based on the neutron shield heating relationships employed in Vol. I, 

Reference 3-4, no auxiliary, active cooling of the shield is required 
0
 

in- order.-to maintain the shield temperature below 812 K. Heat is con­

ducted from the frontal face of theshield by the lithium hydride and
 

stainless steel components to the outer surface of the shield where it
 

is radiated directly to space.
 

2.1.2.2 Gamma Shield
 

The primary gamma shielding for the IPD react6r spacecraft is
 

provided by the mercury propellant located in two 1.14 m diameter tanks
 

that are positioned on either side of the thruster bay. The cylindrical
 

geometry 6f'26.4 cm thickness is required to provide the necessary gamma
 

shadow shield, and the dual tanks are required to maintain coincidence
 

of the center-of-gravity with the center-of-thrust throughout the mis­

sion for the side thrust spacecraft configuration.
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FIGURE 2-3 
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For the 940-day Comet Halley rendezvous mission, baseline space­

craft diameter was selected such that initial propellant thickness is
 

adequate to meet the gamma shielding requirements. Therefore, the need
 

for permanent, heavy gamma shielding, such as tungsten or depleted
 

uranium, has been eliminated. Figure 2-4 shows the permanent gamma
 

shielding requirements as a function of spacecraft diameter for the
 

940-day Comet Halley rendezvous mission.. Typical of the weight penal­

ties potentially associated with permanent gama shielding, it is noted
 

that a spacecraft diameter increase to 1.7 meters would require about
 

one centimeter of tungsten permanent gamma shielding. This would
 

weigh 430 kg and constitute a weight penalty of about 3.6 kg/kWe at
 

the-120 kWe power level.
 

In order that tungsten permanent gamma shielding is not required
 

for the baseline spacecraft, a spacecraft diameter of 1.14 m was
 

selected. As shown in paragraph 2.1.3, a diameter of.1.14 m allows
 

sufficient space for the IPD reactor and also does not unduly constrict
 

the diameter of the 288 tubes which comprise the main heat rejection
 

subsystem.
 

2.1.3 Heat Rejection Subsystem
 

The heat rejection subsystem of the IPD reactor spacecraft consists­

of the primary radiator and the multi-ducted DC EM pump. As indicated
 

in Figure 2-2, the primary heat rejection subsystem is designed to
 

reject 1175 kwt from 288 TFE's. Because the reactor has been designed
 

for 20 percent diode losses, the primary radiator must be capable of
 

operating at the more severe end-of-life thermal conditions.
 

2.1.3.1 Main Radiator
 

The basic characteristic of the IPD reactor is that each of the
 

reactor diodes has its own, independent coolant tube, which is located
 

in the center of the reactor diode and ektends the entire length of the
 

diode. The coolant tubes emerge from the reactor, travel the length of
 

the radiator, pass through the EM pump, and return to the reactor. The
 

coolant lbop scheme for the IPD reactor spacecraft is represented in
 

Figure 2-5, where for clarity only three adjacent sets of four diodes
 

are shown. Through the entire circulatory system each set of four diodes
 

is at a different potential than the other 71 sets because df their
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FIGURE 2-4 

PERMANENT GAMMA SHIELD REQUIREMENTS, 
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FIGURE 2-5 
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series electrical connection and must, therefore, be electrically
 

isolated from the other sets. A technique for accomplishing this is
 

presented in Figure 2-6.
 

The cylindrical main radiator has 1.14 m diameter and consists of
 

576 stainless steel tubes. An iterative procedure was employed to
 

determine coolant temperature drop through the main radiator and opti­

mum tube configuration that results in a minimum weight configuration.
 

For radiator inlet temperature of 1033 0K, coolant temperature drop of
 

167 K is required in order to maintain a reasonable level of coolant
 

pumping power. This resulted in a NaK-78 flow rate-of 0.0277 kg/sec.
 

Then, based on these temperature conditions, optimum channel height
 

for a rectangular cross-section of constrained channel width was
 

obtained from the data of Figure 2-7. Channel wall thickness of
 

0.063 mm corresponds to the required meteoroid protection for 0.95
 

overall radiator survival probability and for an allowance of 43 tube
 

failures from the total number of 288 tubes. Optimum tube dimensions
 

as indicated in Figure 2-7 are 0.92 mm width by 1.0 mm height. The
 

associated pressure drop through the radiator 
is approximately 5 x 104
 

n/m2 . The pump subsystem weight that was calculated for Figure 2-7
 

is discussed in the following paragraph.
 

2.1.3.2 DC EM Pump
 

The baseline IPD reactor spacecraft employs a multi-ducted DC EM
 

pump to circulate NaK-78 through the coolant loops. The primary require­

ments on pump design are that each of the coolant loops be pumped
 

independently and each set of 4 loops be electrically insulated from
 

contiguous sets. A parametric design study, Reference 4, has been
 

completed as part of the spacecraft design study and is based on the
 

concept identified by JPL (Reference 3).
 

The DC conduction pump design that was considered in this study
 

project is arranged so that all diode cooling passages would be individu­

ally pumped, and the many pumps arranged with the iron in the form of a
 

torus for best overall compactness.
 

A DC conduction pump for liquid (alkali) metal operates by having
 

the DC current, which passes through the metal in the duct passage,
 

react with the electro-magnetic field in the adjacent pole pieces like
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FIGURE 2-7
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In the design considered in the
conductors in the rotor of a DC motor. 


study, the field winding is in series with the duct connections so the
 

same current goes through both the windings and the metal in the duct.
 

An example layout for the pump design selected for the mechanical
 

study is shown in Figure 2-8. Each pump duct includes four channels
 

(to four diodes) and two electrically insulated ducts are included in
 

each gap with liquid metal assumed to flow in opposite directions for
 

2-7). Proper arrangement of
flux compensation purposes (See Figure 


connecting ducting can be employed to provide flow through the reactor
 

Outside diameter of the pump assembly is 1.14 m;
in only one direction. 


it is 16 cm thick (not counting tube connections), and inside diameter
 

is 84 cm. All coil ends and duct electrical connections are brought to
 

the outside edge of the ring for final interconnection and power lead
 

attachment. The pump ducts are supported from insulated strips joining
 

the outer shell and inner shell. Gaps between the core pieces and
 

ducts permit differential thermal expansion between magnet cores,- the
 

ducts and the outer shell. If required, cooling of the cores may be
 

accomplished, as shown, by a coolant duct passing through the cores.
 

For cooling the magnet windings it is proposed to wind the coils on
 

helically grooved alumina pieces which conduct the I2R coil loss to
 

Details of the duct selected for the layout, involving
the cooled iron. 


four channels, are shown in the enlarged view of the drawing (Figure
 

2.8).
 

A series of pump designs was determined by means of an iterative
 

process which provided optimization with respect to the basic variables
 

of channel, fluid velocity, duct dimensions, flux density, and a non­

dimensional "slip" parameter, for the above ranges of low, pressure,
 

and number of channels per duct (made up of channels) carrying fluid
 

and current in opposite directions to obtain compensation of the pump
 

current mmf effect upon the magnetic field.
 

Each duct, consisting of "n" parallel channels, is electrically
 

For this study each duct is considered
in series with one magnet coil. 


to be supplied by a single group of thermionic diodes connected in
 

parallel, providing a potential of 0.7 volts. Of course, the duct
 

groups could all be electrically connected together in series and
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supplied by the total output of the diodes. However, this would create
 

opeiating problems if a channel or related radiator tube were to leak
 

and lose the NaK.
 

In the pump design calculation, the following assumptions were
 

made:
 

" 	Pump Hydraulic Loss: This includes acceleration and diffusion
 

loss plus viscous friction loss in pumping duct. Viscous loss
 

is 	calculated using Hartmann No. and Reynolds No. Acceleration
 

and diffusion loss were assumed to total .25 of a velocity
 

head (Reference 5).
 

* 	Fringing Flux: This is determined by two flux plots in planes
 

at right angles. It is determined that the flux density in the
 

magnet is within ,saturation limits for the material (Hipercio 27).
 

