
July 1972	 B72-10350 

NASA TECH BRIEF 
Marshall Space Flight Center 

NASA Tech Briefs announce now technology derived from the U.S. space program. They are issued to encourage 
commercial application. Tech Briefs are available on a subscription basis from the National Technical Information 
Service, Springfield, Virginia 22151. Requests for individual copies or questions relating to the Tech Brief program may 
be directed to the Technology Utilization Office, NASA, Code KT, Washington, D.C. 20546. 

Memory Reduction Through Higher Level Language Hardware 

The problem: 
The increasing demands on computer capabilities and 

the general trend in reduction of their size and manu-
facturing cost require a frequent re-evaluation of the 
basic logic/memory function assignments. The develop-
ment of large-scale integration (LSI) produced marked 
reductions in hardware size and manufacturing cost and, 
hence, significant improvements in the logic function. 
However, only a fraction of this has been accomplished 
in the memory function. 

The solution: 
Memory savings can be realized with a token increase 

in logic hardware and by use of the higher level languages 
such as FORTRAN. 

How it's done: 
FORTRAN IV is used in this method as the higher 

level language, although other higher level languages may 
be used. In addition, compact coding is used within each 
specific instruction word. The allocation of functions to 
the preprocessor and the FORTRAN language processor 
(FLP), has been governed by the following considerations: 
1. Maximum memory saving should be achieved with 

minimum additional logic hardware cost. 
2. The execution speed should not be less than that 

obtained with a conventional compiler approach. 
3. The speed-improvement possibilities uncovered should 

be implemented only with minor hardware penalties. 
To eliminate a substantial increase in logic hardware, 

the preprocessor is assigned the functions of an assembler 
and a compiler, thus relieving the FLP from all functions 
not absolutely necessary for the primary goal of code 
compression. A simplified flow diagram of the FLP is 
shown in the figure. Instruction execution begins as 
soon as one memory word (containing two instruction 
words) has been obtained from memory and loaded in a 
32-bit instruction register with a capacity of two memory

words (four instruction words). A fetch overlap feature 
loads the next two instruction words into this register 
while the first two instruction words are decoded and 
executed. A memory address register specifies the next 
(double) instruction location in memory in the usual 
way, while a pointer locates the instruction to be exe-
cuted within the instruction register. The memory 
address register and the pointer act together as an 
instruction location counter. The multiple instruction 
register allows multiple word instructions to be executed 
without further access to memory. For example, with 
the four instruction word register, DO loops of four 
instructions or less can be executed directly without 
requiring access to instruction memory until the loop is 
completed. 

To illustrate the effectiveness of this method, memory 
requirements for a given mission were estimated to be 
260,000 38-bit words. Sixty-thousand words were allo-
cated for storing the executive program, data, and work 
area leaving 200,000 words available for instruction 
storage. The instruction storage compression ratio of 
4:1 expected with the FLP approach indicates a memory 
savings of 150,000 words or 5.7 million bits. 

Note: 
Requests for further information may be directed to: 

Technology Utilization Officer 
Marshall Space Flight Center 
Code A&TS-TU 
Huntsville, Alabama 35812 
Reference: B72.10350 

Source: H. Kerner and L. Gellman 

Marshall Space Flight Center


(MFS-21 128) 

(continued overleaf) 

This document was prepared under the sponsorship of the National	 Government assumes any liability resulting from the use of the 
Aeronautics and Space Administration. Neither the United States 	 information contained in this document, or warrants that such use 
Government nor any person acting on behalf of the United States	 will be free from privately owned rights.



Go To 

Increment And

Termination


Check 

Check 
Transfer 
Out Of 

DO Loops L__I 
DO LOOPS 

ADDRESS 
MODIFICATION

To

Arithmetic 

Logic Processor	 L 
CPU Data 	 Arithmetic 
Registers	 Control 

Input 
Output

Data 
Memory

Instruction 
M Memory S 

] Control And
 

Fetch 

10 DECODING 

Arithmetic .3 Instruction 2 
Conditio 
Decoding _ I 

6I01I 0171_ I IJ 
I 

I__1W I
CPU	 I Data I R egister	 I Fetch And 

Op erations Store 

L____ 
Special 

Dimensioning Dimensioning

-T-7F-E,f 

Preparation 
For Library 

Call And 
Return

Library

Call


And Return

DO Loop

Initialization 

FLP Flow Diagram 

B72-10350	 Category 09 


	Page 1
	Page 2

