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FOREWORD_

The work reported here was conducted under the direction
of S, J. Ailor and D, M, Foster, Scout Project Office,
Langley Research Center, At the Avco Corporation, the
laboratory work on the transducers was done under the
direction of R. Litte and H, R, Cowan, the experiments
on the telemetry under S, A, Dabrowski, the analog simu-
lations by J. O, Brooks and the theoretical modeling and
inversion by M. R. Weinberger.

Appendices B and C were written by H. R, Cowan and
S. A. Dabrowski, respectively,
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FLIGHT INSTRUMENT AND TELEMETRY
RESPONSE AND ITS INVERSION

by M. R. Weinberger

Avco Corporation - Systems Division
Wilmington, Massachusetts

SUMMARY

This report presents mathematical models of rate gyros, servo-accelerometers,
pressure-transducers and an FM/FM telemetry system used with Scout
vehicles. These models permit prediction of instrument response to transient
signals, more particularly to signals which are of a duration short compared
with normal instrument response time and which reach magnitudes large com-
pared with the nominal range (i.e., imperfect impulses), The models are
derived theoretically for all components; and, whenever possible, their relevant
parameter values are calculated from data obtained by simple measurements.
The instruments were tested in the laboratory and afterwards analog computer
simulations were run to find the parameter values giving the best fit to the
laboratory results. The theoretical values and those obtained on the simulation
were then compared. Generally, a good agreement was found to exist,

A method is derived to reconstruct input signals to the transducers, given the
recorded output signals, and taking into account the effect of noise. A digital
computer program, based on this method, was prepared and is described here.
This inversion scheme is very useful in post-flight analyses to obtain a better
idea of the true shape of the input signals to the transducer, since for fast
signals the transducers introduce a considerable dynamic lag and distortion.
The inversion method developed here is optimum in the minimax sense of
minimizing the maximum instantaneous reconstruction error.






1. INTRODUCTION

In the Scout vehicles, and more generally in aircraft and space vehicles,

certain events can cause the sensors and transducers in the flight instrument
package to receive signals which attain unusually large instantaneous magnitudes
and which vary noticeably in a time interval that is short compared with the
normal instrument response time. Catastrophic failures in some components,
such as the combustion chamber, are likely candidates to generate these signals.

With such signals it becomes important to know the transient response
characteristics of the transducers and the telemetry system, in order to
evaluate dynamic effects (such as lag, delay, distortion) introduced by them.
Therefore, the first part of this report is concerned with the mathematical
description of the transient response characteristics of three categories of
instruments (rate gyros, servo accelerometers, and pressure transducers) and
of an FM/FM telemetry system. In each case, first a theoretical model is con-
structed, based on whatever is known about the inner structure of the devices.
The numerical values of the relevant parameters are then calculated, as far as
possible, from sirmmple measurements of dimensions, weights, and data supplied
by the manufacturer. Useful information was obtained by opening the instruments
(after other laboratory tests were finished) and by inspecting parts and running
tests of transient response to disturbances applied at interior points.

Then, the instruments and telemetry components were subjected to tests in the
laboratory. A large variety of input signals were used, depending on the equip-
ment employed for particular tests. More particularly, the signals mentioned
before were defined (in the contract) as signals with amplitudes up to ten times
the nominal full scale range and occurring in time intervals down to two orders
of magnitude less than the normal instrument response time. Such signals
approach impulses and with the definition just given the equivalent impulse
strength (which is the area under the input signal or duration times average
magnitude) is sufficiently limited to keep the instrument response in its linear
range. Therefore, linear models could be used for most components, Even for
a non-linear instrument as the rate gyro, linearized models were generally
sufficient. In some cases, such as the phase sensitive demodulators and some
accelerometers and pressure transducers, a linear model is applicable,
provided some parameter (a damping coefficient) is made dependent upon the type
of input signal (polarity or speed, respectively).

Finally, analog computer simulations were made, using the theoretical model

to find the parameter values giving the best agreement with the laboratory test
results, These values could then be compared with the ones derived from theory
earlier. In general the two sets of parameter values were quite compatible,



Once models are constructed, it is relatively easy, using analog or digital
computers, to determine the response of the elements studied, given any
admissible input signal. However, in many practical applications, such as

post mortem analyses of in-flight anomalies, it is rather the reverse problem
that matters: one has recorded output signals coming from transducers and
telemetry channels and one wants to know what were the true input signals as
seen by the transducers. For this reason, the second part of this report develops
the theory of this inversion problem for the three kinds of transducers., A

digital computer program, based on this theory, prints and plots automatically
the reconstructed transducer input, given the output signal. This reconstruction
is, in fact, an optimal one in the minimax sense that the method used produces
the smallest achievable worst error at any time (this is similar to Chebychev
approximation, Reference 1). Since the flight instruments act as signal
smoothers, the inversion is fundamentally a differentiation problem in the presence
of noise, and the inversion program is some sort of optimum filter.

Most of the references listed in the bibliography deal with problems akin to the
ones treated in the present report., For example, the modeling of gyros can
be found in many other articles or books than the one quoted in the report
(Reference 2). On the other hand, the resonance calculation of the Bourdon
tubes, certain parts of the discussion of the band pass filter response, the
discussion of interference ripple are, as far as is known, not found elsewhere,
A particularity of this study is the systematic comparison of values obtained
from the theory and those obtained through simulation,

While the use of 2 minimax criterion in filtering can be considered classical,
the inversion formulation in this report is new. It can, moreover, be generalized
to allow inversion of a wide class of linear systems.

For readers who are not interested in the mathematical details of the modeling,
Section 7 (Conclusions) gives an expanded verbal description of the most
important results.

Note: Time scales on the figures are given in ms/Division. This applies to
"major'" divisions, corresponding with a distance of 1 cm on the oscilloscope
screen,



2. RATE GYROS

The rate gyros in the Langley Scout package belong to one of two types:

for pitch and yaw rates: Honeywell GN 90B1
for roll rates: Honeywell GN 91B1

Both types are close to the Honeywell GG440 GNAT miniature design. Some of
their characteristics are specified in the procurement specifications, an extract
of which is listed below:

Pitch and Yaw Roll
Full Scale Rate (deg/sec) 40 100
Natural Frequency (Hz) 19-26 36-42
Damping Ratio 0.49-1.4 0.49-1.4
Scale Factor V rms/(deg/sec) 0.235 0. 095
(with correct load) (+ 5%) (+ 7%)
2.1 Theoretical Model
2,1.1 Mechanical Part of the Gyros
The model is based on Newton's angular momentum equation %fl =T (2-1)

where H is angular momentum, T is torque, and which is valid around either
an inertially fixed point or the center of mass (C. M) of the system under con-
sideration. For a moving frame F with instantaneous inertial rotation vector
u_of, (2-1) is equivalent with:

(2E +@xH =T (2-2)

in frame F

The following development parallels closely the one given by J. M, Slater and
J. S. Ausman in Reference 2.

The figure below shows the basic configuration.




X. Case Frame

ence /——%)- .
Be?el‘ Y = X n Mounting Frame

z,., 9(

/" X Input Axis

Basic Configuration of the Rate-Gyros

Output Axis

Frames:

Rotations:

(x, vy, z) is the gimbal frame with x = input axis,
y = output axis, z = spin reference axis.

(%c> Ve, 2c) is the case frame
(xm: Ym» 2Zm) is the mounting frame
{x0: Vo» 2Zo) is the inertial frame

@ is the rotation angle of the gimbal with respect to the case,
along the output axis.

Op is the rotation angle of the gimbal with respect to the case
along the input axis.

6 and Op are small angles and hence are commutative,

6. is the rotation of the case with respect to the mounting,
along the input axis.

#,, 0, O, are the Euler angles, in that order, describing
the rotation of the mounting with respect to the inertial
frame. (See Figure below).



Cb e 47 4 2 -
Sequence P, > g—y —5n %J)x

Euler Angles

The general transformation matrix from (Txo’ Tyo’ 1—;0) to(lxm, Ty.rn’ sz) is

standard (see Reference 2 again) and is listed below.

.‘ lxrn/" lrcos ) y cos ¢ 2 cosDY51nDZ -sin!by
)l_yln\ :;sinbxsin(bycos(bz—cosjbxsinsz sinﬁxsinibysinlbz+cosDxcoslbz sin@xcosﬁy
: i

'\sz) cos0xsinﬁycos¢z+sinﬂxsinﬁz cosﬂxsinﬂysinﬂz—sinﬂxcosDZ cosﬂxcosﬂy

The corresponding transformation matrix for small rotation angles is:

1 Ixm 1 ﬁz -Q)y -\ K Ixo )
{omldn 1 ) D {
lom . ¢y "bx 1 _‘ Klzo

The other transformation matrices are analogous:

0 '9-’ _-c2

—
p—t

L] L
S R
z} -p ._i zC
— 9 _ 8
lxc' 1 0 Y Iélxrn
1 7 = 0 1 2] i I
—ycC: c —ym
1, 0 -9, 1 (lsz

The angles @, Op and 8., are struaturally constrained to small values. The
angles f_, #, and p, are small in the tests described here. Typically, test
inputs are pulses of amplitude not exceeding ten times the nominal value, and
duration at least one hundredth of the basic time constant of the system.
Therefore, for the roll gyro one can expect an angular rotation of not much
more than



Aﬁx = (1, 000 ®/sec) -+ (0.75 x 10~3 sec) = 0. 75°
which is indeed small enough.

The different instantaneous rotation vectors are calculated next, up to and
including second order quantities,

The rotation vector of the mounting with respect to inertial space is ©/

m
w - By = By 0,) Ty,
By + Dy 8,) Tym
(0, -0, 00 T,

The rotation vector of the case with respect to inertial space is u/c_

b}

c "—um + 6. L . (which becomes, with the aid of the matrices above)

('Gc + bx - ﬂy bz) Txc
+{ oy + ‘bz wx + Qc):! —iyc
[0, - by (B, + 0o) T

The rotation vector of the gimbal with respect to inertial space is w (the

sequence Op—,‘v 0 is chosen here, but this choice does not influence the final
formulas).

T2 40 1 +01

: 1 - . . R
g c p 1x - + 0 Op 2 (use again the transformation matrices)
=L0 460, -0, (ﬁy+9)] I,
+T o+ +'¢)z(0x+ec+9p)} 1

y y

+E'¢>z-ﬁy(9p+ec+bx)+e(bc+bp+bx)] 1,

Output axis {or gimbal) equation.



For a gimbal with well-oriented principal axes, carrying a rotor with relative
angular momentum H,., the total angular momentum with respect to the C. M,
of this subsystem is given by:

H = W 1+ w1+ + 1
Hg = lgx Wgx 1x T lgy gy Iyt Igy 0, + Hr) 1,

where I, is the sum of gimbal z-axis inertia plus wheel-inertia around the

spin axis; Igz and Igy are gimbal-plus-wheel inertias along input and output
axes,

All inertias are calculated along axes centered on the center-of-mass of gimbal
and wheel. If one writes the output axis component of (2-2) and retains only
those second order quantities which are multiplied by the large rotor momentum

H., the following output-equation is obtained.

I .0 +B_0+K _ 0 =H (b_+86
r V'x

+0
gy gy gy c)

p

- H ¢jz (by +8) + Tgy, residual
4

A ‘%‘ A,) (2-3)

The meaning of the symbols is:

g: reference acceleration, e.g., g = earth gravity = 32,17 f’c/sec2
Bgy‘ output-damping coefficient
Kgy: output spring constant
Tgy, residual® other (parasitic) torques along output axis, exerted on

gimbal (such as gravitational and magnetic torques)
combined mass of gimbal plus wheel

Mgw
S & C-M offsets away from intersection of xyz-axes.
52 :  maximum C, M. offset { IJXJ, iS¢ )
Ay, AZ: components of inertial linear acceleration of the gimbal and wheel

system, expressed in units of "'g"
Input Axis Equation

C. M., offsets are neglected here., First, there is the x-axis equation for motion
between gimbal and case:

ngGp+ngbp+KgX0p=—Hr(9+¢)y)

_ng(ec+ﬂ)-Hrﬂz(ﬁx+9c+9p)

X

2-
* Tgx, residual (2-4)



where all the notations are analogous to these used in the output-axis equation.
Secondly, there is the x-axis equation for motion between case and mounting,

lex Oct By 8c + Ky 8. = - Iy ’Dx
+ ng bp + Kgx Op - (part of Tgx, residual du:lgi)mbal-case interaction
only

+ Trnounting on case, x, residual (2-5)

with notations analogous to these used above.
Special cases for Input-Axis Equations:

A) If the case is rigidly attached to the mounting, KC - o0
8. > 0 and only (2-4) is left with 6. = 0, while (2-5) is to be omitted.

B) If the gimbal-case connection is rigid along the input axis, - o0
Qp —>~ 0 and only one equation is left, by addition of (2-4) andg(Z 5).

)0 . +B 6. +tK_ 96 :—(ICX+I )ﬂx

(Tex + cx “C cx C EX

Loy
-H_ (6 + y)y) - H, ﬁz (P, +6,)

+ T + (part of TYX not due to case)

mounting on case, x, residual

C) Finally, if input-axis motions are negligible, (2-4) and (2-5) are both

omitted and 6. = Op = 0 is used in (2-3).

Canonical Form of Equations:

The output axis equation (2-3) can be rewritten as:

H_ . . . o
+9-(K >(0X+ep+ec)- X
gy gy w gy

|®.

g + zfgy

g

‘(KI_;I;’ > ;Dz wy +0)+ TgYi{gr:sidual _( g:[rgw‘r)(Hr >(‘SZ Ay - JTX Az)

10



\ 2

with ¢ gy = Kgy/Igy
B
} - gy
gy 1/2
2 (1
( gy KgY)

The input axis equation (2-4) can similarly be rewritten as:

CY ) .. e ..
_P_+2? p +g=_(Hr ‘)(g+'))_9c+ﬂx
.2 BX .5 P K v w—-—-—z
gx gx gx gx
. T )
- p (. +0_+6 )+ _ 8% residual
z X C p 2_
Kox Kox (2-7)
with
2 -
) gx Kgx / ng
B
¢ = gx
gx 1/2
2 (ng Kgx)
Stops: There is a mechanical bound on 6:
el < o 2-8)

Note on the Relationship between Input-Axis Stiffness K and Output Axis
Stiffness Kgx Y

K, results from the torsional stiffness of a bearing member, while K, depends
omn the bending stiffness of the same member. The gimbal is pivoted at one end,
which gives a lever-arm amplification for Kgx (See Figure below).

Elastic Part of Bearing
Pivot Gimbal-Axis

11



The elastic member is, at least in the main part, a circular cylindrical rod.
Thus, one gets, using classical results of strength of materials (see e. g.,
Reference 3)

Kgx 5 L1
K L
gy 2

I
. L > 21.3
IP

Qlt‘j

since for most metals the ratio E/G of Young's modulus to torsion modulus equals
2.6, (L}/Ly)> 8.2, (I,/1,) = 1/2 (bending area moment of inertia divided by
polar area moment of inertia for a circular cylinder).

The true value of the ratio K__/K_.  turned out to be much larger than the lower
. gx' gy
bound derived here,

Some Numerical Results

From manufacturer's data one can estimate

M w J -4
%5_ |¢5.3 x 107% (rad/sec) per g

r
- 20 _
further Omax = 3 =0.052
Steady state gain H
T =0.0647 sec (pitch gyro)
K
gy
Hy
— = 0,0248 sec (roll gyro)
Key
Nothing is known about Tgy' residual and Tgx’ residual.

One may assume the case-mounting connection to be rigid, i.e., KC = o0

and 6. = 0.

12
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2.1.2 Electro-Mechanical Output Device

A Microsyn (variable reluctance) pickoff is used to generate the electrical
output signal. This device can be viewed approximately as a transformer with
output-axis-dependent (i. e., 9-dependent) transformation ratio m4.

Therefore, one obtains the circuit diagram of the figure below.

Ideal Transformer

R, L, t:n® L, R,

Magnetization

Model for the Microsyn

This model is now somewhat simplified by shifting the magnetization reactance,
and the diagram of the figure below is obtained b y adding the load impedance

ZL = RL
1+ RLCLS
R, Lo
(.L .
+

Simplified Model of the Gyro Output Circuit

| :



The elements of Z,; on that figure are given by:

]

s
[\¥]

+

)
2

s}

R
(o)

L

i
.
™
+
g
S
Ht‘

[o]

Strictly speaking, these parameters depend on 0 through the ratio npg. If this
dependence is neglected, or an average value for R,, L and L' is adopted,
the electrical output equations are:

/2

ul(t) =Vg 2 cos (Ws t+ C@S) (2-9)
Vig (8= Cy 008 uy (1) (2-10)
V. = g’

L dt (2-11)
V. =V. +R i, +L_ B

in~ 'L

n oL o g (2-12)

-

IS T VR c,. dvy, (2-13)
L L', R dt

Numerical Results for the Electro-Mechanical Output Device

Steady state (i, e., constant input rate) experiments on the pitch and yaw rate
gyros show that for

ed g = 27T 400 = 2,513 rad/sec

vg = 6.68 V rms

RL=8.06x1080hm; Gp = 7 - 1.241 x 10"% mho
CL =0.28x 10—6 F; BL = OOS Cy,=7.04x 10-4 mho

vy, and V.n 2T€ in phase and that the scale factor is:

oV
L _ V rms _ V rms
=0,25 ——— =143 ———
) > deg/sec 4 rad/sec

zero phaseshift

14



Moreover, for a purely resistive load (CL = 0), v, leads v, by 50° and the
scale factor is:

(CDVL) - 0.18 V rms _ 3 V rms
dp : deg/sec =~ rad/sec

Resistive Load

Setting Xo=W L X' =

o]

. - . = 1
s L'gi B =¢9 CpLiGp = ——

L
Zy=Rgo+jiX_ (j=V-1)

lZ_L =YL=GL+_]'(BL-}1<—'—;)
one has

v, _  ?2g _ 1

Vin Zy, *+ Z, 1+ Z, Yy,
with

_ 1 . 1
ZOYL—ROGL+XO(§'—O-—BL)+JEGLXO—RO(X—I - By))
o]

The output-impedance is given by

. 2 . 2

2 _ (R +J Xo) j X' _ Rg X'y +iX'g[ R, + X, (X, + Xt )]

out . 2 2
RO+J(XO+X'O) R, +(X'O+XO)

According to the manufacturer, ZOut‘ = (600 + j 1, 000) ohm. Use of this value
of Zoyt, together with the fact that there is zero phase shift for Cy, and R; as
given above leads to

R, = 2,260 ohm
X0 = 72. 8 ohm; Lo = 0,029 henry
X1o = 1,413 ohm; - = 7.08 x 107" mho; L', = 0. 562 henry

15



As a verification
o)
- (Zo YL) =0"; (Zo YL) = 0.281

z =616 +j 1,008
out
For the purely resistive load, Vi, leads V;j, by 500, agreeing with the tests,
The proportionality factor Cypf is now given by
v,
in
Vi < v
_ in _ L
CM = uy - 0
< "\7— > <y ?
L

where the symbol < - 3> is used for steady state amplitude ratios in the zero
phase shift case,

Then
volts rms
c ) <V | B> rad/sec
M v H
L v r
<v._ 7 s ( %)
n gy
This gives
(Cpp) = 45.9 rad”! = 0, 80 deg™*
pitch
yvaw

(see also experimental results later)

Assuming that the same microsyn is used for the roll gyro, one has

(Cnm) = (Cm)
roll pitch, yaw

As a verification, one obtains the following scale factors for the specified
load of Ry, = 104 ohm; Cy, = 0.3 x 107° farad, nominal conditions.

Scale Factor Pitch-Yaw = 0,244 —V—-IE—-
deg/sec
Scale Factor Roll = 0,093 Y Ims
deg/sec

16
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volts volts

— d 0.095 ———— (+ 5

deg/sec an 9 deg/sec & %)
respectively, showing that the obtained values are within the prescribed
tolerances.

The specifications give 0, 235

The phase shift is found to be 5. 2°, less than 10° which is acceptable.

Summarizing, the nominal values for the circuit are:

v, = 6.3 V (rms)

u)s = 2 1T 400 = 2,513 rad/sec
@y = arbitrary phase

R, = 2,260 ohm

., =0.029 henry

L'y = 0.562 henry

Ry, = 10% ohm

CL, = 0.3 x 1076 farad

CMm = 45.9 (rad)~! = 0.80 (deg)~!

17



2.1.3 The Gyro Mounting Bracket

The three rate gyros are assembled on 2 mounting block as shown in the figure
below. The frame (x,,, ¥, and z_ ) of section 2.1.1 is attached to this
mounting block., The block is then firmly fastened to a mounting bracket of

stainless steel which in its turn is fastened to the rocket frame.

nt to Rocket ¥

. P
T k
Pitch Gyro Bracket
. —~——‘ @ | —F3>1a
('-' Roll | Gyro GO-A
O A R S Mounting Block
LYaw Gyro
L .
At e
tachmeny o Ny A © O0.A
Rocker Fram

I.A
IA Input Axis

OA Output Axis Gyro Mounting Block and Bracket

Mounting block and rocket frame are to be considered as rigid when compared
with the bracket. Therefore, an elastic analysis of the bracket, loaded by
mounting block and gyros is in order, to determine the resonances, The rather
complicated structure of the bracket is replaced by a simple beam model as
indicated on the figure below. The attachments to the rocket frame may be
considered to be nearly ideal clamps. The central load of block and gyros is
symmetrically located; the bracket itself is replaced by an ''equivalent' uniform
beam.

Mounting Block & Gyros

Y YAW Bracket
ot Lo l z
Rocket —— oogovros wlmemnonisromn it annmi oot} Rocket Frame
Frame 7/ X5 : ! 7

J/ x‘b: E XIL):L'? ):< L

b3

Beam Model for Calculation of Bracket
Resonances
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The methods explained in Reference 4 produce the partial differential
equation for free bending vibrations:

d 4yb O%yb 2
EI + y - 0 b=0
b
with
B = Young's modulus
I, = area moment of inertia (for bending)

H—L = mass per unit length in x}, direction
wW,}, = inertial angular velocity along zy, axis
Yp = bending deflection

The different modes are obtained by separating the variables x} and t. The
time dependent part of y, becomes T (t) with differential equation:

.- 2 2
T (t) + (wy-wi () T(t)=0
while the numbers wj are the characteristic values for the space-dependent

part @ ; (xb) with equation:

4

a*p; 2 _
E I @41 -wh e @ =0
de

The boundary conditions for symmetric nmo des are:
®,;(0)=0
e';(0)=0
e (§)=0
M, wiz

Cenli(s)""zTi;?i(E) =0

The last two conditions are to be replaced by other ones for antisymmetric
modes, viz:

2 (1+ ey () BB -0

and a moment - equation

19



M. is the mass of block and gyros, augmented by the mass of the central part
of the bracket,

The lowest mode, i = 1, is symmetric and corresponds with linear motions
along the roll gyro input axis and along the pitch and yaw gyros output axes,

Integration of the spatial equation and its boundary conditions leads to the
following relation for the lowest wj:

0(12 EI 1/2
W1:<§><f"‘; >

where the dimensionless number & 1 is the smallest positive root of

M
{(sin=® cos ho + cos ot sinh «) + € __d(cosAcosh x-1)=0
L

The resonant frequency is w] as shown by the time dependent equation for T(t)
provided

| Wz, ()1 << Wy

The satisfaction of this condition will be verified later. Generally, wy is high
and, therefore, higher modes (which would affect angular rates) may be
neglected in this study, since they are suppressed by the slower gyro-response,

As a result, in conjunction with the various gimbal equations (2-6), one must
use for yaw and pitch gyros

for roll gyro

a
A_ = X , A, =a (2-14)
X
142¢ G
br Wbr whr

with wipp = Wy ; §br is a dimensionless damping coefficient, the Laplace
operator s is d/dt, and a is the inertial linear acceleration of the supporting
rocket frame,

20



Numerical Results for the Gyro Mounting Bracket

For the stainless steel bracket, the following values are used in the equivalent
beam model.

ge =0.282 1b/in3

E =2.9x10'1b/in?
Ib = 0.020 in?
gM_=1.701b
gu1=0.102 1b/in

L = 8.5 in

¥ =2.875in

Then

Me = 2.9

2pLy

(E I/py) M2 7w 10t in?/sec
smallest root o 1 = 1,35
and w ) = 10, 400 rad/sec

Since one can expect | ) zb(t) | € 7.0 rad/sec (i.e., ten times the pitch gyro
nominal input rate), the condition | O zb | << r,\)l is easily satisfied and one has
indeed

W = W) = 10,400 rad/sec
Since <) 1 is already large, higher modes can be neglected in this study.

The value for <o br 2grees with a very rough range prediction that can be
obtained from the theory of plates.

The damping ? br is unknown, but may be assurmed to be smaller than 1 (no
large structural damping).
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2.2 Laboratory Tests and Analog Verifications

Several types of tests were performed on the gyroscopes. See Appendix B
for a general description,

2.2.1 Opened Instruments

A pitch gyro and a roll gyro were opened, the damping fluid was removed and
the gimbals were rotated mechanically and then released. The output waveforms
are shown on Figures 2-1, 2-2, clearly indicating the very slightly damped
motion of the gimbal.

