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The Study of Aircraft in Intraurban Transportation Systems was
conducted under NASA Ames Research Center Contract NAS2-5989- This final
report, consisting of four volumes, is submitted in compliance with the re-
quirements of Article IV, Paragraph B-5.0 and presents all of the work
accomplished by the Lockheed-California Company during the two-phase study
program. This program was initiated in June 1970 and completed in May 1971.

This report is prepared within the framework of the Preliminary
Final Report Outline submitted to NASA by Lockheed's letter LAC/01695,dated
26 June 1970, with minor revisions. The report contains an organized and
edited version of the work reported in the previously submitted nine Monthly
Progress Reports (LR 23820-1 through LR 23820-9) and the formal Phase I Oral
Presentation held on 3 December 1970 at the NASA Ames Research Center facility.

This final report is subdivided into four volumes for ease in
handling by the reader. Phase I - Aircraft Concepts Selection is contained in
Volumes 1 and 2 (CR 11̂ 3̂ 0 and CR 11̂ 3̂ 1). Phase II - Aircraft Concepts
Evaluation is presented in Volume 3 (CR 11̂ 3̂ 2). All backup data leading to
the summarized conclusions within the main body of the report are to be found
in Volume U (CR llUŝ S) Appendix. Each figure and table in Volume k is
identified by the number of the section in the main body of the report that
utilizes the basic data. The summary and introduction are presented in Volume
1 and the reference list is shown in Volume 3-
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2.0 PHASE II - AIRCRAFT CONCEPTS EVALUATION

2.1 ANALYSIS

2.1.1 AIRCRAFT DESIGN

The objectives of the aircraft design elements of Phase II were

to define each concept in sufficient detail to:

1) Provide appreciation for the aircraft design-development

problems associated with this new mass-transportation vehicle

concept

2) Examine the primary effects on vehicle configuration of

varying payload and runway lengths for a representative

intraurban transport operation, for use in system route/schedule

cost analyses.

The aircraft configuration concepts evaluated in Phase I for their

adaptability to the intraurban scenario are listed below. Two initial operating

capability (IOC) time periods were considered: 1975 and 1985. Contract re-

quirements called for the selection of one VTOL and one STOL concept. For more

detailed analysis in Phase II. The concepts evaluated in Phase I are listed

below.

CONCEPT POWER IOC

1) Tilt Wing VTOL Propeller 1975, 1985

2) Compound Helicopter VTOL Turbofan/Rotor 1975, 1985

3) Deflected Slipstream STOL Propeller 1975, 1985

U) - Augmentor Wing STOL Turbofan 1985

5) Autogyro STOL Turbofan/Rotor 1985

6) Conventional CTOL Propeller 1975

7) Conventional CTOL Turbofan 1985

Concepts 2), 3) and 5) were chosen for the Phase II analysis. The

autogyro STOL concept is not a contractual item, but is being studied con-

currently as a Lockheed-funded effort.

LOCKHEED 321
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Each concept was "sized" for at least three payloads (number of

passengers) around a single mission. The autogyro was configured aerody-

namically and propulsionwise for an FAR field length of 1000 feet since analysis

showed that much deviation from this value demanded large increases -in gross

weight or power. The deflected slipstream STOL concept was configured for

three FAR field lengths by varying the power around a fixed aerodynamic con-

figuration. Evaluation of the effects of pay load and FAR field length has been

extended to include total system cost estimates.

