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STABLE LONGITUDES FOR 12 HOUR
a

ECCENTRIC ORBIT SATELLITES

Carl A. Wagner

Geodynamics Branch

Trajectory Analysis and Geodynamics Division

ABSTRACT

The accelerated longitude drift regimes of eccentric 12 hour orbits are con-

sidered, due to the resonant geopotential. These quasi-stationary orbits are

under investigation at the N.A.S.A. for large p p vload earth surveillance space-

craft in the small applications technology satellite (SATS) program. Inclinations'

near 'critical' are especially attractive because of their possible long term sta-

bility, and these are examined in detail. 'Stable' equator crossing longitudes

for these satellites are found as functions of the argument of perigee. As long

as the argument of perigee is between :L100 0,  these 'stable' longitudes lie within

a narrow range. Maximum 'east-west' station keeping requirements for these

satellites at non equilibrium positions are in the range of .3 to 3 m/sec/yr.

Presented at: The First Goddard Astrodynamics and Geodynamics Conference;
Greenbelt, Maryland, October 1971
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INTRODUCTION

Among the most attractive orbits for space applications is the eccentric 12

hour orbit. This is a quasi-synchronous orbit which, with a low perigee, spends

most of it's time within two small lattitude-longitude boxes at true synchronous

altitudes (at about 36,000 km; see Figure 1 for example). Thus, if a mission

requirement of an absolutely continuous link with a given ground station can be

slightly relaxed, this orbit may be preferred over the more conventional 24

hour 'geostationary' one. In fact the U.S.S.R. has already utilized this orbit ex-

tensively for communications and other applications in their Molniya and Cosmos

series of satellites. Recently, NASA has considered utilizing such orbits in its

small application technology satellite programJ 13 The first such 12 hour orbit,

of Cosmos 41, was achieved in 1964.

The payloads in 12 hour eccentric orbits are significantly heavier than in

24 hour geostationary ones because (among other factors):

1. The orbit is closer to the earth

2. The orbit is highly eccentric (— 0.70) compared to the circular geostation-

ary orbit, and

3. No inclination change maneuver has to be performed for launches from

high latitude sites (such as those in the Soviet Union).

On the other hand, the circular 'geostationary' orbit is inherently more

stable than the 12 hour-eccentric one whose perigee is subjected to strong long

1

am-



r

term luni-solar perturbations. [3I , [3I In fact many of the Mohdya's have already

been lost (from rapid perigee collapse) due to improper initial placement of the

orbit node with respect to the moon's node. [ 31 However, with proper node

placement, this early demise can be avoided. Cosmos 41 is still in orbit in

1971 and, according to Quinn et. al. [a1 will stay in orbit for another 39 years. 	 -

Radiation pressure also affects the eccentric orbit to a greater extent than

the circular. However for the usual satellite payloads, where the projected area

to *.Hass ratio is considerably less than 1 cm Z/gm, these perturbations do not

affect the orbit substantially.

The dominant perturbation affecting the longitude of the 12 hour orbit is due

to resonance with longitude terms in the earth's gravity potential since the geo-

graphic trace (latitude, longitude and altitude) 's repetitive every day. Because

of it's eccentricity, the resonant regime is more complex than for the 24 hour

circular orbit. However it's stability is only affected by the significant rotation

of the line of apsides, due to the earth's oblateness SSI , [e1 As a consequence of

this rotation only two general 12-hour eccentric orbits exist which have long

term longitude stability. These are the equatorial orbits, discussed in detail

by Allan [61 in 1967, and the critically inclined orbit (at 63.40 and 116.60)

briefly described by Wagner [7I in 1968. In both of these cases a stationary

disturbing potential on the orbit can be constructed. This insures

that, while the resonant libration regime is more complex than in the circular

orbit case, the motion under this potential is always periodic. In particular, for

