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INDUCTION SYSTEM CHARACTERISTICS AND ENGINE SURGE 

OCCURRETJCE FOR TWO FIGHTER-TYPE AIRPLANES 

By Terry J. Larson, George M. Thomas, 
and Donald R. Bellman 

An investigation w a s  conducted t o  measure and t o  compare the t o t a l -  
pressure recovery and d is tor t ion  character is t ics  at  the compressor face 
of two single-place f ighter-type airplanes with s i m i l a r  two-spool turbo- 
j e t  engines, but with dissimilar i n l e t s .  Airplane A has a single normal- 
shock nose in le t ;  airplane B has two engines and triangular-shaped i n l e t s  
located i n  the wing roots.  In  addition, data are  presented for engine 
surge occurence of these two airplanes and a l so  for  a t h i r d  single-engine 
airplane having two semicircular-shaped side in l e t s .  

The total-pressure recovery was re la t ive ly  independent of angle of 
a t tack and mass-flow r a t i o  for  both airplanes except for a significant 
decrease i n  pressure recovery with angle of attacK f o r  airplane B at  the  
highest Mach numbers tes ted.  
t i o n  decreased s l igh t ly  with angle of a t tack and increased s l igh t ly  with 
mass-flow r a t i o  fo r  airplane A. For airplane B the d is tor t ion  increased 
with angle of a t tack and decreased s l igh t ly  with mass-flow ra t io ,  par t ic -  
u la r ly  a t  the higher a l t i tudes .  Altitude e f fec ts  on d is tor t ion  were noted 
only fo r  airplane B. 

The root-mean-square total-pressure d is tor -  

Engine compressor surges were encountered primarily i n  the region 
of high a l t i t ude  and low i n l e t  t o t a l  pressure, as indicated by wind- 
tunnel t e s t s .  
surges were encountered under conditions of high total-pressure dis-  
tor t ion,  par t icu lar ly  circumferential dis tor t ion.  

A t  lower a l t i tudes  and at  higher i n l e t  t o t a l  pressure, 

INTRODUCTION 

Air-flow character is t ics  of air  i n l e t s  and ducts of je t  airplanes 
have a s ignif icant  effect  on the  performance of the airplanes. Of these 
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character is t ics  pressure recovery i s  important, but flow d is tor t ion  i s  
sometimes more important. A large degree of flow dis tor t ion can l i m i t  
engine performance by causing surging i n  the engine compressor; t ha t  is, 
a s t a l l i ng  of a l l  compressor stages with a rapid fluctuation of a i r  flow. 

The air-flow character is t ics  of a given i n l e t  can vary with a l t i -  
tude, Mach number, inlet-flow angles, engine speed, and other parameters. 
Since it i s  d i f f i c u l t  t o  exactly simulate f l i g h t  conditions i n  a wind 
tunnel, a f l i g h t  investigation w a s  made at the NACA High-speed Flight 
Stat ion at  Edwards, C a l i f . ,  t o  measure inlet-flow d is tor t ion  and t o t a l -  
pressure recovery a t  the compressor face on three f ighter-  o r  interceptor- 
type airplanes with similar turbojet  engines. A par t  of t h i s  investiga- 
t i o n  w a s  devoted t o  the  determination of surge character is t ics  of these 
airplanes.  Since compressor surges can be damaging t o  the airplane, the 
number of surges encountered w a s  necessarily limited. However, enough 
data were obtained t o  present a br ie f  comparison of the surge character- 
i s t i c s  of the three airplanes.  Because the  data from the t h i r d  airplane 
have been reported previously i n  reference 1, only the surge data fo r  
t h i s  airplane a re  included i n  the present paper fo r  comparison. 

The pressure-recovery data were obtained primarily over a Mach num- 
ber range from 0.8 t o  1.4 and at  a l t i t udes  between 22,000 f e e t  and 
42,000 f ee t .  
0.6 t o  1.5 and at a l t i t udes  between 30,000 f e e t  and 52,000 f ee t .  