The experimental results are:

Roll gyro 0 = 280 rad/sec, = 44.5 Hz

gy

Pitch gyro w gy = 158 rad/sec, f

foy
25.2 Hz

gy

2,2.2 Transient Tests on Special Yoke, and Analog Simulation

Figure 2-3 shows one test on the roll gyro. Knowing the total angle of rotation
(10) and the shape of the (upper) accelerometer trace, one can deduce the input
waveform to the gyro. Figure 2-4 shows this input and the analog computer
simulation response, as well as intermediate signals, The agreement between
test (Figure 2-3) and simulation (Figure 2-4) is good (see e.g., the heavy marks
on the simulation showing experimental values).

The parameter values used were, for the best fit,

) gy = 264 rad/sec, fgy = 42.0 Hz (roll gyro)
Qgy =0.84

Wgx 40 Wy

k¢ gx =07

Microsyn parameter values were listed above.

Figure 2-5 and Figure 2-6 show, respectively, the test results and the simulation
for another, more complex, input consisting of four succeeding pulses of
alternating sign. The same parameter values were used and the agreement is
acceptable between test and simulation.

22
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FIGURE 2-1 OPENED ROLL GYRO

TIME SCALE 10 ms/DIVISION

FIGURE 2-2 OPENED PITCH GYRO

TIME SCALE 10 ms/DIVISION
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FIGURE 2-3

FIGURE 2-5

TRIANGULAR INPUT TO ROLL GYRO

TIME SCALE 5 ms/DIVISION

UPPER TRACE: ACCELEROMETER

LLOWER TRACE: ROLL GYRO OUTPUT,
7.5 VOLTS/VERTICAL DIVISION

MAXIMUM ANGULAR ROTATION IS 1°©

C o .‘;‘;'n'nw"'x,_

MULTI-PULSE INPUT TO ROLL GYRO

MAXIMUM ANGULAR ROTATION IS 2, 5°

UPPER TRACE: ACCELEROMETER 10 ms/
DIVISION

LOWER TRACE: ROLL GYRO OUTPUT 50 ms/
DIVISION AND 15 VOLTS/VERTICAL DIVISION
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T T = - -
10 rad/sec -

DT

Figure 2-4, Analog Simulation of Figure 2-3
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Figure 2-6, Analog Simulation of Figure 2-5
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This value for <2 g is consistent with the one found for undamped motion
(section 2.2.1), w1t¥1in the accuracy obtainable which is of the order of 5 percent
(see also section 7, Conclusions),

2.2.3 Gyro Tests on Flight Table and Analog Simulation

The inner gimbal of a flight table was used to generate particular inputs to the
gyros, These inputs consisted of pulses alone or superimposed on sinusoidal
inputs. Some pictures of the tests are shown in Figures 2-7 and 2-8 for the

roll gyros and 2-9 and 2-10 for the pitch gyros. Upper traces are gyro responses
to the inputs shown in the lower traces. The corresponding analog computer
simulations are shown in Figures 2-11 and 2-12 (roll gyros) and 2-13 and 2-14
(pitch gyros), respectively. Note that the output modulation was omitted, for
clarity; therefore, the simulations give the envelopes of the gyro output waveforms
(or in other words, the demodulated output of the gyros), The parameter values
for the roll gyro are the same as the ones used in the previous simulations
(section 2.2, 2); those for the pitch gyro are

a)gY

i

164 rad/sec (fgy = 26 Hz)

}gy:o.75

The agreement between tests and simulation is well within the tolerances and
uncertainties.

2.2.4 Summary of Numerical Results for Gyros

Pitch Gyros (40°/sec) Roll Gyros (100°/sec)
Output axis ) gy = 164 rad/sec (26 Hz) l'ogy = 264 rad/sec (42 Hz)
=0.75 = 0. 84
\(gY rgY
Mechanical gain H,. H,
R = 0.0647 sec R = 0.0248 sec
gy gy
Stop 8 max = 3° = 0.052 rad
Full Scale Output 9.75 V rms 9.3 V rms
Input axis Wox = 40 wgy
Q‘ =0.7
gx
(note: Wox is sufficiently large to be negligible)
Output Circuit See end of Section 2.1.2
Parasitic Effects lg Mgy B} /H |1 £ 5.3 x 1074 (rad/sec) per g
K.=90 or6.=0
Bracket Wpy = 10, 400 rad/sec (f,,. = 1,660 Hz)
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FIGURE 2-7 ROLL GYRO CARCO TABLE TEST:
PULSE INPUT
TIME SCALE: 20 ms/DIVISION
LOWER TRACE: INPUT (RATE)
UPPER TRACE: GYRO RESPONSE
10 VOLT/DIVISION

o T
i@%wanmml

s
N\ | e, ] 'Y

FIGURE 2-8 ROLL GYRO CARCO TABLE TEST:
PULSE PLUS 10 Hz SINUSOIDAL INPUT
TIME SCALE: 20 ms/DIVISION
LOWER TRACE: INPUT (RATE)
UPPER TRACE: GYRO RESPONSE
10 VOLT/DIVISION
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Figure 2-9 PITCH GYRO CARCO TABLE TEST:
PULSE INPUT
TIME SCALE: 20 ms/DIVISION
LOWER TRACE: INPUT (RATE)
UPPER TRACE: GYRO RESPONSE
10 VOLT/DIVISION

FIGURE 2-10 PITCH GYRO CARCO TABLE TEST:
PULSE PLUS 10 Hz SINUSOIDAL INPUT
TIME SCALE: 50 ms/DIVISION
LOWER TRACE: INPUT (RATE)
UPPER TRACE: GYRO RESPONSE
10 VOLT/DIVISION
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Figure 2-11, Pulse-Response of Roll Rate Gyro
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Figure 2-12, Response of Roll Rate Gyro

To Sin¢ Wave Plus|Pulse
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Figure 2-13, Pulse-Response of Pitch Rate Gyro
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Figure 2-14, Response of Pitch Rate Gyro
to Sine-Plus-Pulse
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3., ACCELEROMETERS

Two types of single axis accelerometers used on the Scout vehicles are to be
modeled here.

Gulton Industries - L.A 530250 (+3g)
Gulton Industries - LLA 460250 (-1g to +15g)

Both types are servo-accelerometers,
The procurement specifications require:

an output voltage from 0 to +5 VDC into 500 KQ

a natural frequency of 135 Hz (nominal}

a nominal damping coefficient of 0. 6 to 0, 8 at 75°F
crosstalk: 0,010 g/g

overload stops: 125% of full range

The manufacturer expects a natural frequency of 90 Hz (-3g, +3g) and 110 Hz
(-1g, +15g), with a damping around { = 0.7.

3.1 Theoretical Model

3.1,1 Electro~-Mechanical Part of Accelerometers

These servo-accelerometers consist of a pendulously supported proofmass,
whose motion is detected by an eddy-current pickoff, The pickoff signal, after
demodulation, amplification and compensation, actuates a torque generator.
Generally, the purpose of the feedback compensation is to obtain a well behaved
second order response. However, experiments conducted during a Scout vehicle
failure investigation indicate that above the break-frequency of the basic second
order system, the system frequency response deviates markedly from ideal
order behavior: the attenuation is higher (indicating an apparent increase in
damping) while the phase shift corresponds to an apparent decrease in damping.
While detailed information on the internal structure (especially damping) and
the compensation circuits could not be obtained, an incomplete block diagram,
shown below, can still be constructed.

_Detector Amplifier A

. oz - 9

2 Ka S ) o

{
L A}igle V,. .

1
__l = .g———l r{ - Torquer

Compensation and Damping Omitted
Block Diagram for Servo-Accelerometers

4

Ang
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The notations are:

Ajint

out’

out*

Input acceleration (g's), (inertial acceleration of case along
sensitive axis minus gravitational acceleration on proofmass along
same axis)

: Output reading converted in g's

Direct output reading in volts
Moment of inertia of proofrmass with respect to suspension (g cm?‘)
Radius of gyration of proofmass referred to support (cm)
Gain of detector or signal generator (V/rad)
Amplifier gain (A/V)
Torquer-constant (dyne cm/A)
Scaling factor to g's (S _ /A)
secl

Scaling factor to volts { V/A)

Laplace transform operator

The linearized transfer function is then

Aut Sal 1
Ain LET 142 L
KPKAKT
s e . L Kt
indicating that Sy = -

and that the natural (undamped) frequency is given by

2 _
w', = K, Kp Kp/I (3-1)
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For a more complete model, damping and cross-coupling must be considered.
Due to misalignments and structural constraints, cross-coupling can be
expected, i.e., case accelerations A .;,gg perpendicular to the sensitive axis
will influence the readings. Lack of knowledge of instrument structure prevents
theoretical modeling of the cross-coupling effect. Therefore, the same dynamic
behavior is adopted for cross-acceleration, with a scale factor 4 for which
an upper bound can be found from manufacturer's data. These considerations
lead to the following model:

A. A

A _ in L cross (3-2)
out Y

1+2 ( s 4 _s° 1+20 5 + 52
where 1 is bounded Iyl ¢« v (3-3)

max

The ""angle' Y-
the proofmass.

max 1S partly determined by the maximum angular rotation of

Some Numerical Results for the Servo-Accelerometers (see also Appendix B)

A (-1g, +15g) instrument was opened and open loop information was obtained.
Measurements of the proofmass and its connecting system led to a calculated
value of the inertia
_ 2
I1=0.213 g cm” (+ 10%)

and a weight of 0.9 gram.

Static experiments on the torquer (using balancing weights added to the proofmass)
gave

KT = 0.139 x 10° dyne cm/A (+ 5%)

The signal generator (KP) and amplifier (Kp) were combined in the open loop
tests and yielded

Kp Kap = 1.22 A/rad (+ 10%)
Hence, one finds for the (-1g, +15g) accelerometer
wp = 893 rad/sec (+ 15%)
Damping could not be determined after the instrument was opened,

Manufacturer's data show = 0.002

Y max
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3.1.2 Accelerometer Bracket

The accelerometers are mounted on stainless steel brackets which are then
fastened to the rocket frame., The configuration is shown in Figure 3-1, The
bracket is very stiff along the sensitive axis and along the perpendicular cross-
axis, but less stiff along the lateral cross-axis. The purpose of this section

is to calculate the resonant frequency for transmission along the lateral cross-
axis.

First one calculates the stiffness k. of the corners, with definition:

k= moment exerted on a corner
¢ total additional bending angle of corner (radians)

Using the theory of bending of curved bars (Reference 4), one finds:

t/r
k.= 2 Ewtr, (1- <
Al ; 1+ (t/2 ¢ )

n
€ 1T -(t/2 r )

where E is Young's modulus and the other symbols are illustrated in the
Figure 3-2 (w = width, t = thickness, r. = rounding radius).

lne is the natural logarithm. Next, one calculates the stiffness ky, for the
linear displacement deformation of Figure 3-2.

force along lateral cross-axis through instrument
linear displacement (of instrument)

ki, =

k;, depends on k. and the properties of the bending members. Application of
beam theory gives after some manipulations

1 = f’i (1 + 22 )
kp, 2 ke Ew t3

The approximate resonant frequency of the bracket Wpr is then given by
1/2
Whr = (2 ki,/Megy)

where M_ ¢ = mass of accelerometer plus mass of top plate of bracket.
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Figure 3-1 Accelerometer Bracket

39



Then, for accelerations along the lateral cross-axis.

- 1 3-
Alateral, cross - 2lateral, cross 5 (3-4)
1+27¢ S +—=
br Wy W&br

where Alateral, cross 18 @ parasitic input to the accelerometer, and

2)ateral, cross i the inertial acceleration experienced by the support.

For the other axes, one has:

sensitive axis A
perpendicular cross-axis

=a

The coefficient br is the dimensionless damping coefficient for the bracket
vibrations.

Numerical Results for the Accelerometer Bracket

The same bracket is used for both types of accelerometers,

( br 15 unknown, but may be expected to lie between 0 and a maximum slightly
larger than 1.

For the stainless steel bracket with weight density = (g ¢ ) = 0,282 lb/in3

E = 2.9x1071b/in?
W = 3in.
t = 0.047 in.
a = 0.625 in.
length of top plate = 1,375 in,
Te = 0.1 in,
one gets

k. = 0.49 x 10% in. lb.
rad

=1.5x10% 1lb.

k
L in.

The weight of the top plates is 0.055 1b. Then (g Mg} = 0.274 1b,
finally giving wy,. = 6, 500 rad/sec (f,, = 1, 040 Hz) which falls within the
frequency range of interest,
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3.2 Laboratory Tests and Analog Computer Simulations

As for the gyros, several types of tests were performed on the accelerometers,
See general description in Appendix B.

3.2.1 Transient Tests on Special Yoke, and Analog Simulations

Both categories of accelerometers (-3g, +3g) and (-1g, +15g) were subjected

to triangular input pulses, shown in Figures 3-2, 3-3, 3-4 and 3-5. The
corresponding analog computer simulations are shown for comparison in
Figures 3-6, 3-7, 3-8 and 3-9. The agreement is within acceptable tolerances,

The best fit was found for the following parameter values:

(-3g, +3g)* (-1g, +15g)
Resonance wy (rad/sec) 800 (fast input) to 850 (slow input) 750
Damping ?n 0. 35 (fast input)to 0. 55 (slow input) 0,35
Gain 0.85 V per g 0.34 V per g

Nominal output range 0to 5.1V

*Note: For another (-3g, +3g) instrument, wy, = 700 rad/sec, ? n = 0.3 (fast)

to 0. 45 (slow) was found to give a best fit, This remark gives an idea of the
possible spread among instruments, of the order of 10% to 20%. Such a typical
spread immediately yields a bound on the accuracy for which one should strive

in obtaining parameter values for a series of instruments in the present study.

Of course, for one particular instrument one may try to achieve a higher accuracy
in identifying parameter values., One also observes a slight non-linear effect

in the decrease of the damping factor < ns when the input gets faster, at least
for the (-3g, +3g) type.

3.2.2 Carco Table Tests for Accelerometers and Analog Verification

Pulses, alone or super -imposed on 10 Hz sine values, were used as inputs to

the accelerometers. Some experimental results and analog simulations are shown
in Figures 3~10, 3-113:123-13, respectively. The parameter values used are
the same as before (in section 3,2,.,1). There is some discrepancy, the negative
value of the first undershoot in the simulations, but this is probably due to
uncertainty caused by ringing in the very first part of the input waveform.
Elsewhere, the agreement is acceptable,
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FIGURE 3-2

SLOW TRIANGULAR INPUT TO
(-3g, +3g) ACCELEROMETER

TIME SCALE: 2 ms/DIVISION

UPPER TRACE: INPUT (PIEZO-ELECTRIC
ACCELEROMETER)

LOWER TRACE: INSTRUMENT RESPONSE

0.5 VOLT/DIVISION

FIGURE 3-3

FAST TRIANGULAR INPUT TO
(-3g, +3g) ACCELEROMETER

TIME SCALE: 2 ms/DIVISION

UPPER TRACE: INPUT (PIEZO-ELECTRIC
ACCELEROMETER)

LLOWER TRACE: INSTRUMENT RESPONSE

0.5 VOLT/DIVISION
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Figure 3-6, (-3g, +3g) Accelerometer No. 140
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FIGURE 3-4

SLOW TRIANGULAR INPUT TO
(-1g, +15g) ACCELEROMETER

TIME SCALE: 2 ms/DIVISION
UPPER TRACE: INPUT
LOWER TRACE: INSTRUMENT RESPONSE

1 VOLT/DIVISION

FIGURE 3-5

FAST TRIANGULAR INPUT TO

(-1g, +15g) ACCELEROMETER

TIME SCALE: 2 ms/DIVISION

UPPER TRACE: INPUT

LOWER TRACE: INSTRUMENT RESPONSE
0.5 VOLT/DIVISION
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Figure 3-7, (-3g, +3g) Accelerometer No. 140
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Figure 3-8, (-lg, +15g) Accelerometer No. 119
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Figure 3-9, (-1g, +15g) Accelerometer No, 119
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FIGURE 3-10 CARCO TABLE TEST FOR
(-3g, +3g) ACCELEROMETER

TIME SCALE:
LOWER TRACE:

UPPER TRACE:

20 ms/DIVISION

INTEGRAL OF PULSE INPUT
{A VELOCITY)

INSTRUMENT RESPONSE

1 VOLT/DIVISION

FIGURE 3-11 CARCO TABLE TEST FOR
(-3g, +3g) ACCELEROMETER

TIME SCALE:
LOWER TRACE:

UPPER TRACE:
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Figure 3-12, Pulse-Response of Accelerometer
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Figure 3-13, Response of (-3g, +3g) Accelerometer

to Bine-Plus-

ulse
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4. PRESSURE TRANSDUCERS

This section deals with two types of pressure transducers used aboard Scout
vehicles.

Giannini - 461319BV-2 (0 to 500 psia)

Bourns - 2007253703 (0 to 800 psia)
Both types use a Bourdon - tube as pressure sensing device. The Giannini
transducer is connected directly to the pressure source, The Bourns transducer
is connected to the pressure source by means of an asymmetric T-tube, whose
third arm leads to a switch chamber,
An extract from the procurement specification follows:

- Bourdon tube material Ni-Span-C

- Acceleration sensitivity: + 0.05%/g along lateral and
transverse axes, + 0,004%/g along the longitudinal axis,

- Response time: time for the output to reach 63% of its final
value after a step input in pressure shall not exceed

50 milliseconds,

4,1 Theoretical Model

4.1.1 Bourdon - Tube Analysis

Static elastic analysis of Bourdon tubes is quite complicated, and dynamic
analysis is even more involved., Therefore, only approximate results can be
obtained, Both transducers use flattened sections, shown in Figure 4-1, (see
also Reference 5). Giannini employs a helical tube, while Bourns has a spiral
tube. Therefore, the treatment of both cases is somewhat different and will

be given separately. Basically, the resonant frequencies are obtained here by
an application of Rayleigh's principle (see Reference 4). One equates approximate
expressions of maximum potential and kinetic energies for the lowest mode of
vibration, However, since the trial functions used do not necessarily satisfy
all boundary conditions, the resonances found may be smaller as well as larger
than the true values,

Giannini (or Helical) Tube

The Giannini tube is a regular helix wound on a circular-cylindrical surface.
The radius of curvature R of the axis of the tube is a constant; therefore, the
theory of Reference 5 can be applied directly if the helix is replaced by equivalent
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circular rings, Application of pressure results in an increase inradius of
curvature J R. Reference 5 gives the following relationship between torque
on tube, T, and the angular deflection of the tube, per unit of the angle 0,
(see Figure 4-2) d R/R (assumed constant over the entire axis of the tube, an
assumption equivalent with the hypothesis of constant bending moment).

T = k » R
R
with 4
ol R 4 e
[nb2 2 1+(71— 1)a 1+ 5 (v g P
k = 4E - [ - 4
8 2. a
R I 1+ (-v% F
21 thz 2)
E = Young's modulus
v = Poisson's ratio

a, b,h, R: See Figure 4-1, geometric quantities describing the tube

cross-section,
Fi, Fp: dimensionless coefficients, tabulated in Reference 5.

The corresponding maximum potential energy of deformation is then given by:
2
1 JR
Vot =2 K8 (R )
In a helix with constant length of the tube axis, the displacement u (see Figure

4-2) is given by
w? = (SR)2 [2 (1 - cos @) + 6% - 2 0 sin 0]

In harmonic motion with angular frequency wp, the corresponding maximum
kinetic energy is (for my = tip mass)

-1 2
Viin =3 ¥B Zkin

where 3 JRZ g3
_ . 2
Zkin = (—7 AR (—-Rf)<_§i+ 2 Qf - 4 sin Q-f + 2 Of cos 6y) + mgu,

= mass density of tube (metal plus pressurized fluid)
cross-sectional area given by

5D

A=ana (145 -1) 2]
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Therefore, the approximate resonant frequency of the undamped tube is

2
wg = 2Upot/ Zkin

The mass of the pressurized fluid should be added as a correction to e -

Generally, this is a very small effect.

When the tube is immersed in a damping fluid, some of this damping fluid will
oscillate with the metal tube. This phenomenon can be interpreted as an
additional apparent mass which has to be added to e as the correction:

(eff = f ¢ apparent

This value of eeff should be inserted in the formulas above for greater accuracy,
yielding a value Zyin eff. Again, this is normally a small correction,

Then, the resonant frequency with damping fluid, wgp, is given by:

2 2 Upot

W =
BD
Z‘kin, eff
The transfer-function for the Bourdon tube with damping fluid now takes the
form, if the damping is included, and with proper scaling (i.e., zero steady
state error).

P out

Pin s +(8 2
1
ve i BD VBD <WBD>

(4-1)

However, the tube is also sensitive to accelerations, The lowest mode for
accelerations will be close to the lowest mode for pressure-input, Therefore,
the following transfer-characteristic can be written down:

o B Pin + i o p Ai
= 2 i PFS >
out 1+2 { ; +< :, ) =1 142 ‘( S +(.s__j
BD BD BD BD VBD ‘“WBD
(4-2)
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where
Ai = acceleration (expressed in units of ''g"') of the transducer
along one of three perpendicular axes (i = 1, 2, 3)
FS = full scale, or nominal, pressure
x 4 = sensitivity coefficients (dimensionless numbers) indicating

fractions of full scale per g along the three perpendicular
axes (i =1, 2, 3). Because of the directional properties of
the Bourdon tube, the o i -coefficients are different for each
direction; they also depend on the properties of any balancing
masses that may be used. Their bounds can be deduced from
manufacturer's data and from the specifications.

Numerical Results for the Giannini Transducer

The tube material is always Ni-Span-C

2.6 % 107 1b/in°

with E =
(gp) = 0.293 1b/in’
. 2
g = 386 in/sec
v =0.3

From manufacturer's data, confirmed by opening of an instrument, one finds:

a = 0.080 in.
b = (0.021 in,
h = 0.008 in.
R = 0.225 in,
6 = 117¢ (i.e., 5 1/2 turns)

Pps = 500 1b/in2 (absolute)
Reference 5 gives Fj} = 1.058, F, = 1.451
One calculates immediately

k = 40.3 in. lb.
A = 2.94x 103 in?
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At full pressure and a temperature of 535°R (or 75°F), using nitrogen as the
medium, one has

mass tube = 125
mass compressed gas

and hence the mass correction due to the compressed gas is entirely negligible,
The damping fluid correction is also negligible.

Finally, one has

1, 990

w (rad/sec) = = ——
BD (1 + m#)

W

m*, being the tip mass, expressed in grams.

Opening an instrument showed that the total tip mass is not more than 1, 4 gram.
The effective tip mass, taking into account mass distribution and support is
smaller, Hence, one has: 1,260 < WBD < 1, 990 {rad/sec).

A probable value for effective tip mass is about 1 gram, yielding

wgp = 1, 380 rad/sec,

The manufacturer's estimate was wpp = 1,250 rad/sec. Manufacturer-supplied
data indicate a bound for the acceleration sensitivity coefficients.

e 5] ¢ 2x 10" for all axes in fractions of full scale per g.

These values for | X ; | agree with (i.e., are smaller than) a theoretical
upper limit found by assuming no balancing is available,

Opening of Giannini Transducer (See Also Appendix B)

One transducer was opened and the damping fluid removed. An impulsive
mechanical displacement was then applied to the Bourdon tube and the response

is exhibited in Figure 4-3. One deduces from it that wgp = 1, 250 rad/sec,

which is compatible with the results above, Shock inputs to the damped tube

also roughly indicated a damping factor K gp of the order of 0.2, i.e,, a rather
lightly damped system.
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FIGURE 4-3 RESPONSE OF UNDAMPED GIANNINI BOURDON TUBE
(OPENED INSTRUMENT )

TIME SCALE: 5 ms/DIVISION

FIGURE 4-4 RESPONSE OF UNDAMPED BOURNS BOURDON TUBE
(OPENED INSTRUMENT )

TIME SCALE: 2 ms/DIVISION
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Bourns (or Spiral) Tube

For the spiral tube R varies with @ and the theory of Reference 5 is not directly
applicable, The method used here is the well-known quasi-steady approximation,
i.e., R is taken constant over short lengths of the tubing axis, The manu-
facturer's drawings show that the Bourdon tube is made up of consecutive half
circles with increasing radius. This real shape is replaced by an equivalent
spiral of Archimedes with polar equation:

r =qg ©

taken between two limits:

The lower limit: 0 = 0;, (fixed end, where fluid enters)
and
The upper limit: 6 = 07 (free, moving end of tube)
Tf - Tin

The coefficient qg is the appropriate average value: gg = -
f~ %in

giving Oj, = rip/dq,-

For 6 not too small (i.e., 08ijn>) 1) polar radius r and radius of curvature R

are nearly equal for the spiral of Archimedes as they must be for the successive
half circles.