2
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the equatorial and critically inclined orbit, cases of stable equilibrium can be

found so that satellites placed in these orbits will not need stationkeepiug to

maintain a given geograg:dc trace. For the general inclination case, rotation c,^

the line of apsides gives rise to a non stationary potential, aperiodic motion

and no stable longitude placement. This case has been discussed by Gedeon,

Douglas and Palmiter ls] in 1967. It is well illustrated by the mean longitude

history of the satellite 1966 96A (Intelsat 2-Fl) shown in Figure 2. (The mean

longitude (k) in this figure is the combination (M + w)/2 + N - 6 ,, where M,

w and N are the ,satellites mean anomaly, argument of perigee and right ascen-

sion of the ascending node, and B is the earth's Greenwich hour angle.) For a

circular 12 hour orbit this longitude would also be the actual geographic ascend-

ing equator crossing longitude. For an eccentric 12 hour orbit there can be a

considerable difference between this mean longitude and the actual equator

crossing. (This difference will be described later as a function of the argument

of perigee and the eccentricity.) Clearly the longitude excursions of this satel-

lite are not periodic but are increasing with time as predicted by Godson et alas]

but contrary to the expectations of Allan. E 63 (Allan felt this orbit of 18 degrees

inclination was sufficiently clone to equatorial to have a stationary geopotential

disturbing potential.) By contrast, the longitude history of 1964 O FF (Cosmos 41

rocket) with an inclination near 'critical,' is nearly periodic (see Figure 3). 	 r

It's excursions are characteristic of a widely swinging pendulum. 	 AI

3



Since 1969, starting with Molniya 11, the U.S.S.R. has placed their closely

commensurate 12 hour satellites in orbits with ascending equat ,)r crossings close

to 112 degrees west. This longitude }placement has proved to be stable for a

wide range of perigee arguments. The shallowest excursions about this apparent

equilibrium position was shown by Molniya 12 in 1969-1970 before it's perigee

collapsed in the fall of 1970 ( Figure 4).

This paper will derive all the resonant equilibrium longitudes for these

satellites as functions of inclination and argument of perigee. Only the low

perigee orbit (e = .725, perigee height = 930 km) is examined in detail because

it is the most useful for the applications satellites.

A

4



ANALYSIS — THE DRIFT REGIME OF

AN ECCENTRIC 12 HOUR SATELLITE

The equation of motion of the mean longitude (k) of a closely commensurate

resonant satellite due to the geopotential is given by Wagner ( 71, [8) as:

sin m + ytm 	 - m even

L	

m

= 12n	 C,t 
m 

m a "^ (FG)t m
t,m relevant

—Cos	 + 	 '^ — m odd
M

(1)

+ Stm ma-t(FG),em

-Cos m K +
m

y'^ m
-s in m	 +

LML)

 day a.

- m even

m odd

In equation (1); the Ctm and Stm are the unnormalized harmonic coefficients of

degree t and order m (^, > m) in the geopotential expansion ,[93 a is the orbits

semimajor axis in earth radii, and the (FG), tm and y4 are amplitudes and phase

angles of composite harmonic vectors which depend on the inclination eccentricity

and argument of perigee of the orbit.

The composite vectors (FG) ,tm are determined from Kaula's F and G func-

tions and his decomposition of the disturbing geopotential potential (t, m) into

(,, , m, p, q) components S 91 The amplitudes ( FG),tm are given as:

-

a	 a i^z

(FG)tm-	 ^ FQt,m,A.gcos(-qcv) +	 FGt,m, Argsin(-qw) 	 (2i
p q resonant	 p, q resonant
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The phase angles are given as:

FGt.m€p€q sin (-qw)
p,q, resonant

0)

L^
	 FG,?