Results of the pump design calculations are shown in Figure 2-9
 

through Figure 2-14 where pump weight, efficiency and current per
 

pump duct are presented as a function of heat rejection subsystem
 

pressure drop, number of channels is parallel; and flow rate. The
 

weight of the pumps includes magnet core, coils, and pump ducts.
 

Structural weight, which adds to the EM weight, varies from 10-percent
 

(8 	ducts) to 18 percent (4 ducts) of the total pump weight.
 

Estimated pump efficiency reaches a maximum of 13 percent with
 

eight -channels and flow rate of 65 cc/sec. Estimated pump duct current
 

as shown ih Fielires 2-13-and - 2-14. There is little change with
 

number of channel and low flow rates, but there is a definite effect
 

with the higher flow of 65 cc/sec.
 

The pump is designed for a potential of 0.7 volts across one duct
 

with four channels. The design also assumes that each duct is connected
 

t6 a diode group, and not all in series to the total output voltage
 

which is about 40 v. This design requires further study because bring­

ing power to each duct will involve extensive high current wiring, but
 

will permit one or several ducts to cease functioning if liquid metal
 

is lost in any of"them without shutting down the entie pump.
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The effect of changing the voltage across the pump from the 0.7
 

volt design value was assessed. For the case of 45 cc/sec per channel,
 

four channels in parallel, and a 4 psi pressure rise, the pump efficiency
 

is 4 percent at 0.7 v. Decreasing the voltage to 0.5 volts raises the
 

efficiency to 6 percent. This is accomplished by reducing the fraction
 

of the voltage drop across the windings by increasing their size. As
 

a result, the weight of the pump is increased by a factor of 1.6.
 

Similarly, at 0.3 volts a pump efficiency of 10 percent can be achieved
 

at a factor of four penalty in pump weight.
 

The DC EM pump for the baseline IPD reactor spacecraft is based on
 

a 0.55 v diode output and subsequent pump voltage input of 0.35 v,
 

which corresponds to a 0.61 m separation distance between the IPD
 

reactor and EM pump. For a total heat rejection subsystem pressure
 

drop of approximately 4.8 x 104 n/m2 , a pump weight of 110 kg, pump
 

efficiency of 11 percent, and total pumping power of 7.5 kWe are
 

required. Pump electrical power requirement consists of-power to
 

operate the pump, pump low voltage cable losses, and losses of power
 

being conducted through the NaK coolant loop.
 

In addition, optimum separation distance between the IPD reactor
 

and EM pump was determined by a trade-off between pump low voltage
 

cable losses and pumping power required to overcome electrical losses
 

conducted across the NaK-78 coolant loop. Figure 2-15 presents the
 

results of the EM pump location analysis. Although the minimum weight
 

condition occurs at a separation distance of about 0.2 m, a separation
 

of 0.6 m was permitted to allow for tube and electrical connections
 

between the reactor and-pump.
 

Evaluation of the ducting that connects the IPD reactor and the
 

multi-ducted EM pump has been conducted and is discussed in Reference
 

6. This effort includes experimental delineation of the ducting
 

arrangement and a preliminary assessment of fabrication feasibility.
 

A one-half scale model of the IPD reactor/EM pump assembly was con­

structed in order to provide a better understanding of the ducting
 

requirements (Reference 6).
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Construction of the model demonstrated that assembly and welding
 

of the ducts to the reactor and the EM pump will be the most difficult
 

part of the fabrication sequence. The EM pump diameter should be
 

as large as possible to maximize the space available for weld
 

operation. it may b desirable to break the EM pump d6wn into several
 

smaller units to'provide increased fabrlcation volume, although this
 

would result -in increased weight for the total EM pump system.
 

Although special fabrication and welding techniques may be required,
 

the assembly does appear to be practical. The welding of the ducts
 

which directly connect the EM pump and the reactor to the radiator may
 

be simplified by fabrication of the EM pump and the TFE units with a
 

portion of this duct in place. This could permit these welding opera­

tions to be accomplished at some distance from the EM pump and reactor
 

where more separation between the ducts can be provided. The duct
 

connections between the EM pump and the reactor remain the most diffi­

cult due to their close proximity and the limited'space.- It may be
 

possible to alleviate this to some degree by increasing the spacing
 

between these components. Furthermore, two sample ducts were made up
 

by -forming thin walled stainless steel tubes into rectangular cross
 

sections and then brazing and EB welding four of the parts together.
 

The general construction appears quite feasible.
 

2.1.4 Electrical Subsystem
 

The electrical subsystem of the IPD reactor spacecraft is comprised
 

of low voltage cables that supply power from the IPD reactor to the DC
 

EM pump and the reactor actuator cables. Since the EM pump is powered
 

directly from the reactor leads, there is no need for intermediate
 

hotel power conditioning.
 

The pump low voltage cable from which 2.55 kWe are lost weighs
 

47 kg. In comparison, the reactor control drum actuator cable weights
 

and associated power loss are negligible.
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2.1.5 Support Structure
 

- A structural analysis was performed to evaluate additional 

structure for the power system of the IPD reactor spacecraft to with­

stand launch loads imposed by the Titan 111D7/Centaur. A lateral load 

factor of 1.5 g and axial load factors of 7 g's in the aft direction
 

and 2.5 g's in the forward directions have been established for the
 

launch vehicle (Vol.l, Ref.3-6). By analyzing the sheer and bending
 

moment distribution along the spacecraft, the IPD reactor spacecraft
 

is supported axially and laterally at the bottom section of the neutron
 

shield and laterally at the base, or payload end, of the spacecraft
 

(Figure 2-1).
 

The additional structure required by power system components is
 

listed in Table 2-3. Total structure weight for the power system is
 

60 kg.
 

2.2 THRUST SYSTEM
 

The thrust system, which transfers reactor output power and con­

verts it into propulsive energy, is comprised of the ion engine, high
 

and low voltage cable, and main power conditioning subsystems as well
 

as associated support structure. The thrust system of the IPD reactor
 

spacecraft weighs 838 kg.
 

2.2.1 Ion Engine Subsystem
 

The ion engine subsystem consists of 30.thrusters, 24 of which are
 

operating at any one time, and the thrust vector control. The ion
 

engine subsystem, being common to all the spacecraft designs, is dis­

cussed fully in Volume I, Section 3.5 and is shown in detail in Figure 3.5.
 

Weight of the ion engines and complete thrust vector control system is
 

213 kg.
 

2.2.2 Low Voltage Cables
 

The low voltage cables transport 135.7 kWe at 38.2 v reactor out­

put power to the main and special power conditioning units and the
 

payload. The cable material is aluminum except at the reactor outlet
 

where copper is employed because of its higher temperature capability.
 

Figure 2-1 shows the location of the low voltage cables on both sides
 

of the spacecraft as they extend to the power conditioning radiator
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TABLE 2-3 

SUPPORT STRUCTURE FOR POWER SYSTEM OF 

IPD REACTOR SPACECRAFT 

SPACECRAFT STRUCTURE SIZE MATERIAL WEIGHT 
COMPONENT cm kg 

Stringers 5x2.5x.13 Stainless 25.0 
Steel 316 

Main Frames 7.6xl.9x.16 9.7 
Radiator 

Attach- 33 
ments 

Tubes 2.5x.12 6.3 

Fittings --- 6.7 

Shield/Shroud Fittings --- 9.0 
Support 

Power System Total 60.0 
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where they branch off to the individual units. The low voltage cable
 

weighs 140 kg and radiates I2R losses of 5.5 kWe directly to space.
 

2.2.3 High Voltage Cables
 

The high voltage cables transport 104.4 kWe of 4000 VDC power from
 

the main power conditioners to the ion engines. Total weight of the high
 

voltage leads is 3 kg.
 

2.2.4 Main Power Conditioning
 

The electrical power system developed for the externally fueled
 

thermionic reactor is shown in Figure 4.2-16. Power is delivered from
 

the two reactor leads at a potential of 40 volts, and is distributed
 

directly to the auxiliary loads, as well as the main power conditioners
 

without being transformed. The main power conditioners convert the
 

40-volt input to 4000-volt DC for the screen electrodes of the ion
 

thrusters. With individual power conditioners for each thruster,
 

compensation for engine arcing is provided within the control circuit
 

of each conditioner.
 