R r =q4 0

Pl

The bending theory of curved beams (Reference 4) shows that for a constant bending
moment, one has & R/R” (the angular deflection of the gage per unit of its
length) nearly constant. Therefore, one can write

JR

T = (k R)av ——2'
R

where

3 2 ™ b
(kR), _ =4Ehbla [1+(Z - 1) L

R h av
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The maximum potential energy of deformation now is given by

2 2
1 JRY 1 - (R; /Ryg)

AV) = = (kR)
pot 2 av sz 2 qg

Again for 6 mot too small, the displacement u is given approximately by
lul = (8 - 6;,) 15 RI
since, approximately,
+lul =RJ O3z -(0-0;,)FR

Therefore, the maximum kinetic energy for oscillations with angular frequency
wpR becomes

v

kin

1
> w?s Zkin

Mt

with

_ 2
Zyin = A f‘ f u Rdo
tube + tip mass

2 2 8
cap B e [ le Do o8By ) (B
8(:13S f 7 Rg 6 21
2 .
b mg Bt JRE (1 - =2
¥, f

The expression for the tube area A is given above in the discussion for the
helical tube. The remainder of the discussion for the spiral tube is exactly
the same as for the helical tube and leads to identical forms for the final
transfer functions.
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Numerical Results for the Bourns Transducer

The tube is made of Ni-Span-C (see Giannini data). According to data from the
manufacturer, confirmed by opening an instrument (except for tip mass)

a = 0.148 in,
b = 0.046 in.
Rj, = 0.28in.
Rf = 0.61 in,
h = 0.014in,

A0 =0;-6;, =6.14 1T (or 3 complete turns plus an additional 25°)
Prg = 800 1b/in? (absolute)

Total tip mass between 2 and 4 grams (this is doubtful
as indicated below)

Hence, one finds
qs = 0.0172 in/rad

16.4 =5,27C
35.8 = 11,47T

Sin
of

From Reference 5, one obtains Fp; = 1.053, F, = 1,506

Also: A =0.976 x 10~2 in?

The mass correction due to the presence of pressurized gas is again negligible,
since for nitrogen at 800 1b/in and 535°R

mass tube = 62
mass compressed gas .

The damping fluid correction is also negligible, One finds (k R);, = 109 in® 1b
and (k R)y = 166 in? 1b; an average value (k R),,, = 138 in% 1b is taken.
Finally one finds

1,170
(I +0.358 m* ) /*

WBD (rad/sec) =

with m¥*; expressed in grams
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For m¥; = 0. 6, an approximate value found by opening an instrument, one
has wgp = 1, 060 rad/sec.

Also, according to the manufacturer, one finds bounds for the acceleration
sensitivities |« ;| & , | £ 5x 104 (most sensitive axes)
A

| K 3 | € 4x 10°° (Least sensitive axis, perpendicular to
the plane of the spiral)

expressed as fractions of full scale per g.

Opening of Bourns Transducer (See Also Appendix B)

The procedure here is exactly the same as was already explained for the

Giannini transducer, Figure 4-4 shows the results, from which one deduces
wgp = 1, 050 rad/sec, in very good agreement with the numbers arrived at above,
A shock test of the damped (unopened) tube roughly pointed toa BD of the
order of 0.2,

4,1.2 Electrical Qutput Devices

The displacement of the free end of the Bourdon tube is converted into a (direct)

output voltage across a resistor by means of a moving wiper, Because of lack of
detailed information on the output device, its dynamics are neglected, However,
this does not affect the instrument model much, since the output device responds
much faster than the mechanical part,

4,1.3 Connecting Pipes (Bourns-Transducer)

The Bourns transducer is connected with the pressure source by means of an
asymmetric T, shown in Figure 4-5.

The model for the pipes is the transmission line with longitudinal losses, shown
in Figure 4-6. The transfer relations for it are derived in Reference 6, and
the end results are listed below.

Pg cos h (T s) Z, sin h (7 s) P,
QG i sin h (v s) cos h (T s) Qq,
Z,
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Figure 4-5, Connecting T-Pipe
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Figure 4-6, Lossy Transmission Line Model
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with p = pressure (say l.b/inz), Q = volumetric flow (say in3/sec), Z, is the
characteristic impedance

1/2

and 7 is the '""time constant"
r, 1/2
T =4 (Co( 1 0"'?))

o4
[\ is the length of the pipe, ¢, is the '"capacitance' per unit length (say 1? s

1 is the "inertance" per unit length (say b secz/iné), r, is the ''resistance"

per unit length (say lb sec/in®), and s is the operator d . For a compressible,
dt

ideal gas one has the pressure-density relation.

p= ¢ RT
The flow is to be taken as isothermal in this case:

T = constant = T

Then one finds

— -1
co 1 o= ®R T, (say, secZ/inZ)

Co 1'0 =2 f (D V ﬁ To)-l (say, SeC/inz)

where f is the usual dimensionless friction coefficient (defined as ratio of
pressure drop per quarter inner diameter length to dynamic pressure) and D
is the inner diameter of the pipe.

The transducer can be considered as a constant volume device, i.e., as a
capacitance Cj, with
Cin - Cin =Vin
C2 Colz V3
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The switch has two pos1t1ons, corresponding with two chamber volumes. At
the pressure of 50 1b/in the chamber goes from a smaller volume (0. 07 in )
to a larger volume (0,14 in ) and stays there. Since 50 1b/in2 is rather small
compared with the nominal pressure (800 1b/in?), one can take Vg = constant
(and equal to the larger volume) for the present approximate analysis.

Then the switch acts as a capacitance Cg, with

Csw Csw = Vsw

Cs Cobs V3

(Capacitance being proportional to volumes)

One finds the impedance ratios:

ke 0 USWas s = SW = s
7, 3
sSW 3 3
Z C.
©  =2,Cjps = _mn T, S
Zin C,

Repeated application of the basic transmission line formula and of the
relations

Q. Q

= in SwW
H pSW C

SWS

leads to the transfer-relation:
-1

p.
( p1n) = (cos h(tzs) + Z0 Cin s sin‘h(-z'zs)) {cos h(tls)
S

sin h(r3s) + Z, Csw;-cos h(r3s) + sin h{x,s) + Z,C;ps cos{rys) ‘\{
cos h(z3s) + Z, Cg§sin h(zys) cos h(rys) + Z,Cjps sin h('rzsﬂ)

+ sin h(zys) [

(4-3)
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This complicated transcendental transfer function is now replaced by the
low order rational approximation.

s s?
P 1 +2 r W + w2
in _ a a a (4_4)
P 2
S 1+2 ? s 4+ _S
b Wb wzb

Best values of w, and wy, are found by a product-development of the transcendental
numerator and denominator of p;,/pg.

The zeros of p;,/pg (or the poles of ps/pin) are given by the equation
cos h (z3s) + Zo Cgw s sinh (r3s) = 0
/2

i}
If one sets T3s = (—1) v, v is real for the roots of the preceding equation. In
fact, the zeros v, are given by

(tan v) = v3/vSW
Zeros

The smallest positive root (Vl)zero vields w,

(vi)
w = zero 12
a
4, (16C,)
r
The damping is given by: ? - o
a 2 i Wa
o

The poles of pin/PS (zeros of ps/Pin)’ including Wy, are given by the (real)
roots of the equation in v:

A [4 V. v
cos (Zé_ v)[cos(_Ai V) - vln v sin(%z— v)J [cos v - —j—\z v sin v]
3 3 3 3
A A LA v V. A, A v, v
inf i 213 2 2+ 53 + _
—Sln\A—; V)Lsm(—é? v><1 - S‘\; in v)+cos( A3 v) 1r;3 sw v] =0
3
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The smallest positive root (v) )pole vields Wy,

_ (v1) pole
Vb = 1/2
4, (1, o)
with damping K - To
b 24 w
o b

In order for the model to be acceptable, one should have
2
(wp/wy) &K 1 (4-5)
because then the initial response to a step-input is small.

{Theoretically, this initial response is zero), Otherwise, one must take more
zeros and poles in the product development, This point is discussed further

for the numerical evaluations. Note that for the ideal gases

f as ?b and w, are independent of the kind of gas, provided f has the same value.

Wb

Numerical Values for the T-Tubes

One has for the pipes

the volumes vy = 0,17 in3
vy = 0.26 in3
v3 = 1,13 1in3

the lengths 4 1 = 5.38in
A, = 8.27in
Ay = 36.0 in

and inner diameter D = 0. 20 in.

The switch has a volume Vew = 0.14 in3
The Bourdon tube has a volume Vin = 0.17 in3
One takes (for the laboratory experiments)

T, = 535°R (75°F)
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Obviously, for real Scout-data, the appropriate (possibly) different temperature
must be taken,

The gas constants are

s 2
2.56x105 _m-

sec:2 R

for nitrogen 1_7{N2

—_ . 2
for helium RHe =1,79 x 106 o
secz R

Damping estimates are found to be unreliable; they give only an order of
magnitude estimate. It is best to rely on experimental evidence to find {a, I b.
Since helium was used in the laboratory experiments, the constants were cal-
culated for this gas.

One finds successively

Co 1 o=1.04x10'9 secz/in2 , 1 =3.1x104 in/sec
(5 o

o

(v1)gero = l.45 {corresponding with 82.9°)

(vi) = 1,25 (corresponding with 71.60)
Vpole &
w = 1,250 rad/sec
a
Wy, = 1,080 rad/sec

One sees that wy, is only a little smaller than wy. Theoretically, as discussed
before, one should then take more zeros and poles in the tube-model. However,
the need for additional terms in the tube-model is obviated by the effect of
orifices, to be discussed in the description of the experiments later on (Section
4.2.3).
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4.2 Laboratory Tests and Analog Computer Simulation (See also Appendix B
for Description)

4,2,1 Giannini Transducers

Figures 4-7 A&B, 4-8 A&B, 4-9 A&B, show inputs and outputs for tests per-
formed on one Giannini instrument. There is a connecting orifice between the
transducer and the pressure source, and this connecting orifice accounts for
a second quadratic term besides the basic Bourdon transfer-function derived
in Section 4.1.1., The total transfer-function is now to be taken as

P
out = 1 (4—6)

P; s + sl s + 5
(1+2 ¢ — Y2 ot
o B

in
W
BD
r or W or D ¥ BD
Full scale gives 4, 94v out,

Figures 4-10, 4-11 and 4-12 show, respectively, the best fits obtained on the
analog computer for the preceding inputs. These fits are quite good for the
range of inputs considered.

Summarizing, one finds for the
Bourdon tube wpp = 1, 300 rad/sec (fBD = 207 Hz)
g‘BD =0.2

agreeing well with the theoretical values derived in Section 4,1, 1,

For the connecting orifice, one gets

W
or

o

again showing some non-linear effect in the gas flow, with damping increasing
as the input gets faster, The spread among instruments of the same category
reaches at least 10 percent,

1, 300 rad/sec to 1, 600 rad/sec

0. 3 (slow input) to 0.7 (fast input)
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FIGURE 4-7 A INPUT TO GIANNINI, 195 PSI FINAL
TIME SCALE: 1 ms/DIVISION
(POSITIVE LEFTWARD)

FIGURE 4-7 B GIANNINI RESPONSE
TIME SCALE: 2 ms/DIVISION
SMALL FIXTURE WITH 0. 150" ORIFICE
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FIGURE 4-8 A INPUT TO GIANNINI, 150 PSI FINAL
TIME SCALE: 1 ms/DIVISION
(POSITIVE LEFTWARD)

FIGURE 4-8 B GIANNINI RESPONSE
TIME SCALE: 2 ms/DIVISION
SMALL FIXTURE WITHOUT ORIFICE
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FIGURE 4-9 A INPUT TO GIANNINI, 200 PSI MAXIMUM
TIME SCALE: 5 ms/DIVISION
(POSITIVE LEFTWARD)

FIGURE 4-9 B GIANNINI RESPONSE, 235 PSI PEAK
TIME SCALE: 5 ms/DIVISION
SHOCK TUBE WITH FAST RISE
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Figure 4-10, Giannini 500 Ib/in% (No, 465-1)
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Figure 4-11, Giannini 500 U:\/in2 (No. 465-1)
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Figure 4-12, Giannini 500 lb/in2 (No. 465-1)
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4.2,2 Bourns Transducers without T-Tubing

In order to test the value of the theoretical calculations of Section 4, 1,1, the
Bourns transducer was subjected to tests without T-tubing (in order to avoid
masking the Bourdon tube response by other components}.

One such test is shown in Figure 4-13 A&B, and the corresponding best analog
computer fit is on Figure 4-14, As in the case of the Giannini tests of the
preceding Section 4, 2.1, there is a connecting orifice. The best fit parameter
values are

for the Bourdon tube: wpp = 1, 000 rad/sec (160 Hz)
{ gp=10.2

and for the orifice effect: Wop = 1, 000 rad/sec
Top =3.0

Full scale corresponds with 4. 94 vg,t.

The Bourdon resonance value from this test agrees very well with the theoretical
prediction of Section 4.1, 1.

4.2.3 Bourns Transducers with T-Tubing

Figure 4-15 shows the response of the T-tubing and Bourns transducer for what
was essentially a step input in pressure (using helium as a pressure medium)

and Figure 4-16 exhibits the best fit obtained on the analog computer, The
response at the T-tube end is also shown. The entire numerical transfer function
(best fit) can be written as

2
l1+2x0.8 2 +(2 ' 1
* T, 000 1,000 ) (4-7)
1+2x0.8 5 + (32 )2 1+2x0.3 S +(2 )2
T 200 200 "7 400 400
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FIGURE 4-13 A INPUT TO BOURNS TRANSDUCER
TIME SCALE: 5 ms/DIVISION
(POSITIVE LEFTWARDS)

700 PSI PEAK

FIGURE 4-13 B BOURNS RESPONSE (NO T-TUBING)
TIME SCALE: 5 ms/DIVISION
SHOCK TUBE WITH FAST RISE
520 PSI PEAK
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Figure 4-14, Bourns 800 lb/in (No. 44-203)
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FIGURE4-15  STEPRESPONSE OF T-TUBE AND BOURNS-TRANSDUCER
TIME SCALE: 5 ms/DIVISION (POSITIVE LEFTWARDS)
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Figure 4-16, Bourns 800 lb/in® (No, 44-203)

~—

Input (St
/nPU( ep

- £
200 = 6 J;—.eﬂ-:
Pressure (PSI) i / " Small Fixture Without Orifice
. with T -Tubing (Helium)
v
P - Bourns Wpgp = 40D rad/sec
// ?BD =0.3
<, SO ToTubi _
Experimental ) / ~-Tubing X&:a = i,m(')\( 0 rad/sec
Response of T- 7 Wrp—=200-rad/see—
Tube Only \g‘/ . / T aJTb = 0.8
100 -
s 4
/s /
.
Simulation of e 7
T-Tube Only 7/ O«
\ﬂ/ // [ T~Experimepntal Point {Laboratory [Curve)
/"//.
’ D
2 ‘
7/
P S—~Best Fit Entire Systefn
PN
_//

U1

10

1

5
Time (msec)



While this expression has the theoretical form of Sections 4,1.1 and 4,1.3,
Equations 4-1 and 4-4, some remarks are in order. The numerical numerator
above agrees with the theoretical w, calculated in Section 4. 1.3 (1, 250 rad/sec)
within the expected accuracy. The denominator factors, however, are
numerically widely different from wy, and wpp calculated before. This discrepancy
is probably due to relatively slow orifice effects between pressure source and

T -tube on the one hand and between T-tube and Bourdon tube on the other hand,
whose effect is to mask the faster response connected with wy, and wgp. The
Bourdon resonance wgp was indeed experimentally verified as valid in the results
of Section 4.2,2. The comparison of the results of 4,2.2 and 4. 2.3, moreover,
points out that the numerical transfer functions obtained must be considered as
global (overall) descriptions of individual systems and that it is dangerous to

try and split these expressions in an effort to identify individual components., Such
a conclusion is expected because of the interaction of successive components in

a fluid flow system. A good example of this interaction is afforded by the
discussion of Section 4. 1.3, which clearly shows that p;,/pg for the T-tube
depends on the type of termination (here defined by the '"admittance' Cjp s).
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5. TELEMETRY STUDY

5.1 General Description

The airborne, NASA-supplied equipment which is discussed in this report
consists of:

a) An S-band Telemetry Transmitter CTM-UHF-305 (Conic Corp.,
San Diego, California)

b) A Lightweight Telemetry Package TDD 1799A (Tele-Dynamics,
Philadelphia, Pennsylvania)

The principal Avco ground-equipment used in conjunction with the NASA material
is an EMR Model 229 Tunable Discriminator made by Electro-Mechanical
Research, Inc., Sarasota, Florida. Some other equipment was also employed
and its name is given where applicable.

For the purposes of this study, the following block diagram of the T/M chain is

appl.cable:
Signal Subcarrier
Conditioner: Oscillator S, C. O, “
Phase-Sensitive N 9
.| Demodulators (voltage Controlled g b
7l for Gyros Oscillators) > g — g 7
Input (P.S.D.) ﬁ
Signal One per Channel ;
from
Transducers
Airborne Part
Tape- Band- B Low Pass
Recorder pass E Filter
Receiver S Filter o ogy o~
_ﬁ ~ - = >
(When E a “5’ (One per Output
Applicable) (One per e Channel) Signal
Channel) =¥l g

Ground Equipment
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The various components will be discussed in the logical order they occupy in
the block diagram.

The various instruments transmit data over a number of standard channels of
the IRIG Telemetry Standards for FM/FM (see Reference 7)., The relevant
channels are listed in the table 5-1 below.

TABLE 5-1

IRIG CHANNELS

Maximum deviation is + 7.5% of center frequency of each channel,

Center
Frequency Lower Upper |[Frequency | Instrument and
Band (kHz) Limit Limit Response Appendages with Lowest
Number | Fc (kHz) (kHz) (Hz) Proper Frequency in Hz
5% 1.3 1.202 1.399 20 | e----
6 1.7 1,572 1,828 25 Yaw-rate gyro (26)
7 2.3 2,127 2,473 35 Roll-rate gyro (42)
8 3.0 2,775 3,225 45 Pitch rate gyro (26)

10 5.4 4. 995 5. 805 81 Bourns pressure
transducer (32) (2nd stage
headcap pressure)

11 7.35 6.799 7.901 110 Bourns pressure
transducer (32) (1lst stage
headcap pressure)

Also: Giannini pressure
transducer (3rd stage
headcap pressure) (207)
12 10.5 9. 712 11.288 160 Transverse accelerometer
(-3g, +3g) (110 to 135)
13 14.5 13.412 15,588 220 Normal accelerometer
(-3g, +3g) (110 to 135)
14 22,0 20. 350 23,650 330 Longitudinal accelerometer
(-1g, +15g) (119)
15 30.0 27.750 32.250 450
*NOTE: Channels 5 and 15 are not used by the transducers in this study,

but their characteristics are given for the study of interference
or of filter selection.
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Channel 15 is not used by any of the basic instruments studied in earlier reports;
however, the study of its behavior for different combinations of filters was
desired by NASA,

The frequency response in the table is based upon maximum deviation and a
deviation ratio of 5; it is not necessarily compatible with the actual bandwidth

of the corresponding transducers. In fact, for the yaw rate gyro (channel 6)

roll rate gyro (channel 7) and for the Giannini pressure transducer (channel 11)
the transducer bandwidth is certainly larger than the tabulated frequency response,
Some nomenclature is recalled here: an ideal FM subcarrier oscillator has as

input signal a variable voltage vin (t) = s-! w;, starting at time t = 0, s-1 being
a scale factor {volts X sec/rad) and as output signal a voltage (or current)

t
Voutlt) = A cos (wg t +f Win (tl) dt1 )
o
where A = constant amplitude

wo/ (2 ) = {5 = center frequency of the S. C, O,

2 JT £(t) = w(t) = w, t win(t) = instantaneous pulsation of
the output signal

(w-w,)/(27r) = { - £ = instantaneous deviation of output frequency

Now vj, (t) can be decomposed in its sine-cosine components by Fourier-series
or Fourier-~integral,

One such component may be:
Vin, oo (t) = slwecos LLt; 0 £1€1 <1
with £ /L. w = a fixed amplitude
(1 : pulsation within the transmission band of the transducer
Combination of the two preceding equations yields:

€. .
Vout, (L (t) = A cos (w, t + _J sin . t)

i}
— dm
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Hence, one has the maximum instantaneous frequency - deviation

(£ - £o) =1l wl /@m)

max

The deviation ratio is defined as

m= & w |/ o
(and the modulation index is sometimes defined as |& 4 w| /.02 ) and m determines
the side bands in the classical Bessel-function expansion. For the table above,

m = 5 is used conventionally; however, the actual transducers can in some cases
possess a {L . larger than that implied by m = 5 and |4 wl imposed by

IRIG - Standards.

The components to be discussed are, in order

- phase-sensitive demodulators
- subcarrier oscillators

- mixer

- transmitter-receiver

- tape recorders

- bandpass filters

- discriminators

- lowpass filters

followed by a discussion of the entire chain viewed as a single block. The
experimental test setup is described, with diagrams, in Appendix C.

5.2 Phase-Sensitive Demodulators (P, S. D, )

The output of the rate gyro output circuit is an AM-~signal, A phase-sensitive
demodulator is required to recover the envelope with correct algebraic sign.
Its output is constrained to vary between 0 and 5 V in order to be compatible
with the S, C. O, that follows,

The type used here is a ring demodulator as shown in the figure below,
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Instrument

b} =

165“&'

Output

l" Q0T

Reference

Phase-Sensitive Demodulator

The static input-output relation for P.S. D, was found to be very linear within

the normal range.
ultimately the output dips.

Beyond the normal range there is first saturation and

Experimental data are shown in Figure 5-1. These
characteristics provide a bound on over-ranging in channels 6, 7 and 8 and
thereby help reduce channel interference.

According to specifications, the P.S.D, sensitivity is bounded by

maximum sensitivity:
minimum sensitivity:

Experimental data on sensitivities are shown in the table below.

Number
of P, S. D,

Ir.m.sS.

40
38
38
41.5
38
40

TABLE
Steady State Gains for P, S.D.

5V out (D. C,) for 20m V rms input
5V out (D, C,) for 200m V rms input

A Volts out = K

Volts in (r.m. s.)

E_.(V.D.C.) | Ejp(mV)r.m.s.
for 5V output
4,377 53.3
4,280 53,4
4. 350 51,4
3.173 153.0
4, 351 51.3
3.107 165.0
85

47.0
46.8
48.6
16.3
48. 7
15,1



Figure 5-1

Phase~Sensitive Demodulator #1

-

Output (Yolts D. C.)

| Referpnce: 400 Hz
} _ _—
: —-\
Top
Normal
Range
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¢ Out-of{Phase

/

Bottom

Normal Rahge

Input in MV (rms)

>

40

40
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The P, S, D, #4, 6 have low sensitivity, the others have high sensitivity (high
gain).

The transient response, here particularly the step response, turned out to be
sensitive to direction of voltage swing at the output.

While all these responses can be described with sufficient accuracy by a second-
order transfer-function (including the ripple-filter)

AV K (5-1)

out -
Vin (algebraic envelope) 1+2§ 5 4+ g2
w.

n Wn

(remembering the bias of 2.5 volts at output)

responses where the output voltage increases show some overshoot (with
individual variations) while the responses where the output voltage decreases do
not show any measurable overshoot (and this is so whether the input is in-phase
or out-of-phase),

Some experimental results are shown in Figures 5-2 and 5-3. Analog simulations
are given in Figure 5-4 for the best fit (for which the agreement is quite good).

The results of best fitting of experimental data are given in the table below,

TABLE
Dynamic Parameters of P. S, D,

Number of P, S. D, Output up Output down
w, ~{x2d) wy, (rad)
2 B sec e sec
(£n)(Hz) ( fn)(Hz)
i 0.62 195 1.0 200
(35) (31.8)
6 0. 82 185 1.0 185
(29.4) (29. 4
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FIGURE 5~2 STEPRESPONSES OF PHASE - SENSITIVE
DEMODULATOR #1 (UPPER TRACE)
TIME SCALE 10 ms/DIVISION
INPUT ON LOWER TRACE

FIGURE 5-3 STEPRESPONSES OF PHASE ~ SENSITIVE
DEMODULATOR #6 (UPPER TRACE)
TIME SCALE 10 ms/DIVISION
INPUT ON LOWER TRACE
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Figure 5-4, Step Responses of P. S, D.
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Therefore, the lag associated with the P, S, D, is comparable to that of the rate
gyros proper, One also observes some spread between individual P, S, D, 's
(compare  for #1 and 6, output up).

The parameters for underdamped response (output up) were obtained from
values of overshoot and time of overshoot, Other points of the response were
then compared with the theoretical values and found to agree within the accuracy
of experimental data.

E. g., time of first full-scale passage i experiment 15 msec

P.S.D. #1 theoretical 14. 7 msec

Similar agreement was obtained for the {over) critically damped responses
(output down). The fact that ? depends on direction of output swing while wy,
varies very little can be explained by the observation that a resistance shift
(in points A, B of the circuit diagram above) is used for the P, 5. D, to obtain
the bias of 2,5V out. Therefore, the resistance in the up-and-down current
paths is different, leading to different damping coefficients,

NOTE 1: No detailed circuit-schematics were available for the P, S, D,, and
therefore the present second order model is mainly based on
experimental evidence,

NOTE 2: Full scale output voltage from the gyro output circuit is approximately
9.5V r.m. s, On the other hand, maximum normal input to the P.S, D, 's
varies between 0,0513 V rms and 0,165 V rms as shown in the table
for steady state gains, Therefore, some signal reduction between
gyros and P, 5.D, 's is very likely, The amount of this reduction,
however, is unknown since no complete schematics for this part were
available.

5.3 Sub-Carrier Oscillators

The S. C. O, 's are voltage controlled oscillators whose output has an instantaneous
frequency deviation proportional to the input voltage, except for transient
effects. (see Section 5.1 for the ideal case).