,m, p€q cos (-qw)

p,q resonant

The relevant resonant terms (t, m, p, q) are determined from the indicial

equation:

-2r. ♦ q=m/s,	 (4)

where s is the rational fraction representing the commensurability of the orbit

in revolutions per day. For the 12 hour orbit, s = 2 and the dominant components

on the highly eccentric satellite (e ti .7) are: [10] (2, 2^ 1 9 1), (2 9 29 0 0 -1)9

(3, 2 9 1, 0), (4, 2, 1, -1) and (4, 2 9 2 9 1). Together these terms account for all

but at most 10% of the resonant acceleration on the 12 hour satellite. All but

at most 20% of the acceleration on this orbit is accounted for by just the two (2,2)

components. Furthermore, for orbits in the vicinity of critical inclination all

but about 25% of the acceleration is accounted for by the single term (2, 2 9 1 9 1).

Similarly, for equatorial orbits, the single term (2, 2, 0, -1) accounts for all but

about 25% of the acceleration. Therefore it is both instructive and useful to

work out these two simplest cases first, for low and high inclinations, as fairly

good approximations to the drift regime.

6



The analysis that follows will only be concerned with determining the con-

ditions for longitude equilibrium on these satellites. It must be born in mind

that only fo, 1 the cases near 'critical' inclination (63.4 0) and for equatorial orbits,

can €uch equilibrium conditions be maintained for long periods of time. As il-

lustrated in figures 2 and 3 9 an 18 0 inclined orbit does not maintain it's stability

in this sense while a 68 degree orbit does.

Low Inclination Approximation

In this case, the equation of motion, (1), of the longitude can be reduced to the

simple pendulum equation (for constant w, a, I and e), involving the term (2, 2 9 0,

-1) only:

_ [C 1 sin (2k + w) + C 2 cos (2k + co)] .	 (5)

The zero's of this equation give the y equilibrium conditions for the orbit. Equili-

brium exists when:

1 1an -1 -[CI sin W + C 2 cos CO

2	 C1 Cos W - C 2 since

But C 1 = KC2,2 and C 2 = -KS2,2 , where; K = 24n2 F2,2,0 (I) G 2.o._1 (e)/a, for the

12 hour orbit. Also, we have from the definition of the harmonic coefficients: [ 1 of

C	 = 2,2 	2.2J	 cos 2K 2,20 S2.2 =J2.2	 2.2sin 2	 , where, from current values, [ 121

2, 2 ° -15 0. With these substitutions for C 1 and C 21 the equilibrium longitudes

are given as:

7



dX _ 2 rC i co s 2^ 2.2 - C; c ; n ) a
d

= 2KJ 2.2 -

1 - 7KT	 rcInc 2 7a	 i a ; n 2 7a	 1

= 1 Tan" co s 
2X 22 sin w - sin 2X 22 cos w

E 2	 cos 2 X22 cos w + sin 2 X22 sin w

(6)

1	 -I sin ( 2 X 22 - w)
= 2 Tan	

cos ( 2X 22 - w)

Equation (6) has four solutions:

X E = x`22 - w/2, X22 - w/2 + 90°, X22 - w12 + 180° and X22 - w12 a 270°.

However since the 12 hour orbit always has two mean longitudes 180 0 apart

(corresponding to the two ascending equator crossings), only two of these solutions

are distinct, for example:

X E = x' 2.2 - w12 and X2,2 - w12 + 90 0 .	 (7)

one of these equilibrium orbits is stable and the other unstable. To find which

is which, we note (from Figure 5) that the zeros of K where d K/d X < 0 are stale-le

longitudes, while those for which d^ /d X > 0 are unstable. Differentiating (5)

with respect to X and substituting the first dolution of (7), we have:
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Since J 2.2 > 0 9 d^ /d X for this first equilibrium solution has the sign of K, or

the sign of F2, 2 , o (1) G 2 , o, - 1 (e)• But F2.2 , o (I) = 3 (1 + cos J)2 /4 ^ 0, and

G 2, o .-1 (e) = -e/2 +e 3 /16 + ... 2 0 (see Reference 9). Therefore, XE - x.2.2

- w/2 is a stable equilibrium longitude and similarly it can be shown that X E =

X 2 2 - W/2 + 90 0 is an unstable equilibrium longitude.

