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SUMMARY

An investigation was conducted in the ngley 8-foot transonic pres-
sure tunnel to determine the afterbody pressure distribution and fin
loading characteristics of two configurations of the TX-21 special weapon.
The two configurations differed in nose contour only, with one having a =
hemispherical-flat shape and the other a double-radius ogive-flat shape.
The tests were conducted in the Mach number range from 0.50 to 1.21.

Reynolds number, based on body maximum diameter, varied from 1.5 X 106
to 2.5 x 100.

The differences in nose contour caused no significant changes in
the results obtained within the available range of comparison. The most
favorable location for a pressure-sensing port was indicated to be at
about the 89-percent-body station which gave a maximum equivalent alti-
tude error of 2,600 feet for oscillatory motion confined to t4©,

Only small changes in fin loadlng characteristics were noted in the
low angle-of-attack range (a < 6°) whereas at the higher angles there was
an outboard shift in loading. The combined effects of a high degree of
flow acceleration over the forward portion of the body and the movement
of the body shock waves subjected the fins to unique variations in local
pressure in the Mach number range 0.92 < My < 1.07.

Lift-curve slope for the complete configuration was greater at angles
of attack exceeding 4° than at angles of attack near zero. The configura-
tions tested remained statically stable throughout the range of the
investigation.
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INTRODUCTION

In recent years, considerable research effort has been devoted to ~
the development of special aeroballistic body shapes, capable of being
released from altitudes above 50,000 feet from aircraft operating at
Mach numbers near unity. One of the major problems associated with the
serodynamic capabilities of these weapons under such release conditions
has been that of longitudinal stability in the transonic and low super-
sonic speed ranges.

In accordance with a request from the Atomic Energy Commission and
in cooperation with the Sandia Corporation, tests of the TX-21 special
weapon have been conducted in the Langley 8-foot transonic pressure tun-
nel. The purpose of these tests was to define the effect of Mach number
and angle of attack on the longitudinal stability characteristics of the
weapon and to determine pressure distribution characteristics over the
afterbody and stabilizing fins. It was further desirable to locate, if
possible, a pressure port which would be relatively insensitive to Mach
number for use in conjunction with a barometric fusing device.

The dynamic and static longitudinal stability characteristics of
several TX-2l1 configurations have been reported in reference 1. The
present report presents the results of pressure measurements made over
the afterbody and fins of two TX-21 configurations which were similer
but not identical to those of reference 1. Inasmuch as the results pre-
sented herein constitute only a component part of the special weapons
program, a complete evaluation of the TX-21 is beyond the scope of this
paper.

SYMBOLS

A area, sq ft
Cm pitching-moment coefficient, Pitching moment

g Ad
Cy normal-force coefficient, Normal force

qA
Cy fin axial-force coefficient, Z p(A.A)
f A

Cmf fin pitching-moment coefficient, ZE: P(%é)(%)
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NA
CNf fin normal-force coeffilcient, Z P('A_)
| oCy
, Cma static longitudinal stability paremeter, ol . -
L body length, ft
Mo free-stream Mach number
P pressure coefficient, P~ Po
9,
R Reynolds number, based on d
b fin span, ft
c fin chord, ft
c fin section pitchi t coefficient p(AX)(%
me pitching-moment coefficient, = (E
cNf fin section normal-force coefficient, :E: P(%?)
d maximum body diameter, ft
P local static pressure, lb/sq ft
Py free-stream static pressure, lb/sq ft
d5 free-stream dynamic pressure, 1lb/sq ft
X chordwise distance, ft
y spanwise distance, ft
o angle of attack, deg

APPARATUS AND MODELS

Wind Tunnel

This investigation was conducted in the Langley 8-foot transonic
pressure tunnel which has a slotted test section and permitted continuous
testing to a Mach number of about 1.2 for these models. Details of the
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tunnel test section are given in reference 2. Tunnel calibrations have
indicated that the maximum deviation from the average free-stream Mach
number is about t0.004 at subsonic speeds and about t0.008 at Mach num-
bers above 1.00. ST

Models

Two TX-21 configuration models were tested in the investigation.
The configurations were similar with the exception of the nose contour.
(See fig. 1.) These models, provided by the Sandia Corporation, consisted
of either a hemispherical-flat nose, designated herein as nose A, or a
double-radius ogive-flat nose, designated herein as nose B, attached to
a 6.5-inch-diameter cylindrical afterbody. Cylindrical extensions were
interposed between the nose and afterbody sections to maintain an approxi-
mately constant model length. The configuration with nose A was
16.756 inches long whereas that with nose B was 16.779 inches long. The
fineness ratio of either configuration was 2.58.