Steady State Characteristics ('Static Gains'')

The experimental data on static input-~output relationships are shown in Figures
5-5 through 5-10 as output-frequency (Hz) versus input volts D, C, It is clear

that these are very linear relationships, which moreover extend considerably
beyond the nominal input range (0 to 5 V. D. C, ) without any sign of saturation, The
edges {0V and 5V) also correspond accurately with the specified IRIG-values.
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Figure 5-6, Static Gain of S. C.O. 7(2.3 kHz)
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Figure 5-9, Static Gain S, C, O, 11 (7. 35 kHz)
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Figure 5-10, Static Gain of 5, C. O, 12 (10.5 kHz)
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The very wide range of linearity is most clearly exhibited on Figure 5-7, the
S. C. O, of channel #8, especially on the side of the positive input voltages,
This figure also gives an idea of the variations in output frequency with voltage
in. This means that adjacent channels could possibly interfere with each other,
unless a limitation occurs earlier. For the gyros, the P, S. D, exhibits
saturation as was explained in the preceding Section 5.2. The pressure trans-
ducers have a maximum supply voltage of 5 volts, imposing a bound. The
accelerometers are also limited around their normal range, Therefore, no
interference is expected in normal operation with standard filters (see also
further discussion of interference in Section 5,11},

The differential static gains are listed in the table below.

TABLE S.C. O. Static gains K, 4 (rad/sec)out . g A(Hz) out
(A Volts)in A (Volts) in

Channel Number K K
w f

6 322, 51.2

7 435, 69,2

8 565. 90.0

10 1020. 162.0

11 1380. 220, 4

12 1980. 315.2

13 3740. 435,2

14 4150. 660.0

15 5650, 900.0

One has obviously K, =2 /L K;; comparing with the expression
in Section 5,1 one has also

(Kw) S

ideal

Generally, K; = 0.03 (FC) (Hz)

where F_ is the center-frequency of the pertinent
channel.
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Transient Response (Step Response)

A more realistic description than that of Section 5.1 for the S, C. O. response
to an input signal V. (t ), starting att = 0, is given by

1
t oot

Vout{t) = A cos (w, t + wa f Vo (t'") g (t'-t'") 4t'' d4t')
o770

This relation assumes a linear, time-~invariant dynamic response for tl'}g output
frequency characterized by the normalized input response g(t) (with / g(t) dt = 1)
o> o

or by the normalized transfer-function G(s) = [ g(t) exp (-st) dt, with G(o) =1

o
(the Laplace transform of g(t)). The idealized model assumed that G(s) = 1 for
all s, The present model assumes no changes in the output voltage envelope
A; unless A is made to depend upon Viu(t). However, the only dynamics of
interest here are described by G(s), as a transfer function.

Awog () (5-2)
Vo K, G(s)

Experimentally, V;,(t) can be realized easily as a step (or as a rectangular

wave with sufficiently low repetition rate to allow settling of the output). The
output-frequency wg,+(t), however, is not directly measurable, A complicated

way of obtaining woyut (t), could be based on a correlation study of Vg,¢(t). On the
other hand, the delay or lag associated with the S, C, O. is experimentally found

to be quite small compared to other components in the T/M chain, especially

the low-pass filter. Therefore, a simple approximation to w_ .(t) is sufficient,

and this is obtained by measuring time-intervals between successive zero-crossings
of Vg,t(t) after the step-change in V;in(t). The results appear as shown in the

figure below (exaggerated for clarity).

Vin(t)»

First half wave
ith steady state
spacing of zero

out \ crossings

t=0 \ VT
4 ave

Y

~
v

ast half wav
with spacing
different from

/ steady state

S. C. O. Step Response
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The meaning of T, is also explained in this figure. Typical experimental
results are shown in Figures 5-11 a, b, c for channel #8, An average value

at Taye has been used for rise and fall in V;,(t). Numerical results are shown
in the table below, together with the experimental uncertainties.

TABLE
Settling Times for S.C. O, 's
Channel Number T,ve (msec) Uncertainty Li.7s/F (kqu(msec)
and F. (kHz) Experimental | ATyl (msec) Average Fit
6 1.7 1.3 0.15 1.03
7 2.3 0.65 0,11 0. 76
8 3.0 0. 66 0.08 0. 58
10 5.4 0. 32 0. 046 0. 32
11 7.35 0. 25 0.034 0.24
12 10.5 0.166 0.024 0.166
13 14.5 0.112 0.026 0,120
14 22.0 0.091 0.011 0. 080
15 30.0 0.067 0. 008 0. 058
Infact O Typel= 223
FC

These results are also shown on Figure 5-12, indicating for the present
equipment, channel #7 has unusually fast S, C, O. response (but well within the
uncertainties and permitted tolerances). Figure 5-12 also indicates a good
approximate average fit.

T = L.75

ave F

c
also shown in the table above

Inspection of the transient behavior shows that one can take for G(s) a second
order expression

1 -
G(s) = 5 (5-3)
1+2¢ % + 5
Wy Wzn
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with little or no discernible overshoot (with an accuracy not better than 5% of
full scale), Since overshoot for § = 0.7 is 4. 5%, a sufficiently accurate
model is

K = 0.7 for all channels

and then Wy = 3_3_
T
ave

(this is the point where the output first reaches full scale)
So, if the average fit is used, one gets
H
wy (rad/sec) = 1.9 FC( 2) _ 1. 900 FC(kHZ)

(Hz) _ (Hz) _ (kHz)
£ = 0.30 F =300 F

These results are listed in the table below

TABLE
Frequencies of Transfer Functions for

S. C. O.

wn(rad/sec) wp(rad/sec) f,(Hz)
Channel No. Experimental Average Fit Average Fit

6 2,540 3,230 510
7 5,100 4, 360 690
8 5, 000 5, 700 900
10 10, 300 10, 250 1, 620
11 13,200 14, 000 2,205
12 19, 900 20, 000 3,150
13 29, 500 27,600 4, 350
14 36, 300 41, 800 6, 600
15 49, 200 57, 000 9, 000

It is obvious from the last two tables that the dynamic lag due to the S, C, O, is
indeed quite a small fraction of the lag due to the basic transducers.

102



[

5.4 The Mixer

The mixer takes the different signals from the 5, C, O, 's of each channel and
adds them to form a single composite output signal.

V{output mixer) = € V(output signals of S, C. O, )
all channels

Figures 5-13 and 5-14 show that the mixer has a nearly perfectly flat gain over
the frequency band of interest and for normal input voltage amplitudes (steady
state results), As for the dynamic behavior, excitation with a triangular wave

of variable repetition frequency showed no lag, delay or distortion at the output
within the frequency-band of interest (certainly between 0.5 kHz and 100 kHz).
Only at very low rates of 100 Hz {quite below the channel 6 frequency of 1, 700 Hz)
did some distortion appear,

Therefore, the mixer can be represented by a constant gain K (of 1, 0), same
for all channels 6 through 15, without any dynamical distortion effects.

5.5 Transmitter and Receiver

The transmitter proper and the receiver proper are very wideband and have a

very linear output-input characteristic; they are considered to have perfect,
instantaneous response (compared with the delays and lags of the other components)
and, for this study, their transfer-function is taken to be unity. The radio link

in vacuum and atmosphere depends, of course, on a series of widely variable

and often uncontrollable factors, such as distance and altitude, atmospheric
conditions, and its study was not a part of the present effort.

5.6 Tape Recorders

For the channels studied in this program with center frequencies between 1, 700
Hz and 30, 000 Hz, experiments showed that recording on tape and reading off
tape introduced no discernible distortion, differential lag or delay in the signals
from the various channels. The setup used to study this problem is shown in
Figure 5-15, Conventional equipment was used, The counter was employed to
determine accurately whether any differential change in the At(see Figure 5-15)
could be observed, when the tape-machines were used, compared with the At
without tape-machines. Since no such effect was observed, the tape recorder can
be viewed as an ideal component with transmission equal to unity.
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Figure 5-13, Mixer Gain Versus Frequency
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Figure 5-14, Mixer Gain Versus Input Volts
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Figure 5-15, Tape Recording
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5.7 Bandpass Filters (B. P, )

For the EMR Model 229 Tunable discriminator, the B, P. filters are active
two-stage filters. Each stage consists of a feedback amplifier with band-reject
bridged-T feedback network.

The conventional transfer-function of a bandpass-filter is defined by

Eout (5) (5-4)

Ein (s)

Fgp(s) =

with E_ .(s) and E;n(s) being the Laplace-transforms of BP output signal
eoutl{t) and BP input signal e; (t). However, in telemetry e;,(t) is essentially
a sum of output signals from S, C, O. 's (see Section 5. 3).

t t!
e;,(t) = % Ay cos (Wo,kt + Kw kj dt'f Vin k(t")gk(t'—t")dt")
) o

t
= é_ Ay cos (wg gt +f AN Win, K(thdet)
o

with index k indicating the various IRIG-channels,

Theoretically, each BP f{ilter lets pass through only the correct k-~-component
for the particular channel, and e, (t) has the form, for channel k.

t
- 1 !
eout(t) - Aout,k cos (Wo,k t +fo 4 wout,k (t1) dat')

The desired transfer-function in this study is not Fpp(s) but the frequency-
transfer function defined as

Sop (o) - ot ) (5-5)
BP, k A Win, x (8)

for each channel k.

FBP, k(s) is hard to measure directly {and would require extensive data processing,

like correlation studies, etc.), but fortunately two properties permit its indirect
identification.
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First Property: Bandpass to Low Pass Transformation

If a BP filter with (conventional) TF-function Fgp(s) can be regarded as a
displaced low pass (DLP) filter with TF-function Fpp p(s), such that, for
s = iw (i = V1)

[y

. -1 . i .
Fpp (i w) = e € Fpp pli (w-wo)) + 1€ Fiyp p (i (whwo))
then the impulse-responses are connected by

fBP (t) = 2 fpp,p (t) cos (wot -¢)

Therefore, the envelope of the response of BP to an amplitude-modulated signal
(with centered carrier-frequency Wo: mft) cos (w,t -¥ ) is the response of the
2T

DLP to the envelope m(t), both being given by

t
[ foLp (8- t')m (&) dt'
(o]

provided the BP filter is relatively narrow (i.e., its pass band is relatively
small compared to its center frequency Yo or, equivalently, the time-constant
27

of fp1,p(t) is large compared to 27 ). This property is discussed in Chapter 7
of Reference 8. Wg

Second Property: Relationship Between Conventional and Frequency Transfer
Functions of a BP-Filter

Generalizing a result found by H. Salinger and reported in Appendix 13 of
Reference 9, one can show that for a BP filter having the first property, the

following simple result is valid.
A F s
# . (s) = _orpls)
BP ~ I (0)
DLP

provided the maximum average frequency deviation in the input is very small
relative to the bandwidth of the bandpass filter, Appendix A of this report
derives this result and the conditions of its applicability.
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Conclusion

A
To determine Fypp(s) it is sufficient to measure (experimentally) the envelope
of the transient response of the BP filter to an amplitude-modulated signal with
centered carrier (say, with a step-change in amplitude).

Each stage of the BP has the configuration shown below. The transfer function
for such a stage is easily found to be

E (s) _ (R,Cy)s (1 + R3C, s) {1 + R4C3 s)
Ej(s) ~  (I#(R1C1)s) (L + R3Cp s + R3Cy RyC, s2)
_ R2 Cl s ( 1+ R4 C3 S )
1+R;C, s 2
1*+1 1 +R3C2 s + R3C2R4C3s
_ AN &ﬁ - e mre e
=, C1
A
e R, e,

-
i} = Voltage amplifier, gain =1, CS g‘%

High Input Impedance
Low Input Impedance =

One stage of the active BP filter.
In the vicinity of the passband center, defined by
w? (R,C.) (R, C,) =1
o 372 473

one has the usual RLC-tuned behavior, (normalized):
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w
1+90(._SL_+.._°_>
Wo 5

where
1/2
8, = (R4 C3/R3 CZ)

The resistances R3, Ryq are used for tuning Wos while C,, C3 are employed for
bandwidth choice. The normalized low pass equivalent is of the form

1
1+ Ts

with T being close to 2 6,/w,.

Since the BP uses two such stages and since the experimental evidence shows

no overshoot in the envelope step response, one may assume for practical purposes
nearly zero or zero staggering (see again Chapter 7 of Reference 8)., Therefore,
one has for the displaced low pass filter

Fprp (8) - 1 (5-6)
Fprp(o) (1+T s)?

with step response 1 =exp (-t ) (1 +1t )
T T

corresponding with a critically damped second order system

(i.e., ¢ =1.0 in 1 ) (5-7)

1 S S
+2{Wn >

According to the manufacturer, the BP bandwidth (i. e.,, the edges) are defined
as points approximately 2.5 db (or a factor of 1/1.334 = 0. 75) down from center
frequency. For the DLP above this corresponds with

WELPT = 0,578 (subscript E denotes edge)

Since WEL,p = Wi ypner, pp - Wor this gives for a + 7.5% BP filter
T - 0.578 - 0.578
(t 7.5%) ~ 770,075 x F 0. 075 w,

110



and for a + 15% BP filter

0.578 _  0.578
270 0.15 F_ 0.15 w,

T+ 15%) =

Wo
2TC

where F = is, as before, the center-frequency of the pertinent channel.

Particularly, for channel #6, F. = 1, 700 Hz.
w, = 10, 700 rad/sec

and T(i 7.5%, ch. #6) = 0.72 msec,

T(i'. 15%, ch. #6) = O 36 msec.

As a verification, (1 + T:s)'2 is down by a factor 3 1376 or 10,57 db (more than

10 db imposed by the specifications) for

w 20
WE, LP 7.5

corresponding with a 20% shift in carrier-frequency for the BP
filter. The DLP characteristic (1 + Ts)™~ or rather the RLC-BP characteristic

-2
(I+9e,¢( s _+ Yo )) from which it was derived, also shows a satisfactory
w
o
numerical agreement with the experimental frequency response of the BP
exhibited in Figure 5-16,

In the table below, for channel #6, we now present 2 comparison between
theoretical predictions for a step response using the T-values derived above
and the experimental evidence, which is also shown in Figure 5-17.

TABLE
Channel #6 Step-Response

Lab, Experiments Theoretical Value

+ 7.5% filter: (average of 4 measurements)

Time 1/2 Full Scale is reached 1.4+ 0.3 1,77T =1,23 msec.
Time response is fully settled 3.7 + 0.3 5.5 T = 3,98 msec,

(take 97. 5%, midway error)

+ 15% filter: (average of measurements)

Time 0.5 full scale 0.8 + 0.3 1.,7T = 0.615 msec.
Time fully settled 1.8+ 0.3 5.5 T =1, 99 msec.
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Figure 5-16, Frequency Response Bandpass

Filter
1.0 ra
Lower i l : g Upper ]
: Edge ' I Edge :
— ! l Channel Np. 6 T
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n |
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P ]
o — l —
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0.01
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FIGURE 5-17TA STEPRESPONSE OF 7.5% BP FILTER OF CHANNEL #6
TIME SCALE 1 ms/DIVISION
LOWER TRACE: INPUT TO BP (CENTERED CARRIER
WITH STEP IN ENVELOPE)
UPPER TRACE: BP RESPONSE

\\"‘"’?""}""""""f""""
P S VR U T O GO

FIGURES5-1TB STEPRESPONSE OF 15% BP FILTER OF CHANNEL #6
SAME TIME SCALE AND COMMENTS AS FIGURE 5-17A
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The agreement is quite satisfactory (within the accuracy of the measurements),
The smallness of T shows, moreover, that the bandpass filter introduces only
a small amount of lag and distortion when compared to the low pass filter (if
the standard filters are used, of course).

It is interesting to display the non-linear dependence of the BP output on the
magnitude of the frequency swing at its input (in the signal coming from the
S.C.0.) a feature discussed in Appendix A. This is done in Figure 5-18.
Channel #6 was isolated there to avoid interference from its neighbors. The
extra-wide 125 Hz (constant delay) LP filter was used, instead of the standard
25 Hz LLP in order to minimize the distortion in the LP, Trace A of Figure 5-18
corresponds with a small swing of 2V to 3V (centered around the middle of the
range at 2. 5V) at the input of the S. C.O., i.e., a small swing 4 w;, at the
input to the BP. In fact, with the notations of this section and of Appendix A

lawinl -1 _,

YE, LP

Then the small signal approximation of Appendix A is valid, i, e., the ""second

property'' of this section applies, and the response of Trace A agrees with the

normalized step-response derived above as | £ winl (1 - exp (- tT_ Y1+ )
T

(also shown in Figure 5-17), except, of course, for some additional delay

introduced by the LP.

For trace B and a fortiori for trace C, the frequency swing is large

V& owin |
VE, LP

and non-linear effects appear clearly. Just &s for the ideal case mentioned in
the Appendix A and discussed in Reference 9, a marked overshoot appears
(symmetric for this type of input swing which is itself symmetric about the center
frequency). The experimental overshoot of trace A is approximately 10% and
some rather lengthy calculations indicate that this overshoot is quite compatible
with the theory, given the uncertainties in the quantities measured.
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FIGURE 548 DEPENDENCE OF B. P. ON MAGNITUDE OF ITS
INPUT FREQUENCY SWING (i.e., MAGNITUDE
OF INPUT VOLTAGE SWING TO S. C. O.)

ISOLATED CHANNEL #6; T7.5% B. P., 125 Hz
CONSTANT DELAY L. P.

TRACE A INPUT SWING 2V to 3V
TRACE B INPUT SWING 1V to 4V
TRACE C INPUT SWING OV to 5V

TIME SCAIE 10 ms/DIVISION
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5.8 Discriminators

EMR 229 employs a phase lock-loop discriminator, The dynamic effects are
described mainly by the loop filter and the total loop gain, A linearized model
of the discriminator is shown (compare with Reference 7, Chapter 8).

d .
& w;,(t) =3 ( &4 phase) Phase Dotector- Loop Filter and Y out
J?@ > | Gain: K —> | Amplifier -
rad/sec N ” S > Ka Gy p
from BP-Filter ’F L ]
w Amps
error
Volts
EMR Loop Filter rad/sec
Output Voltage
_
R
1 ”‘i“
1

-1
(KpKv) has dimension ohm

Ka is dimensionless volt
volt
Fig. Linearized Model of the Discriminator
With these notations one has
G ~ 1 1+ RCy1s (5-8)
LEF ~
(Cy+C2)s 1+RC; 2 s
C1+C2
Vout(s) i 1+ RCl s (5-9)
L‘.\ Win (S) B C C RC Cc
K, (1 + (RC) + Kl£§ st IKZK s2 )
A v ATpTy

P
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The loop gain is generally sufficiently large such that

KaKpKy 1
ci+tC, °7 RC,

Therefore, the resulting transfer function takes the standard form
2 . Ka Kp Ky 2¢

w 3 = R Cl
n R Cl CZ Wn
s_
Vout(s) - 1 . 1 +72 ? Wniii (5_10)
A wi,(s) K C; +C 2
in v 1+2 ( E (1 1 2 s
w_ C1RK KKy Cw2g

Fa\ Win(t) is measured from the center frequency of the corresponding channel,

The phase error in the loop (see diagram above) is given by

1 w (S) s cl + CZ
<?E(s) 3 error _ W2n Ka Kp Ky
4 win(s) A Win (s) 1+ 2? s + SZ
Wn WZn

The static phase error at band edge A W:n = WE, LP is given by the
manufacturer as less than 2° = 0. 035 rad,

Therefore,
0.035 Cp+Cz _ 1
WE LP KAKpKv Loop Gain (rad/sec)

For Channel #6, as an example

K,K K 2m 0,075 F 800
v c

AP > = =2.3x 104 rad/sec
C1+C, 0. 035 0.035

During normal operation, the dynamic phase error should be less than
90° = % rad (no lock-loss).
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For infinite loop gain, this amounts to the following condition, derived from
the transient response of € g(t)

- Arc sin ()

( T
l L Win l max, normal 2xp (- 2 2

Wn \/1_ g—zl

)<"T/2 G < 1)

With | A w.

=w
1n| max, normal E, LP

one finds (if ¢ 1)

= (800 rad/sec for channel #6)

Y .
w_» O 64 wg, 1Lp exP (- ( % - Arc sm}))

Vip?

One has also

K, K_K C,+C C; +C
2 ( w.. = A PV 1 z . 1= Loop Gain % Loop Gain

The preceding two inequalities indicate that the discriminator has proper
frequencies of an order of magnitude higher than those of the BP filter (+ 7.5%)
and thus responds about ten times faster, i.e., even faster than the S, C, O,
Therefore, within the accuracy of the experimentation, the discriminator
dynamics may be neglected entirely. (Transfer function is unity).

5.9 The Low Pass Filters (LP-F)

The output from the discriminator still contains spurious components such as
a ripple at twice the frequency of the subcarrier. The purpose of the LP-F is
to remove such unwanted components, while distorting the true signal as little
as possible,

Basically, the 210 C-01 LPF's in the EMR 229 have the schematics shown

below, o
-R.l PZ Ri ' H I\GH
€ e AAN A W e e A ,\_ ™ — o
G AIN
+
+
§ R c. T
I v-m :I_ —_ & T 3 vo v
i Cli r CL - e U

Low Pass (Output) Filter
Diagram
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The transfer function is a third-order function

Vout(s) - Ry 1
Vin(s) R1+RZ l1+ay,s+a,s?+aqs3
1 2 3
R, R R
a, = -L-2 Gy + (R3+R,) Gy + R3®s ¢
R1+R R1+R
2 2
a2 = C3CZR3R4+C3CI ﬁ— (R2R3+R3R4+R4R2)
ay = Cl Cz C3R1R2 R3 Ry
R1+R2

Through an appropriate choice of component values, two basic types of filters
are realized by the same diagram.

1) Constant Amplitude or Butterworth Filters, with general
transfer-function (normalized).

By(s) = ! - (5-11)
S

2
142 Tgys+2Tégys” + T4y

1

(1+Tgy s) (4Tgy s + T2y s2)

2) Constant Delay or Linear Phase or Bessel Filters, with general
(normalized) transfer-function.

15 (5-12)

2 2 3 3
15+15TBEs+6T BE °§ +TBEs

BE(S) = —
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The preceding filters are discussed in References 8 and 10 and useful transient
(including step) responses are shown in Reference 11.

Determination of Pararneter Values

Everything is reduced to an estimation of two time-constants TBU’ TBE
(provided the real filter behavior approaches the theoretical one).

The filters were subjected to rectangular inputs of sufficiently low repetition
rate to constitute nearly perfect step inputs.

For the Butterworth filter, the manufacturer specifies the cutoff-frequency
Weo = 270 £, by an attenuation of 0.5 db (a factor of 9). This gives

Tpy Weo = 0.704

The following table gives a comparison of theoretical and experimental results,
based on the preceding relation.

TABLE
Step Response of Butterworth Filter

Channel #6 {Co = 25 Hz (standard filter)
Weo = 157 rad/sec

Tpy = 4.5 msec

Theoretical Experimental

Overshoot 8.15% (8.1 + 1%)
Time of Overshoot 4.8 Tpy= 21, 6 msec (22 + 1) msec
Time full-scale is

reached first 3.8 Tgy=17.1 msec (17 + 1) msec
Time full-scale is

reached

second time 7.2 Tgy= 32.4msec (30+ 2) msec
Time full-scale is

reached third time

(essentially settled) 10.5 Tpy= 47.4 msec (46 +3) msec
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The agreement is excellent, and the general formula above for TBU is
valid for all channels,

For the Bessel-filter, the manufacturer's amplitude response curves give

3.35db atw ° (cutoff), 12.3 db at twice cutoff and 20. 9 db at three times cutoff.

This leads t&
TBE Weo = 1.8

The table below gives again a comparison of theoretical and experimental

results,

TABLE
Step Response of Bessel-Filter

Channel #6 fco =25 Hz
w_, =157 rad/sec
TBE = 11.5 msec
Theoretical Experimental

Time half-scale is
reached 0. 96 TBE = 11.0 msec (9.6 + 1.5) msec
Time of settling
(within accuracy) 2.3 Tgg = 26.4 msec (26.6 + 1.5) msec
Overshoot 0.75% Not noticeable

Other experiments for other cutoff-frequencies gave similar satisfactory
agreements such that the general formula above for Tpp is an acceptable
formula. Experimental step responses for both Butterworth and Bessel filters
are shown in Figure 5-19 A & B, and the analog computer verification is
exhibited in Figure 5-20,
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FIGURE 5-19A STEPRESPONSE OF 25 Hz CONSTANT AMPLITUDE
LOW PASS FILTER , TIME SCALE 20 mS/DIVISION

FIGURE 5-19B STEPRESPONSE OF 25 Hz CONSTANT DELAY LOW PASS FILTER
TIME SCALE 20 ms/DIVISION
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Figure 5-20, Step Responses of Low Pass Filters
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5.10 Complete Telemetry Chain

After the individual components were tested and their characteristics determined,
the transmission of signals through the entire cascade of T/M components was
studied. For analog computer verification, the separate models of each
individual successive component (P.S.D., S5.C.0O, B.P., L.P.) were simply
cascaded,

Because of interaction of successive stages, the entire chain might a

priori have a transfer function different from the product of the individual
transfer-functions. Such interaction was observed for the pressure-transducers,
However, for the T/M chain, the interaction turned out to be negligible and

the cascading of individual component models is a valid procedure. Moreover,
for standard filters, the LP filter is by far slower than the other components,
except the P, S, D. (where used) and therefore the entire chain will behave very
much as the LP-F with some relatively small additional lags superimposed, or,
in the case of channels #6, 7 and 8 the entire chain will behave very nearly as
the LP-F combined with P, S, D. (if used).

Experimental results and the analog simulation corroborating the statements made
above are shown:

a) For trapezoidal inputs in Figures 5-21 A & B, 5-22.

