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ABSTRACT 

Methods for transforming partial differential equations into forms more 
suitable for analysis and solution are investigated. The idea of a Gen- 
eralized Similarity Analysis is introduced and results applied to the equa- 
tions of boundary-layer flow. A thorough presentation of the application 
of continuous transformation groups to the problem of similarity analyses 
(reduction of the number of independent variables of an equation) is given 
with new and very general methods evolved for determining the nature of trans- 
formations. 
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CHAPTER 1 

GENERAL CONCEPTS AND SCOPE OF THE INVESTIGATION 

1 0 INTRODUCTION 

The invest igat ions t o  be presented i n  t h i s  report  a r e  an outgrowth of a 
continuing study of ways i n  which p a r t i a l  d i f f e r e n t i a l  equations associated 
with problems of physical  i n t e r e s t  may be s implif ied through transformation 
of independent and dependent var iables .  
grew out of an i n t e r e s t  on the p a r t  of invest igators  i n  the  National Aero- 
nauticg and Space Agency as t o  how ra ther  general methods might be formulated 
f o r  reducing the  number of independent var iables  of a p a r t i a l  d i f f e r e n t i a l  
equation ( s imi l a r i t y  analyses ) . 

The o r ig ina l  motivation f o r  t h i s  study 

A s  t he  invest igat ion proceeded, ce r t a in  f a c t s  became c lear .  . F i r s t  it w a s  
noted t h a t  t h e  usual types of transformation for simplifying p a r t i a l  differen-  
t i a l  equakions of physical  problems were usual ly  of a ra ther  special  c lass .  
This led t o  the  question of possibly generalizing t h e  c lass  of transformations 
noted. A s  w i l l  be seen s igni f icant  success w a s  achieved i n  t h i s  inquiry.  

A second main a rea  of  invest igat ion centered on finding methods of  ana- 
l,yzing very general types of p a r t i a l  d i f f e r e n t i a l  equations other than spek 
c i f i c  types such as viscous flow equations, e t c .  It w a s  soon discovered t h a t  
l i t t l e  of general nature could be uncovered, i n  connection with t h e  more com- 
monly uqed methods found i n  current  l i t e r a t u r e .  Most of these methods t r ea t ed  
problems f o r  which not only the  d i f f e r e n t i a l  equations but  t he  boundary values 
were a l so  specif ied.  Transformations evolved were based on both the  equation 
and the  nature of the  boundary values. There w a s  one exception t o  t h i s ,  how- 
ever, t h a t  gave promise of providing a very generalized method of analysis. 
This w a s  t he  theory of continuous transformation groups. The method w a s  by 
no means new. I n  f a c t ,  the  basic  ideas date back t o  the last  century and are  
found i p  the  work of the  mathematician Sophus Lie. Moreover, the  theory of 
grQups has been employed quite extensively i n  recent times by invest igators  
i n  %he f i e l d  of s i m i l a r i t y  analysis .  Nevertheless, there  w a s  not i n  the  lit- 
era tvre  a t r u l y  i n  depth study of the  applications of Lie 's  theory t o  the  
simiLarity analysis  of p a r t i a l  d i f f e r e n t i a l  equations. Previous appl icat ions 
were quite l imited i n  scope and it therefore  seemed reasonable t o  f ind  how 
far L ie ' s  ideas might be pursued i n  formulating a very general approach t o  
s imi l a r i t y  analyses,  The r e s u l t s  t h a t  have been obtained and t h a t  are pre- 
sented here a r e  most encouraging. 
formulated and the way made c lear  f o r  fu r the r  work. 

Very general methods of analysis  have been 
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The approach t o  be used i n  t h i s  report  i s  the  following. 
mainder of t h i s  chapter, a presentat ion of general concepts w i l l  be made, f o l -  
lowed i n  Chapter 2 by a discussion of  the form of general transformations f o r  
p a r t i a l  d i f f e r e n t i a l  equations of problems having a physical bas i s .  
of  transformation groups f o r  similarity analyses w i l l  be introduced i n  Chapter 
3 ,  and basic  ideas and applications presented. 
ployed i n  Chapter 3 w i l l  be generalized and a set of ra ther  powerful tech- 
niques f o r  analyzing p a r t i a l  d i f f e r e n t i a l  equations w i l l  be developed. 

For t he  r e -  

The use 

I n  Chapter 4, t he  methods em- 

1.1 GENERAL CONCEPTS 

The concept of similari ty solutions i s  very old and dates back t o  such 
well-known workers as Buckinghaml and Bridgeman.' Originally, the  term s i m -  
i l a r i t y  analysis  implied a procedure f o r  f in8ing some information about t he  
solut ion of par t icu lar  physical problem usual ly  short  of a complete mathemat- 
i c a l  answer. More recently,  i n  the work of such ana ly i s t s  as Birkhoff3 and 
Sedov, s i m i l a r i t y  solut ions have incorporated rigorous mathematical techniques 
which r e s u l t  i n  solut ions i n  the  engineering sense, t h a t  is ,  numerical answers. 
O f  par t icu lar  importance, the  more recent work has yielded solutions t o  non- 
l i n e a r  p a r t i a l  d i f f e r e n t i a l  equations which have been in t rac tab le  t o  more 
standard so lu t ion  techniques I n  f a c t ,  exact solutions of the  boundary-layer 
equations of f l u i d  mechanics a r e  almost universal ly  based on s imi l a r i t y  methods 

The various s imi l a r i t y  so lu t ion  methods can be broadly characterized as 
techniques which employ transformations of  varia'bles or parameters, or both. 
Typically transformations may l inea r i ze  a problem ( f o r  example the  Kirchhoff 
and hodograph transformations),  reduce p a r t i a l  d i f f e r e n t i a l  equations t o  
orhinary d i f f e r e n t i a l  equations ( fo r  example the  Blasius s imi l a r i t y  t r ans -  
formations), transform the  system t o  one already solved (such' as the Mangler 
transformation), or perform some other reduction of mathematical complexity. 
Sedov formulates a mathematical theory of  s imi l a r i t y  on the  bas i s  t h a t  ''two 
phenomena are  similar, i f  the assigned cha rac t e r i s t i c s  of the  other  by a simple 
conversion, which i s  analogous t o  t he  transformation from one system of un i t s  
of measurement t o  another." 
of dimensional analysis  as formulated by Buckingham and Bridgeman and the  geo- 
metric theory of invariants  r e l a t i v e  t o  a transformation of variables,  a fun- 
damental theory i n  modern mathematics and physics. Some authors have even 
found it convenient t o  define classes  or types of s imi la r i ty .  Kline5 defines 
"exkernal s imil i tude" as the  s imi l a r i t y  between problems of given c l a s s  (a 
transformation i n  terms of parameters alone ) and " in te rna l  simili tude" as a 
s imi l a r i t y  characterized by a mathematical re la t ionship between points inside 
a s ingle  system of a given c l a s s  ( fo r  example, a transformation which reduces 
the number of independent var iables  ) a 

4 

Thus, a ce r t a in  analogy e x i s t s  between the  theor ies  

Inherent i n  any general theory of s imi la r i ty ,  however, should be the  rec- 
ogni t ion of specifying, i n  some sense or other,  t h e  complete physical problem 
t o  be analyzed. I n  f a c t ,  the  term "similar i ty"  implies a comparison between 
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two or more complete and recognizable systems. 

Thus, it i s  of prime importance t o  formulate a "complete" ma-thematical 
descr ip t ion  of t h e  physical  problem under considerat ion before proceeding 
with a s i m i l a r i t y  so lu t ion .  
which i s  expressed i n  terms of the  governing equations together  with a body 
of information termed the  "conditions f o r  uniqueness of solut ion" which may 
contain not only boundary and i n i t i a l  conditions i n  the  usual  sense, bu t  a l so  
possible aux i l l a ry  physical  considerations such as conservation requirements. 
To be sure,  it i s  not always possible  t o  prescr ibe t h e  uniqueness conditions 
- a p r i o r i  f o r  a l l  problems t h a t  engineers a re  ca l l ed  on t o  consider.  I n  f a c t ,  
it appears t h a t  much of the  work that has been done i n  the  past  t o  develop 
s i m i l a r i t y  analyses has been motivated by  an i n i t i a l  statement of complete- 
ness, or l ack  of it. For example, the  e a r l y  work of Buckingham and Bridgeman 
on dimensional ana lys i s  require  only  a recognition of the  per t inent  var iab les  
which apply, without any statement being made concerning t h e  governing equa- 
t i ons .  Later  workers such as Morgan,7 Hansen,8 Krzywoblocki,9 and Wecker and 
Hayeslo inves t iga ted  s i m i l a r i t y  methods by considering t h e  governing equations 
first, and on ly  examining the boundary and i n i t i a l  conditions as a l a t e r  s tep,  
i f  a t  a l l .  Another group of workers developed s i m i l a r i t y  methods by s t a r t i n g  
with a complete mathematical formulation and, thus motivated, t o  examine less 
complete (and more genera l )  problems; see f o r  example Coles,ll Abbott and 
Kline,12 and Gukhman. 

GukhmanG charac te r izes  a complete problem as one 

6 

An examination of these  e a r l i e r  works show t h a t  t he  i n i t i a l  problem s t a t e -  
ment, as far as assumed completeness, determined t o  a l a rge  extent  t h e  kind of 
mathematical approach employed. The more information that was known, t h e  more 
d i r e c t  was t h e  methbd developed f o r  f ind ing  a s i m i l a r i t y  so lu t ion  and, at  the  
same t i m e ,  t he  l e s s  general  were both the  methods and the  conclusions (as r e -  
gards "general so lu t ions") .  
s a r i l y  bad. The more general  techniques, such as group theory methods, have 
produced powerful theorems and y i e ld  results with a m i n i m u m  of mathematical 
busy-work. 
average engineer t o  follow because t h e i r  motivation i s  mathematical, not phys- 
i c a l ,  and t h i s  has inh ib i t ed  t h e i r  wide use.  Also, somewhat amazingly, t he  
more powerful mathematical techniques have been t o  a degree more r e s t r i c t i v e  
i n  some of t h e i r  aspects  (such as the  "c lass  of assumed transformations") than 
the  l e s s  elegant methods. 

It i s  not  suggested t h a t  t h i s  dichotomy i s  neces- 

On the  o ther  hand, t he  group theory methods are d i f f i c u l t  f o r  t h e  

By recognizing the  differences i n  pas t  motivation, and the  r e s u l t i n g  ad- 
vantages and weaknesses, t h e  suggestion na tu ra l ly  arises t h a t  perhaps a 
marriage of the  two approaches m i g h t  be f r u i t f u l ;  t h l s  on one goal of t h e  
preseqt inves t iga t ion .  I n  the  following chapters, t h e  two viewpoints w i l l  be 
examined i n  more d e t a i l  than has been done i n  t h e  pas t .  I n  the  following 
chapter a technique based s t rongly  on physical  reasoning w i l l  be used t o  
evolve a very broad d e f i n i t i o n  of s imi l a r i t y .  It w i l l  be shown t h a t  by intro-  
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ducing the  concept of generalized s imi la r i ty , "  a un i f i ed  method can be de- 
veloped f o r  der iving t h e  majori ty  of t h e  well-known transformations employed 
i n  f l u i d  dynamics. 

Whe term "generalized s imi l a r i t y"  w a s  found des i rab le  because of t he  popular 
use 'of the term s i m i l a r i t y  t o  imply simply a reduction i n  the  number of  vari- 
ables of a given problem. 
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CWT$R 2 

GENERAL TRANSFORMATION METHODS I N  FLOW THEORY 

2.0 GENEFKL CONCEPTS 

An appropriate change of var iables  i s  probably one of the  most useful  
methods avai lable  f o r  solving the  p a r t i a l  d i f f e r e n t i a l  equations of mathematical 
physics. The most gen@ral c r i t e r i o n  f o r  a transformation i s  s i m p l y t o  change 
a given problem in to  a simpler problem is some sense or other; t h a t  is, e i t h e r  
t o  a form which w i l l  y i e ld  to  more standard so lu t ion  techniques, or possible 
t o  a form which has been previously solved i n  connection with a r e l a t ed  o r  
s i m i l a r  problem. 
well-known methods f o r  transforming given problems i n t o  forms which y ie ld  t o  
clasSica1 techniques (such as separation of var iab les ) .  
various transformation techniques in to  three  groups: transformations only of 
the dependent variables,  transformations only of t he  independent variables,  
and mixed transformations of both independent and dependent var iables  How- 
ever, a l l  three groups have a common goal: t o  f ind  a relat ion,  or more spe- 
c i f i c a l l y ,  a bas is  of comparison, between d i f fe ren t  physical  (or mathematical) 
pyoblems. 
eral ized s imi l a r i t y .  'I 

Hodograph transformations and conformal transformations a re  

Amesl3 c l a s s i f i e s  t he  

This broad concept of comparison i s  the  def in i t ion  of the term "gen- 

Generalized s imi l a r i t y  m i g h t  be applied i n  f l u i d  mechanics t o  attempt t o  
answer such questions as "Is there  any s imi l a r i t y  ( i . e m ,  bas i s  of comparison) 
between compressible and incompressible flow problems, axisymmetric and planar 
flows, or i n  general, any more complicated and a less complicated flow?" B y  

Abbdtt and Kline,12 and others  i s  defined i n  t e r m s  of independent variables 
of a problem. Thus It may ul t imately r e f e r  t o  a physical s imi l a r i t y  within 
a given problem, such as s imi l a r i t y  o f  ve loc i ty  or temperature prof i les .  

contrast ,  t h e  usual term "similar i ty"  as used by Birkhoff ,3  Morgan,7 Hansen, 8 

Much of t he  previous work on s imi l a r i t y  w a s  motivated by the desire  t o  
develop simple methods f o r  reducing the number of independent var iables .  
Out of t h i s  previous work came the  r ea l i za t ion  t h a t  each of the  proposed 
methods w a s  based on an assumed c lass  of transformations and the recognition 
t h a t  more general c lasses  of transformations might lead t o  the  so lu t ion  of 
a wider c l a s s  of problems. The f i rs t  pa r t  of t h i s  chapter i s  concerned with 
seeking the  most general c l a s s  of transformations f o r  par t icu lar  types of 
problems. The two viewpoints rt discussed i n  Chapter 1 w i l l  be examined. 
F i r s t ,  t he  mathematical theory of transformations will be reviewed and it 
w i l l  be shown possible t o  postulate the so-called primitive transformation 
as the  most general form of a c l a s s  of  transformations (under a c e r t a i n  as- 
sumption) * Second, a separate approach, based on postulat ing t h e  "complete 
physical problem," i s  examined f o r  t h e  special  case of laminar boundary-layer 
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flows and it i s  shown that t h i s  approach a l so  yields  the  primitive transforma- 
t i on .  

The second pa r t  of  the chapter deals  with the development of a technique 
f o r  employing t h e  primitive transformation t o  f ind  the form of the  variables 
f o r  a wide va r i e ty  of generalized s imi l a r i t y  problems. 

2 .1  TYPICAL TRANSFORMATIONS USED I N  FLUID MECHANICS 

A s  a means of developing some insight  i n to  the  question of "the most gen- 
e r a l  c l a s s  of s imi l a r i t y  transformations" and the  concept of "generalized 
s imi la r i ty , "  Table 1 w a s  compiles of examples of as many d i f f e ren t  types of 
known transformations as could be found t o  represent t h e  f i e l d  of f l u i d  me- 
chanics. 

Transformat ionl5 Transformed Independent Variables 

Similar i ty  Eh) = x, r l ( X , Y )  = y 7 b )  

Meksyn-Gb'rtler 

von Mises 

S imi la r i ty  Rules of  High Speed Flow (see,  fo r  example R e f .  16): 

(i ) Prandtl-Glauett 
(ii) Gathert E(x) = x, V ( Y )  = BY 

(iii) von Kdrmdn Transonic 

6 



By comparing the  vwious  transformations i n  the table, an in t e re s t ing  
cgnclusion can be made: 
the  $enera1 form 5 = 4 (x )  and 7 = ?(x,y) ( t h a t  i s ,  one of t he  new variables  
i s  a funct ion of only one of t he  o r ig ina l  var iab les ) .  
raises the  question "Is the  general transformation $ ( x ) ,  v(x,y) the  most gen- 
eral c la s s  of transformations t h a t  need be considered f o r  physical  problems?" 
I n  an  attempt t o  answer *his question, it w i l l  f irst prove useful  t o  review 
the mathematical theory of Cransformations . 

a l l  of the transformed independent var iables  are of 

This r ea l i za t ion  

2 , 2  THE PRIMITIVB TRAN6FORMATION 

The following theorem can be found i n  the mathematical l i t e r a t u r e  of gen- 
e r a l  transformation theory (see,  fo r  example, Courantx4) : 

THEOREM: An a r b i t r a r y  one-to -one continuously diffe 'rentiable transformation 

of a region R i n  the  x,y-plane onto a region R '  i n  t he  E,v-plane can be r e -  
solved i n  the  neighborhood of any point i n t e r i o r  t o  R i n to  one or more con- 
t invously d i f fe ren t iab le  "primitive" transformations, provided tha t  through- 
out t he  region R, the  Jacobian 

d i f f e r s  from zero. A "primitive" transformation i s  of t he  form 

Now one-to-one transformations have an important in te rpre ta t ion  and ap- 
p l ica t ion  i n  the  representat ion of deformation or motions of continuously d i s -  
t r i bu ted  systems, such as f l u i d s .  For example, i f  a f l u i d  i s  spread out  at  a 
giveq t i m e  over a region R and then i s  deformed by motion, the motion of the  
f l u i d  i s  described by t h e  coordinates i n  the  physical R-plane. If t h e  f l u i d  
motion i n  R i s  characteriTed by the  coordinates x,y, then the  corresponding 
motion i n  the  transformed region R '  i s  characterized by coordinates 5 , ~ .  The 
one-to-one character of t he  transformation obtained by bringing every point 
x,y in to  correspondence w i t h  a s ingle  point 5 , ~  i s  simply the  mathematical ex- 
pression of the physical ly  obvious f a c t  t h a t  the  f l u i d  motion i n  the  physical 
R-plane must remain recognizable a f t e r  transformation t o  the transformed R ' -  
plane, i . e . ,  t h a t  t he  corresponding motions remain distinguishable.  