The main power conditioner design resulted in a circuit which is
 

91.6 percent efficient with a specific weight of 2.23 kg/kWe. The
 

component electrical losses and device weight are presented in Tables
 

2.4 and 2.5, respectively.
 

The electrical system design for the externally fueled reactor
 

system is based upon each ion thruster screen being supplied by a
 

separate power conditioner. There are 30 thruster-power conditioner
 

combinations on the spacecraft, six of which are spares.
 

A power conditioner consists of an inverter to change the low
 

voltage DC output of the thermionic reactor to squarewave AC, a trans­

former to increase the voltage, and a rectifier to convert the alternat­

ing current to direct current.
 

The output of the reactor is controlled to maintain 40 VDC regard­

less of load. The thruster screens require approximately 4 kWe at
 

4000 VDC. Therefore, the power conditioner is required to switch about
 

100 amperes within the inverter.
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FIGURE 2-16 
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Primarily because of the ratio of input voltage to switch voltage
 

loss, the basic inversion circuit for the power conditioner is selected.
 

to be a parallel transistor configuration. The circuit becomes highly
 

efficient through the use of a transistor developed under JPL Contract
 

952043 and NASA Contract NAS7-400. This high current, low saturation,
 

silicon device has a typical forward saturation loss of less than 0.09
 

.volts for a collector current of 20 amperes.
 

In order to convert a relatively low voltage to a very high volt­

age at a high power, two approaches are usually considered. One method
 

is to convert in one module all the power required by the load and pro­

vide current sharing among parallel switching transistors. The other
 

method provides multiple modules with individual transformers and few
 

(if any) parallel transistors. Then the transformer sec6ndaries are
 

connected in series to obtain the 4000 volt output. The major advant­

age of the latter method is that current in sharing in the transistors
 

is forced. With the same current flowing in the in-series secondaries,
 

all primary winding, and hence the transistors, must carry identical
 

currents. Interwinding capacitance and inductance is minimized, allow­

ing faster switching time, hence increased transistor efficiencies.
 

Two important undesirabilities are identified. The first is the pro­

blem of circuit operation when a single transistor fails causing the
 

failure of. one module. The other drawback is the increased weight for
 

the individual transformers as compared to a single large one. Because
 

of the emphasis on weight and reliability, a single transformer multiple
 

transistor approach is selected.
 

To meet the necessary current handling capability and to increase
 

the overall efficiency six silicon transistors are switched in parallel.
 

Vol.1, Ref.2-I:discusses the ramifications of parallel operation of
 

transistors. Basically, the proper control of device characteristics
 

during manufacture, by device selection, and possibly by special circuit
 

techniques, up to 10 power transistors may be successfully operated in
 

parallel.
 

Primary output voltage regulation is controlled by pulse width
 

modulation of the individual converters. An input filter consisting
 

of an inducer and capacitor, is included in the circuit to function as
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TABLE 2-4
 

MAIN POWER CONDITIONER
 
EFFICIENCY SUMMARY 

NOMINAL 4kWe UNIT, 40 V INPUT/4 KV OUTPUT 

COMPONENT LOSSES, WATTS
 

60.0 *INPUT FILTER 


100.0
POWER TRANSFORMER 


TRANSISTOR
 
CONDUCTION 3.45
 
SWITCHING 93.41
 
BASE LOSSES 3.54
 

TOTAL 100.4
 

65.0
CONNOL CIRCUIT 


12.0
RECTIFIERS 


30.0
OUTPUT FILTER 


367.4
TOTAL 


91.6 PERCENT
EFFICIENCY 


*INDUCTOR IN THE INPUT FILTER LIMITS RIPPLE TO +5 PERCENT. INCREASE OF ALLOWABLE
 

RIPPLE TO +50 PERCENT, AS EMPLOYED ONLY INTHE-1O VDC INTERNAL FUEL REACTOR PRO-

PULSION SYSTEM DESIGN PERMITS ELIMINATION OF THE INDUCTOR, AND THEREFORE EFFI-

CIENCY INCREASES FROM 91.6 PERCENT TO 93.0 PERCENT. THIS TRANSLATES TO A 16.7
 
PERCENT REDUCTION IN THE POWER CONDITIONING RADIATOR AREA AND WEIGHT, OR ABOUT
 
0.13 kg/kWe REDUCTIONS IN PROPULSION SYSTEM SPECIFIC WEIGHT DUE TO THE DECREASED
 
RADIATOR AREA.
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TABLE 2-5
 

MAIN POWER CONDITIONER
 
WEIGHT SUMMARY
 

NOMINAL 4 kWe UNIT, 40V INPUTI4V OUTPUT
 

COMPONENT WEIGHT, KG
 

INPUT FILTER 

INDUCTOR 0.772 * 

CAPACITOR 0.091 

POWER TRANSFORMER 2.230
 

TRANSISTORS (MODIFIED W 1401) 1.680
 

CONTROL CIRCUIT 0.454
 

RECTIFIERS 0.091
 

OUTPUT FILTER
 

INDUCTOR 0.136
 

CAPACITOR 0.862
 

WIRE, HARDWARE, ETC. 2.590
 

TOTAL WEIGHT 8.904
 

DC/DC CONVERTER SPECIFIC WEIGHT, KG/kWeOUT 2.23
 

CONVERTER AND RADIATOR SPECIFIC WEIGHT, KG/kWeOUT 3.50
 

*INDUCTOR IN THE INPUT FILTER LIMITS RIPPLE TO + 5 PERCENT. INCREASE TO
 
+ 50 PERCENT, AS EMPLOYED ONLY IN THE 10 VDC INTERNAL FUEL REACTOR PROPUL-

SION SYSTEM DESIGN PERMITS ELIMINATION OF THE INDUCTOR. THE MAIN PC WEIGHT
 
DECREASES TO 2.03 kg/kWe OUT. THIS CHANGE WOULD RESULT IN A 0.20 kg/kWe
 
DECREASE IN SPECIFIC WEIGHT FOR ALL PROPULSION SYSTEMS BASED ON 40 VDC
 
REACTORS.
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an energy storage device during the conduction cycle.
 

Voltage transformation in a ratio of 1:100 is done with C-cbre
 

selection material.
 

A full wave bridge rectifier assembly provides rectification for
 

the 4000 volt alternating current. Because of the high voltage six
 

800 V diodes are connected in series in each leg of the bridge.
 

Output filtering limits the screen bus ripple to approximately
 

ten percent.
 

2.2.5 Power Conditioning Radiators
 

The power conditioning radiator for the IPD reactor spacecraft
 

is a series of 5 bays of 6 panels each, one for each power condition­

ing unit. The power conditioning radiator rejects waste heat at a
 

maximum surface temperature of 353 0K. Also, at the forward end of the
 

power conditioning section there is a narrow radiator from which waste
 

heat generated by the special ion engine power conditioners is rejected.
 

In order for the main power conditioning radiator to reject 9.6 kWt
 

and the special power conditioning, 0.6 kWt, 5.5 m of radiator length
 

are required. A radiator fin thickness of 0.25 cm and surface emissi­

vity of 0.88 has been assumed. The total power conditioning radiator
 

weight is 96 kg.
 

2.2.6 Support Structure
 

In conjunction with defining the structural requirements of the
 

power system as outlined in Section 2.1.5, additional structure to
 

maintain the integrity of the thrust system during the launch phase of
 

the mission has been specified. Table 2-6 lists the required struc-.
 

tural elements of the thrust system. Total structural weight in the
 

thrust system is 80 kg.
 