Compressor surges were encountered at  Mach numbers from 

mMB0LS 

A cross-sectional area, sq f t  

D circumferential d i s tor t ion  factor ,  

hP pressure al t i tude,  f t  

M Mach number 

Duct mass flow 

PoVoAi 
mass-flow ra t io ,  

N engine inner-rotor speed, r p m  

N / \ / 8 ,  normalized engine inner-rotor speed, rpm 
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n number of total-pressure probes 

s t a t i c  pressure, lb/sq f t  

t o t a l  pressure, lb/sq f t  P '  

p 'av average t o t a l  pressure of the  f ive  total-pressure rakes, 
lb/sq f t  

p ' max highest of the averaged pressures of the f ive  t o t a l -  
pressure rakes, lb/sq f t  

lowest of t he  averaged pressures of the f ive  t o t a l -  
pressure rakes, lb/sq f t  

p 'min 

Reynolds number based on minimum area equivalent c i r c l e  
diameter 

R 

S 

T '  

v 
i n l e t  air t o t a l  temperature, OR 

velocity, f t / s ec  

air-flow rate, lb/sec wa 

normalized air  flow, lb/sec 

distance from i n l e t ,  in .  

angle of attack, deg 

pressure normalizing factor ,  
P ' c  

Sea-level s t a t i c  pressure 

e compressor-face circumferential s ta t ion,  deg 

temperature normalizing factor ,  T ' c  
Sea-level s t a t i c  temperature 
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0 -  

0-t 

P' 

0 

circumferential angle subtended by the laxgest singly 
connected sector of the i n l e t  annulus, having a t o t a l  
pressure l e s s  than the average (see diagram) 

circumferential angle subtended by the largest  singly 
connected sector of the i n l e t  annulus, having a t o t a l  
pressure greater than the average (see diagram) 

air density, Slugs/Cu f t  

compressor-face total-pressure dis tor t ion factor ,  

rk) - k)aj 
Subscripts : 

0 f ree  stream 

av average 

C compressor face 

i i n l e t  

2 l oca l  
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AIRPLANES 

The three airplanes a re  single-place f ighter-  or interceptor-type 
airplanes powered by s i m i l a r  two-spool turbojet  engines with a f t e r -  
burners. The following are de ta i l s  of the airplanes and t h e i r  i n l e t  
and duct systems. 

Airplane A 

The engine of airplane A i s  supplied air through a single normal- 
shock-type nose inlet. Figures 1 and 2 a re  photographs of the airplane 
and the  nose in l e t ,  respectively, and f igure 3 is  a drawing showing the 
duct contours and area dis t r ibut ion.  The i n l e t  has a l i p  radius of about 
0.25 inch, and the diffuser  has an equivalent conical expansion angle 
(included w a l l  angle of a frustrum of a cone having the  same length and 
i n l e t  and e x i t  areas) of 0.37O. Detailed dimensions and other physical 
character is t ics  of the airplane a re  presented i n  reference 2. 

Airplane B 

Airplane B i s  powered by two engines t o  which air  i s  supplied by 
triangular-shaped i n l e t s  Located i n  the wing roots.  Each i n l e t  supplies 
air t o  one engine. 
the in l e t ,  respectively, and f igure 6 i s  a drawing showing the  duct con- 
tours  and area dis t r ibut ion.  The i n l e t s  have e l l i p t i c a l  l i p s  with a 
minimum radius of about 0.3 inch, and the  diffusers  have an equivalent 
conical expansion angle of l.72O. 
character is t ics  of the  airplane a re  presented i n  reference 3. 

Figures 4 and 5 are  photographs of the airplane and 

Detailed dimensions and other physical 

Airplane C 

Air i s  supplied t o  the  engine of airplane C by two semicircular- 
shaped side i n l e t s  which converge ahead of the compressor face. Fig- 
ures 7 and 8 are  photographs of t he  airplane and t h e  in l e t ,  respectively, 
and the  duct contours and area dis t r ibut ion a re  shown i n  f igure 9. Each 
i n l e t  has a l i p  radius of 0.25 inch, and the diffuser has an equivalent 
conical expansion angle of l.OTo. 
duct, and duct instrumentation are given i n  reference 1. 