R. R. Allan in 1967 placed the stable perigee longitudes for the equatorial

12 hour eccentric orbit at X 2.2 and X 2,2 + 1800 (the redundant position). [ 61

We can check this placement by the calculation above with reference to

Figure 6. For an equatorial orbit, the geographic longitude of perigee is

77

0

L 
= W + N - 6 e, when the satellite (s) is at perigee (or M = 0). But when the

satellite is at perigee, the mean longitude is X = w/2 + N - 9 e . This longitude

is stable when X = X 2,2  - w/2. Therefore, the stable condition implies:

k 2.2 - W12 = co/2 +. N - 6e ; or

X2 , =w+N - ee =7T 

as first postulated by Allan, [61

High Inclinat.. 3n Approximation

In this case, the equation of motion of the mean longitude, (1), involves only

the term (2, 29 1 1 1) and is formally the same as (5) with - w substituted for w in

the sine and cosine arguments. Equilibrium values are therefore at:

9



N^R=X2.2 
+w/2, and k 2.2 +w/2+90°.	 (8)

By a calculus entirely similar to the previous case, recognizing that: F2, 2, i (I)

= 3 sin 2 I/2 > 0, and G 2. Y . , (e) = 3e/2 +27e 3/16  + ... > 0, it can be shown that

X E = X 2,2  + W/2 is the unstable equilibrium longitude and X E = X 2,2  + 
W/2 +900

is the stable equilibrium longitude. Figure 7 show 3 these approximate locations

of the stable mean longitudes for low and high inclinations.

For intermediate inclinations the situation is more complicated. As

mentioned before no geostationary disturbing potential exists for the general

inclination case. Therefore the equilibrium longitudes derivable for them are

not valid over the long term. In fact the time of validity depends on , amount

of rotation of the line of apsides. This can be appreciated from Figure 7 since

for each of these harmonic terms, a full range of perigee arguments implies a

full range of 'stable' longitudes. For intermediate inclination 12 hour orbits,

the period of apsidal rotation is of the order of a few years (Figure 8). In ad-

dition,for intermediate inclinations, more than one harmonic term has appreci-

able influence. But for inclinations fairly near critical, which are most useful

in the applications, only the two terms (2, 2 9 09 -1) and (2, 2 9 1 9 1) carry all but

about 10% of the effect. Therefore it will be instructive and practical to calcu-

late the approximate quasi-equilibrium longitudes from this particular

combination.

m

`^	 i
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Intermediate Inclination Appr-)ximation

The equation of mction (1) including the two terms (2, 2 9 0 9 -1) and (2, 2, 1, 1)

is:

^ = 2477 2 
(FG)2,2 [C 2.2 sin (2X+'Y2.2) - S2,2 COS (V. +y 2 2	

(9)
)] ,

a
radians/sidereal day2,

where ( FCT) 2 2 and y2, 2 
are functions of I. e, and w. The vector interpretation

of these functions [defined in equations (2) and (3)] permits them to be easily

resolved by trigonometry ( Figure 9). The individual component amplitudes

(FG's) in this figure all are absolute values. Thus, using the law of cosines we

have:

(FG) 2, 2 = + [FG 2 	 2	 - 2 FG	 FG	 cos w] 1/2. (10)
2,2,1,1 +FG 2.2,0,-1	 2, 2, 1. 	 2, 2, 0,- 1

Using the law of sines:

FG 2,2 , 0,_1	 _ -in2 2 , determines y2,2 as:
sin (-y 22 - W) ^w

= - cv + sin - 1 FG 2,2,0,_i sin 2W

2, 2	 (11y	
(FG) 2.2

sin 2 co
W + sin

(	

,

X2 + 1 - 2 X cos 2w) 1/2

where X = I FG 2, 2, 1, 1 1 / I FG 2. 2, 0, -1 1 . Table 1 gives values of x as a function of



The zero's of (9), giving the 'equilibrium' longitudes, are found from the

equation:

cos 2X2,2 sin (2k + /2,2) = sin2k 2,1 cos(2k + Y2.2)'

or;

Tan (2k +-/2.2 ) = Tan 2X 2.2'

The 2 unique solutions to this equation are:

^E = x'2,2 - /2,2/2, and & 2.2 - /2,2/2 + 90°.
	 (12)

It can be shown that the second solution is the one for stable equilibrium.

