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SUMMARY

. NASA-Langley initiated this "Study of Space Shuttle Environmental
Control and Life Support Problems" to specifically investigate four
significant problem areas that require special attention in parallel with
the NASA Phase B study efforts. These four tasks are: (1) Cargo Module
EC/LSS Definition; (2) Space Shuttle/Space Station Interfaces; (3) Shuttle/
Payload Thermal Control and (h) System Reusability. The primary reasons for
their selection are discussed in the following subsections.

Tasks Definition

Cargo Module EC/LSS Definition.- During the course of the Shuttle
vehicle studies major emphasis was placed on definition and description
of basic orbiter and booster configurations. Payload emphasis was limited
to broad definition of the various payloads and the effects of .payload
volume and gross weight on the booster/orbiter design configurations and
aerodynamic performance. However, the wide variety of manned and unmanned
missions established for the overall Shuttle program require environmental
control and life support in varying degrees. The magnitude of this support,
the design approaches and effects on the basic vehicle were all areas in
need of more comprehensive examination.

Space Shuttle/Space Station Interfaces.- Shuttle and Station studies
were conducted independently of each other. Since one of the primary objec-
tives of the Shuttle is to provide logistics support and personnel transfer
between these vehicles in a docked operational mode and since each vehicle
has an environmental control and life support system (EC/LSS), it was apparent
that a more detalled examination of the interaction between the systems was
needed.

Shuttle/Payload Thermal Control.- In addition to the ,EC/LSS definition
needed for cargo modules, it was also recognized that special thermal control
considerations for the payloads could have significant influence on the orbiter.
The payloads can be classified inte the following four categories: (1) those
which are manned and require active control for personnel comfort; ( 2) those
which must be kept warm to maintain a minimum temperature level; (3) those
which are cryogenic and require high thermal isolation, and (4) those which
are not thermally sensitive. This span of payload requirements and the large
number of payloads emphasized the need for more detalled examination of the
design needed to provide adequate support.

System Reusabllity.- The Shuttle vehicles will be subjected to multiple
launches and re-entries over a ten year period. Turnaround time from.recovery
to launch is less than two weeks. It is important, therefore, to have main-
tenance concepts for servicing and repair of onboard equipment which minimizes
delays caused by extensive fault isolation or preflight testing. The feasi-
bility of improving system maintenance characteristics and long term life
through added redundancy is another aspect which could influence system design.
These areas, therefore, were identified as desirable for further examination.




Study Results

The significant results of this study are sumarized below:

Cargo Module EC/LSS Definition.-

o

The cargo module EC/LSS must be sized for various passenger loads.
This is based on supporting the 6-man and 12-man modular Space
Station, and upon a wide variety of manned and unmanned missions.

A two-man, six-man, and a ten-man cargo module EC/LSS will satisfy
the support requirements. The ten-man unit meets the 12 passenger
transfer requirement since two of the passengers can be housed in

the Shuttle .forward crew compartment, and are supported by the Shuttle
EC/LSS. This clarification and division between the Shuttle's forward
crew compartment and the cargo module's EC/LS systems is considered an
important aspect in the cargo module definition, and all subsequent
analyses, conclusions, and recommendations are based on this decision.

Comparisons made between the basic Shuttle orbiter four man EC/LS
system and alternate systems customized to accommodate various
passenger loads in the cargo module conclude that modular units

of the basic system should be used for the cargo module on all

manned missions. This conclusion is supported by the fact that

Design, Development, Test and Evaluation (DDT & E) costs for customized
systems are too high. These costs override the transportation to orbit
costs penalty imposed by non-weight optimized systems. Multiple units
of the basic EC/LSS have sufficient flexibility to meet the requirements
of 20-ten man, 24-six man and 49-two man flights and are readily extend-
able to 30 days with additional expendables.

Crew size does not alter the basic decision to use non-regenerative
EC/LS systems. This choice is primarily determined from mission
duration and type of power source. Since the 6 and 10 man flights
are Station personnel transfer flights and the actual passenger
time spent in the Shuttle is approximately two days, it is concluded
that the shorter duration stay time further substantiates usage of
non-regenerative systems.

Missions of 30-days duration are too few to alter the decision to
use the basic T-day EC/LSS with additional expendables for extended
capability.

Because of the need for autonomous payload operations either in a
free-flying mode or with the payload module attached to the Station,
Payload ‘,I'n/odule EC/LS system should be designed to operate independ-
ently of the Shuttle. This conclusion is of particular importance
for the thermal control system.




o}

Only menned missions require EC/LSS provisioning. All other pay-
loads reguire either thermal control only or no protection at all.

Flight planning is such that 2-man flights are continuous through-~
out the flight program. Six-man flights occur until the Space
Station acquires 12-man capability; thereafter, 10-man flights
replace the 6-man flights. To accommodate this pattern, a manned
modulée sized for the 2-man flights can be dedicated for this
mission. A second module sized for the initial 6-man flights

and later converted to accommodate 10-man flights can be dedicated
for this purpose. Each module uses singular or multiple 4-man
basic EC/LS systems because of the cost effectiveness previously
discussed., This approach negates continuous removal and replace-
ment of EC/LSS packages in the payload mocdules to convert from

It is concluded that dufing the docked mode, Station and Shuttle
personnel should rely on the Station for EC/LS. This recommenda-

- tion is based on the fact that the Station has regenerative

systems, greater volume than the Shuttle for habitability and

The Shuttle EC/LSS can be placed in a quiescent operating mode
subsequent to personnel. transfer to the Station. This mode
allows for rapid escape capability by eliminating extensive
reactivation or warmup. Since thermal lag is considerable,
this system remains operative at a reduced level throughout
the docked period. All other EC/LSS elements can be readily
activated on demand and can, therefore, be shut off during

To allow for brief intra-vehicular movement which may be desir-
able for cargo transfer, system checkout or for escape, the
hatches between the vehicles should be open when the vehicles
are docked. Total pressure control for both vehicles is pro-
vided hy the Station. If personnel enter the Shuttle during
the interim for any moderate amount of time, the Shuttle EC/

o)
one mission to another.
Space Shuttle/Space Station Interfaces.-
0
is designed to accommodate a crew overload condition.
o
normal docked operations.
o
© LSS 1s activated.
‘o

During the docked mode, EC/LSS interconnects between the Space
Station and Shuttle are not required. Status monitoring and
electrical power supply by umbilical connection should be pro-
vided. It may be desirable to transfer Shuttle fuel cell
product water to the Station during the docked mode.




o The analysis of the Station feeding capability shows it to be
inadequate to handle the 24 crew overload condition. A solu-
tion to the problem is to use the Shuttle cargo module feeding
facilities to augment the Station. The. disadvantages %o this
approach are that the module is not as habitable as the Station,
that activation of the EC/LSS is required, and that personnel
traffic between vehicles is increased. It is recommended,
therefore, that increased feeding capability be provided in
the Station.

Shuttle/Payload Thermal Control.-

o Shuttle payloads can be divided into three categories with re=-..
spect to thermal control requirements; (l) an active system
capable of maintaining temperatures within a human comfort
range for manned missions; (2) a system which provides heat
for satellite servicing, maintenance, placement and retrieval
missions; and (3) a system which provides protection from
excessive heat leak and condensation for propellant payloads.
No thermal control is required for propulsion stages and
quiescent satellites which haveé been designed for the environ-

. mental extremes.

o Approximately 150 £t2 of radiator surface is required for manned
missions. The requirement for operation both independent of the
Shuttle and while contained within the Shuttle establishes the
need for radiator locations on the upper surface of the module.
During orbital operation, therefore, the Shuttle cargo bay doors
must be opened to allow heat rejection. To minimize radiator
area, an optical solar reflective (OSR) finish providing an o/e
of 0.05/.8 is recommended. The higher cost of the OSR surface
is easily offset by higher performance characteristics and surface
stability with respect to ultraviolet degradation. ‘

o0 The mission payload analysis indicates that there are a total of

2kl satellite payloads. Thermal control for approximately half
" can be satisfied with insulation blankets and relatively small

electrical heaters. The remainder can be satisfied with passive
thermal control techniques and require no Shuttle support. It
should be noted that the thermal control requirements for a large
number of satellite payloads have not yet been established. The
percentages cited, therefore, are estimates based on limited
current information. One of the more significant influences on
the payload compartment environmemt is provided by onboard
Shuttle cryogenics. Design of the compartment walls, insulating
blankets and passive control methods should minimize heat loss
from the satellites to the surrounding environment.




o Propellant payloads require no auxiliary thermal protection for
orbital operation. During atmospheric operation, condensation
and freezing would occur with unprotected tanks. To prevent
this from occurring, an insulative bag, enclosing the payload
with dry helium is recommended.

System Reusability.-

o Airlines do not utilize extensive fault isolation, status or
trend monitoring for subsystems because it is too complex and
costly.

o Airlines generally have the philosophy of waiting until parts
fail before replacement. This approach eliminates failures
from wear out caused by extensive checkout or scheduled main-
tenance. Airlines predicate this practice on the basis that
no single failure can occur which jeopardizes passenger or
aircraft safety. To adopt this policy for spacecraft, additional
redvndancy would be required to provide high initial reliability
and safety and to compensate for failed components not discovered
by auvtomatic checkout.

o Reliability analyses show that the freon thermal control equip-
ment of the heat transport loop subsystem and the humidity control
subsystem have difficulty in meeting the 100 mission lifetime mean
time to failure. The analysis concludes that repair, replacement
and servicing for these subsystems are more likely tﬁan for the
remainder of the EC/LSS equipment. It is also concluded that
attempted improvements in these areas through redundancy adds
critically to system weight while affording little gain in
reliability. :

o The analysis indicates that it is both practical and desirable to
provide instrumentation for dynamic fluid mechanical components
(coolant pumps), rotating and non-rotating electromechanical
components (motors, relays, switches), electrical devices
(resistors, capacitors), and electrochemical items (batteries).
It is recommended that direct or indirect instrumentation be
applied in accordance with subsystem criticality for each
mission phase for these component categories. This analysis
1dentified the O N supply and pressure control and heat trans-
fer loop ‘freon %h %mal control) subsystems as the most critical
for instrumentation.

o Grouping of EC/LSS components into modules for replacement is
not a means of achieving quick turnaround. Modular replacement
for maintenance results in a number of good, proven components
being removed along with the faulty item. Because there is a
high infant mortality rate on newly installed components, the
trend is to avoid this kind of modularization. Airline recom-
mendations are to break modules into smaller line replaceable
units for ready replacement.



o This study conceptually defined a simple, practical fault
isolation system that is a compromise between the two extremes
of fully automated computerized checkout and gross status
monitoring. A go-, no-go, green, red light display indicates
components that do not demonstrate satisfactory operation.

A single failure may result in indication of failure of several
components (even though the system design tends to eliminate
this by integrating sensor signals at the source) which would
then be disgnosed by the ground crew during postflight main-
tenance. Airline experience shows that an experienced ground
crew with minimun aids for trouble location can efficiently

and rapidly perform repair service, thereby minimizing the need
for complex automatic checkout systems.



INTRODUCTION

. NASA identified specific problems associated with the design and develop-
ment of a Space Shuttle orbiter vehicle envirommental control/life support

system (EC/ISS). This report investigated those problem areas. Results of

the investigation are contained in five technical sections of the report

covering: (1) mission/vehicle definition, (2) cargo module EC/ISS definitionm,
(3) Space Shuttle/Space Station interfaces for determining the division of the

EC/1SS responsibility, (4) Shuttle/Payload thermal control interfaces, and

(5) EC/1SS system reusability. A New Technology section lists areas for further

investigation. : :

The initial section (Mission/Vehicle Definition) furnishes a general
description of the Space Shuttle mission. The crew and passenger complement
associated with each of the missions is identified. The data presented pro-
vides the necessary background information to execute the study tasks. A
standard traffic model showing number of flights, distribution, schedule, and
frequency is established as a guideline. This model is consistent with the
NASA schedule.

The succeeding sections of this report covers the four study tasks de-
fined end discussed in the Summary. The cargo module EC/LSS which will
support the wide variety of payloads and missions of the Space Shuttle Program
is defined. The Shuttle baseline and alternate candidate EC/ISS concepts’
were selected, defined, and evaluated. The evaluation criteria applied were
cost, weight, flight frequency, number of crew, modularity, and performance.
Module performance characteristics,..and technology advancement requirements
are identified.

An investigation was carried out regarding the influence of the Shuttle
and Station on each other. Results of docking, crew passenger/cargo transfer,
system deactivation, and EVA/IVA were the major areas investigated. A Shuttle
and Station interaction analysis was performed to determine division of EC/LSS
responsibility. A combined Shuttle/Station EC/LS baseline system and alternate
candidates were formulated and studied.

An evaluation was conducted regarding the requirements for the Space Shuttle
payload thermal control as related to the Shuttle interfaces from pre-launch-to
orbit; and/or orbit through landing. Representative payloads were selected which
present a cross-section of the thermal control problems which will be encountered
during the various mission phases.

An EC/LS system reusability analysis was performed which examined sequenti~ °
ally; (1) all facets of ground test, maintenance, and refurbishment as being
practiced by airlines, military services, suppliers, amd manufacturers, (2) pre-
flight refurbishment and post-flight checkout requirements at the EC/ISS compon-
ent level, (3) mean-time-to-failure using system redundancy and weight limita- ..
tions as applied to variable mission periods, (4) fault isolation feasibility,
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including EC/LS subsystems criticality by mission phases, instrumentation
practicality level, and difficulty of implementation, and (5) line replace-
able unit requirements. A conceptual fault isolation approach that minimizes
inspection, maintenance, and turnaround time is also presented.

The report concludes with two appendices, one contains the data result-
ing from the detailed operation and mission analysis. The mission objectives
and characteristics that have an effect on the Shuttle EC/LSS have been
tabulated. Sensor/equipment, environmental protection and Shuttle support
requirements are delineated. The second appendix contains a copy of a
computer printout performed for the System Effectiveness Program in deter-
mining the design life and reliabllity of the cargo module EC/LSS.



MISSION/VEHICLE DEFINITION

This section contains:a general description of the Space Shuttle
mission. Emphasis is placed on the salient characteristics that have
a direct effect on environmental control and life support. The crew-and
passenger complement associated with each of the missions is identified.
The data presented herein provides the necessary background information
to execute the study tasks.

A typical seven day mission flight profile is described which forms
the basis for selecting a baseline EC/LSS. A standard traffic model show-
ing number of flights, distribution, schedule, and frequency is established
as a guideline. This model is consistent with the NASA master schedule.

The latest ghuttle and Station configurations as established for
NASA by the FPhase B contractors are described. Payload descriptions and
general cxjew/passenger/cargo arrangements are presented as an input to
the EC/IS' system analysis. A mission operations analysis is performed
that presents an overall mission sequence of events.

Mission Definition

Many potential uses for the Space Shuttle have been identified in terms
of overall space program objectives. In this study the missions considered
for their effect on the selection of a Shuttle EC/LSS, are the following six:

1) Space Station Resupply, (2) Sateliite Placement and Retrieval,

3) Satellite Servicing and Maintenance, (4) Propellant.Delivery,

5) Propulsion Stages and Payload Delivery, and (6) Short Duration Orbital
Missions. Table 1 summarizes the major characteristics associated with eaéh
of these missions.

The primary mission of the Space Shuttle is to transport cargo and/or
personnel to and from the Space Station/Ba.se. In addition to cargo and per-
sonnel, five other basic missions support the overall space progrem. The
following sections will give a brief summary as to the six missions objec-
tives and requirements.

Space Station Resupply.- Logistic support to the Space Station is pro-
vided in the Space Shuttle. In addition to cargo and personnel, the Space
Shuttle will be required to place at the Station (both attached and free-
flying) » Barth orbital experiment modules which would operate in conjunction
with a Space Station/Base. :




4 The 1981 Space Station will normally be inserted into a 270 nm, 55 deg
inclined orbit and eventually grow into the Space Base. Support of the
Space Station/Base in this orbit has been selected as the Space Shuttle
design reference mission. Alternate orbits being considered for the Space
Station include geo-synchronous and polar orbits. For support of the

Space Station in a geo-synchronous orbit, the Space Shuttle will be required
to rendezvous in a low earth orbit with a space tug for passenger/cargo
transfer and eventual delivery to the Space Station. For polar orbits,
Saturn V payload launch capability limits Space Station operations to about
200 nm.

Satellite Placement and Retrieval.- Mission objectives are to place a
number of self contained satellites into a variety of orbits up to a maximum
altitude of 800 nm for independent operation. Retwurn to earth operation will
include retrieval of high cost, high-priority, satellites and wherever praci-
cal, space debris caused by U. S. and foreign "dead" satellites, expended
upper stages, transtages, etc. For the missions being considered, payload
weights will range between 200 and 20,000 lbs, allowing, in most cases,
“multiple payload delivery. Because orbital plane changes of more than a few
degrees results in excessive propellant usage, multiple payload delivery
missions will require satellite groupings by orbital inclination commonalities.
Two orbit inclinations of major interest are a due east ETR launch (orbit
inclination = 28.5°) and sun synchronous orbits (orbit inclination = 97°).

To retrieve satellites, the Shuttle must be capable of performing
rendezvous and docking with passive satellites. In addition, the target
satellites will require retrieval mechanisms which are compatible with
those of the Space Shuttle. This requirement, it is expected, will be
incorporated into future satellite designs.

Normal operations will be to deliver and retrieve satellites by remote
controlled mechanical devices with EVA operations performed only as required.
An example of EVA operations would be removal of protuberances, such as
extendable booms or space erected panels prior to satellite retrieval.

Satellite Servicing and Maintenance.- The purpose of this mission cate-
gory is to provide service and maintenance to large experiment modules and
satellites operating in orbits’at altitudes of up to 800 nm and inclinations
ranging from 28.5° to sun synchronous. (There is the possibility of orbits -
at inclinations lower than 28.5° as well) . While many of these modules or
satellites may be operating in conjunction with a Space Station or Base,
others may be in orbits that would be more readily accessible from the
ground. These modules or satellites are logical candidates to be serviced
and maintained by the Space Shuttle. The Shuttle would have the capability
t0 revisit modules and satellites and bring them into an onboard facillity
where a service and maintenance crew could conduct these operations in a
shirt sleeve environment.




Operating modes being considered include delivery of a satellite service
module along with a logistics payload to the Space Station where a tug would
transfer the module to the satellite to be serviced. The Shuttle service
and maintensnce facility will contain equipment, instruments, and supplies
that will provide trained personnel the capability to conduct servicing,
maintenance and repair operations. The servicing functions would be con-
ducted on a periodic basis and would include such items as film changing
and replenishment of attitude-control propellants.

Although highly automated satellites are designed for long term opera-
tions, the capability to visit such satellites in case of malfunctions is
highly desirable. The Shuttle could provide the capability for on-orbit
replacement of instruments and components. In cases where extensive repair
might be required, the Shuttle could either return the satellite or experi-
ment module to the ground or transport it to a Station or Base (depending
on the satellite orbit inclination). Satellites that operate for long
durations would be designed to accept updated instruments and sensors to
enhance theilr operational capability. This replacement function would be
accomplished by the Shuttle. '

Propellant Delivery.- In this mission category the Space Shuttle is
required to deliver LH_, and 1O, propellants to an Orbital Propellant Storage
facility (OPS) in low éarth orbit. The OPS facility has the fumction of
Providing propellant for unmasnned planetary missions, the space based nuclear
lunar shuttle, and for the space tug operations required for lunar surface
and geosynchronous Station support. The Space Shuttle will be required to
operate in three distinet tanker configurations to support this missien:

(1) as an 1O, or tanker, (2) as a combined LH,/IO, tanker, and (3) as

a partial t r to Be used in conjunction with the normal delivery of
supplies to the Space Station. During the high traffic periods of the
program and for initial filling of the OPS, a dedicated tanker will be used
for this purpose. For the dedicated vehicle the tankage and propellant
transfer system is an integral part of the orbiter stage. Desirable opera-
tional orbits for the OPS range from 28.5° to 55° with an altitude sufficient
to provide long orbital life time characteristics and to facilitate delivery
to the Space Station (at higher inclination orbits). ‘

The OPS facility itself is comprised of structurally connected cylin-
drical tanks capable of long duration orbital storage of LH, and LO2 with
a tanked mass approaching 1.2 x 10° lbs. The OPS receiver Is a passive
system maintaining a referenced stability and providing a docking capa-
bility with the Space Shuttle tanker. During orbital storage, operation
and checkout of the OPS is remotely controlled from the ground through
the Manned Space Flight Network (MSFN).

Propulsion Stages and Payload Delivery.- This mission category is
concerned with the delivery of payloads and propulsion stages to low
Earth orbit. - The payload and propulsion stages are then placed on a high
altitude Earth orbit or launched as interplanetary ummanned probes. The
following principal operational modes will be required to deliver payloads
and stages to the OPS facility:
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o Mode 1. The payload and stages are delivered to orbit in
separate launches with assembly, fueling and launch performed
in-orbit. Mode 1 operation implies the use of an orbital
facility to assemble, checkout and fuel the stage and pay-
load. The Space Shuttle would only deliver stages and payloads
to the orbital assembly facility.

o Mode 2. The fully assembled dry stage and payload is delivered
to the OPS facility for fueling. Mode 2 will require the Space
Shuttle to dock at the OPS facility for the purpose of fueling
the propulsion stages. This would be followed by checkout and
deployment of the payload and stages by the Space Shuttle.

Once deployed, the stage and payload would revert to the
control of the Space Station or ground control for final
countdown and launch.

o Mode 3. The fully loaded stage with payload attached is de~
livered to orbit, with subsequent checkout and deployment.
Final checkout and launch is the same as Mode 2,

Short Duration Orbital Mission.- As a spacecraft, the Space Shuttle
will have the capability of conducting Earth sensing surveys for up to.
30 days stay time. Although many of the surveys will be conducted by
the Space Base and wmmanned satellites, the Space Shuttle will comple-
ment their activities by providing in-depth coverage of selected areas.
Surveys proposed to be performed with the short duration nllission mede
include investigations in the areas of cultural resources; natural
resources, and Earth sciences. Two mission modes are considered for
this mission. '

o Mode 1. In this mode, the Space Shuttle performs as a dedicated
mission vehicle conducting Earth sensing surveys. The orbital
characteristics and mission requirements for this mission are
generally the same as for the baseline mission, therefore, the
mission profile will be similar. Normally, prelaunch activity
will not be urgent and a launch response of about five hours
will be sufficient. Launch will be in a southerly direction
to an orbit having a perigee of about 100 nm and an apogee of
200 to 300 mm. Perigee will be located at the latitude which
is of primary interest from the viewpoint of Earth resources
evaluations. The altitude and inelination will be selected to
provide a ground track with a constant local sun time (sun
synchronous orbit).

Remote sensing of the Earth's surface involves use of high and low
resolution imaging sensors over a wide range of the electromagnetic spec-
trum from the ultra-violet region and into the microwave bands. On-orbit
operations will consist of activating these sensors over the areas of
interest and storing the data for transmission to ground stations via
electronic readout. Mission durations will range between 7 and 30 days,
depending on the coverage requirements over the areas of interest.

13



Under normal operating conditions, there will be no urgency for the
return to Earth phase. At least one return opportunity per 24 hour period
to a prime landing site will be available. Because of 1ts proximity to the
WIR launch complex, scheduled return will likely be tq Edwards AFB.

o Mode II. In response to a need for a "quick” evaluation and
detailed observations in a given area (such as a natural
disaster) an on request surveillance capability will be
required. To accommodate quick evaluation, it is desirable
that the orbiter return to the launch site within one orbit
revolution. Because this mission will be performed in response
to an urgent situation the capability of being launched within
two hours from a standby status is required.

