An Improved Data Transfer and Storage Technique for Hybrid Computation

An improved technique has been developed for transferring and storing data at faster than real time speeds on a hybrid computer. This technique was developed for use with advanced control systems which require reduced sensitivity to adverse operating conditions. The technique uses one analog circuit for multi-operating conditions (see figure). The predominant advantage of this technique is the combined use of the electronic relays, track and store units (T/S), and analog-to-digital (ADC) and digital-to-analog conversion (DAC) units of a hybrid computer to increase data transfer and storage capabilities.

The state variables, \(x_i, y_i \) (see figure) are integrated in real time until \(t_1 \). The values of \(x_i \) and \(y_i \) are sampled using control line 2 (CL 2) and stored in the digital memory. These stored values of \(x_i \) and \(y_i \) become the initial conditions for high speed repetitive runs from \(t_1 \) to \(t_2 \). When control 1 (CL 1) is set equal to a logic one, the value of \(x_i \) at \(t_1 \) is sent from digital memory through the DAC to the track and store amplifier. With CL 1 equal to zero, the negative value of \(y_i \) is sent from digital memory to the DAC. The track and store amplifier and the DAC hold the values of \(x_i \) and \(y_i \) at \(t_1 \), thus, becoming the initial conditions for the high speed repetitive runs from \(t_1 \) to \(t_2 \). The locations in memory where these state variables are stored are then assigned by block to the two simulated conditions.

Fewer analog components are required to obtain values of the state variables to be used as initial conditions. The use of digital memory for storage allows the program to remember sets of initial conditions for each simulated condition under study without any additional analog hardware. The primary feature of this technique is the use of digital memory to store sets of initial conditions and the resulting reduced requirements in analog hardware.

Note:
Requests for further information should be directed to:
Technology Utilization Officer
Marshall Space Flight Center
Code A&PS-TU
Marshall Space Flight Center, Alabama 35812
Reference: B72-10680

Patent status:
NASA has decided not to apply for a patent.

Source: A. M. Hansing of Lockheed Missile and Space Company under contract to Marshall Space Flight Center (MFS-22043)

Category 02, 09