The bodies were constructed of aluminum and brass and were instru-~
mented with three rows of static-pressure orifices as shown 1n table I.
Stabilizing fins and other accessory parts (fig. 1) were screw fastened
to the bodies.

Details of the fins and other model accessories are given in fig-
ures 1(b) and 1(c). Although the locations of the model accessories
differed slightly for the two configurations (fig. 1), the accessory
parts used (i.e., fins, spoiler bands, spoiler flange, and nut covers)
were the same for both models. The cruciform fin configuration con-
sisted of two diametrically opposed brass pressure fins and two aluminum
fins (fig. 1(b)). The shape of the aluminum fins corresponded closely
to the actual fin on the TX-21 prototype whereas the pressure fins were
modified to facilitate the installation of static-pressure orifices. The
pressure fins differed from the actual fins in that they had a slightly
larger span and were not raked at the beginning of the second wedge.

The pressure fins contained 45 static~pressure orifices located as shown
in figure 1(b) on one surface only and 5 static-pressure orifices on the
fin base.

TESTS AND METHODS

The models were installed in the test section with the nose flat at
about the 106-inch tunnel station. A sketch of a typical configuration
mounted on the tunnel support system is shown in figure 2. The model
was positioned on the support system with the chord plane of the pressure
fins in a horizontal position. In this position the planes of the body

(—



NACA RM SL56G30 '
5663 w—— 5

orifice rows were as shown in table I. In order to determine fin loads,
it was necessary to test the models at both positive and negative angles
of attack since pressure measurements were obtained only on one side of
the fins.

Data were obtained on the nose A configuration through a Mach num-
ber range from 0.50 to 1.16 at angles of attack from -10° to +10° in
20 increments. The complete angle-of-attack range (o = +10°) was not
obtained at all test Mach numbers. The nose B configuration was tested
through the Mach number range from 0.50 to 1.21 at =29, 0°, and +2° for
all test Mach numbers. The test Reynolds number, based on maximum body

diameter, varied from about 1.5 X 10% to about 2.3 X 106.. (See fig. 3.)

All pressure data were photographically recorded from multitube
manometers., Tunnel total pressures were manually recorded from an auto-
matically indicating mercury-filled barometer. Visual observation of the
flow in the vicinity of the model was obtained by standard schlieren
photography.

REDUCTION OF DATA

The pressure measurements made over the model afterbody were directed
toward the evaluation of the pressure-sensing characteristics of the indi-
vidual orifices. Results of these measurements are therefore presented
as the variation of the pressure ratio p/po with Mach number. Since no

measurements were obtained of the pressures over the model noses, these
data are inadequate for the calculation of body forces.

Three component forces on the fins were obtained from pressure
measurements. In the reduction of these data, a numerical summation
method was employed to obtain values of normal force, pitching moment,
and axial force. In this method, the pressure acting at any orifice was
assumed to act on the area from the orifice to a boundary midway between
the orifice in question and the adjacent orifices. Summation of these
pressure-area increments then provided a total-force value. Since the
fins were instrumented.on the upper surface only, the values shown for
the lower surface were obtained by testing at negative angles of attack.
Values presented are based on the exposed area of a single fin and on the
fin chord. Pitching-moment values were tsken about the fin leading edge.

Normal-force and pitching-moment data for the complete configurations
were obtained from the output of two sets of calibrated strain gages
mounted on the pressure-model sting support. No strain-gage measurements
of axial force were obtained. The results presented are based on body
frontal area and body maximum diameter.

—
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ACCURACY

As discussed in reference 1, the body flow fields were influenced
in the Mach number region from about 1.08 to 1.14 by a reflection of the
model bow wave from the tunnel wall. Results obtained in this Mach num-
ber region would contain spurious results in comparison to results in
free air. It would be expected that, at Mach numbers somewhat higher
than 1.14, the effect of this reflected disturbance would be felt over
the model base because of the upstream propagation through the wake.

The accuracy of the pressure ratio p/po and angle of attack «

is considered to be within +0.002 and +0.1°, respectively. The accuracy
of the pressure coefficient P 1s considered to be t0.005.

The values of fin axial force presented are possibly in error by
an undetermined amount because of the small number of orifices available
to determine the force contribution of the fin base (fig. 1(b)).

No attempt has been made to present the limits of accuracy for the
force measurements inasmuch as installation of the strain gages on the
model sting was Incorporated in these pressure tests to provide only
general trends and approximate levels of normal force and pitching moment.
It is felt that the accuracy of the values obtained is adequate for these

purposes.