Individual NASA payloads which are included in the NASA Mission Model
have been reviewed as to the requirements imposed on the vehicle systems.
Table 2 shows the relationship of the previously discussed missions with
the NASA scientific categories and their included loads. Some payloads
require multi-mission capability. It should be noted that 80 payloads
are included within the eight scientific categories. These payloads are
described in appendix A. The type of payload, mission objectives, charac-
teristics and initial operational capability (IOC) are listed. Special
emphasis is placed on those requirements that affect EC/LSS design. The
types of sensors and the thermal and environmental protection that must
be supplied by the Shuttle are also shown.

Mission Profile

For the Space Sta.tion/Base logistics mission, the Space Shuttle is
to rendezvous with the Space Station to transfer passengez"s and cargo.
The inplane profille (See fig. 1) is as follows: The boost-powered phase
terminates with the Space Shuttle injecting into a 45 nm perigee ellipse
with apogee altitude of 100 nm. At apogee:a velocity increment is added
which places the Space Shuttle in a parking orbit in order to time syn-
chronize with the target. After proper synchronization, transfer is made
to the terminsl phasing orbit which is approximately 10 nm below the
target orbit. Closure is performed by the Space Shuttle using a low
acceleration system of 0.03 to 0.05g. :

The remaining five mission profiles are either identical to the above
or are dependent on the orbital characteristics of the target vehicle.

The Mission Frequency Profile (See fig. 2) has been established primarily

to furnish guidelines for subsequent analysis concerned with EC/LSS selection,
reusability, and overall cost/effectiveness analysis.
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TABLE 2

MISSION/SCIENTIFIC CATEGORY RELATIONSHIP

MISSION

SCIENTIFIC
CATEGORY

Propulsion Stage
Short Duration
Orbital Mission

and Payload
Delivery

Resupply
Placement. and
Retrieval
Satellite
Servicing and
Maintenance. .-
Propellant
Delivery

Space Station
Satellite

NASA Astronomy (NAS)

Large Free-Flying Observations
Small Free-Flying Observations

>

NASA Space Physics (NSP)

Large Payload Module o X X
Small Payload Module X

NASA Spdce Applications (NSA)

Medium Satellite X X X
Small Satellite X

Non-NASA Operational (NNO)
Small Satellites ’ _ X X

NASA Biosciences (NBI)
Bioscience Modules X X

NASA Lunar Option 2 (NL 2)*
Station to Lunar Base Supply

NASA Support (NSU)

Logistics ' X X
Personnel Transfer X

NASA Planetary (NPL)
Payload Modules X

* This scientific category is not related to any specific mission due to its
current scheduled flight time.
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Space Shuttle traffic models have been generated by the NASA Space
Shuttle Task Group based on Space Station/Base development s Shuttle schedules
and on projected space programs. A baslc assumption is that the Shuttle must
be capable of operating over a 100 mission lifetime. The initial nominal
traffic model established by NASA called for a total of 536 flights with
the initial 16 flights originating in 1975 and reaching an average rate of
60 flights through 1985. The latest traffic model (ref. 1) updates this
model and forms the baseline to establish the EC/LSS requirements.

Figure 2 shows five general classifications of flights with the type
‘of flight identified by coded boxes. The table on the upper right portion
of figure 2 shows the number and location of the crew, cargo handlers, and
passengers for each of the missions. The final colum shows the number of
flights associated with each mission and the total number of flights for
each crew passenger complement, as well as the total number of flights
during the 1979 through 1990 time perioed.

A cumalative total of each type of flight is indicated at the right
of the coded box in the body of the figure. This number indicates the
cumulative total flights for the particular crew passenger complement
through the successive years.

First flight, as shown in the figure, is initiated in 1979 with a
total of 21 flights scheduled for that year. Flight frequency increases
to a maximum of 47 flights during the fourth year from the first Month of
Flight (MOF) and reaches an average of approximately 34 flights for the
remainder of the program.

Figure 3 shows the distribution of manned payloeds (2, 6, and 10
passengers flights) on a monthly basis. Also shown are the cargo flights
involving either 2 or 4 crew members in the Shuttle forward cabin.

Examining the total flight schedule indicates that a maximum of five
flights occur in a single month period. This 1s consistent with the NASA
planned development schedule of five Shuttles as shown in figure L.

Shuttle Configuration

The Phase B System Studies have defined a Space Shuttle configuration
consisting of a combined booster/orbiter. This EC/LSS study is concermed
primarily with the orbiter end the emphasis of this section will be on-the
general arrangements, intermal location of equipment, and other aspects
that directly affect selection of the EC/LS system.

Booster and Orbiter.- The Booster does not have any interface with
the Orbiter EC/LSS. The major function it performs is placement of the
Orbiter on the desired trajectory. It then reenters and cruises back
to the base. - : :
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Two basic Orbiter configurations were evaluated by the prime contractors:
(1) Delta Wing Orbiter, and (2) Straight Wing Orbiter. The Delta Wing was
selected (see fig. 5). The geometry of the selected configuration affects
the location of the EC/LS system components, while aerodynamic considera-
tions affect the thermal profile axd the total mission duration.

The Orbiter consists of the following sections: (1) Crew Station,
(2) Airlock, (3) Passenger/Cargo Compartment. The general accommodations
of crew and passengers 1s illustrated in figure 5, which shows the forward
crew compartment, passenger compartment, and cargo bay doors located in the
cargo module. The passenger/cargo module is shown in figure 6 and illustrates
a seating arrangement for the various passenger complements, EC/LSS, and
consummable storage complements located under the passenger compartment.
The baseline EC/LSS for the pilot/co-pilot and two cargo handlers will be
Jocated in the forward cabin and will be a separate system.

Forward locations of the fuel cells, battery power conversion equip-
ment and water boilers minimizes the effects of transmission losses to the
electrical/avionics usage systems and also effects plumbing weight savings
to the EC/LSS.

Space radiators located on the cargo bay doors utilize an existing
deployable break in the main structure of sufficient size to accommodate
the required radiator for operation of the EC/LSS. Choice of location
affects the weight of the fluid distribution network.

The design thermal profile during reentry is shown for the Delta Wing
configuration in figure 7. This profile was used as the design reference
for this study.

The orbiter electrical power supply consists of 120 VDC. The EC/LSS
will connect to a common power distribution unit. The power distribution
unit shall provide for inversion, conversion, and distribution.

Station Configuration

NASA Phase B Space Station definition studies (ref. 2, 3, and 4) provide
the basis for most of the information presented in this section.

The general structural configuration of one design, shown in figure 8,
is typical of all those evolved in the Phase B definition studies. The
four-deck space proposed is about 33 ft. in diameter and 35 ft. long.

Decks 1 and 2 have one pressure volume and 3 and 4 another. Six docking
ports and hatches are shown for accepting experiment modules or for trans-
ferring passengers and cargo. A major interface with the Shuttle occurs
with Attached Experimental Modules that operate outside the mold line of
the pressurized core module but are physically attached to the core module.
A secondary interface occurs with detached free flying modules (sub-
satellites) which can be retrieved within the core module during non-
operating periods.
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- The six ddcking-pbfﬁs are assigned as follows: Cargo (2), Detached
Experiment Module (1), Attached Experiment Modules (2), and Power (1).
The most critical subsystem of the Station that interfaces directly with

the Shuttle is the EC/LSS.

Mission Operations Analysis

This analysis is organized aroumnd the six missions defined earlier.
This section presents the typical sequence of events from pre-launch through
station docking or insertion in a detached "free flying" mode and subsequent
deorbit, entry approach and landing. Special considerations involving crew
locations and activities are discussed.

The following assumptions were applied in development of the mission
analysis:

(1) The initilal Space Station will be occupied by a six man crew.
(2) The growth Space Station will be operated by a 12 man crew.

(3) A1l payload modules fall within the 20,000 1b guideline and
consist of satellites, resupplies, personnel, and experiments
depending on the flight requirements.

(4) The Space Station orbit is 270 mm and 55° inclination. The
orbit for the free-flying payloads and the sortie payloads
are not specified at this time.

(5) Six operational missions will be executed by the Shuttle.

(6) All low Barth orbital experiments that do not require unique
orbital parameters or specific other conditions that cannot be
practically met by the Station are considered to be incorporated
into the Station laboratory facilities.

(7) The Shuttle/Payload combination provides an important capability
prior to Station Initisl Operational Capability (IOC) and also
provides a complimentary function after IOC when unique require-
ments exist that favor that mode. For example, a portion of the
Earth Observation research and application activity will be con-
ducted on Shuttle/ Payload sorties in order to obtain different
Earth viewing coverage while the major portion of the Function
Program Element (FPE) will be carried in a dedicated Research
and Application Modules (RAM) attached to the Station.

(8) Three operational modes will be utilized to carry out the six
. missions: (1) Dedicated (attached to Station), (2) Detached
(free flying RAM), and (3) Shuttle/RAM Sortie (Short Duration
Orbital Flight):
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The next section presents the sequence of events for the Space Station
Resupply mission. All other missions with the exception of the Short Duration
Orbital mission follow the same sequence of events, and therefore, are not
repeated. However, personnel, location and activity for these missions are
discussed. The sequence of events differences for the Short Duration Orbital
mission follows this discussion.

Space Station Resupply Sequence of Events.- Figure 6 presented the crew/
passenger complement and their nominal location for the Space Station Resupply
missions. These missions Involve logistics supply, delivery of experimental
payloads, and passenger transportation to the Station.

The flight phase sequence of events from prelaunch through reentry,
approach and landing is as follows: (See glossary of terms at the end of
the sequence of events). ,

Prelaunch

Time Duration
Hr Min Sec Hr Min Sec Event
=5:00:00 3:20:00 Chill down and slow. £ill Booster/Orbiter
~1:40:00 1:26:00 Fast £ill Booster/Orbiter
=~1:35:00 - - Transfer power to Space Shuttle
-1:30:00 1:00:00 Activate fuel cells
-1:12:00 1:12:00 Replenish LHp/I10o
-1:00:00 00:20:00 Replace ground crews with flight crew
-00:50:00 00:40:00 Begin launch readiness checks

Actuate on-board computers; check a.tmosphere
Target guidance system activated

=00:10:00 00:10:00 Begin terminsal countdown

0 — Liftoff
Launch & Ascent

0] - - Liftoff vertical rise
00:00:00 00:00:00 Critical abort period
00:13:00 End vertical rise; start pitch maneuver
00:01:03 - - Peak dynamic pressure
00:02:10 Release angle of attack constraint; initiate

optimum attitude profile ‘

00:02:24 00:00:52 3g acceleration
00:03:16 - - Stage booster shutdown; Orbiter start

booster separation; Control from Orbiter.



Orbital Transfer

Time Duration

Event

Hr Min Sec Hr Min Sec

5:00:00 - -
5:05:00

18:21:00 -
18:23:00
18:24:00
Rendeivous

19:10:00

19:15:00

19:57:00
21:30:00

21:55:00
22:00:00 .

Docked with Space Station

22:00:00 - -

22:00:00° 122:00:00

828
88&
888
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‘Begin long-range search pattern.

Update rendezvous flight plan
Stabilize altitude

Determine AV vector for transfer
Orient for thrusting

Countdown

Begin thrust

Shuttle 10 nm below and behind Station
Acquire
station; visual confirmation; update

rendezvous flight plan.

Switch to short range tracking mode.

Switch to small thrust mode.

Orient and begin thrusting.

AdJjust range rate as necessary. Continue
thrusting until terminsl velocity = U4 fps.

Rendezvous ends 100 ft. from station.

Switch to docking mode.

Hard docked; begin transfer sequence.

.

Shuttle docked to Space Station

Verify integrity of Station

Dormant storage conditions for all subsystems;

Shuttle provides own power; monitor subsystem
status from Station; establish standby con-
dition for critical subsystems.

Crew transfer

. Cargo transfer

Return cargo transfer




Deorbit

Duration

Time
Hr Min Sec Hr Min Sec Event
144 :00:00 - - Decision to return
144:00:00 24:00:00 Activate all subsystems
. Initiate ‘computer descent phase
Select landing site
Computer return trajectory
Check local landing site weather
Compute deorbit point (time)
Notify ground stations
Crew ingress to shuttle
Perform systems checks
165:40:00 Separate from Space Station; initial AV = 1.0 fps
wntil distance from Station 2100 ft.
165:40:00 00:38:45 Loiter )
166:10:00 00:03:00 Distance from station 1 nm; rotate from
deorbit 180° , ,
166:15:00 Stabilize attitude; deorbit guldance update;
. stow nose cap; retract RCS thrusters;
: start APU - verify hydraulic pressure
166:17:45 00:01.:00 Begin deorbit countdown
Position main engine
166:18:45 Deorbit thrustingAV = 437 £ps T/W 2 .15
166:19:45 Jettison liquid propellant (committed to
reentry); stabilize attitude
166:20:00 Stow engine nozzle
166:21:00 Reentry guidance update
166:25:00 Determine entry footprint
166:30:00 Correct reentry trajectory
Entry
Monitor entry point, entry attitude, and touch-
down footprint; last GNC state vector sampling
and update.
166:40:00 Retrack horizon sensors, star sensors, antennas,
ete.
166:45:00 Rotate orbiter to entry attitude
166:51:45 Enter atmosphere 400,000 ft
166:53:00 Pre-commmication blackout transmissions
166:55:00. 00:37:00 Enter blackout region
166:55:15 300,000 ft, Ly..s %, 559
166:56:25 Aero control begins 270,000 ft; initiate pull-
out at @ = 55°
166:58:05 Pull 255,000 £t @ = 23° Modulate @
167:05:05 00:05:00 Constant altitude 250,000 £t @ = 25°; fly
temp. profile
167:21:00

220,000 ft full aero control



Entry (Cont.)

167:28:25
167:32:00
167:37:25
167:41:30

Approach/Landing

167:41:30
167:43:00
167:43:35

167 :44:50
167:45:10

167:45:30
167:47:00

167:48:45
167:49:00
167:49:30
167:49:50

167:49:50

16T7:50:00
167:51:20
16T7:51:30
167:51:45

167:57:00

168:00:00

00:02:05

00:11:50

00:03:20

00:02:00

00:00:15

00:01:30

170,000 £t L/Dygy, @ = 15° @=30°
Exit communication blackout
115,000 £t wings level ¥ =
90,000 ft

15° ¢ = 0°

Mach 6 to 1.2 range

Retract window shields; adjust glide angle
Begin transonic flight Mach 1.2 - O 8
Establish subsonic glide

Perform emergency check (unpowered mode)
Deploy turbojets h = 45,000 £t M <0.9
Ignite turbojets (idle thrust)

- Reduce airspeed to 250 KIAS; establish

shallow glide and track; inbound allgned
with runway; open nose landing gear doors
(expose navigation aids)

Bank and begin 360° descending turn;
energize landing aids

Perform final landing check; check computer
landing profile

Reduce airspeed 200 KIAS

Lower landing gear :

Adjust power setting and reduce bank angle

Final approach rollout 5 nm from threshold;
lock on ILS

Verify outer marker; track on glide slope
(3 degree)

Set final approach power

Initiate flare

Touchdown V =

Reverse thrust

End landing, initiate vehicle shut down;
crew egress; cool vehicle

Transport vehicle

165 - 180 knots

During all phases of the mission except when docked to the station,
the crew and cargo handlers remain in the forward compartment and the
passengers remain in the passenger module. The flight crew duties during
these periods are primarily restricted to vehicle maneuvers. The cargo
handlers and passengers have no speclal activities except for routine
sustaining functions.

A more descriptive analysis of personnel activities during the docked
phase and impact on the EC/LSS is discussed in the Shuttle/Space Station
Interface section of this report.

30




Alternate Missions.- The remaining missions which include Satellite
Placement and Retrieval, Satellite Servicing and Maintenance, Propellant
Delivery, and Propulsion Stages and Payload Delivery but exclude the Short
Duration Orbital missions are either experimental or logistical.

In the case of the logistical flight, the cargo handlers effect transfer
of cargo (propellants, propulsion stages, etc.) between the Shuttle and on-
orbit facilities.

For experimental flights, the cargo handlers perform technical duties
unique to the individual experiment.

Crew complement and location for these flights are also shown in
figure 6.

" Short Duration Orbital Missions.- This mission normally requires two
technicians located in the cargo module. Mission duration varies depending
on the payload. These missions involve Earth sensing surveys of T to 30
day duration, and surveillance sorties of less than 7 days. The most criti-
cal mode from an operational standpoint is the surveillance sortie which
requires that the orbiter return to the launch site within one orbit revolu-
tion. However, from an EC/LSS standpoint, the 7 to 30 day mission for the
manned Earth Sensing survey is the most critical and the sequence of events
for that mode will be given. As indicated by the sequence of events, a
maximum mission period of 30 days is required. This mission involves an
Earth survey payload where the crew size is dictated by the crew support
function. Five investigative areas dealing with agriculture/forestry,
geography, hydrology, oceanography and geology require target acquisition,
measurement operation, data monitoring, maintenance and servicing. Two
crew members services are required for a period of 30 minutes per orbit
for target acquisition, measurement operation and data monitoring. Four
manhours per day are required for maintenance and servicing. The prelaunch,
launch and ascent sequences are the same as described for the Space Station
Resupply mission. The remaining sequences are as follows:

Orbital Transfer

Time o Duration

Hr Min Sec Hr Min Sec Event

00:03:16 & - Orbiter start

00:07:00 00:00:16 3g acceleration

00:07:16 00:43:45 Orbit inject hp/ha = 45/100 nm

: Coast to 100 nm

00:10:00 00:03:00 Roll 180° to on-orbit altitude

’ Verify orbit

Establish real-time communication with
Space Station

Computer flight plan for placement of
Shuttle into desired orbital altitude
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Orbital Transfer (Cont)

Tine Duration )
Hr Min Sec Hr Min Sec Event
00:25:00 Determine lst tramsfer velocity vector
for desired altitude
00:48:00 Orient for transfer thrusting
00:51:00 Initiate thrusting
19:10:00

Orbital Operation

20:00:00
20:00:00

20:30:00

21:30:00
23:00:00

Pime
Day.
2-30

Deorbit

696:00:00
696 :00:00

T20:00:00

32

00:30:00
00:30:00

01.:60:00

02:30:00

0k4:00:00

24 :00:00

00:05:00

Acquire operational altitude

Activate payload power supply

Checkout crew/cargo payload module and
equalize pressure between front compart-
ment and payload module

Perform general housekeeping functions and
checkout EC/LS thermal, pressurization,
etc. elements: transfer two crew members
from forward compartment to payload module.

Initiate checkout and calibration of experi-
ment equipment

Calibration of 20 Earth observation sensors

1 00:30: 00/orbit Target acquisition measurement operation

and data monitoring.

Decision

Deactivate all sensors, initiate computer
descent phase, select landing site. Crew
ingress into forward compartment. Actuate
power from Shuttle to payload.

Deorbit thrusting

Jettison liquid propellant

Correct reentry trajectory

Rotate orbiter to entry altitude

Enter atmosphere 400,000 ft.

Aero control begins 270,000 ft.

Control altitude 250,000 f£t. fly temperature
profile



Approach/Landing B s

Time Duration
Hr Min Sec Hr Min Sec Event _
721:13:00 00:02:00 Mach 6 to 1.2 range
: Begin transonic flight Mach 1.2 - 0.8
Establish subsonic glide
Perform emergency check
' (unpowered mode)
721:16:00 00:11.:00 Deploy turbojets, ignite
T21:27:00 End landing, initiate vehicle shutdown,

crew egress

Glossary of Terms Used in Sequence of Events

o Angle of attack
AFU Auxiliary Propulsion Unit
fps feet per second
GNC Guidance and Navigational Control
h altitude
%ha perigee/apogee altitude

Instrument Landing System

L/D maximum Lift/Drag
Lﬂzmax Liquid Hydrogen
1.02 Liquid Oxygen
M Mach number
¢ Reentry angle
RCS | Reaction Control System
/W Thrust /Weight
v Velocity

Summary

This section has identified Shuttle missions and their effects on the
selection of an EC/LSS. The most demanding missions with respect to EC/LSS
requirements are the 10 passenger transfer flights and the 30-day Short
Duration Orbital Mission. '

A review and correlation of the NASA Scientific categories and their
payloads with the mission has revealed definite requirements for EC/LSS support.

Payload characteristics that have a direct effect on EC/LSS are lifetime/
revisit requirements. Many payloads will be designed for a ten (10) year
life time which implies refurbishment/remove/replace implementation. Payload
volumetric and weight requirements also effect the EC/LSS packaging and techni-~
que. The most significant factor is that many of the flights will require
Shuttle support for EC/LSS maintenance. A detailed payload mission analysis
with operational criteria included is presented in appendix A. Mission objec-
tives and characteristics of the payload are also listed in this Appendix.
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CARGO MODULE. EC/LSS DEFINITION

This section of the report defines the cargo module EC/LSS which will
support the wide variety of payloads and missions of the Space Shuttle program.
The passenger, cargo and mission data developed in the Mission/Vehicle
Definition section of this report forms the basis for this analysis. Per-
formance, design and interface requirements relevant for identification of
EC/LSS problems were selected from the mission data.

The Shuttle baseline and alternate candidate EC/LSS concepts were
selected, defined and evaluated. The evaluation considered personnel com-
Plement and mission feasibility, and minimization of impact on basic vehicle
design, transportation to orbit weights, maintainability and turnaround time.

" The evaluation criteria applied were cost / e'ffectivenessj,_. © weight,
flight frequency, number of crew, modularity, and performance. Volumetric
considerations that influence packaging criterla were exa.t‘lined. Module turn-
around considerations involving method and operational procedures are dis-
cussed. A summary concludes this section with module performance character-

istics and technology advancement requirements.

. Performsnce and Design Requirements

The basic requirement for the cargo module EC/LSS is'to support a
variety of manned flights that differ in number of crew and flight duration.
The Mission/Vehicle Definition.section has established that the crew size
variation due to the various mission requirements is as follows:. ’

o 20 - ten passenger transfer flights
o 24 - six passenger transfer flights
o 49 - two passenger cargo/experiment flights

The mission duration is normally 7 days; however, there is one 28-day
mission, High Energy Astronomical Observatory (HEAO), that requires crew
calibration work during the initial portion of the mission. Potential Earth
gurvey missions will require manned occupancy from 2 to 30 days.

EVA requirements are minimized in most transfer maneuvers, however, in
the Satellite Servicing and Maintenance midgsions, there may be many unique
situations where the most efficient method of refurbishing, removing, and
replacing equipment is via EVA. Photographic supplies located externally
on the satellite is a typical situation where an EVA might expedite removing
and replacing film.
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IVA activity occurs during fthe crew transfer period. The requirement
exists to transfer six to .ten passengers effectively. This infers that
direct exit of the crew through the cargo module airlock directly attached
to the Station might be preferred. There is an additional possibility that
the Shuttle, after docking the cargo module to the Station, might have to
disengage which would necessitate direct transfer capability from the cargo
module. :

\ The following requirements which are particularly pertinent to identify-
ing problems in the EC/LSS have been selected from the mission data. These
requirements will form the basis for the cargo module EC/ISS design.

Preflight Phase.~ On-board vehicle checkout, system test, and functional
system analysis will be performed. An integrated launch, loading, and
refurbishment facility will be provided for logistics and servicing functions.
Critical systems will have provisions for safing the system. Single point
failures having potential mission abort implications will be minimized.