Additional de t a i l s  on the  airplane, 
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INSTRUMENTATION AND ACCURACY 

Each airplane duct w a s  instrumented primarily a t  the compressor 
face where f ive  radial rakes f o r  measuring t o t a l  pressures were instal led.  
Figure 10 shows the circumferential locations of these rakes as well as 
the  r a d i a l  posit ions of the probes f o r  airplanes A and B. 

The compressor-face probe pressures were measured by NACA mechanical- 
op t ica l  manometers which determine the difference between the probe and 
the reference pressures within k5 pounds per square foot.  
d i s tor t ion  values a re  based on d i f f e ren t i a l  pressures and, hence, were 
accurate t o  25 pounds per square foot .  The total-pressure recovery at  
the compressor face required the measurement of a reference pressure. 
For airplane A t h i s  measurement w a s  made with an absolute manometer c e l l  
having an accuracy of k20 pounds per  square foot; for  the other two air- 
planes the reference pressure w a s  determined by a more sensi t ive method, 
allowing an accuracy of 25 pounds per square foot .  

The flow- 

For a l l  three airplanes Mach number accuracy i s  believed t o  be within 
20.01 at  subsonic and supersonic speeds and within 20.02 at  transonic 
speeds. Angle of a t tack  w a s  measured t o  an accuracy of about 0.5°. 

RE-TS AND DISCUSSION 

The pressure-recovery data were obtained primarily over a Mach num- 
ber range from 0.8 t o  1 .4  and at  a l t i t udes  between 22,000 f e e t  and 
42,000 f ee t .  
0.6 t o  1 .5  and a t  a l t i t udes  between 30,000 f e e t  and 52,000 feet. 
data  correspond t o  a Reynolds number range from 1.4 x 10 
based on minimum-area equivalent c i r c l e  diameter. 

Compressor-surge data  were obtained at Mach numbers from 
These 

6 6 t o  9.2 x 10 , 

Compressor-Face Total-Pressure Surveys 

Contours f o r  every 5 percent of the total-pressure recovery a re  
shown f o r  the compressor face for airplane A i n  figure 11 for  a range of 
angle of attack at Mach numbers of about 0.80, 1.0, and 1.4. 
sion of the contour p lo t s  shows tha t  the dis tor t ion i s  small and, evi-  
dently, i s  not affected by e i ther  angle of a t tack o r  Mach number fo r  the 
ranges presented. 
with the lowest recoveries occurring at  the  bottom of the duct fo r  Mach 
numbers of 0.8 and 1.0. 

A compar- 

The total-pressure recoveries are re la t ive ly  high, 

Figure 12  presents the same data as shown i n  figure 11 i n  a d i f fe r -  
ent,  more objec>tive manner. The average total-pressure recovery of a l l  
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probes on each rake i s  shown as a - c i r c l e  with a sol id  l i n e  connecting 
these values. 
location of each rake are  both indicated on the  abscissa. The dashed 
l i n e  indicates the average total-pressure recovery of a l l  t he  rakes. 
From f igure 1 2  it can be seen that angle of a t tack s l igh t ly  a f f ec t s  
circumferential dis tor t ion,  especially near the 180° region where the  
total-pressure recovery begins dropping when angle of a t tack increases 
beyond 8'. 

The r ad ia l  location of each probe and the circumferential 

Figure 13 shows the var ia t ion of total-pressure recoveries and 
total-pressure d is tor t ions  with mass-flow r a t i o  and angle of a t tack at  
the compressor face of airplane A. For the lower Mach number range and 
fo r  mass-flow r a t i o s  between 0.90 and 1.00 total-pressure recovery 
decreases about 2 percent as the angle of a t tack  increases from about 
0.5' t o  over 1.9'. 
because of the  large sca t te r .  This sca t te r  i s  most l i ke ly  a r e su l t  of 
the reference ce l l ,  noted i n  "Instrumentation and Accuracy," on which 
the computations of pressure recovery and mass-flow r a t i o  depend. 
Despite the sca t te r ,  the  data  indicate t h a t  the  pressure recovery i s  
high throughout the mass-flow range tes ted  and varies l i t t l e  with m a s s -  
flow ra t io ,  indicating t h a t  fo r  these tests no choking occurred. 