The agreement is very good. Figure 5-23 shows the response of the
LP alone to the same input, proving indeed that the LP is by far the
major contributor of dynamic distortion in the T/M chain. Results for
other channels can be simply obtained by correct time scaling.

b) For triangular inputs in Figures 5-24 A & B, 5-25 and 5-26, The
same comments apply as in the preceding case of trapezoids.

c) For rectangular (step) inputs, in Figure 5-20 seen before and also
in Figures 5-27 A & B, 5-28 and 5-29, with the same comments as above.

d) For rectangular (step) inputs, but now with P, S, D, included, see
Figures 5-30 A & B, 5-31 and 5-32. It is obvious that indeed, as
mentioned before, the P, S, D, constituted a noticeable part of the dynamic
lag, comparable to that of the LP itself,

NOTE: Experimental data for other channels were obtained, but
they offer nothing new, since these results can be obtained simply by

rescaling times, inversely proportional to the center-frequency.

Peculiar effects in the total T/M chain are now discussed in the next sub-
sections 5.11 and 5.12.
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FIGURE 5-21ARESPONSE OF CHANNEL #6 TO TRAPEZOIDAL
INPUTS (P.S.D. EXCLUDED)
7.5% B.P., 25 Hz CONSTANT AMPLITUDE L. P.
TIME SCALE 20 ms/DIVISION

FIGURE 5-21B SAME AS FIGURE 5-21A EXCEPT THAT CONSTANT
DELAY L. P. WAS USED
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Figure 5-22, Responses of Channel 6 to Trapezoidal Inputs
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Figure 5-23, Response of L, P, (Channel 6) to Trapezoidal Inputs
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FIGURE 5-24A  RESPONSE OF CHANNEL #6 (P.S.D. EXCLUDED)
TO TRIANGULAR INPUTS
7.5% B.P., 25 Hz CONSTANT AMPLITUDE L. P.
TIME SCALE 20 ms/DIVISION

FIGURE 5-24B  SAME AS FIGURE 5-24A, EXCEPT THAT CONSTANT
DELAY L. P. WAS USED
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Figure 5-25, Responses of Channel 6 to Triangles
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Figure 5-26, Response of L, P, (Channel 6) to Triangles
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FIGURE 5-27ASTEPRESPONSE OF CHANNEL #6 (EXCLUDING P.S.D. )
7.5% B.P., 25 Hz CONSTANT AMPLITUDE L. P.
TIME SCALE 20 ms/DIVISION

VaEERARNEE
e IN p

FIGURE 5-27B STEPRESPONSE OF CHANNEL #6 (EXCLUDING P.S.D. )
75% B. P., 25 Hz CONSTANT DELAY L. P.
TIME SCALE 10 ms/DIVISION
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Figure 5-28, Step Responses of Channel 6
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Figure 5-29, Step Responses of Channel 6
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FIGURE5-30A STEP INPUT OF CHANNEL #6, INCIUDING P.S.D. #1
7.5% B. P., 25 Hz CONSTANT AMPLITUDE I. P.

TIME SCALE 20 ms/DIVISION

TRACE 1 INPUT TO P. S. D.
TRACE 2 QUTPUT OF P. S. D.
TRACE 3 OUTPUT FROM L. P.

Figure 5-30B SAME AS FIGURE 5-30A EXCEPT THAT CONSTANT
DELAY FILTER WAS USED.
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Figure 5-31, Step Responses of P.S,D. and Channel 6

Ordinates:

Norm

4

D

PSD Alone —,

rlized Responses

AN

“— Entire

Channel

—

PSD + SCO
+ BP (7. 5%}
+ LP (Const

ant Amplitude)

Time (mskc)

4

0

80




Figure 5-32, Step Responses of P, S, D, and Channel 6
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5.11 Choice of Filters, and Channel Interference

The discussion of Section 5,1 mentioned that the standard frequency response

of each channel (as listed in column 5 of table 5,1) was based upon the assumption
of a deviation ratio of 5, It was also pointed out that this standard frequency
response (such as 25 Hz for channel #6) is not necessarily compatible with the
transducers used (in this case a yaw rate gyro of natural frequency 26 Hz, which
can certainly transmit signals higher than 26 Hz without excessive attenuation).
Therefore, the user might think of using non-standard filters (both BP and LP)

to fit the transducer bandwidth more closely. To illustrate this point, Figures
5-33 A through F, 5-34 A through F show various step responses of channel #6
(with all other channels under power, and zero inputs) for 7. 5% and 15% BP and
for LP going from 15 Hz to 125 Hz cut-off frequency (NOTE: 25 Hz is the standard
LP). It is clear that the use of wider band LP permits a faster response and a
lsmaller |dynamic lag and distortion, but the figures show that there is a limitation
to that procedure. Indeed, as the LP becomes much wider than the standard LP,
a ripple appears (see Figures 5-34D and 5-34C), which becomes very objectionable
for very wide band LP (see the 125 Hz LP filters). It will be shown further that
this ripple is due to interference from adjacent channels, Pictures such as
Figure 5-33 and 5-34 permit the user to make a trade-off between desired speed
of response (lack of dynamic distortion) and interference-ripple (or noise).

The user's choice would, of course, depend on his particular preferences and

on the expected types of signals, Comparison of the pictures also show that, for
the same LP bandwidth, the ripple increases with bandwidth of the BP.

The Figures 5-35 A & B, giving step responses of the same channel #6, but now
isolated (i.e., all other channels are completely removed) show no ripple for

a 125 Hz LP (to be compared with Figure 5-34 F) and only very little ripple

for the extremely wide band filter with 500 Hz cut-off frequency. This proves
that the ripple discussed here is indeed due to interference from other channels,
These pictures of Figure 5-35 further indicate, that if the user has to transmit
only a few signals, the response can be speeded up by the use of wider LP
filters, provided the channels used (and powered) are spaced farther apart.

In order to show the influence and importance of the ground equipment used, the
pictures in Figure 5-36 A & B, give again the step responses of channel #6, but
now with a different discriminator (the EMR Model 210 Fixed Discriminator).
Comparison with Figures 5-33 shows less ripple for the fixed discriminator,

due to the fact that the BP filters differ from the ones of the tunable discriminator
used in all other experiments., (The fixed discriminator BP has a much sharper
cut-off slope than the tunable BP).

Finally, Figure 5-37 A through D proves that among all channels, it is the
nearest neighbors which contribute most or all of the interference ripple.
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FIGURE 5-33

STEP RESPONSE OF CHANNEL
6, 7.5% B, P., CONSTANT
AMPLITUDE L.P,, (NO P,S.D,)
TIME SCALES 10 ms/DIVISION

A) 15 Hz L. P,

B) 25 Hz L.P.
(STANDARD)

C) 50 Hz L. P,

3
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FIGURE 5-33 CONTINUED

D) 75 Hz L. P.

E) 100 Hz L. P.

F) 125 Hz L. P.



FIGURE 5-34

STEP RESPONSE OF CHANNEL
#6, 15% B, P, CONSTANT

AMPLITUDE L. P. (NO P,S.D.)
TIME SCALES 10 ms/DIVISION

A) 15 Hz L, P.

----‘

IIIIH

I' B) 25 Hz L, P,
(STANDARD)

IIIIIIIIII &) 501 L.P.
NN NgE——
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FIGURE 5-34CONTINUED

D) 75 Hz L. P.

E) 100 Hz L. P.

F) 125 Hz L. P.
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FIGURE 5-35

STEPRESPONSE OF THE TSOLATED
CHANNEL #6

15% B. P., CONSTANT
AMPLITUDE L. P.

(NO P. 5. D.)

TIME SCALES: 10 ms/DIVISION

A) 125 Hz L. P,

B) 500 Hz L. P.
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PIGURE 5-36

STEPRESPONSE OF CHANNEL

#6, T.5 % B. P., CONSTANT
AMPLITUDE L. P., (XNO
P.S8.D.)

TIME SCALES: 10 ms/DIVISION
FIXED DISCRIMINATOR

A) 25 Hz L. P.

B) 110 Hz L. P.
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FIGURE 5-37

STEPRESPONSE OF CHANNEL

TIME SCALES: 20 ms/DIVISION

7.5% B. P, CONSTANT AMPLITUDE

L. P.

A) 25 Hz L.P. (STANDARD)
CHANNEL #5: OV D.C.

CHANNEL #7: 5V D.C.
(BEST CASE)

B) 25 Hz I. P. (STANDARD)

CHANNEL #5: 5V D. C.
CHANNEL #7: oV D. C.
(WORST CASE)
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FIGURES5-37 CONTINUED

C) 125 Hz L. P. (WIDE)
CHANNEL 5: OV D.C.

CHANNEL 7: 5V D.C.
(BEST CASE)

D) 125 Hz L. P. (WIDE)
CHANNEL 5: 5V D. C.

CHANNEL T7: OV D. C.
(WORST CASE)



This interference is easily explained theoretically,
and its two neighbors #5 and #7.

Consider the channel #6

Channel Lower Edge Center Upper Edge
(Hz) (Hz) (Hz)
5 1202 1300 1399
6 1572 1700 1828
7 2127 2300 2473

In Figure 5-37 D (worst case with wide LP Filter) one observes on one side of
the square wave a ripple with frequency of approximately 190 Hz

(= 1572 - 1399 = 173) and on the other side a ripple at nearly 290 Hz
With the figure below one has (neglecting phase shifts

(= 2127 - 1828 = 299).

in the BP, which are immaterial here)

Constant|{ SCO Visinw.t | ™1 (gain BP
Signal 3 Principal 1 1 at wy) gain g(w)

Channel s(t

Mixer
ai

Constant | SCO T2 (gain
Signal 5| Neighboring at w1+AW1) BP

Channel

stin(w1+ A Wl)t

an output signal from the BP given by
s(t) = (g(w]) mlvl) sinw, t+ (g(wy +4 w1)m,v,) sin (wy +4 wy)t
Because of the selectivity of the BP,
| g (wy +8 wi)l« | g (wy)]

must be satisfied.
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Therefore, one has, since my = O (m;), Vy = O (Vy)

g (w1 + Awl) m; V2

= €
g wm, v, £ R el << 4

We can restrict our attention to the input signal
s1(t) = sin (wlt) + Esin(w) + 4 wilt
to the discriminator.

For neighboring channels Aﬂ <1 , but not necessarily small,

w1

Many discriminators, and particularly, the ones used in this study, basically
detect phase differences or frequency differences by changes in zero-crossings.
For the EMR 229, e, g., phase detection is based on comparison of pulsed
signals from a limiter and from a V,C, O, (multi-vibrator) in the feedback

loop (See Section 5. 8).

If &€ = 0, zero crossings t, of sj(t) are given by tn =nmm/wy (n=0, 1,2,...)
and spacing tpt+] -t =7C /wy.

For € non-zero, but small relative to unity, zero crossings are shifted by an
amount Oty givenby s) (tp+ At,) =0

Using the fact that |£] << 1 and hence wl\L\ t,|<< 27t , this leads to

wy Aty + € Sin (A_wl_ nTY)

w1

0

~

Hence the new spacing between zero crossings becomes

AW . AW
tn+l+Atn+l -(tn+ Atn)=£_r_ - € (sin 1 (n+1)77 - sin ! nrmr)
Aw TT Aw
= ™ _2E sin 1 cos 1 (n+—1—)’l"l’
Wy Wi wy 2 w1 2
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Since the signal (frequency shift) given as output by the discriminator is
inversely proportional to the length between zero crossings, one gets

f (output discriminator) T /wy L
f (same for € = 0)
TC_ - 2&  sin Awy 1T cos 1 (n+_1.)TT'
w1 wi w1 2 w) 2
or, for running time t ( 27 ,t)
w1
w. w
£04) -4 (28 sin 8™ Ty cos (a Wlt+A 1 1T
f(&=0) 7T wy; 2 Wy 2
AWy
One obtains indeed a ripple with frequency and with amplitude
w
2€  sin 4 W) Z_
T W, 2

Due to the presence of & , the ripple amplitude depends on the bandwidth of

the BP filters (for narrow BP, £ decreases and there is less ripple amplitude).
Moreover, the LP filter following the discriminator also helps in suppressing

the ripple. Those statements are confirmed by inspection of the Figures 5-33
and 5-34, showing the influence of BP and LP respectively.

5.12 Power-Interruption

In order to observe the effect of power interruptions on the signal transmission,
several tests were run under a variety of conditions, Some results are shown

in Figure 5-38 A through E. Inspection of these pictures demonstrates that

power interruptions can give rise to signals at the discriminator output resembling
normally transmitted signals. One possibility of distinguishing between genuine
transmitted signals and power-interruption signals exists in the fact that the

latter category would show up as a simultaneous disturbance in all channels,
However, in the case of catastrophic events sensed by the transducers, such
simultaneity may also arise in regular signals not due to power interruption.

Figures 5-39 and 5-40 give the output frequency of the SCO's in channels 6 and 15
as a function of power supply voltage, Clearly there is a wide range of supply
variations (from 22V to 37V) where the output frequency is indeed independent

of supply voltage, indicating the good quality of the SCO's,
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FIGURE 5-384
POWER PULSE FROM 32V TO GROUND

TIME SCALE: 1 ms/DIVISION

FIGURE 5-38B

CHANNEL #15

CHANNEL #6

INPUT SIGNAL 0-4LV D. C.
POWER SUPPLY 24 V - 32V

TIME SCALE: 20 ms/DIVISION

FIGURE 5-38C

CHANNEL #15

CHANNEL #6

INPUT SIGNAL AT 86 Hz
REPETITION RATE

POWER INTERRUPTION 32 V
TO GROUND

TIME SCALE: 5 ms/DIVISION
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FIGURE 5-38D

TRACE 1 CHANNEL #15

TRACE 2 CHANNEL #6
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FIGURE 5-38E

TRACE 1 CHANNEL #15

TRACE 2 CHANNEL #6

TRACE 3 INPUT SIGNAL AT
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6. THE INVERSION PROBLEM

6.1 Introduction

In previous sections 2, 3, and 4 analytical models were derived for the three
categories of instruments; rate gyros, accelerometers, and pressure trans- -
ducers, including appendages such as mounting brackets and connecting tubings.
These models permit direct calculation of the instrument outputs for given input
signals, say, by means of analog simulation. However, in order to find out what
really happens in the vehicle carrying the instruments, the inverse problem of
calculating input signals for known (recorded) output signals is what matters.

This report describes an inversion process for the above-mentioned instruments,
under the following assumptions and rules.

A, The recorded output data are available as equidistant, sampled quantities
in engineering units, presented in tables or as graphs. (These data
come from continuous traces having finite bandwidth).

B. All instrument models are, where necessary, simplified to single-input,
linear time-invariant systems (zero order model). This means that
parasitic inputs such as accelerations for the gyro and pressure
transducer, and transverse acceleration for the accelerometer, are
neglected. The neglected secondary effects are small.

C. The inversion is performed on a digital computer. It is an optimum
inverted filtering, in a minimax sense.

D. The reconstructed input signals are obtained as equidistant/sampled
quantities in engineering units, displayed in tabular form or as computer
plots. Error bounds are given. The inversion process can be used to
study the uncertainty with which the reconstruction is found, and the
sensitivity of the results to changes in the system parameter values, It
can also yield information on statistical effects by means of so-called
Monte Carlo simulations.

The testing of instruments, coupled with theoretical analysis, has resulted in
the following typical (zero order) transfer-functions: (x is input signal ,
y = output signal, s = transform variable).

Rate Gyros

y(s) = K (6-1)
X(s) 2

155



The bracket effects are negligible for the main input, The electro-mechanical
output device is considerably faster than the mechanical response of the

gyro; moreover, the device forms an entity with the phase-sensitive demodulator
{not included in the inversion task statement). Therefore (6-1) reflects the
dominant part played by the mechanical response only.

Accelerometers
X(s) _ K (6-2)
x(s) 142}y 5 4+ _s?
n Wn WZn

The bracket-effects are negligible for the main input. The damping ? tends
to decrease as inputs vary faster (a non-linear effect). n

Pressure Transducers

Giannini 500 1P transducer
in
yis) = K (6-3A)
x(s) 2 2
(142 r s + 52 ) (1+2r S 4 _S )
n VYn wo or Wor Wzor

The parameters ? o’ W represent the basic Bourdon tube, while? or' Wor
represent the connecting orifice. However, this interpretation is somewhat
artificial, since both elements interact and (6-3A) is to be regarded as an
entity which should not be split,in physical interpretations. The damping { or
tends to increase as the inputs vary faster (a non-linear effect).

Bourns 800 -le transducer
in
2

1+2 = 4+ 3
y(s) = K ?a Wa wly (6-3B)
x(s 2
=) (1+27 5 +__sz)(1+zis+s )

n %n wzn Wb WZb
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T
&

The parameters ? n W, represent the basic Bourdon tube; while ar Wa
and ?b' wp, model a low frequency approximation of the T-tubing and orifice.
Again, there is interaction and (6-3B) should also be regarded as a single
unit, Of course, f0r purely mathematical purposes splitting is allowed.

The preceding results show that all instruments (as was obviously expected)
smooth out the input wave form x(t) into more gradually varying output waveforms
y(t). Inversion therefore requires reconstruction of a rougher signal shape

from smoothed data, and is in fact equivalent with differentiation of recorded
signals, All the problems attending differentiation do show up in thé inversion

EI‘OC&SS.

Observe that, with one exception, all transfer functions to be inverted are 2
second order systems, The one exception is the factor 1 + 2 ra 5+ B
Wa, WZ
a
in the T-tubing of the Bourns transducer, which, when inverted, becomes
a classical, smoothing second order dynamic system.

The next sections discuss the basic inversion relations, the error-analysis,
interpolation and shifting, the cascading, the inversion of the numerator, etc.

6.2 Theory

6.2,1 Basic Inversion Relations of the Second Order System

Consider the normalized system (K = 1)

y(s) _ 1 (6-4)
x(s) 1+2 ?
n

2
s + s
n w2n

W

corresponding with the relationship

2 : v .
y(t)+—;n?ny(t)+ o

The output data y(t) are available as N equidistant samples (directly measured
or obtained by interpolation; see section 6, 2, 2).

v =y (g ya =y (t + Thooos vy =y (¢, + (k-1)T)h...

e YN Y (g + (N-1)T)
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We approximate the continuous second order operator (6-4) by a discrete
second order operator:

X =AY+l v R Yt ¥ Vi1 (6-5)

where %) = x (to + (k-1)T) is the input sample to be reconstructed, at the
same sampling instant as yp. If y(t) is decomposed in its harmonic components
}Zi‘;-]_-)- e W one finds the conditions
. 2
X eiWlim 4 e W14y N .

VVn Wn

and, for zero-frequency accuracy,

o3y =1 (6-6)
The foregoing conditions lead to:
2
(w.) :
w.
1 - cos (w T) (w T)Z sin (w T/2)
n
= 27
A - = n n = n w T
&/ sin (w T) W T sin (w T)
or
2
A = 1 ; wT/2 >+ ?n w T
(w,T)? \ sin (w T/2) w_ T  sin(wT)

y - 1 (wT/Z' >2_ fn w T

(wnT)2 sin (wT/2) w, T sin (w T)
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Clearly o and Yy~ depends on frequency w.

(Taylor - development around w = 0) gives
L+, wvn T)

o =
(o] (wn T)Z

- i - fn (w, T)
° (wy, T)?

(wy T)z - 2

Fosl- %o ¥,"

(w, T)°

A low-frequency approximation

(6-7)

These relations correspond to the choice of symmetric differences to approximate
derivatives., Formula (6-5) is not valid for the two extreme data points., For

the leftmost point we use
)= X yz3t BVt FLY,
and for the rightmost point

N X YN T RARIYN-1T § R YN-2

The corresponding coefficients are given by

(6-8)

(6-9)

>}
o< - 1 ( W T/Z > - n w T -
L 2 :
(w T) sin (w T/2) w_ T sin (w T)
n n
2
ﬁ = 2coswT T < w T/2 §+4?n w T/2
L (w,, T)? sin (w T/2) wy T tan (w T/2)

“Lzl-‘XL-ﬁL
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Hence,

R

/S L with fn replaced by - ?

n

o with ?‘ n replaced by - 7 a

L

L-f3 R-a/R

The low-frequency approximations are:

= &

O(Lo

ﬂLo

b/Lo

and

ﬂRo

a/Ro

-2+ 4 fn(wnT)

2
(wp, T)

l-O(Lo-ﬂLo

-2 -4 ?n (w_ T)

2
(wy, T)

1+ ?n(wn'r)

(wn T)2

I_FRO_(RO

160

(6-10)

(6-11)



6.2.2 Interpolation and Shifting of Sampling Instants

References 12, 13 and 14 are very useful for this section, Assume the original
output data to be N equidistant samples {?k} :

A

vk = f(k-1) Tg), 1¢ kg¢Ng (6-12)

While these original output samples (}‘rk) are found at instants t = o, t =T, ...

t = (Ng~1) Tg, the error-analysis (see next section 6.2, 3) or the preference of

the user may dictate a different origin and/or different spacing (see section 6, 2, 1).
t=t,, t=t,+T, ..., t=ty+ (N-1)T

We may assume that the signals y(t) are bandlimited for practical purposes,

with finite energy (if necessary, after subtracting the average value), This
means that if the Fourier transform of y(t) is

w .
Y(w) = / y(t)e "Wt g¢

then Y(w) = 0 for |w]|) a minimum value which we can set equal to (. wi,.

Then |4 is a number, often larger than one. The energy is
o

{4
E, = fﬁ(t)dt:z.%/ " lywfdw ¢ o
- v

A
For the samples {yk{ , one has approximately (exactly, if T is sufficiently
small; Tg¢ XX and if y(t) is truly band-limited):

-0

2
}AWn N
5 A >
E, = T, = Yk
k=1
The bandwidth w,, can, if necessary, be estimated by a discrete Fourier-

a nalysis (preferably the Fast Fourier transform techniques) on {Jk} . The Nyquist-
Shannon sampling theorem says that, in order not to lose information concerning
y(t), the sampling interval T4 must satisfy

Ty ¢ —1&%
¥ Wn

If this inequality is not satisfied, aliasing occurs and even an ideal (low pass)
filter cannot reconstitute y(t) exactly from {yk {' . Since the reconstruction is
not performed in real time, a non-causal interpolating operator can be used,
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Therefore, one uses here the interpolating function (corresponding to an ideal
low pass filter for w L WINT).

sin wyNT t

T
T

with f'*wn\<WINT\< 2 —;L -pw,
s
t

s

One has the 1nterpolat1ng operator with the narrowest bandwidth if wynp = P W
For any time T the interpolated value y of y(f) is taken as
S anINT (?- (k l) TS)
YE) =% yl-nTy
k=1 T (t - (k-1) T )
T s
]

The interpolated and shifted values yj are now given by

N
s . . el
g = ;r\k sin Winr (to + (-1)T - (k-1) Ty)
7 k=l T

(to + (i-1) T - (k-1) T )
S

T can be larger, equal or smaller than Ty, In some cases, to avoid the Gibbs
phenomenon, the interpolation formula might be changed slightly to produce a
Fejér sum.

This interpolation formula can be used for a variety of values of ty in an interval
of length T to obtain shifted sample instants of the output (yk) and hence input
(xk), for the same set of original (yk)

6.2.3 Error Analysis for Single Second Order Dynamic Systems

The equation (6-4) models the rate gyros and accelerometers (but not the pressure
transducers). Looking at the discrete relationship (6-5) used for inversion,
one observes three immediate sources of error.

A, Quantization Error

Disregarding the inaccuracies in & , /3, y~ there will be an error
-~
£ qx in %} due to quantization, roundoff, reading error and noise in {Yk i .

t\ r
The following reasonable model is used to describe those errors in {Ykﬁ .

One assumes thatthe errors have a mean value £ a/r\ld further that
the deviations around this mean have an upper boun hy'
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In other words, for each k:

~ A b
average of y k - (y k) 4pye = €y

A A - A
by k- (5 W)izue - 4| € By
As a result, because of the interpolation formula established in section
6.2.2, the |yk| values have errors with mean ¢ = ¥, and with an
upper bound on deviations around that mean which is strictly speaking
infinite. However, use of the statistical formul%\s derived in the
Reference 12, combined with th’g fact that € , = § _ already takes care
of systematic bias, shows that h, may also be taken as a realistic '""bound"
on deviations around the mean for {Yk , except for infrequently occurring
highly unfavorable error distributions.

Then, the xi samples have errors with mean

A
£ =& = &
X Yy Y
because of condition (6-6), and deviation around the mean bounded by
A
Cq hY

where

cq ool HhA L HIE

1+ ?‘n(wnT) + |1- }n(wnT)l + l2-(wnT)2

(w_ T)?

Clearly c¢_ increases as (wn T) decreases to zero and cq becomes
infinite for wy T = o.