Launch Through Orbit Phase.- The flight crew and on-board systems will
have the capability of performing all tasks during launch. Design conserva-
tism and system redundencies will be utilized to eliminate system failures
having potential mission abort implications. A shirtsleeve environment will
be provided for both crew and passengers. Cargo transfer will be automated
as much as possible and require little, if any, EVA. :

Return Phase.- The cargo module and its systems will be self-sustaining
for the missions. This requirement imposes passenger life support and cargo
therma,l support from deorbit through landing.

Post Flight.- On-board checkout and module replacemeﬁt are required to
achieve a turnaround time (from landing to launch) of less than two weeks.
Maximum usage of standard aircraft type maintenance is required.

General.- The vehicle will have the following capabilities:

o Up to 20,000 1b. up/down cargo (quarterly cargo requirements for
12 man Space Station is 12,000 lbs.)

o Seven days on orbit life.

0 2 man minimumm cargo module occupancy.

0 10 man maximum cargo module occupancy.
0 . 3g trajectory load factor - passengers.

o kg trajectory load factor - cargo and crew only.
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Subsystems designed to fail operational after failure of the
most critical components and fail safe after second failure.

Displays will be all electronic (digital readout).
The crew and passenger environment is "shirtsleeve”.

Cargo elements containing hazardous material will have self-
contained protective devices or provisions.

The cargo module and its systems shall be capable of use for
100 mission cycles with minimm of maintenance.

Electronic interface systems will interface with a standardized

-redundant multiplex data bus system.

For missions other than logistics, EVA capability will be pro-
vided at the expense of the;: allocated payload weight.

) The following requirements are considered directly a.p:plicable to the
EC/15 - system design:

o

The cargo module atmosphere and total pressure will be the:same as
the Space Station/Base (10 to 14.7 psia and 02/1\12 mixture) -

Personnel/cargo transfer will normally be IVA.

Provisions for deployment and retrieval of maximm eylindrical
payloads is required. Normal operation will not include EVA,

The vehicle design and its eritical subsystems will include proper
on-board provisions to quickly and easily place the vehicle in a
safe condition following landing,

Total vehicle turn around time from landing to launch readiness
will be less than two weeks. The removal and replacement time
wi}.l be minimized, by providing accessibility to modules,

The vehicle will have design characteristics and reentry flight
parameters that will provide low heating rate profiles necessary

for maximum utilization of refurbishment thermal protection materials,

Lipited cargo transfer is possible through the personnel transfer
hatch. More than one transfer interface with the Space Station/
Base may be required,

Provision for deployment and boarding of a maximum cylindrical
payload is desired. Normal operations will not include EVA,
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The payload variety and crew sizes are the major differences in require-
ments between the Shuttle and the cargo module EC/LSS. Both EC/LS systems
must be compatible with the Space Station and/ or independent free-flying
modules.

Other differences which must be taken into consideration are; the large
volumetric differences between the crew forward compartment and the cargo
module, and the pressurized and unpressurized sections of the cargo module.
Turnaround requirements also impose different design constraints on the
Shuttle and cargo module EC/I.S ‘systems. The cargo module will be detached
from the Shuttle for refurbishment, necessitating an independent method of
ingress for removal. and replacement of expendables and system maintenance.

Shuttle/Cargo Module Interface Requirements

Interface requirements (ref. 5) particularly pertinent to the cargo
module EC/LSS design are listed below: :

Cargo Bay Envelope.- The Shuttle shall provide a ca.rgo. bay with volume
Provisions for a payload envelope fifteen (15) feet in diameter and sixty
(60) feet in length.

Crew/Access Tunnels.- The Shuttle shall provide two extendable tunnels:
one for crew/passenger pressurized access to the stowed payload; and one
for pressurized access if the payload i1s extended from the cargo module.

‘Cargo Module Access.- Prelaunch access shall be provided by the large
cargo bay door(s). On-pad access shall be provided by a 15 in. by 15 in.
access door on the L.H. side. On-orbit access shall be provided by a
crew/passenger transfer hatch.

Cargo Bay Venting Provisions.- Provisions for purging and vénting the
cargo bay for all mission phases shall be provided on the cargo modules. »

Electrical Interface.- The Shuttle shall provide the connectors and
Junction boxes to supply power to the cargo module. Shuttle power will only
be available during the on-orbit phase. The cargo module shall supply the
electrical power, including ground power, required by the payload during
all other mission phases.

Avionics.- The Shuttle electronic system shall provide data transmission,
command, display and control, checkout, data bus, guidance and navigation,
and status monitoring services for the payload. Provisions for securing data
and communications shall be cargo module supplied.

Hardware Communication Interfaces.- A two-way transfer of voice data

via hardware shall be provided during the Shuttle/ca.rgo module attached mode.
When cargo module is detached or free-flying, an RF link shall be provided.
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Shuttle Baseline EC/LSS

The NASA contractor studles (ref. 6 and 7) were reviewed and adopted
as representative of the EC/LSS baseline model. The following summarizes
the principal characteristics of the baseline model and will offer a point
of departure for the selection of a cargo module EC/LSS. Figure 9 shows
the two block diagrams which are the basic concepts for the EC/LSS, as
defined by the NASA phase B contractors. For purposes of this study, concept
2 was used as the baseline. This concept was selected because it included
all EC/LSS prime elements requisite to the evaluation and more comprehensive
data in terms of equipment, components, and weight was available.

Waste Management.- An integrated vacuum drying waste management sub-
system is selected. This system uses a static iris type urinal which is a
cambined water separator, fan, and water pump. This unit is a modification
of the isolating bowl-type phase sepa.ra.tor/wa.ter pump used for the Apoello
Lunar Module. Pecal material is handled with a motorized slinger and waste
- collector/vacuum dryer.

A mission requirement exists to transport female passengers in the
Shuttle, therefore, the waste management element must be compatible for
both male and female use. It is assumed that the fecal collection system
can be used by both sexes. The urine collection system will require a
separate collector for female use. An adapter 1s required which can
quickly replace or attach to the male urinal. This adapter will be easily
fitted to the-urinal and either will permit repositioning the funnel or
vermitting the female passenger to be positioned on the urinall in such a
way as to capture the urine stream efficiently.

A 30-day mission extension is accomplished by periodi;.c replacement
of waste collectors, bacteria filters and activated charcoal filters, and
a 30-day complement of biocide.

Food Management.~- The food management system uses various food can
sizes. The cans are aluminum with "pull-out" lids. These cans, together
with dehydratables and drink packages, are stored in a canister designed
to house 11 food serving cans. The drink package is of the Apollo type
which uses a hermetically sealed flexible plastic container with a one-way
valve for water insertion. Foods are categorized as follows:

o Thermostabilized (sendwich spreads, tuna, puddings, etc.)
o0 Rehydratable (entrees;. desserts, salads and vegetables)
o Wafer (ready to eat snacks) ‘

o Beverages (lemonade, wine, tang, etc.)

A locker compartment is used which is sized for the baseline mission.
Ambient storage items can be stored in available space.
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Food preparation is normally simplified by using ready prepared stored
food. A service station is provided which contains a food tray compartment,
oven, napkin dispenser, utensil drawers, hot and cold water dispenser and
drain, and can opener. Trash is collected in a plastic bag.

Carbon Dioxide Removal and Odor Control.- Granular Lithium Hydroxide
(LiOH and charcoal) is packaged in beds through which cabin air is processed.
. Three idential LiOH cartridges are installed in parallel, and each is sized °
for 24 hour operation. A total of nine cartridges are required for the T day
mission which allows two cartridge failures within the subsystem fail safe
requirements.

The system is based on supporting a four-man crew and operating continu-
ously for a seven-day period. The subsystem consists of fixed hardware including
fans, valves, and structure. A 30-day mission would require a minimum of
23 cartridges. '

Humidity Control.- A three fluid condensing heat exchanger is used which
contains two coolant passages and one alr passage. One coolant passage is
attached to the primary cabin coolant loop and the other to the secondary
cabin coolant loop. The alr passage receives cabin air flow from one of
three process flow fans, each having its own check valve. The water separa-
tor is similar to the Apollo Portable Life Support System.(PLSS) unit. The
separator consists of an elbow separator with wicking built into a duct down-
stream of the elbow section. Three wicks (refrasil) each with its own water
transfer discs are bullt into the duct. The transfer disc is a hydrophilic
membrane. Alternate concepts using rotary or centrifugal separators were
not considered for the baseline.

Cabin Temperature Control.- Electronic/electrical generated heat is
coldplate cooled. A cold wall configuration which has codlant flow passages
attached to the wa]_l close enough together to meet wall temperature require-
ments (62° to 68°F for cooling and T5° to 85°F for heating) is provided. The
cold wall in the ceiling and around the flight deck reduces the heat load
on the cabin crew during space flight and after entry. The cold wall in
the floor reduces heat loss through the floor to the cryogenic tankage '
located directly beneath.

A heat/exchanger fan is required for cabin air conditioning and removal
of any heat not handled by the cold plate. A three fluid heat exchanger is
used to reject the sensible heat from the cabin atmosphere to a coolant
circuit. 7Tt is used in conjunction with a separate condensing heat exchanger
which controls cabin humidity.

Heat Transport Loop.- A dual loop heat transport (radiator) subsystem
is used which employs a water loop in the crew or pressurized compartment
and a Freon-2l loop for the remainder of the vehicle. The primary water
loop provides cooling to a food station water chiller, the humidity control
heat exchanger, the coldplate mounted electronic equipment, and the cabin
heat exchanger. A secondary water coolant loop provides the fail-safe
regquirement. '
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The Freon-21 loop picks up the heat rejected from the water loop in
the interchanger and rejects it either through the space radiator,: the sub-
limator, or a hydrogen heat exchanger. For ground operation, the heat re-
Jected in the interchanger is removed by a GSE cooling system. A secondary
Freon loop provides for the fail-safe requirement.

Auxiliary Heat Sinks.~ A vehicle installed GSE heat exchanger is used
to reject heat from the vehicle coolant loop during prelaunch while docked
to the Station and after landing.

A water sublimator may be used for handling those peak heat loads which
exceed the radiator capacity during orbit. When the sublimator inlet coolant
temperature rises above the desired value, a temperature sensor activates the
automatic switchover controllers opening the shutoff valves on the water inlet
lines, admitting water to the sublimator. Sublimation of water removes heat
from the coolant. The water vapor thus produced is dumped overboard. Alter-
nate methods which employ evaporators or cryogenic heat exchangers were not
considered for the baseline.

The sublimator is designed to reject 70,000 Btu/Hr.

02/N2 Supply and Pressure Control.- This subsystem consists of plumbing,

controls and regulators. The primary and secondary systems are identical to
each other and campletely redundant. The supply systems receive Op and N
from the storage systems at 900 psia. Total pressure is 14.7 psia with oxygen
and partial pressure of 3.l psia.

An emergency oxygen flow up to 55 lbs/hr for a perlod up to ten minutes
is provided. The high pressure nitrogen is stored in two tanks. Pressure
regulators, shutoff valves and fill connectors make up the subsystem. Re-
dundant regulators and valves are provided. Operating préssure is 3000 psi
and a capacity of 20 1b. of N is in each container. Carbon filament composite
. tanks are used.

Fire Control.- An Apollo type fire extinguisher is used. It is a domed
stainless steel cylinder 10 inches high with a seven inch nozzle and handle.
The cylinder contains a polyethylene bladder capable of expelling two cu. ft.
of foam (hydroxymethyl cellulose) in 30 seconds.

Water Management.- The sublimator water supply is initially provided at
launch and subsequently replenished by excess water production from the fuel
cells. The water capacity of the sublimator is sized for 12 hr. operation
under emergency flight loads.

The potable water subsystem consists of a water tank with pressurized
bladder, valving, plumbing, water chiller, and a heater. It will provide
either hot or cold water for drinking and food reconstitution. The unit is
sized for a 12 hour supply and also receives its water from the fuel cells.
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Cargo Module Alternate EC/LSS Concepts

The mission variety, crew size, and variable duration allocated to
the cargo module suggests reviewing alternate subsystem concepts. IMSC and
NASA Shuttle contractors have conducted extensive analyses, both in the past
and currently that examined tradeoff regarding mission duration and size of
crev. For the baseline mission, all of these analyses have shown conclusively
that based on first-flight cost, state-of-the-art, design complexity, and
availability, the preferred approach is utilization of existing well proven
concepts. For example, out of three CO,, humidity, and thermal control
subsystem concepts, LiOH with & condens%ng heat exchanger is recommended,
even though there are other techniques that have competing advantages. Hows:
ever, as will be shown, the development cost factor far outweighs any of
these advantages.

Heat rejection methods employing space radiators require further investi-
gation. Alternate concepts must consider not only the orbital phase but the
reentry, atmospheric and ground cooling periocds.

Adding radiator panels to the Shuttle is one approach to handling the
excess cargo module heat load. However, this will not alleow for autonomous
operation. Current radiator concepts include installation on the back of
the cargo module doors or deployment from a storage area immediately below
the cargo doors. Radiators sized to dissipate the projected basic shuttle
heat loads use the major portion of the available area in these locations.
However, additional radiator area may be prohibitive because of the limita-
tions of available space. The problem is further compounded by the fact

" that there will be a considerable increase in requirements for low tempera-
ture heat rejection in the condensing humidity control. heat exchanger.
Humidity control system air flow rates must increase in proportion to crew
size. Limiting the cabin dew point to acceptable levels requires the air
outlet temperature of the heat exchanger to approach the lowest possible
coolant temperature. This is only possible if the air to coolant mass flow
ratio in this heat exchanger is maintained. This will result in a signifi-
cant increase in coolant flow requirements. When the increased coolant
flow along with the slight increase in heat load is combined, a significantly
lower average radiator temperature results. The higher heat load and lower
average radiator temperature combine to yleld radiator areas which will be
far larger than might be expected for the slight increase in the required
dissipated load.

Alternate concepts that appear promising are: (l) adding radiator panel
area to the existing Shuttle, (2) use of a deployable folded radiator s
(3) use of auxiliary heat sinks such as water or hydrogen, and (4) reduction
of the low temperature heat sink requirement through the use of a dessicant
humidity control system. . :

The baseline EC/LSS designed for the Shuttle forward crew compartment
forms a model for the cargo module“EC/ISS. For the purpose of the cargo
module EC/LSS design task, radiator panels will be an integral part of the
cargo module which does not preclude autonomous operation.
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Cargo Module EC/LSS Configuration Selection

Major considerations in the evaluation and selection of an EC/LSS con-
figuration are: mission flexibility, module turnaround, and cost effective-
ness. ' ' :

Mission Flexibility.~ Personnel complement, mission frequency, and
missions up to 30 days duration were examined to determine their impact on
EC/LSS selection. The mission frequency profile (fig..2) illustrates the
feasibility of scheduling 420 flights; however, careful master scheduling
and adherence to the two week turn around is mandatory. As shown on figure
3; an early cargo module EC/LSS is required for the two passenger level,
shifting to a six passenger level near the end of 1971, and continuing through
1985. The remaining flights alternate between the 2 and 10 passenger level.
Using a modular approach, three wnique cargo modules outfitted with one, two,
and three basie Shuttle EC/LSS can be envisioned. Another approach is to
establish only two cargo modules outfitted with one and two basic EC/I.SS
repectively, for the two and six passenger flights. When the six passenger
flights end in 1985, a third EC/LSS is added to take care of the 10 passenger
flights. This latter approach would have the decided advantage of lower cost
and is recommended.

An examination of the NASA payloads and planned missions has indicated
that a maximum mission duration for a free-flying payload module will be 30
days. Reviewing the manning requirements such as initial alignment, cali-
bration, and start-up, it appears that a maximm of two technical crewmen
could accomplish these tasks. Revisits to satellites for the purpose of
servicing and maintenance will normally only require two technicians for
two to three days. The most severe cases in terms of demand on the EC/I.SS
therefore are the 10 passenger transfer flights and the two man 30-day
Short Duration Orbital Missions. The 10 passenger transfer flight might
require a mission duration of seven days, therefore, the total man-days
of life support will be TO0. The two man 302day mission requires a total
life support requirement for 60 man-days. Therefore, if the selected EC/LSS
is designed for the maximum, 10 passenger transfer flight, it will easily
accommodate the less demanding flights. The excess capability can be retained
or the modules can be off-loaded to meet the specific time requirement.

Additional mission flexibility is provided by personnel accommodations
suitable for both male and female passengers, as previously discussed.

The EC/LSS flexible packaging criteria requires functional. and centralized -
packaging within the cargo module. Fluid and electrical lines utilize a
comon entry and exit into and out of the package. Redundant paths, such as
fluid lines, electrical wiring, etc., shall be located to ensure that an
event which damages one line is not likely to damage the other.



~ A large proportion of available volume will be utilized by the ten
passenger food, rest and waste management areas. In addition, there will
be cargo space allocated for expendable supplies. Total volume availability
is a 15 £t. dia. cylinder by 60 ft. length. Based on maximum utilization
(75% of total volume), 8,000 cu. ft. of space is available. A summary of
major equipment/personnel volumetric requirements shows:

Vol. (cu. £t.)

10 Passengers (100 cu. ft. each for -

habitability end mobility) , 1,000
Waste Compartment 190
Food Management Area : - 200
EC/LSS (180 cu. ft. for 4-man system) 540
Expendable Cargo (12,000 1b.) 400
Total Volume Requirements . 2,330 -

The excess volume available of 5,670 cu. £t. would be utilized for
payloads, propellants; and the remaining subsystems.

This analysis clearly shows that the cargo module EC/LSS with maximum
cargo and passenger loading does not impose any serious volumetric constraint.
A thirty-day mission extension capability by addition of consummables also
appears within the volumetric capability of the cargo module.

Module Turnaround.- An analysis was made of all the scheduled tasks
which must be accomplished from the time of landing until the subsequent
relaunch. The rapid turnaround time-line requires four major phases:
(1) post landing operations, (2) maintenance operatioms, (3) pre-launch
operations, and (4) launch operations. Methods and operational procedures
for changing the EC/ISS modules must be consistent with these four phases
and be conducted within the two week turnaround cycle. The System Reusability
section further discusses maintainability guidelines and other pertinent aspects
of this area. '

During the post landing operation, the Shuttle's crew and passengers
egress from the vehicle, permitting shutdown of the EC/LSS ; with the exception
of the thermal control element. Vehicle cool down is accomplished to dissi-
pate the surface heat and to cool the internal structure and subsystems.
Ground Support Equipment (GSE) is utilized during this phase. The cargo
module is next removed and transported to the maintenance facéility. The
EC/LSS located in the cargo module is scheduled for both scheduled preventa-
tive maintenance and unscheduled corrective maintenance.
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. Operational procedures for changing the EC/LSS modules is initiated
by reviewing theperformance characteristics of the subsystem as it progressed
through the various mission phases. Performance data is collected in a routine
periodic basis during £light and 1f warranted can be requésted at any time by
a crew member. Trend analysis is performed with the rew data and decisions
are made as to maintenance and/or remove/replacement needs. A sequential fault
isolation procedure is initiated for a complete subsystem checkout. As dis-
cussed more fully in the System Reusability section of this report, a fault
isolation technique which incorporates checkout circuitry integrated into the
EC/LSS components will permit rapid evaluation as to the performance level
and indicates which components are below level and are to be replaced.

Commonality of fittings, hose comnections, quick-release couplings, etc.
permits the rapid removal of an EC/LSS module. Wherever possible, the
mechanical type modules such as the heat exchangers will have quick-release
inlet-outlet couplings accessible so that the removal process 1s easily
initiated. Electrical/electronic modules will have plug-in commonality,
which only requires insertion/extra.c’tion procedures. Both types of modules,
wherever practical, will employ hinged covers so sub-modules can be accessible.
Modules will be mounted on slide raills, permitting extraction and/or complete
removal when required.

Cost/Effectiveness Analysis.- This section presents results of a study
to develop a methodology for determining the life cycle cost of the EC /158
for the crew/ cargo module of the Shuttle. It is concerned with all the
Shuttle flights that involve manned support.

Four candidates were selected for evaluation consistent with the current
mission definition: (1) a basic four man unit, (2) a two man customized unit,
(3) a six man customized wnit, and (l&) a ten man customized unit. The weight
breakdown for these four candidates are shown on table 3. BEach candidate
was evaluated using a cost effectiveness technique that examined critical
cost/weight factors. It should be noted that the table reflects dry weights
only based on conservative estimates and judgment.

The EC/LSS subsystems were examined to identify fixed and variable weight
items. A varying percentage was assessed against the variable weight item
ranging from a low percentage change for the 2 man unit to a higher percentage
increase for the 10 man wnit. The rationale for the varying percentage was
that the 2 man unit could utilize many of the basic 4 man unit equipment with
minimm modification, whereas the 10 men unit would require additional units
Plus supporting plumbing. A detailed weight analysis would probably show
some variance in the weight estimates for the candidate umnits. The difference,
however, as will be shown later in this section, would not significantly
alter the results of the analysis. .

The total cost can be sumarized as

CTota.l = DDI'&E-lfUnitCos’c-i-Kxanmitx A-




TABLE 3

CARGO MODULE EC/LSS WEIGHT SUMMARY*

Candidate EC/LS Systems
Subsystems 2 Man 4 Man 6 Man 10 Man
Waste Management 250 307 465 720
Food Management 25 25 25 25
Carbon Dioxide Removal and
Odor Control 5 163 252 390
Humidity Control 75 110 170 260
Cabin Temperature Control 450 636 990 - 1500
Heat Transport Loop |
(Inc. Plumbing Fluid) 1500 1967 | 3090 L7l
Auxiliary Heat Sinks W72 517 800 1240
02/N2 Supply and Press. Control 80 170 284 410
Fire Control 32 32 32 32
Water Management 150 292 450 700
Total Weight 3,109 | 4,217 16,536 | 10,121

* Dry Weighﬁ Only.
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where: | '
DDI&%E (Design s Development, Test and Evaluation) estimates for variable
passenger EC/LS systems were based on current Shuttle data and are as

follows:
2 man DDI&E = $25 Million
6 and 10 man DDT&E = $35 Million

Unit cost varies as a function of size:

2 Man Unit = $1.0 Million
4 Man Unit = $1.5 Million
6 Man Unit = $2.0 Million
10 Man Unit = $2.5 Million

{
K = Transportation to Orbit Cost Factor

$281/Lb maximum
$160/Lb minimum

n = Number of Units required

WUni‘b = Unit Dry Weight
Four Man Modular Unit = 4,217 1b
Two Man Unit = 3,109 1b’
Six Man Unit = 6,536 1b
Ten Man Unit = 10,121 1b

A = Flight Frequency (based on Current Traffic Model)

20 - Ten Passenger Transfer Flights
24 - Six Passenger Transfer Flights
49 - Two Passenger Cargo/Experiment Flights

A basic assumption is that a baseline EC/LSS will be utilized for the
Shuttle forward crew compartment and that development cost for that unit is
contained within the Shuttle total development cost.

Customized 2, 6, and 10 man EC/LSS candidates were established; sized
to meet the specific support requirements of individual flights. Multiple -
or single based modular (4 man) EC/LSS candidates were established that
either met or exceeded the specific flight requirements.