2.1.1.1 Design Requirements and Guidelines

Design requirements and guidelines evolved from the Phase I study

for intraurban transport type aircraft were employed in configuring and analyz-

ing the Phase II concepts. These guidelines are as follows:

e Pay load - Primary study variable within the following ranges:

Passengers

Compound Helicopter VIOL 0̂-80

Autogyro STOL UO-100

Deflected Slipstream STOL 20-100

e Airport Performance - Primary study variable within the following

ranges:

Field Length (ft)

Compound Helicopter ' VTOL

Autogyro STOL 1000

Deflected Slipstream STOL 1500-2500

• Design Cruise Speed

Rotary Wing 200 ktas @ 2000 ft

Deflected Slipstream STOL 250 ktas @ 2000 ft

• Design Endurance (fuel required basis) - Eight 22-mile flights

(stages) with engines operating continuously under allowance

pattern of Table 2.1-1

• Community Noise Limits - The following upper limits on community

noise caused by intraurban aircraft operations are considered

necessary for public acceptance of the system.

LOCKHEED 322



CR

cot— i
eg
§
pj

EH

H S3
1 H

H J

cOE

(Vi H
a <

§8

co
•H

CO
JS

4'r~t

0)I
'J3

rH
o;
p.

tjc

0)
u
cd
<b
rH
r-l

i
H

0>
0) -P
-p a)
Cd rt

H <M

H 0)
cu 3
" <M

rl
rt V

1*

tJ 0)
(U -P
-J cd
«J rt

t-."§N

.p

-p cd
cd

co
CU 01

C C

IA O
• •

0 H

l i

e
n
g
in

e
s

rH
H
cd

•N

4)

-P
•H
-P
rH
cd
-p
CU

«H

IA

O
V

M

3
-p
u

1

&
M

O

-pw
0)
,0

.f.)
cd

OJ
0)

VH

o
8
C\J

o
p

in
m
rt

O

V(

?
u

s
1

0)
•Cl

-p
•H
•p
H

£

O
o
o
OJ

p
0)

p.
£
8
Cd

1

cu
V
p
•p
•rt

£
O

8
CM

t?cfl

1
S
O
IA
CVJ

1

r̂ )

g

rH
rH
cd

an
ce

-p
CO

•H
r^j

0

<L>s
•H
P

H
CU

s
t

0)
•pd

t3*

^^M
rH
0)

PM
Os

•teS.
O
<r\
-p
cd
(U
4^

C

's

o
1

1
•H
rH
CM

H
D
J>

H

I-
O

0̂1

Pt

-P
cd
(U

c
•H
•B

O

H

1

01 CU

rt (H

O O
p-J H

H H
U 4)

t^ (L î
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LIMIT PNDB
1975 IOC 1985 IOC

Residential - suburban 85 ?8

- metropolitan 80 73

Suburban park land and research centers . 95 88

Metropolitan - high ambient noise, industrial 95 88

Metropolitan - commercial, industrial 90 83

V/STOL commute rport parking, administration 100 93

service buildings

V/STOL commuterport load unload area 110 103

The basis for these values is discussed in Section 2.1.1.9.

• Ride Qualities - It is not considered practical to establish

quantitative requirements for ride qualities. However, this

item is equally as important as community noise in its effect

on public acceptance of the system. Factors involved include

passenger normal and lateral acceleration and attitude excur-

sions. Gust relieving devices should therefore be included

in the configuration development. .

• Interior Noise - Voice communications are limited by the

amplitude and spectral distribution of the ambient noise and

the amplitude and frequency characteristics of the communi-

cation. To allow raised-voice communications at two feet and

normal-voice communications at one foot, the cabin cruise

levels should not exceed 70=73 cLB PSIL. The quantity PSIL is equal

to the arithmetic average of the octave band sound pressure

levels in the 500 Hz, 1 K Hz and 2 K Hz octave bands, and it

is referred to as the preferred frequency speech interference

Level (SIL).

"A"-weighted sound pressure level of approximately 85

will be necessary to gain carrier and passenger acceptance of

the cabin noise during cruise. The "A"-weighted sound pressure
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level (dB A) has been shown to be an approximate weighted

summation of the octave band sound pressure levels wherein

each band is roughly weighted according to its relative

annoyance.

Communication, Navigation, Air Traffic Control - Adequate for

FAR category 3b operation for 1975 IOC and 3c for 1985 IOC.