7 



Physically, since most "pract ical"  transformations of i n t e r e s t  f o r  solving 
physical problems should be one-to-one,* t h a t  is, have a unique inverse (ex- 
cept possibly a t  a f i n i t e  number of singular points) ,  it appears the  primitive 
transformation o r  the resolut ion in to  primitive transformations, should be con- 
sidered i n  the search f o r  "the most general c l a s s  of transformations." 

For the  sake of completeness, the  following two propert ies  of the  primi- 
t i v e  transformation are noted: 

(i) If the  primitive transformation 

i s  continuously d i f fe ren t iab le ,  and i t s  Jacobian 

d i f f e r s  from zero a t  a point P ( X ~ , ~ ~ ) ~  then i n  the  neighborhood of 
P the  transformation has a unique inverse,  and t h i s  inverse i s  a l so  
a primitive transformation of the same type. ' 

(ii) For primitive transformations, the  sense of ro ta t ion  i n  the  x,y- 
plane i s  preserved or reversed i n  the 5,q-plane according as the  
s ign of the Jacobian i s  posi t ive &or negative, respect ively.  

I n  summary, the primitive transformation appears t o  be the most general 
c lass  o f  transformations t h a t  need be considered, purely from a mathematical 
viewpoint, as long as it i s  required t h a t  a unique inverse of  the  transforma- 
t i o n  must e x i s t .  I n  t h e  next section, tYle question of t he  most general t r ans -  
formation w i l l  be approached from a fundamentally physical  viewpoint and it 
w i l l  be shown t h a t  again the primitive transformation appears t o  be a require- 
ment from conclusions based on uniqueness arguments. 

2.3 REQUIREMENTS IMPOSED BY THE PHYSICAL DESCRIPTION 

The question of the most general c l a s s  of transformations w i l l  now be 

*An exception t o  t h i s  rule;  f o r  example, i s  the m n  Mises transformation o f  
Table 1, which i s  singular along the  x-axis. However, t h i s  transformation 
i s  used f o r  computational (not  physical)  reasons, and hence i t s  use i s  
motivated by a completely d i f f e ren t  l i n e  of reasoning than t h a t  under con- 
s iderat ion here.  
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examined from a more physical veiwpoint. 
o f  course, but the  physical problem w i l l  be kept near a t  hand and frequent 
reference t o  it w i l l  be made throughout the analysis .  

Some mathematics w i l l  be involved, 

Because i n  what follows, by def ini t ion,  involves a par t icu lar  physical 
problem, it w i l l  be convenient t o  introduce such a problem. A s  an example, 
consider t h e  following equations describing t h e  two-dimensional flow of a 
laminar incompressible boundary layer :  

or an equivalent s ingle  equation i n  terms of t he  stream function; 

For convience i n  the  development, it i s  assumed t h a t  a l l  of the  var iables  a re  
nondimensional. The objective i s  now t o  consider very general transformation 
of  var iables  and see what conditions must be m e t  by t h i s  transformation so as 
not t o  v io la te  any known physical propert ies  of the  problem. 

Let us begin by specifying a transformation of var iables .  For the  inde- 
pendent variables,  no r e s t r i c t i o n s  at present w i l l  be placed on t h e  assumed 
form; thus the  form i s  specif ied simply as 

The dependent var iable  Jr  (the stream funct ion)  i s  a l so  transformed t o  a new 
function, say Y. Previous work on f luid flow tranformations has of ten  assumed 
t h a t  the two stream Functions, If and !I!? should be t h e  same a t  corresponding 
points and hence t h a t  streamlines i n  one plane a re  tranformed in to  streamlines 
i n  the  other .  However, t h i s  r e s t r i c t i o n  i s  found t o  be unwarranted i n  many 
problems and w i l l  be avoided here. 
w i l l  be specif ied i n  some weak sense by the  form 

Instead, t he  re la t ionship  between If and Y 

9 



It should be recognized t h a t  t h i s  assumption i s  not t r iv ia l  and other forms 
could be considered. Nevertheless, Eq. (2 .4)  represents a more general case 
than  usual ly  employed and a t t en t ion  will be r e s t r i c t e d  t o  t h i s  form i n  the 
present repor t .  

The next s tep  i s  t o  ca r ryqu t  lhe transformation of Eqs. (2 .3)  and (2.4)  
on the  left-hand s ide of Eq. ( 2 . 2 ) .  Application of the  transformations (2 .3 )  
and (2 .4)  t o  the  boundary-layer equation i s  not new and was considered pre- 
viously by Colesl5 and o thers .  However, the  generalized s imi l a r i t y  technique 
w a s  not under consideration by the previous authors.  

The r e s u l t s  of  the  transformation o f  Eq. (2 .2)  i s  given i n  Table 2 .  For 
convenience i n  in te rpre t ing  the  physical terms a f t e r  transformation, t rans-  
formed ve loc i t i e s  U,V have ‘been defined by 

The transformed s ide  of Eq. (2 .2 )  given i n  Ta‘ble 2 i s  e s s e n t i a l l y  un- 
manageable i n  i t s  present form. While it i s  unclear a t  t he  present time what 
conditions are e i the r  necessary o r  su f f i c i en t  t o  ensure any pa r t i cu la r  math- 
ematical behavior, it i s  in t e re s t ing  t o  consider an argument proposed by 
Coles.l5 
formed flow outside of the  shear lqyer ( i . e e j  f o r  large values of y )  should 
conform both physical ly  and formally t o  the  o r ig ina l  flow. Thus, he argues, 
s ince the physical flow is bounded for  large y and is, i n  f ac t ,  a t  most a 
function of xp then the  transformed s ide of Eq. (2 .2)  m u s t  behave i n  a s i m -  
i lar  fashion. H i s  argument i s  then t h a t  t he  subs tan t ia l  der ivat ive terms 
and the  U2 terms become at  most functions of 5 f o r  la rge  ys whereas the  re- 
maining terms behave e i t h e r  l i k e  y o r  ?. H i s  conclusion i s  t o  require  the 
q and q terms t o  vanish ident ica l ly ,  which can ‘De accomplished by requir ing 
t h a t  g = g(x>,  5 = E(x), and qy = . y ( x ) .  A t  the  present time, about a l l  t h a t  
can be sa id  i s  t h a t  t h i s  assumed form i s  one possible form of a transforma- 
t i o n  which w i l l  preserve a c e r t a i n  sense of physical correspondence between 
the  given and transformed flow; t h i s  form of the transformation w i l l  be em- 
ployed throughout the  remainder of the present chapter.  

Coles’ argument i s  based on the I a p r i o r i  requirement t h a t  t h e  t rans-  

2 

I n  summary, the  postulated general transformation, based on the  physical 
mode, i s :  
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It i s  of i n t e r e s t  t o  note t h a t  the  resu l t ing  form of the  independent var iables  
i s  a primitive transformation as discussed i n  the las t  section, but it has 
been shown by considering a par t icu lar  problem and relying on physical argu- 
ments t h a t  it may be possible t o  r e s t r i c t  the form of 11 t o  be a l i n e a r  func- 
t i o n  of y -- f o r  t h i s  pa r t i cu la r  -- c lass  of problems (boundary-layer f lows) .  
the  two approaches, mathematical and physical, have lead t o  the  same con- 
clusion regarding a postulated "most general c l a s s  of transformation. '' O f  
course it i s  necessary, as previously pointed out, t o  emphasize t h a t  there  
may be some cases of p rac t i ca l  i n t e r e s t  which w i l l  l i e  outside tile realm of 
the  mathematical conclusions presented here.  However, it has been found t h a t  
a l l  of  the cases l i s t e d  i n  Table 1 a re  s a t i s f i e d  by t h e  transforlaation of Eq. 
( 2 . 5 )  (with the  exception o f  the von Mises transformation previously discussed) .  

Thus, 

It i s  now worthwhile t o  r e tu rn  t o  Table 1 fo r  a moment. Recall t h a t  from 
Table 1, it w a s  noted t h a t  a wide c l a s s  of d i f f e ren t  transformations were a l l  
primitive transformations. Further, note t h a t  one of these transformations, 
the  similarity transformation, has been shown t o  yield t o  simple, general anal- 
ys i s  f o r  i t s  der ivat ion f o r  pa r t i cu la r  problems. I n  f a c t ,  a t  t h e  present time 
there  a re  two types of s imi l a r i t y  analyses t h a t  a r e  founded pr imari ly  on s i m -  
p le  transformation theory: 
separation of var iables  method of Abbott and KLine.l2 It i s  thus of  i n t e r e s t  
t o  speculate on the  following question: Would it be possible t o  derive a l l  
of these "generalized s imi la r i ty"  transformations by the  same technique t h a t  
i s  used t o  derive the s imi l a r i t y  transformatian? The Generalized S imi la r i ty  
Analysis w a s  developed as an attempt t o  answer t h i s  question. 

the f r e e  parameter method of Hansen8 and the 

This new method i s  based on a single assumption concerning the admissible 
c l a s s  of transformations of t he  independent variables,  namely t h a t  t h e  assumed 
transformation should be one-to-one ( tha t  i s ,  have a unique inverse) .  On the  
previous pages it w a s  shown t h a t  t h i s  requirement would lead t o  the  primitive 
transformation, and fur ther  t h a t  a par t icu lar  primitive transformation may be 
obtained from physical arguments f o r  a par t icu lar  c l a s s  of problems, namely 
E = E(x), 'q = yy(x) f o r  the  boundary-layer flows. O f  course the  genera l i ty  
of the  present ideas goes beyond a par t icu lar  case, such as boundary-layer 
flow analysis  and should be appl iahle  t o  a wide c lass  of problems. 

2.4 THE GEXERILIZED SIMILARITY ANALYSIS 

The development of the  generalized s imi l a r i t y  analysis  w a s  motivated as 
an extension of the method of finding s imi l a r i t y  var iables  ( i . e . ,  t h e  reduc- 
t i o n  of the  number of independent var iab les )  t o  the  problem of f inding a t rans-  
formation o f  var iables  which w i l l  convert a given physical problem in to  an 
a l t e rna te  problem under ce r t a in  prescribed conditions For example, the pre- 
scribed condition f o r  a similari ty so lu t ion  i s  t h a t  t h e  number of  independent 
var iables  must be reduced. 
Mangler transformation i s  t h a t  the axisymmetric boundary-layer equations are 

By contrast ,  the  prescribed condition f o r  the 
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t o  be transformed ifit0 the  p lk . r ' f oFm of t h e  equations, and so for th ,  w i t h  
similar statements f o r  t he  r e s t  of the  examples i n  Table 1. 

There a re  three  d i s t i n c t  s teps  t o  the  generalized similarity ana lys is .  
'1 

These s teps  are:  

(a)  The general mathemathical theory of transformations states t h a t  any 
continuous one-to-one transformation can be resolved into one or more prim- 
i t i v e  transformations of the  form 

Thus, a primitive transformation form i s  assumed - a p r io r i ,  where it i s  recog- 
nized t h a t  t h e  general analysis  has the  p o s s i b i l i t y  of being repeated more than 
once? depending on the  pa r t i cu la r  problem at  hand. 

(b )  The given equation, transformed under a primitive transformation t o  
the new independent variables ( 5 , ~ )  i s  required t o  s a t i s f y  the s t a t e  require-  
ment; f o r  example, t h a t  f o r  a s imi l a r i t y  analysis, t h e  transformed equation 
should be a function only one of the new variables .  

( e )  Simultaneously the  boundary conditions f o r  the given equation a re  
required t o  be s a t i s f i e d  when expressed i n  terms of the  transformed var iables .  

These three s teps  w i l l  be shown to completely and uniquely determine the  
e x p l i & i t  form of the  new variables  E;(x) and v(x,y) if, i n  f ac t ,  t h e  o r ig ina l  
problem and associated boundary conditions do admit a generalized s imi l a r i t y  
solution. 

A s  an example of the  method, two problems w i l l  be examined i n  d e t a i l .  
F i r s t  t he  c l a s s i ca l  Blasius f la t  p l a t e  boundary-layer problem w i l l  be solved 
t o  give a r e l a t i v e l y  simple motivation of the basic  ideas.  Second and more 
d i f f i c u l t  Mangler transformation w i l l  be derived as an example of the  broad 
app l i cab i l i t y  of the method. 

The boundary-layer equations for a steady, two-dimensional l a m i n a r  flow 
with a zero pressure gradient (Blasius f l a t  p la te  flow) can be wr i t ten  i n  the  
following f o m  i n  terms of the  stream function: 



(a l l  var iables  a r e  dimensional, where v is the  kinematic v i scos i ty )  with the  
boundary conditions 

( 2 . 7 )  

a4f 
a Y  
- + constant 

To make the  problem statement complete, it i s  necessa ry to  s t a t e  the given re- 
quirement f o r  the  transformation x, y + [, q : 

Requirement: under the transformation, the given equation and boundary condi- 
t ions ,  (2 .6)  and (2,7), are  t o  reduce t o  a function of a s ingle  
independent var iable  (i .e , t h e  s imi l a r i t y  var iable  ) . 

The three s teps  of the  generalized s imi l a r i t y  analysis  are car r ied  out  i n  order 
as follows: 

(a)  Assume a primitive transformation 

Since a boundary-layer problem i s  under consideration, i.t was shown i n  t he  
Section 2.3 t h a t  it i s  su f f i c i en t  t o  choose the more spec i f ic  transformation 
f o r  q as q = sry(x), and fu r the r ,  f o r  the  present case of a s imi l a r i t y  solu- 
t ion,  F; can be assumed i n  the simple form F; = x without loss of genera l i ty  
because the  f i n a l  r e su l t ,  by def in i t ion ,  i s  t o  be a funct ion of the  s ing le  
var iable  q(x,y), and not both F; and q.* 
t he  transformed variable Y(F;,q) i s  assumed i n  the  form 

For the  dependent variable Jr(x,y), 

as discussed i n  Section 2.3. 
dent and independent var iables  becomes 

Thus, t h e  assumed transformation f o r  t he  depen- 

*The question na tura l ly  arises, why not assume the form F; = y, q = q(x,y)? 
This a l t e rna t ive  i s  e a s i l y  eliminated for  the  present case by carrying out 
the  corresponding analyses i n  an analogous manner as tha t  presented here; 
it i s  then found tha t  t h i s  assumed form will not s a t i s f y  the given boundary 
conditions.  
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Ferforming the  transform&& (2.8)  on the  given Eq. (2 .6)  yields  the  
following results : 

where primes a re  uqed t o  indicate  t o t a l  der ivat ives .  Subst i tut ing these re -  
sults in to  Eq. (2.6) fields : 

with boundary conditions : 

(b) Imposing the s t a t ed  condition of s imi l a r i t y  by requiring t h a t  

y = Wrl) 



t h a t  is ,  t h a t  t h e  transformation must reduce the  number of  variables,  and 
noting tha t  qy  = y(x ) ,  the transformed equation becomes: 

with boundary conditions 

q = 0 :  Yly = 0 ,  - Y  g'+ Yly = 0 tz (2.10) 

( e )  SO f a r  the functions g ( x )  and y ( x )  a re  unspecified.  However, only 
par t icu lar  forms of these functions w i l l  s a t i s f y  both the  boundary conditions 
and the s t a t ed  requirement t h a t  Eq. (2 .9)  must be a function only of q .  
amining the  las t  boundary condition (2.9)  yields  

Ex- 

The only way t h a t  t h i s  can be t r u e  i s  i f  

Y ( X )  = uog(x)  . 