Thus, for the intermediate inclination case (second approximation):

X E (Stable) = x'2.2 +w12 - 8(w, I),	 (13)

where 8 is one half the are sine function in equation (11). 8 is a small sinusoidal

function for X >> 1. For example, for the most useful case of the critical inclin-

ation satellite of high eccentricity (e = .725, perigee height = 930 km); X = 6.20

and 8 ( W, 63.40) is plotted in Figure 10.

Figure 11 shows the variation of X E (stable) with argument of perigee, for

intermediate inclinations, under various approximations. The simplest, straight

line solution is most accurate for high inclinations and considers the (2, 2, 1, 1)

term only. The second approximation (including the (2, 2, 0, -1) term) is shown

12



For the critical inclination case only. Third approximations (including the next 3

most influential terms (3, 2 9 1 9 0), (49 2 0 1, -1) and (4, 2, 2, 1)) for I = 50% 60°

and 70° are also shown in Figure 11. These are calculated directly from the

zero's of (1) for these terms. The gravity field used for these calculations is

the Smithsonian Standard Earth I, Ml Field. 
III] Even at 500 inclination the

maximum deviation from the straight line solution is only 17 0 . Consideration of

higher degree ant.3 order terms will add or subtract less than 10% of 17° or less

than 2° to those equilibrium longitudes. Inclinations less than 50 0 are not con-

sidered in Figure 11 because, as mentioned previously, the apsidal rotation is

too rapid for the 'equilibrium.' longitudes to be considered anything but momen-

tary values. However, the near--equatorial satellite is a special case, as Allan

found. [61 For it, the apsidal rotation is in the same sense as the earth's rotation

and a stationary geographic trace is assured with proper adjustment of the mean

motion. As inferred previously, near equatorial 12 hour eccentric orbits are

stable if one of their periapses is within a few degrees of X. 2,2 c,r 15° west.

For the applications it remains to calculate the actually geographic position

of these 'stable' orbits when the 'stable' mean longitudes are given (as in Figure

11). This will be done in the following section by finding the relation between

the actual ascending equator crossing (AEC) longitude and the mean longitude (X)

for a commensurate (or resonant) orbit.

w

`i

u9
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THE ASCENDING EQUATOR CROSSING LONGITUDE

Consider the arguments in the orbit and equatorial planes from Figure 12.

y is the vernal equinox, G is the position of Greenwich at epoch, when the satel-

lite is at SAT. Go is the Greenwich position at a time T P + T,, earlier, when

the satellite is at the ascending node (AN). B e is the right ascension of Green-

wich, w is the argument of perigee and M is mean anomaly, all at epoch. When

the satellite is at AN, XAEC is the longitude of the ascending equator crossing.

We make two simplifying assumptions; one, that over the time T  + T the

node and perigee are stationary and two, the commensurate mean motion of the

satellite, n, is s Be .

From Figure 12:

XAM=N- Be+be(TP +Tw).

But since TP = M/n, and n = s be,

`AEC =N-8 e + 1/s (M+T u,n).
	 (13)

The quantity T. n may be called the mean anomaly equivalent c w,(w. ). (i.e. it

is the angle swept out at the average rotation rate in the actual time for the

satellite to go from AN to 7r.) We recall [53 • E73 that the definition of the mean

longitude (k) for a general commensurate orbit is:

X=N-9e +1 /s (M +w)	 (14)

14



Comparing (13) and (14):

XAEC = x + 1 /S (W M - W )•	 (15)

Let us call the quantity WM - 
CO , the perigee excesz (A w). Evidently AW is zero

for a circular orbit and also zero for eccentric orbits when (,' = 0 0 and 1800.