2.3 PROPELLANT SYSTEM
 

The mercury-propellant and propellant tank and distribution system
 

are the major components of the propellant system. For the 940-day
 

Comet Halley rendezvous mission as synthesized inVol. I, Sec. 3.2, the
 

total mercury propellant loading plus a 10 percent ullage allowance is
 

3660 kg. As shown in Figure 2-1, the mercury propellant is divided
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TABLE 2-6 

SUPPORT STRUCTURE FOR 

THRUST SYSTEM OF IPD REACTOR SPACECRAFT 

SPACECRAFT WEIGHT 

COMPONENT STRUCTURE MATERIAL kg 

Skin and 47.0 

Thruster Stringers 
Aluminum 

Bay 

Beams " 7.3 

Stringers Beryllium 16.0 

Power 

Conditioning Frames 3.03.0 
Radiator 

Clips " 0.7 

Base Fittings and ,, 6.0-

Support Two Struts 

ThrustTrst Total 80.0 

System2 
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into two tanks on either side of the thruster bay. Since the mercury
 

is utilized for gamma shielding, a constant axial thickness of mercury
 

should be maintained throughout the mission. The propellant is stored
 

in a metal bellows and subsequently expelled through the feed lines by
 

action of gas pressure on the bellows. Also, since the center-of-gravity
 

of the spacecraft must be coincident with the center-of-thrust through­

out the mission, each tank must contain a nearly equal volume of mercury
 

throughout the mission.
 

The two cylindrical propellant tanks and feed line system weigh
 

110 kg. Therefore, the total propellant system weighs 3770 kg.
 

2.4 NET SPACECRAFT
 

A weight of 662 kg and a power level of I kWe have been allocated
 

for net spacecraft in accordance with the mission analysis conducted
 

for the 940-day Comet Halley rendezvous mission. The net spacecraft
 

includes not only the science experiments and instrumentation package,
 

but also the communications equipment and spacecraft guidance and
 

control. For the IPD reactor spacecraft it has been assumed that prior
 

to start-up of the low thrust propulsion system the payload sections
 

can be cantilevered about 1 m-axially from the aft end of the space­

craft. This adjustment is necessary to insure that the center-of­

gravity of the spacecraft lie in the center of the thruster bay at the
 

start of the mission.
 

2.5 LAUNCH COMPONENTS
 

This section describes those components that accomplish the
 

integration of the spacecraft to the launch vehicle. A shroud is
 

employed to protect the 1.14 m diameter, 20 m long spacecraft during
 

the launch phase, and an adapter connects the spacecraft to the launch
 

vehicle (Figure 2-1). In addition, the aft section of the shroud is
 

utilized to transmit bending loads from the spacecraft, past the Centaur
 

upper stage, and to the main Titan structure.
 

After peak heating and maximum dynamic pressure, but before Earth
 

escape is achieved, the forward, cylindrical end of the shroud and the
 

Centaur shroud cover are jettisoned. The corresponding shroud penalty
 

is only 0.08 kg of payload per kg of shroud weight. However, the
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middle, conical-shaped shroud remains attached to the spacecraft until
 

Earth escape velocities are achieved, then, it is jettisoned. The
 

penalty.for this shroud section is the actual weight of the shroud.
 

For the IPD reactor spacecraft the total flight shroud penalty is 706 kg.
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3.0 HEAT PIPE COOLED DIODE REACTOR SPACECRAFT
 

This section is a discussion of the baseline external fuel reactor
 

spacecraft in which each of the reactor-diodes is independently cooled
 

by a heat pipe located in the center of the diode. The heat pipe extends
 

the axial length of the diode and emerges from the reactor core where a
 

heat exchanger thermally couples the heat pipes to the primary heat rejec­

tion coolant loop. The reactor core is split into two axial sections
 

with heat Pipes emerging from the diodes at both ends of the reactor.
 

The two heat exchangers, one at each end of the reactor, are then mani­

folded to produce a single coolant loop through the main radiator.
 

A design layout of the heat pipe cooled diode (HCD) reactor space­

craft is presented in Figure 3-1. The 21.9 m long-spacecraft has the
 

same basic configuration as the IPD reactor spacecraft. The major
 

design changes from the IPD reactor spacecraft include:
 

- Beryllium/Stainless steel tube and fin primary radiator 

e NaK-78 coolant circulated by AC pumps
 

* Hotel power conditioning required for AC pumps
 

.Furthermore, a detailed weight summary of the-HCD reactor spacecraft
 

presented i# Table -3-1. The launch vehicle lift-off requirement of
 

8411 kg consists of a 657 kg flight shroud weight penalty in addition
 

to the following nuclear electric propulsion -spacecraft components at
 

Earth escape:­

o Propulsion System 3322*kg 

* Mercury Propellant 3660 kg -

" Low Thrust Propellant Inerts- 110 kg
 

" Net Spacecraft 662 kg
 

The low thrust propellant weight, which includes a ten percent ullage
 

factor, and the net spacecraft weight has been specified by the 940­

day Comet Halley rendezvous mission analysis ( Vol. I, Sec. 3.2).
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TABLE 3-1 

WEIGHT SUMMARY 
BASELINE HCD EXTERNAL FUEL SPACECRAFT 

COMPONENTS WEIGHT, KG 

PROPULSION SYSTEM 3322 

POWER SYSTEM 2490 

REACTOR 1390 
HEAT REJECTION 512 
NEUTRON SHIELD 519 
HOTEL POWER CONDITIONING 14 
HOTEL POWER CONDITIONING RADIATOR 5 
PUMP LOW VOLTAGE CABLE 2 
STRUCTURE 48 

THRUST SYSTEM 832 

THRUST ARRAY 213 
POWER CONDITIONING
POWER CONDITIONING RADIATOR 

306
96 

LOW VOLTAGE CABLE 134 
HIGH VOLTAGE CABLE 3 
STRUCTURE 80 

PROPELLANT SYSTEM 3770 

PROPELLANT 3660 
TANKS AND DISTRIBUTION 110 

NET SPACECRAFT 662 

FLIGHT SHROUD WEIGHT PENALTY 657 

LAUNCH VEHICLE PAYLOAD REQUIREMENT 8411 



fgp. TFRAME)-1-OT RM 

FIGURE 3-1A 

HEAT PIPE COOLED DIODE
 
EXTERNAL FUEL REACTOR SPACECRAFT
 

DESIGN DETAILS
 

PRIMARY RADIATOR SECTION THRUSTER BAY SECTION P. C. RADIATOR SECTION 

6IT EM D ES CRIPT ION 

1. FEED LINE PRIMARY RADIATORI 
2. FEED HEADER IPRIMARY RADIATORI 

3. PiJIMARY RADIATOR 
4. MANIPOLD (TO HEADER) 

T.ON4THRUSTER 
. ION THRUSTERSUPPORT STRUCTURE 

7. LWVOLTAGE CABLES 
S. TIqRUSTER BAY SUPPORT STRUCTURE 
9. E4AMPLE MERCURY FLOW CONTROL SYSTEM 

I 10. LAUNCH SUPPORT STRUCTURE 
11. MAIN POWER CONDITIONING MODULE 
12. PqWER CONDITIONING RADIATOR 
13. STIFFENING RING 
14, REACTOR REXTERNAL FUJEL) 
15. REACTOR CONTROL ACTUATORS 
16, COLANT PRESSURIZATION TANK 
17. ACCUMULATORS 
18 EIMPUMPS , 

19. NEUTRON SHIELD 
20. REACTOR INLET LINE 
21. REACTOR OUTLET LINE 
22. RETURN LINE PRIMARY RADIATOR) 

INSTALLATION AND EQUIPMENT GALLERY -REACTOR 
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The electrical power balance and distribution for the HCD reactor
 

spacecraft is shown in Figure 3-2. Consistent with the other space­

craft designs, the electrical powet tequirements are based on the value­

of 120 kWe power input to the thrust system. Approximately 95 percent
 

of the 120 kWe supplies power to the 4000 VDC ion engine screen grid
 

and the remaining 5 percent supplies power to the miscellaneous ion
 

engine loads. The distribution of power throughout the HCD reactor
 

spacecraft is nearly identical to that for the IPD reactor spacecraft.
 

The only differences are that 5.1 kWt radiates from the low voltage
 

cables, and 2.9 kWe is required for AC pump operation in the HCD reac­

tor spacecraft. Consequently, 130.7 kWe (162.5 kWe, BOL) of reactor
 

output power are required to provide 120 kWe to the thrust system.
 

3.1 POWER SYSTEM
 

The power system of the HCD reactor spacecraft includes the reactor,
 

neutron shield, main radiator, AC pumps, pump low voltage cable, and'
 

the hotel power conditioning. Total weight of the power system is
 

2490 kg.
 