Table 4 summarizes the individual weights and costs associated with the
candidate configurations. Under Cargo Module Passenger Transfer - 10 is shown
the . four possible groupings of EC/LSS units that will satisfy the support re-
quirement. The ten-man unit exactly meets the 12-man Space Station transfer
requirements since two of the passengers can be housed in the Shuttle forward
crew compartment, and are supported by the Shuttle EC/ISS. The next group
utilizes two basic modules and a customized two man unit to exactly meet the
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requirement. The third group utilizes 3 basic modules and provides an excess
of two man support. The last group shows a customized 6 man unit plus a
basic module. The other flight candidates follow a similar grouping pattern,
employing either customized and/or modular imits. The second column gives -
the flight frequency, the third the EC/LSS dry weight, and the fourth gives
transporation to orbit cost (i.e., the product of the second and third
colums and the respective cost factor). This column illustrates the penalty
associated with excess weight since the 3 basic modules appear at a cost dis-
advantage of $14.2 millions when compared against the 10 man unit at the
$281/lb cost factor. However, when the next two colums are sdded into the
total cost, this situation is completely reversed with.the three modules
showing a distinct advantage of $18.8 millions over the customized 10 man
unit. This illustrates that the DDI&E costs outweighs the transportation
costs penalty. This same result occurs in each of the manned flights tabu-
lated.

Figures 10, 11, and 12 show the total cost associated with the various
candidates. For the 10 passenger transfer flight, figure 10 shows the minimum
cost for both the $281/1b and $160/1b in the group that includes three basic
: EC/LSS modules. Also shown is the effect of increasing the flight frequency.
For example, using the cost factor of $281/lb shows that the flight frequency
for the ten passenger transfer must increase to approximately 47 flights before
a crossover occurs, which would lead to the selection of a customized EC/LSS.
At the lower cost factor ($160/1b), the flight frequency would have to increase
to 72 flights before the crossover point could be reached.

Figure 11 for the six passenger transfer flights shows the same trend.
The total cost is substantially less than the ten crew passenger transfer
because of the lighter weight of the EC/LSS and the launch cost has been
reduced, even though the number of flights increased to 24. The frequency
-crossover is substantially greater with over 50 flights required to reverse
* the modular approach for the $281/1b cost factor. At the lower cost factor,
more than 100 flights would be required to meet the crossover point.

For the cargo transfer/experiment support flights, figure 12 follows the
general trend. Even though the flight frequency has increased to 49 flights,
the frequency crossover occurs at the 83 flight load for the $281/1b cost
factor and over 150 flights for the $160/1b éost factor. An increase in
the cost factor would be accordingly reflected in a significant increase in
flight frequency before crossover is reached.

The variables in the cost equation most subject to change are the DDI&E
and the EC/LSS Unit Weight. The DDI&E could be substantially reduced (50%)
without changing the conclusions of this study. The unit weight change is
a critical factor, however, if one of the candidates weight changed, one
would anticipate a corresponding change in the other candidates weights
and the net result differences would be minimized.
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For example, the dry weights of most subsystems shown in table 3 are
made up of certain common fixed weight items plus variable equipment weight
that is a function of the number of crew. In some cases, the complete sub-
system remains the same regardless of the number of men involved, e.g.,

Food Management and Fire Control. Because of this fixed common weight, such
as plumbing, brackets, supporting structure, etc., differences between 2, b,
6, and 10 man modules cannot be linear. It is assumed that a certain per-
centage of the basic module subsystems weight is fixed except for two of

the subsystems which remains the same regardless of the number of men involved,
e.g., Food Management and Fire Control (57 1b). The weight remainder is a
function of the number of men involved. Data generated based on a 25% and

50% Fixed Weight assessment under the assumption listed a.borve resulted in

the following comparison:

Configuration 2 Man Unit U4 Man Unit 6 Man Unit 10 Man Unit

25% Fixed Weight (1b) 2664 4217 5770 8876
50% Fixed Weight (1b) 3191 h217 5241 T291
Table 3 Data (1b) 3109 | ‘hayy 6536 10121

Using these revised weights and calculating the transportation to orbit costs
for the total flights (93) in accordance with the cost effectiveness equation
results in the total costs as shown below.

Total Costs (Millions of $)

__ $281/1b $160/1b
Configuration Customized Modularized Customized Modwlarized
25% Fixed Weight $226 .0 $195.1 $174.0 $115.0
50% Fixed Weight $220.7 $195.1 $168.9 $115.0
Table 3 Data - $2hh .3 . $195.1 $182.4 $115.0

Note that the minimm customized cost for both the $281/lb and $160/lb cost
factor is for the 50% fixed weight case. This occurs since the change in welight
between the various candidates 1s minimized. The total minimum cost of the
customized configuration is substantially above the moduwlarized total cost
($49.2 millions for the $281/1b case and $67.4 millions for the $160/1b case).
This confirms that the development costs associated with the customized version-
far outweigh:the transportation to orbit costs.
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Summary

Ba.sed on this analysis and consideration of major factors such as
weight, development cost, tra.nsportation to orbit cost » and flight fre-
quency, the modularized four-man units are preferred, with some modification
in the therma.l control area to reduce the 70,000 Btu/hr capability to a
level commensurate with the passenger loading. There are logistic para-
meters that could be evaluated quantitatively which would influence this
selection such as; packaging, spare parts cost, maintenance and training
costs, and lot buys of initial equipment.

Modularization reduces the umit cost by reducing range of parts,
quantity of spares, cost of repair, range of test equipment and reduced
procedures. Supply stocking is reduced with a resultant decrease in
storage areas. lLess packaging engineering design hours are required since
modularization requires a "one time only" approach.

Ease of maintenance is achievable with a modular approach since turn-
around refurbishment cycle is minimized. Attachment and plumbing is stand-
ardized for modular installations. Less maintenance documentation is required
due to fewer parts (fewer technical menuals > etc.). Training costs are
reduced since a simpler modular system involves a less complex training
program. For each parameter, experience shows that the modular approach
results in a lower total cost.

The four-man modular unit concept permits flexibllity in terms of
variable number of personnel and cargo or combination ca.rgo/passenger loads.
Extension to 30 day mission is easily handled with addition of expendables.
The oversize capability (2 four-man units for 6 passenger’ load, etc.)
provides a degree of redundancy and increase in reliability or will permit
changing mission requirements in terms of additional passengers.

The cost effectiveness section has demonstra.ted that minimization of .
total launch weight in a Shuttle type of mission is not as important as
development costs associated with unique custom-built EC/LSS.

The independence of the cargo module EC/LSS from the Shuttle forward
cabin EC/LSS enhances achievement of autonomous payload module operation.
In fact, the real possibility that the Shuttle may have to detach from the
Space Station due to dynamic considerations and leave the ‘cargo module
attached demands cargo module EC/LSS independence.

The cargo module EC/LSS will have a minimum impact on the basic vehicle
de31gn because of this independent capability.

Minimization of turnaround time to cha.nge modules is assured by incor-
porating commonality of components, built-in test equipment for fault isola-
tion, and recording of flight and test data for trend analysis.

Technological achievements are required particularly in the packaging,
fault isolation techniques, modularity, and reliabllity to meet the 100
mission requirement.
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SPACE SHUTTLE/SPACE STATION INTERFACES

This section investigates the influence of the Shuttle and Station on
each other resulting from docking, crew/passenger/ cargo transfer, system
deactivation, and EVA/IVA. The study identifies the mission operational
sequence during the Station and Shuttle docked modes. The major EC/LSS
capabilities for the Station were examined for normal, emergency, and over-
load operating modes. The interface requirements between the Station and
the Shuttle Cargo Module were defined.

A Shuttle and Station interaction analysis was performed to determine
division of EC/LSS support responsibility. This analysis indicates the
basic designs, as currently defined, are adequate to provide the necessary
support with minimum or no revision.

A combined Shuttle/Station baseline system EC/LS and alternate candi-
dates were formuleted and studied. These candidates considered (1) reducing
Shuttle capabilities with more dependence on the Station, and (2) complete
Shuttle independence. .

Mission and Operation Analysis

Various manned missions have been proposed for the Space Shuttle, the
most recent being the establishment of an initial six-man Space Station by
assembly of individual crew/cargo modules with subsequent growth to a 12-man
Station by attaching additional crew/ca.rgo modules. The evolvement from
a six-man to a l2-man Space Station necessitates numerous resupply flights.
The initial flight series transports Station modules with a basic supporting
crew of pilot and copilot and two cargo handlers. All four are in the for-
ward compartment. The second flight series transports paylead modules which
are either integrally located within or attached to the Space Station. Two
additional cargo handlers are transported in the cargo module. The third
flight series provides passenger transport for establishing the six-man
occupancy of the Station. Subsequent flights of this series provide per-
sonnel interchange and logistic support on a scheduled basis. The final
flight series provides passenger transport for establishing the 12-man
occupancy of the Station. Subsequent flights of this series provide
Personnel interchange and logistic support.

These manned missions follow the same operational sequence for docking
and transferring men and/or cargo to the Space Station. The prelaunch,
launch, orbit placing, reentry and landing sequences have been discussed
in the Mission/Vehicle section of this report. The most significant problem
is the amount of overload that the different missions impose on the Station.
The initial Space Station is occupled by a six-man crew; however, its life
support system is designed for 12 men. Therefore, the overload associated
with the six man transfer will be non-existent. The 12-man overload (tota.l
of 24 crew) imposes the greatest hardship. This is accommodated by designing
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a 1l2-man overload capability for the critical elements of the EC/LSS such as
a redundant standby unit for 002 removal, circulation ducts sized for a total
of 2 men, etc.

Following docking and pressure equalization, there will be a short
period of activating the airlock; then the crew and passengers egress to
the Station. '

It is estimated that a maximum time period of five days is involved in
a normal crew/cargo transfer with the Shuttle/Cargo Module attached to the
Station. This time period is occupied with verification of Sta.tion/ Shuttle
subsystems, deactivation of non-critical Shuttle subsystems, establishing
standby condition for critical subsystems, and transferring crew and cargo.
Crew transfer will be scheduled early in the docking phase and will require
approximately one hour. Cargo transfer into and out of the Space Station
using rails and motor driven cargo pallets will require approximately 20
hours.

If the orbit phasing time period is increased, then the maximum time
period must be reduced. The effect would be a shorter stay time at the
Station for the Shuttle.

Principal crew activities during the Shuttle stay peried consist of
crew changeover. The Station provides individusl crew private quarters with
provision for an extra fold-down bunk to accommodate a second crewmen during
crew overlap. The Station's sleeping compartments provide 50 sq. £t. of
floor area by T9 inch height for each crew member (3,950 cu. ft. - 12 men).
This is significantly larger than that afforded by the cargo module (1,800
cu. ft. - 10 men) and suggests that only minimum utilization of the cargo
module be made during the crew transfer.

Food and food mansgement will normally be provided by the Station which
will have the capability to support 12 crewmen for six months. Both normal
resupply and adequate supplies for the crew overlap period will be trans-
ported by the Shuttle. Cooking facilities are only aboard the Station with
the Shuttle crew utilizing ready-prepared foods when in a detached mode.
Hygiene facilities will Be:provided by the Station during the Shuttle stay
period. A garment washer and dryer is provided to accommodate the cleaning
of garments on a seven day wash cycle. There are adequate waste management
areas aboard the Station for the overload condition (four toilets - 12 man
accomnnodation/toilet) « Housekeeping and trash aboard the Shuttle will be
packed and stowed for return since deactiveting, compacting, and packaging
of trash will also be added by the Station for Shuttle return.

IVA and EVA activity will normally be provided by operations. personnel
aboard the Station, using individually fitted suits and backpacks. The
Shuttle will also have a limited EVA capability through non-customized suits
with an independent EVA EC/LSS available during unusually hazardous conditions.
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Typical crew activities during the five day stay period are summarized
in figure 13. Due to volumetric limitations @board the cargo module and
the nature of the crew tramnsfer cycle, it is advisable that the more critical
12-passenger transfer takes place early in the transfer period. It is assumed
that the cargo module EC/LSS is operative during this peried with limited
crew attendance supporting primarily subsystem checkout, cargo interchange,
and habitability. A total of 240 manhours per day would be available for
all crew related operations assuming a 1l0-hour daily work shift for the
crew overlap complement of 24 men. The Routine Experiment Operation time
Period can be reduced during this transfer period to permit familiarization
for the replacement crew, as well as time to set up, calibrate, and checkout
new experiments. '

Scheduling of meal periods must be considered during the overload con-
dition since one crew module i1s designated for this function. The particular
module also serves for recreation, and for the galley. Assuming that a meal
period occuples a total time period of one:hour, then for three meals a day
for 24 men, a total of T2 manhours will be involved. Room occupancy is
limited to six men for comfort. Consequently, there will:!be four shifts
required for each meal. This implies that as one meal shift, such as break-
fast, ends, lunch immediately commences. This crowded schedule can be
relieved by scheduling individual meal periods further apart, shortening
the meal period, or by designating an additional eating area either aboard
the Station or aboard the cargo module. The latter suggestion appears as
the most reasonable solution, since there is adequate space aboard the
cargo module to serve four persons on a three shift basis. There is
adequate food supplied aboard the cargo module, although it is limited to

ready prepared food.

Space Station. EC/LSS Capabilities

The Station EC/LSS capabilities include: environmental control, oxygen
and water recovery, utility provisions for the crew (wa‘ber, waste, hyglene,
food preparation, Station thermal control, experiment thermal control, and
water recovery), and special life support (EVA/IVA water and oxygen, emergency
oxygen, food, water, and fire detection and control).

Table 5 lists the major EC/LSS subassembly capabilities for the Station.
Normal, emergency, and overload operating modes are delineated. The load
capability column shows the division of EC/LSS support for each of the three
operating modes. For example, in the nitrogen distribution subassembly, one-
half of the normal operating support is provided by the lower decks (1 and 2)
and the other half by the upper decks (3 and 4). For the ‘emergency modes,
total operational support is provided by either upper or lower decks.
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For the oxygen supply subassembly, it should be noted that during the
overload operating mode, there is a 12-man load capability in both the lower
and upper decks. The overload capability will support 24 men during the
overload passenger transfer period.

This philosophy applies for contaminant control, circulation, and waste
management. Non-critical elements such as wash and condensate water recovery
overload periods can be handled by re-scheduling functions on a more frequent
time basis. .

The Station modulsr design has necessitated building:in the capacity of
ubilizing modules simultaneously or under emergency conditions using indi-
vidual modules. This, in turn, requires redundancy in the critical elements
of the EC/ISS. The redundancy is there for the emergency mode; however, it
could also be utilized for the crew overlap period.

Shuttle EC/LSS Capabilities

The Shuttle EC/LSS capebilities include all the elements involved in
the Shuttle forward crew compartment as well as the cargo medule EC/LSS which
operates as an independent system. Table 6 lists the major EC/LSS capabili-
ties for the Shuttle forward crew compartment. For the majority of the
elements complete redundancy affords fail operational, fail safe failure
modes. One-half of the system operates during the normal mode. This is
especially true for the critical subsystems such as 02/1{2 supply and
Pressure centrol.

The Shuttle cargo module EC/LSS is similar to the crew compartment EC/
LSS except that it employs modular units of the baseline EC/LSS to size the
system for four, six, or ten passengers. An important aspect of the Shuttle
EC/LSS capability is that there is a possibility that the Shuttle vehicle will
‘detach from the Space Station after attaching the cargo module. This means
that the cargo module EC/LSS must be completely independent, particularly the
thermal control. Some subsystem support can be provided by the Station. For
example, power can be shifted from the Shuttle vehicle to the Space Station
for cargo module support.

‘Space Shuttle/Station Interfaces

Interfaces exist between the Space Station and Shuttle Cargo Module
during passenger transfer and/ or cargo interchange, and between the Space
Station and Experiment Attached Modules. The following data summarizes these
interfaces, and presents a general description of the major docking require-
ments between the Station and the Shuttle modules. Specific interface require-
ments that influence the Shuttle/Payload EC/LSS design concepts will be
delineated. These data will be limited to the following critical aspects:
Environmental Protection, Electrical Power, Crew/Habitability, and EC/LSS
" (ref. 8, 9, 10-and 11).
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Alternate candidates for this combined Shuttle/Station baseline system
EC/LS were examined which included: (1) off-loading of the Shuttle®s expend-
ables with more dependence on the Station, and ( 2) camplete Shuttle independ-
ence. These two alternate candidates afford some effectiveness in logistic
support; however, the overriding fact that the Station employs a regenerative
life support system, redundant subsystems to meet the fail-safe requirement,
and incorporates special design features to meet overload conditions, tends
to/support the recommendation of the combined Shu:btle/ Station baseline system
EC/LS.

Station Docking[Ca.rgo Module Interfaces.- A 20,000 lb. cargo module
containing consummables, experiment modules, and/or passengers, will be
hard docked to the Station. The cargo module will be extended from the
cargo bay. Closing rates of the Shuttle will be controlled such that RCS
failure combinations will not result in collision with the Station. Closing
rates will be one fps or less. Docking alignment requirements are + 5 in.
from the centerline, + 4° centerline angular misalignment, and + 4O in
rotational misalignment. Cargo modules will be docked primarily at the
deck farthest from the solar arrays.

Docking aids include artificial lighting of the Station and cargo
module docking mechanism, two-way closed circuit TV of each docking mechanism,
two-way "spoiled” laser transmitters and receivers, and possibly visual targets
compatible with TV. '

Station Envirommental Protection/Cargo Module Imterfaces.- The Shuttle
environmental protection system will limit the cargo module interior walls
and equipment surface temperature to 57°F min. and 1059F max. The Station
EC/LSS will provide a nominal TO°F environment within the interior of the
cargo module.

Station Electrical Power/Ca,rgo Module Interfaces.- Electrical control
cables/umbilicals will be required. These cables will provide control/monitor
connection between the Station and the cargo module. The umbilicals will
provide valve control signals, monitor circuits for critical parameters
(total pressure, p02, COp levels, etc.), audio intercommmication, and

caution and warning signals.

Electrical power cable/mnbilicals will be required to supply the power
connection between the Station and cargo module. The umbilicals will pro-
vide power for air-circulation fans, and lights, and for cargo module -
quiescent storage prior to departure for Earth retum.

Station Crew/Habitability/Cargo Module Interfaces.- The Station will

. provide guide ralls and powered trolleys for transport of crew and/or cargo
between the cargo module and the Station. Guide rail attachments will be
required in the cargo module to facilitate installation of the rails which
are stored in the Station. The cargo module will provide crew mobility aids
in the form of handholds, guide rails, and other devices to facilitate crew
locomotion, stabilization, and bracing.
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The cargo module will provide storage capacity for the Station resupply
expendables and spares.

Station EC/LSS/Cargo Module Interfaces.- N. /02 gas pressurization is
required. The supply will be No or 05 or a mix%ure thereof, from the Station
or the cargo module.

The Station will provide a pressure equalization valve which will be
controlleble from either the Station or the cargo module.

An air duct for pumpdown of the docking port interface area will be
provided by the Station. The pumpdown assembly will be controllable from
the Station or the cargo module. Two flexible air ducts, one for supply.
and one for return of conditioned air will be provided by the Station.

The ducts will be used only when the hatch is open and will require implace-
ment by the crew. The ducts normally will be used to provide air for the
crewmen in the cargo module when performing cargo transfers or maintenance
tasks.

Internal air circulation fans will be required of the cargo module to
cireulate air between 15 and 100 f't/min for crew comfort.

Station Docking/Attached Modules Interfaces.- Attached modules will
be limited to a maximum number of three at any one time. Attached modules
will havé docking aids similar to those on cargo modules.

Station Environmental.Protection/Attached Modules Interfaces.- The
attached modules will provide radiation shielding to protect the crew
during service and maintenance.

Station Electrical Power/Attached Modules Interfaces.- Average and
Peak power demand for all experiments will be provided by the Station.

Station Crew/Habitability/Attached Modules Interfaces. - Interfaces
are identical to the Station Crew/Habitability/Cargo Module interfaces.

Station EC/LSS/Attached Module Interfaces.- Interfaces between attached
modules and Station are as follows:

1) Provide ducting at the docking port to accept and discharge
atmosphere from and to the Station EC/LSS.

2) Flow velocity between the Station and attached modules will be
between 15 and 100 £t/min. Blowers will be incorporated in the
mobile duet-work as required. :




3) Atm:;spheric heat discharged to the Station will not exceed 3415
Btu hro '

4) Attached modules depressurization wi:!.l be designed such that any
atmospheric dump to space will not exceed allowable angular
momentum levels for the Station (60 1b. f£t/sec.)

5) The core module will provide the attached modules with an atmos-
ere having a total pressure control the same as the Station
??.h.? psia nominal, with variation to 10 psia.) o Humldity control
will provide an atmosphere at § to 12 mm Hg partial pressure of H,0.
€O, partial pressure will be mainteined below 7.6 mm Hg.

6) A gas transmission system will be provided for feedihg resupply
gases from the core module to a depressurized attached module.

Station Regenerative Systems/ Shuttle Interfaces.- The Space Station
EC/LSS provides for a nominal 1l2-man, 1lO~year mission capability with re-
supply every 180 days. A 2h-man crew can be accommodated for five days.
This latter capability offers potential utilization of the Station EC/LS
system by the Shuttle and would result in minimizing expendables storage.
The advisability of the Shuttle relyling on the Station regenerative system
or storing waste products to transfer to the Station for regeneration or
disposal is dependent on mission operational considerations and on the
level of demand placed on the regenerative systems.

During normal mission operations involving the passenger transfer, the
Shuttle will remain docked, however, there is the distinct possibility that
the Shuttle might have to disengage due to stability limitations and leave
the pa.ssenger/ cargo module attached to the Station. This would imply that
the passenger/ cargo module would then either require Station EC/ISS support
or have its own independent system. Therefore, from mission operational
considerations, support from the Station EC/LSS is considered feasible and
desirable for the passenger/cargo module.

The characteristics and capabilities of the Space Station regenerative
systems must be assessed to determine the impact during the Shuttle overload
condition (24 passengers aboard the Station for five days).. Station EC/LS
subsystems which are regenerative in nature include: CO, management, trace
contaminant control, atmospheric composition, water management, and waste
management. The molecular sieve CO, removal subassembly, which consists of
CO, absorber and desiccant beds operated on a regenerative cycle, provides
for removal of CO, from the cabin atmosphere and for concentration of the
CO, for oxygen reclamation. The collected CO, is transferred to a Sabatier
reactor wvhere it is combined with hydrogen to form methane and water. The
product water plus a suffient amount of makeup water is electrolyzed to
provide the metabolic and leakage oxygen requirements. Water electrolysis
produces 28.3 lb/d.ay of oxygen for the normal crew complement of 12 men;
however, redundant electrolysis cell stacks are provided for the emergency
condition. A redundant molecular sieve is provided for the overload con-
dition, with the additional COp removed from the atmosphere and dumped to

space.
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Regenerable charcoal beds are used in the trace contaminant control
subassembly and are sized for the normal crew complement. Each bed absorbs
contaminants from the cabin for a period of 10 days and is then desorbed
by heating to 5720F and exposing to space vacuum for 10 days. For the
overload condition, several approaches might be considered: (1) size the
charcoal cartridge for the overload condition initially, (2) carry an extra
spare charcoal cartridge (75 1lbs.), and (3) utilize an accelerated desorption
cycle. '

In normal operation, the dual atmospheric control assemblies are opera-
ting at half (six-man) capacity in each of the two Station's decks. . For
Periods of crew overload during crew exchange, the additional 12-men can
be handled by operating both assemblies at full 12-man capacity.

