Temperature and Humidity Control of Simulated Human Breath

The problem:
Simulation of the exhaled human breath is provided by the recently developed breathing metabolic simulator (see Notes). The exhaled breath which the simulator provides must be identical in temperature and humidity to that of a human who is subjected to conditions ranging from rest to hard work.

The solution:
A subsystem was developed for the breathing metabolic simulator which adjusts the temperature and humidity of air to levels of human exhaled breath.

How it's done:
The temperature-humidity subsystem is shown in the figure. It consists of an aluminum enclosure with a 400-watt heat sheet glued to the bottom. Vertical separators (perforated metal) are fastened to the sides at the heater ends and separate the chamber into three areas. The main area is filled with a 10-by-20 cm (4-by-8 inch) gauze surgical sponge which sits in water covering the heater and acts as the moisture transfer media by wicking action.

The inlet end of the chamber contains an inlet connection and check valve and is topped by a sealed reservoir of approximately half liter (one pint) capacity. Water level is maintained in the chamber at the bottom
level of a tube. This tube connects the chamber to the top
of the reservoir. The reservoir also has a shorter outlet
with a check valve. (Relative air pressure is maintained in
the reservoir to control water release).

The outlet end of the chamber contains both wet and
dry bulb thermistors, used for monitoring exhaled humid-
ity, and an outlet connection with check valve.

In operation the heater, when energized remotely, is
controlled by a thermistor located in the outlet connec-
tion to maintain outlet temperature at 37±1°C
(98.6±2°F). Relative humidity is maintained by the
chamber configuration requiring airflow through the
surgical sponge. The chamber has been sized such that,
even under the largest simulated breath volume, the
complete breath volume will be retained in the chamber
for one complete breath cycle.

Notes:
1. Additional information is contained in the following
Tech Briefs: B72-10657 (HQN-10766), B72-10658
(HQN-10776), B72-10659 (HQN-10777), and
B72-10661 (HQN-10779).
2. Requests for further information may be directed to:
 Technology Utilization Officer
 NASA Headquarters
 Code KT
 Washington, D. C. 20546
 Reference: B72-10660

Patent status:
 NASA has decided not to apply for a patent.

Source: R. G. Bartlett and
C. M. Hendricks of
IBM Corp.
under contract to
NASA Headquarters
(HQN-10778)