3.1.1 Reactor Subsystem
 

Characteristics of the HCD reactor are based on the performance
 

characteristics of the external fuel reactor as presented in Section
 

I.I. HCD operating conditions correspond to those selected for the
 

IPD, i.e., diode emitter temperature of 2000 K and collector tempera­

ture of 1000 K.
 

Optimum number of TFE's required to provide 130.7 kWe of reactor
 

output power at a minimum weight was determined from Figure 1-5.
 

The HCD reactor spacecraft design point is characterized by 280 TFE's,
 

which generate 1110 kWt of reactor waste heat and supply 130.7 kWe of
 

output power at 38.7 v. Decreasing the number of TFE's from the design
 

point value increases heat rejection system weight more significantly
 

than the associated decrease in reactor weight. Conversely, an increase
 

in the number of TFE's from the design point causes the reactor weight
 

to increase more than the associated decrease in heat rejection sub­

system weight.
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FIGURE 3-2 

EXTERNAL FUEL HEAT PIPE-COOLED DIODE SPACECRAFT - 120 kWe 
POWER BALANCE AND DISTRIBUTION 
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Characteristics of the external fuel reactor which powers the HCD
 

reactor spacecraft are listed in-Table 3-2. The baseline HCD reactor
 

design configuratidn,'based on data-from-Figure 1-5 is defined by a
 

weight of 1390 kg; reactor diameter of 0.86 m, and individual TFE dia­

meter of 3.7 cm.
 

3.1.2 Shield Subsystem
 

In accordance with the established guideline for this study,
 

payload and power conditioning electronics has been shielded to neutron
 
12 7
 

and gamma integrated dose limits of 10 nvt (En > 1 Mev) and 10 rads,
 

respectively. Data on which both the neutron and gamma shields are
 

based have been obtained from Reference 2, as a result of analyses
 

conducted by Oak Ridge National Laboratory.
 

Design of the neutron and gamma shielding for the HCD reactor
 

spacecraft is identical to that for the IPD reactor spacecraft and is
 

discussed fully in paragraph 2.1.2:
 

3.1.3 Heat Rejection Subsystem
 

The heat rejection subsystem of the HCD reactor spacecraft includes
 

the main radiator, an AC pump, and two heat exchangers on either side
 

of the reactor that thermally couple the reactor diode heat pipes and
 

the main radiator. Reactor waste heat of 1110 kWt is rejected to space
 

by the heat rejection subsystem, which weighs 512 kg. Since the reac­

tor has been designed to accommodate 20 percent diode losses, the maih
 

radiator is capable of operating at the more severe end-of-mission
 

thermal load.
 

3.1.3.1 Main Radiator
 

Unlike the IPD reactor spacecraft, the main radiator is not
 

directly coupled to the HCD reactor and is, therefore, not affected
 

by the independently cooled diode characteristic of the reactor.
 

Achieving a minimum weight system is the primary criterion in select­

ing a radiator design. The main radiator has a single coolant loop and
 

consists of beryllium fins and stainless steel tubes. Main radiator and
 

heat exchanger characteristics were determined on the basis of minimum
 

total weight of the main radiator, heat exchanger, and pumping power
 

weight penalty. For the design point reactor coolant outlet temperature
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TABLE 3-2 

EXTERNAL FUEL REACTOR CHARACTERISTICS 
FOR HCD REACTOR SPACECRAFT 

PARANETER VALUE 

Reactor Output Power Capability 

BOM 162.5 kWe 

EOM 130.0 kWe 

Output Voltage 38.7 

Efficiency 13.4% 

Number of TFE's 280.0* 

Diode Thermal Power 
2

35.5 w/cm 

Diode Emitter Temperature 20000K 

Diode Collector Temperature 1000°K 

Cesium Reservoir Temperature 620°K 

TFE Diameter 3.7 cm 

Core Radius 31.1 cm 

Reactor Radius 42.8 cm 

Reactor Weight 1390 kg 
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of 1033°K and corresponding temperature drop of 28°K through the heat
 

exchanger, main radiator length and weight and primary coolant pressure
 

drop are shown in Figure 3-3 as a function of main radiator coolant
 

temperature drop. At the point of minimum heat rejection subsystem
 

weight, the main radiator weighs 334 kg, is 10.2 m long,- has a
 

coolant pressure drop of approximately 3.3 x 104 N/m and temperature
 

drop of 167°K.
 

Optimum main radiator tube and fin bonfiguration is shown in
 

Figure 4.3-4 for overall meteoroid non-puncture probability of 0.95.
 

As a re'sult of the power system structural analysis, discussed in
 

paragraph 3.1.5, the actual main radiator fin thickness was increased
 

to 0.076 cm.­

3.1.3.2 Heat Exchanger
 

The heat exchanger is an integral part of the weight optimization 

process whereby minimum heat rejection subsystem weight is attained. 

Figure 3-5 shows heat exchanger weight as a function of temperature 

drop from the heat pipe to the radiator inlet. Assuming no contact 

resistance due to electrical insulation in the heat exchanger, the 

baseline design point of 280K temperature drop and corresponding heat 

exchanger weight of 42 kg has been selected. -

Potential zones of poor contact resistance for the radial conduc­

tion of heat out of the beat pipe which impact heat exchanger size and
 

weight, are between the insulator and the heat pipe and. therefore,
 

between the insulator and the metal tube which forms the wall of the
 

coolant channel. The geometry is shown in Figure 3-6. These
 

resistances can be minimized by brazing these two zones together.
 

The identification of' the braze material-, in terms of its compatibility
 

with the potential vacuum or liquid metal must be evaluated.
 

Another, but potentially more difficult techniqueis to employ a
 

'!shrink-fit" technique to joint the heat pipe with the insulator and,
 

similarly, the insulator-pipe assembly with the metal tube of the
 

coolant channel.
 

Thermal stress must also be considered. It is expected that it
 

will be important to match the coefficient,of thermal expansion of the
 

3-11
 



FIGURE 3-3
 

PRIMARY RADIATOR CHARACTERISTICS OF HCD
 
EXTERNAL FUEL.REACTOR SPACECRAFT
 

* HEAT REJECTION: 1110 kWt
 

* RADIATOR INLET TEMPERATURE: 10050K
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FIGURE 3-4 

MAIN RADIATOR CHARACTERISTICS
 
HCD REACTOR SPACECRAFT
 

1.8 CM o.69 CM 

1.06 CM DIA. 0.5-

PEAT REJECTION 1110 W t 

TEMPERATURE 

RADIATOR INLET 10050K 

COOLANT DROP 280K 

RADIATOR LENGTH 10.2 m 

RADIATOR DIAMETER 1.14 m 

NUMBER OF TUBES 70 
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FIGURE 3-5 

HEAT EXCHANGER CHARACTERISTICS FOR HCD 
EXTERNAL FUEL REACTOR SPACECRAFT 
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or other electri­

cal insulator. If the shrink fitfabrication is used, then the assem­

bly would tend to pull apart, and the thermal contact resistance would
 

adversely increase. For the moderate-temperature application, the
 

expansion coefficient of KOVAR (48 Fe-270o-25Ni) matches that of
 

alumina up to temperature levels of about 800 0K. Columbium would be
 

the choice for higher temperature application. Its expansion coeffi­

cient is similar to that of alumina.
 

metal construction material with that of the alumina 


The assembly of the heat exchanger niust provide for leak-tight
 

coolant channels, in the event that multiple, redundant cooling loops
 

are required. The preferred design is shown in Figure 3-6. This
 

concept minimizes the number of brazed joints, and provides a contin­

uous surface for good sealing of the insulator to minimize contact
 

resistance. However, internal braze repairs could not be accomplished
 

in this design, in the event of poor-braze joint.
 

3.1.3.3 AC Pump
 

The baseline HCD reactor spacecraft utilizes an AC pump to cir­

culate NaK-78 in the main radiator. The preference of AC pumps over
 

DC pumps is due mainly to the inefficient power conditioning and
 

extreme low voltage cable losses associated with the fractional volt­

age input requitred by the DC pump. The AC pump requires 2.6 kWe input
 

power and weighs 90 kg.
 