The Space Station will incorporate basically two water systems: (1) a
potable water system operating from a vapor compression reclamation sub-
assembly, and (2) a wash water system operating from a reverse -osmosis
reclamation subassembly. The primary potable water recovery subassembly
recovers water from all urine, experiments, and the dishwater. A redundant
subassembly is provided for utilization during crew exchange when twice the
processing rate is required. Waste water consisting of wash water, humidity,
and Sabatier condensate is received and stored in holding tanks. It is then
inserted into the reverse osmosis circulation loop and the reclaimed water
is continuously removed and pumped through a series of charcoal and bacteria
filters. The subassembly is designed to operate at the nominal process rate
for 18 hours per day. The remaining six hours are allocated to maintenance
a.nd/or extended operation to account for greater than nominal usage rates.

The waste processing subassembly includes provisions for collection of
trash, drying and sterilizing, compaction, and steorage prior to Earth return
by the Shuttle. The waste processing center consists of a drying chamber,

a compactor, and a storage chamber. Separate processing equipment is in-
stalled on separate decks, each being capable of servicing the entire Station.
Utilizing both subassemblies will accommodate the 12-man overload. Compacted
waste is removed and placed in remote. storage every seven days.

Based on the characteristics and capabilities of the Space Station re-
generative systems, it appears advisable for the Shuttle to utilize their
facilities. Complete dependency is not advisable due to possible emergency
modes or curtalled capacity due to a maintenance problem.

The major advantages that accrue from storing waste products, such as,
urine, excess water, carbon dioxide, and solid waste on the Shuttle for sub-
sequent transfer to the Station for regeneration or disposal is the reduction
in returned weight to Earth (even though minimum), reducing the complexity of
permanent wet waste storage on the Shuttle, and providing potable water to
the Station from both the Shuttle stored urine and excess water sources.
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Station/Shuttle EC/LSS Utilization.- Table 7 lists the subsystems making
up the EC/LSS and notes whether the subsystem's function is to be carried out
by the Shuttle or the Station. :

Waste management is best carried out by the Station's subsystem since
the crew will all be located in the Station during the majority of the trans-
fer period. Food management is relegated to the Shuttle since the Station's
feeding capability is inadequate to handle the 24 crew overload condition. COo
removal and odor control and humidity control is best handled by the Station's
regenerative subsystems. Cabin temperature control can be monitored and
controlled by the Station'’s subsystem. Heat transport loop is provided by
the Station overload capability. The auxiliary heat sinks are only operable
during prelaunch, while docked to the Station during peak heat loads, and
after landing. If peak heat loads occur during docked mode, Shuttle sub-
systems can be readily activated. The regenerative 02/N2 supply and pressure
control subsystem of the Station is designed to handle the overload condition.
Fire control capability of the Shuttle (Apollo type fire extinguisher) pro-
vides backup. Water management 1s best handled by Station's subsystem since
supply is adequate and Shuttle's supplies can be used as loglstical support.

Summaxy

It is concluded that during the docked mode, Station and Shuttle per-
sonnel should rely on the Station for EC/LS. This recommendation is based
on the fact that the Station has regenerative systems, greater volume than
the Shuttle for habitability and is designed to accommodate a crew overload
condition. The Shuttle EC/LSS can be placed in a quiescent operating mode
subsequent to personnel transfer to the Station. This mode allows for
rapid escape capability by eliminating extensive reactivation or warmup.
Since thermal lag is considerable, this system remains operative at a
reduced level throughout the docked period. All other EC/LSS elements
can be readily activated on demand and can, therefore, be shut off during
normal docked operations.

To allow for brief intravehicular movement which may be desirable for
cargo transfer, system checkout or for escape, the hatches between the
vehicles should be open when the vehicles are docked. Total pressure con-
trol for both vehicles is provided by the Station. If personnel enter the
Shuttle during the interim for any moderate amount of time, the Shuttle
EC/LSS is activated.

During the docked mode, EC/LSS interconnects between the Space Station
and Shuttle are not required. Status monitoring and electrical power supply
by umbilical connection should be provided. It may be desirable to transfer
Shuttle fuel cell prdduct water to the Station during the docked mode.
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The analysis of the Station feeding capability shows it to be inadequate
to handle the 24 crew overload condition. A solution to the problem is to
use the Shuttle cargo module feeding facilities to augment the Station. The
disadvantages to this approach are that the module is not as habitable as
the Station, that activation of the EC/LSS is required, and that personnel
traffic between vehicles is increased. It is recommended, therefore, that
increased feeding capability be provided in the Station. '
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SHUTTLE/PAYLOAD THERMAL CONTROL

The objective of this task was to evaluate requirements for Space
Shuttle payload thermal control as related to Shuttle interfaces from pre-
launch to orbit; and/or orbit through landing. The thermal interfaces
which exist between the Shuttle and its payloads during the various mission
phases present significant design problems. Representative payloads were
selected which present a.cross-section of the thermal control problems which
will be encountered during the various mission phases.

Payload Thermal Control Considerations

The factors associated with the payload thermal control requirements
and concepts are influenced by conditions which change as a function of
mission phase and are presented below.

Prelaunch.- The Shuttle Thermal Protection System (TPS) consists of a
high thermal resistance shell which effectively isolates the ascent propellant
tanks from the external environment. This results in a very low internal
temperature umless high purge gas flow rates and temperatures are provided.
For this reason, the payload compartment wall should be a high thermal
resistance composite to minimize heat loss from the payload compartment a.nd/or
use purge gas flow. Figure 14 illustrates the effect of No purge gas flow
rates on the payload compartment wall temperature. Uninsulated walls may
experience temperatures as low as 350°R with no Shuttle purge or with a non-
flowing stagnant No purge. Wall temperature can be increased to over 500°R
by Shuttle purge rates on the order of 1500 1b/min (total Shuttle purge, -
excluding payload campartment). The wall temperature can also be increased
with an ambient temperature No purge of the compartment during doors closed
reriods. The payload compartment wall temperature can be significantly in-
creased by use of insulation as illustrated in figure 1k4.

~ Limitations are necessarily imposed on cargo compartment door opening
af'ter propellant tanking to prevent water condensation on potentially cold
wall surfaces. Propellant tankage payloads loaded before liftoff also will
have restrictions imposed for purging and door closure to prevent air and
water vapor condensation on cryogenic tank insulation and structural surfaces.

Ascent.- Payload/Shuttle ascent phase interface considerations include
cooldown of the interior compartment wall as purge gases are vented and
heating of external skins due to aerodynamic heating. Heating during ascent
is slight because of the TPS so that the average campartment internal wall
temperature does not increase significantly.
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Orbit.~- The payload/Shuttle interface during the orbital phase has a
significant impact on thermal response and operational characteristics.
Vehicle orientation and altitude and radiating surface properties effect
heat rejection capability. The interface between Shuttle and payload
radiator systems is affected by concepts which apply the radiators to
Shuttle cargo compartment doors. The emerging concept resulting from
Phase B contract studies suggests installation of radiators to the interior
of doors which remain open on orbit. The open door concept also allows
for installation of a radiator to a payload module within the Shuttle
compartment. A second approach involves dual doors, one of which deploys
on orbit and incorporates a radiator. A second door closes back over the
payload compartment to protect the compartment on orbit. This concept
will not allow for incorporation of a radiator system into a payload module
remeining on the Shuttle.

Reentry.- Thermal protection requirements for payloads returning to
Earth vary widely, depending on whether they are manned, inert, or contain
cryogenic fluids ( potential with tanker modules) « Requirements pertinent
to each category are discussed in subsequent sections.

Thermal Control of Space Shuttle Payloa.ds

The Space Shuttle provides the capability for delivery, servicing, and
retrieval of such a broad range of payload types that virtually all pre-
viously employed approaches to spacecraft thermal control will be involved.
These missions impose relatively severe thermal constraints on payload
components and Shuttle/payload interfaces. The flexibility required to
handle these various classes of payloads is not always compatible with the
type of specialized thermal control subsystems previously employed on launch
vehicles. :

Most payleoads require consideration of only heat rejection and tempera-
ture control. Propellant tanking payloads (cryogenic) impose additional inter-
face problems involving purging, prevention of :condemnsation and thermal iso-
lation to prevent propellant heating. ' '

This section will highlight the critical areas of thermal control for
specific payloads within selected mission categories as they relate to Space
Shuttle operations. These payloads illustrate the typical problems associated
with all other payloads in the mission category.

The missions selected were Space Station Resupply, Satellite Placement
and Retrieval and Propellant Delivery. The Satellite Servicing and Mainten-
ance mission has similar thermal control requirements to the Satellite Place-
ment and Retrieval mission and the Short Duration Orbital mission has similar
requirements to the Space Station Resupply mission. Consequently, the latter
two missions are not highlighted in the following analysis. Table 8 shows
the parameters having a significant effect on thermal control for the
selected payloads.
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Space Station Resupply Mission.- The primary missien of the Space Shuttle
is to transport personnel, experiment modules and cargo to and from the Space
Station. The life support requirements of the passengers present the most
urgent thermal control problems for this type of mission.

A brief description of the Shuttle thermal control subsystem 1s pre-
sented below as a point of departure for payload module EC/LSS design. The
subsystem shall have the capability to provide thermal control, as required,
for electronic equipment in the personnel compartment, payload bay and
remote equipment bays. The baseline heat rejection subsystem is composed
of the following elements:

o An onboard heat exchanger for use during ground operations and
which can also be utilized while docked to the Space Station.

0 A hydrogen evaporator to provide heat sink capabilities during
ascent and reentry.

o A combination radiator-sublimator to maintain requlred heat
rejection during orbital operations.

o A vapor compression cycle for ferry flight.

The total heat rejection capability for this system is 70,000 Btu/hr;
Water is selected as the coolant in the crew compartment due to its high
specific heat and in order to eliminate toxic contaminant releese into the
crew compartment. Freon 21 is used in the external heat rejection loop
because of its low freezing temperature and low viscosity.

The preliminary configuration and sizing requirements for the payload
module EC/LSS heat rejection subsystem are based on the following considera-
tions:

© A maximum payload module heat rejection capability of 7,000 Btu/hr
is required. This rate will allow for the sensible and latent
metabolic requirements of ten passengers (550 Btu/hr per passenger)
and 1,500 Btu/hr for subsystem equipment heat dissipation (pumps,
fans, etc.). '

o The orbiter EC/LSS will provide the required heat sinks during the
prelaunch, ascent, reentry and ferry flight portions of the mission.

o The payload module heat rejection subsystem must be autonomous for
orbital operations.
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The payload module heat rejection requirements are approximately ten
percent of the orbiter EC/LSS design loads; therefore, the use of Shuttle
heat sinks for other than orbital portions of the mission cen be accomplished
by the addition of expendables. A radiator will supply the payload module
EC/I.SS ‘orbital heat rejection capability at the least cost and lowest weight.
This system will also provide the greatest flexibility for meeting extended
mission requirements. Since there is a requirement for orbital payload module
operations while separated from the Shuttle, e.g., either docked to the Space
Statlon or free flying, the addition of radiator area to the internal surfaces
of the cargo bay doors to accommodate payload module heat rejection during
this phase of the mission was not considered. The radiator would be located
on the payload surface directly beneath the cargo module doors. During '
orbital operations while aboard the Shuttle, this concept would require that
elther the cargo bay doors remain open or that the orbiter radiators be sized
‘for 77,000 Btu/hr (70,000 Btu/hr generated by the orbiter plus the 7,000 Btu/hr
Payload module heat rejection requirement).

As in the crew compartment, water is selected for the coolant within the
payload module and Freon 21 is used in the external heat rejection loop. This
arrangement provides a low temperature coolant in the radiater subsystem. An
_interchange heat exchanger is used to couple the two fluld loops.

An interchanger outlet temperature of approximately 4O°F is required in
the cabin loop to meet cabin humidity control requirements and efficiently
accommodate metabolic heat loads. The Freon loop requires an interchanger
inlet temperature of 35°F. Radiation sink temperatures are presented in
figure 15 as a function of radiator @g/e ratio for representative thermal
environments which will be encountered at an altitude of 270 nm. The thermal
environment to which the radiator is exposed can be reduced by imposing og/ €
attitude restrictions on the payload module. The calculated radiation sink
temperatures do not include interaction with either the orbiter or the Space
Station.

Surface-finish coatings developed as Optical Solar Reflectors (OSR) that
offer a lowdg/ ¢ ratio of .05/.8 are currently in use at IMSC. This value
is twice as low as those obtainable from other surface coatings. The basic
materials selected for OSR are vapor-deposited silver and fused-silica sub-
strates. Silver is vapor deposited on the silica, and an overcoat of wvapor-
deposited Inconel is added to inhibit corrosion. An OSR is stable in the
space radiation environment, and the basic materials can withstand tempera-
tures from -320°F to:over 800OF.

The cost of an OSR surface finish (approximately $700/£t°) may dictate
the selection of a coating with less desirable properties.. Flexible optical
solar reflectors (FOSR) are available with oS/eratios of .10/.82 (silver
deposition on FEP teflon) and .17/.8l (aluminum deposition on FEP teflon).
The cost of these surfaces are approximately $25/fh2,.however, they are



subject to ultraviolet degradation. The solar absorptance of the silver
FOSR will increase from .08 to .1l after 4000 equivalent sun hours. The
paint systems offer the most economical thermal control surfaces (approxi-
mately $5/ft2) ; however, their resistance to ultraviolet degradation is
very low. The oS/ ratio of typlcal white paint systems will degrade to

. 3/ 9 after exposure to ultraviolet radiation. The effect of orientation
on radiation performance can be demonstrated by a comparison of OSR sink
temperatures for the following cases:

o Full sun on radiator and no view of the Earth (Tsink = 355°R)
o Full sun on radiator and edge on view of the Earth (Tsink = LOSOR)
o Full view of the Earth and maximum Earth albedo (Tsink = 430°F),

The radiator area required for a specified energy rejection rate at
these various sink temperatures can be determined using figure 16. For
example, at a Freon flow rate of 70O l1b/hr and a heat rejection require-
ment of TOOO Btu/hr, the radiator inlet and outlet temperatures are T5°F
and 35°F respectively. The flow rate in the water loop for this case
wvould be 175 lb/hr and the interchanger inlet and outlet temperatures
are 80°F and 40°F. Radiator area requirements coprresponding to the above
sink temperatures are 103 £t2, 127 £t2 and 200 £t<, respectively..

The baseline payload module heat rejection subsystem would be sized
for ten passengers and the lower rejection requirements imposed by two,
four or six passengers could be accommodated using radiator bypass
techniques. Minimum radiator sizes can be obtained by placing the most
stringent attitude restrictions on the ten man module, and relaxing these
restrictions as the passenger load is decreased. The resupply missions,
for example, which typically require two passengers, could utilize the
basic payload module energy rejection subsystem with no attitude restric-
tions.

Satellite Placement and Retrieval.- The Shuttle will be used to
economically place satellites in Barth orbit. The cargo bay has the
capability of handling payloads up to fifteen feet in diameter and sixty
feet in length. Multiple deliveries of smaller satellites are also being
planned. :

Since orbit plane changes require significant amounts of propellant,
the selection of a group of satellites for multiple delivery will probably
be made on the basis of commonality with orbital parameters (e;g. » inclina-~
tion). These payload groupings must also take into account the possible
conflicting temperature requirements of the satellites in order to minimize
the weight and volume penalties associated with thermal isolation.

It is concelvable, for example, to fabricate a set of reusable, low
weight bags of varying dimensions, to protect satellites which have tempera-
ture requirements that are incompatible with either the cargo bay environ-
ment or the balance of the payload. A low weight multilayer insulation
system (p = 3 lbs/ft3) which will provide excellent thermal isolation in
a vacuum environment is an ideal candidate for this application.
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The lower magnetosphere satellite was selected as an example of a
payload which is a candidate for multiple delivery. Pertinent system
characteristics and requirements in addition to the orbital parameters
and power dissipation listed in table 8 are given below: .

Satellite weight 1200 1bs.

"

Launch dimensions " 2.5' dia. x 4*

-Expected lifetime = 3 years

The satellite is similar in general description to the ISIS-X system.
Passive thermal design techniques are utilized to maintain the tempera-
ture levels of internal components in the range of 0° to 35°C on orbit.
The spin stabilization system used for altitude control will have the
additional effect of damping out satellite skin temperature gradients -
imposed by the extermal orbital environment.

During prelaunch periods, it is anticipated that the floor of the
cargo bay will approach 350°R as a lower limit due to its proximity to the
ascent LOX tanks (T = 162°R). This temperature level will, of course,
be a function of tank and cargo bay interface insuletion thicknesses as
well as nitrogen purge rates, however, using the 350°R floor temperature
as a "worst case" assumption, it is reasonable to postulate an average
cargo bay N, purge gas temperature of 400°R during the prelaunch phase.

Multilayer insulation heat leak (watts/ftz) versus insulation thickness
is presented in figure 17 as a function of payload temperature level. The
predicted heat leaks are based on a mean cargo bay N, purge gas temperature
of LOOR and assume the multilayer insulation is permeated with GN, (k =
.012 Btu/hr £t °R). Energy must be supplied to the satellite system within
the purge beg in order to maintain required temperature levels. The lower .
magnetosphere satellite, for example, would require on the order of 200
watts during the prelaunch phase for a multilayer bag thickness of 2
:anlges in order to maintain component temperatures in the range of 0° to
350“C. A heater on a thermostat set to cut off at a temperature level -of
20°C would be used to supply the required makeup energy.

The effectiveness of the multilayer bags will increase markedly as the
No gas is vented during ascent. The thermal conductivity per unit insula-
tion thickness (k/X) will approach .005 Btu/hr OR for boundary temperatures
on the order of O“F under vacuum conditions. The selection of a multilayer
bag surface finlish with a low solar absorptance to infrared emittance ratio
(i.e., white paint ag/e .3/.9) will reduce the possibility of over-
heating the payload once the cargo bay doors are opened on orbit.

The heat leak through the multilayer insulation bag during reentry is
estimated at approximately 1000 Btu; assuming that all of this energy goes
into the 150 1b. of mission equipment, the resultant equipment temperature
rise is on the order of 35°F. ' '
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Propellant Delivery.- The object of this section is to study the ground
hold and reentry heat transfer that will occur to an LH, propellant temnk in
the payload bay of the Space Shuttle vehicle. One objective will be to pre-
dict the heat transfer rate that will occur into the LHo tank during the
above flight phases, and the rate of IH, boiloff that may occur. The other
objective 6f this study 1s to prediet the purge bag temperature and deter-
mine 1f gas or water vapor condensation is possible on the purge bag during

~ground hold or reentry operations.

The LH, tank payload chosen for this study is the Reusable Nuclear
Vehicle (RNV) Propellant Tank Module shown in the sketch of figure 18.
The tank is 15 feet in diameter and about 60 feet long, with a surface area
of 2815 £t2 and an internal volume of approximately 9500 ft“. As shown in
the cross-sectional sketch of figure 18, the tank is surrounded by two
meteoroid shields with a total thickness of 0.028 inches of aluminum. The
tank wall has an average thickness of about 0.056 inches of aluminum, and
is surrounded by a multilayer Insulation system of up to 1.0 inch in thickness.

For the purposes of this study, the helium purge bag was assumed located
at the outer meteoroid shield location, so that a helium purge bag thickness
of 2.0 inches will exist between the LHp, tank wall and the purge bag. The
actual purge bag location could be anywhere from the inner to outer shield
location. An inner shield purge bag location should result in lower heat
leaks and purge bag temperatures than the model assumed here, but the inner
purge bag model would be more difficult to analyze. With a full 1.0 inch
thickness of multilsyer insulation, the purge bag would most likely have to
be located outside of the inner meteoroid shield to allow outgassing of the
helium during ascent. For these reasons, the purge bag was assumed located
Just inside of the outer meteoroid shield.

Since this tank effectively fills the Space Shuttle payload bay, an
annular thickness of 4.0 inches was assumed to exist between the structural
walls of the payload bay and the purge bag outer surface of the LH, tank.
This annular space would be filled with nitrogen gas (GNp) during ground hold
and ascent, while it would refill with atmospheric air during reentry. Two
major forms of heat transfer will occur from the payload bay structure to the
purge bag outer tank surface. One is radiation heat transfer across the
annulus, while the other is conduction/free convection heat transfer across
the gas annulus, which are designated as " » the heat rate per unit tank
area, where the nomenclature q" = % is used in this study.

Two major objectives were considered in this study. The first was to
analyze the ground hold performance of a full RNV propellant tank loaded with
- LHo under steady state conditions. The results of this analysis would be a
Prediction of heat leak and boiloff rates, purge bag temperature, and an
estimate of condensation problems. The second objective was to analyze the
reentry performance of an empty RNV propellant tank under the transient re-
entry conditions that can he expected to occur on a medium cross-range re-
entry trajectory. This analysis should result in a transient prediction of
the purge bag and propellant tank temperatures, and allow an estimation of
the condensation problems that may exist an reentry.
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For this steady-state ground hold analysis, referring to figure 18,
helium gas 1s present in the purge bag and N, gas 1is assumed .in the annular
space between the tank and payload bay, both™at about one atmosphere pressure.
With a full LE, tank, the tank wall temperature is assumed to be Tp = LO°R
and the averagé payload bay structure temperature T 400°R should exist in .
the fully loaded Space Shuttle during ground hold. SF'cr steady—atate operation,
the total heat rate through the nitrogen gas annulus (q"g + 9’ must equal
the conduction heat leak through the insulation into the tank, q T These heat
rates can be estimated as below:

"y = SHe (15 - Tp)

T
i3

Qp = heat rate per unit tank area

= helium gas conductivity in the annulus

tg " = helium purge geas thickness = 2.0 in.
TB = purge bag temperature
Tp

= LH,. tank wall temperature (fu.lly loaded during ground hold) .

2
4 4
'y = K (Tg 7 -Tg)
where:
q"R = radiation heat transfer across the annulus between the
payload bay structure and the purge bag outer ta.nk surface.
o = Stefan-Boltzmann constant
Fe__; = 0.1, assumed emissivity factor between purge bag and bay wall.
Ty = average payload bay structure temperature (fully loaded

Shuttle during ground hold.

From reference 12, the heat transfer conductance kc of the annular space
dimensions shown on figure 18 can be estimated from the following relations:

(. T)
'S - ¥BY
tA :
where:
ky = conduction/free convection heat transfer conductance.

t T annular thickness existing between the structural walls of
the payload bay and the purge bag outer surface of the LHQ tank.
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ke - k, for Gr "=10

k, = 0.01k (Gr)"l*', for 6r>10°
where: |

k' = gas conductivity in the annulus

Gr = Grashof number

Gr = o %D = ('J.'S-TB2

w2

Ts
o = gas density
g = acceleration
D = purge bag dlameter
w = dynamic viscosity

Based upon the above relations, the total heat rate across the nitrogen
gas annulus ?;' + q",) and the heat rate into the tank, q",, are plotted as

a function of tge purge bag temperature T_ on figure 19 for the ground hold
case. The intersection of these two heat rate curves, where q",, = (q"R + q"c)
represents the steady state solution of the tank heat rate and Turge bag
temperature. From figure 19, this solution yields T, = 280°R purge bag

temperature and a tank heat rate of gy = 60 Btu/hr Bpp2,

. The ground hold purge bag temperature of T, = 280°R will not result in
any gas condensation in a dry GN2 environment ].g the annular space during

ground hold. The tank heat leak q"., of approximately 60 Btu/hr ££2 will

result in IHp boiloff rate at one atmosphere pressure of 885 lb/hr for

the RNV propellant tank module payleoad under ground hold conditions.