Also, the only way t h a t  Eq. (2 .9)  can be a function of t h e  s ingle  var iable  q 
i s  if the  coef f ic ien ts  of Y and i t s  der ivat ives  a r e  constant. Hence, l e t t i n g  

- g ' 1 -  - - g '  - - constant = c1 
8 Y  u0g3 

then in tegra t ion  of t h i s  ordinary d i f f e r e n t i a l  equation yields  
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where x, i s  an undeterminable constant of integration,* and l e t t i n g  the  a rb i -  
t r a r y  constant c1 take the  value c1 = -v/2 yields  

Evaluating the  coef f ic ien t  of Y 32 : 

Thus t h i s  coef f ic ien t  i s  iden t i ca l ly  zero= and t h e  f i n a l  form of s imi l a r i t y  
solut ion is :  

(2.11) 

Y ( O )  = ~ ~ ( 0 )  = 0 ,  Y * ( w )  + 1 . 

I n  summary, it has been shown t h a t  a unique choice f o r  the transformation 

The next 
variables can be found f o r  the  s imi l a r i t y  so lu t ion  of the  Blasius problem by 
carrying out the three  s teps  of the  generalized s imi l a r i t y  analysis .  
example w i l l  show t h a t  the  method can be applied t o  a much moreegeneralized 
problem, t h a t  of f inding the conditions f o r  which an axisymmetric boundary 
layer i s  s i m i l a r  t o  a planar boundary layer .  
Whe meaning of &, i s  c l ea r  from the physips of t he  problem; i t s  magnitude 

Thus the  appearance of x, i s  a 
i s  determined by conditions a t  the  leading kdge of the  p la te  and cannot be 
derived from boundary-layer theory alone. 
su f f i c i en t  proof t h a t  the Blasius solut ion i s  a correct  asymptotic down- 
stream so lu t ion  for  l a m i n a r  flow over a p l a t e  which holds independent of 
t he  i n i t i a l  condition$ specifying the  p l a t e  leading edge. 

g ' / 6 y  = el. This can be seen as follows: f o r  s implici ty ,  l e t  y = 1/6 and 
g = l /h .  Then g * / 8 y  = -h36 = c 1  and l e t t i n g  (g3/zy-y9/y2g)  = (-h'G+S'h) 
= c2, then  6'h i s  a constant, say c3. 
6 * h  = c3 may be co bined t o  y ie ld  66" = (c1/c3)612 = 0 which has the  solu- 
t i o n  6 = lax + b11T(1-cl/c3) f o r  c1 
provides a general qolution, however we cannot evalute c1 or c3 without 
another condition. 
required condition must come from the bounaary conditions.  

*The coef f ic ien t  of Y;" i n  Eq. (2.9) i s  nat independent of the  r e l a t i o n  

The two equations h '6  = -e1 and 

c3 and 6 = aebx f o r  c1 = c3.  This 

The conclusion, as found abve,  remains the  same; the  



Example - 2 

The well-known Mangler transformation16 serves as a good example of the 
broad meaning of the idea of generalized similarity because the transformation 
answers the question "Under what conditfons is an axisymmetric boundary-layer 
flow similar to a two-dimensional planar flow?" The answer lies in finding 
a transformation between the variables describing the two types of flow. The 
generalized similarity analysis is formulated in the same way as the simple 
similarity analysis of the preceding example; that is, by specifying the equa- 
tions (and boundary conditions) and the stated requirement to be satisfied 
by the transformation. 

The governing equations for a thin laminar axisymmetric boundary layer 
are : 

u - + v -  aU au - - u + L + v -  a2u 
ax aY dx a f  

(2.12) 

(2.13) 

where ro = ro(x) is a given quantity (ro specifies the body shape relative to 
the axis of symmetry) and v, the kinematic viscosity, is a constant. The gen- 
eral boundary conditions are: 

y = 0: u,v = 0 
(2.14) 

y + 00: u -+ ul(x) . 

The problem statement is completed by writing down the required mathematical 
form of the desired equations, namely: 

Requirement: under the transformation u,v + U,V and x,y -+ E,? the trans- 
formed equations are to be in the form of a planar boundary- 
layer f low; that is, of the form 

(2.16) 
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The -three p a r t s  of the analysis  a r e  as follows: 

( a )  Assume a primitive transformation. Again, since the  problem involves 
the boundary-layer equations, it i s  su f f i c i en t  t o  assume the  s&me general 
form of the  transformation as given qn Section 2.3, t h a t  i s  

where, f o r  the  present case, the stream function $(x,y) i s  defined by t h e  equa- 
t ions  

so  as t o  s a t i s f y  Eq. (2 .12) .  
planar equations, the  transformed stream function Y ( E , 7 )  i s  defined by 

For t h e  transformed flow t o  be i n  the  form of 

Using these def in i t ions  and the transformation (2.17),  the ve loc i t i e s  and 
t h e i r  der ivat ives  become 



Subst i tut ing these expressions in to  Eqs. (2.12) and (2.13) yields ,  after re- 
arrangement : 

(2.18) 

(2.19) 

It i s  found t h a t  the cont inui ty  Eq. (2.18) i s  invariant  under the transforma- 
t i o n  (2.17) as long as the Jacobian J(E,v) = yEx d i f f e r s  from zero. Thus Eq. 
(2.18) does not force any requirements on t h e  transformation. 
comparing Eqs. (2.16) and (2.19),  it i s  seen t h a t  f o r  the  l a t t e r  equation t o  
f u l f i l l  the  given requirement of being iden t i ca l  t o  the  planar form given by 
Eq. (2.16),  it i s  necessary t h a t  

However, i n  

and 

g '  au (U$-U') - - Y - = 0 . 
g arl 

A su f f i c i en t  condition fo r  Eq. (2.21) t o  be s a t i s f i e d  i s  f o r  

LZ- = constant = c1 
r0g 

(2.21) 

(2.22) 

and 

g = constant = c2 . (2.23) 

Although Eqs. (2.22) and (2.23)  may not be necessary conditions f o r  t he  satis-  
f ac t ion  of (2 .21) ,  they a t  least provide - one so lu t ion  f o r  the  given require-  
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ment and t h i s  i s  usua l ly  sa t i s f ac to ry  from an  engineering veiwpoint. Since 
there  a re  no fur ther  requirements t o  r e s t r i c t  a choice fo r  t he  constants c1 
and c2, they a re  normally chosen f o r  dimensional reasons t o  assume the values 
c1 = 1 and g = 1 / D  where D i s  an a r b i t r a r y  reference length.  
form f o r  t h e  transformation becomes: 

Hence, the f i n a l  

(2.24) 

(2.26) 

( b )  It has al ready been shown that f o r  the  present case, the unique form 
of the  transformation, Eqs. (2 .24) ,  (2.25),  and (2.26),  i s  determined by re- 
quirements on the d i f f e r e n t i a l  equation alone - Thus, the  boundary conditions 
do not provide any addi t ional  information and, i n  f a c t ,  they a re  found t o  carry 
over d i r e c t l y  as follows: 

7 = 0 :  u,v = 0 

q + 03: u + u&) 
(2.27) 

The analysis  i s  thus complete, Eqs. (2 .24) ,  (2.25),  and (2.26) beiqg known as 
the Mangler transformation. 

2.5 CONCLUDING RFMARKS 

It has been shown t h a t  the  primitive transformation appears o t  be the  
most general c l a s s  of t ransformt ions  necessary t o  provide a transformation 
with a unique inverse.  This r e s u l t  was obtained from the  general mathematical 
theory of transformations, but w a s  a l so  supported 'by a physical argument f o r  
such cases as boundary-layer problems which showed t h a t  the transfoxmation 
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i s  possibly su f f i c i en t  t o  ensure proper behavior of the equations. 

The generalized similari ty analysis  w a s  then introduced t o  solve a wide 
c l a s s  of problems which could be formulated as a comparison between two given 
subproblems. Two examples were given, the Blasius s imi l a r i t y  problem and a 
der ivat ion of  t he  Mangler transformation, however a l l  of the  cases given i n  
Table 1 can be derived i n  s aimilar fashion. 

A few comments can be made concerning the  ro l e  o f  the function g (x )  ap- 
pearing i n  the  transformation of the dependent var iable  f o r  t he  boundary-layer 
equations. determined 

s imi l a r i t y  and Meksyn-G6rtler transformations, respectively,  and g i s  found 
t o  be constant f o r  the  Mangler transformation. However, i n  some cases, the 
choice f o r  g is arbitrary; f o r  example, g may take on any value fo r  t h e  von 
Mises transformation. Further ,  f o r  the  case of comparing compressible and in-  
compressible forms of the boundary-layer equations, d i f f e ren t  choices f o r  g 
lead t o  d i f f e ren t ,  but nevertheless useful ,  r e su l t s :  Stewartson chooses g = 
constant and Dorodnitsyn chooses g = T~ = y ( x ) .  Coles discusses the  s ign i f -  
icance of g f o r  the d i f f i c u l t  problem of compressible-incompressible t rans-  
formations of the  boundary-layer equations f o r  turbulent  flow i n  Ref. 11. 

I n  ce r t a in  cases, t he  value of g (x )  w i l l  be unique1 
by the problem. For example, g (x )  i s  proportional t o  J x  and *J;I-- 5 (x )  f o r  t he  

I n  summary, the  ideas presented i n  t h i s  chapter a r e  based on, or more ap- 
propriately,  motivated by a physical descr ipt ion of a problem which i s  i n  some 
sense complete. Depending on the  pa r t i cu la r  case under consideration, com- 
pleteness may imply a knowledge of a l l  necessary boundary conditions, or pos- 
s i b l y  only a statement of a pa r t i cu la r  requirement of t he  transformation. I n  
any case, a fa i r ly  spec i f ic  problem formulation i s  implied. 

I n  the  next chapter, a d i f f e ren t  technique will be examined which focuses 
a t t e n t i o n  on a more narrow application; the simple s imilar i ty  problem ( i n  the  
sense of reducing t h e  number of independent var iab les ) .  This technique, the  
group theory method, being l e s s  encumbered by statements of broad general i ty ,  
w i l l  prove t o  y ie ld  very elegant and powerful mathematical results f o r  f ind-  
ing similari ty solutions f o r  a wide range of appl icat ions.  
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CHAPTER 3 

SIMF'LEl GROUP THEORY APPLICATIONS 

3.0 INTRODUCTION 

In this chapter we will consider one of the more widely used methods of 
reducing the number of independent variables of a partial differential equa- 
tion, the group-theoretical method. The foundation of the method is contained 
in the general theories of continuous transformation group that were intro- 
duced and treated extensively by Lie in the latter part of the last century. 
G. Birkhoff2 was one of the first to apply this concept in searching for sim- 
iParity solutions of partial differential equations. Subsequently, Morgan? 
investigated quite thoroughly the mathematical theories involved and essen- 
tially completed the development of the method now generally referred to as 
the group-theoretic method.3 

In the classical group-theoretic similarity analysis, a one-parameter 
linear or spiral group of transformation is employed.* The variance of a 
given partial differential equation under the transformation group and the in- 
troduction of new invariant variables, enables the number of independent var- 
iables to be reduced by one. Once the theories involved are understood, the 
process of obtaining similarity solutions is considered to be the simplest as 
compared with other techniques. Extension of this method to multi-parameter 
linear and spiral groups of transformation has been developed in recent years, 
and will be discussed in this chapter along with the one-parameter approach. 

3.1 ONE-PARAMETER GROUP-TKWRETIC ANALYSIS 

In this section the topic of group-theoretic analysis will be introduced 
by restricting attention to one-parameter methods. The material will have the 
twofold purpose of showing how the one-parameter method is used in similarity 
analyses and will provide a background fo r  material in the remainder of this 
chapter and Chapter 4. 
plumb the depths of Lie's theory of continuous transformation groups. As 
wi l l  be seen, only two simple types of transformation groups will be con- 
sidered-the linear and spiral groups. In the next chapter, a far more gen- 
eral method is presented that permits the construction of a greater variety 
of transformation groups. This section primarily reviews the work of Birk- 
ho f f .and Morgan .5 

By no means does the one-parameter similarity analysis 

2 

*See Ref. 3 for a general introduction to group theory and this method. 
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3.1.1 Absolute Invariants 

The first step in introducing the concept of one-parameter transformation 
groups is by establishing the group property of a transformation of coordinates. 
I? general, if a transformation is defined by 

then there exists (m-1) functionally independeqt absolute invariants 
(j(xf ,. . .,xm) where j=l , .  o .  , (m-1). 
the property 

By definition, an absolute invariant has 

@(XI ,... ,P) = I: (X', ..., xm) . (3 02) 

Follwing Morgan,? we restrict ourselves to the one-parameter grmp* 

Ta: Xi = fi(x f,...,Xn;a) 

YJ = hj(y9, - .  .?yn;a) 
(3.3 1 

where i=l ,... ,m (m>2) - and J=l,.. .>n (n>l). - 

For the subgroup Xi = fi(x', .sxm;a):, there exists (m-1) functionally 
independent absolute invariants 

For the group Ta as a whole, there are (m+n-1) functionally independent abso- 
lute invariants. We therefore add the following to the list: 

9 " ' " )  9*-9Yn) 9 

R = l ,  e a . n'. 

*he variables xi and yi w i l l  shortly be identified as independent and dependent 
variables. For now, they are just general variables. 
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3.1.2 Morgan's Theorem 

Assuming t h a t  y j  a r e  the  dependent var iables  and xi the  independent var- 
iab les  i n  the  one-parameter group of transformations 

m Ta:  Xi = f 1 ( x r 9 . * . , x  ; a )  

Yj = h j ( y T j  e . ,yn;a) , 
( 3 . 6 )  

the  system of p a r t i a l  d i f f e r e n t i a l  equations of order k 

i s  invariant  under t h i s  group of transformation, T a j  i f  each of t he  #j i s  "con- 
formally invariant" '  under the transformation T i o  This means t h a t  

( 3 . 8 )  

I n  par t icu lar ,  i f  F = F ( a )  = 1, 
t h i s  group o f  transformations.* 

is  said t o  be "absolute invariant"  under 

The above r e s u l t  leads t o  the very important theorem of Morgan:? 

Theorem: 
Tan 

Suppose t h a t  the  forms $ e  a re  conformally invariant  under the  group 
J Then the  invariant  solut ions of $j = 0 can be expressed i n  terms of solu- 

t ions  of a new system of p a r t i a l  d i f f e r e n t i a l  equations 

The v i  a r e  the absolute invariants  of  the  subgroup of  transformations on the 
xi alone and the var iables  F j  a r e  such t h a t  

*See Ref. 3 .  
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An example i s  given i n  the next sec t ion  to i l l u s t r a t e  t he  method. 

3.1.3 Application of One-Parameter Group Theory t o  Boundary-Layer Equations 

Consider t he  steady, two-dimensional laminar boundary-layer equations: 

subject t o  t he  boundary conditions 

y = o :  u = v = o  

y = w: u = u ( x )  D 

Group tbeoret id  methods w i l l  now be employed t o  reduce-Eqss (3.11) and 
(3.12) t o  ordinary d i f f e r e n t i a l  equations, 
formation (namely, the  l i n e a r  and the  s p i r a l  groups) are considered. 
method by Birkhoff and Morgan serves as the  basis f o r  t he  analysis  t h a t  f o l -  
lows r j  

To t h i s  end, two groups of t ranS- .  
The 

Case I: The l i n e a r  group- -- 

The l inea r  group of transformation is  defined as 

where a,,.,,,a, a r e  constants and A i s  the parameter of transformationo 
function U will be considered as an independent var iable  with the  defining re- 
l a t i o n  u = v ( ~ ) *  

The 
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Under t h i s  group of transformation, Eqs. ' ( 3 . 1 1 )  and (3 .12)  become 

and 

It i s  seen t h a t  t he  different ia l -  equations will be invariant  before and 
a f t e r  the transformation i f  the  powers of A i n  each term a r e  the same. 
we get 

Thus, 

a3 - a, = a4 - a2 

and 

2a3 - a, = a3 + a4 - a2 = 2% - a, = a3 - 2a2 (3.1.7) 

Solution of Eqs, (3.16) and (3.17) then @ves 

Knowing t h e  r e l a t i o n  among the  a ' s ,  the  absolute invariants  can be ob- 
ta ined by eliminating t h e  parameter of transformation A. Thus, not ic ing t h a t  

- 
V v 
a! - --a 

- - -  
X X 

- 
U - .- - U 

x1 -2a -1-2a X ' 
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these combination of var iables  a re  readi ly  shown t o  be invariant under the  
l i nea r  group of transformations and so  a re  absolute invariants .  According t o  
Morgan's theorem, Eqs.  (3.11) and (3.12) can now be expressed i n  terms o f  
these invariants;  or i n  other  words, these ihvar ian ts  a r e  possible s imilar i ty  
var iables ,  Therefore, we put 

and 

where f and g a r e  functions of q and h ( q )  = c1 i s  a constant s ince U, t he  
mainstream veloci ty ,  i s  a function of x only and thus cannot be a nonconstant 
function of q which would introduce dependence on y. 