3.1.4 Electrical Subsystem
 

The electrical subsystem provides electrical power required by
 

the hotel components that operate the power system. In the HCD reactor
 

spacecraft the electrical subsystem consists of a power conditioning
 

unit, power conditioning radiator, low voltage cable connecting the
 

reactor and AC pump, and the reactor actuator drives. AC pumps were
 

selected over DC pumps because of the high power conditioning effi­

ciency and lower pump cable losses associated with the AC pump. The
 

hotel power conditioning weighs 14 kg, the power conditioning radiator
 

weighs 5 kg, and the pump cable weighs about 2 kg. For a hotel power
 

conditioning efficiency of 90 percent, the hotel power conditioning
 

radiator rejects 0.3 Kwt of waste heat.
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DIODE INDEPENDENT 
COOLING 
CHANNEL
 

METAL TUBE 

BRAZED JOINTS INSULATOR 
(ALUMINA) 

BASELINE DESIGN IS BASED ON SINGLE
 
HEAT EXCHANGER COOLANT CHANNEL.
 

MULTIPLE INDEPENDENT LOOPS CAN BE PROVIDED,
 

FIGURE 3"-6 

CONCEPTUAL DESIGN OF HCD SPACECRAFT HEAT EXCHANGEF 
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Weight and power loss of the cables that supply electrical power
 

to 'the reactor actuator'.drives are negligible.
 

3.1.5 Support Structure
 

Additional structure is required by the spacecraft power system
 

as a result of loads imposed by the Titan TID7iCentaur during the launch
 

phase of the mission. Definition of the launch environment is pro­

vided in Volume I, paragraph 3.4.
 

For each of the components of the power system, the structural
 

requirements are outlined in Table 3-3. Total additional structure
 

for the power system is 48 kg.
 

3.2 THRUST SYSTEM
 

The thrust system, which transfers reactor output power and con­

verts it into propulsive energy, is comprised of the ion engine, high
 

and low voltage cable, and main power conditioning subsystems~as well
 

as associated support structure. The thrust system of the IPD reactor
 

spacecraft weighs 838 kg.
 

3.2.1 Ion Engine Subsystem
 

The ion 'engine subsystem is identical to that presented in Voljume I,
 

Section 3.5,
 

3.2.2 Low Voltage Cables
 

The low voltage cables transport 130.7 kWe of 38.7 v reactor out­

put power to the main and special power conditioning units and the
 

payload.- The cable material is aluminum except at the reactor outlet
 

where copper is employed because of its higher temperature capability.
 

Figure 3-1 shows the location of the low voltage cables on both
 

sides of the. spacecraft as they extend to the power conditioning
 

radiator where they branch off to the individual units. The low
 

voltage cable weighs 134 kg and radiates 12R losses of 5.1 kWe
 

directly to space. The low voltage cables on the HCD reactor space­

craft are slightly lighter and have lower 12R losses than those for
 

the IPD reactor spacecraft primarily because of the lower current in
 

the HCD reactor spacecraft cables.
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TABLE 3-3
 

SUPPORT STRUCTURE FOR POWER SYSTEM OF
 

HCD REACTOR SPACECRAFT
 

SPCCAT III WEIGHT 
SPACECRAFT STRUCTURE MATERIAL WEG
 
COMPONENT •kg
 

Frames Beryllium 11.0
 

5.6
" 
Clips
Main 

Radiator
 

6.0
Skin 


Attachments " 3.4
 

Tubes~Stainless 6.3
 
Steel
 

Reactor
 
Truss
 

Frames and
 
Fittings 6.7
 

Shield/Shroud Fittings Aluminum 9.0
 

Support
 

Power System Total 48.0
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3.2.3 High Voltage Cables
 

The high voltage cables transport 104.4 kWe of 4000 VDC power
 

from the main power conditioners to the ion engines. Total weight of
 

the high voltage leads is 3 kg. The high voltage cable characteris­

tics are identical for both external fuel reactor spacecraft baseline
 

designs.
 

3.2.4 Main Power Conditioning
 

The main power conditioning is identical with that discussed in
 

paragraph 2.2.4 for the IPD external fuel reactor spacecraft.
 

3.2.5 Power Conditioning Radiator
 

The power conditioning radiators that reject the 9.6 kWt of
 

waste heat from the main power conditioning units and the 0.6 kWt of
 

waste heat from the special ion engine power conditioning units are
 

identical in both the external fuel reactor spacecraft baseline
 

designs. The HCD reactor spacecraft design layout, Figure 3-1,
 

shows that the power conditioning radiator section for the HCD reactor
 

spacecraft is 0.4 m longer than that of the IPD reactor spacecraft.
 

This radiator corresponds to the hotel power conditioning requirements
 

and is part of the electrical network of the power system (paragraph
 

3.1.3).
 

3.2.6 Support Structure
 

Support structure for the thrust system of the HCD and IPD reac­

tor spacecraft are identical and has been defined in paragraph 2.2.6.
 

3.3 PROPELLANT SYSTEM
 

The propellant system is common to all the 120 kWe spacecraft
 

baseline designs and is presented in paragraph 2.3.
 

3.4 NET SPACECRAFT
 

Net spacecraft is common to all the 120 kWe reactor spacecraft
 

baseline designs and is discussed in paragraph 2.4. For the HCD
 

reactor spacecraft relocations of a portion of the payload is not
 

required to meet the center-of-gravity constraints.
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3.5 LAUNCH COMPONENTS
 

The components required for launch of the external fuel reactor
 

spacecraft by a Titan IIID7/Centaur are similar for the two external
 

fuel baseline designs. The launch components are discussed in detail
 

in paragraph 2.5. The flight shroud weight penalty for the HCD
 

reactor spacecraft is 657 kg, which is less than that for the IPD
 

reactor spacecraft. The difference is accounted for by the 1 m fixed
 

payload extension boom that is employed for center-of-gravity adjust­

ment in the IPD reactor spacecraft. This 1 m extension pauses the IPD
 

reactor spacecraft to be longer for that section of the shroud which
 

is not jettisoned before Earth escape and, therefore, results in full
 

shroud weight penalty.
 

4.0 ALTERNATE EXTERNAL FUEL REACTOR POWERPLANT STUDIES
 

A study was conducted to determine the effect on spacecraft
 

design of four alternatives to the baseline powerplant. Perturba­

tions to the baseline designs of the external fuel reactor spacecraft
 

resulted in four alternate designs characterized by the following
 

assumptions:
 

* Launch by Advanced Logistics Shuttle (ALS)
 

* U-233 fueled external fuel reactor
 

* Use of DC EM pumps in primary heat rejection system
 

* Multiple coolant loops in main radiator
 

DC EM pumps are used in the IPD reactor spacecraft baseline design.
 

Multiple coolant loops are not compatible with the IPD concept.
 

Therefore, the last two alternative designs will not be considered for
 

the IPD reactor spacecraft. Each of the candidate alternate space­

craft designs will be discussed in the following paragraphs.
 

4.1 ALS-LAUNCHED EXTERNAL FUEL REACTOR SPACECRAFT
 

The two baseline external fuel reactor spacecraft have been
 

reconfigured f6r launch by the ALS. The major constraint imposed by
 

the ALS is that the usable payload bay is 18.3 m long, which is
 

shorter than either of the baseline external fuel reactor spacecraft
 

designs. An alternate to each baseline design has been generated by
 

constricting the spacecraft length to 18.3 m without folding the
 

spacecraft or relying on in-orbit assembly of the spacecraft sections.
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Basically, in order to shorten the spacecraft to the 18.3 length,
 

the spacecraft diameter is increased. Commensurate effects on the
 

spacecraft design include the following factors:
 

" 	Addition of tungsten permanent gamma shielding since increase
 

in spacecraft diameter diminishes effect of mercury propellant
 

gamma shield, for the fixed mercury propellant inventory.
as 


Increase in neutron shield weight as spacecraft diameter
" 


increases.
 

" Heat rejection subsystem weight decreases for the IPD reactor
 

spacecraft due to shorter radiator and longer coolant tube
 

diameter.
 