During the reentry of an empty RNV propellant tank in the Space Shuttle,
an estimate is made of the coldest temperatures that could be expected of
the propellent tank and the purge bag. For this analysis, it was assumed
that the payload bay structure temperature T, was initially T, = 530°R at.
the start of reentry. The tank was assumed §.o be emptied of Just prior
t0 reentry, so that the tank temperature was = 4JO°R prior to pressuriza-
tion. The meteoroid shields and outer surface of the multilayer insulation
was assumed to be TB = 5009R before pressurization.
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At 12 minutes before entering the Earth's atmosphere, it is assumed
that nitrogen gas pressurant is applied to the inside of the tank to pre-
vent collapse, and the helium purge gas is applied to the multilayer insula-
tion. These gases within the tank and purge bag will result in temperature
equilibrium of the purge bag contents, over a time period of about 10 to 15
minutes, This 'eguilibrimn temperature for the purge bag and contents would
approach T = 326°R, if the nitrogen and helium gases were added to the tank
at T = 500°R. Approximately a 20°R differential is required between the
tank temperature and the purge bag temperature to account for initial radia-
tion heat transfer effects. Therefore, the initial temperature of the tank
contents was assumed to be T, = 320°R, and the initial temperature of the
burge bag was assumed to be % = 34%0°R at reentry. These start temperatures
for the tank contents and purge bag should represent the minimum possible
. values, assuming the tank wall was at LH, temperature just prior to reentry.

With the start temperatures T, and T, fixed, it is possible to solve for
‘I‘92 and. TB as a function of time ¢ guring e reentry phase. The heat rates
Y Q"C » and q'y, during reentry are computed from the same relations given
in the ground hold analysis. The total heat rate to the purge bag q“TOT is

then found from:

qilTOT = q"R + .qllc
The heat rate that will raise the tank contents temperature is then q"T ’
whereas the heat rate that will raise the purge bag temperature is:

1"

weoo_ ] -
T3 = Qqpor ~ %
The temperature rise A TT and ATB over a time period At is:

1"
AT, = 23 Ay
c" ’
T
at = 9B oAt
c"
B
where C"T = 0.30 Btu/°R pt2 = tank, gas contents, and half of multilayer
' ‘ insulation capacity per unit area.
C"B = 0.10 Btu/°R ££2 = purge bag, meteoroid shields, and half of

multilayer insulation capacity per unit area.

The results of this transient solution.. are shown on the graph of

figure 20. The assumed aluminum payload bay structure temperature T, which
was used in this analysis, is shown in the top curve, with T, = 530°§ (70°F)
at the start of reentry and rising to T, = 6600R (200°F) at minutes after
landing, when structural cooling would 'gegin in the Space Shuttle. The dew

or freezing temperature T, of the atmosphere (ret, 13) is shown on this graph
for the air that will surround the purge bag during atmospheric entry. This
TF curve assumes a dewpoint temperature of TOOF . at the sea level landing field.
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The computed RNV tank contents temperature TT rises from an assumed
value of T, = 320°R at the time of helium purge t6 T, = 420°R at 10 minutes
after lan « The purge bag temperature T, was foulid to rise from an assumed
initial temperature of T, = 340°R to a £ Tg = 540°R at 10 minutes after
landing. As can routh.bee seen from the T, and T, curves, only radiation
heat transfer occurs to the purge bag from %he pay?oa,d bay structure during
the first 15 minutes, followed by radiation and conduction heat transfer up
to about t = 55 minutes. After that time, free convection heat transfer
dominates in the gas annular space, and both the purge bag and tank contents
temperatures rise rapidly. At the time of landing, t = 78 minutes, the
purge bag temperature is Tp = 500°R (40°F).

The hashed area between the T, and T, curves on figure 20 shows the
reglon where water vapor condensat}:ron a.nd?or freezing can occur on the
purge bag. This condensation time would exist for a period of about 12
minutes, and would be most active at the time of landing, where T, is about
30°F lower than the dewpoint. At all other times during reentry, the purge
bag temperature is greater than the dewpoint, and is always greater than the
C%I\I2 or G'r()2 liquification temperature of air.

There are two rather simple methods that might be used to obtain T > TF>
~ at landing, so that no water condensation would occur on the purge bag. One
method would be to raise the tank and purge bag temperature at the start of
reentry, so that the purge bag temperature would be well above the dewpoint
temperature during the landing phase. This would easily occur in this model

if reentry were to start with an average purge bag-tank temperature of =

T 2 40OOR, which would exist with a warm tank on orbit. However, the minimum
temperature tank assumed in this analysis could be warmed to that level in
orbit by pressurizing the helium purge bag with He and the tank with GN, about
two hours before reentry. With no helium'gas in the purge bag, the ¢
temperature will rise about one °R/hr due to:-heat léaks. With helium gas

in the purge bag and radiation from the payload bay, the tank temperature
will rise at about 35°R/hr. If the purge bag-helium leak rates are not too
excessive over a two hour time span, this would appear to be the best way

to raise the average tank temperature and avold water vapor condensation on

the purge bag during reentry.

A second method of raising the purge beg temperature during reentry would
be to raise the emissivity factor F ¢ between the purge bag and payload bay.
With Fe¢ = 0.1, as assumed in this a.na.]\xsis, radiation heat transfer raises
the average tank temperature by about 35F. If F ¢ were increased to 0.2,
the final purge bag temperature should rise by about 35°F, which would Jjust
eliminate water vapor condensation from the analysis shown on figure 20. An
increase of the emissivity factor ¥ from 0.1 to 0.2 would result in a very
small increase in the heat leak during orbital flight with evacuated insula-
tion and only a small increase in the heat leak to the tank during ground
hold operations.
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Based upon the above ground hold and reentry analyses of the RNV
propellant tank in the Space Shuttle payload bay, it appears possible to
design a closed, non-circulating gas, purge bag system that could eliminate
all water vapor and geseous condensation on the purge bag under normal modes
of operation. The weight, power, and camplexity advantages of a simple
closed helium purge bag compared to a more complex hot circulating helium
gas purge bag design should be strived for if possible in the system design.

One area that should be examined with this tank system 1s the possibility
of GN, condensation on the purge bag during the ascent phase of flight. During
ascent, the heat rate to the LH, tank will decrease from the ground hold value
of " = 60 Btu/hr £t2 to a radiation/conduction heat rate through the gas
annulus of about 10 Btu/hr ft2. As can be seen from the q", curve of figure
19, this heat rate would result in a steady state_ purge bag temperature of
T ~100°R < 114°R <lllO°R, the last two temperatures being the freezing
and condensing temperatures of nitrogen gas. This ascent phase with ra.dia.tion/
conduction heat transfer through the purge bag/pa.yloa.d bay nitrogen gas annulus
will occur over a time period of only one or two minutes, and the thermal
capacity of the purge bag should not allow the purge bag to reach the conden-
sation temperature of GNo during ascent. This should bvé checked in a transient
- analysis to see 1if a problem may exist with GI\I2 condensation on the purge beg

during ascent flight. :

This tank system should also be investigated for reusability if an
emergency reentry with IH, in the tank is required. For this case, GN,, GrO2
and water vapor condensation would occur during the early phases of reentry
with only water vapor condensation occuring in the lower atmosphere when the
purge bag temperature would approach the ground hold temperature of 280°R.
This severe condensation might damage the purge bag, and require replacement
of the purge bag before the tank could be reflown.

The above snalysis was performed for the purge bag located at the outer
meteoroid shield. Locating the purge bag at the inner meteoroid shield would
Probably decrease the heat leak and decrease the purge bag temperature. This
system would result in lower ground hold boiloff rates, but would yield lower
heating rates and lower purge bag temperatures on reentry than those computed
above.

Smmna.ry

Specific payloads within selected mission categories have been examined
to illustrate the type of thermal control problems which will exist at the
Space Shuttle/pa.yload interface. The missions selected were the Space Station
Resupply, Satellite Placement and Retrieval, and Propellant Delivery. '

The results of the Space Station Resupply Study indicate payload module
radiator areas for autonomous operation on the order of 150 £t2 are necessary
to meet a 7,000 Btu/hr EC/LSS heat rejection requirement without imposing sig-
nificant attitude restriction on the payload module.
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The requirement for thermal isolation between small payloads selected
for multiple delivery was identified in the Satellite Placement and Retrieval
section. The feasibility of using a low weight multilayer insulation bag to
meet the thermal requirements of the lower magnetosphere experiment during
the various mission phases was demonstrated.

The potential for condemsation on large tanks (typical of propellant
delivery missions) during prelaunch and reentry has been evaluated. Purge
bag temperatures for the RNV configuration are on the order of 280°R during
prelaunch; resultant propellant boiloff rates are on the order of 885 lb/hr.

Further emphasis should be placed on design requirements for the payload
compartment wall since the thermal isolation it provides from low temperature
propellant tanks will have an impact on operational requirements (i.e. » burge
rates, door open and closure, etc.) as well as the payload thermal response.
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SYSTEM REUSABILITY

The reusable nature of the Shuttle and the need for quick turnaround are
requirements for a spacecraft which must be met with new concepts to reduce
inspection and maintenance times to an absolute minimum.

The System Reusgbility analysis performed in this task examined sequen-
tially: (1) all facets of ground test, maintenance, and refurbishment as
being practiced by alrlines, military services, suppliers, and manufacturers,
(2) pre-checkout, refurbishment, and post-flight checkout requirements at the
EC/LSS component level, (3) mean-time-to-failure using system redundancy and
weight limitations as applied to variable mission periods, (Ll») fault isolation
feasability including EC/LSS elements criticality by mission phases, instru-
mentation. practicality level, and difficulty of implementation, and (5) line
replaceable unit requirements. :

' This analysis éstablished the maintainability guidelines for:.

o Location, accessibility and arrangements of EC/LSS modules and
components

o. Incorporating design facilities which minimize inadvertent wear
or damage and servicing o

o Detecting and/or precluding potential trouble

This section also presents detailed results of these reusability analyses
and discusses a conceptual fault isolation approach that minimizes inspection,
maintenance, and turnaround time.

IMSC Survey of Aircraft Test, Inspection, and Maintenance Practices

A survey of standard inspection and servicing practices of representative
airlines and suppliers was conducted to provide reference information for deter-
mination of the applicability of these practices to the Shubtle/EC/ISS for
achievement of rapid turnaround. This survey consisted of discussions with
responsible maintenance representatives from Eastern Airlines, Trans World
Airlines, United Airlines and Garrett Corporation. In particular, subsystems
relating to environmental control and pressurization were discussed. The
survey also included a review of the activities and philosophies on the sub-~
jects of the Aircraft Integrated Data System (AIDS) and Automatic Data
Acquisition System (ADAS) as used by TWA, Malfunction Analysis, Detection and
Repair (MADAR) as used by the C-5A, the results of IMSC Shuttle fault isolation
trade studles and practices anticipated for the Lockheed L-10ll as recommended
by the Lockheed/CALAC chairmen of the review board for environmental control
and pneumatic system maintenance. The significant information abstracted
from these sources follows.



Eastern Airlines.- In the past, overhauls were scheduled on the basis
of a specific number of operating hours. The current trend is to flexibly
schedule maintenance on the basis of the accumulation of minor failures
rather than time. Upgrading of equipment to incorporate improved models
is on the basis of safety or attrition only. A quantitative system check-
out is performed prior to major overhaul at approximately 10,000 flying
hours. Intermediate checks are performed approximately every 1000 flying
hours. Lubrication levels in refrigeration unit sumps are checked at 300~
40O hours with oil changed at 1000 hours. Vehicle failure modes and effects
analysis reveals that no failure mode causes a major problem and equipment °
fails "safe". Each component is evaluated for the possibility of failure
detection, the result being that some components are monitored for de-
gradation while others are allowed to operate until failure.

It has been found that the actual life of equipment exceeds the supplier
estimates. For example, plate fin heat exchangers have a life of 30,000 to
40,000 hours s bootstrap compressors exceed 3000 hours, temperature controls
are good for approximately 10,000 hours, valves in the engine bleed -area
operating at 800CF are good for about 5000 hours, and ordinary shut-off
valves last indefinitely. In most cases, degradation rates are short, and
failures can be considered as sharp edged. Valves and fans are in this
category. Exceptions are heat exchangers and air cycle systems which de-
grade slowly. Some items, such as pressure regulators, go out of limits.
This condition can be determined by test and compensating adjustments made
to bring the item back within tolerance. It can also be predicted that
something will fail every 1000 to 1500 hours, but the type of failure is not
predictable. ~

As far as the Environmental Control. System is concerned, only the freon
system on the TOT and the 720 are modular. Air cycle systems are not modu-
larized. When a component has failed, it is examined to determine if it is
to be refurbished or scrapped. If the component is overhauled, some parts
are automatically replaced ("0" rings, springs, bushings, bearings, etc.).

Diagnostic instrumentation is on the increase. This instrumentation
contains fault isolation provisions for ground checkout similar to the TWA
flight system (AIDS).

Trans World Airlines.- This survey included a review of a series of
papers describing the activities and philosophies on the subject of automatic
data recording such as AIDS and ADAS. The installation of multiparameter
recording systems on TWA's aircraft has provided an important tool for advan-
cing the maintenance state of the art on modern airlines. These systems are
computer controlled data systems designed to continuously sample and record
data from various alrcraft systems sensors throughout the flight duration.
Signal parameters relative to problems within any of the monitored aircraft
systems and/or trend data are permanently recorded for subsequent trouble
detection and analysis by ground facilities. From the information recorded,
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trends deviating from standard are determined and the aircraft are investi-
gated as tb the causes for not performing up to the prescribed level. Once
the causes are determined and corrective action taken, subsequent data
Processed through the program shows the improvement obtained as a result

of these efforts. This type of correction can be established for analyses of
the following air conditioning parameters; air cycle peak pressure, cabin
inlet duct temperature, bleed manifold pressure, cabin temperature and cabin
altitude.

Very little additional aircraft maintenance has been needed in order to
keep the sensed parameters operational. This is due, primarily, to the fact
that the signals are obtained from the same sources which supply information
for the cockpit display.

- United Airlines.- This airline has little information on fault isolation.

. In the case of a failure in which the bad part can't be determined, all sus-
pects are removed and replaced to eliminate testing and false repair delays,
thereby minimizing turnaround time. The removed parts are then bench tested

~ and good items are placed back on the shelf without rework of any kind. Faulty
items are repaired as necessary. No procedures employing regular replacement
of parts are used. Although some trend a.na.lysis is used, parts don't generally
wear out; they fail unexpectedly.

It has been found that even dynamic units have higher reliability than
suggested by suppliers. For example, on the DC-8, experience shows that the
freon unit has an actual operating life of 14,000 hours as opposed to the
supplier recommended 2500 hours. Experience has also shown that because of
the very high equipment relisbility, attempts to incorporate later improved
equipment models meets with increased probability of failure. Aside from
black box functions, which are examined critically, United prefers keeping
system functions separate when possible, since sharing can be the cause of
prOblemSc

NASA Survey of Aircraft Test » Inspection, and Ma.intenance Practices

The NASA survey (ref. lll-) included infomation derived from United
Airlines, Lockheed Missiles & Space Corporation, North American Rockwell
Corporation, Flight Research Center (Edwards Air Force Base) » Trans-World
Airlines, and the Boeing Company. The various aircraft and experimental
vehicle programs discussed encompassed the aspects of maintensnce, refur-
bishment, test, and checkout of the following vehicles: C5A, T47, 720, 707,
880, DC9, and L-1011 aireraft, and X-15, HL-10, and X-24A and F3 (F2-M2)
£flight research vehicles. The maintenance concepts and experiences associated
with these vehicles are described in the following paragraphs.

Commercial Aircraft.- The major commercial airlines i)rovide their own
personnel, facilities, and equipment for the following inspection and repair
replacement activities:
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"A" Check

A simple walk around visual inspection at every stop.

"B" Check - Includes all "A" check items plus manipuletion of flight
controls, steering gear, etc., with visual check of
satisfactory operation, every 25 hours at any stop.

"C" Check - Some tools and bench simulation and measuring equipment,
open inspection ports, remove cowls, etc.; example is
pressurizing altimeter parts, measuring pressure and
observing display accuracy.

"D" Check - Accomplished in line maintenance facilities, an Inspec-
tion and Repair as Necessary (IRAN) concept is utilized
to predict the remaining life (predicted by system expert,
tools used if required) of components or replacement if
it cannot be removed and replaced (R/R) in line during a
lower maintenance level check (such as "C" check). R/R
if required is performed at 350-500 hours.

"E" Check - Overhaul maintenance performed in home-base overhaul
facilities.

The time involved in the "D" check activities is usually T2 hours and
performed mainly on weekends. The time involved in "E" checks is usually
scheduled to be T-1l4 days, depending on any engineering modifications or
updates to be incorporated. When a new model aircraft is added to a fleet,

the inspection periods are more frequent and once operating and inspection .

history has been accumulated, the time between inspection periods (after
negotiation with the FAA) is lengthened. The airlines perform sample "D"
and "E" inspections on a limited number of aircraft in order to lengthen
these time intervals as much as practical. '

When the T47 was put into service, the inspection and maintenance
policies were changed by the incorporation of the activities as normally

performed in the "E" checks into the "D" checks (such as auto-pilot removal

and replacement). This was done so the aircraft would not be tied up in
the maintenance dock for any extended period of time.

- The scheduled maintenance checks for the Lockheed L-1011 are being
scheduled as follows: '

0 200 hour service checks (overnight or 6 hours duration).
o 800 hour periodic check (overnight or 8 hours duration).

o 8000 hour major check (a maximum of 5 days).




In order to achieve this rapid turnaround capability, Lockheed emphasizes
that the biggest time consuming factor involved is in fault isolation and
troubleshooting times, and thus they have installed Built-In Test Equipment
(BITE) wherever possible. The BITE allows troubleshooting down to the
remove-replaceable black box called the Line Replaceable Unit (LRU).

The airlines almost without exception utilize the "canned system” con-
cept. The systems, engines for example, are given extensive testing using
stands and then sealed in airtight containers until use, at which time they
are installed, given an operational test and then flown Some of the biggest
benefits of the "canned system" concepts are: :

o The detailed testing does not interfere with the aircraft flight
schedule.

6 Testing and maintenance can be much more detailed and extensive.

o A more production line type of operation, resulting in the reduction
~ of new problem areas.

o Overall ground support equipment requirements are reduced.

o The test and inspection time for the total aircraft is greatly
reduced.

The airlines for the T4T and L-1011 aircraft are plamning to use an
onboard parameter monitoring and recording system on a trial basis. Its
function is not checkout per se, but is basically an anomaly identification

and recording scheme that minimlzes ground troubleshooting and maintenance
tinme.

In general, the commercial airlines have rejected real time-telemetry
transmission and reduction systems for the following reasons:

~ o Cost of maintenance
o Initial cost
o Cost of personnel for data reduction and evaluation
0 Reliability of the instrumentation and monitoring equipment itself

o Belief that operational characteristics of the aircraft systems
themselves are sufficient. '

Airlines maintenance personnel have been given opportunities to have
direct inputs into the design and manufacture of the new large aircraft such
as the L-1011 and the T4T7, so that when operational, inspection, and maintenance
problems should be considerably reduced. As an example, each T47 engine
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(PW-JTOD) bresks down into 8 modular sections that can be removed and replaced
in far shorter time than previous jets, and the complete engine can be replaced
in one-half the time required for the P&W JT3D-3B engine on the T07-320B air-
Plane. The only checks required after engine installation are leak checks.

The 747 Inertial Navigation System (INS) utilizes built-in testing principles
which are from 95 to 98 percent self monitoring and are modularized for easy
flight liue removal and replacement. :

The biggest breakthrough on the T47 aircraft influencing minimum down-
time is that Boeing and the customer airlines formed a malntenance organi-
zation with a six point program:

0 The education of subcontractors and designers on the principles
- of practical maintainability.

0 Review of all components for type of maintenance required, i.e.,
seal replacement, pump assembly replacement, etc.

o Verification of maintainability design during the mockup first
article inspection and during the flight test program.

i
0 Surveillance of engineering drawings and all vfendor proposals.

o Emphasis on maintenance of significant systems[ and components,
i.e., engine, main gear shaft seals, etc. |

|
o Documentation of detailed maintainability analyses, maintenance
action (on the job) studies and accumulation of in-service history.
|
The commercial users generally utilize the Inspec‘lc. and Repair as Necessary
(IRAN) concept for largely established components/systéms and work towards
meking newer, less proven components/ systems acceptablé to the FAA on the
same basis. The checks made in the IRAN concept are génerally operational,
utilizing operational crew displays in most cases. Some very special
component/ systems (those that are absolutely necessaryito safe aircraft
operation between liftoff and 100 ft.) such as the alt:?.meter and altitude
indicators, are checked with small handcarried equipmexixt.

Airlines maintenance engineering persomnel state that other date taking
means, such as onboard monitoring/recording telemetry, iand the use of auto-
matic ground checkout equipment on line, is investigated each time a concept
change or new equipment is introduced, but the costs, complexity, weight, and
requirements for trained personnel have always previously prevented adoption.

Military Aircraft.- The current military trends are exemplified to a large
degree by the C-5A aircraft now undergoing flight testing at the various Air
Force installations. One of the major departures from the commercial air-
craft is in the utilization of the MADAR installed on the initial procurement
of 58 aircraft.
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The MADAR concept is one of monitoring continuously and automatically

960 parameters, and allowing the manual monitoring of an additional 360 para-

meters via an oscilloscope, and comparing the wave forms against pre-determined

waveforms presented on the MADAR display console.

The MADAR allows fault isolation of 1927 out of 3324 LRU's on the C-5A.
The LRU's themselves incorporate BITE and with this, the MADAR interrogates
each BITE indicator.

Another basic concept that is practiced by both the commercial aircraft
maintenance personnel and the military for the C-5A is the "hands off" con-
cept, which is reducing component and subsystem operational checks on the
aircraft to an absolute minimum to preclude premature failures due to over-
checking and human error.

The scheduled inspection program for the C-5A 1is:

o A preflight inspection which is valid for 24 flying hours which
is prime or to the "B" check for commercial alrcraft.

o A basic postflight inspection usually performed after each en-
route stop and at the final destination.

o A phased inspection which is divided into 6 "work packages"
performed at 100 flying hours time. As a rule, different
systems and areas are inspected during performance of each
work package.

0 A depot level IRAN inspection every 3650 flying hours or
every two years.

Current planning calls for no scheduled replacement (except for
engines and wiring) of C-5A components on any pre-determined time basis.

The principal use of the MADAR is to provide the airecrew with a
greater degree of decision-masking information and to enable the ground
crew to determine the C~5A functional status through reduction of the
package of flight tapes by a ground data reduction facility.

In some instances, the onboard Avionics accounts for 50 percent of
the maintenance down time as opposed to 10-15 percent for the propulsion
system, so commercial users would rather let the military qualify any new
onboard Avionics system.

Another Avionics system investigatéd was the Integrated Light Attach
Avionics System (ILAAS). The ILAAS is currently undergoing evaluation in
a modified Navy A-6 Intruder Aircraft. The basic concepts involwed in the
ILAAS: :
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o0 Extensive use of Built-In Test Equipment within each LRU.

0 Display of status information to the aircrew such that they can
make a decision-action relationship, i.e., the information dis-
Played is to a level indicating failed paths and redundant paths
still available for use. :

o Display of LRU status information available to the carrier flight
line maintenance crew such that they can remove and replace failed
LRU's and get an operaticnal status check after replacement.