(see also Figure 6-1), This consideration imposes a lower bound on
(wnT). Since the purpose of this error analysis is only to establish a
compromise value for T and no exact knowledge of the error is required,
we will use here for the quantization error the following relation:

3

A A
gx \<]Ey‘ +thy

a conservative bound, reached only in rare cases with a very unfavorable
distribution of noise errors,
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Figure 6-1, Quantization Error
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Operator Error

Besides the quantization error, there is still an operator error
EDX in X due to replacement of the operators o, ﬁ , a/

by the low frequency constant multipliers o« o, /3 , ¥ o Again
Reference 12 gives background information for the following developments,

For the system modeled by equation (6-4), the true inverse operator
is:

. 2
G(w)=1+1i 2( o (W/wy) - (w/wy)
The approximate inverse operator is:
D(w) = X exp (iwT) + B3, + ¥ o exp (-iwT)

=1—2(1-cosz) +i2?n sinw T

(wn T)2 wnT
One has
, E M¥n 5
£DX\<2__'% | G(w) - D(w)|” dw

The operator error ¢& Dx increases when T increases (for fixed u w

- . - n
of course), unlike & qx which decreases under these circumstances,

Indeed, to find & py one needs an expression for

" %n 2 W= 2
}&(w) - D(w)| " dw = wy, | G (wwy) - D(wwy)] " du
=
= I R
Wn - (p \< )
where p=w, T
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/ ] 2 2‘ 2 sin pu E
- — - -
Then I (P,Z) 2 { (l-cospuw)=w +4§ (33 DP% ) dw

_L[?; (H.p) - 8 sin (prp) + 4 (1ep) cos (pp) + sin (P) cos (1p)

(pp)
+2 (wp)? sin (up) + ‘_}*Tlg)_ 2 (wp) ]
+ 2 rZF_3 4 si + 4 i
—(k‘-PT [(yup)- sin (. p) pp) cos (pp) - sin (1 p) cos (k p)
2 3
+ 35 {pp) ]
A series development shows that
_2. ¢ 3 4
L) = g5t (pp i 648“I“‘P’ )
No S 2 __L_E “n I )
w DX £ 2T et P’\(
12

Figure 6-2 shows the increase of (I Aps T ))w1th p = w,T, for a fixed
value of p (k=2). The bound & px 1s also very conservative, being
reached only by the rarely occurring most unfavorable combination

of signal and transfer function.

Because of the linearity of the system model the worst total error on
x(t) is given by the sum

€ .7 €t €p,

x qx

Due to the different behavior of ¢ __ and &y with varying T, £ 5> Will
reach a minimum for a finite optimum value of T, say T .

The preceding discussion on how to find T is based on the idea that
for this particular application a minimax formulation:

find: min | max error on x(t) |
T any time t in the
record

is more appropriate than, say, a least integral squared error criterion.
Indeed, one wants to discover what exactly happened in the vehicle in
case of an accident, where large peak signals can be expected and one
wants to find these peaks as accurately as possible, rather than obtain

a good average fit (which would give too much importance to more trivial
portions of the signal x).
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Figure 6-2, Operatotr Error

Ordirfate:
-
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| M=2.0
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Since both & 5 and € px are conservative, & will be a very con~
servative esgimate, reached only in rarely occurring most unfavorable
combinations. Actual errors can be expected to be quite smaller in
most examples (see examples in this report), However, regardless of
the conservatism of £, the formulas for this bound are useful in
establishing a best compromise T .

It is possible to find less conservative error estimates by different
means. These means include '"Monte Carlo' runs to establish expected
values for the quantization error, and approximate calculation of the
spectrum y(w) of y(t) by means of fast Fourier transforms, followed by
numerical calculation of the exact formula for € pyx. If the probabilistic
structure of the errors is known, more refined statistical modeling
becomes possible,

Note that & _ bounds the error at input sampling instants on { Xk& .

The inversion results are recorded as samplesgxkiand no interpolation

is performed on x, Note that if y(t) were truly band limited, then x(t)
would also be truly band limited, with the same bandwidth. However, y(t)
is only approximately bandlimited, and therefore the approximate
assumption of finite bandwidth is better satisfied by y(t) than by x(t).
Therefore, it is preferable to avoid making any assumptions about the
spectrum of x(t). Values of x(t) at new instants of time are better obtained
by interpolation and shifting on (yk{ .

Parameter Error

The third kind of error is due to errors in the values taken for the system
parameters Wn’? n» and, more generally errors due to replacement of
the true system equations by (6-4). One can get an idea of the importance
of this error by making parametric runs with neighboring values for

wn, f n. Note that one obvious reason for parameter error is the fact
that we use average parameters for all instruments of the same class,
say all (-3g, +3g) accelerometers, while tests have shown that there may
be a noticeable variation (more than 10%) among individual members of
that class.

There is also a fourth type of error, less obvious than the preceding
ones,
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Inaccuracy Due to Truncation of Data (Edge Effects)

If the true output samples {;\rk " contain non-zero elements for t<o
or for t »(Ng_1)Tg, then the interpolation formula produces an error
in the values of y. due to truncation, Because of the shape of the
interpolating function, this truncation effect is largest at the edges of
the record and very much suppressed toward the middle of the record.
A simplified estimation of this truncatmn effect is obtained below, The

/J.\nﬂuence of the first omitted sample Yo att = s (left) or

YNs41, att =N TS (right) is the most 1mportant Assume that \§o | = |§r\1 ]
and | YNs+l| = \QNS . Use an average for the absolute value of the
interpolating funct1on.

sin wiNT t _ Tg
T, Y o l.s5mt
Ts
av
Then, at a distance | A t | from the edges, one finds an error
Ts

([;’\i\ or ‘?Ns\)

L5TT(T + |4 o)

If winT K "T'/TS several truncated values will contribute; however,
there will also be more correlation of errors. For this reason the error
can be estimated as

¥ Ts

1.5717 (TS+IA ti)

(| 9] or | yngl)

. T
d/_llfWINTTS>-5—
X =33 wiNT 6

In order to have compatibility wg:h the rest of the inversion, the truncation
error should be of the order of h But, due to the worst case
assumptions of the error analys1s, one may allow truncatlon error
estimates an order of magnitude larger than hY say 10 hy Then one
finds
SRR ESE
(At)left or Ts J'( ~ _Xf— -1 }
right \or lyNs\ 157 hy
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as an estimate of the distance from both edges where results for {x k (

must be treated with caution, If no interpolation is used in the inversion,
the truncation error does not arise. In many cases of truncated records,
extrapolation by eye of ( vk ( before inversion can be used to decrease
the truncation error.

6.2.4 Inversion of a Cascade of Second Order Systems (Giannini Pressure
Transducers) '

Now we take up the case of a cascade of two systems like (6-4), as exemplified
by (6-3A)., or part of (6-3B). Such a system can be decomposed in two sub-
systems, at least for the purely mathematical part of the reconstruction as
shown in the normalized diagram below:

x(t) z(t) y(t)
1 1 ]
- 5 2 2 >
1+25 S+ £ 142 p S+ =
2 w2 w2 1 w1 W21
Hence
Z(s) - 1
X(s 2
( ) 1+2 ? s + s
2 W2 WZ
2
Y(s) _ 1
Z(s) ) 2
1+2 ( S + S
1 w1 2
w1

For each subsystem the formulas of Section 6.2,1 can be applied immediately.
However, the error analysis is somewhat different, First, in order to have
the intermediate signal z(t) as smooth as possible, one chooses the following
order for inversion:

First: w] = max (W, Woyp) OF max (Wn, wy,)

Fl is the corresponding damping coefficient
followed by: w, = min (Wn, Wor) Or min (w,, wb)

? 2 is the corresponding damping coefficient.
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Hence, w1y wp.If wp =wp, then ? 1 is taken as the lower damping
coefficient.

We can assume a bandwidth of y(t) in the form

e w2
. A
requiring a sampling interval Tg for (yy) given by
™
Tg { ———
w2

Then the intermediate signal z(t) has approximately the same bandwidth poc wy
and the same interpolating function can be used for both z(t) and y(t).

A
Assume that a sampling interval T, is used from 1y to z,, and an interval
T, from zy to xp. We now calculate the error bounds,

A, Quantization Error

One gets in the same manner as in Section 6, 2. 3 that

A N
Eax $1E, 1ty (g, h

Yy
where
Lt 0y T+ 1= 0 Tl + 2 - w1 T? |
(Cq)l >
(w1 T1)
and (cg), is given by a similar relation, where index 1 is replaced by
index 3

This is again a conservative bound,

B. Operator Error

Proceeding as in Section 6.2.3, one finds (see Reference 12)

w .
iEszggl‘[M 2 [G,G,-D,D; ] ¥ ™ aw
Cws
w2
= ii_w_ [ (G2-D,) G +(G-Dq) D,) Y e ¥ dw
2 2

E
2
then ¢ % ¢ -2-%—' |(G2-D2) Gy + (G -D) D, | dw

w2
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or

£\ M2 rrz 2 1/2
¢ DX\<<21T) {< l(Gz'DZ)Gl\ dw)

-y w2
W W
2 1/2

2
( / | G-D}) D, | dw) l

-rAWZ

While the preceding expressions can be calculated exactly, the results
are fairly complicated and more precise than is needed here, Therefore,
we replace them by a simpler approximate relation (with some
compensation of errors)

£ E 1/2 FLWZ > 1/2 pwy 2
DXaPPrC’Xs{_Z_Q [ ( 1G,-D, | dw) +(/ \ G1-Dy} dw)

e A |

In terms of the pre-calculated expression for I = (p, t ), one can rewrite
the last inequality as 1/2

approx

1/2

[T

EY 1/2 1/2

EDX L <—2—1~r~) [WZI \\.\.(WZTZ' ? 2)-1 + [WIIF(WITI, ?lﬂ ) .
\
\

The minimum of & = & < T £ px can be found by calculating both
sources of error for a net of values of T} and T,. The bound & < for
the cascade will be even more conservative than for the single second
order system.

The spacing T for the first inversion can be obtained if necessary by
interpolating ({r\k) into (yy) with T satisfying

Tg &TU /(e w2)
This gives ('z\k) at a spacing Tj. The distance T for the second inversion

can be obtained if necessary, by interpolating these ('z\k) into a new set
(zk) with distance TZ provided T1 £ Ts'
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IfT) > Ts’ another set of (;.\k) is to be calculated, say by shifting

the origin (and sampling times) of the new (é\k) to half way points of

the sampling times of the old zk} . This process can be repeated

until one has a combined set of 4 21 }values with spacing smaller than
Ts.

For many applications one can expect larger inversion errors for the
cascade than for a single second order system, due to the need for

higher order derivatives in the inversion process. This observation
implies that, unless the transducer models are exactly known, and there
is very little noise, it is preferable by far to restrict oneself to low order
approximating models and that the supposed gain in knowledge of the real
physical device by means of a high order model may be illusory in
practical applications., Therefore, if a physical system consists of a
large number of cascaded devices, it may be preferable, at least for the
purpose of inversion, to take only the dominant blocks, i,w,.,, the slowest
ones, and, where possible, to lump several fast blocks into a single lower
order approximating block, Such long chains do indeed occur in the

Scout System, where the entire telemetry transmission follows the
transducer.

In fact, a general theory exists for such inversion problems.

6.2.5 Inversion of a Numerator in the Direct Transfer Function

(T -Tubing of Bourns pressure transducers)

The numerator factor

Y(s) :1+2r s+ _s?

V(s) a W, w

in the transfer-function (6-3B) gives rise to a conventional second order dynamical
system when inverted. Here V(t) is defined as an intermediate (mathematical)
signal, such that inversion of V(s)/X(s) becomes the problem treated in Section

6.2.4. The order of inversion, with Y/V inverted first, then followed by inversion
of V/X is again chosen to find the intermediate signal v(t) as smooth as possible,

Assume that y(t) has a bandwidth

}k min (wn, W)
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Then v(t) will have approximately similar bandwidth., - For the inverstion of
V/X that bandwidth implies a spacing in v(t) ~ samples Tg v satisfying

Ts, v ‘"/(H min (W, Wp))

A similar spacing Tg, y = Ts, v is needed for 4/3; k i to avoid aliasing.
If h,(t) is the impulse response connected with the transfer function of V(s)/Y(s)
then one has for the forced part of v(t)
t'=t
v(t)forced = ha(t') y (t-t') dt’

t'=o
(A free solution with 2 arbitrary constants could be added, see further).
If now one has a set of {yk t with spacing T

yk =y (t, + (k-1)T), t,=o

one can replace the integral for v(t) forced by the discrete approximation:
n=k 1
VKT 3 Zl Vitl-n Hp=Hpo2 )= 5 y1 (Hy - Hy )
n-=

t1=jT
= 1 = 1 1
Hj { ha (t') dt! I—?[(_]T)3 jy o

t'=o

Hj =0 ifj & o
i.e., H.(t) is the step response, and T is sufficiently small such that y(t+T)-y(t)
is nearly zero over the record-length, (i.e., y(t) is nearly constant over a
length T). The latter condition is satisfied if T, J4-min (wys wp) <Kl  (See
Reference 12). As an example, one might take

0.2

T g
N
o min Vo2 W)
while, for simplicity, T is also taken as a submultiple of T,. For Hj one has
further, explicitly
- aWaliT)
e ?aa-] cos(l-—(za wajT—Arcsin\{‘a)

(- 2y

H.=1 -
J
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a3

Once {Vk e is found, the rest of the inversion proceeds as outlined in Section
6.2, 4.

However, there is one particularity already mentioned before. Since only the
forced part of v(t) was used, assuming v(t = 0) = o and \'r(t = 0) = 0, one can add
a free solution corresponding to

v +2r Y _+v=zo
2 a w,

w
a

This means that as far as x(t) is concerned, one can add a free solution of the
same differential equation with x replacing v.

If somehow x(0) and x (o) are known, then

(o) = x(o) -

*free d(o)

X
force

)Efree(o) = ;c(o) - ;{forced(o)

The free solution to be added, at the sampling times of =xk is:

- t‘a.wat \/ 2
xfree(t) = e [Xfree(o) cos V1 - 1 a wat

+(———Xfr£e (0 4 ?a X, 0o(0) ) sin (1 - \rza wot)/ V1 - T Za ]
a

In some cases x(o0) and x (o) can be estimated. Say, that before t = o a steady
regime is established, x(t) is a constant or a ramp for t {o

x(t) = x(o) + };(o)t ,tgo
then y(t) is also a constant or a ramp with
y(t) = y(o) +ylo)t | tgo

where, for K = 1,

n

x(o)
x{o)

"

y(o) + y(o) 2

y(o) (}n +?b_’\a)

Wn Wb Wa

x (o) is obtained directly from .’x k f , if no shift is made in origin, while
. forced X _x . . A .
Xforced(0) = -*1 (Txr. WL 1) or some other relationship, but this is subject

X
to large errors!
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Other known boundary conditions can also occur, e.g., at the tail end of the
record to be inverted., In all cases two boundary conditions are needed to
specify x(t) completely. Superposition can be used to eliminate the need for
specific formulas for other boundary conditions,

The error analysis for this case is not complicated, One needs an estimate of
errors in v(t) based on the errors in y(t), in order to be able to use the results
obtained for the simple case (Section 6.2, 4) of the Giannini models.

Using the formula for vy, one finds immediately for the bias in the error
A\
€™ &y
Hence

levk \<IEYI lHk-ll max= lgyl(l + overshoot)

A good value, for k not very small (neglecting boundary effects) is then
= &
€ vk v

As for the unbiased part of the error, one obtains the bound
A
h h
v < y

using the fact that the step response fha dt was normalized. Finally, because
of the normalization of h,(t) again, one may take very approximately

for the signal energy.

A
Hence, one simply uses the error description of y also for v, without any change
at all.

6.2,6 Some Remarks on Inversion

This section discusses a few problems arising in the inversion process,
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A, Order of the Discrete Inversion Operator

In Section 6.2.1, a discrete second order operator {i.e., second order in the
basic delay operator e'TS) replaced a continuous second order operator (second
order in the basic differential operator s). A higher order discrete operator
could, in fact, approximate the ideal operator better. However, better inversion
results generally would only be obtained if y(t) were known exactly, without any
error or noise, or with very little noise, With noise present, a higher order
discrete operator leads to a larger coefficient Cq (see the results for the cascade)
and hence larger errors,

To offset this, one would have to take a larger value of T and this would then
negate the apparent gain produced by the higher order inversion operator. In
fact, if signal and noise description are known, one can find the optimum order
of the discrete inversion operator, but it would often be rather small in practical
cases,

There exists a more general theory covering this aspect. We refer to the end of
Section 6. 2. 4 for a brief discussion of what to do with high order models, and the
desirability to collapse long chains of devices into a low order approximation,

in cases where noise and parameter uncertainties are significant, as is usually
the case,

B. Interesting recent general results of a theoretical nature on inversion
of linear systems can be found in the references listed under 15, 16 and 17.

C. The present formulation was made with the models of the Scout
instruments as specific applications. Therefore, the inversion of the fourth
order Giannini model was reduced to successive application of the second order
accelerometer model. However, one can also directly obtain inversions for
higher order models, without the use of factoring.

D. For very fast inputs (i. e., fast compared with the response of the
transducer), the reconstruction of the actual waveform is very dubious and is not
even to be considered a well-posed physical problem. What counts is the total
area under the fast pulse which acts more like a mathematical impulse.

This effect is also demonstrated in Figure 6-3 for an accelerometer with

w,, = 850 rad/sec, ?n = 0. 55 where all the inputs have equal area. Since output
area is nearly proportional to input area, the strength of the impulse can be
calculated, without any need for inversion by direct simulation and area-
measurement with a planimeter (after the fact has been established that this

is indeed a very fast input).
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Figure 6-3, Uncertainty for Nearly Impulsive Inputs
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E. In the present version of the digital program, the bandwidth of the
transducer output signal is estimated by the user through the input (& . A

poor choice of can lead to erroneous results (especially in interpolation).

It would be useful, in an enlarged version of the inversion program, to have the
computer estimate A by means of a spectral analysis. Such an analysis can be
performed fast by the use of the fast Fourier transform.

F. Edge-Effects

The fourth type of error discussed in Section 6,2, 3, due to truncation of ?k data
can be (partially) removed in some ways. One method is to use such sampling of
the original y(t)-record that interpolation becomes unnecessary, Another method
consists of using a different interpolation scheme near the edges, such as spline
functions. However, this approach requires further study to estirmate best choice
of order and type of interpolating function. A simple, but efficient way of
alleviating edge-effects was mentioned at the end of Section 6. 2, 3; it can be used
in the present program.,

6.3 Organization of the Digital Inversion Program

The theory of the inversion process used was given in Section 6,2, While the
purely computational (numerical) aspects are very simple and straight-forward,
the logic is a little more complex., Therefore, the present section describes

the logical organization of the digital program for the reader who wishes to know
its details.

Inversion Program

Inputs: tso
Ng
Ts
[§xf, 1¢x¢ N
gain K
A
Errors § , hy

Bandwidth { e }

t: optional

tmax optional

Choice WINT (IWINT)

Option to stop after error calculation (ISTOP)
Type of instruments: Class CA: Gyro, accelerometer
Class CB: (Giannini) pressure transducer
without T~tube
Class CC: (Bourns) pressure transducer
with T~tube
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Special Inputs

1 CA:  wn $ s [T s {Tch(
If CB: W¥n, ?n; Wor? ?orj {Tl}’ {TZ}; {Tl ch, TZ ch}
If CC: wn,fn;wb’?b; Wa,? as {Tl},gTZE;

ng e T2 cn |

x (optional)
v, (optional)

;r {optional)
o

Notes:

1. {Tch} ; ng Ch;Tlanre optional (NOPT1)

If they are used, they should have values covered by {T or
(Tl i, {TZ ( if one wishes to have an error calculation.

2, One should have

1:SO < t0 4 max
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Main Program

Calculate EY

If t, not listed: t0 =ts0

I tmax not listed: t_ . =t  + (Ng_)T

Check if Class CA, CB, CC, then go to appropriate subprogram (CA), (CB),
(CC).

%* Calculate %xk/K-g call results {xk %
Print Aty A tg (edge effects) if applicable

Print t,, T, N

Print / Plot {tk’ xk k

If Class CC, moreover, (for formulas see section 6, 2,5)
Read Yo )}0 (set zero, if not given)
Calculate x(o), %(o)

Calculate o)

Xfree, 1 © Ffree ( ' Xforced(o) =%

X = : _ X=X
Xfree, 1 = ¥free (o} s %X¢orceqf) = ~2 71

X

b'q
free

Calculate {
K

(ty + (k-l)T)z 1k &N

call results {Xfree’ Kk &

Print th, xfree, k

Print/Plot

{tk’ *free, k txk E

Stop
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Subprogram (CA)

For ;T? R {”"' 'k : Calculate IFSP' ? n)
p= wnT
€ px

Calculate Cq & gx € %

Print € x . 1. '

= T; o (call results € x)
Check ISTOP (stop
or
(continue

If continue, then

Choose T
opt

for each i , unless overridden

by {Tch i - {T’(’ is ultimate choice

- fT'=T_andt =t
s o so

(see subroutine BASINV further on)

and return to MAIN at point¥*

- Otherwise [t , T, N, t,, yk] = INTERP [t

1:o’ trnax SWINT ]

(see subroutine INTERP further on)

so’

Then [to, N, T, t, x| = BASINV [t , N, T, ¥k, w_, >_ ]

A
NS’ Ts, Yk, }’L: Wny T!

[t, N, T, t, xk] = BASINV [to, N, T, vk, w_, ¢ 1

and return to MAIN at point
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Subprogram (CB)

E2
Calculate wj], w2 and ?1. kz
according to section 6. 2. 4.
For {Tl % s ( th ; gv—-} calculate P, , P.

IP" (Pl!tl )s IP"(PZ’? 2)

EDX

Calculate ,» (c ,
cu (cghr leglp & oy

Calculate &
x

Print EK
= T1» TZ’ rat (call results Ex)

Check ISTOP (stop

L2 or

{(continue

If continue, then
Ej

Choose T opt? T, opt for each f+ . unless overridden by

!

le ch’ T2 ch ’(—- éT'l, T, T is ultimate choice
Now, for each M, enter (CA) at point E,

w2 » other symbols are correct

with { T' =T, w =wy, o=
w
W1

input
A
and leave at L; with N; =N, T =T, 2z = X

other symbols unchanged
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Then, check whether T) (T /(pw))
If yes, go to P,
If not, determine whether T = T',

If yes, go to PZ

If not, find smallest integer p3 1, such that T1 2_p\<7'E H{pnwy)
and thep for j = 1,2,...,2P -1 goto E; with t_ replaced

by to+j T12'P and otherwise same conditions as first entry at E;
above,

Va)
Leave again each time at Ly with Zk, j = Fpeo tk.j = tk and otherwise

conditions as above,

A
Now, reorder all {zk j % in order of increasing time

to < to,1 < to 2 <evew <ty <ty g e

A N A A A

zy z) Zl,Z““ z, 23 ] ee-
Call i {" t
all new series zy s by (]
P, (Still for each )
Enter (CA) at point £,
R T S

t =t

_ P
so o’ NS—Nloerz

Values for WINT? t

et

_ -p
Tg —Tl or T12

t are correct
max’ ‘o’ M

Leave at point L; with N, T

Ly — —

Return to MAIN at point *
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Subprogram (CC)

T
Take Tv = Ts , with m smallest integer (m3 1) for which

Tg o«

m < max () -+ min (w,, wp)

(if « is not input, use « = 0.2)
Print T
v
Enter (CB) at point E2 , leave at point L,
Check if T, =T .
S
If yes, proceed to P;

If not, then for each v

N ~ _1 _ E A WZ
[tsor Ts» N, ty, yk | = INTERP t.o Ng» Tg vk, W o
Wi Tv’ tso’ trnax’ WINT]

P, - - Calculate kvk 11, see section 6.2.5

Set new (}kf = vk ? , and enter (CB) at E,
Leave at Ly

Print ""forced solution"

Return to MAIN at point *
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Subroutine for Basic Inversion -'"BASINV'"

Inputs t, N, T
o
{ykl > Wpr ?n
Calculate tk

Ao loly

”(Lo ﬂLo KLO
X Ro FRO b/Ro
x, (kfl, k#N)
X Xy
Outputs to’ N, T
{t Xk}
Symbolically:

Lt, N T, 4, x| =BASINV Lt, N, T, yk, wq , 7, |
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Subroutine for Interpolation - "INTERP"

Inputs tso’ Ns’ TS

WINTS optional
Verify: T, KT /(}A.Wn)
If no: warning '"sampling interval too large'"
If yes: proceed
WINT = W Wpp» unless input (IWINT) commands
WINT = e /TS {(wideband)
N largest integer such that

t,+ (N-1)T g (t

max’ tso ¥ (Ng=1) T )

A -
t Steo t (k-l)Ts belongs to yk

tj =ty + (j-1)T belongs to Y;

Interpolate
A
SN sin w (t: - t,)
NT .
vj= Z vk _—— <N
k=1 T (t;-ty)
TS
Outputs to’ T, N
{the v}
Symbolically:
[ to, T, N, ty, vk | =
A
INTERP [t , Ny, T,y p, w, T, t), toon, win )
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RAD 2-0963
5-63

PROBLEM NO:

DIGITAL COMPUTER INPUT

2894

J procrammen; D. Gootkind

REQUEST FORM

TITLE:

Inversion Algorithm for Filters

MEMO NO. SECTION NO.| WORK ORDER NO. (E240 USE ONLY) [REQUESTED BY: |EXT. EST. TIME
PAGE 1 OF 5 PAGES
*NS TS *NMU *[CLASS _
*N@PTI1 *NPLOT *ISTQP TS0
ot KGAIN max'? aLpuat®
*IWINT EBY HBY #*NTCH
WN ZETAN
YBK
MU
*NT
TCH
T
T1
T2
*NT1 *NT2
T1CH
T2CH
WOR ZETAQR WA ZETAA
WB ZETAB yol#) vop!®

INPUT SHEETS FOR DIGITAL INVERSION PROGRAM
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PROBLEM NO. MEMO NO. SECTION NO.
2m’®* | DIGITAL COMPUTER INPUT 2894 CONTINUATION SHEET

REQUEST FORM PAGE 2 OF 5 PAGES

* Takes integer value

Y Preset to TSO

(2) Preset to TS0 + (NS - 1)*TS

(3) Preset to 0.2

(4) Preset to 0.0

(5) Preset to 0,0
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' PROBLEM NO. MEMO NO. SECTION NO.
22°°* | DIGITAL COMPUTER INPUT CONTINUATION SHEET
REQUEST FORM 2894 PAGE 3 OF 5 PaGEs

DESCRIPTION OF INPUT

Input Common to Classes CA, CB, CC

*NS Number of point‘s of Y (500 max.)