RESULTS AND DISCUSSION

An investigation was made of two TX-21 configurations to determine
the afterbody pressure distribution and fin loading characteristics. The
first configuration employed a hemispherical-flat nose, nose A, and was
tested through the angle-of-attack range from O° to 10° while the second
configuration employed a two-radius ogive-flat nose, nose B, and was
tested at 0° and 2°. Consequently, comparisons are available in only a
limited angle-of-attack range. No significant differences in the results
obtained for the two configurations were noted in this range. Therefore,
in the discussion which follows, no distinetion will be made between the
two configurations except where noted.

The character of the model flow fields were qualitatively similar
for the configurations tested. A general depiction of these flow fields
was presented in reference 1, wherein it was noted that compression waves
originating from the forward portion of the nose and from spoiler bands
formed at Mach number as low as about 0.75. These disturbances terminated
in a normal shock which moved rearward with increases in Mach number
reaching the fin leading edge at M, =~ 0.94. Accelerations of the flow

<N
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around the body as indicated by changes in local Mach number increased
with stream Mach number reaching a maximum at a stream Mach number of
about 0.99 and diminished at higher speeds. The combined effects of this
high degree of flow acceleration and the movement of the body shock waves
exposed the fin surfaces to unique variations in local pressure in the
range 0.92 < Mo < 1.07. This will be discussed in greater detail in the

section entitled "Fin Loads." In all cases the boundary layer surrounding
the body remained quite thick and acted as an attenuating influence which
tended to diffuse sharp discontinuities.

Pressure Port

A satisfactory pressure-sensing port which could be incorporated in
a barometric fusing device for arming these weapons at specified alti-
tudes should maintain the ratio of local to ambient static pressure as
near unity as possible. In order to evaluate this characteristic of the
body pressure ports investigated on the TX-21 configurations, the data
have been presented in figures 4 and 5 as the variation of the static
pressure ratio p/po with Mach number for each longitudinal orifice

location. The location of these orifices may be found in table I and

are given in the figures as the distance from the nose flat in percentage
of body length. Included in each figure i1s a scale of equivalent altitude
error for which a fusing altitude of 3,000 feet was arbitrarily selected.
It will be noted from these figures that the two orifice rows labeled

side and bottom give essentially identical readings. This results from
the model being so oriented as to place the pressure fins in the hori-
zontal plane with the consequent similar location of the two rows with
respect to the angle-of-attack plane (table I).

An examination of figures 4 and 5 indicates that the most favorable
location for a pressure-sensing port will be in the vicinity of sta-
tions 0.893 to 0.938. At O° angle of attack the maximum altitude error
at these stations is about 1,300 feet. A maximum error of 4,400 feet is
noted at an angle of attack of 10°. If the limits of oscillation are
confined to t4°, however, the maximum error indicated is 2,600 feet.
With the oscillatory motion confined to t4°, station 0.893 appears to be
slightly superior to station 0.938.

The values discussed in the preceding paragraph have been taken with
any existing tunnel effects, such as the wall-reflected bow wave, included.
The one exception to this statement lies in the ignoring of the apparently
erroneous data shown for the nose A configuration at o = 2° and M = 1.077.
It is believed that correction of these results to a free-air condition
would tend to reduce the errors noted. No attempt has been made to apply
such a correction because of the unknown magnitude of the effect.

-—
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Fin Loads

Presented in figures 6 to 10 are the results of measurements made to
determine the fin loads. In figures 6 and 7 are shown the pressure dis-
tributions over the fins for the configurations with nose A and nose B,
respectively. Values of section normal-force coefficient and section
pitching-moment coefficient for the nose A configuration are shown in
figures 8 and 9, respectively. Values of total fin normal-force coef-
ficient, pitching-moment coefficient, and axial-force coefficient are
given in figure 10. It will be noted in these figures that, with the
exception of axial-force coefficient in figure 10, no 0° angle-of-attack
results have been presented since, owing to the method of testing and
computation, these values would be zero.

An examination of the fin surface pressure distributions (figs. 6
and T) shows no significant variation as Mach number is increased. Over
the inboard portions of the fin, most of the load appears to be carried
near the leading edge. The loading on the outboard portions of the fin
is similar to that of the inboard portion at angles of attack below about
6°. At higher angles of attack, a rearward shift in loading of the out-
board portion can be seen. At Mach numbers above about 0.90, the rear-
ward shift in loading appears to be felt somewhat farther inboard from
the fin tip.