* 	Heat rejection subsystem weight increases for the HCD reactor
 

spacecraft, corresponding to a change in main radiator tempera­

ture conditions to effect part of the length constriction.
 

" 	Decrease in primary heat rejection subsystem pumping power due
 

to shorter main radiator.
 

a 	Low voltage cable weight and electrical losses decrease due tothe
 

shorter power conditioning radiator.
 

* 	Less support structure is required as a result of decreased
 

spacecraft length, and a less severe launch environment.
 

* 	Reactor output power decreases with decrease in pumping power
 

requirements and electrical losses.
 

* 	Propulsion systems specific weight increases because of the
 

dominating effect'of additional neutron and gamma shielding.
 

* 	Although spacecraft weight increases, total launch weight
 

decreases since no flight shroud penalty is required.
 

The thermal conditions of the main radiator of the HCD reactor space­

craft have been changed from the baseline radiator temperature drop of
 

167°K and a heat exchanger temperature drop of 28
0K, to an ALS design
 

radiator temperature drop of 1390K and heat exchanger temperature drop
 

of 	about 6°K. The weight penalty associated with the change in main
 

radiator conditions is less severe than that obtained by solely increas­

ing spacecraft diameter to meet the total spacecraft length limitations.
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The effect of spacecraft length on spacecraft diameter, propulsion
 

system weight, and propulsion system specific weight is presented in
 

Figure 4-1 for the IPD reactor spacecraft, and on Figure 4-2 for
 

the HCD reactor spacecraft. Also, a comparison of the baseline design
 

and the ALS launched design of the IPD reactor spacecraft is made in
 

Table 4-1. To reconfigure the baseline IPD reactor spacecraft for
 

launch by the ALS, the spacecraft diameter increases from 1.141m to
 

1.31 m, and the propulsion'system specific weight is increased by
 

2 kg/kWe. Reactor power output, however, decreases from a baseline
 

value of 135.7 kWe to 132.7 kWe, which primarily reflects the reduced
 

pumping power required for the ALS launch configuration. Since decreas­

ing spacecraft length accentuates the center-of-gravity problem in the
 

IPD reactor spacecraft; the net payload of the ALS-launched spacecraft
 

must be extended an additional 1.1 m from the aft end of the spacecraft.
 

Table 4-2 shows the comparison between the baseline and the ALS­

launched configurations of the HCD reactor spacecraft. The result of
 

constraining the baseline spacecraft design to a length of 18.3m is
 

the increase in spacecraft diameter from 1.14 m to 1.43 m which:results
 

in an increase in propulsion,system specific weight of 1.7 kg/kWe, and
 

a decrease in reactor output power to 130.4 kWe* Most of the length
 

decrease was accomplished by decreasing main radiator length by means
 

of increasing the baseline temperature drops across the main radiator
 

and heat exchangers. Therefore, power system weight increased 210 kg.
 

Also, to satisfy the center-of-gravity constraint, the net payload
 

must be boomed approximately one meter from the spacecraft.
 

4.2 U-233 FUELED EXTERNAL FUEL REACTOR SPACECRAFT
 

This paragtaph discusses the alternate spacecraft design that
 

results when U-235 fueled baseline reactors are replaced by reactors
 

fueled with U-233. Characteristics of the U-235 and U-233 fueled
 

reactor diodes are presented in paragraph 1.0. The only difference in
 

both external fuel baseline spacecraft designs that are fueled with
 

U-233 is that reactor size and weight are significantly less for the
 

U-233 fueled reactors.
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FIGURE 4-1 
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FIGURE '4-2 

EFFECT OF SPACECRAFT LENGTH ON EXTERNAL FUEL HCD 
REACTOR SPACECRAFT WEIGHT AND DIAMETER 
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TABLE 4 -I
 

IPD EXTERNAL FUEL REACTOR SPACECRAFT
 

Comparison of The Baseline Design with the ALS Launched Design
 

BASELINE ALS LAUNCHED 
PARAMETER DESIGN DESIGN 

Spacecraft Length, m. 21.0 18.3
 
Spacecraft Diameter, m. 1.14 1.31
 

Weights9 kg
 

Propulsion System 3552 3797
 
Power Subsystem 2714 2967
 
Thruster Subsystem 838 830
 

Propellant System - 3770 3770 
Net Spacecraft 662 662 
Flight Shroud Weight Penalty 706 NONE 

Launch Weight Requirement 8690 8229
 

Propulsion System Specific Weight,
 
kw/kWe 29.6 31.6
 

Electrical Power Usage, kWe
 

Gross Reactor Power Output 135.7 132.7
 
Spacecraft Loads 117.35. 115.53
 
Electrical-System-Losses 18.35 17.17
 

Payload Distribution
 

Percent in Forward Bay NONE NONE 
Percent at End of Spacecraft 100 100 

(Boomed 1.6m) (Boomed 2.1m) 
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TABLE 4 - 2 

HCD EXTERNAL FUEL REACTOR SPACECRAFT 

Comparison of the Baseline Design with the ALS Launched Design
 

PARAMETER 

BASELINE 

DESIGN 

ALS LAUNCHED 

DESIGN 

Spacecraft Length, m. 
Spacecraft Diameter,m. 

21.9 
1.14 

18.3 
1.43 

Weights, kg 

Propulsion System 
Power Subsystem 
Thruster Subsystem 
Propellant System 
Net Spacecraft 
Flight Shroud Weight Penalty 

2490 
832 

3322 

3770 
662 
657 

2700 
825 

3525 

3770 
662 

NONE 

Launch Weight Requirements 8711 7957 

Propulsion System Specific Weight, 
kw/kWe 

27.7 29.4 

Electrical Power Usage. kWe 

Gross Reactor Power Output 
Spacecraft Loads 
Electrical System Losses 

114.98 
15.72 

130.7 
114.74 
15.66 

130.4 

Payload Distribution 

Percent in Forward Bay 
Percent at End of Spacecraft 

NONE 
100 

NONE 
100 

(Boomed 1.0m)
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Comparison of the U-233 fueled reactor spacecraft with the base­

line design is shown in Table 4-3 for the IPD reactor spacecraft.
 

Utilization of U-233 fuel results in a decrease in reactor weight of
 

485 kg and corresponding decrease in propulsion system specific weight
 

of 4.1 kg/kWe. This decrease in weight near the forward-end of the
 

spacecraft necessitates a shift of 20 percent of net payload from the
 

aft payload bay to the forward bay, located between the aft mercury
 

propellant tank and the hotelpower conditioning radiator.
 

Similarly, comparison of the U-233 fueled reactor spacecraft with
 

the baseline-HCD spacecraft design is presented in Table 4-4. -A
 

reactor weight decrease of 480 kg and propulsion system specific weight
 

decrease of 4 kg/kWe is realized with a U-233 fueled HCD reactor. The
 

center-of-gravity constraint is satisfied by relocating approximately
 

30 percent of the net payload to the forward payload bay.
 

4.3 USE OF DC EM PUMP IN EXTERNAL FUEL REACTOR SPACECRAFT
 

Since the IPD reactor spacecraft baseline design utilizes a DC EM
 

pump in the primary heat rejection subsystem, only the HOD reactor
 

spacecraft where the baseline AC pumps are replaced by DC pumps will
 

be discussed as an alternate design; Replacing AC-pumps with DC pumps
 

results in the following changes in the spacecraft design:
 

* 	Heat rejection subsystem weight decreases primarily because
 

DC pumps are lighter than AC pumps for comparable performance;
 

* 	Hotel power conditioning unit and radiator weights increase.
 

because of the comparatively inefficient power conditioning
 

from 40 VDC to I VDC required by the DC pump.
 

" The pump low voltage cable is required to provide-pump power
 

at 	only I to 2 volts, and is therefore, heavy and results in
 

relatively high power losses.
 

" 	The main low voltage cable weight and power loss increases as
 

a result of the longer power conditioning radiator section.,
 

" 	Support structure increases with the longer spacecraft length.
 

* 	 Reactor output power increases primarily due to larger power 

conditioning and low voltage cable losses. 
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TABLE 4 - 3
 

IPD EXTERNAL FUEL REACTOR SPACECRAFT
 

Comparison of U-235 Fueled Baseline with the U-233 Fueled Design
 

PARAMETER 


Spacecraft Length , m. 

