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Memory Reduction Through Higher Level Language Hardware 

The problem: 
The increasing demands on computer capabilities and 

the general trend in reduction of their size and manu-
facturing cost require a frequent re-evaluation of the 
basic logic/memory function assignments. The develop-
ment of large-scale integration (LSI) produced marked 
reductions in hardware size and manufacturing cost and, 
hence, significant improvements in the logic function. 
However, only a fraction of this has been accomplished 
in the memory function. 

The solution: 
Memory savings can be realized with a token increase 

in logic hardware and by use of the higher level languages 
such as FORTRAN. 

How it's done: 
FORTRAN IV is used in this method as the higher 

level language, although other higher level languages may 
be used. In addition, compact coding is used within each 
specific instruction word. The allocation of functions to 
the preprocessor and the FORTRAN language processor 
(FLP), has been governed by the following considerations: 
1. Maximum memory saving should be achieved with 

minimum additional logic hardware cost. 
2. The execution speed should not be less than that 

obtained with a conventional compiler approach. 
3. The speed-improvement possibilities uncovered should 

be implemented only with minor hardware penalties. 
To eliminate a substantial increase in logic hardware, 

the preprocessor is assigned the functions of an assembler 
and a compiler, thus relieving the FLP from all functions 
not absolutely necessary for the primary goal of code 
compression. A simplified flow diagram of the FLP is 
shown in the figure. Instruction execution begins as 
soon as one memory word (containing two instruction 
words) has been obtained from memory and loaded in a 
32-bit instruction register with a capacity of two memory

words (four instruction words). A fetch overlap feature 
loads the next two instruction words into this register 
while the first two instruction words are decoded and 
executed. A memory address register specifies the next 
(double) instruction location in memory in the usual 
way, while a pointer locates the instruction to be exe-
cuted within the instruction register. The memory 
address register and the pointer act together as an 
instruction location counter. The multiple instruction 
register allows multiple word instructions to be executed 
without further access to memory. For example, with 
the four instruction word register, DO loops of four 
instructions or less can be executed directly without 
requiring access to instruction memory until the loop is 
completed. 

To illustrate the effectiveness of this method, memory 
requirements for a given mission were estimated to be 
260,000 38-bit words. Sixty-thousand words were allo-
cated for storing the executive program, data, and work 
area leaving 200,000 words available for instruction 
storage. The instruction storage compression ratio of 
4:1 expected with the FLP approach indicates a memory 
savings of 150,000 words or 5.7 million bits. 
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