From Eq. (3=20) ,  we get  t h e  form of mainstream ve loc i ty  f o r  t he  es tab l i sh-  
ment of  s imi l a r i t y  solut ions , i w e .  , 

u(x )  = c,xm 5 (3.21 ) 

We may now make a check, the transformation of t he  boundary conditionso 
It i s  seen t h a t  the  boundary conditions are  transformed t o :  

q = o :  f = g = O  

Thus, f o r  constant values o f  q constant values of f and g r e su l t ,  
a simple matter t o  transform the  d i f f e r e n t i a l  equations, 
and (3.12) a r e  transformed t o  

It i s  now 
Thus, Eqs,  (3;ll) 

and 



The boundary condition are those previously stated. 

Case 2: The spiral group. -- 

A spiral group of transformation is defined by 

x = T + p , b ,  y = y e  82b , u = u e  - 83b 

v = T e  84b - 85b U = U e  

Following the same steps as given in Case 1, we find that the parameters 
are related by 

83 = 85 = -82 9 84 = -282 (3-25) 

and, after elimination of b, the absolute invariants are: 

and 

Again, c2 must be a constant. Thus, the mainstream velocity should be of the 
form 

f o r  similarity solutions to exist. Checking the boundary conditions, we find 
that they are transformed as follows: 

q = o :  f = g = O  

q = w: f = c 2 a  



The las t  s tep  i s  t o  transform the d i f f e r e n t i a l  equations, Equations 
(3-11) and (3.12) become 

1 pf + 2 pTf'  + g '  = 0 

and 

The above exsrmple i l l u s t r a t e s  the  one-parameter group-theoretical method. 
Some fur ther  comments a r e  now i n  order,  

I n  both examples, t he  s teps  are as follows: 

1- Define the  group of transformation and subs t i t u t e  i n to  the d i f f e r e n t i a l  
e quat io ns 

2. Require t h a t  the d i f f e r e n t i a l  equation 'be invar iant-  Relations among 
the  constants i n  the transformation a re  obtained* 

3. Eliminate the  parameter of  transformation t o  give absolute invariants ,  
which w i l l  become similari ty var iables .  

4, Check the  boundary conditions t o  see i f  they can be transformed in to  
constant values., 

5. Transform the  d i f f e r e n t i a l  equations* 

It i s  seen t h a t  up t o  s t ep  4, no d i f f e ren t i a t ion  i s  needed. This makes 
the  group-theoretic method an advantage over other  methods. 
s t ep  2 zeros f o r  a l l  the  constants (e-g, ,  a1,ewb,a5 i n  the l i n e a r  group) a re  
not obtained, t he  p a r t i a l  d i f f e r e n t i a l  equations a re  transformable i n t o  
ordinary d i f f e r e n t i a l  equations n 

A s  long as i n  

Step 4 i n  t h i s  pa r t i cu la r  problem needs not be put before s t ep  5; how- 
ever,  i n  general, i f  the unknown function appears i n  the boundary conditions 
alone (e,g, ,  t h e  d i f fus ion  equation with a boundary condition u ( 0 , t )  = U ( t )  
and the form of U ( t )  i s  given),  it ul t imately may save e f f o r t  t o  check the  
boundary conditions first as above - 

Equations ( 3 * l l )  and (3.12) can be reduced t o  one equation by solving 
Eq. (3-12) f o r  g. 
and g i n  two separate equationsh 

However, we are  i l l u s t r a t i n g  the  method and thus r e t a i n  f 
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Final ly ,  cornperison between Eqs, (3.18) and (3.25) shows t h a t  Eq. (3.25) 
can be obtained by put t ing  a, = 0 i n  Eq- (3.18). Thus, t he  s p i r a l  group i s  
sometimes considered t o  be a special  case of the l i n e a r  group i n  which a l ao  

3.2 MULTIPWTEIR GROUPS 

The method discussed i n  the  previous a r t i c l e  using a one-parameter group 

If two var iables  a r e  t o  be eliminated, the  method 
of transformation i s  usua l ly  applied t o  cases i n  which one independent var- 
iab le  i s  t o  be eliminated. 
should be applied twice, first reducing the var iables  by one and then apply- 
ing the  technique t o  reduce the var iables  of the transformed d i f f e r e n t i a l  
equations again. The s implici ty  of the method characterizing t h i s  technique 
i s  then l o s t ,  Thus it would be valuable t o  have a method i n  which the number 
of var iables  can be reduced by more than one i n  a s ingle  appl icat ion.  Such a 
method based on multiparameter groups w a s  presented by Manohar4 and later by 
AmesS1 
f o r  reduction of t he  number o f  independent var iables  by two, Generalization 
t o  more var iables  a t  a time can be made i n  a s i m i l a r  manner, Before prweed- 
ing with the  nultiparameter group analysis ,  we s h a l l  f i rs t  describe a special  
case where one-parameter groups may be employed t o  reduce the  number of inde- 
pendent var iables  by more than oneo 

We w i l l  discuss t h i s  method ‘but l i m i t  the  discussion t o  the  method 

3.2.1 One-Parameter Group Method* 

Let a transformation group rll be defined by 

(j=4, e e , n )  

where A i s  t h e  parameter of transformation and the a’s are  constants t o  be 
determined from the condition t h a t  the given partial d i f f e r e n t i a l  equations 
be constant conformally invariant  under t h i s  group of transformation= We con- 
s ider  a p a r t i a l  d i f f e r e n t i a l  equation i n  which the  independent var iables  a re  
xl, x2, and x3. 

I n  general, the  group rll can only reduce the var iables  by one, However, 
i n  the  spec ia l  case i n  which a, = a2 f. 0, reduction of the variabFes by two 
i s  possible,  Absolute invariants  can be shown to be 

*Ames’ considers the  case i n  which al=a2=0 as a separate case,  However, since 
the form of absolute invariants  i n  t h i s  case i s  the  same as i n  rp4 below, 
t h i s  case i s  omitted. 
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and 

where a and b are any arbitrary constants, 

3 -2  -2 Two-Parameter Group Method 

Let r2, be a two-parameter transformation group 

B1- a3 83- = B ~ 2 ,  ~3 = A B ~3 

(3.34) 
(j=4,. o .  ,n) . 

Again, A and B are parameters of transformation and a 's  and p ' s  are constants 
to be determined from the condition that the given partial differential equa- 
tions be conformally invariant under this group of transformation. Absolute 
invariants are found to be 

and 

Next, we consider the two-parameter group r22 where 

Absolute invariants for this group are 
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and 

A t h i r d  group r23 may be defined as 

and 

Absolute invariants  f o r  t h i s  group a re :  

Finally, l e t  the group r24 be defined as 

Absolute invariants  f o r  t h i s  group a r e :  



and 

(3.45) 

3.2.3 Example of a Similar t y  Analysis f o r  a Three-Var-able Problem 

Consider the unsteady, two-dimensional boundary-layer equations expressed 
i n  terms of a stream function $: 

The boundary conditions a re  

aJI _ . _  y = o :  - - aJr - 0 
a Y  ax 

& = u ( x , t )  . 
y = c o :  87 

- 

One-Parameter Group: 

Let rll be defined as 

r,,: t = A 1 € ,  a x = A  a2- X ,  y = A  a3- y ,  

a4- %- $ = A  J r ,  U = A  U .  

From the  invariance of Eq. (3.46) we get  

1 1 
a3 = - 2 a1 y a4 = a2 - - 2 a, , a5 = cy2 - a, . 

(3.47) 

(3.48) 

Reduction of the nunber of var iables  by two i n  a s ingle  s t ep  i s  possible 
only i f  a, = a2, which gives 

a , = O .  (3.49) 
1 1 

a3 = F a ,  9 a4 = 7 p 1  J 



Absolute invar ian ts  a re :  

Y 1 1 =  
G 

and 

(3.50) 

Since U i s  a function of t and x, the only p o s s i b i l i t y  for s i m i l a r i t y  t o  e x i s t  
i s  t o  assume 

U = constant = Uo = (3.52) 

Using these var iables ,  Eqo (3.46) can be e a s i l y  transformed in to  an  
ordinary d i f f e r e n t i a l  e quat ion 

subject t o  the  boundary conditions 

Two-Parameter Group: 

Let r21 be defined as 

t = AalT, x = BB1?l, y = A a3 B 83- y 

@ = A B  a4 84- q J  U = A  a5 B Bs- U 

rzl : 

(3.54) 

From the  invariance of Eq. (3.46), we ge t  
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1 
= - 2 05 = 41, a3 = -  a,, 

2 

84 = 85 = B1, 83 = 0 * 

Absolute invariants  are : 

' I = -  Y 

& '  

(3.55) 

Since U i s  a function of t and x, c cannot be a funct ion of v* Then the  only 
p o s s i b i l i t y  i s  c t o  be a constant. 
following ordinary d i f f e r e n t i a l  equation: 

Equation (3.46) i s  transformed i n t o  the 

( 3 * 5 7 )  f"' + f '  + - 1 q f "  - f "  + ff" + c(1-e)  = 0 
2 

subject  t o  the  bQundary conditions 

It can be shown t h a t  f o r  t h e  other  th ree  groups mentioned e a r l i e r ,  a l l  
a's  and p ' s  are zeroo This means t h a t  similari ty solut ions do not e x i s t  f o r  
those groups 
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CHAPTER 4 

GENEXULIZED GROUP-THEORETIC ANALYSIS 

4.0 IKSRODUCTION 

In the last cha ter, the application of the simple group-theoretic method 
developed by Birkoff' and Morgan14 was treated. Extension of this technique 
to multiparameter transformation by Manoha&* and Amesl was also discussed. 

As it turns out, these methods are probably the simplest to apply of the 
principal techniques. Whereas other methods may involve solutions of differ- 
ential equations or other fairly complex mathematical manipulation, the group- 
theoretic method require straightforward algebraic procedures. One drawback 
of course, is that boundary conditions are not taken into account until the 
analysis is largely completed. However, checking for satisfaction of boundary 
conditions is a simple matter. 

From the mathematical point of view, the method developed by Birkhoff* 

Application of this method 
and Morgan14 considered two particular groups of transformation, namely, the 
linear and the spiral groups of transformation. 
of similarity analysis to a given partial differential equation therefore 
answers only the question as to whether similarity solutions exist for these 
two groups. Since there is no proof that these two groups are the only two 
possible for similarity solutions to exist for a given partial differential 
equation, 
ferential equation, what are all possible groups of transformation that make 
similarity solution possible? Are there groups other than the linear and 
spiral groups 

it is still necessary to raise the question: Given a partial dif- 

To answer questions of this kind, we shall develop in this chapter a sys- 
tematic procedure in searching for all possible groups of transformation to 
a given partial differential equation. The procedure is based on Lie's theory 
of "infinitesimal continuous group of transformation" and his concept of con- 
tact transformation. Although both concepts were introduced by Lie in the 
latter part of the nineteenth century, there has been little application to 
the solution of nonlinear partial differential equations. The present tech- 
nique therefore can be considered as extension and application of Lie's the- 
ories of infinitesimal and contact transformations to the similarity solutions 
of boundary value problems. 

The technique itself, instead of the mathematical theories, is empha- 
sized in the development to follow. 
the reader is referred to the books by Lie9-11 and other referen~es.39~5 
the first section, definitions and theorems are presented briefly. This is 
followed by three examples illustrating techniques. The diffusion equation 
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i s  t r ea t ed  first,  The goal of t he  analysis  is  t o  show how a l l  the  possible 
groups of transformation for a given p a r t i a l  d i f f e r e n t i a l  equation ( l i nea r  
o r  nonlinear) may be found* By requir ing t h a t  the  given d i f f e r e n t i a l  equa- 
t i o n  be invariant  under a " inf ini tes imal  transformation," t he  funct ional  form 
of the  so-called "charac te r i s t ic  function' '  can be determined, Once t h i s  i s  
done, a11 possible groups of transformation can be obtained by t h e  method 
developed i n  t h i s  chapter, 

The second example shows the appl icat ion of t h i s  method t o  problems con- 
ta in ing  an a r b i t r a r y  function t h a t  i s  t o  be determined as pa r t  of t he  analysis ,  
The equation discussed i s  the steady, two-dimensional laminar boundary-layer 
equations It 

I n  the  t h i r d  example, the r o l e  of coordinate systems on s imi l a r i t y  anal-  
yses i s  investigated by analyzing t h e  Helmholtz equation i n  general orthogonal 
curvi l inear  coordinates, The problem encountered is the determination of the 
charac te r i s t ic  funct ion mentioned earlier By requir ing t h a t  t h e  Helmholtz 
equation be  invariant  under an inf in i tes imal  transformation, a d i f f e r e n t i a l  
equation i s  obtained fo r  t h e  determination of the  charac te r i s t ic  function. The 
equation contains t h e  metric components ( sca l ing  f ac to r s  ) of a curv i l inear  
coordinate system, The equation determines whether or not s imi l a r i t y  solu- 
t ions  e x i s t  fo r  a given coordinate system; or, given a group, what a r e  the  
conditions under which the  scale  factors ,  hPs ,  should s a t i s f y  so t h a t  s i m -  
i l a r i t y  solutions ex i s t  

4,l-l DEFINITIONS 

A group i s  said t o  be continuous i f ,  between any two operations of t h e  
group, a s e r i e s  of operations within t h e  group can a l w a y s  be found of which 
the  e f f e c t  of any operation i n  the  se r i e s  differs from the e f f ec t  of i t s  pre- 
vious operation only inf ini tes imal ly,  Thus, the transformation 

x p  = alx -t- a2y 

i s  continuous i f  a19 a2, bl, and b2 are  any real nurdber, For example, i f  ala, 

azo, blo, and b20 are values of al, a2, bl and b2, respectively,  t h a t  car ry  
(xl,yl) in to  ( x i , y i ) ,  a sequence of values of  these parameters can be found t o  
a f f e c t  the same resul t , ,  Each t r ans fo rmt ion  can be made t o  d i f f e r  from the  
previous one infinitesLmally, 
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The concept of inf ini tes imal  transformations comes as a natural  conse- 
quence of the de f in i t i on  of a continuous transformation grouy. 
i m a l  transformation is  one whose e f f ec t s  d i f f e r  in f in i tes imal ly  from the  iden- 
t i c a l  transformation, Any transformation of a f i n i t e  continuous transforma- 
t i o n  group which contains the iden t i ca l  transformation can be obtained by 
i n f i n i t e  r epe t i t i on  of an inf in i tes imal  transformation= 

An i n f i n i t e s -  

Let t he  iden t i ca l  transformation be 

where a. i s  a pa r t i cu la r  value of t he  general parameter a r  
mation 

Then the t ransfor-  

(4.3) 

where 8~ i s  an inf in i tes imal  quantity,  defines an inf in i tes imal  transforma- 
t i o n  i n  a broad sense, 
given based on the  concept of 8~ being an " inf ini tes imal"  i .e . ,  a quant i ty  
such tha t  higher orders of 8~ than 86 i tself  may be neglected i n  a given 
operat ion. 

A s l i g h t l y  more r e s t r i c t e d  de f in i t i on  w i l l  sho r t ly  be 

Equation (4,3) can be expanded i n  Taylor s e r i e s  which gives 

and 

(4.4) 

(4.5) 

EQuations (4.4)  and ( 4 = 5 )  can be wr i t ten  as 
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XI = x 9 9 a n n  

and 

where 

and 

The expression $(x,y,k) and $(x,y,ao) in Eqs-  (4,4) and (4 ,5)  can ’be re- 
placed, respectively, by x and y according to Eqe (4,2), 
fixed value of the parameter, a? both 5 and 7 w i l l  ‘be function of x and y only, 
Also, since 6~ is infinitesimal, we shall neglect higher order of BE and write: 

Now since a. is a 

and 

This transformation shall ‘be defined as infinitesimal transformation, It can 
be shown tha t  any one-parameter group, G19 conta2.m only one unique infinites- 
imal transformationP The definition can ‘be extended to a transformation con- 
taining any nwdber of variables (but only one parameter). 