Values of section normal-force coefficient presented in figure 8
indicate that the spanwise load distribution is similar for all Mach num-
bers. At angles of attack below 60, the spanwise loading remains essen-
tially constant to approximately midspan. Outboard of this point, the
loading decreases toward the tip. At angles of attack above 60, the
loading shifted well outboard. The trends of section pitching-moment
coefficient shown in figure 9 follow very closely those noted for sec-
tion normal-force coefficient.

In table II are tabulated the values of spanwise center-of-pressure
location. It can be seen from these values that the fin center of pres-
sure moves outboard as angle of attack is increased for all Mach numbers
investigated. The maximum movement of about T percent was observed at a
Mach number of 0.918. This outboard shift in loading may be associated
with the emergence of the outboard portions of the fins from the very
thick boundary layer surrounding the body.

The variations of total fin forces with Mach number are presented
in figure 10 for several angles of attack. The normal-force coefficient
increases with angle of attack at all Mach numbers. The magnitude of
the increase is greater at the higher speeds. Normal-force coefficient
increases with Mach number to a Mach number of about 0.92, above which
there is a leveling off at a value slightly lower than that observed at
Mo = 0.918. Variations in pitching-moment coefficient shown in the same
figure follow very closely those noted for normal-force coefficient.

gEl—
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Values of chordwise center-of-pressure location tabulated in table IT
indicate that the center-of-pressure movement is similar at all speeds.
As the angle of attack is increased to 6°, there is a forward movement of
the center of pressure. Increasing angle of attack above 6° results in a
rearward shift. The overall movement is relatively small and covers only
about 14 percent of the chord. The maximum movement of about 9 percent
of the chord was observed at a Mach number of 1.157. This small movement
appears to result from the restricted nature of the boundary layer which
covers such a large portion of the fin span.

The variation of fin axial-force coefficient with Mach number at
several angles of attack is shown in figure 10(b). The axial force
increases normally at subsonic speeds until a Mach number of about 0.92
is reached. As Mach number is further increased, a sudden reduction in
axial force occurs reaching a minimum value at M, = 0.98. Above

M, = 0.98, the axial force rises to a normal level except at M, = 1.15
where the interference of the reflected model bow wave causes a force
reduction.

The unusual reduction in fin axial force noted in the range
0.92 < My < 1.07 is believed to be due to a unique fin environmental
condition and would not be apparent in force measurements of the complete
configuration which are not available. Calculations of local Mach number
from body surface pressures in the vicinity of the fins indicate that, at
free-stream Mach numbers below about 0.92, local Mach number is very close
to free-stream Mach number. Above My =~ 0.92, local Mach number is
increasingly greater than free-stream Mach number reaching a maximum
deviation at M, =~ 1.00. Above M, =~ 1.00, this deviation is greatly

reduced. These changes in local Mach number are indicative of local
flow accelerations over the body.

At free-stream Mach numbers below about 0.9%, the body normal shock
is ahead of the fin leading edge and effectively shields the fin surface
from the negative pressure field induced by the local flow acceleration.
An examination of the relative contributions of the fin surface and base
to total fin axial force indicates that this shock reaches the fin base
at Mg ~ 0.96 as evidenced by a minimum point in fin-base force. This
rearward movement of the shock exposes the fin surface to the negative
pressure field with a resulting forward component which continues to
increase to a free-stream Mach number of about 1.00. Above Mg = 1.00,

the normal shock no longer exists on the body and the flow acceleration
decreases with a resulting increase in fin axial force to what may be
considered a normal level.
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Force Measurements

Results of force measurements made in conjunction with the pressure
tests to determine normal-force and pitching-moment -coefficients are
shown for the nose A and nose B configurations in figures 11 and 12,
respectively. Pitching-moment calculations were made relative to the
40.3-percent-body station for the nose A configuration and the 40.k4-
percent-body station for the nose B configuration.

The variation of normal-force coefficient with angle of attack was
similar for Mach numbers below about 0.85. Increasing Mach number to
0.918 resulted in a rapid increase in lift-curve slope followed by a
leveling off at higher speeds at values only slightly greater than those
at subsonic speeds. It will be noted in figure 11 that, at angles of
attack above about ho, the lift-curve slope was greater than for the
angles of attack near =zero.

Pitching-moment-coefficient variations were similar to those noted
for normal-force coefficient. In the range of the investigation, both
configurations remained statically stable. Presented in figure 13 is a
comparison between the static stability parameter Cma obtained from

force measurements and that obtained from the dynamic tests of refer-
ence 1. The agreement between the two curves is good. The differences
noted, particularly at the higher Mach numbers, may be attributable to
differences in fin orientation for the static tests (horizontal and
vertical) and the dynamic tests (45° from the horizontal) or to slight
differences in configuration previously noted.