Performance, Handling Qualities, and Structural Design Basis-

1975* 85 Compound Helicopter VTOL - Per applicable sections

of both FAR 29 and August 1970 issue of FAR, "Tentative Air-

worthiness Standards for Powered Lift Transport Category

Aircraft."

1985 Autogyro STOL - Per applicable'sections of both FAR 29-

and August 1970 issue of FAR, "Tentative Airworthiness Standards

for Powered Lift Transport Category Aircraft."

1975> 85 Deflected Slipstream STOL - Per applicable sections

of both FAR 25, 29, and August 1970 issue of FAR. "Tentative

Airworthiness Standards for Powered Lift Transport Category

Aircraft."

Rotor controls and drive system to be designed for infinite life

and "fail safe" capability of approximately 300 hours between

periodic inspections.
Q

Single runway operation in 30 kt 90 crossvind and 30 kt wind

from the stern.

Handling qualities of STOL configurations in general accordance

with the criteria of NASA TN D-559^, "Air-worthiness Considerations

for STOL Aircraft."

Flight Station Visibility - Flight station visibility to conform

to requirements of SAE AS 530A, "Pilot Visibility from the Flight

Deck - Design Objectives for Commercial Transport Aircraft."

Also, view angle forward and down in STCL's sufficient to allow

pilot to see a length of approach lights (three minimum) and/or
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touchdown zone lights that will provide definite visual reference

as to alignment and height with respect to the runway when the

aircraft is on a 7 1/2 glide slope and, in addition, for the

compound helicopter and autogyro, 15 below the-horizontal in

the forward quadrant on landing approach.

Airframe Design -

Passenger Accommodations - Fuselage interior arrangement of

Phase I analysis retained. Interior geometry and variation

with payload held constant for all concepts and as shown by

Figure 2.1-1 for the deflected slipstream STOL concept and

Table 2.1-2.

It is noted that the double aisle interior was

found necessary in Phase I to provide a maximum allowed

turnaround time of five minutes (considered necessary as a

cost reducing measure). Also, contributing to short turn-

around time is the four door load/unload concept illustrated

by Figure 2.1-2 which permits simultaneous load/unload

operations.

Crew Accommodations - Two-man crew: pilot and co-pilot with

jump seat between and one other seat on flight deck for

inspectors, etc.

Cargo Alternate - Provide capability for all-cargo alternate,

via quick removal of passenger interior

Fixed Landing Gear

Ram Air Pressurization

No on-board APU

General arrangement to include means to permit quick off-

load/on-load without stopping engines
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Built-in stairs

Passenger axial acceleration limits for performance analysis

Takeoff acceleration - 0.5g

Takeoff, landing deceleration - 0.35g

All fuel in wing outboard of fuselage half -"breadth

Quick release passenger seat and shoulder constraints

• Structures - Detail consideration of structural design of the

several concepts was "beyond the scope of the- present study.

Reference is made to the discussion presented in Volume 1,

Section I.I.2.V.

• Maintainability and Reliability - No limitations were employed,

since treatment of this element of the total design problem is

beyond scope of present study. This element does, however, have

a large effect on total costs and thus warrants further analysis

(see Section 2.1.3.3).

• Propulsion - Capability to leave engines running with propellers

and/ or rotors stopped during unload-load operations . This will

increase safety and extend engine life by reducing the adverse

effects of frequent engine stop-start cycles (thermal shock).

2.1.1.2 Technology Application

Primary technology applications employed in Phase II to define the

Phase II configurations, are discussed below.

2.1.1*2*1 Aero -Propulsion

No significant advances in 1985 aerodynamics technology have been

employed in this analysis. Improved lift and drag performance will likely be

through more sophisticated mechanical systems, probably not appropriate to a

simple, rugged, intraurban transport type.