Geometrically, an infinitesimal transformation transforms a point (x,y) 
to a neighboring point a distance 

in the directfon 8 where 

5 cos B = 

(4 12 ) 
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11 sin Q = 0 (4-14) 

4.1.2 Representations of Infinitesimal Transformations 

Let f(x,y) be a generally analytic function of x and y. The effect of an 
infinitesimal trans fo mat ion 

and 

on f(x,y) will be to produce the quantity f(xl,yl) which, upon expanding in 
Taylor series, 5 becomes 

Lie introduced the "symbol"* 

*It can readily 'be seen that 

uf = (af(xl,yl)/aa)ao 

and in particular, Ux = E and Uy = 11. 
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It should be noted t h a t  t h i s  symbol i t s e l f  is  not a transformation, 
"represents" a transformation, however; and is  determined by it, 

It 

It can be e a s i l y  shown that the  higher order term i n  the  Taylor s e r i e s  
expansion f o r  f (xl ,yl)  can be wr i t ten  i n  terms of U as: 

where U n f  represents operating on f by t h e  operator 

a a 
E ( X , Y >  - + q(x,y)  - ax a Y  

f o r  n times, 

Equation (4,11) then  becomes 

(4,21) 

(4,22) 

By using t h i s  expansion, it ~5.11 be possible  t o  deduce the ac tua l  equa- 
t i ons  of the  transformation generated by a given inf in i tes imal  t ransformt ion .  
Some examples w i l l  make t h i s  point c l e a r D  

Example - -  4 d G  Consider t he  inf in i tes imal  transformation represented by 

and 



where 

and 

We now seek expression for x1 and y1 as one-parameter transformation 
groups- This can be done qui te  r ead i ly  as follows: F i r s t  take f = x, then 
using Eq=  (4,23), 

ux = -y 

2 u x  = -x 

u3x = y 

u4x = x 

. . . a  

Subs t i tu t ing  in to  Eq- (4,22), we then ge t  

6€3 6E5 = * o )  - y(8e - - + - 
3: 5 i  

= x cos 8~ - y s i n  8~ e 

(4-24) 

Similarly,  i f  f = y, Eqo (4,22) then gives 
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6€3 BE5 ,,,) = x(6e - - + - - 
3 :  5! 

8E2 6€4 y(1 - - + - - It%% 
2:  44 f 

= x sin 6~ + y cos BE (426 ) 

The results correspond to a form of the rotation group: 

x1 = x cos a - y sin a 
yL = x sin a + y cos a 

for which a. = 0 in our analysis, 

Example 4,2 Consider the infinitesimal transformation represented by - -  

af af Uf = c1x 4- c2y - 
hY 

i.e, , 

and 

where 

and 

rl(X,Y) = C2Y 

we proceed as kefore to get expressions f o r  x1 and yl: For f = x, we get 
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Uf = c1x 

$f = c;x 

U3f = C?X 

I)*- 

Therefore, Eqs ( kn22 ) gives 

C 1 6 €  - - xe P 

Similarly, for f = y, we get 

If we let a0 = 0 in our analysis and define 

A = ea (Note, e a0+6c = $E) 

then Eqs, (428) and (4.29) become 

This is seento be the linear group, 

Emmple - -  4*3.:. Consider the infinitesimal transformation represented by 

c1 - +  af c2y- af * 

ax aY 
Uf = 

(4-27) 

(4,28) 
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We may e a s i l y  obtain:  

x1 = x 9 C16€ 

and 

C& 
= ye 

(4.32) 

(4033) 

This i s  seen t o  be a case of t he  s p i r a l  group: 

xI = x 3. cla 

yL = yeC2" = 

4,1,3 Functions Invariant Under a Given Group 

A function f ( x , y )  is said t o  be an invariant  of a group i f  it i s  unaltered 
by the  transformations of t he  group; therefore,  f o r  t h e  function t o  be in- 
var iant  we have 

It foZlows t h a t  the function i s  necessar i ly  invariant  under an inf in i tes imal  
transformation, From Eq, (4e22)9 we have 

e f (x,y) i s  t o  be invarAant t he  followfng condition must be m e t :  B u t  

Uf = 3 f  = U3f = a % *  = 0 t (4-36) 

However, s ince the condition 

U f  = 0 
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implies 

v2f = U 3 f  = * * *  = 0 ,  

Eqa (4,37) i s  the  su f f i c i en t  condition t h a t  Eq8 (4,34) i s  t rue  f o r  a l l  values 
of x, y and 6~~ Hence we may state the following theoremz 

Theorem k.1. - The necessary and su f f i c l en t  condition t h a t  f ( x , y )  be invariant  
under the group represented by U f  i s  U f  = Ob 

I n  other  words, the necessary and su f f i c i en t  condition t h a t  f (x ,y )  be in-  
var iant  under a one-parameter group i s  t h a t  it be l e f t  'unaltered by the  in- 
f in i tes imal  transformation of the group. 

To determine the  invariant  function, f ,  it i s  su f f i c i en t  t o  solve the  
e quat i o n 

Uf = t - + q -  af af - - 0 1  I ax a Y  

4 The equation can be solved using the  method of Lagrange i n  the  theory of l i n e a r  
p a r t i a l  d i f f e r e n t i a l  equations, 
x, y, and f ,  can be wr i t t en  as follows+. 

The procedure i n  the  case of three var iables ,  

To f ind  the general  so lu t ion  of 

= R  af af 
p1 ax + p2 ay 

where P,, P2 and R being functions of x, y, and f ,  solve 

If the  general  solut ion of t h i s  system i s  

u1 = c1 and LQ = c2 
* 

(4,40) 

(4,41) 

(4842) 

Vhe  system, Eqz (4,41), has only two independent solut ions,  
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then 

o r  

u1 = , (4*44) 

where $1 and $2 are  a r b i t r a r y  functions of ul, w9 and ~2 respectively,  w i l l  
be the  general so lu t ion  of Eq.. (4,41), 

A s  an i l l u s t r a t i o n  of t h i s  method, consider t h e  equation 

x f - + y f y f f  af = x y *  
ax ay 

Based on the  theorem, we consider the system 

(4..46) 

This system of equations has two independent solut ions 

and 

Therefore, t he  general so lu t ion  t o  Eq, (4,45) i s  of e i t h e r  of t he  following 
forms : 

or  

42 ( w-f2 1 X - =  
Y 

It i s  seen t h a t  appl icat ion of t h i s  theorem t o  the  solut ion of  Eqo (4,39) 
for the  invariant  function, f ,  as a function of x and y forms a special  case 



as, R = O 1  Equation (4,40) becomes 

c lear ly ,  one so lu t ion  of this equation i s  

f = constant 

and we may write 

u l ( x , y , f )  = f = constant 

The general so lu t ion  of Eq+ (4-48) i s  therefore  ( c f ,  Eq, (4,44)) 

u2 = $3(f)  = p/3 (constant)  = constant 

where w i s  a so lu t ion  t o  

We therefore  get  t he  following theorem: 

Theorem &*Zs To f i n d  the  general so lu t ion  o f  

where 5 and q being functions of x and y, solve 

Let so lu t ion  of t h i s  equation be expressed as 

~ ( x , y )  = constantx 

(4-48) 

(4,541 
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This funct ion i s  the  invariant  function f o r  t h e  inf in i tes imal  transformations 
represented by 

Since Eq- (4-53) has only one solut ion depending upon a simple arbitrary con- 
s t an t ,  it follows t h a t  a one-parameter group i n  two variables,  x, y, has one 
and only one independent invariant ,  

Example 3.4. Consider the ro t a t ion  group represented by 

where 

E(X,Y)  = -y and q(x,y) = x 

.Solution t o  t he  equation. 

gives 
/ 

x? + = constant, 

This i s  t h e  invariant  function of the r o t a t i o n  groupQ 

Example - -  4,5. Consider t h e  l i nea r  group 

af af 
ax a Y  

Uf = c1x - 4- c2y - 

where 5 = clx and q(x,y) = c2yP Solution t o  

*The funct ion f i s  an invariant  of t h e  one-parameter group obtained from t h e  
inf in i tes imal  transformation* 
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then a necessary and su f f i c i en t  condition i s  again 

U f  = 0 

which, i n  t h e  case of n var iables ,  takes the  form 

(4-64) 

Following the  same reasoning as i n  two-dimensional case, the  invariant  
functions can be obtained by in tegra t ing  

Since there  a re  (n-1) independent solutions t o  Eq, (4,65) a - -  one-parameter 
group i n  n var iables  has (n-1) independent invariants .  The invariant  func- 
t ions  a r e  therefore  
--- -- 

and are the  solut ions t o  t h e  system of  equations given by Eq. (4,65). 

4,1,5 Relationships Sa t i s f i ed  by Dif fe ren t ia l  Equations Admitting a Given 
Group of Inf in i tes imal  Transformations 

I n  t h i s  a r t i c l e  a bas ic  theorem on the  determination of re la t ionships  
s a t i s f i e d  by functions admitting a given group of in f in i tes imal  transformation 
w i l l  be given. This theorem i s  comparable t o  the  theorems of Morgan discussed 
i n  Chapter 3.  It i s  t h i s  theorem which lays  the  groundwork f o r  t h e  reduction 
of the  number of var iables  i n  a p a r t i a l  d i f f e r e n t i a l  equations. 

Consider now a function 

the  arguments of which, assumed p i n  number, contain der ivat ives  of y .  up t o  
order k. Such a function i s  known as a d i f f e r e n t i a l  form o f  the k-th order i n  

J 
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m independent var iables ,  Designate the arguments by Z ~ , ~ % - , Z  , e,@;,, P 

Thus, E Q ~  (4-67) can be wr i t ten  i n  a simpler form as 

F = F(zl,sm-,zp) (4,68) 

The function F(zl,,,.,zp) i s  sa id  t o  admit o f  a given group represented by 

i f  it i s  invariant  under t h i s  group of transformationl Therefore, t he  function, 
F, admits of a group i f  

UF = 0 

It was shown i n  the  preceding a r t i c l e  t h a t  there  a r e  (p-1) func t iona l ly  
independent solut ions,  o r  invariants ,  t o  t h i s  equation, If they a r e  denoted 
by 



Equation (4,71) must be sa t i s f i ed ,  i * e . ,  

Now, i f  a change of variable i s  made i n  the  function F, given by Eq, 
(4.68), from (Z~,~..,Z ) t o  ( ~ l , e n ~ , q p - l , z p ) ,  we then get  P 

The condition given i n  Eq, (4,71) will s t i l l  have t o  be sa t i s f i eda  Thus, 

Since '# i s  a function of v1,4"s,vp-1,zp9 the  chain r u l e  of d i f f e ren t i a t ion  may 
'be used t o  ge t  

+ d t . 0  

= o e  
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Since ~ ~ , . . . , v ~ - ~  a re  invariant  functions,  a l l  the  brackets equal t o  zero 
[cf,  Eqs. (4.72) and (4.73)1, the following important conclusion then r e su l t s :  

This means q i s  independent of zpo Equation (4.74) can then be wr i t ten  as 

Therefore, i f  a d i f f e r e n t i a l  equation 

i s  invariant  under the  inf in i tes imal  transformation, it must be expressible i n  
terms of the (p-1) func t iona l ly  independent solutions of the  p a r t i a l  differen-  
t i a l  equations Uf = 0 ,  

Like Morgan’s theorem given i n  Chapter 3, t h i s  r e s u l t  i s  the foundation 
upon which the  technique given l a t e r  i n  t h i s  chapter i s  based. 

4,1,6 The Extended Group Concept 

Consider t he  one-parameter group o f  transformation 

Suppose y i s  regarded as a function of  x. Then if the d i f f e r e n t i a l  coeff icent  
p(=  dy/dx) be considered as a t h i r d  variable,  then under t h i s  group of t rans-  
formations it will be transformed t o  p1 where 

It can be e a s i l y  shown t h a t  t he  general transformation 
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7 form a group, This group i s  known as the  extended group of the  group given 
i n  EqD (4-79). 

Now for a change 8~ i n  the  parameter a, we may express Eqs, (4,79) as 

The transformed coef f ic iez t  pl will be 

8 E  

I! 
= p + - S(X,Y,P) + = * *  

Therefore, the extended i n f i n i t e s  i m a l  transformation given by 

P l  = P + ( 6 4 s  
i s  represented by 

where 

(4,82) 

(4-84) 

(4,86) 
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Extension of t h i s  concept t o  higher order der ivat ives  can be made by the  
same reasoning. 

Example 1. For the  ro t a t ion  group represented by 

af af Uf = - y - + x -  
ax a Y  

(4.88) 

it can e a s i l y  be shown t h a t  t h e  extended group of in f in i tes imal  transformation 
i s  

where 

5 = -Y 

v =  X 

and, from Eq. (4.87), 

The symbol of t h i s  extended group of transformation i s  therefore 

af af + x - + (l+p2) - 0 

-y ax a Y  aP 
af U f  = 

(4.9) 

(4.9) 

Example 2 .  
be represented by 

For the  l i n e a r  group, the  extended group of transformation can 

U f  = c1x - af + c2y - af + (c2-c1)p - af 0 ax a Y  aP 
(4.93) 
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Example 3. For the  s p i r a l  group, the  extended group of transformation can be 
represented by  

Uf = c1 - af f c2y - af f- C2P - af * 
ax a Y  aP 

(4994) 

4,107 Contact Transformations 

The theor ies  developed up t o  t h i s  point a r e  not complete, If a given 
p a r t i a l  d i f f e r e n t i a l  equation 

F = F ( Z X , . , . . ~ Z ~ )  = 0 (4.95) 

i s  invariant  under the inf in i tes imal  transformation represented 'by U f ,  then 

and the  d i f f e r e n t i a l  equa,tion can 'be expressed in terms of  p-1 invariant  
functionso These invaria:nt functions are solved by using the  system of equa- 
t ions  , 

as discussed i n  a r t i c l e  (4,14), 
i s  given, as i n  examples i n  the previous sections,  the  function 5 1 , 9 9 n , E p  i n  
Eqo (4-97) a r e  known, 
Eqa (4.97)* These functions are  the  s imilar i ty  varia%les. However, the  re-  
s u l t s  only give s imi l a r i t y  solutions fo r  t h i s  pa r t i cu la r  group, What is  more 
important, i s  t o  derive the transformation groups and not specifying them. 
We s h a l l  now l a y  the  groundwork for t h i s  type of analysis ,  

I n  case a par-Gicular group of transformations 

The invariant  functions can then be found by solving 

I n  the  present section, Lie s theories  of "contact transformations" a r e  
introduced. These theories  make it possible t o  express the  transformation 
functions, E l , a = . , k p ,  i n  terms of a s ingle  function, known as the  "character- 
i s t i c  functiono' '  Basically,  L i e P s  theories  of contact transformation deals 
with the  transformation of a d i f f e r e n t i a l  equation i n  a general, h ighly ab- 
stract, wayo The abstractness  and the complexity of the  theorfes  prevent any 
extensive discussion, Here, we merely s t a t e  some of L ie ' s  theorems without 
proof, This i s  su f f i c i en t  f o r  purposes of application. 



Lie9 defined a " l inea l  element'' of the  plane t o  be the  ensemble of a 
I n  two-dimensional point and a s t r a igh t  l i n e  passing through t h a t  point. 

Cartesian coordinates, the  coordinates o f  t h e  l i n e a l  element consis t  of t he  
coordinates, x and y, and the slope p of t h e  l ine ,  

Thus any transformation i n  x, y, and p may be considered as a transforma- 
t i o n  of the  l i n e a l  element, 

Consider now a curve defined by y = y(x)  having a slope dy/dx = p a t  the  
point (x,y). Let the var iables  x and y b e  transformed by 

The curve i s  transformed in to  a curve having a slope pl at (xl,yl) defined by 

Equation (4-99) can be considered t o  be a transformation t h a t  along with Eq. 
(4,98) transforms an element (x,y,p) into (xl,yl,pl) Lie ca l led  t h i s  t rans-  
formation an "extended transformation, " 

A property of an extended transformation i s  t h a t  it transforms the  d i f -  
f e r e n t i a l  equation 

dy - pdx = 0 (4,100 ) 

in to  the d i f f e r e n t i a l  equation 

(4.101) 

q h e  d i f f e r e n t i a l  equation (4,100) i s  transformed in to  the  d i f f e r e n t i a l  equa- 
t i o n  (4,101) under the  assumption that the  Jacobian of the  transformation 
(4.98) i s  nonvanishingl 
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We may say t h a t  every family of l i n e a l  elements (x,y,p) s a t i s fy ing  (4,100) i s  
transformed by an extended transformation in to  a l i n e a l  element (xl,yl,pl) 
sa t i s fy ing  (4,101) 

For three-dimensional space, x, y, z, an "element" i s  defined by f i v e  
quant i t ies ,  namely, x, y, z, p, and q where p and q, l i k e  y' i n  two-dimen- 
s iona l  space, are the  slopes of a s t r a igh t  l i n e  passing through t h a t  point-  
The family of surfaces containing a given element would be defined by a single 
r e l a t i o n  between the  five quant i t ies ,  t h a t  i s ,  by a p a r t i a l  d i f f e r e n t i a l  equa- 
t ion ,  

Lie therefore  defines a r'contact transformation" on a transformation of 
the l i n e a l  elements of t h e  plane 'which leaves the P fa f f i i an  equation 

invariant;  t h a t  i s ,  a transformation 

i s  a contact transformation i f  the P fa f f i i an  equation, Equ (4,102), i s  t rans-  
formed t o  

(4,104) 

after the  transformation= 

8 The above de f in i t i on  of contact transformation i s  extended by Lie as 
follows 0 

When Z,X1,'9",Xn,P1,9"",Pn a r e  2n+l independent functions of t h e  2n+l 
independent quant i t ies  z , x ~ , ~ ~ ~ ~ x ~ , ~ ~ ~ ~ ~ ~ , ~ ~  such t h a t  the r e l a t i o n  

- * I1 

PidXj =.% PidXi, i e e u y  the  r epe t i t i on  of indices w i l l  indicate  summation over 
a l l  va&s of the  index, 



(where p does not vanish) is identically satisfied, then the transformation 
defined by 

( 4.106 ) 

is called a contact transformationD 

The contact transformation, Eq. (4.106) will transform a partial differ- 
ential equation in z,~~,'"',x~,p~,.~",p~ into one in Z,X1,D".,Xn,Plj."",Pn 
and also the solution of the first partial differential equation into the solu- 
tion of second, 

In the next article, the property of a contact transformation, Eq. (4.105) 
will be used to derive expressions for the transformation functions in terms 
of characteristic functions. 