TS Time spacing of points of Y

*NMU Number of values of &« (10 max.)

*ICLASS Values of 1, 2, 3 choose CA, CB, CC respectively
*NOPTI Value 1 allows program to choose its own time spacing;

value 2 imposes choice of spacing by user

*NPLOT Value 1 allows for plotting; value 2, no plotting

*ISTQOP Value 0 bypasses determination of (KX); value 1
calculates (KX) . Values 0 and 1 both allow for error
calculations

TSO Initial value of time for Y

TO Initial value of time for (KX) (preset to TS0)

KGAIN Value of gain K of instrument

TMAX Value of maximum time for (KX) (preset by program)

ALPHA Value of o (preset to 0, 2)

*[WINT Value 1 allows for narrow band , value 2 allows for

wide band-

PoaS

EBY Value of Ey
~
HBY Value of h
*NTCH Number of chosen values of spacing imposed by user
(10 max.)
YBK Values of Y (500 max.)
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2-0964
5-61

- PROBLEM NO.  |MEMO NO. SECTION NO.
DIGITAL COMPUTER INPUT CONTINUATION SHEET

REQUEST FORM 2894 PAGE 4 OF 5  PAGES
WN Value of _ﬂ)n
ZETAN Value of f u
MU Values of/u (10 max.)

Input for Class CA Only

TCH Values of chosen time spacing imposed by user (10 max.)
*NT Number of values of T (10 max.)
T Values of time spacing , T (10 max. )

Input Common to Classes CB, CC

T1 Values of T1 (10 max.)

T2 Values of T2 (10 max.)

*NT1 Number of values of T1 (10 max.)

*NT2 Number of values of T2 (10 max. )

T1CH Values of Tlch imposed by user (10 max.)
T2CH Values of TZch imposed by user (10 max.)

Input for Class CB Only

WOR Value of &
or

ZETAGR Value of for

Input for Class CC Only

WA Value of wa

ZETAA Value of f a
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2-0004
-63

5-6

PROBLEM NO.  |MEMO NO. SECTION NO.
DIGITAL COMPUTER INPUT | 5504 CONTINUATION SHEET

REQUEST FORM PAGE 5 OF 5 PAGES
WB Value of &)b
ZETAB
Value of g"b
YO0 Value of Y (preset to 0, 0)
YOD Value of 'i'o {preset to 0, 0)

* Must be integer

Warnings
[4
(1) TS0« TO< TMAX
(2) Program stops if number of interpolated points exceeds 500 and prints
"Number of points are too great"

(3} MU, WN, W@R, WA, and WB must be positive and have exponents
between ~3 and +10 in order for the plotting routines to work.
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6.4 Illustrative Examples

First Example:

Take the accelerometer with w, = 850 rad/sec = 0. 85 rad/msec, Tn = 0. 55;
triangular input, The computer plotting routine plots the transducer output
(ir\) and the reconstructed input (x). The plotter also connects x-samples by
straight lines, to facilitate reading. The true input has been added (by hand)
to provide an immediate criterion of the quality of the reconstruction. All
necessary parameter vah'l\es are given in the computer printout: among them,
bandwidth M = 2, error hy = 0,025, sampling time T, = 0.5 ms.

Figures 6-4 and 6-5 give the reconstruction for smallest total error £,
corresponding with T = 0.6 msec; for interpolation with WINT = M Wwp = 1,700
rad/sec (narrowband) and wiNT = TC = 6,280 rad/sec {wideband) respectively,

s
Figure 6-6 shows the reconstruction for T = Tg avoiding interpolation. All three
results are quite acceptable, indicating that in this case the bandwidth was

properly estimated,

Second Example:

This is a Giannini pressure transducer with ¢J, = 1, 300 rad/sec, r n = 0.2,

Wor = 1, 300 rad/sec, ?or = 0. 3, the bandwidth factor f is taken as either 1

or 2, Results are shown in Figures 6-7 and 6-8 for T; and T, selected for minimum
total error. Clearly, M= 1 is a better choice here; the edge effect is very
noticeable at the right end. Figure 6-9 pictures the reconstruction for

Ty = T, =T, = 0.625 msec, avoiding interpolation: obviously no edge effect appears.

Third Example:

This deals with a Bourns pressure transducer, together with its T -tubing.

One has w, = 400 rad/sec, w, = 1, 000 rad/sec, wy = 200 rad/sec,
? L - 0.3 ra =0.8, P, =0.8
A
Ts =1 msec, h = 0,015, po o = 1 and 2, Yo = 1.0 (initial value)
Yy
The results for the total solution (forced plus free) x are shown in Figures 6-10
and 6-11 for M =1 and 2 respectively, with narrowband interpolation (wyyT=p Wp).
There is a very strong edge effect. Figure 6-12 gives a much better reconstruction
with wiNT = T /T4 (wide band interpolation) indicating that p should be
chosen larger here than 2. 0.
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NOTE:

All examples show that the calculated error bound is indeed quite
conservative, as predicted., However, the choice of spacing
intervals found by minimizing this worst error is quite good and

this is the main purpose of the error calculation. It would be
possible to find smaller error estimates by use of statistical
methods. However, to maintain generality, a non-statistical

error calculation was preferred here. This made possible avoidance
of additional hypotheses about signal and error distribution,

The computer printout corresponding to the plots follows after
Figure 6-12,
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INPUT CARGS READ- L4 ohhei2elE
DATA* NS 15 TS 0.5D€ NMU 1 ICLASS 1 NOPTI 1 ISTGP § TSC 3.00¢ TCH £.500

OAT A NTCE 1 I_[.!INI 1 _KGCAIN 1 1'”‘:;':! EBY B_‘Q_Q:"i HAY £ ’}7‘;!’7(_’1 YeK 0_Aapn n 025800
DAT A%

C.15D0 ©
2 )

#4500 $.925DC 1.475DC 1.90D0 2.15D00 2.140™ 1.8700 1.4500
8l ! % S8 i) o "

WN <1.850D3 iETAN 0.5500 NPLOT 1

e _YID_ITES IN THF YNTERVAL (TS{,TMAX) o
MU = 0,20CG0C A1 I = {13200 an EX = 7,138290 ii2
MU = 0,204000 &1 T = 0.2303D 00 EX = ™M,34862D 01
L MU = 0L, 204GC090 1) T = £.339990 08 EX = D,16271D 13
MU = §.200000 71 T = Ce&BI0D 00 EX = %L.174180 21
- MU = L.2af0ap DY T = 0 550 = G.84104D 30
MU = @.2uG0np D1 T = C. “"’(‘D f:.') EX = 71e8D4470 NG
e MU= gLonROD 1 T = £, 70700 68 EX = 03.85544D 00
MU = ..2ﬂn("n 01 T = C.8HDBLED 04 EX = .9683D 11
MU= C.Z&l"’fj 1 T = €.900200 G EX =_ 2.11637D 91
MU = 0,24040050 01 T = €.100300 N EX = ©[£.,12741D 21
T = 8.1 TF = {.67%200D 9¢ N =12 MU = Q200400 41
— - DTLEEY =-f,5¢0¢{D a3 DIRIGHT =-u,4TRBTB[L G _
TSUBL 1) = 0.C X = «.626730 [N FOR FIG G-4
JsuBf _2) =7 eh.CJD re X = £,11481¢0 €3
TSUBL 3) = 5.120G0D0 {1 X = '1.1885(:0 a1
Tsusl 4) = ,-a.le UD LYl X = _9,2376S0 D% . _ . S
TSUR( 5) = D.zZ4ughiD €1 X = 1.233480D 21
TSUBL 6) = _#.304760 €1 X = Q177430 31 _ S
TSUB( 7)) = D.3eL00D () X = Ng86412D A
TISUBL 8) = §1,42¢¢7D £ X = 7,26782D &
TSUBL 9) = 2.48000D 21 X ==7,655150-71
_TSUB(LD). = ©.540C0D €1 X ,a:ﬁ,Jjéiw:if:i e
TSuB(1l) = ERTRCD 11 X = 0,19674LC o
TSUBIL12) = <. 6__¢£_C_Q_D,__C_1,__,__,>_<__,=,_..2=*3’1 0
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-INPUT CARCS _READ_. .

DATAX

-DATA*]1 .

- e

IWINT

2

ceen IO LTES IN THE INTERVAL

LIS, TMAX)

.MU = 0,20CC0D N1 T = £.10600D 00 . EX = _.0a.13829D_ 42
MU = (G.20CC0D 21 T = £.229C30D 60 EX = ©.34862D0 01
MU = ©,200C00 G1 T = 0300090 2¢C L EX = 3.16271D 21
MU = €.20000D 91 T = €.47000D0 00 EX = 0.19418D 01
MU = 2.,203G00D0 £1 T = C.500000 90 EX = £.84104D 00
MU = 2.2%0600 71 T = 0.6733CD0 38 EX = (.80447D 51
MU = 0,20C0CCD Q1 _ T.= 07003460 N0 . _ _EX = 0.85544D D0
MU = 6.20040D 01 T = {{eB87604GD 4GS EX = €.96083D 99
MU = 2,220C2C 11 ST = £.,90020 49 EX = Tol173370 91 _
MU = €C.22080C CL T = 130090 €1 EX = 0.12741D0 41
TO = D40 TF = ¢.60000N0 00 N =17 MU = G.2000GC Gl
DYLEFT =-Q,.5CC0CD (0 DTRIGHT ==31,478780 20 e
TSUB( 1) = e X = 0.56901C 0O ]
TSUBL 2) = G.60006D 02 X = £,.98741C 00 | FOR _Fl &. Gz 5 |
Tsusl 3) = £.12000D C1 X = 01,19343C 41
TSus( 4) = $,1884400 11 _X.= 0,268%7C 21 S
TSUB( 5) = 0,24008D (1 X = 0.,214640 71
TSURL A) = 0308020 €1 X = D8.17655D0 01
TSURL 7} = Q.2&0M006D 01 X = $.904G34D 0N
TSUBL 8) = C.420000 €1 . X _= 0.,182930 0N — S
TSUB( 9) = 0.48000D @1 X = (,25484D L)
TSUBLLD) = 0.540460 01 . X =-0,1354%0 Qn_ e , o
TSUR{11) = S.&nCCCN €1 X = N,43067C~02
TSUBLL2) = _2,66000D L) = X ==0,1366SD L
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—l4 b8, 2646

INPUT.-CARDS -READ—— oo

DATA* NOPTY 2
DATA*L.
—_— — e T2 LTESIN THEE INTERVAL (TSE,TINMAYY) -
MU = {.220€8C 01 T = 04310330800 0C  EX = _ G.13829D .32 _
MU = 0.2G001GC C1 T = G.20373100 DE EX = e 248620 21
MU = 95.200800 91 T = G.30020D H9 EX = _H,162710 01 o _
MU = 52230040 4] T = .40099D Q¢ EX = Ne134180 o1
- MU = Q.200C03D0 01 T = C.80000 aL FX = " a841040 00
MU = S.20000C ) T = £,6305G0 A EX = 4§ .873447D0 08
MU = C.200092D 61 T = L. 700300 42 EX = T.88544D 77
MUy = 0,23580D N T = («82000ND 2C EX = T e 95 R N
MU = 6200030 61 . T = £.990030 34 EX =_£,117370_ 31 —
MU = D.2300°D 21 T = (157900 Gl EX = “el2741D 31
TC = Q¢ TF = (.530080 04 N =16 MU = D200 0GC 21
, O ISUBt 1) = L0 . - X = D,.488930 9
TSUB( 2) = N,5000CD or X = 0,77275C 2
TSUB{ 3) = £,10¢44Q0 01 X = {11 668G 01
TSUBL &) = {{.150C0D Q1 X = N,242180 ¢1
TSUB( . 5) = C.2C0C00D €] X = 0,26667C =1 o
TSUBI 6) = (14280700 ) X = 02004470 i)
. TSUBS 70 .= D,20000D 01 X = 0,.18047D 01 o
TSUB( 8) = £,35G0GD Gl X = 0.,10211C N1
I TSUB( 9) = {4000CD ) X = G.33820D0 i
TSUB(1{) = C.48000D 1 X = §,14661D O
_TSUB(11) = D.5960CD €1 X = 0.15803p O FOR FliG. 6-6
TSUB(12) = 2.550C0D €1 X ==0,16471C 77
) __TSUB(13)_= €.6018GD 1 X = 0.68335SD-11 o o
TSUB(1l4) = J.65{CCD 1 X ==0,228370-"1
TSUB(15) = G, 7LCCCD Y X =—8140140-01
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L0

2/03/718

-~ INPUT _CARLCS REAC 14 . 44.27,.0G
DAT A% NS 17 TS D.£€28D73 NMU 2 TICLASS 2 NCPTY 1 ISTCP 2 WCR 1.3D0 KGAIN 1.{iD0 *DATA
— DATA% ZETAOR £.2D0 NT1 2 NT2 2 NTCH L T1CH 2 ,.626800 T2CH £.62600 TLWINT 20ATA
DAT A% TSE Q0D EBY D.ON0D HBY 5H.62500 YBK f1.{CO 0.0 1,880 11.2500 2¢,0C0 *DATA
___DATAX 65,000 107,500 146,250 173,7500 188, 7508 193.7507 192,505 188,000 *0OATA
DAT A* 1864000 187.5DF 193,78DC 2{L.LDD MU 1.0D0 2.0D0 WN 1.3D1% ZETAN (.,200 *DATA
DATAX T1 D.5D0 D.£2800 (700 T2 £,500 f1.6280% 7,702 A0ATA
DATA*] *DATA

TG LIES IN THE INTERVAL {TSC,TMAX)

MU = ¢.100000 21 Tl = £.50000D &0 T2 = Q.508050 09 EX = 10,55558D @2
- MU_= 0,1CCCHE 01 Tl = £,50Q048p 4D T2 = ©.62504uD 3 EX = D.67891D 02
MU = 0.100000 01 Tl = 0.,500000 0O T2 = Q.,704060 00 FX = 0.36584D 02
MU = 0,106U00 €3 T = .625300 60 T2 = D,50080 J¢ EX = $.401500 $2
MU = 0,10080D N1 Tl = (.62500D C7 T2 = M.628n0D 00 EX = 0432654D §2
MU = 9,10000D 01 T1 = (.6258Q0 &0 T2 = &,700000 A0 EX = (.310650 {2
MUY = 0,10080D 01 TL = £,79045¢0 0N T2 = 2,50000D0 30 EX = 0354810 B2
MU = 0.1000090 31 T1 = C.70CCCD OF T2 = £.625040 90 EX = $,3%6023D 22
MU = 8,19¢C0D 21 Tl = €.70040C0 00 T2 = 2.7000CC DO EX = 04299470 02
MU = €.20000D0 21 Tl = C.5990CC QU T2 = C.500000 00 EX = 0,22285D Q3
MU = D,200080) 91 11 = C.592408D 29 T2 = Q.62504GD O EX = N.25306D0 03
MU = 0.,20n00D (1 Tl = (.590000 a0 T2 = 0D.,79000D 0§ EX = 0,27865D G3
MU_= 0.20C0Q0 41 Tl = 7.62580D0 GO T2 = D,5G00)D Q0 EX = 0,248940 €3
MU = Q,220C0D N1 Tl = {.62534D 2% T2 = D.628000 00 EX = 0,286410 02
MU = (0,206C20C 03 Tl = €.62500D0 00 T2 = C,700448D 0N EX = 94314910 G3
MU = 0.200400D N1 Tl = G.7¢N0CD GO T2 = 0,500200C no EX = 1.27215D 32
MU = 0,20GE30 21 Tl = {{.702940 72 T2 = 2.628040 00 EX = 0,31224D 63
MU = 0,200C0D 01 Ty = (702680 04 T2 = G.,70005D 00 EX = D.341680 03




807

TC = 0.0 TF1 = 3.700€00 00 TF2 = #,70000D 73 N =15 MU = £.100G0D 01
CTSUS(C 1) = 2.4 X = 7,196280 02
TSUBL 2) = ©,70040CD {C X = 9,319800 (2
CTSURL 3) = £.14€04D €1 X_= 7.47203C N2
TSUB( 4) = £,214000 1 X = 7.723170 02
_TSUB( 5) = d,.78000D r1 X = 7,9359GL 62
TSUB( 61 = 5e380(7D o1 X = D.12421D 2
TSUR( 7)) = 0,42000D 01 X = 0.148120 02
TSUR( 8) = :.4S700D (1 X = 1,16850C 3
CISUBL 9) = N.56C40D 11 X = 8,18318N0 03 F OR Flg 6-7
TSUR(1N) = (.&3C00D €1 X = 0.18535D0 N3
_TSUB(LI)_= 7.747CED €1 X = 9.18456&0 13
TSUR(12) = 7.77CCRD nl X = 0,16807D N3
CTSUB(L3) = £,E40€0D C1 X = "n,141670 03
TSUR(14) = (.S1£CCD €1 X = L.S4873C 72
TSUB(15) = €,.S80¢AD (1 X = 2,35170D 02
T{_* = Dol IELlL = r_Lq‘lnﬂcn Q0 IE2 = o _S00a%¢n an NI —7?! My = O 2033000 ﬂ'l
TSURB( 1) = C.% X = 1.20344D {2
TSUR( 2) = 0,8750C0D €5 X = N 244130 112
TSUB( 3) = 1,1°rofD o X = 1,1252€0 02
L TISuUBL 4) s U Ll1ECETD 01 X = 2, 614280 32
TSUR( &) = ©,20067D (1 X = 7.94515D 02
TSUBL . 6)_= 2,25(40D L1 X = 5,,104580 73
TSUR( 7) = £.20G000 (1 X = €.89550C €2
_TSUB(.8)_= £,35G00D 01 X = 0.S7352D 2 o
TSURL 9) = 7,42074D ©1 X = R 146060 73
TSUBLLID) = Na45Ce0D £ X = £,193570 2
TSUBILL) = € .5 ¢LD ] X = 7,188270 2
_TISUR(L2) = _r.550006D 21 X_= N.144540 73 FOR FI1&, G-&
TSUB(13) = 7 .,67CCH0 01 X = $.133710 03
_TSUB(l4) = %,€5000D €3 X = 3,190050 23
TSUR(15) = ~.70760D 21 X = D,25413D 3
ISUBLY6) = £,75700D nl X = ¢,237560 (1
TSUB(LT) = ©£,8u77230 01 X = 3,13684C £3
TSUS(18). =t ,R5CLMAD. ") X = 7.4814710 22
TSUR(19) = ~.SuceeD 4 X = 2.215330 03
_ TSUB(2U)_=_f.S8000D 71 X = 1.23426D 3




e

INPUT.-CARLS _READ . V4 Jbbhe I8, 6G 3403470
DATA= NOPTL1 2 *DATA
DATAXY. . . - *0ATA
e T LIES IN THE INTERVAL (TST,TMAX)
MU = £.1e5000 01 T1 = {,52004C €0 T2 = NGR54G003D G0 EX = 0,555580 82
MU = D.igZ0ern 0 Tl = i, 52480 4% T2 = ".6250400 DO EX = {0,408910 62
MU = 7, 183000 71 Ti = 25270460 T2 = L, 73W130 949 EX = f1,36584D 02
MU = M. 10D 1 Tl = 7,6253N0 ¢F T2 = U.5000°00 N EX = 04401500 02
LMY = 95,3130°0C0 ) Ti = 1.6258030 42 T2 = 1,625740 NG EX = N,32654D 2
MU = GlI0{72C 1 Tl = 5.62575D0 7 T2 = G THRTNOD DD EX = 0,31055D 02
oMU =T, 1000700 1) T1 = £,7083C0 0 T2 = N,5u0N00 9t EX = (.35481D €2
~ MU = J.100N0 TR Tl = {,72090C Q00 T2 = T.625730 2 EX = A,30643D0 ©2
o CMU_= 7.1234C07D 4] Tl = £,7%798D 20 T2 =  L.,70400D0 HN EX = £,29947D 02
LMy = £,200700 ) Tl = (L.523840 2¢ T2 = "G 540700 D9 FX = Q.222850 03
MU = T.270T70C 01 Tl = 502000 320 T2 = 445250730 Nu EX = D,25306D 03
1 e MU = $,270030 "1 1 = F.5a7a0p 2% T2 = ~.,IN0R00 06 EX = 0,27858%D 03
MU = 1,233 (3D 01 Tl = {,625700 0D T2 = LW.5D0ALD 2C EX = ©.24854D 03
MY = T.2nTp 71 Tl = 7.625%940 ¢ T2 = NGaA2FCLE A EX = £.,28€41D (3
MU = £,2322ap 73 Tl = 7.625370C 74 T2 = 23,720000 06 EX = 04314910 €3
_MU_= T = L,7¢0AQ0C an T2 = ".500NTD 02 EX = 1,272180 €3
MU = g 1 Tl = 2, 70580 2D T2 = 04625200 ID EX = 0,31224D 03
MU = 44230770 71 T1 = {.7233¢0 57 T2 = £.7907™00 G2 EX = 0,34168D 03




oLz

TF1 = N.,62584D 64

FSUB( 1) el 0 X N,1653¢0 012
TSUBL 2) = 0,.,€625CCD 00 X = C.256148C 22
_TSys{ 3) 0,1260080 ) X N,323350 A2
TSUBL 4) = 2,187500 €1 X = D87426D 02
TSUB( 8) = Q.25C000 01 ¥ = 0.,7920220 12
TSUBRL 6) = Q,31280D 1 X = $.113520 23
ISLR{ . Z) = i 37ennn 1 Y = 0134240 M2
TSUB( 8) = 2,43750D0 (1 X = N.,155670 N3
TSUB{ 9) = CLEQCCED O} X = N,167600 03
TSUS{14) = ,562E80D C1 X = N4,17562D 3
_TSUR(11) = ©.62500D €Y X = 0,175350C (13
TSuUB{l2) = N.e87E7"D 01 X = 9,192650 3
TSUB(13) = { ,75CCCD (1 X = N,18744 D3
TSUB(14) = 2,81250D 11 X = N,200260 03
TSUB(1S8) = 2,8768C0LD €7 X = $.19781C 23
TSUR(16) = ".G2780D 1 X = [0.,22835D0 3
TSUB(17) = 7n,12(4CD £2 X = T.219DE8N0 03

1.209320D 01




ml
=

. INPUT-.CARDS READ 144,31 ,2G 340370
DAT A% NS 41 TS 1.0D8 NMU 2 ICLASS 3 NOPT1 2 ISTOP 2 ANT1 1 AT2 1 *DATA
—DAT A ZETAB D804 WR #.,207 TWINT 1 KGAIN 1,300 TS 2,002 FRY 35 .500 *DATA
DATA* HBY 1450-2 YBK 4D Cu”D{ LaN2D0 0,060 07,1207 J195C0 7.29C" *DATA
.. DATAx 439500 C£,51D0¢ D,e1807 S, 7100 2,800 {,B8A5D0 H,930 M,QA50.F N,990¢ *DATA
DAT A% YBK{17-41) 1,500 MY 1,707 24702 NTCH 1 TICH 2.7C¢ T2CF 4.2D9 *DATA
—DATA* WN 0,600 ZETAN 2,300 WA ], 0L *DATA
DATA% ZETAA 7.8DT YL 1,000 T1 2.0CC T2 4.03D4 *DATA
DATA*] *NATA

TY LIES IN THE INTERVAL {(TSC,TMAX)

Lie

U Tv = 0.53C44D 8L
MU = 9.,10¢0C0D0 M Tl = 4,2000480 41 T2 = 4D N1 EX = D.56254D €C
MU = 2.,20C000 21 Tl = f.232¢2C N T2 = 3.400%00C 01 EX = $H,.,236160 ©1




TF1 = 0.200C0D 01

==0,100000 91

DIRIGHTY

TF2 =

= 093224410 D}

Tsus( 1)
_ISur{ 2)
TSUBt 2)
TSUB( 4)

o
o]
s o

0.41162D 00
= 0.