0 The BITE monitors the LRU status continually (dependent on system
mode) and a latching indicator stays "on" after power removal to
retain failure indication and to provide a rapid, direct fault
indication to the maintenance crew.

The ILAAS is required to detect at least 95 percent of all failures
that occur and must reduce the ratio of maintenance manhours to flight
hours less than 1.0. Preliminary data shows that this ratio is on the
ordér of 0.43, and thus is exceeding initial expectation.

Another integrated Avionics system under development is the Air
Force Mark II, in which each LRU contains BITE and self-test circuitry.
BITE has a high confidence level, i.e., 95 percent fault detection, but
requires interruption of the LRU operation, whereas the self-test usually
has a lower confidence level but does not require operational interruption.
A central special purpose computer formats the BITE and self-test outputs
and drives an aircrew display which shows decision~action level status.

Experimental Aircraft.- The programs investigated concerning the
experimental aireraft/lifting bodies were the X-15, X-24A, HL-10 and the
F3 (F2-M2) at the Flight Research Center. The X-15 will be discussed more
thoroughly than the other aircraft since it has more flying experience
(199 flights). :

The philosophies that were inherent in the X-15 program were:

0 Minimum GSE to make the vehicle ground activities expeditious
and less complex. The electronics were packaged into a removable
bay which allowed fast and easy removal and replacement of the
electronic assemblies which, if faulty, were troubleshot using
bench test equipment.

0 Flight operational instrumentation was minimal in comparison with
present Block II Apollo Command Module practices (86 Pulse Code
Modulated ¢hannels as opposed to over 300 Pulse Code Modulated
channels). The instrumentation for the X-15 encompassed both
the operational or housekeeping informatlon as well as experi-
mental data. ’
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(o} Instrumentation for the pilot as well as the operational telemetry
was only to the level where the pilot could make a decision-action,
i.e., decision to switch to a redundant, degraded, or shut-off mode.

0 The majority of the ground test and servicing functions were simpli-
fied and minimized, thus keeping the complexity of electronics to a
minimm as well as preparation time and operations. For example,
the entire preflight checkout and servicing operations usually took
four and one-half hours and required approximately twenty-five
personnel including the B-52 flight and ground crews. The lifting
body (HL-10, X-24A and F3 (F2-M2)) requirements involve approxi-
mately the same number of personnel.

o The nominal ground turnaround time for the X-15 was approximately
10 days for the vehicle itself. In practice, this ground time has
been longer due to the unavailability of flight experiment equip-
ment and/or its installation into the vehicle.

o The detailed test and checkout activities for the X-15 flight systems
were performed prior to installation into the vehicle. The electronic
systems (located in the removable electronics bay) were given (if
indicated to be faulty by functional operating checks while installed
on the vehicle) extensive testing and inspection on the bench.
Experience indicated that the detailed testing on the bench or
engine test stand resulted in a better checkout than could be
accomplished with complex GSE after installation on the vehicle,
and also resulted in decreased vehicle turnaround time.

At the start of the X-15 program, the engine (YRL99, burning NH, and
LOX) was changed out after every flight and put on the test stand, but as
the program progressed, the engines averaged 2-1/2 flights per change out
but underwent a functional check after and prior to each flight. In terms
of cost for refurbishment for each flight, between $200,000 and $300,000
was expended (ref#15). This includes all personnel materials and hardware
costs. The typical annual operating costs for the three X-1l5 aircraft
were approximately 13 million deollars, which included both manpower and
facilities,

System Refurbishment

The unique requirements placed on a spacecraft to be reusable and have
a quick turnaround capability can only be met with unit replaceability,
component accessibility, and establishment of effective component and sub-
system maintainability guidelines.

Past space vehicles have been designed either with equipment buried

in inaccessible locations or with limited improvement by modularization. The
problems that have been associated with these practices have included:
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o0 Removal of major installations to repair or replace a faulty
component

o Disconnecting or decoupling of fluid or gas lines to remove
EC/LSS modules. Opening of these lines has imposed the
necessity to perform extensive leak checking, draining,
purging, flushing and refilling of systems when reconnected.

o Stringent cleanliness requirements relative tb particulate
size and count for the cabin equipment and atmosphere.

The system refurbishment analysis was initiated by establishing defini-
tive maintainability guidelines based on the airline survey; defining and
listing eritical EC/LSS components that require special handling during the
major phases of activity ranging from landing to relaumch.

Maintainability Guidelines.- The primary maintainability guidelines
are concerned with accessibility, rapid and accurate fault identification,
and minimal post-installation functional checkout requirements. Two major
maintainability concepts, "designed-in" and "canned" are recommended for
incorporation into the guidelines.

A "designed-in" maintainability concept is initiated by providing the
designer with operatlion and maintenance requirements early in the vehicle
definition phase. An application of this technique is the "changing out"
of engines on the DC-10 aircraft. The specification states that it is a
requirement to demonstrate that any engine can be removed in two hours and
a replacement engine installed in a second two hour period. This concept
is coupled with the "canned" concept, i1.e., the system will have to be
thoroughly checked out prior to "canning", such that upon need of use, it
- can be easily installed, interfaces verified and functional performance
verified using an absolute minimum of time, personnel and support equipment
requirements. The individual "canned" system approach allows parallel test
and maintenance activity, performance by highly experienced and knowledgeable
Personnel as opposed to sequential testing by relatively inexperienced
Personnel. :

EC/LSS requirements for maintainability guidelines have been established
for the system reusability analysis. The guidelines are arranged in order of
safety, design, accessibility, and replaceability criteria as follows:

0 Data acquisition devices such as sensors and transducers will be
protected against damage during routine servicing.

o Critical components/elements subject to contamination will be
accessible and removable for sterilization.

o Critical and/or sensitive adjustments will be protected by covers,
locking devices, etc.
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A1l control valves will incorporste extermal position indicators.

Shutoff valves will incorporate manﬁal override provisions for
emergency or test operation.

- Critical measurements such as pressure and temperature, will be
" displayed in the forward compartment. Pressure ports will be
available at key maintenance points.

Liquid spillage will be precluded by incorporating self-sealing
disconnect or shutoff valves for all liguid-cooled units.

Material siubjected to wear due to frequent replacement or inspection

will be carefully selected. For example, the use of aluminum threads

will be avoided in filler caps, drain plugs, etc., where use is
frequent.

The EC/LSS components will be designed so that repair on the vehicle
or on site at a lower maintenance level can be performed.

Low-pressure lines will have a minimum number of connections to
alleviate leak detection requirements.

Alignment and positioning of equipment will be accomplished using
positive keying techniques.

Liquid-cooled units will be provided with a means for detecting
internal leakage without removal of components or unusual tooling.

Sectionalized ducting will be provided to permit replacement of an
individual section without disturbing structure of adjacent compo~
nents.

All duct connections will be readily accessible for inspection and
maintenance.,

All components with screen ports open to cabin enviromment will be
accessible and removable for cleaning and inspection.

Test connections will be provided for troubleshooting critical para-
meters such as temperature, flow, pressure, etc.

Components will be removable without disturbing adjacent components.
Standard tooling will be required to insure interchangesbility.

Packaging of the various elements making up the EC/LSS will be
arranged to facilitdte replacement.
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Turnaround Analysis.- Determination of turnaround activity required
investigating three major phases; post-flight checkout, refurbishment, and
preflight checkout. Components of the EC/LS subsystems were examined as
to their specific needs as far as remove/replace, cleaning, and disposition.
Table 9 summarizes the postflight/reﬁu'bishment/preflight checkout procedures
at the component level. Actuation and disposition activities during the post-
flight checkout period are listed. The refurbishment cycle would normally
occur prior to flight and consists primarily of replacing plug-in modules,
replacing cartridges, and installing "camned" flight units. The preflight
checkout consists of the actuation mode involving calibration signals of
Power application, and the monitor/verification mode requiring visual
verification. _ '

Several critical problems became apparent through this analysis:

0 Preflight checkout requires an integrated test unit capable of
inputting a range of electrical signals, measuring a wide range
of downstream pressures, and detecting low leakage rates.

\
0 Postflight checkout and refurbishment requires incorporating quick
disassembly and breakdown of many elements to a size sultable for
applying sterilization techniques such as autoclaving.

o Postflight checkout includes a general clean~up and must be
scheduled early in the refurbishment sequence.

0 Refurbishment is, in many cases, a matter of bringing flight
storage units to the payload module and installing them. Easy
accessibility must be guaranteed since this action will be
scheduled late in the refurbishment sequence.

o Viéua.l inspection is required in many cases which will necessi-
tate having the equipment accessible or having indicators located
in such a way that they can be clearly observed.

Table 9 also lists the EC/LS subsystems replacement probability based
on MIF for each subsystem. This value was determined through an IMSC
computer program which is discussed under the following reliability analysis.

Reliability Analysis

The computerized reliability program used for the analysis of this
system has been selected with respect to system configuration and analysis
requirements. A system can either be a multithread system or a single
thread system. A typical multithread system consists of a single thread
system for a certain function which is backed up by a different system
for redundancy. This type of redundancy is typical for information sub-
systems or navigation subsystems. This analysis is based on a single
thread system which is considered more representative for the EC/LSS.
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In order to increase the reliability, each item of equipment has to be made
individually redundant, or an identical system has to be used as backup
(nmltithrea.d system) « The analysis requirement is to optimize the system
with respect to reliability and weight.

The most suitable reliability program chosen for this type of analysis
is the computerized System Effectiveness Program (SYEFF) available at LMSC
(ref. 16). The SYEFF program optimizes a system by computing the relia-
bility for the basic system configuration, and then computing the relia-
bility for each item considered redundant, one at a time. That item which
gives the greatest increase in reliability for the least weight, cost, and
volume, is added and the system reliability recalculated with the first
redundant item, the result is called state 1. Another item is added and
the process is repeated, resulting in a new state.

The iteration process stops as soon as one of the optimization con-
straints, weight, volume, or cost, is reached or the system cost goes through
a minimum inflection point. Instead of all three constraints, either one or
two constraints only can be used for the system optimization.

The flexi'bility of the program provides the user with the following
options for making each component redundant:

o An item or piece of equipment can start as a single item and -
one or more items can be added at a time.

o The item can occur in many locations and one or more of the
items may be added at a time.

o The item functionally called a one-shot item, which must be
treated differently mathematically, can be identified by
putting the proper code in the right location, and then the
options as described above apply.

o Redundancy can be suppressed for any particular item if no
redundancy is desired or is feasible.

When the optimizing process approaches the constraint limit of weight,
volume, or cost, it 1s possible that the next item to be made redundant
would exceed the constraint limit. For example, if 2 1lbs. are left for
optimization, and the item selected provides the highest Increase of
the remaining items in the system but at the same time its weight is
4 1bs., then this item is not made redundant but the one with the next
highest increase in reliability, which will not go over the constraint
limit, is selected.




The output of the program provides tables for:
0 The initial subsystem rellabilities, wéights » costs, and volumes.

0 The data as have been inputted, listings of assigned item number
and item name. '

o State by state decision calculations and resulting reliabilities.
0 The final redundancy configuration.

Appendix B provides a typical cemputer printout for the humidity control
~Subsystem. In addition, the various outputs include cumulative weight and
volume, total cost, total R&D cost, total operational cost, expected number
of systems required to meet a mission requirement, reliability and system
mean life. For better accuracy of the optimization process, it is advisable
to optimize a total system, not only a subsystem, because a weight increment
added to any one subsystem under separate investigation can probably be
added with better results somewhere else with respect to the total system.

Additionally, the program takes the computer data and provides a plot
to a microfilm recorder which produces a plot output in terms of reliability
vs. time, reliability sensitivity to incremental weight and if cost data is
included - expected cost vs. welght, and cost vs. design life. Numbers are
‘shown on the plots which represent the state numbers. The same numbers are
also shown in a table containing a listing of item numbers (Kappa's) and
item names. Also, the reliability block diagram can be used as cross reference
between state number, item number, and item name. For this application and
because of the preliminary nature of the block diagram and design concepts
of the EC/LSS » the runs have been limited to a weight constraint only. The
Program takes into consideration a target weight limitation that does not
exceed 100% of the initial subsystem weight, and MIF based on mission time.
The eight EC/LSS subsystems that were considered consisted of single compo- -
nents only (no redundancy). The complete EC/LSS that was considered con-
sisted of single subsystems and then as two or more completely redundant
subsystems for the maximum reliability model. The final system weight
could not exceed 2500 1b.

The procedure for the feliability analysis was as follows:
0 Review existing NASA contractors EC/LSS block diagrams.

o Develop single element reliability block diagrams composed of
only selected critical components.

o Establish weight and failure rate data for these selected critical
components.
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o Prepare/run computer program..

0 Prepare sumary matrix shoring weight and relisbility on subsystem/
' system basis.

o Printout curves showing relationship between Reliability and Mission
Time, and Reliability and Weight. .

NASA contractors EC/LSS block diagrams were reviewed with respect to
‘mission and functional requirements and redundancy. Individual subsystems
and interfaces were identified, necessary for the preparation of reliability
block diagrams. Equipment Lists were prepared for each individual sub-
system. '

Based on the EC/LSS block diagrams and subsystems Equipment Lists, the
reliability single thread block diagrams were developed. The total EC/LSS
reliability block diagram is shown in figure 2l. The single thread system
and associated reliability block diagrams do not imply a direction of a
signal or functional flow of the system. They deviate from the conventional
nomenclature and block diagram presentation. A reliability block diagram
drawn to represent a single thread system merely indicates and identifies
vhich items in the system are critical to system performance and have to
rerform simultaneously for the required function of that particular system/
subsystem. It also means that any one item shown in the single thread
causes the system to fail, if the item fails. Any item used for monitoring
equipment only or used for a function not vital for mission performance is
not shown in the single thread reliability block diagram. If a circult
contains more than one item performing the same function, these items are
shown as redundant items. The presentation of such a configuration is the
same as the presentation of a parallel circuit in a design.

The single thread reliability block diagram‘ identifies the system/
subsystem and any item in the subsystem by name and executive item numbers.
It also shows the failure rate and weight for each item.

Using the equipment lists and reliability block diagrams of the sub-
systems, the failure rates for each item in the subsystem were determined.
In order to select an adequate failure rate, three sources for failure rates
were reviewed; Apollo actual data, Hamilton Standard data, and FARADA
(Failure Rate Data). The most suitable failure rate of a part or equipment
was assigned to it after evaluating the selected fallure rate with respect
to performance, weight, and applicability.

Based on.the reliability block diagram, equipment lists and special
conditions as stated by the Design or Systems Engineer, the computer input
deck for the SYEFF program was prepared. Computer runs were made on each
subsystem for mission periods of 168 hours-(7 days), 720 hours (30 days),
8,400 hours (50 missions) and 16,800 hours (100 missions). The computer
output tables were used and a summary matrix prepared.
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Table 10 shows the subsystem/system weight and reliability data for
the four mission periods s both for the initial weight case ( I) and the
final maximum weight case (F). ‘For the short-term missions (168 and 720
hours), increasing the reliability of the subsystems by adding critical
elements achieves the required MIF and produces a high degree of reliability.
For the 50 missions (8,’400 hr.), the majority of subsystems show the same
result; however, as noted on the table, the Heat Transport Loop. (Freon Thermal
Control) and Humidity Control subsystems both experience difficulty meeting
the MIF requirement and both have marginal reliability. The Fire Control
subsystem was not analyzed based on its inherent high reliability.

For the 100 missions (16,800 hr.), the majority of subsystems meet the
required MIF; however, as noted on the table, the Heat Transport Loop (Freon
Thermal Control) and Humidity Control subsystems both experience difficulty
meeting the MIF requirement and both have marginal reliability.

The most significant of the total EC/LSS reliability results are that
the 50 mission MIF can be met by complete redundancy; however, the 100
mission requirement is not met.

The computer also provided two plots for each subsystem and for the total
EC/LSS showing the relationship between reliability and mission time, and
reliability and weight. The first curve, figure 22, showing the total EC/LSS
is of interest with respect to the various mission durations. It can be used
as a decision making tool for system refurbishment and determination of
mission duration. It shows the slope of reliability decreasing with respect
to time. The second curve, figure 23, showing the total EC/LSS reliability
vs. weight by states, is very useful as a decision making tool for the
designer or systems engineer with respect to finalizing redundancy configura-
tions. Using figure 23 in conjunction with the computer printout (See appendix
B) s one can identify the item added at each state, what reliability gain was
achieved, and what the weight increase was. A flattening of the curve indi-
cates that the weight penalty is too high for the gain in relisbility.
Optimization is feasible where the rate of change is still high, whereas
the point where the slope of the curve drastically flattens is the point
where adding redundancy is no longer justified. .

Results of this analysis identifies two critical subsystems: (1) heat trans-
port loop-(freon thermal control), and (2) humidity comtrol. The results of
the computer analysis and the computer outputs for the htimidity control -sub-
system are.discussed below, as -an example. )

The step-by-step procedure discussed earlier is exemplified by table 11,
which lists the Humidity Control subsystem critical equipment developed from
reviewing the subsystem block diagram. The single element reliability block
diagram is next developed, as shown by figure 24. The item number (Kappa)
is shown above the component box and the failure rate data and weight is
listed below the box. :
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TARIE®© 11

HUMIDITY CONTROL SUBSYSTEM GRITICAL BQUIPMENT**

Item Quantity
Disposable Filtef l
Relief Valve 1
Debris Trap 1
Fan 3
Check Valve 12
Regulator 3
CO, Absorber. Canister . 3
CO, Absorber Assembly 6
Heat Exchanger 3
Wick Separator 9

' Cooler 1

Water Separator

Water Shutoff Valve 3
Total 49

Equipment critical to subsystem performance and
failure of which causes subsystem”to fail.
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Figure 25 shows the plot output of reliability vs. time. Note the nega-
tive slope of the curve as the mission time increases, resulting in a relia-
bility of 0.7208454 at the desired mission time of 16,800 hours (100 missions).
Figure 26 shows the relisbility vs. weight for 100 missions. As can be seen
from the curve, the first few redundancies added to the system at states 1
through 9 cause a significant increase in reliability for a small addition of
weight. The slope of the curve drastically flattens, starting with added
redundancies at state 10 and up. The reliability increase for the first 9
redundancies is much higher than for the items added at and after state 10.
The weight increase for the first 9 redundancies is much lower than for the
items added after state 10. Another change in slope is noted in state 24.
From then on, the reliability increase is negligible. As the target weight
is approached, the weight increased from 144.2 1bs at state 9 to 750: 1bs. at
state 27, compared to the small reliability increase from 0.6213582 at state
9 to 0.7208454 at state 27, which represents a weight penalty of 15.8 1bs.
for a negligible reliebility increase. Corresponding change in MIF is from
13,407 to 1%,371 hours.

Based on this analysis, it is recommended that additional computer runs
be scheduled during a later phase when realistic weights, volumes, and cost
data can be incorporated.

Fault Isolation Analysis

The Space Shuttle EC/LSS was analyzed to identifly the elements requiring
fault isolation and subsequently evaluated as to the applicability of fault
isolation technigues. :

Step-by-step procedures involved: (1) critical element identification by
analysis of existing aircraft data to isolate the elements into those which
display operational problems, and those which do’ not, (2) three dimensioned
array preparation relating the identified Shuttle EC/LSS into the fault
isolation priorities by mission phase, (3) element analysis by concentration
on subsystems which impact crew and vehicle saféty during ascent to touch-
down, and determination of instrumentation practicality, and (4) conceptual
fault isolation approach.

. Critical Element Identification.- Use was made of Air Force accumlative
data from 75,000 flight hours of operational use on the C-14l fleet which is
equivalent to approximately four and one-half (4.5) orbiter lifetimes based
on an average of 100 seven-day missions per vehicle per life. The Air Force
utilizes a Work Unit Code (WUC) to identify the elements and maintains data
banks which permit recovery of data such as actual replacement, average replace-
ment time, actual failure rates, etc. for each WUC designator. The number of
these elements are reflected under the quantity colum in table 12.°
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The Space Shuttle will not contain units identical to an airplane, however,
the work units can be classified into groupings (pressure, mechanical, electri-
cal and electronic) which logically can be expected to display similar charac-
teristics in wearout/failure and in instrumentation requirements. The classifi-
cations are shown in table 12. The majority of elements occur in the electro-
mechanical non-rotating, and metallic mechanical areas; however, the majority
of the problems as far as maintenance are concerned with the electronics area.

A detailed investigation of the WUC classification in terms of practi-
cal level of instrumentability and relative difficulty of fault isolation,
resulted in establishing table 13. The higher the practicality index, the
easier it is to carry out fault isolation.

Table 13 lists the eleven classifications. Column A is the estimated
fraction of the population which can be instrumented directly for fault
isolation and B is the fraction which can be deduced but not directly
instrumented (1 -low, 10 -high). The sum of these columns is the level

. to which each classification can be fault isolated through instrumentation
techniques.

Columm C is the relative difficulty of accomplishing the fawlt isolation
to a meaningful decision including considerations of sof'tware develorment
and general state of the art in supporting technology (1 ~hard, 10~=easy) «

Columm D is the normalized product of C with the sum of A and B

EA+B) @/EA+ B) (c:)]
Cma.x

Results of this analysis indicates that it is practical and desirable
to provide fault isolation instrumentation for components of EC/LSS subsystems
incorporating parts pertaining to: fluid mechanical dynamic (FMD), electro-
mechanical rotating (EMR), electromechanical non-rotating (EMN), electrical
(ELT), eléctrochemical (ELC) and electronic (ELN). For example, there will
be approximately 25 major components in a critical EC/LSS subsystem such as
the Heat Transport Loop. Applying the population density and practicality
index to the critical classifications would indicate a requirement for moni-
toring & majority of these components. This approach could apply and is
practical for the entire EC/LSS if the number of components and the practi-
cality of instrumentation warrants it.

Subsystems Criticality by Mission.- Since the need for fault isolation
is identified with the mission criticality factor, the next step is identi-
fying critical subsystems of the EC/LSS and evaluating their relationship
with the mission phases. A three dimensional matrix resulting from this
evaluation 1s presented in table 1%. Important assumptions employed in

the analysis are:
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g INSTRUMENTATION PRACTICALITY

TABLE 13

Practical Level of

Relative Difficulty

Practicality
Class Instrumentability of Fault Isolation Index
Direct ‘| Indirect
A B C D
FMS 1 5 2 0.148
FMD 7 1 8 0.790
MMS 1 2 3 0.111
MVD 3 L L 0.345
NMS 0 1 2 0.025
NMD o] 5 1 0.062
EMR 6 2 6 0.592
EMN 7 2 9 1.000%
ELT 6 2 7 0.691
ELC 8 1 6 0.667
ELN 8 1 5 0.556

¥ EMN is used as reference for normalization because it has the highest
normalized product.
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o Each subsystem was evaluated for the effect of a single component
failure in a single thread systenm

o The subsystem failure was evaluated for the direct effect on crew
safety, vehicle safety, et al; not on secondary effects which
could result from an uncorrected failure belng propagated into
another subsystem. '

o Those subsystem failures which are not critical to life/vehicle
at the time of occurrence, but on a succeeding mission segment
with the failure present is critical, are defined as mission
critical. The assumption is that the crew will not exedute
the critical segment but will make a safe abort, by rescue,
if necessary.