4,1,8 Contact Transformation in Terms of the Characteristic Function 

First, let us consider the infinitesimal transformation 

where 5 ,  ki and ai are functions of z,xl, 
so small that its square and higher powers may be lieglected. We now wish to 
find the functions 5 ,  si, T C ~  in terms of a single function of z, Xi, pi, known 
as the characteristic function. 

,xn,pl, a * .  ,pn and E is a quantity 

From the definition of a contact transformation 

(4.108) 

we get 
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Equating coef f ic ien ts  of dz, dxi, and dpi on both s ides ,  we get 

( 4 110 ) 

For the  inf in i tes imal  transformation defined i n  Eq. (4,107), EqsD (ka1l0) become 

(4.111 ) 

where the  r e l a t i o n  p = 1+€U i s  used ( 0 ,  a r b i t r a r y ) +  
Xr, and zu 

Now, pi i s  independent o f  
Therefore, i f  we define a cha rac t e r i s t i c  function W such t h a t  

w = pisi - 5 D (4 = 112 ) 

Equations (4 111) w i l l  y ie ld  



We then get  

5 = p . - -  aw w 
a P i  

and 

Next, consider t he  inf in i tes imal  transformation 

(4.114) 

i 1 . 1  n where m i ,  ak and fik a re  functions of xl9~..,xm;z1,.. .,zn; and p1,p2, ...,pm 
(= dZn/aXm) and E i s  a quant i ty  so  s m a l l  t h a t  i t s  square and higher powers 
may be neglected. 
~ i = l ~ ~ ~ ~ , n ~ k = l , ~ ~ ~ , r n 9  i n  terms of W1( i= lyn0 . ,n ) ,  the  cha rac t e r i s t i c  functions. 

We now want to  express the  functions m i ,  c&, and fli 

From the  de f in i t i on  of contact transformation we have 

*By adding t o  both s ides  of t he  second equation i n  Eq. (4,111) the term 
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we get  

Equating. coef f ic ien ts  of dzys dxp9 and dp; we get 

For t he  inf in i tes imal  transformation given i n  Eq, (4*116)> Eqs. (4.119) become 

(4,120) 

where the  r e l a t i o n  p 
function Wi as 

= G i v + ~ R i ,  i s  used, Let us now define t h e  cha rac t e r i s t i c  iv 

Equations (4,120) then become 



From these equations we then ge t  

(4.122) 

(4.123) 

Having expressed m i ,  ap, and fii i n  terms of the charac te r i s t ic  functions W i ,  
we now prove a very important property of m i  and %. c1 

For n=l,  Eqs. (4.123) reduce t o  Eqs. (4.114) which a r e  expressed i n  terms 
of a s ingle  charac te r i s t ic  function. 

For n > 1, however, there  i s  a very important property involving mi and 
O4,.l5 Now, d i f f e ren t i a t ing  the  t h i r d  equation i n  Eq. (4.120) with respect t o  
Pp,, we get 

or 

The t h i r d  equation i n  Eq. (4.120) can be wr i t ten  as 
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Different ia t ing Eq. (4,125) with respect t o  pv we get  
P' 

Since the l e f t  s ide of Eqs, (4,l24) and (4,126) a re  the  same, we can 
equate t h e i r  r i g h t  s ides  and get 

If we s e t  i=v#p,  Eq, (4,127) then gives 

= 0 -  
app, 

This means c$ i s  independent of  pg. 

Next, the t h i r d  equation i n  Eq. (4,120) gives 

(4,128) 

This equation means m i  i s  independent of p' 
P" 

A s  a result, the inf ini tes imal  transformation defined i n  Eq, (4.116) 
should be modified t o  : 

where m i ,  ak, and flk are defined i n  Eqs. (4,123), 
gest  t h a t  the  dependence of Wi on p' i s  linear-a very far-reaching and i m -  
portant coaclusion which w i l l  be made use of later,  

Equations (4,123) a l so  sug- 
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4.1.9 Contact Transformation of Higher Orders 

Let us now consider the extended inf in i tes imal  contact transformation 
defined by 

where ak and m i  a re  independent of pv fo r  i > 1, and 
I-1 

We now want t o  express fli 

Wi. The functions m i ,  and flk are expressed i n  terms of W i  and given 
i n  Eqs. (4.123)- 

and fli as functions of the  charac te r i s t ic  function 
jkR i 

By def in i t ion ,  

Subst i tut ing the inf in i tes imal  contact transformation from Eq. (4.131) in to  
Eq, (4.133)? we ge t  

Subtracting both s ides  of Eq, (4.134) by the  quant i ty  ajpijkdx,, we then get 



The second term on the  r i g h t  s ide  of Eq. (4,135) should be dropped s ince i n  
flik der ivat ives  of order higher than t h e  second a re  omitted. We then ge t  

i or, i n  terms of CXj and ak0 

To express flik i n  t e r m s  of the  chaxae ter i s t ic  functions wi, we have t o  put 
expressions f o r  T$. and a. from Eqs ,  (4,123) i n t o  Eq, (4,137), 

Similar ly ,  f o r  the  third-order funct ion fljkJ, we ge t  

J 

In  order t o  express fli 

express flt 
s t i t u t e  i n to  Eq, (bQ139)- 

in terms of t he  cha rac t e r i s t i c  functions,  we have t o  J kJ 
and aj i n  t e r m s  of Wi, as i n  Eqs,  (4,137) and (kQ123), and sub- Jk 

The same pr inc ip le  can be extended t o  higher order,  e ,go ,  

(4,140) 
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or  

I 

'( 4 e i41) 

4 2 SIMILARITY ANALYSIS OF DIFFUSION EQUATION 

We s h a l l  now look a t  the d i f fus ion  equation from another point of view, 
namely, t he  searching f o r  a11 possible groups of transformation t h a t  will r e -  
duce the d i f fus ion  equation t o  an ordinary d i f f e r e n t i a l  equation. I n  applying 
such a technique t o  a given d i f f e r e n t i a l  equation, it may tu rn  out t h a t  f o r  
some o r  a l l  of  the  groups other  than the  l i n e a r  and s p i r a l  groups, t he  boundary 
condition cannot be transformed although the  p a r t i a l  d i f f e r e n t i a l  equation can 
.be transformed in to  an ordi.nary d i f f e r e n t i a l  equation. For such cases, we a r e  
a t  l e a s t  assured t h a t  the groups of transformations t h a t  remain a re  the  groups 
possible f o r  t h e  given boundary value problems. A s imi l a r i t y  analysis  of the  
d i f fus ion  equation from t h i s  point of view is  apparently not covered i n  the 
l i t e r a t u r e  The one-dimensional form of the  d i f fus ion  equation i n  rectangular 
coordinate i s  chosen because of i t s  s implici ty .  
t i ons  expressed i n  other coordinates can r ead i ly  be made. 

Extension of analyses t o  equa- 

4-2-1 Analysis 

Consider t h e  d i f fus ion  equation 

(4.142) 

on which an  inf in i tes imal  transformation i s  t o  be made on the  dependent and 
independent var iables  and der ivat ives  of t he  dependent var iable  with respect 
t o  the  independent var iable ,  The inf in i tes imal  transformation i s  
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where, i n  terms of the  cha rac t e r i s t i c  function, W, 

t; = p - * q - - w  aw aw 
aP as 

(4.144) 

The cha rac t e r i s t i c  function, W, i s  a funct ion of t ,  y, u, p,  and g, We note 
t h a t  

II (4,145) P22 = - Y P12 = - au azu q = -  au 
a t ,  3Y' a f  atay 

p = -  
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It i s  shown i n  a r t i c l e  4.1.3 t h a t  t he  necessary and su f f i c i en t  condition 
t h a t  a p a r t i a l  d i f f e r e n t i a l  equation F(t,y,u,p,q,p12,p22) = 0 invariant  under 
the  group of transformation represented by Uf i s  UF = 0 which f o r  t he  d i f fus ion  
equation, i s  

U(P’VP22) = 0 (4.146) 

or, expanding t h e  expression by employing the  operator U: 

where the parenthesis represents the d i f f e r e n t i a l  equation 

P 

Carrying out t he  operation i n  Eq 

- vp22 = 0 

(4.147) yields:  

(4.148) 

Upon subs t i tu t ing  expressions from Eq. (4.144) into Eq. (4.149) yields  

aw a2w a 2 W  p2 a2w + vpT2 - + 2p12p - + - - 
dP2 aPaq aq2 aU + p -  = 0 .  (4.150) 

Equation (4.150) i s  seen to be a l i n e a r  p a r t i a l  d i f f e r e n t i a l  equation i n  
W h y  , U , P , d .  

Since W i s  not a function of p12, the coef f ic ien ts  of the  terms involving 
p12 and p:~ should be zero. We then get  
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a2w 
dP2 
- =  (4,151) 

0 -  
a2w p a2w + - -  = + q -  

a2w 
aYaP auap apaq - ( 4  152 ) 

Equation (4.151) indicates  t h a t  W i s  a l i n e a r  function of p. 
write 

Thus we can 

Subst i tut ing t h i s  form of W in to  Eq, (4,152),  we ge t  

Since W 2  i s  not a funct ion of  p, t he  coefficierxt of p i n  Eq, (4.154) must be 
zero, We therefore  obtain two equations, namely, 

Equation (4,155) indicates  t h a t  W 2  i s  not a function of q, i , e , ,  , 

W 2  = W2(t4y,u)s and so Eq. (4 , i56)  can be broken in to  the two equations, 

and 

aw2 - = o n  
a U  

This means W 2  i s  independent of 'both y and u and, as a r e su l t ,  

and the  cha rac t e r i s t i c  function now takes the form 
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Putting t h i s  form of  W i n to  Eq. (4.150), we get  

a2wl p2 a2w1 
a Y h  auaq aq2 

c 2p - a2wl + p q - + - -  = O D  ( 4  e 160 ) 

Since both W, and W 2  a re  independent of  p9 Eq, (4.160) can be separated 
r+. 

i n to  three equations, corresponding t o  the coef f ic ien ts  o f  PO, p l ,  and p2. 
We then get 

From Eq. (4,163), W1 i s  

(4.161 ) 

(4.162) 

l i n e a r l y  dependent on q, therefore ,  it becomes 

Putting t h i s  form of WI i n to  Eq. (4.162), we get 

Both W 2  and W12 a r e  independent of q, therefore ,  Eq. (4.165) becomes 

(4.166 ) 



From Eq. (4,167), W12 i s  independent of ue 
t only, Eq. (4,166) shows t h a t  W12 depends l i n e a r l y  on y, i v e o ,  

Also, since W 2  i s  a function of 

Equation (4.162 ) then 'becomes 

W e  w i l l  make use of t h i s  equation la , ter .  

The charac te r i s t ic  function, W, now becomes 

(4,169) 

*- 

Putting Eq. (4.164) into Eq, (40161),  we get 

Since Wll, W121 and W12, a re  independent of q, terms with d i f f e ren t  powers of 
q a re  grouped and t h e i r  coef f ic ien ts  aye put equal t o  zeroo 
are obtained: 

Three equations 

dW121 c!!.LZz y + 2v a2w = 0 
ay3u 

ql:  - 
d t  d t  

Equation (4,174) shows t h a t  W1, fs l i n e a r l y  dependent on u, Therefore, 
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Equation (4,173 ) then gives 

Therefore, Wll2 can be wr i t ten  as 

Equation (4,176), then becomes 

Since a l l  the  W ’ s  i n  Eq, (4,178) a r e  independent of ys we get 

- dw.L21* 2vw,,22 = 0 
d t  

Putting W,, i n to  Eq. (4,172), we ge t  

Equation (4,181) can be separated into:  

(4,182) 
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and 

From Eq, (4,183), 

From Eq, (4.169), 

w2 = 4vC2t2 9 2 C 5 t  -k c6 0 

The f ina l  form of t he  charac te r i s t ic  function i s  therefore 

(4,186'b) 
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4 I 

where W,,,(t,y) i s  any function sa t i s fy ing  Eq, (4,182), i , e , ,  

The cha rac t e r i s t i c  function, W, given i n  Eq, ( 4 . l 9 l ) ,  w i l l  now be used 
t o  determine .the absolute invariants  

4,2,2 Absolute Invariants and The Transformed Equations 

With ,the cha rac t e r i s t i c  function, W, obtained as i n  Eq, ( 4 , l 9 l ) ,  we now 
make use o f  the  general theory t o  f ind  the  abso1ut.e invariants .  From Eq. 
(4,65),  the followi.ng re la t ions  a re  obtained: 

where the transformation functions 5 ,  v j  and 5 can be obtained by put t ing  in to  
Eq, (4,144) t h e  charac te r i s t ic  function, W, given by Eq. ( 4 n l p 1 ) s  Equa- 
t i o n  (4,193) then becomes 

The number of possible groups a r e  la rge ,  due t o  the  f a c t  t h a t  a l l  e ' s  
a r e  a r b i t r a r y  and WL12(tsy) i s  a n  a r 'b i t ra ry  function sa t i s fy ing  Eq. (4,182), 
Therefore, we invest igate  a few spec ia l  cases of t he  parameters, Other 
groups can be o'btained i n  a similar manner. 



Case 1. wl1,(t,y) = c1 = c2 = c4 = c6 = o -- 

Equation (4,194) becomes 

dY du - - - = -  - d t  
d 2c5t C 5 Y  'C3U 

The two independent solutions t o  Eq, (4,195) a r e  

= constant .+- 

and 

= constant; a = - CQ 
ta 2c5 
U - 

According t o  the theor ies  i n  the  preceding a r t i c l e s ,  the  d i f fus ion  equation 
can be expressed i n  terms of these two invariants ,  i o e o ,  

and 

The d i f fus ion  equation is then transformed into an ordinary d i f f e r e n t i a l  equa- 
t i o n  

Vf" = af - - I q f 9  * 

2 

The transformation a r e  seen t o  be the l i n e a r  group of transformations, 

__.- Case 2, Wll1(t,y) = el = cg = c4 = c5 = o 

Equation (4,194) then becomes 

d t  - du 
c6 c3u 
- _  - -  (4,197) 
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and 

y = constant, (4.198) 

Following the  same arguments as i n  Case 1, we get the  absolute invariants  as 

end the  d i f fus ion  equation i s  transformed t o  

v f "  - pf = 0 a 

The transformations a r e  seen t o  'be the  s p i r a l  group, 

s a se  3.  Wlll(t,y) = e2 = c3 = c4 = c5 = c6 = o 

Equation (4,194) becomes 

and 

t = constant. 

