Hydraulic Modeling Of Heat Dispersion In Large Lakes

Hydraulic modeling of thermal plumes from heat dispersion of steam generating power plants into large lakes has been investigated in a state of the art survey. Hydraulic modeling is an established practice for qualitative visualization of behavior and quantitative estimates of flow such as velocity, depth and pressure. In this work, case studies of hydraulic models are described for four major generating plants. Information and maps of the thermal distribution are included in the case studies.

The study includes fundamental laboratory analysis of non-buoyant jets, submerged buoyant jets, buoyant surface jets, and their mathematical representation. The status of hydraulic modeling of thermal plumes is summarized by the general requirements for plume models, the practical considerations in hydraulic modeling, the capability for hydraulic modeling and the requirements for future model studies.

This information should be of interest to agencies involved in thermal pollution control.

Note:

Requests for further information may be directed to:

Technology Utilization Officer
Division of Technical Information
U. S. Atomic Energy Commission
Washington, D. C. 20545
Reference: TSP72-10039

Patent status:

Inquiries about obtaining rights for commercial use of this information should be directed to:

Mr. George H. Lee, Chief
Chicago Patent Group
U. S. Atomic Energy Commission
Chicago Operations Office
9800 South Cass Avenue
Argonne, Illinois 60439

Source: E. Silberman and H. Stefan
Argonne National Laboratory
under contract to
Atomic Energy Commission
(AEC-10003)

Category: 03, 06