€.976520 O
N.116670 G1

10146C 00

TSuBl 5)
T

%

[Il win n

N.160C00

_ﬁ.ZﬁQCﬂn,‘

N.12158C 01
0,114570 £1

><)<><><><><><><><|)<><

LI T { I T IO B TR

TSUB( 7) = N.240002D r2 1.86434C O
_TSyUBL 8) = Q,28L0(D £2 V.55€6250 &2 . _ i e
TSUB( 9) = 0.32CCLD (2 04259450 30
TSUB(LL) = J.2€0CCD 72 0.384330-9] —
TSUB(LL) = 1.408C07D {2 ~-04213030 22
FCRCED SCLUTICN
TSUB( 1) = 0.C XFREE = 0.56838D0 00
_TSUBL 2) = %.440C0D Ul | XFREE = %,5896%0-03 . .
TSURBL 3) = n.8CC00D €1 XFREE =-C0,1€131D-Nn2
TSUB( 4) = T,120630 (2 XFREE = (.59922D-14

- TSUB{ -85) . =-LLletran. L2 . XFREE =-=0,19192p=35 . . . e
TSUB{ &) = {.2000C0D N2 XFREE = 0.,15766D-17

CTISUBL 7)o s e 240D 452 YEREE = ,.22389N0-"8
TSUB( 8) = @286 7°D 2 XFREEF ==7,164084D~79

~TSUBL. 9) = . R.32080D L2 _XEREE = {.,59488D=-11 .. - —
TSUB(145) = 7 ,2¢0040D €2 XFREF ==f,90375D-13

S TSUBL11Y = £2.40080D..62_ XEREE ==0,44514D=14 el [
TsSLBsLl 1) Cal - L XSUM_ = 2.13692D

TSUBR( 2)
~JSUBL .3)
TSUBL &)
TSuUBt 5}
TSusl 6)
TSUBL T7)
TSURL 8}
TSUB(. 91
TSuB (1)
TSUB{1ll1)

_ e 88LE40D

Do4TCELD U

XSUM
XSUM

f.T0205D
22575510

Tl[ Ean“pJe._6¥1gq,m_ﬁ,ﬂﬁ_ﬂw,
i)

B

Golaflrp

T e 230 GND

T e 28IC0D

TelefCID .
Ge24LC(D T

Te361CLD 7

LeATLOCD

XSUM
XSUM

4116680

2121580 €Y 0 L L.

1

XSUM = £,11557D0 71

- .XSUM =_0a.8£4340 €D e
XSUM = 1 ,55625D0 0N
XSUM = #,289480 2~ 0000000000 0 O .
XSUM = 1,38433D-71

. XSUM ==0.21373D_ %43 I — —

212



-

TSuUB( 1)
TSUB( 2)
TSus( 3)
TSUB( 4)
TSus( 5)
TSus!( 61}
TSusl 71

TSUBL 8).

TSUBC( 9)
TSUB(10)
TSuB{11)

TSus( 1)
Jsust 2)
TSus( 3)
TSuB( 4)
TSURL 5)
TSuBa( 6)
TSuB( 7)
JJsuBl 8)
TsSus( 9)
TSUBLLL)
TSUR(11)

-TSUBL 1)

TSUs(t 2)
-TsSug( 3%
TSUB(C 4)
TSuB{ 5}
TSu3( 6)

-TSUBL.7).

TsSus( 8)
Tsus( 9)
TSUBLLELY)
TSUR(1l)

!

T

TF1 = 0,200000 N1 TF2 = 0.,45300D 01 N =11
MU =20

DTLEFT =-0.130C0D 01 CTRIGHT = 0.322441D 01

L.40060CD C1 X = 0,906980 (¢

N.,80CC00 C1 X = 0.11374D 01

Le12GCND Q2 X = (.68710C 0O

Ne.l600CD C2 X = N.85247D0 OO

04200000 (2 X = 0,104100 01

Ne24CGCD €2 X = D4122340 01

Na28060GD Q2 X = N.891350 OI

T a32000D €2 X = 04177600 OO

0,36002D €2 X ==8,265930 I

Daa20CQ0D & X ==0.,918820 0

FCRCED SOLUTICN
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7. CONCLUSIONS

The results obtained in the presént study indicate that it is indeed possible to
construct successful models of the transducers and telemetry elements included
in this report. Furthermore, it is possible to compute most of the necessary
coefficients by performing some relatively simple experiments, some of which
may destroy the instruments (as happened with the opened transducers here),
However, if one models a large series of similar instruments, destructive
testing of one or a few is not objectionable. The determination of some other
coefficients required more elaborate tests., In all cases, it is desirable to test
the model obtained by means of more complex experiments (as was done here)
to verify assumptions and the range of validity, For the individual categories the
following more detailed conclusions can be drawn:

A, Rate Gyros

The equations of the complete model, in all generality, are given by:

Mechanical part of gyro: equations (2-6), (2-7), (2-8), (2-5)
Electrical output circuit: equations (2-9) through (2-13)
Bracket: equation (2-14)

The corresponding numerical values of all parameters are listed in Sections
2.2,4and 2.1, 2.

However, the response of the entire gyro system to the principal input (angular
rate about the input axis) is very well described by the simple second order

linar system equation (2-6), where only the first term on the right hand side is
retained, i.e,, the mechanical response of the gimbal along the output axis is

the dominant element in the gyro model. Therefore, a considerable economy is
achieved in describing the gyro behavior mainly in terms of only three parameters:

The steady state gain (volts per deg/sec)
The natural frequency wgy/ (27TT)

The damping factor ?gy

The correlation between actual tests in the laboratory and simulations on the
analog computer using the best-fit parameter values in the theoretical model
was good, and this for a wide variety of signals being applied to the gyroscopes.

The overall accuracy of the three main parameters is of the order of 5%, while
it is somewhat lower (10% to 20%) for the secondary parameters,
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B. Accelerometers

The equations of the complete model are given by

Accelerometer only: Equations (3-2), (3-3)
Bracket: Equation (3-4)

The corresponding numerical values of all parameters are listed in Sections
3.1,1, 3.1.2, 3.2.1.

The response of the entire system to the principal input (linear acceleration
along the sensitive axis) is very well described by a simple second order system
(the first term is equation (3-2)), with the same three parameters as for the

gyros:

Steady state gain
Natural frequency
Damping factor

The correlation between tests on the transducers and simulations based on the
theoretical model was good. The overall accuracy for the three main parameters
was of the order of 15%, mainly due to spread among individual instruments of
the same category, (See Section 3.2.1). An important, and surprising, result
was:

a) The low value of the damping coefficient ¢ (see again section 3,2.1),
as opposed to the higher values obtained by the manufacturer for slower,
more '"normal" signals, As a consequence, the response of the
accelerometers exhibits a marked overshoot for very fast transient input
signals.

b) A non-linear effect was observed, where the damping factor

depends on the speed of variation of the input signals, with T decreasing
for faster inputs (due to various non-linear effects in the internal
structure, such as eddy-currents, etc).

C. Pressure Transducers

The complete theoretical no del is described by:

Equation (4-2) for the Bourdon tubes
Equations (4-3) and (4-4) for the T-tubing (Bourns transducer)
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The corresponding numerical values of the parameters are listed in Sections
4.1.1 (Bourdon tubes), 4.1.3 (T-tubing)., The agreement is very good
between experimental data and theoretical predictions for the Bourdon tubes;
this is quite satisfactory as no other resonance calculations were found in a
literature search for the Bourdon tubes and the present treatment was a first
attempt for this problem.

For practical purposes, a sufficient model was found by cascading two second
order systems, equation (4-6), depicting Bourdon tube and orifice effect, or
else by an added second order numerator, equation (4-7), to include the effect
of the T-~tubing., Therefore, modeling is mainly reduced to finding

A steady-state gain
Two or three natural frequencies
Two or three damping factors

Because of interaction, these models are to be taken as a whole, and should not
be split (except for purely formal operations),

As for the preceding transducers, the correlation between tests in the laboratory
on instruments and analog computer simulations, using best fit parameter

values was good. The overall accuracy of the parameter values obtained was

of the order of 10% to 20%, again mainly due to spread among individual
instruments, As for the accelerometers, a surprising result was the low damping
for fast input signals, leading to a considerable overshoot in the responses.

This contrasts with the much higher damping obtained by the manufacturer for
slower, more regular signals, There was also some non-linear effect in

damping (now, with damping somewhat increasing for extremely fast inputs) due
to non-linear dissipation mechanics in the turbulent fluid flow.

D. Telemetry

A first observation, substantiated in section 5.1, is that some of the trans-
ducers have a bandwidth larger than that of the channel assigned to them (under
standard IRIG conditions); this holds typically for the Giannini transducer in
channel 11 and the roll rate gyro in channel 7,

The following conclusions can be drawn for the present airborne equiprhent,

The phase-sensitive demodulators, used in conjunction with the rate gyros, are
modeled by a second order system, equation (5-~1), whose damping factor depends
on the polarity of the output voltage swing, due to a biasing by means of resistors.,
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The demodulators introduce a dynamic lag of roughly the same magnitude as the
gyros themselves; and, therefore, their presence is important. There was
also a noticeable spread in damping among individual devices,

The subcarrier oscillators are modeled by a linear second order system,
equations (5-2) and (5-3). For practical purposes, the lag due to SCO's is
small compared with the lag of other components and may be neglected in many
cases,

The mixer can be considered as an ideal transducer without any lag., The same
remark applies to the transmitter.

For the ground equipment used in this study, the following conclusions hold:

The receiver can be considered as an ideal element without any lag, The
300 kHz and 1MHz tape recorders introduce no discernible distortion for the
channels studied here under controlled laboratory conditions,

The bandpass filter is modeled as a critically damped linear second order system,
which is the same as a cascade of two identical first order systems (equations
(5-5), (5-6), and (5-7)); for practical purposes their dynamic lag is small compared
to that of other components when standard filters are used, Further analysis
showed a pronounced non-linear dependence of the output on the magnitude of

the input, whichcan be approximately described as a lowering of the damping
factor (from unity) when the magnitude of the input swing increases, However,

with standard filters, this theoretically interesting non-linear effect is

rather unimportant in practice since itfnea.rly entirely suppressed by the low

pass filters because of the relative speed of the bandpass response.

The discriminator, in the narrow sense, is modeled by the linear second order
model, equation (5-10); however, its response is so fast that, for practical
purposes, the discriminator lag is entirely negligible.

The low pass filters can be modeled as linear third order systems, equations
(5-11) and (5-12), of two types (constant amplitude or constant delay}), each
completely described by a sin gle time constant, These low pass filters are the
slowest and hence most important components in the ground equipment; their
single parameter is determined numerically with excellent accuracy (better
than 5010).

The entire telemetry chain can be modeled simply by cascading individual com-

ponents, if standard filters are used, because there is no interaction then, The
agreement between tests and analog computer simulations is very good,
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If very wideband, nonstandard bandpass and low pass filters are used, faster
response is obtained; but interference from adjacent channels appears, as
discussed in section 5.11 with a theoretical explanation.

Power interruptions can create traces resembling useful signals; therefore,
one has to monitor different channels as a help in locating power failures.

In what preceeds the tolerance on parameter values varied from a few % to 20%.
This accuracy reflects the combined effects of:

a) Spread among individual instruments of the same class.

b) Limit of accuracy of experiments (the generation of precisely
known mechanical transients-acceleration and angular rate - is not easy).

c) Inherent limitations in system identification (theoretical limitations).
Note that in several cases, a shift of say 10% in parameter values produces a
very much smaller change in output signal. This is a desirable feature for

instruments since it obviates the need for fine tuning of components.

E. Inversion Program

The inversion method developed here gives good results when applied to the
three kinds of transducers., It appears desirable sometime in the future to add
to the present computer program a simple digital spectrum analyzer in order to
remove the necessity to have the user estimate signal bandwidth, The present
scheme gives the best obtainable results in a minimax sense. It includes an
error analysis and can be used for studies of parameter sensitivity, Monte Carlo
simulations of random noise effects, etc. In terms of the inversion capabilities
in general, one can consider four categories of signals:

a) Signals that are extremely fast, but without large magnitudes (having
vanishingly small products of magnitude times duration) will not appear
at the output of the transducers and hence will pass unnoticed.

b) Extremely fast signals with large amplitudes {similar to mathematical
impulses) are observable; exact input wave form reconstruction is
impossible {(as it is with any method) but also unnecessary, since such
inputs act as mathematical impulses whose strength can be easily
determined by the measurement of the area under the output curve.
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c) For other fast signals (slower than the prece-ding categories),

the inversion program is fully applicable. The results obtained were
very satisfactory after determination of the proper signal bandwidth.

Of course, perfect reconstruction is impossible, but under the conditions
given here, best possible reconstruction is achieved,

d) Finally, really slow (''normal'') signals pose no problem since
the transducers transmit them with little or no distortion.

It is interesting to note that for a real system, where noise is unavoidable, a
relatively low order, simplified model may give better results in the inversion
process than a completely detailed, high order model, which would only be
useful for an idealized zero-noise inversion, In fact, the optimum order of the
inversion model can be determined in terms of the signal-to-noise ratios for a
given system. )

Avco Corporation
Wilmington, Massachusetts

June 30, 1970
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APPENDIX A

FREQUENCY TRANSFER-FUNCTION OF A BANDPASS FILTER

Consider a BP filter, with input signal e, (t) (as defined in section 5. 7) where
Ay is considered constant, (This is an approximation in itself, as seen in the
discussion and illustrations of the SCO). Then, the output is
t t!
e it = A{ fap (t-t') cos (wot! +j A wyy (t'1) dtr)at!
-
t t!

= 2A ( fpr,p (t-t') cos (w0 (t-t')-<@) cos (w,t' + (A win(t'')dt'")dt!

- fe}

This can be rewritten as

t t!
e () = A/ £ plt-t') cos (w t-g+ [ Aw, _ (t')de!)dt
—o B
t t!
+ A /fDLP (t-t') cos (w, (t=2t') - @ - /A Wi (t'')dt'')dt

o

Since \A W.on \(( W, for the telemetry channels, the second term in the preceding
formula is nearly zero for a narrow band BP (see explanation related to the
"first property' in section 5.7) since the high frequency oscillations 2wgt!
approximately cancel contributions from fL; p (t-t').

Therefore, ¢ £

eoutlt) = A Re exp (i(wot-< ))/fDLp (t-t') exp (i /A wipn (£1)dt'")dt!
. o
¢o t-w
A Re exp (i(wgt -©)) / foplw) exp (i I A wy (£7)dt!)d w
o

o}

il

A Re exp (i(w_t - ¢)) M(t) exp (i B(t))

which also defines the real functions M(t) (amplitude) and f(t) (phase).
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For Aw;, =09, i.e., no disturbance in frequency, one has
o0

M (t) exp (i g (t)) = /fDLp (w)ydw =Fpp (o)
o

(for a physically realizable filter)

giving M (t}y = Fp,p (o)
F(t)=o
This is the expected steady state response to a sine wave. A cos (Wt -@).
Now, for A w; (t) £ o v t- w
_j_t [M(t) exp G F(e)] =4 /fDLP(u) exp (i / A w,_ (t'at)
o o

A w, (t-w)dw

Now, provided ,A Win] also satisfies the more stringent condition

( l A Win, average) << edge of D. L. P,

or ( lA w, Y bandwidth of BP filter,

1n‘ average

one has

i (M(t)exp(ipr(t))zh—dexp(ig)i(%:é‘ texp i F) S

oo
dt dat
o]
or dM = [e}

dt
af - 1 fooolw) A w (t-w)duw
at "F. (o) DLP in

DLP

o
which proves the '""Second Property' of Section 5.7,
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If IA win | approaches the band edge of BP for an extended time, this is not
longer valid, This fact is clearly illustrated, for the case of an ideal bandpass
filter and a symmetric step in w.n(t), in the above mentioned reference (in a
figure shown there, taken from Salinger's article in Proc. L. R, E, 30, 378-383,
August 1942). Therefore, for frequency swings|A w;, | average which are
comparable with the bandwidth of the BP, pronounced non-linear effects appear.
They can be calculated numerically for each particular case, by the methods
used in this appendix if the first formula of this appendix is employed and all
subsequent simplifications based on the smallness of | A w in lare omitted. An
example of such a calculation is given in section 5. 7,
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APPENDIX B

GENERAL DESCRIPTION OF TESTS ON TRANSDUCERS

Open Instrument Testing: See Figures Bl through B4 on Pages 247 and 248 for
pictures,

The three types of instruments were opened to further evaluate their physical

dimensions, electrical circuits and undamped natural frequencies. These

dimensions were compared with available vendor information and where necessary

vendor information was not available the model was updated from actual

dimensions. The electrical circuit for the accelerometers was also traced out.

Accelerometer:

The cover of the accelerometer was machined off, The circuit was traced from
the two control circuit boards. The power supply board was not traced.

The output of the signal generator was measured as a function of the angle of
the pendulum. The high frequencies used in the signal generator precluded the
use of a scope probe and so the torquer current was measured as a function of
pendulum displacement using a dummy load.

The torque of the torque generator was also determined as a function of input
current,

Pressure Transducer:

A small clean hole was machined in the pressure transducer housing. The moving
element was moved away from its null point and then the restraint was removed.
The moving member then moved to its normal position. This mechanical step
function showed the response of the pressure transducer very well.

The dampening fluid was then removed and the process was repeated. The
undamped material frequency was clearly indicated,

The pressure transducer was then disassembled and the dimensions and weights
of the moving elements were determined. These figures were compared with
the vendor's data where available and the inertias were compared to refine the
mathematical model.

Gyro:

A small clean hole was machined in the gyro housing, The entire gimbal
assembly was moved away from its null point and then the restraint was removed.
The gimbal then r eturned to its null. This mechanical step function clearly
showed the response characteristics of the gyro.
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The dampening fluid was then removed and the process was repeated. The
undamped natural frequency was clearly indicated.

The gyro was then disassembled and dimensions of the various elements were
recorded to further refine the mathematical model with the actual dimensions,

Carco Table Testing:

The Carco table is a three-axis flight simulation manufactured by Carco
Electronics. It is a precision electrohydraulic angular positioner. (See
Figure B-5).

Because of the limits of the response of the table to a given position input, a

special velocity transducer (tachometer) was incorporated into the table. This
device had a frequency response well above the response being investigated and
therefore was suitable to compare to the response of the instrument under test.

A ramp, blast and square wave function were fed into the position input of

the simulator. A sine input was also fed into the system with the function
superimposed. The output of the velocity transducer was the input to the instrument
being analyzed.

For the accelerometer the tangential motion of the table was used to simulate
the acceleration., The output of the velocity transducer was differentiated to
compare the input of the accelerometer with the output to the accelerometer on
the analog computer,

Over Range Testing:

The three types of Scout instruments were subjected to inputs that were higher

in magnitude than the limits of the instrument but of durations that were a fraction
of a time constant for the response. To accomplish these inputs special fixtures
were made. The boundaries of the systems were varied to include mounting
brackets and plumbing configurations similar to the Scout vehicle.

Pressure Transducer: (See Figures B-6 and B-7)

Two types of inputs were used for the pressure transducer. A shock tube was
used to generate very fast rise inputs. The input would decay, however, as
the shock wave reflected up and down the tube. The applied pressure was
monitored with a fast response transducer (piezo-electric) and this output was
compared with the output of the Scout instrument.

To vary the input rise time a second fixture was fabricated. This fixture
consisted of a large volume, a burst disc, a variable orifice, and a small
chamber to which the Scout pressure transducer and the reference transducer
were connected.
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FIGURE B-5 CARCO THREE-AXES FLIGHT SIMULATOR
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FIGURE B-6

PRESSURE SHOCK TUBE
WITH HEADCAP
SIMULATOR

FIGURE B-7

SMALL PRESSURE
FIXTURE WITH
SIMULATED SCOUT
TUBING
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The rise time was varied by initiating the burst time of the diaphragm and
then later by restricting the flow into the small chamber.

When it was applicab le the plumbing was simulated and then tests were con-
ducted on close coupled instruments, The pressure path of the motor endup was
also simulated.

Gyro: (See Figure B-8)

The Scout gyro was tested on a rotating fixture that was specially constructed
for the purpose. The fixture also contained the gyro mounting block and the
mounting block to vehicle bracket,

Impulses were applied to the moving member with various size and material
hammers. The table was also stopped with variable deceleration rates, The
deceleration was accomplished by driving a shaped wedge into various materials
such as bees wax, paraffin, and polyvinyl slugs.

The inputs to the system were monitored by moving through a known angle in
a period of time that was monitored by a piezo-electric accelerometer,

Accelerometer: (See Figure B-9)

The Scout accelerometers were tested on the fixture that was fabricated for
testing the gyros modified to accept the accelerometers and their mounting
bracket. They were mounted to sense the tangential velocity of the rotating arm.

Various sizes and material hammers were used to provide an impulse of various
rise times and amplitudes, Different types of stops were used to decelerate

the moving element.

The input to the system was monitored by a fast response accelerometer and
the output of the Scout accelerometer was compared to this input,
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FIGURE B-8

FIXTURE FOR TESTING
GYRO AND
ACCELEROMETER
(WITH GYRO)

FIGURE B-9

FIXTURE FOR TESTING
GYRO AND
ACCELEROMETER

(WITH ACCELEROMETER)



APPENDIX C

EXPERIMENTAL TEST SETUPS FOR THE SCOUT T/M INVESTIGATION

This appendix describes the various test setups used to gather the experimental
information needed for the analytical descriptions of the Scout Telemetry Shelf,
(Tele Dynamics Model 1799A S/N 101).

The test setups were based on the T/M shelf documentation received from
NASA/Langley with the exception of the mixer input circuit. The actual shelf

has a 6, 981K resistor from the signal input to signal ground and this was
incorporated in the test, Each test is described separately in the following pages.

Subcarrier Oscillator Steady-State Test

Each subcarrier oscillator (SCO) tested was removed from the shelf and tested
individually as shown in Figure C-1. The D, C, standard supplied the input
voltage which was checked with a digital voltmeter, The output frequency of
the SCO was determined by a counter and monitored on an oscilloscope, The
input voltage was varied between 0.0V and 5. 0V except for some SCO where the
voltage was varied between -15V and 30V to determine the out-of-band
characteristics of the SCO, The data recorded was the d. c., input voltage with
the corresponding output frequency and voltage.

Subcarrier Oscillator Transient Response Test

The transient response of an individual SCO was determined by modulating the
SCO (See Figure C-2) with a square wave (OV to 5V) of a sufficiently long period
to allow for the SCO settling time, The square wave was approximately changed
for each SCO tested. The counter was used to verify the bandedge frequencies.
The actual data was taken on a Polaroid photograph displaying the modulating
frequency and the SCO output waveform. The delay trigger function of the
oscilloscope was used to look at the rise and fall times of the input and output
waveforms, The Plug-In was operated in its chopped mode,

Mixer Tests

The same test setup was used for all three mixer tests (See Figure C-3). The
first test determined the gain of the mixer as a function of frequency. This
information was obtained using a sinusoidal input and measuring the R. M, S, input
and output voltages. The second test determined the gain linearity. The input
level of a sinusoidal voltage was varied and the corresponding output voltage was
noted. The gain of the amplifier at the various input voltages was then cal-
culated. The last test used triangular waveforms at various repetition rates,

The response of the amplifier to these waveforms was recorded on Polaroid

film from an oscilloscope display.
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D.C. Standard Electronic Development
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Figure C-- Sub-Carrier Oscillator (SCO)
Steady-State Test
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Phase~-Sensitive Discriminator, Steady-State Tests

The steady-state tests on the Phase Sensitive Discriminator (P, 5.D, ) were
performed using the test setup of Figure €-4, A test jig was made up (See
Figure G-5) to facilitate the P, S, D, testing. The test jig allowed the reference
voltage phase to be reversed while low-level signals were applied to the P, 5, D,
The power amplifier was necessary to supply the specified reference voltage
level which could not be obtained from the waveform generator.

The voltmeters were used to obtain the input-output voltage relationships; the
oscilloscope was used to monitor the output voltage.

Phase-Sensitive Discriminator, Transient Response Test

The transient response of the P, S, D. used the test setup of Figure C-6 which
is essentially the same as Figure C-5 except for the Avco Low Frequency
Generator, The L. F, Generator was used to modulate the signal voltage, A
schematic of the L. F, Generator is shown in Figure C-7. The generator was
originally designed to have a high power square wave capability of amplitude Vy
and V,. The response of the P, S.D, was displayed on an oscilloscope and
recorded on Polaroid film,

System Shelf Test - Configuration 1

For this test the whole shelf was powered but only one channel was modulated.
The modulation waveforms were square wave, triangular and trapezoidal, The
latter was supplied by using a saturating transistor amplifier, see Figure C-9,
between the waveform generator and the SCO, The shelf output, see Figure C-38,
was sent to discriminator for demodulation, The waveforms were observed on
an oscilloscope and recorded on Polaroid film,

Saturating Transistor Amplifier

The transistor amplifier was as shown in Figure C-9. Since the waveform
generator used in the tests has signal offset and signal amplitude controls, the
desired waveform output was a matter of selection the proper levels of the two
generator contacts. The power supply to the amplifier was set initially at +6V
and then find adjusted for the proper bias operation.

° - + Variable

Variable

Input Qutput

2N2222

Figure C-9-- Saturating Transistor Amplifier
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System Shelf Test - Configuration 2

This test was connected as Configuration 1 but with the P, S. D, driving the
SCO. The P.S.D, test setups of Figure C-4 and C-6 were used to drive the
P.S,D., The waveforms were observed on an oscilloscope and recorded on film.

Power Interruption Test

The test setup of Figure C-8 was used with 2 triangular input waveform. The
T/M shelf was connected to the power supply/supplies through the Avco L, F,
Generator (See Figure C-10a)., The rate and level of power interruption was
changed with the results displayed on the oscilloscope with a Tektronix 1A4 plug-in,
This displayed a high and low SCO channel, the type of power interruption and

the modulating waveform,

Figure C-10b shows the method used to obtain a transient (short duration) power
interruption with the same test setup.

Discriminator Filter Tests

Figure C-11 shows the test setup used to determine the response of the
Discriminator Bandpass and Low pass filters. Figure C-12 shows another
method that is useful in determining the transient response of the filters.
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