As noted on table 1k, water management does not become critical until
the orbit operation phase when drinking water must be provided for the T-day
mission. The heat transport loop subsystem involves vehicle safety since a
failure could jeopardize vehicle critical electronic equipment. Humidity
control is less sensitive since a high humidity level would prove uncomfort-
able, however, it could be tolerated. The radiator is an integral part of the
heat transport loop. The sublimator of the auxiliary heat sink subsystem is
required for overload peaks during orbit operation is considered non-critical.

EC/LS Subsystem Analysis.- The two subsystems identified as critical
by the criticality analysis and selected for examination (02/N2 supply and
pressure control and heat transport loop subsystems) feature outputs of
pressure and temperature respectively. Fault isolation involves establish-
ing conditions of valves, regulators, heat exchangers, temperature and
switches, etc. Since some of the equipment and supplies are Shuttle located,
such as Freon and water supplies for the thermal loop, it is necessary to
establish failure location (Shuttle or within the EC/LSS) . The heat transport
loop subsystem is the most complex since the single subsystem (no redunda.ncy)
contains at least 75 major components. FPressure and temperature sensing
comprises the majority of the fault isolation instrumentation. Upstream a.nd/
or downstream pressure sensing at a few critical packaging points with suitable
logic information would pinpoint the operational malfunction of values as
well as fluid loops. Temperature sensors optimally placed and tied into an
appropriate display network would assist the initial effort. The high pressure
gas system by virtue of fail-safe operaticns and adequate instrumentation
would sense a rise or loss of pressure in the system.




Line Replaceable Units.- Fault isolation is being recommended to the
critical line replaceable unit (LRU) level since this approach is included
in the new generation carriers. Identification of the LRU's of the EC/LSS
is a direct outgrowth of the system. reusability analysis. Analysis of the
Shuttle EC/LSS block diagrams gives the first indication as to critical items
and to the practicality of removing and replacing elements. A listing of
LRU's has been compiled on table 15, relating the LRU's to the EC/LSS sub~
systems. This listing will furnish a design reference point to ensure that
the LRU's will comply with performance and design requirements orlented
around quick accessibility, remove and replace criteria, good maintenance
and reliability characteristics, and proven safety procedures and techniques.

Conceptual Fault Isolation Approach.- It has been estimated that module
removal and replacement without fault lsolation can result in a 50% incorrect
diagnosis, therefore, a major requirement exists to develop an integral fault
location detection technique that provides a high confidence in locating
faults down to the critical LRU and/or module package level.

As a result of the fault isolation analysis, the following preliminary
reqiirements have been established for a Fault Location Indicator Test
Equipment (FLITE) system:

o The EC/LSS is to be 100% independent of FLITE.

o All sensors are to have the most basic output = go, no-go.

o FLITE is to be versatile - 1t can be used on any EC/LSS in the
Shuttle by simply comnecting it into any central connector panel.

o It should do something the technician cannot - in pinning down
the failed LRU.

o FLITE is to be compatible with the data management system.

o All FLITE indicators are to be extremely simple, go, no-go.

o FLITE is to recognize missing sensor connections and turned-off
LRU's so as not to confuse these conditions with fault identifi-
cations. ‘

o FLITE is to have no operating controls, only on/off switching.

o FLITE is to use digital logic for-ma.ximmn simplicity of design
and most reliable performance.

o FLITE is to use logic operations as a first level computer

technique in fault isolation (FLITE is a semi-computer --
does same decision making).
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TABLE 15
LRU'S FOR SPACE SHUTTLE EC/LSS

WASTE MANAGEMENT

Shutoff valves (2)
. Check valves (2)
Biocide dispenser
Biocide tank
Urinal
Isolation valve
Water separator
Bacteria filter
Charcoal filter
Dump valve
Dump nozzle
Vacuum vent valve
Isolation valve
Waste collection

FOOD MANAGEMENT

Oven and controls
Calrods (2)

Motor

Fan (2)

Light circuit
Control switch
Contact switch
Solenoid switch
Water heater
Timer

HUMIDITY CONTROL

Disposable filters
Relief valve

Debris trap

Fan (2)

Check valve (2)
Regulator

CO, absorber canister (3)
Check valves

Wick separator (3)
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TABLE 15.-Continued.

HEAT TRANSFER LOOP

Heat exchanger
Cabin blowers (2)
Check valves (2)

" Temperature control valve (2)
Cabin temperature sensor (2)
Cabin temperature anticipator
Cabin temperature controller
Cabin temperature selector
Cabin temperature signal amplifier
Freon bypass valve (2)

Hydrogen heat exchanger
Hydrogen flow control valve (2)
Hydrogen shut-off valve (2)
Freon temperature controller (2)
Override switch (2)

Temperature sensor (4)

Heat exchanger

Pump (2)

Check valves (2)

Filter

Accumulator

Accumulator isolation valve
Sublimator

Temperature ‘sensors (2)

Fuel cell heat exchanger

Pump outlet pressure transducer
Accumulator quantity transducer
Water valve flow controller
Water shut-off valve

Radiator control valve

Radiator isolation valve (2)
Proportionate valve
Proportionate controller
Temperature sensors (2)

Check valve

Heat exchanger - Radiator
Water bypass valve - Radiator
Water chiller - Radiator
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TABLE 15;- Coheluded

AUXILIARY HEAT SINKS

Pumps (2)

Check valve (2)

Accunmulator

Filter .

Accumulator isolation valve
Accumulator quantity transducer
Pump outlet pressure transducer
Fluid exchanger

Water temperature controller
Interchange bypass valve

02/N2 SUPPLY AND PRESSURE CONTROL

Gas tank (as required by mission)
Check valve (per assembly)
Main shut-off valve

WATER MANAGEMENT

Water tank

Waste water tank

Check valve (2)

Water shut-off valve (2)
Silver-ion generator
Water heater

Water chiller

Water dump nozzle
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The Fault Location Indicator Test Equipment (FLITE) design is a new
concept made possible by recent developments in Integrated circuits and
light emissive semiconductors. Although superficially similar to the Built
In Test Equipment (BITE) concept, FLITE is uniquely suited to fault isola-
tion in environmental control and life support as well as hydraulic/ pneumatic/
mechanical systems, while BITE was conceived for systems which were primarily
electronic in nature.

FLITE consists of two equipment groups, one group being a series of
individual go, no-go sensor/ signal conditioner modules integrally combined
with the Line Replaceable Units (LRU's) of the EC/LSS » the other group being
a flexible logic and display module (see fig. 27) located at a convenient
access or service point near the EC/LSS or carried out at maintenance depots
as a plug-in test instrument. It is intended that FLITE be used primarily
by maintenance technicians at permenent maintenance stations; however, the
continued availability of FLITE on board the operational. spacecraft may
be desirable in the event of emergency in-flight maintenance requirements.

The sensor/ signal conditioner modules located throughout the EC/LSS are
designed around approximately five simple sensing functions. It is presently
believed that it is desirable to monitor critical temperatures, pressures,
flow rates, motor functions and valve actions. Each sensor module requires
about one cubic inch of space. It screws into or onto the element being
monitored and a smal)l connector provides tie-in to a light cable leading to
the central connector panel near the logic and display module. There are
four main connectors, each connector receiving the lines from two of the
eight EC/LS subsystems. The sensors do not all send outputs directly to
the central connector panel. At some of the LRU's where there are several
sensors each, the outputs of the sensors go to a common AND gate which
does not produce an output until all of the inputs are in a no-go condition.
In no case does an LRU have more than one output cable as a result of this
logic design. Not all identified LRU's have sensors, as they do not have
functions which permit easy instrumentation, but may require some method
of indirect detection, such as a thermistor attached to a duct.

The logic and display module is placed near the central connector panel.
It is readily removable and may be left out of the spacecraft if so desired.
for any flight. As presently conceived, it will consist of four "pages" and
a power converter module. Each page is about 4" x 12" x 1" thick, and carries
the logic and light emitting diode (LED) displays for two of the eight EC/LS
subsystems. The total package of 4 pages and a power conditioner is 4" x 4"
x 16". Each page has a row of red, green, and amber LED groups down the left
side, each LED group labeled for the LRU which it represents. During normal
operation of the LRU, only the green LED is active. In the event that an
LRU goes into a significantly abnormal operating mode, the red LED comes
on and the green goes off. This indication will also exist in the event
that a sensor module connector has not been attached. In the event that
an LRU is taken out of service by removing power, the FLITE logic will dis-
Play this fact by activating the amber LED and extinguishing the red and
green.
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Since the pages of logic physically cover one ancther with only the
front page fully exposed, each page has been provided with two tabs which
project to the right. These tabs are in successively lower positions on
each page so that all tabs show from the front. Each tab carries red,
green and amber summation indicators for each EC/LS subsystem. A green
indication will be displayed only if all powered LRU's are operating nor-
mally, red if one or more LRU's are down. In the event that one or more
LRU's are taken out of service by removing power, the amber LED will come
on. In this case, the red or green indicator may also be on. Each logic
and display page has a single connector going to the central connector
Panel, and power to the page is interlocked through the connector so that
the page displays are all out when the connector is removed.

The logic and display module has a small power conditioning unit located
at its base. This power conditioner includes an indicator end an on-off
control. The FLITE system, with sensor modules, will be turned on .only at
those times when needed for fault isolation, thus keeping power consumption
to a minimm.

The logic and display module offers the possibility of a remote summation
indicator at the pilot's position, however, this is considered minimally
appropriate to the prime fumnction of FLITE which is fault location, not
status monitoring. .

" Consideration was given to the design of a totally redundant FLITE
system in which there would be two logic trees operating in identical and
parallel modes with a parity checking circuit at the output. Analysis
suggested that this was probably the introduction of a needless complica-
tion since the FLITE will be used almost entirely by technical maintenance
pPersonnel at such times as the spacecraft is either docked or on the ground.

The FLITE logic and display assembly includes a multi-pin connector
which provides a digital output for each IRU. This connector may be used
with a data management system or a flight recorder, if one is used aboard
the .spacecraft.

The use of a mini~computer for fault analysis was considered. Again,
the additional complexity caused by the inclusion of a computer which itself
becames a maintenance problem, is considered to be unnecessary, in view of
the significant fault isolation capability of the basic FLITE. The data
connector from FLITE leaves open the possibility that a mini-computer could.
be used at a later time.
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Summary
The survey of standard inspection and servicing practices of represen-
tative airlines resulted in establishing basic maintainability guidelines
for the EC/LSS. Major concepts, "designed-in" and "camned" are recommended.

Critical problems during postflight, refurbishment, and preflight
checkout were identified and are primarily concerned with testing require-
ments, cleaning-up criteria, and storage of flight units at the ground
facility.

The reliability analysis identified two potentially critical subsystems
(bumidity control and Heat transport léop) as far as MIF and probability of
replacement. The results of the analysis give a good indication as to where
the design emphasis must be placed.

The fault isolation analysis indicates that it is practical and desir-
able to provide fault location detection instrumentation for critical compo-
nents of the EC/LSS. Failure of the O /N2 Pressure and Control subsystem is
considered critical to crew safety, wh%le failure of the Heat Transport Loop
subsystem is considered critical to vehicle safety. Line replaceable units
(LRU's) of the EC/LSS were identified and listed to assist in determining
the best approach to implementing a design concept for fault isolation.

Preliminary requirements and a conceptual approach evolved from the
fault isolation analysis. The Fault Location Indicator Test Equipment
(FLITE) system offers a simple method of instrumenting LRU's and display-
ing faults with a light emitting diode (LED) as a basic display element.
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NEW TECHNOLOGY

As g result of this study, three areas of further investigation are
recomended. These are: (l). development of a fault isolation system for
the EC/LSS, (2) development of thermal insulating techniques (purge bags)
for cryogenic and non-cryogenic payloads, and (3) investigation of effects
on equipment resulting from quiescent storage and development of techniques
to compensate for any detrimental effects. .

Fault Isolation

It is recommended that a simple method of EC/LSS fault identifying
and locating be developed. The method should be designed primarily as an
aid for trained ground maintenance technicians, but onboard usage by
astronauts should not be precluded. The system suggested for this con-
cept is described under "System Reusability" in this report. The following
steps are suggested for the development of this concept:

o Prepare a labora.tory model of a representative EC/LS system
or subsystem which might be used on the Shuttle. Usage of
flight hardware in the model, however, would not be required.

o Instrument the model, at the component level, in accordance
with the system concept.

o Simulate component fallures and analyze accuracy of system
fault identifying and locating.

o Compare the advantages and disadvantages of this system against
a fully computerized technique.

Payload Thermal Insulation

To effectively isolate cryogenic and non-cryogenic payloads from the
compartment environment, it is recommended that insulation techniques as
described under "ShuttlejPayload Thermal Control" be initiated. This de-
velopment activity would examine two kinds of payloads: (1) those which
must be maintained above a minimum temperature level, and (2) those which
are cryogenic and must be protected from excessive heat leak and condensa-
tion or freezing. To develop this concept, the following steps are
suggested:
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Prepare small scale ]aboratéry models which represent the thermal

‘characteristics of the payloads in question and of the surrounding

payload compartment.

Fabricate insulation bags for the models for both cases. The none
cryogenic payloads will also have heaters inside the insulating bags.
The eryogenic insulating bags will include provisioning for helium

purge.
Subject the laboratory setup to the thermal conditions experienced

by the Shuttle during prelaunch, launch, ascent and reentry. Operations
will include nitrogen and helium purging as described in the report.

Measure characteristics of heat transfer between the payload and
surrounding environment.

Establish best method of insulating the payloads considering compo-
sition and fabrication of multilayer material and purge techniques.

Quiescent Storage

Since the Shuttle will rely principa]ly on the Space Station during

the docked mode and its onboard EC/LS system will either be inactive or
at a minimum operating level, further examination of the effects of this
kind of operation on the equipment is warranted. Of specific interest is
the effects of extended deactivation on components which are in a space
vacuum environment. The lag times associated with reactivating system
elements and their effects on operations are also essential considerations
for investigation. Corrective action needed to compensate for undesirable
effects should be considered for further development activity.
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APPENDIX A

MISSION AND PAYLOAD ANALYSIS

. The Mission/Vehicle Definition section presented a summary of one NASA
spaceflight program and indicated the requirements that manned missions
would impose on the Shuttle EC/_LSS. These data resulted from a detailed
operation -and mission analysis presented in this appendix that examined eight
NASA scientific categories which included eighty (80) payload configurations.
The mission objectives and characteristics (those having an effect on the
Shuttle EC/ISS) have been tabulated and are listed in table A-l. Interfaces
between the payload and the EC/LSS are summarized in table A-2. Sensor/
equipment, envirommental protection and Shuttle support requirements are
delineated. :

NASA Astronomy (NAS)

These flights place large and small free-flying observatories at alti-
tudes ranging from 230 nm to 1 astronaumical unit (A.U.). Man's role in
the low orbit satellites is placement, retrieval, servicing and maintenance.
One group of payloads will occupy the entire volume of the cargo module and
require the maximum payload weight capability of the Shuttle. Typical of
these are (1) Large Stellar Telescope, (2) Large Solar Observatory, (3) Large
Radio Observatory, and (4) High Energy Astronautical Observatory (HEAO). .-
The latter payload (HEAO) is unique in that it requires extensive calibra-
tion and alignment prior to operation. It is estimated that a 28 day
start-up period is required with subsequent revisits for the purpose of
refurbishing, pickup of films, etc.

It is envisioned that the above type of payloads will require initial
placement in orbit of the payload module, and initiation of start-up pro-
cedures. This could be accomplished minimally with a Shuttle crew of four
(pilot/co-pilot plus two technicians) or maximally with the Shuttle crew
of four plus two additional technicians carried in the cargo module. The
latter case would require placement of an EC/LSS module in the cargo module.
Additional logistics support for this class of payload 1s required. Carrying
out servicing could be accomplished either by EVA or IVA. The payload design
layouts indicate a fairly dense packaging with telescope, antennas, cameras,
etc., However, it appears feasible to design the interior of the payload
module in such a way that one or more technicians could enter and have ade-
quate working space. Making all the equipment accessible to EVA does not
appear practical except for film storage accessibility. A combination EVA/
IVA approach appears optimmm at this time.
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The procedure would consist of docking the cargo module to the free-
flying stabilized module with personnel entering the payload module through
the air-lock. Environmental Control and Life Support functions would be
carried out by the cargo module EC/LSS. Since the payload module normally
does not require environmental protection, it will be necessary to pressurize
the module and provide thermal control prior to the technicians entry.

NASA Space Physics (NSP)

These flights place large and small payload modules In orbit at low
circular altitudes, highly elliptical, synchronous, 1l A.U. and aboard the
Space Station. But of the twelve configurations studied, only one appears
to require a EC/LSS interface (High Energy Cosmic Ray Laboratory). The
rest either have orbits that are not practical for logistics support or
are placed aboard the station which supplies any EC/LSS requirement. The
High Energy Cosmic Ray Laboratory does particle counting and would normally
be unmanned. Logistic support is required for picking up and replacing
exposed plates, servicing cosmic ray counters and range energy detectors.
This observatory will occupy the entire volume of a payload module. The
same logistic support techniques envisioned for the Astronomy payload
modules would apply.

NASA Space Applications (NSA)

These flights place small to medium satellites into loer t0 synchronous
orbits. These satellites are unmanned except for one possible exception
and do not require manned servicing. Their lifetimes are normally 1 to 2
Years and will be replaced by later series satellites. The one exception
is the Earth Observatory Station, which will either be manned for short
duration missions (2 to 30 days) or will require manned servicing on a
routine basis. An alternative to this type of mission is installation of
an Earth Observation module in the Space Station which then could be main-
tained and serviced by Station personnel. If the observatory becomes a
free-flying module, then the same technique employed for other detached
modules will apply.

Non-NASA Operational (NNO)

These flights place small satellites .(less than 3,500 1b) into high or
synchronous orbits. Revisits with EC/LSS support might prove practical since
same of their lifetimes are as long as T years. Cameras, spectrometers and
radiometers are equipment that require logistic support. Because of the
small size of the satellites (6 ft. diameter spheres), it is feasible to
retrieve the satellites into the cargo module and have technicians refurbish
them. This would require cargo module EC/LSS support.
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NASA Bioscience (NBI)

These flights place bioscience modules either aboard the Space Station,
or on a high orbit, or in a low circular orbit. The,Space Station bioscience
module will be serviced by Station personnel and will be supplied by routine
logistic support. The other two classes of flights will be operated indepen-
dently and will not require EC/LSS support.

NASA Lunar Option 2 (NL2)

These flights are planned for lunar support. Transportation 6f personnel
and equipment between the Space Station and Lunar Station and from an orbiting
Lunar Station to the Lunar Base Station and back are typical missions. Science
cargos, consumables, and crew rotation will be supported. This program is
beyond the scope of the present study. The EC/LSS support required for this
type of mission will evolve from the Space Shuttle EC/LSS. Consumables
requirements for lunar crewmen will be approximately 3 men, 180-days which
ca.]/.ls for a considerable advancement over the presently contemplated Shuttle
EC/LSS. '

NASA Support (NSU)
" The Space Station support flights places the largest demand on the
Shuttle EC/LSS. They provide logistics support to the Space Station. A

total of 44 flights are required over the ten year period. These flights
transport 6 to 10 passengers in the cargo module for crew replacement.

The Shuttle will dock the cargo module to the Station. Egress from
the -‘Shuttle will take place through an air-lock. The majority of EC/LSS
support during the five (5) day transfer period will be provided by the
Station. '

Other NSU flights will require minimal Shuttle EC/LSS support. For
example, propellant flights for Tug Support is a sortie mission with the
Shuttle crew monitoring an automatic transfer of the propellant either
into a Propellant Facility or into the Tugs.

NASA Planetary (NPL)

These flights are designed to furnish planetary data. They will.be
unmanned and will be lawnched either from a low earth orbit or from the
Space Station. The major function of the Shuttle will be placement of both
small and large payload modules into the proper orbit. Automatic devices
will be provided that extend and separate the payload module from the
Shuttle. Independent propulsion systems will be activated to place the
satellite on the planetary transfer maneuver.
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APPENDIX B

SYSTEM EFFECTIVENESS PROGRAM (SYEFF) . COMPUTER PRINTOUT

A copy of a typical compubter printout is shown in table B-1 to illustrate
the optimizing process used in SYEFF. The example selected represents the
100 mission analysis performed for the humidity control subsystem. Similar
analysis and computer printout data was developed for each subsystem and for
the total EC/LSS. The computer data contained in the table is consistent

“with the single thread reliability block diagram (fig. 24) and has been
provided as a plot output in texrms of Reliability versus Time and Reliabllity
versus Weight on figures 25 and 26 respectively.

The first column'on table B-1l is entitled STATE and represents the
number of state by state decision calculations made on this run. There
were 28 state decisions made as illustrated on the table.

The second column is entitled CODE and is used to identifyy an acceptable
(2) or an unacceptable (4) decision. After a L code is listed, the computer
selects an item with the next highest increase in reliability which will not
go over the weight limitation. If the item selected meets the constraints,
then a code 2 is listed. As noted on the table, the 27th state decision
resulted in 160.0 1b (the preselected limit) while the 28th state decision
resulted in exceeding the weight limit. The search ended since the maximum
weight was exceeded and computer time allowance was used up.

The third column, KAPPA, is an assigned item number. In this example,
there were Wl critical items. As noted on the table under state 1, decision
Kappa 2 (relief valve as called out on figure 24) is added to the subsystem
as a redundant item. For identification and weight of all the Kappas listed
on table B-l, refer to figure 2h.

Colurn 4 lists the initial weight (1b) of the humidity control sub-
system (142.4 1b) and the subsequent weight increase as redimdant items
are added. Note that the end term following the weight indicates the unit
places in the weight column. ‘

The mean or average life as shown in colum 5 1is based on the failure
rate of the subsystem umder investigation. The failure rate is taking into
account the added redundant items.

The reliability numeric shown in column 6 is based on the design life,
which is the specified mission time in this case, 100 missions or 16,800
. hours.
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The mean life of the subsystem will always be lower than the design
life, since the reliability is never one, but the mean life approaches
the specified mission time as redundancy is added and the reliability
approaches one. At the reliability of 1.0, the mean life would be equal
to the design life. A reliability of less than one, for instance R = .995
at 16,800 hours, means that given 1000 items, 5 of them would fail before
the required time period of 16,800 hours is completed. Therefore, the mean
or average life of lOOO items ha.s to be less ‘than the 16,800 hours.

For the subsystem selected, table B—l shows that a total of 28 state
by state decisions were executed. At state 27, the maximm allowable weight
(160 1b) was reached by adding Kappa -3 (debris trap). MIF calculated was
14,371 hours which is substantially below the design life of 16,800 hours
(100 missions). The resultant subsystem reliability is listed as 0.720454,
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ABSTRACT

This report identifies and examines significant problems associated with
the Space Shuttle environmentel: control and life support system (EC/LSS) . Four
problem areas were investigated: (1) Cargo Module EC/LSS Definition, (2) Space
Shuttle/Space Station Interfaces, (3) Shuttle/Payload Thermal Control, and
(4) System Reusability. Mission guidelines were established for 420 flights
over a 12 year period. Ninety-three (93) of these flights requires a cargo
module EC/LSS for passenger complements which vary from two to ten. The
interacting Shuttle/Station EC/LSS responsibilities for docked and autonomous
operating modes were established. The feasibility of providing thermsl pro-
tection to payloads during launch and reentry by using a purge bag was Investi-
gated. A relisbility and mission criticality analysis was performed to
determine critical subsystem elements for crew/vehicle safety. Fault detec-
tion instrumentation was assigned on the basis of element practicality and

safety. Turnaround operational procedures and maintainability guldelines
were defined.
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