Fairings are  not shown f o r  some of the sets of points 

The root-mean-square d is tor t ion  of the  t o t a l  pressure plot ted 
against angle of a t tack ( f ig .  13) shows the d is tor t ion  dropping from 
about 3 percent at  an angPe of a t tack near O.5O t o  s l i gh t ly  l e s s  than 
2 percent at  an angle of a t tack somewhat greater than 19'. 
t i on  a l so  var ies  s l igh t ly  with mass-flow r a t i o ,  changing from about 
1.5 percent t o  about 3.0 percent as the mass-flow r a t i o  increases from 

The d is tor -  

0.65 t o  0.99. 

Figures 14 and 15 present total-pressure-recovery p lo t s  fo r  
airplane B comparable t o  those i n  figures 11 and 12 f o r  airplane A. 
Figure 14  shows t h a t  angle of a t tack  a f f ec t s  both circumferential and 
r a d i a l  d i s tor t ion  a t - t h e  compressor face. 
that, s i m i l a r  t o  airplane A, the  lowest total-pressure recoveries a re  
experienced near the bottom of the  duct. 
recoveries at  a Mach number near 1.0 vary from 0.953 t o  0.930 i n  f i g -  
ure l ? (b ) ,  corresponding t o  an angle-of-attack change from 3.3' t o  10.7'. 
Figure l5(  c) shows a s i m i l a r  var ia t ion f o r  Mach numbers near 1.4.  

It i s  evident from figure 15 

The average total-pressure 

Presented i n  figure 16 are  the  var ia t ions of average total-pressure 
recovery and total-pressure dis tor t ions with angle of a t tack and mass- 
flow r a t i o  at  the compressor face of airplane B. For the curve showing 
total-pressure recovery plot ted against angle of a t tack the  transonic 
data are  f o r  mass-flow r a t i o s  between 0.9 and 1.0, whereas the  supersonic 
data are  for mass-flow r a t i o s  between 0.85 and 0.95. I n  the transonic 
range the total-pressure recovery drops from approximately 0.95 t o  0.94 
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when the  angle of a t tack i s  increased from 0' t o  about 11'. 
sonic total-pressure recovery appears t o  be more sensit ive t o  angle of 
attack. A t  an angle of a t tack near 0' the  recovery is  0.925, w h i l e  at 
an angle of a t tack of 8' it is  approximately 0.86. V e r y  l i t t l e  varia- 
t i o n  i n  total-pressure recovery i s  evidenced as the mass-flow r a t i o  
increases from about 0.88 t o  about 1.00, indicating unchoked flow i n  the 
duct. 

The super- 

Figure 16 shows tha t  the root -mean-square total-pressure d is tor t ion  
increases w i t h  a l t i t ude  as well as with angle of attack. A t  an angle of 
a t tack of 8' and a t  a pressure a l t i t ude  of 50,000 f e e t  the d is tor t ion  i s  
6.4 percent, at 40,000 f ee t  it i s  5.2 percent, and at  30,000 f e e t  (by 
extrapolating) it is  near 4.4 percent. The root-mean-square dis tor t ions 
of the t o t a l  pressures fo r  three pressure a l t i tudes  plot ted against mass- 
flow r a t i o  indicate l i t t l e  var ia t ion i n  d is tor t ion  as the mass-flow r a t i o  
increased from 0.88 t o  1.00. 

Surges Encountered 

Several compressor surges were encountered f o r  each airplane. 
Table I l is ts  f l i g h t  and compressor-face conditions tha t  occurred i m e -  
d ia te ly  pr ior  t o  the surges. In  order t o  summarize the surge regions 
and t o  help analyze the surges, f igure 17 presents pressure a l t i t ude  
plot ted against Mach number' immediately pr ior  t o  surge. NACA Lewis 
a l t i t ude  wind-tunnel t e s t s  of a similar engine show tha t  compressor 
surge can occur at low Reynolds numbers corresponding t o  t o t a l  pressures 
l e s s  than about 500 pounds per square foot fo r  normal bleed-door opera- 
t i o n  and no dis tor t ion.  These conditions a re  shown by the shaded region 
i n  f igure 1.7. 