Spacecraft Diameter, m. 


Weights, kg
 

Propulsion System 

Power Subsystem 

(Reactor) 

Thruster Subsystem 


Propellant System 

Net Spacecraft 

Flight Shroud Weight Penalty 


Launch Weight Requirement 


Propulsion System Specific Weight, 

kw/kWe
 

Electrical Power Usage, kWe
 

Gross Reactor Power Output 

Spacecraft Loads 

Electrical System Losses 


Payload Distribution
 

Percent in Forward Bay 

Percent at End of Spacecraft 


BASELINE U-233 FUELED
 

DESIGN DESIGN
 

21.0 20.0
 
1.14 1.14
 

3552 3067
 
2714 2229
 
(1410) (925)
 
838 838
 

3770 3770
 
662 662
 
706 706
 

8690 8205
 

29.6 -25.5
 

135.7 135.7
 
117.35 17;35
 
18.35 18.35
 

NONE 20
 
100 80
 

(Boomed 1.0m)
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TABLE 4 - 4
 

HCD EXTERNAL FUEL REACTOR SPACECRAFT
 

Comparison of U-235 Fueled Baseline with the u-233 Fueled Design
 

BASELINE U-233 FUELED
 
DESIGN 
 DESIGN
 

Spacecraft Length, m. 21.9 21.9
 
Spacecraft Diameter, m. 1.14 1.14
 

Weights, kg
 

Propulsion System 3322 2842
 
Power Subsystem 2490 2010
 
(Reactor) (1390) (910)
 
Thruster Subsystem 832 832
 

Propellant System 3770 '3770
 
Net Spacecraft 662 662
 
Flight Shroud Weight Penalty 657 657
 

Launch Weight Requirement 8411 7892
 

Propulsion System Specific Weight, 27.7 
 -23.7
 

kw/kWe
 

Electrical Power Usage, kWe
 

Gross Reactor Power Output 130.7 130.7
 
Spacecraft Loads 114.98 114.98
 
Electrical System Losses 15.72 15.72
 

Payload Distribution
 

Percent in Forward Bay NONE 30
 
Percent at End of Spacecraft 100 70
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A summary of the comparison between spacecraft designs using an
 

AC pump and a DC pump is provided in Table 4-5. Using DC pumps in
 

the HCD reactor spacecraft increases spacecraft length from 21.9 m to
 

23.5 m, and increases propulsion system specific weight by 0.6 kg/kWe.
 

Reactor output must be increased from 130.7 kWe to 135.3 kWe. Reloca­

tion of 10 percent of the payload to the forward bay is also required.
 

Table 4-6 presents a comparison of some of the more detailed charac­

teristics of the AC and DC pumps and associated equipment. The primary
 

differences, as indicated in Table 4-6 are hotel power conditioner
 

efficiency, 90 percent for AC pumps and 60 percent for DC pumps, and
 

pump cable weight, 2 kg for AC pumps and 82 kg for DC pumps.
 

4.4 MULTIPLE RADIATOR LOOPS IN EXTERNAL FUEL REACTOR SPACECRAFT
 

The alternate design considered in this paragraph is the BCD
 

reactor spacecraft where the baseline single loop main radiator loop
 

has been replaced by four independent loops, one of which is redundant.
 

This perturbation was not made to the baseline IPD reactor spacecraft
 

because it is basically contrary to the IPD concept.
 

Determination of a minimum weight configuration was accomplished
 

by selecting those heat rejection characteristics that resulted in a
 

minimum combined weight of the heat exchangers, four-loop main radiator,
 

and pumping power weight penalty. Characteristics of the four-loop main
 

radiator are presented in Figure 4-3 as a function of temperature
 

drop through the radiator and through the heat exchanger. The single
 

loop heat rejection system design point is also indicated on Figure
 

4-3 for comparison. Replacing the single coolant loop with the four
 

independent coolant loops in the main radiator resulted in the follow­

ing changes to the baseline HCD reactor spacecraft:
 

" 	Heat rejection subsystem weight increases primarily due to the
 

increased radiator area associated with the redundant loop.
 

" 	Optimum heat exchanger temperature drop decreases from 280K
 

to 5.50K.
 

* 	Optimum main radiator temperature drop decreases from 167°K
 

to 139°K.
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TABLE. 4-5 

COMPARISON OF AC PUMP AND DC PUMP
 
CONFIGURATIONS OF HCD REACTOR SPACECRAFT
 

Parameters 


Spacecraft Length, m 


:-Spacecraft Diameter, m 


Spacecraft Weight, kg
 

Propulsion System 


Power System 


Thrust System 


Propellant System 


Net Spacecraft 


Flight Shroud Penalty 


Total Launch Weight 


lPropulsion System Specific 


Weight kg/kWe
 

!Electri6al Power Distribution,
 

kWe
 

Reactor Power Output 


Spacecraft Loads 


Electrical Losses 


Payload Distribuition
 

Percent in Forward Bay 


Baseline Design Using
 
Design DC Pumps
 

21.9 	 23.5
 

Lit 1.14
 

3322 I 3391 

2490 12538 

832 . 853 

3770 3370 

662 662 

657 730 

8411 8553 

27.7 	 28.3
 

130.7. 	 135.3
 

114.98 	 115.07
 

15.72 	 20.23
 

0 	 10
 

Percent at End of Spacecraft 100 	 40
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TABLE 4-6 

EM PUMP COMPARISON 
HCD REACTOR SPACECRAFT 

PARAMETER 


PROPULSION SYSTEM
 

SPECIFIC WEIGHT, kg/kWe 


LAUNCH WEIGHT, kg 


SPACECRAFT LENGTH, m 


REACTOR OUTPUT POWER, kWe 


POWER TO PUMP, kWe 


PUMP WEIGHT, kg 


HOTEL POWER CONDITIONER
 
WEIGHT, kg 


HOTEL POWER CONDITIONER1
 
EFFICIENCY, PERCENT 


PUMP CABLE WEIGHT, kg 


AC PUMP DC PUMP. 

27.7 28,3' 

8411 8553 

21.9 23.5 

130.7 135.3 

2.9 6.8 

80 21 

14 20 

90 60 

2 82 



FIGURE 4-3 

ALTERNATE HEAT REJECTION SYSTEM,
 
FOR HCD REACTOR SPACECRAFT
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* 	Hotel power conditioning weight increases slightly as a result
 

of increased pumping power required.
 

Comparison of the baseline design and the design based on multiple
 

radiator loops is presented in Table 4-7. For this alternate HCD
 

reactor spacecraft design, propulsion system specific weight increases
 

0.3 kg/kWe, and required reactor output increases to 131 kWe. To com­

pensate for the heavier forward end of the spacecraft, the net payload­

is boomed 0.3 m from the spacecraft.
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TABLE 4-7
 

COMPARISON OF BASELINE AND MULTIPLE RADIATOR LOOP
 
CONFIGURATIONS OF HCD REACTOR SPACECRAFT
 

PARAMETER BASELINE MULTIPLE RADIATOR
P DESIGN LOOP DESIGN 

22.9
 

Spacecraft Diameter, m 1.14-


Spacecraft Length, m 21.9 


1.14
 

Spacecraft Weight, kg
 

Propulsion System 3322 - 3359 

.Power System 2490 2527 

Thrust System 832 832
 

Propellant System 3770 3770
 

Net Spacecraft 662 662
 

Flight Shroud Penalty 657 657
 

Total Launch Weight 8411 
-8449
 

Propulsion System Spehific 27.7 28.0
 

Weight, kg/kWe
 

Electrical Power Distribution
 

kWe
 

Reactor Power Output 130.7 131
 

Spacecraft Load 114.98 115.26
 

Electrical Losses 15.72 15.74
 

Payload Distribution
 

Percent in Forward Bay 0 0 (Boomed
 
Percent at end of Spacecraft 100 100 0.3m)
 

Heat Rejection Subsystem
 

Heat Exchanger T, OK 167 139
 
Main Radiator T, OK 28 5.5
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