The absolute invariants  a re  

(44199) 

(4.200) 

and the transformed equatton i s  

2VfV -I- f = 0 p 
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-- Case 4, Wlll(t,y) = c1 = c2 = c5 = o 

Equation (4,194) becomes 

du 
- dY - d t  - - - - -  

e6 c4 -c3u -a 

The absolute invariants  a r e  

C C3t 
q = y - A t a n d f = u e G  ~ 

c6 

(4,201) 

The d i f fus ion  equation becomes 

The a'bove four cases a re  examples of cases where the  so lu t ion  of  Eq, 
(4,194) i s  straightforward, i ,e , ,  t he  two independent solutions can be solved 
by simple pair ing of equations. The following cases a re  those i n  which the 
two solut ions have t o  be solved i n  a sequence of s teps ,  

- Case 2. Wlll(t,y) = c1 = c3 = c4 = c5 = c6 = o 

Equation (4,194) now becomes 

d t  - dY du - _ -  
4vt2 4vty -(2vt+y2)u 

The f i rs t  of the  two equations gives the  solut ion 

(4,202) 

Next, replacing t i n  the  last two t e r m s  of Eq, (4.202) by kly [based on Eq, 
(4,203) 1 we get 

(4,204 ) 
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The solut ion t o  Eq, (4,204) i s  

uy1/2 = constant 

o r ,  using Eq. (4,203) again, 

uyl/2 e Y2/4vt = k2 (4,204&> 

According t o  the  applicable theorems, the absolute invariants  are ,  from Eqs, 0- 

(4,203) and (4,204a) 

7 = and f ( 7 )  = uy1l2 e y214~t t 

The d i f fus ion  equation i s  then transformed into 

Case 6, Wlll(t,y) = c2 = c3 = c4 = c5 = o -- 

Equation (4,194) becomes 

The f i r s t  two terms give 

where kl i s  the  constant of integrat ion,  
term and making use of Eq, (4,205), we get  

Combining the  f irst  and t h e  t h i r d  

(4,206 ) 

where k2 i s  t h e  constant of integrat ion,  Using Eq, (4,205), we get 
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Equations (4,205) and (4,207) give the invariants ,  

and 

*- 
The d i f fus ion  equation i s  transformed t o  

- Case le WllP(t,y) = c2 = c3 = c4 = c6 = o 

Equation (4,194) becomes 

(4 *I 20 8 ) 

By following the  same s teps  as i n  the  two previous cases? the invariants  a r e  
found t o  be 

and 

The d i f fus ion  equation is then transformed t o  
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I n  a l l  the  above cases, Wlll(t,y) w a s  taken t o  be zeroo This i s  not 
necessary as we s h a l l  show i n  the following two cases, 

1 2  
2 

Case 8. Wlll(t,y) = v a l t  + - aly - 

It can be shown e a s i l y  t h a t  t h i s  funct ional  form of Wlll(t,y) s a t i s f i e s  
Eq, (4,192), For t h i s  case, Eq, (4,194) becomes 

*- 

- dY du 
2C5t C 5 Y  -val t  - - alf 1 

2 

- - =  d t  
Q 

Using the  same method as i n  previous cases, we f i n d  

and 

f ( q )  = u + 6 

The d i f fus ion  equation i s  transformed t o  

I 
2 

Yf" 4- - q f '  = 0 01 

1 2  

2 
Case 2. Wlll(t,y) = ao+valt + - aly - 

The only change made i n  t h i s  case i s  the  addi t ion of a constant term, ao, 
t o  Wll l ( t9y)*  The invariants  i n  t h i s  case a re  
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and 

The d i f fus ion  equation becomes 

It is  seen t h a t  as a r e s u l t  of  the addi t ional  constant term, ao, one more term 
i s  added t o  f ( q )  and the transformed equation, as compared with C a & 2  8. 

4.3 SIMILARITY ANALYSIS OF STEADY, TWO-DIMENSIONAL, LAMINAR, BOUNDARY-LAYER 
EQUATIONS 

This a r t i c l e  i s  the second appl ica t ion  of the theories  given i n  a r t i c l e  
4-1. 
t ion ,  The present a r t i c l e  d i f f e r s  from t h a t  example i n  t h a t  an unknown func- 
t i o n  i s  involved i n  the  d i f f e r e n t i a l  equation which has t o  be determined. This 
f ac to r  introduces complexity i n  the  process o f  searching f o r  the possible groups 
of transformation, The method developed i n  t h i s  a r t i c l e  can be used f o r  s i m i -  
lar  pro’blems 

The example t r e a t e d  i n  the previous a r t i c l e  concerns the  d i f fus ion  equa- 

We s h a l l  see t h a t  t h e  boundary-layer equation may be transformed from a 
nonlinear p a r t i a l  d i f f e r e n t i a l  equation t o  nonlinear ordinary d i f f e r e n t i a l  
equation by groups of transformation other  than the  l i n e a r  and s p i r a l  groups, 
However, i n  transforming usual boundary conditions, t h e  l i nea r  and the  s p i r a l  
groups a re  the  o n l y  two groups possible, 

4.301 Inf ini tes imal  Transformation and the  Character is t ic  Function 

The laminar, incompressible boundary-layer equation, i n  terms of t he  
stream function J r ,  can be wr i t ten  as 

With the  boundary conditions 
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where a l l  t he  

X' 
L Y  

x = -  

where x', y ' ,  

quant i t ies  are i n  dimensionless form by the  transformation 

q ' ,  and ug r e f e r  t o  dimensional quant i t ies  and L and Uo a re  
reference length and velocity.  

Equation (4,209) can be put i n  a shorthand form as 

P2P12 - PlP22 = 4 * P222 4- (4,210) 

where 

and 

due 
dx 

4 = + - a  

- Now, l e t  us denote the  following d i f f e r e n t i a l  expression by F: 

(4.211) 

F = P222 * 4 - P2P12 * PlP22 0 ( 4 2 1 2 )  

The equation F = 0 w i l l  be invariant  under t h e  inf in i tes imal  transformation 
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if 

UF = 0 (4.214) 

or, in expanded form, 

Putting F from Eq. (4.212) into Eq, (4.215) we get 

"Jr2P12 - P2fi12 + fllP22 + Plfl22 + pa1 + X222 = 0 0 ( 4.216 1 

The next step is to express all the transformation functions, a,, a2, etc., 
in terms of the characteristic function, W. 
determined by Eq. (4.216), Now, from Eqs. (40114)9 (4.137) and (4.139), 

The functional form of W is then 

aw 
aP 1 

a, = - 



and 

-a12 = 

+ 

a2w + P11 - a2w + P2 - a 2 W  + PI(= + p2 -) py 
PZ1 (a P28Y %f + p2 "") aP2 % 

P12 (agw 

P22(r d2W + - 

axay ax* W Y  a+2 

a2w aw - + -  

- + -  p1 -I- - a2w P11 * 

a2w 
aPlaP2 

a2w P 1 +  

aP2, XhPl W P l  

P11 + - 
X3P2 W P 2  

+ P2 

14- 

(4.218) 



* PZ2 + P22 - a”w 
ax2aPZ 

a z a g  ax2az2 
* P2{* * 2P2 a% * 



r -l 

P12 * P2 + - a2w 
ax2apl azapl aP2, 

* P221 

P12 * - a2w p2 4- a2w 
ax2ap2 azap2 aPlaP2 
i a2w * - * P222 (4.220) 

Now subs t i t u t ing  Eqs .  (4,217)-(4,220) into Eq, (4,216) and eliminating 
%- 

p222 by Eq, (4,210),  we get 

d- f6P12P22 * f7Pf2P22 * f8P12PZ2 * fsP22 

* flOP122 4- f1 ,P l l  * fl2P11P22 * f13P3P2 

* f14P221 = 

where 

(4,221 ) 

(4,222) 
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(4,224 ) 
r 

7 

a3w f, = - 3  
aPfaP2 
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r -l 

Since W i s  a function of x, y7 $, pl, and p2, Eq, (4.221) i s  s a t i s f i e d  
iden t i ca l ly  only i f  a l l  t h e  coef f ic ien ts  a r e  zeroo Therefore fo,eoo,f14 are  
a l l  equal t o  zero, which gives fourteen equations 

fo  = fl = 0 0 0  = f14, = 0 (4,237) 

f rom which the  functional form of W i s  determined, 
'be separated in to  t w o  terms as 

Prom Eqs, (4,234) W can 

Equation (4.226) implies W1 i s  l i n e a r l y  dependent on pl. Therefore, 

Equations (4.232), (4.233) and (4.236) then give the  same r e l a t i o n  as 
follows : 

(4.240) 
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Since W,, i s  independent of p2, it means W,, i s  independent of  both y and 9 
and t h i s  i s  a function of x alone, 
ident ica l ly .  W now becomes 

Equation (4.223) i s  seen t o  be s a t i s f i e d  

Subst i tut ing t h i s  form of W in to  Eq. (4.227), we get  

%- 

2 P l  2 h2w2 - C,a3w2 $. a2w2 
3P2 Y23PE 3@P2 

Since W 2  i s  independent of pl, Eq, (4.242) gives 

(4.242) 

and thus 

(4.244) a2w2 
W P 2  
- = O D  

Equation (4.243) implies W 2  i s  l i n e a r l y  dependent on p2. 
(4.244), the  coef f ic ien t  of p2 i s  independent of +. 
t ion ,  W, can be wr i t ten  as 

Also,  from Eq, 
The cha rac t e r i s t i c  func- 

Subst i tut ing t h i s  f o r m  of W i n to  Eq. (4,244) we get  

Since W3, W,, and Wzl a r e  a l l  independent of  pzg Eq. (4,246) i s  separated in to  
two equations namely, 

(4.248) 
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Equation (4.247) shows t h a t  W3 i s  independent of  y. 
a r e  independent of +, Eq. (4.248) means W3 i s  l i n e a r l y  dependent on J r .  
fore  , 

Since both W2, and W,, 
There- 

Employing t h i s  r e s u l t  i n  Eq. (4.248), we ge t  

dw,, 4- w31 z a w a  ~ (4.250) 
dx aY 

‘5- 

The left-hand s ide of Eq. (4.250) i s  a functi.on o f  x alone, which i n  t u r n  
means WE, i s  l i n e a r l y  dependent on ys i . e . ,  

Equation (4*250) then becomes 

which w i l l  be used l a t e r .  

The cha rac t e r i s t i c  function now ‘becomes 

T h i s  form o f  W will s a t i s f y  Eqs. (4.228)-(4.231) and (4.235) ident ica l ly .  
We have two equations l e f t ,  namely, Eqs. (4.222) and (4.225). 
W from Eq, (4.253) i n t o  Eq, (4.222) gives 

Subst i tut ing 

(4.254) 

which can, i n  tu rn ,  be separated in to  two equations: 



Similarly, put t ing W from Eq, (4.253) in to  Eq. (4.225) gives 

+ 7) dw212 + Pl(W21y-W,1) = 0 

which then i s  separated in to  

w32 = 0 
dx 

... (4.257) 

( 4 2 5 9 )  

Equations (4.258) and (4.259) s b w  t h a t  W31 and W32 a r e  constants and so from 
Eq. (4.255j9 Wzll i s  a l s o  a constant, Equations (4.252) and (4.260) give the  
same r e s u l t ,  namely, Wll being l i n e a r l y  dependent on x. 

To conclude, the cha rac t e r i s t i c  function W can be wr i t ten  as 

where a09 a14 bl, cog and c1 are  constants and g (x )  i s  an a r b i t r a r y  function 
of x. 
can .be obtained from Eq. (4.256) as 

One r e l a t i o n  r e l a t i n g  $ [defined i n  Eq, (4.221)] and the constants 
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and also,  Eq. (4.260) furnishes another r e l a t i o n  among the constants,  which i s  

The absolute invariants  and the  r e s t r i c t i o n  on + w i l l  be discussed i n  
the  next sect ion.  

4.3.2 Limitation on the Mainstream Velocity 

I n  the  introduct ion the  point w a s  made t h a t  the type o f  problem involves 
t h e  determination of an a r b i t r a r y  function, $ d e  
cha rac t e r i s t i c  function W must be of the form given by Eq. (4.261) and Eq, 
(4.263) s a t i s f i e d ,  but the  a rb i t r a ry  function $d has t o  s a t i s f y  Eq, (4.262) 
i f  the  given d i f f e r e n t i a l  equation i s  t o  be invartant .  

For such cases, +sot only the 

From Eq. (4.262), 

(ao+alx)$p - (~,-3bl)$ = o (I 

Upon integrat ion,  f o r  a1 # 0 ,  a. = o 

we then get 

( 4  264 ) 

(4.265) 

(4.266 ) 

This i s  seen t o  be the  mainstream ve loc i ty  associated e a r l i e r  with t h e  l i n e a r  
group 

For a1 = 0, a. # 0 ,  

c~.-3bi 
# = (constant)e  *O 



and thus,  using Eq. (4*211) ,  

(4- 268) 

which i s  seen t o  be the  mainstream f o r  t he  s p i r a l  group. 

For t h e  general case i n  which both a. and a1 a r e  nonzero, t he  mainstream 
veloci ty  i s  found t o  be 

$- 

which again belongs t o  the  l i nea r  group. 

We therefore conclude t h a t  t he  mainstream veloci ty ,  ue (x ) ,  belongs e i t h e r  
t o  the  l i n e a r  or the  s p i r a l  group, t e e . ,  powers o r  exponentials of x. No  
other  forms are  possible-a point long assumed but not proved, 

4.3.3 Absolute Invariants  and the Transformed Dif fe ren t ia l  Equation 

With t h e  cha rac t e r i s t i c  function, W, obtained as i n  Eq. (4.261) we now 
make use of  the  general theory t o  f ind  the  absolute invariants  and the  t rans-  
formed d i f f e r e n t i a l  equation. We s h a l l  expect the  invariants  t o  correspond t o  
l i nea r  and s p i r a l  groups. From Eq. (4.265), we obtain 

where the functions al, a2, and m can be obtained by put t ing Eq, (4.261) in to  
Eq. (2.13) which then gives 

dx 
a. +a lx 

Since t h i s  equation has 
invariants  Let us consider 

- - 

two 
two 

(4.271) 

independent solut ions,  we have t w o  absolute 
spec ia l  cases. 

Case 1, a. = 0 ,  g ( x )  = 0 ,  eo = 0 -- 

Equation (4.271) becomes 
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The two independent solutions to Eq. (4.272) a re  

Y = constant $j;/a, 
and 

* constant c,l&1= X 

The boundary-layer equation 
Thus, we  get  t h e  s imi l a r i t y  

TI 

%- 

can be expressed i n  terms of these two invariants .  
transformation 

(4,273) and f ( 7 )  = ., ,.11.1 

The mainstream ve loc i ty  f o r  t h i s  case i s  given i n  Eq, (4,266) as 

ue(x> = k i  & 1 -by6 l+b I) (4.274) 

where k, i s  a eonstant. 
(4.273) and (4.274) can be wr i t t en  as 

Recalling that, Eq. (4.263) has t o  be s a t i s f i e d ,  Eqs. 

and 

u,(x) = klxm (4.276) 

which i s  seen t o  be i n  the  same formas the  so-called Falkner and Skan s i m -  
i l a r i t y  transformation (see Ref 6 )  The transformed d i f f e r e n t i a l  equation 
i s  well-known and can be wr i t t en  as 

1 
2 

f"' + - ( m + l ) f f "  =+ m ( 1 - f 9 2 )  = o 
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Case 2. a1 = 0, g(x)  = 0 ,  eo = o -- 

Equation (4.271) becomes 

The two absolute invariants  can be found t o  be 

$ 
E X  
2 'i- e 

The mainstream veloci ty  i s  given by Eq, (4,268) as 

and f ( 7 )  = - q = -  Y 
- f$x 

e 

The transformed d i f f e r e n t i a l  equation i s  

f"' 1 
= P ( f I 2  - 2 - f f " )  .. Bk$ . 

(4 * 279 ) 

( 4 I 281 ) 

The transformation i s  seen t o  be the s p i r a l  group. 

The more general cases i n  which both a. and co a re  nonzeroin Case 1 
and eo i s  not zero i n  Case 2 poses no problem, These assumptions merely in- 
troduce an ex t r a  constant i n  x and $ i n  the transformation [c f .  Eqs. (4,266) 
and (4,26991, However, t he  case i n  which g (x )  i s  not zero needs fur ther  in -  
vest igat ion,  For t h i s  case, Eq. (4,271) becomes: 

( 4.282 ) 

Following the same s teps  as i n  Case 1, the  absolute invariants  a re  found 
t o  be 
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and 

The mainstream ve loc i ty  i s  given by 

( 4.284 ) 

based on Eq. (4.269)- 
2- 

The boundary-layer equation is transformed t o  an ordinary d i f f e r e n t i a l  
equation as 

By s e t t i n g  

then  

= c l - * b l  
c l*bl 

Also,  Eq, (4,263) has t o  be sa t i s f i ed ,  i o e n J  

al = bl 9 c1 ., 

Equation (4,283) t o  (4,286) become 

(4  286 ) 
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and 

f"'  f f "  l + m  
2 

+ Ink: - mf '2 + - (4.292) 

For g(x)  = 0, t h i s  i s  seen t o  reduce t o  the  Falkner-Skan's f l o w .  
transform the  boundary-layer equation t o  an ordinary d i f f e r e n t i a l  equation, 
g(x)  can be any function of x; however, fo r  g (x )  f. 0,  the boundary condition 
a t  y = 0 cannot be transformed. We therefore  conclude t h a t  f o r  incompressible, 
two-dimensional, laminar boundary-layer equations, the l i nea r  and s p i r a l  groups 
a re  the only two groups possible.  
transform the  boundary layer  equation from p a r t i a l  d i f f e r e n t i a l  equation t o  
an ordinary d i f f e r e n t i a l  equation, it fai ls ,  however, t o  s a t i s f y  the  boundary 
condition a t  y = 0. 