A W is clearly some sinusoidal function of W for a given e. The function A W can

be calculated from Keplers equation:

M=E-e,sinE,

and the relationship between the true anomaly (f) :end the eccentric anomaly (E),

E= 2 Tan-1	
1/2

i+ e
	

Tan f /2 .

In terms of the mean and eccentric anomaly equivalents of perigee (W M and WE),

these relations beoome:

-^ r/1



r-	 -I P,

It is noted that i^ w is an 'odd' function about w = 180% The asymptote of A w,

when e = 1, are the parallel lines of -1 slope through w = 0 0 and 3600. For use

in applications for e < < 1, w = - e sin w . For any eccentric commensurate

orbit, the graph of 0w as a function of w and a is given (from evaluation of (16),

(17) and ( 18)) in Figure 13.

Finally, figures 11 and 13 are combined (with equation (15)) to give (in

figure 14) the 'stable' equilibrium equator crossing longitudes on 12 hour ec-

centric orbits. These are given for a range of inclinations useful for applications

satellites (with an eccentricity = . 725, giving a perigee altitude essentially out

of the atmosphere at 930 km.) In Figure 14 is also shown the observed and

computed 'stable' equator crossing longitudes for Molniya 12 which confirms the

validity of this chart to within a few degrees.

-
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STATION KEEPING AT NON EQUILIBRIUM LONGITUDES

Figure 15 shows the longitude acceleration on the maximum altitude 12

hour orbit of 50 0 inclination for w = 270 0 , a typical orbit that has been considered

advantageous in the SATS Nrogram. [1 Only the dominant terms '(2, 2 9 0 0 -1)9

(2 9 2, 1 9 1 ) 0 (3 9 2 9 1, 0), (4 9 2, 1 9 -1) and (4, 2 9 2 9 1)) have been included in the

evaluation of the acceleration from equation (1). The Smithsonian Standard

Earth I, Ml gravity field[ I I] has been used in this computation.

It is interesting that the maximum resonant acceleration on this 12 hour

satellite is of the same order of magnitude (1 to 10 x 1C"5 rad/day ) as that on

the 24 hour satellite. [1 21 This rough 'equipartition' : -f the disturbing force among

all the 'one dad-' resonances was first noted by Douglas et al. in 1965. [10] 'One

day resonances have ground traces which repeat in one day. In reference [121,

the maximum station keeping requirements on 24 hour satellites were estimated

to be about 2 m/sec/yr. Because of equipartition we can expect the requirements

to be the same order of magn" ,Ie for all one day resonances. However, some

fuel savings can be realized ,o,. 3ccentric orbits by performing the maneuvers

at perigee where a given c dtnge in velocity ( pV) has the greatest effect on the

energy of the orbit. The following estimate of the requirements assumes that

all station-keeping thrusting occurs at perigee.

If we ask 'what is the longitude acceleration (K) in a commensurate orbit

due to a continual change in orbit period (T) of 0 T each commensurate period

of n^ days ?,' the answer is exactly the same as for the circular case: [ 1 31

11,



- 2T n' 
T 

radians/(n' days)2

- - 27r (1/n') T radians/day2

This equation could be written without specified dimensions with b , = 2 Tr. But

from Keplers 3rd law:

AT _ 3 Ga
T	 2 a '

so that

-37,(1/n') Ca rad/day2.
a

In the above equation the negative sign means that an increase in the semimajor

axis causes the orbit to fall behind the rotating earth. We now need to determine

only the AV required to change the semimalor axis !1 a to complete the station

keeping specifications. For	 purpose we use the two-body energy integral

for elliptic motion in the vis-viva form:

V22 - 1
YP r	 a '

where µ is the central gravitational constant (3.986 x 10 5 km3 /sec 2 ), r is the

distance to the satellite from the center of the earth and V is the satellite's

velocity. Taking differentials of (19) with respect to V and a (holding r constant,

at perigee (p));

18
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(19)

3

T



k,

2V A P	 P	 2a

But from (19) again (with r P = a (1 - e));

 (µ 1/2 (11 + e 1/2
V_—
P 	 a-e

Therefore, a perigee velocity change (A V P ) results in a semimajor axis change,

A a, according to the formula;

0 a = 2(a 3 /µ) 1/2
1

+
e) 1/2 6V .