Reference 1 shows that fo r  airplane C the  compressor-face dis tor-  
t ions  fo r  surge data are  not s ignif icant ly  different  i n  magnitude from 
the  dis tor t ions f o r  nonsurge data and therefore concludes t h a t  d i s tor -  
t i on  w a s  not responsible f o r  the  surges experienced by t h i s  airplane. 
Reference 1 showed, too, i n  a manner s i m i l a r  t o  t ha t  used i n  f igure 17, 
t ha t  good agreement i s  obtained between wind-tunnel data and ful l -scale  
f l i g h t  &ata i n  establishing the surge region of t h i s  par t icu lar  engine. 

A s  can be seen i n  figure 17, two of the three compressor-surge 
points f o r  airplane A a l so  occur at t o t a l  pressures l e s s  than 500 pound"s 
per square foot .  However, the surge point shown at a Mach number of 
0.756 w a s  accompanied by a root-mean-square d is tor t ion  at the compressor 
face which i s  considerably greater than normal fo r  t h i s  airplane ( f ig .  13 
and tab le  I).  Although the t o t a l  pressure at  the  compressor face exceeds 
500 pounds per square foot only by 40 pounds per square foot, it is  
believed tha t  the surge w a s  caused by the re la t ive ly  high dis tor t ion;  
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t h i s  dis tor t ion w a s  undoubtedly a r e su l t  of the combination of high 
angles of a t tack (21.20) and s idesl ip  (20°) which were experienced imme- 
d ia te ly  pr ior  t o  compressor surge. 

Four of t he  surges fo r  airplane B that are neither i n  nor near the 
surge boundary occurred at Mach numbers greater than 1.35. Reference 4 
indicates that above t h i s  Mach number a surge problem existed u n t i l  the  
lower portion of the  leading edge of the boundary-layer s p l i t t e r  p l a t e  
w a s  cambered toward the fuselage, which prevented flow separation on the  
p l a t e  and reduced boundary-layer buildup. 
did not have the cambered s p l i t t e r  plate .  

The airplane of t h i s  paper 

If separation occurred on the  p la te  fo r  these surges, it would be 
expected that circumferential d i s tor t ion  would occur at  the compressor 
face. By comparing the values of the root-mean-square dis tor t ions fo r  
surge conditions ( table  I) w i t h  nonsurge conditions ( f ig .  16), it i s  
seen that no significant difference existed between root-mean-squase 
dis tor t ion fo r  surge and root-mean-square dis tor t ion fo r  nonsurge. 
However, the root-mean-square dis tor t ion is  a dis tor t ion index which 
gives a mean value of the  overal l  distortion, without dis t inct ion between 
radial dis tor t ion and circumferential dis tor t ion.  Therefore, it is  pos- 
s ib le  that, i f  fo r  a par t icular  case the circumferential dis tor t ion is  
%igh," the root-mean-square value may mask th i s  if  the radial d is tor t ion  
i s  "l-ow." As seen i n  table I, the  circumferential d i s tor t ion  index D 
(taken from ref. 5)  gives higher circumferential d i s tor t ion  values fo r  
every surge that occurred fo r  Mach numbers greater than 1.35 than fo r  
the surges at lower Mach numbers and at t o t a l  pressures less than about 
500 pounds per s q w e  foot.  

For the  other point outside the wind-tunnel surge region f o r  
airplane B the circumferential d i s tor t ion  is  higher than fo r  the points 
in, or  near, the  surge region. 
the  resu l t  of high angle of a t tack (10.60) of the airplane pr ior  t o  
surge. 