I n  order t o  

The group represented by Eq. (4.282) w i l l  

%- 

4.4 SIMILARITY ANALYSIS OF THE HELMHOLTZ EQUATION I N  GEI\SEEAL CURVILINEAR 
COORDINATES 

I n  t h e  present a r t i c l e  the  ro l e  of  a coordinate frame r e l a t i o n  on a s i m -  
i l a r i t y  analysis  i s  considered by examining the  two-dimensional Helmholtz equa- 
t i o n  i n  general curvi l inear  coordinates. While the  present method of analysis  
appl ies  t o  both l i n e a r  and nonlinear p a r t i a l  d i f f e r e n t i a l  equations, there  a r e  
a t  least two reasons f o r  choosing t h i s  pa r t i cu la r  equation f o r  presentat ion 
of the  present method of analysis.  The f i rs t  i s  i t s  s implici ty  and i t s  w i d e  
use i n  the poten t ia l  theor ies  of a la rge  number of physical  problems, The 
second, and the most important, reason i s  t h a t  t h e  separabi l i ty  of t h i s  equa- 
t i o n  has been studied thoroughly by Moon and Spencer.l3 
variables we mean the  o r ig ina l  p a r t i a l  d i f f e r e n t i a l  equation i s  reduced t o  
- two ordinary d i f f e r e n t i a l  equations each having one of t he  o r ig ina l  indepen- 
dent variables as an independent var iable .  I n  the case of s imi la r i ty ,  the 
or ig ina l  p a r t i a l  d i f f e r e n t i a l  equation is  reduced t o  one ordinary d i f f e r e n t i a l  
equation where the  independent var iable  i s  a funct ion o f  t he  o r ig ina l  inde- 
pendent yariables.  The present analysis  i s  a p a r a l l e l  study t o  t h a t  of Moon 
and Spencer13 on the  conditions of separabi l i ty .  Here we want t o  derive the  
conditions under which s imi l a r i t y  i s  possible by requiring t h a t  t h e  Helmholtz 
equation be invariant  under the inf in i tes imal  transformation. The basic  prob- 
lem i s  the  determination of the cha rac t e r i s t i c  function, W. The difference 
between t h i s  example and e a r l i e r  examples i s  t h a t  t h e  resu l t ing  d i f f e r e n t i a l  
equations f o r  t he  solut ion of  W involve unknown metric components of the 
curvi l inear  coordinates. These equations form the  conditions f o r  the  ex i s t -  
ence of s imi l a r i t y  solutions s They can be used i n  two ways. I n  the  f i r s t  
case where a coordinate system i s  given, s imi l a r i t y  solut ion i s  said t o  e x i s t  
i f  subs t i tu t ion  o f  the known metric components i n  these conditions result i n  
solutions f o r  the cha rac t e r i s t i c  function, W. Once W i s  known, the  searching 
of a l l  possible groups of transformation can be made by following the same 

By separation of 



s teps  as i n  previous examples. I n  the  second case where a group of  transforma- 
t i o n  i s  given f o r  which the  charac te r i s t ic  function, W, i s  known, these condi- 
t i ons  give l imi ta t ion  on the  metric components f o r  the general curvi l inear  co- 
ordinates.  If subs t i tu t ion  of the metric components of a given coordinate 
system s a t i s f i e s  these conditions, then s imi l a r i t y  solutions e x i s t  f o r  t he  co- 
ordinate system f o r  t h a t  group of transformation. I n  both cases, of course, 
t he  boundary conditions have t o  be transformable for true s imilar i ty  t o  ex i s t .  

4.4,1 Review of Separabi l i ty  Conditions Discussed by Moon and Spencer 

The following i s  a short  review of the sepa rab i l i t y  conditions discussed 
by Moon and Spencer,l3 
ta ined from the theory of continuous transformations. We consid& two dimen- 
s iona l  form of the Helmholtz equation given by 

This i s  done f o r  comparasion with r e s u l t s  t o  be ob- 

where g,, and g12 are  components of  the metric tensor and g i s  the  determinant 
w i t h  elements g Pq" 

Now, l e t  t h e  unknown function be expressed as a product of  two functions: 

Subst i tut ion of  Eq. (4,294) i n  Eq, (4,293) gives 

(4.295) 
g p  U l  ax, 

The most general  condition that w i l l  a l l o w  sepa rab i l i t y  i s  that  gl/2/gii 
i s  a produce of two functions: 
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Subst i tut ion of Eqs. (4.296) and (4,297) in to  Eq. (4.295) gives 

I n  t h i s  equation, g, F i  and f i  a r e  determined by the  coordinate system and 
a r e  e n t i r e l y  independent of the boundary condition t h a t  characterize a pa r t i c -  
u l a r  problem. But i n  the solution, # = U1U2, t he  U ' s  a re  functions of both 
the coordinate system and the  separation constants.  Now, suppose we d i f -  
f e r en t i a t e  Eq. (4.298) with respect t o  a, and a2, we get  

n 7 

#. 1 J  . ( x i )  

Equations (4.299) and (4  300) becomes 

Equations (4.302) and (4.303) a re  solved f o r  f,F, and f2F2 and t h e  r e s u l t s  
a re  ( i f  s # 0 )  

flF, = g1/2 &LEL S (4,304) 

(4.305) 



where 

$11 $12 

#21 #22 

s =  

which i s  known as the  StZckel determinant. 

Comparison of Eqs. (4.304) and (4,305) with Eqs. (4,296) and (4,297) shows 
t h a t  

Equat i (40307) 
separabi l i ty .  

S 
g l l  = - 

$22 

S 
&2 = - 2 -  

$ 3 2  

nd (4,308) a re  ca l led  the  f i rs t  c ndi t ion f o r  simply 

Also,  from Eqs. (4.304) and (4.305), 

Equation (4.310) i s  ca l led  t h e  second condition f o r  simple separabi l i ty .  

It can be shown that the  two conditions a re  both necessary and su f f i c i en t  
f o r  the simple sepa rab i l i t y  of  Helmholz’s equation, Detail  of the  proof is  
given i n  the  o r ig ina l  work of  Moon and Spencer.’3 

We now consider a n  example i n  which the  cy l indr ica l  coordinate is  con- 
sidered, fo r  which 

x = r cos 8, y = r s i n  Q 
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From Eqs.. (4.307) and (4.308), 

e =  1 

and 

S 2 - -  - -r e 

#I2 

If & i s  taken t o  be 1, then 

a. 
1 
r2 

s = 1 and $dlz = - - * 

However, s i s  defined i n  Eq, (4.306) as 

For s = 1, one p o s s i b i l i t y  i s  

The second condition then  becomes 

(4.312) 

(4.313) 

This condition i s  s a t i s f i e d  i f  

f-,(r) = r and f z ( Q )  = 1 (4.318a,b) 

We therefore  conclude t h a t  the  Helmholtz equation i n  cy l indr ica l  co- 
ordinates i s  separable, 



4.4.2 S imi la r i ty  Analysis o f  t h e  Equation 

Let us put Eq. (4,293) i n  a s l i g h t l y  d i f fe ren t  form as 

where the following re la t ions  have been used: 

*r. 

We now want t o  f i nd  the conditions on the  two unknown functions h, and 
h2 which make similarity possi'ble. I n  o the r  words, the  conditions thus o'b- 
ta ined w i l l  enable one t o  decice f f  s imi l a r i t y  solutlons ex i s t  f o r  t h e  co- 
ordinate system under consideration, 

Carrying out  t he  d i f f e ren t i a t ion  and rearranging the terms, Eq. (4,319) 
be comes 

where 

We now make t h e  inf in i tes imal  transformation: 
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where the transformation functions & j i ,  5 ,  
of a cha rac t e r i s t i c  function, W, as 

and n i j  can be expressed i n  terms 

f P2 a) * P?2 9 + 2P12P22 a2w 
3$3P2 aPl dPdP2 

f 2P22 

The Helmholtz equation, Eq. (4.320), denoted by F = 0, is invar ian t  under 
the  inf in i tes imal  transformation i f  

UF = 0 .  

Expanding t h e  operator i n  f u l l ,  we ge t  

(4.324 1 



Putting t h e  Qelmholtz equation, Eq, (4.320) in to  this expression, we 
then get  

2- 

where 
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Now, p22 i n  Eq, (4,327) can be eliminated by uslng Eq, (4.320) which, i n  
shorthand form, can be m i t t e n  as 

P22 = -(go*giPIL) (4.337) 

112 



where 

r 7 

By subs t i tu t ing  Eq, (4.337) i n t o  Eq, (4.327), we get 

*- 
where 

E3 = f 4  ( 4  344 ) 

Since t h e  charac te r i s t ic  function, W ,  i s  a function of xD x2, 4, ps, and 
p2, Eq. (4.340) i s  t rue  only i f  the coef f ic ien ts  of  each term are zero re- 
spectively; t h a t  i s ,  

The s e t  of equations, represented by Eq. (4.346), forms the  conditions 
f o r  t h e  existence of s i m i l a r i t y  solut ions,  These conditions can be used i n  
two ways. I n  the f i r s t  case where a coordinate system i s  given and we want t o  
know i f  s i m i l a r i t y  solutions ex i s t  or  not. 
they can be subst i tuted in to  these conditions and i f  there  e x i s t s  a solut lon 
f o r  the  charac te r i s t ic  function, W, s imi l a r i t y  solutions then e x i s t .  The 
searching fo r  a l l  possible groups can be made by following exact ly  the  same 

Since now h, and h2 a r e  known, 



technique as given i n  the previous examples. I n  other  words, as long as sub- 
s t i t u t i o n  of h, and h2 fo r  a given coordinate system in to  these conditions 
r e s u l t s  i n  solutions t o  the  charac te r i s t ic  function, W, the  coordinate system 
under consideration possess s imi l a r i t y  solutions.  

I n  the second case, we consider a given group of transformation and we 
want t o  know the  conditions h, and h2 must s a t i s f y  f o r  similari ty t o  ex i s t .  
For a given group of transformation, the cha rac t e r i s t i c  function, W, i s  known. 
Subst i tut ion of t h i s  form of W in to  the  conditions, Eq. (4.346) w i l l  r e s u l t  
i n  f ive  equations connecting h, and h2. They are the  conditions t h a t  a given 
coordinate system must Qatisfy i f  s imi l a r i t y  solut ions e x i s t  fo r  t h i s  given 
group of transformation. 

Two examples are  given below, *. 

4.4.3 Conditions of S imi la r i ty  f o r  a Given Coordinate System 

A s  a simple example, consider t h e  rectangular coordinate system i n  which 
both h, and h2 a re  uni ty .  Then the conditions f o r  t he  existence of s imi l a r i t y  
solutions,  Eq. (4.346), give 

(4.349) 

(4.350) 
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This means if solution to Eqs. (4.347)-(4.350) for W exists, similarity solu- 
tions will then exist for this given coordinate frame. The searching for all 
possible groups of trgnsformation satisfying these conditions shall not be our 
concern. 
exist and if they do what are the conditions the characteristic function, W, 
must satisfy. Equations (4.347)- (4.370) form those conditions and by trying 
various functions f6r solutions, the conclusion is easily drawn that simi- 
larity transformation do exist. 

The only conclusion being sought is whether similarity solutions 

An example will be given below. 

Consider now the following form of the characteristic function, W, 

For this form of W, Eqs.  (4.348) apd (4.349) are satisfied identically and 
Eqs. (4.347) and (4.350) give 

Equation (4.352) gives 

w1 = ClXl + c2 

w2 = ClX2 + e4 0 

These are substituted into Eq. (4.353) and we get 

Jopl + Jlp2 + J2p: + JsPS + 54 = 0 

(4.352) 

(4.353) 

(4.354) 

(4.355) 

(4.356) 



where 

Since all the J’s are independent of. the p s s ,  Eq. (4.356) is satisfied if all 
the J’s are zero; that is, 

The first four conditions in Eq. (4.358) indicates that the function 
W,, should be of  the form 

Substitution of Eq. (4.359) into the last condition in Eq. (4.358) then gives 

(4.360) 

However, since W 3 1  does not depend on 6, Eq. (4.360) is satisfieu if simul- 
taneously 

ac, = 0 ( 4.361 ) 

(4.362) 
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Since a is not zero, c1 must be zero. 

Therefore, the final form of the characteristic function is 

where W31 is any function which satisfy Eq. (4.362). 

To solve for the a'bsolute invariants, it is necessary to solve 

or, using Eqs ,  (4.323a,b) and 

(4.363) 

(4.364) 

(4.365) 

Let us next consider the case where W31 is a function of x, alone, then 
Eq, (4,362) is reduced to 

(4.366) 

The absolute invariants are the two independent solutions of Eq. (4.365) 
which are 

Putting these transformations into the Helmholtz equation and making use 
of the condition, Eq, (4.366), we get 

(4.368) 



which is an ordinary differential equation. 

The above is only a special case of all the possible groups of transforma- 
tion which will reduce the original partial differential equation to an ordi- 
nary differential equation. Other solutions to W and the similarity solution 
f o r  those groups can be obtained in a similar manner. We therefore conclude 
that similarity solutions do exist for Helmholtz equation in rectangular co- 
ordinates, in addition to its separability. 

One final remark concerning the boundary conditions is necessary. When 
it is stated that similarity solutions exist, we mean that not only the partial 
differential equation is reduced to an ordinary differential equation, but 
also that boundary conditions can be transformed satisfactorily. For separa- 
tion of variables in the usual sense (see the brief summary earlier), the 
boundary conditions can always be transformed. This is not true for similarity 
transformation. In the example just treated, Eqs. (4.367) and (4.368), the 
only possible similarity solution is when the boundary conditions are given 
as 

where k, and k2 are constants. 
following boundary conditions for Eq. (4.368), 

By putting Wsl to zero,  Eq, (4.367) gives the 

4.4.4 Conditions of Similarity for a Given Group of Transformation 

As an illustration, consider the spiral group of transformation where the 
spiral group of transformation where the characteristic function is given by 

The conditions for the existence of similarity solution, Eq, (4.346) then 
become 



and 

where 

(4.373) 



+ h$ ah;! ah, 9 h?h2 a2h, 
ax, ax2 ax, ax2 axlax2 

(4.375) 

(4.376) 

It should be noted t h a t  f o r  W i n  the form given i n  Eq. (4.370), the condi- 
t i ons  H, = 0, H2 = 0 and H3 = 0 a r e  s a t i s f i e d  ident ica l ly .  
we conclude t h a t  the G 9 s  should all. be zero, Thus, we ge t  

From Eq. (4.372) 

Equations (4.371) and (4.377) a r e  the  conditions t o  be s a t i s f i e d  f o r  the  h, 
and h2 for s imi l a r i t y  solut ions t o  e x i s t  f o r  the  s p i r a l  group. A s  long as 
the  functions hl and h2 f o r  a coordinate system s a t i s f y  these conditions, 
then the  s p i r a l  group of s imi l a r i t y  transformation ex f s t s  fo r  t h a t  coordinate 
system. 
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A s  an appl icat ion of these conditions, Eqs. (4.371) and (4.3771, l e t  us 
ask i f  t he  s p i r a l  group of transformation e x i s t s  f o r  the  rectangular coordi- 
nat,e frame. For such a coordinate system, both h, and h2 a r e  uni ty .  
t i o n  (4.371) becomes 

Equa- 

c 2 = 0 .  (4.378) 

Equation (4.377), with c2 = 0, a r e  s a t i s f i e d  iden t i ca l ly .  

Thus, we conclude t h a t  the  s p i r a l  group of transformation e x i s t s  f o r  the  
rectangular coordinate frame, since i t s  h, and h2 sa t i s fys  the conditions 
given i n  Eqs. (4.371) and (4.377) i f  e2 = 0. 

The chara,cter is t ic  function i s  therefore  

and the absolute invariants  can 'be o'btained by solving 

and 

which gives 

~2 = constant 

and the  Helmholtz equation i s  reduced t o  

2 
f "  -I" (a -!- 23 )f = 0 . 

CQ 

(4.379 1 

By subs t i tu t ing  in to  Eqs. (4.371) and (4.377) the  h, and h2 functions 
f o r  a cy l indr ica l  coordinate (h, = 1, h2 = xl), it i s  seen tha t  s imi l a r i t y  
solutions do not e x i s t  s ince they do not s a t i s f y  these conditions. Other co- 
ordinate frames can be t e s t ed  i n  a s i m i l a r  manner. 
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4.5 CONCLUDING REMARKS 

The method given in this chapter can be summarized as follows: Consider 
a partial differential equation 

where 

This equation is said to be invariant under the infinitesimal contact trans- 
format ion 

if the following condition is satisfied 

(4.383) 

Since the functions, si, in the transformation are expressed in terms of a 
characteristic function, W, Eq. (4.383) is used to predict the form of W. 
The invariants can then be obtained by solving the following system of equa- 
tions : 

Finally, using the theorems given in article 4.1.5, the number of variables 
can be reduced by one using the invariants as new dependent and independent 
variables. 
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For simultaneous differential equations, the functions in the infinitesimal 
contact transformation are expressed in terms of characteristic functions, Wi 
where i = l,...,m and m is the number of dependent variables. 

The present method is seen to be a systematic way of searching for all 
possible groups of transformation which will reduce the number of variables 
by one. For reducing more variables, the same steps have to be repeated. 
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