The center of pressure for these configurations moved rearward as
Mach number was increased to about 0.92. There was a forward movement
in the range 0.92 <M, < 1.00. At Mach numbers greater than 1.00, the
center-of-pressure.- location remained essentially constant at a position
somewhat rearward of that noted for the subsonic case.

CONCLUDING REMARKS

From an investigation of the afterbody pressure distribution and
fin loading characteristics of two configurations of the TX-21 special
weapon the following observations are made:

1. The most favorable location for a pressure-sensing port was
indicated to be in the vicinity of the 89—percent-body station. If the
oscillatory motion of the body is confined to th the equivalent alti-
tude error for this location was about 2,600 feet.

-
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2. Only small changes in fin loading characteristics were noted at
angles of attack below 6° as a result of the thick body boundary layer.
At higher angles of attack, the outboard loading increased as the out-
board portions of the fins apparently emerged from the body boundary
layer.

3. The combined effects of a high degree of flow acceleration over
the forward portion of the body and movement of the body shock waves
subjected the fins to unique variations in local pressure in the Mach
number range 0.92 < Mg < 1.07. This unique flow condition was evidenced

by an unusual reduction in fin axial force in this Mach number range.

4, Normal-force coefficient for the complete configurations increased
with angle of attack at all speeds. The lift-curve slope was greater at
angles of attack exceeding 4° than at angles of attack near zero.

5. The two configurations tested remained statically stable through-
out the range of the investigation. Comparison of these results with
those obtalned from dynamic tests of similar but not identical configu-
rations showed good agreement.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 16, 1956.

Aeronautica earch ntist

John A. Braden
ZCZ Aeronautical Research Scientist
1

Approved:
ugene C. Draley

mhg Chief of“Full-Scale Research Division
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TABLE I
LOCATION OF BODY PRESSURE ORIFICES
Top
e ¢
g S ey 1|

Side \ -t -Hr-—-—- |

row Bottom

row
- L —
. o Nose A Nose B
Orifice number L = 16.756 in. L = 16.779 in.
Top Side Bottom x, in. x/L X, in. x/L

1 4,786 0.286 4.809 0.287

2 5.917 .353 5.940 354
3 17 31 6.671 .398 6.694 .399

L 18 32 T.425 Lh3 T.448 Lk

5 19 - 33 8.179 .4188 8.202 .489

6 20 34 8.933 .533 8.956 534
7 21 35 9.687 578 9.710 579
10 2l 38 11.949 .T13 11.972 JT1L
11 25 39 12.703 .758 12.726 . 758
12 26 40 13.457 .803 13.480 .803
13 27 L1 1k.211 .848 14,234 .848
14 28 42 14.965 .893 1h.088 .893
15 29 43 15.719 .938 15.7h2 .938
16 30 Wi 16.473 .983% 16.496 .983
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FIN CENTER-OF-PRESSURE LOCATION FOR

TABLE II

NOSE A CONFIGUR%S}ON

Mach Angle of Chordwise Spanwise
number attack, location, location,
deg x/c y/b
0.50k 2 0.316 0.466
i .279 A71
6 .258 478
8 .270 504
10 .323 530
.801 2 .319 465
L 307 485
6 .279 Lok
8 .30% .516
10 .322 .531
.918 2 .332 458
i .303 489
6 .301 .506
8 .328 .525
10 .356 532
.993 2 <311 466
N .302 487
6 305 487
8 3kl .511
10 376 527
1.077 2 .315 478
L .303 478
6 .29 480
8 -339 .510
10 . 383 .528
1.157 2 .310 483
N .302 L72
6 .301 485
8 - 341 527
10 393 533

13
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Figure 1l.- Details of the TX-21 test configurations. All dimensions are
in inches.
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Figure 6.- Pressure distributions over the fin surfaces at various Mach
numbers and angles of attack for the TX-21, nose A, configuration.
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Figure 10.-The variation of total fin forces with Mach number and angle
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nose B configuration.
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ABSTRACT

Tests were conducted in the langley 8-foot transonic pressure tun-
nel to determine the afterbody pressure distribution and fin loading
characteristics of two configurations of the TX-21 special weapon. The
tests were conducted in the Mach number range from 0.50 to 1.21 at angles
of attack from -2° to +10°. The Reynolds number variation was from

1.05 x lO6 to 2.3 X 106. Presented are the pressures over the model
afterbody in the form p/po and loading characteristics of the stabi-

lizing fins. Also presented are values of normal-force coefficient and
pitching-moment coefficient for the complete configurations.
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