1--	 P

Substituting this equation into the acceleration equation (and reversing the sign)

gives the station keeping requirements (for perigee maneuvers) as:

A V _ (n ,) ^/ a) 1/2 1  e 1/2	
20P	 67T	 1 + e	 ( )

Equation (20) gives the minimum c V requirements for a commensurate period

of ;a' sidereal days in length/time units, if K 3s given in units of radians/

sidereal day 2 and n' is given in sidereal days. The sign is reversed because

the station keeping maneuver must be in an opposite sense to the c V rate

equivalent to the acceleration, , caused by the geopotential. Therefore, the

yearly minimum c V requirement for station keeping is 366/n' times c V P or:



366 (µ/ a) "	
e 1/2

AV(minimum) =	
67T 1 e

	 X

(21)

1/2 ..
= 1.225x 10^ ( a -1/2 )	 i + 

e	
X, m/sec/yr.,

If a is given in km and X in radians/sidereal day 2.

For example, the maximum altitude 12 hour orbit has the specifications

a = 26,550 km, and e = .725. If A = 5 x 10 -5 rad/days, AV (minimum), (from

(21)) is found to be 1.51 m/sec/yr or 4.95 ft/sec/yr. This calculation establishes

the scale of the velocity requirement in Figure 15. Positive station keeping AV's

are to be made along the track, while negative AV's are to be made against the

track of the orbit.

As another example, consider the orbit proposed in Figure 1 for the small

applications technology satellite (SATS) program. This orbit (of 50° inclination)

has an argument of perigee of about 270° and ascending equator crossing (AEC)

longitudes at 136 ° west and 45° east.

From Figure 14, the 'stable' ascending equator crossing (AEC) longitudes

for this (maximum altitude) orbit are at 60 0 east and 120° west. Thus the mean

longitudes (k) of this orbit are displaced 15° west of the 'stable' mean longitudes.

i

From Figure 15 (or Figure 11) the 'stable' mean longitudes of this orbit are at

27° and 207 ° east. Therefore, the mean longitudes of the given orbit are at

27 - 15 = 12 0 east and 207 - 15 = 1920 east.

20



r.

A simpler calculation of the mean longitude (K) of this orbit can be made

with the use of equation (15):

AEC - 1 L1 W.
S

For this 12 hour orbit; s = 2 9 e = 0.725 0 W = 2700 and A W (from Figure 13) = 660.

Thus, X = 45 - 66/2 = 12° or 192° as found previously. From Figure 15, the

resonant acceleration on this orbit is 5 x 10 -5 rad./day2 and the station keeping

requirements are 1.5 m/sec/yr.



E
I

k

SUMMARY AND CONCLUSIONS

The eccentric 12 hour orbit has already been one of the most useful orbits

for earth oriented applications. The United States intends to make further use

of these orbits for many applications in the decade of the 1970's and beyond.

Since these orbits are strongly perturbed by resonant terms in the geopotential,

it is of interest to estimate these effects, and, if possible minimize them for a

particular mission.

In general it is found that:

1. The longitude acceleration on these quasi-stationary satellites is highly

dependent on the argument of perigee.

2. For each (equatorial and critically inclined) orbit specification (e, w)

only two longitudes for the placements of the equator crossing result in

orbits which are in equilibrium with the resonant geopotential forces.

One of these orbits is in stable equilibrium with these forces and the

other is in unstable equilibrium with them.