Th i s  high dis tor t ion is  believed t o  be 

CONCLUDING FENKRKS 

Measurements of total-pressure recovery and dis tor t ion at  the com- 
pressor face fo r  the  test airplanes having s i m i l a r  two-spool turbojet  
engines, but w i t h  dissimilar in le t s ,  indicate that:  The total-pressure 
recovery w a s  re la t ive ly  independent of angle. of attack and mass-flow 
r a t i o  fo r  both airplanes, except fo r  a significant decrease i n  pressure 
recovery with angle of attack f o r  airplane B at the  highest Mach numbers 
tes ted.  
w i t h  angle of a t tack and increased s l igh t ly  w i t h  mass-flow r a t i o  f o r  

The root-mean-square total-pressure dis tor t ion decreased s l igh t ly  
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airplane A. 
and decreased s l igh t ly  with mass-flow ra t io ,  par t icular ly  a t  the higher 
a l t i tudes .  

For airplane B the  dis tor t ion increased with angle of attack 

Altitude e f fec ts  on dis tor t ion were noted only f o r  airplane B. 

Several compressor surges were encountered fo r  each airplane pr i -  
marily i n  the region of high a l t i t ude  and low i n l e t  t o t a l  pressure, as 
was  indicated by wind-tunnel t e s t s .  
i n l e t  t o t a l  pressures, surges were encountered under conditions G f  
high total-pressure dis tor t ion,  par t icular ly  circumferential dis tor t ion.  

A t  lower a l t i tudes  and at  higher 

High-speed Fl ight  S t a t  ion, 
National Advisory Cormnittee f o r  Aeronautics, 

Edwards, C a l i f . ,  February 25, 1958. 
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a 

Duct area 
(one side), 

sq i n .  

x, in. 

Longitudinal variation of duct cross-sectional 

A Top view 

Side view 

(b) Geometric duct characteristics. 

mea. 

Figure 6. - Geometric duct characteristics and longitudinal variation of 
duct cross-sectional area for airplane B. 
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E-2760 
Q Figure 8. - Photograph showing r ight  i n l e t  of airplane C. 
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Duct s ta t ion,  In .  
__ 

(a) Longitudinal variation of duct cross-sectional area. 

Top v i e w  

Side view 

(b) Geometric duct characteristics. 

Figure 9. - Geometric duct characteristics and longitudinal vasiation of 
duct cross-sectional m e a  for airplane C. 
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(a) Rake arrangement of 
compressor face 
looking aft .  

(b) Detai ls  of rakes. 

--- 

I: 
z 

4) 
rr) 

Bir 
a 

21 

guide 

Figure 10.- Coqressor-face instrumentation f o r  airplanes A and B. 
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a = 8.0" 
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a = 10.2' a = 12.4" 
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Figure 11.- Total-pressure-recovery contours at the compressor face with 
angle of a t tack fo r  airplane A. 
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(b) M = 1.0; hp = 40,000 feet. 

Figure 11. - Continued. 
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Figure 11. - Concluded. 

a = 5.8" 
m/mo = o .86 

e 



1J 

a = 4.50 h mfm, = 0.68 
1.0 

PIC - 
p'o .9 

a = 8.0° 
dm, = 0.69 

1.0 
- P'C 

p'o .9 

u = 1O02O 
mfm- = 0.71 

1.0 
P' C - 

.9 

u = 12.4O A A m/m- = 0.72 

(a) M = 0.80; hp = 22,000 feet. 

25 

Figure 12.- Circumferential an8 radial total-pressure-recovery profiles 
for different angles of attack for airplane A. 
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Figure 12.- Concluded. 
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(a) M = 0.9; hp = 26,500 f ee t .  

Figure 14. - Total-pressure-recovery contours at the compressor face with 
angle of a t tack for  airplane B. 
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Figure 14. - Continued. 
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Figure 15.- Circumferential and radial total-pressure-recovery 
profiles for different angles of attack for airplane B. 
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(b) M = 1.05; hp = 42,000 feet. 

Figure 15.- Continued. 
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Figure 17.- Pressure a l t i t ude  and Mach number at incidence of surge f o r  
airplanes A, B, and C .  
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