3. For intermediate inclinations, the 'sta , ,le' longitudes change slowly with

time (as the argument of perigee changes) as long as the orbit inclination

is within about 15 degrees of critical. The stability of the equatorial

orbit rapidly degenerates for inclinations above 10 degrees.

Specifically it is found that for the maximum altitude 12 hour orbit of inter-

mediate inclination (500 700):

22



1. 'Stable' orbits exist for ascending equator crossing longitudes between

55° and 85° east, as long as the argument of perigee is within f1000.

2. The mw imum station keeping requirements to keep the geographic trace

constant against resonant geopotential forces are in the range of .3 to 3

m/sac/yr.

23
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Table 1

Harmonic Amplitude Ratio (X) as a Function of Inclination

for High Altitude (High e) 12 Hour Satellites

I
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FIGURE CAPTIONS

Figure 1. Alternate Ground Trace for 12-Hour Orbit — 50 0 Inclination

Figure 2. Mean Longitude (X) History for 1966 96 A (Intelsat 2F1)

Figure 3. Mean Longitude (X) History for 1964 49E (Cosmos 41 Rocket)

Figure 4. Actual Ascending Crossing Longitudes (`AEC) for 1969 61A

(Molniya 12)

Figure 5. Stability Conditions With Respect to the Longitude (X) Drift

Figure 6. Equatorial Orbit Reference Points

Figure 7. Stable Equilibrium Longitudes (,\) for High altitude 12 Hour Satellites

Figure 8. Period of Apsidal Rotation (T ) for a High Eccentricity 12 Hour
P

Satellite

Figure 9. Composite Harmonic Functions for Intermediate Inclination

12 Hour Satellites

Figure 10. Equilibrium Mean Longitude Change as a Function of Argument of

Perigee for a 12 Hour Satellite

Figure 11. Stable Equilibrium Mean Longitudes (,\ E ) for Maximum Altitude 12

Hour Satellites of Intermediate Inclination
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Figure 12. Reference Points of Orbit and Equatorial Planes on the Celestial

Sphere

Figure 13. Perigee Excess (AW) for Eccentric Orbit Satellites

Figure 14. 'Stable' Ascending Equator Crossing Longitudes (,k,.) for 12 Hour

Satellites

Figure 15. Acceleration and Station-KeODiag Requirements on a 12 Hour

satellite
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• ASCENDING EQUATOR CROSSING 	 ORBIT PARAMETERS

	

DATA FROM THE NORTH 	 a=-4.16 EARTH RADII
	AMERICAN AIR DEFENSE	 e:--0.73

	

COMMAND (NORAD)	 I=65°
w IN PARENTHESES ( )

h p , PERIGEE HEIGHT IN PARENTHESES[ ]

113	
AUG. 27, 1 ' 969	 OCT. 1, 1970

(284°):m	 ;	 [540km]	 •

112	 •	 •	 1
N	 •

3	 • [540km]: h p	 ••
•

%
m

^,	
1 •

o	 •	 ••

W	 •	 •^ [600km]	 •
.i 111	 •

	

•	 [430km] (275')

4• 	 .t
logo**

110 40400	 40500	 40600	 40700	 40800

TIME: MODIFIED JULIAN DAYS
i

Figure 4. Actual Ascending Crossing Longitudes (AEC) for 1969 61A (Molniya 12)

i



r
r

31

0
d
C
O
J
ds

uda
U)
m

s
3
N
CO

C
Ou

.0
O}
N

N

d

Qi

LL

O

cr-
m

_m

CY

wcn n
-^ I

W
 X

:^! -<
-^ ^-o

Q X O
^ w w

o Q z o cn Z ..<
Q

to U
^^

;
Z
;^

Q ^.
U

O O

_	 O

4

i



t

CELESTIAL EQUATOR

G	 AN	 S

T 8e
	 w

N
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Figure 6. Equatorial Orbit Reference Points
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Figure 9. Composite Harmonic Functions for Intermediate Inclination 12 Hour Satellites
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