Propulsion advances forecast for 1985 IOC technology show a five

percent reduction in engine specific fuel consumption and a 20 percent re-

duction in engine weight. These were employed in the analysis. The rotor
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tip nozzle drive system used on the 1985 compound helicopter (see 2.1.1.3) will

be firm state-of-the-art by then, and this is the most significant factor in

the large weight reduction of the 1985 vs. 1975 configurations.

Rotary wing propulsion systems were treated in more depth in Phase II

employing information contained in Reference 2.1-5 through 2.1-21, Working

data included Figures 2.1-1 through 2.1-12 of the Appendix, Volume U.

2.1.1.2.2 Structures, Materials

The forecasted structures and materials "benefits due to application

of 1985 technology were applied consistently to all concepts and to approximately

the same degree as in Phase I. The corresponding weight reductions shown

(sec. 2.1.1.6) are considered to be a reasonable compromise between a minimum

weight maximum cost design and a minimum cost maximum weight approach. The

propulsion concept employed on the 1985 compound helicopter is an exception

and, as shown, gives a large step-function weight reduction.

2.1.1.2.3 Aircraft Systems

No effort was made to evaluate the benefits of aircraft systems

technology developments. These were considered second order in this study.

2.1.1.2.k Acoustics Technology

Forecasts of acoustics technology developments through 1985 were not

considered sufficiently reliable or through to evaluate specifically in Phase II,

(See also Section 2.1.1.9).
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2.1.1.3 Compound Helicopter VTOL Configuration

The compound helicopter is a hybrid configuration capable of being

operated as either a helicopter or a STOL airplane. It is normally operated

in a manner that takes advantage of the best characteristics of each of these

machines, making the takeoff and landing as a helicopter and the remainder of

the flight as an airplane. The concept provides a good balance between the

requirements for a high lift capability for takeoff and landing, and low

cruise fuel consumption.

These two objectives require some measure of preference for the selection

of the design parameters, since the optimum system is usually composed of

suboptimum parts. The measure of preference used for this design study was

minimum gross aircraft weight while meeting the criteria established.

The design for the 1975 compound helicopter uses the present state of

the art. The 1985 compound helicopter uses advanced state of the art, partic-

ularly in the rotor drive system, where rotor torque is supplied by a tip

nozzle drive system since test experience indicates the possibility of an

acceptable noise/weight/fuel consumption tradeoff by 1985.

Both the 1975 and 1985 compound helicopter are designed for an "in-

ground-effect" VTOL takeoff, requiring a 500 to 600 foot field length. Pure

VTOL operation would require about 23% increase in power to accommodate an

engine failure from hover and a subsequent climbout, maintaining at least

35 ft altitude. This capability was considered unnecessarily severe for the

intraurban operation.

2.1.1.3.1 General Arrangement

The 1975 and 1985 general arrangement drawings are shown in Figure 2.1-3

and 2.1-U. Both use a single main rotor for low speed lift and control. They

have a fan-in-fin arrangement to provide the antitorque moment required by the

main rotor and all directional control. Small fixed wing surfaces provide ap-

proximately 90$ of the required lift in cruise flight. All fuel is contained

in the wing outboard of the wing joints. The turbofan engines provide the

power needed for both vertical lift and horizontal thrust.

LOCKHEED 332



CR 11U3U2

01
-p

o
•H

o
o

ts1

•d
!H
01
C
<U

ITN

H

on
H

OJ

0)

LOCKHEED 333



CR

0)-p

o

oI
o
ITS

H

C

g
03

O

1

IA
CO

0

cd

I

• <si

^

» 5

L O C K H E E D

2 2

£ £ £ C £
R i S3 3 3

o

8

5 By^: -5

Ml
illsS2it5

33^

&

0)



CR

Major items in selecting the configuration general arrangement are wing

and engine locations. Factors considered in making these selections include

the following:

• Protection of passengers on emergency landing

• External noise environment

• Passenger comfort - vibration

• Internal noise environment

• Servicing accessibility

• Maintenance accessibility

• Hovering performance and aircraft size

• Aircraft drag

Reconsideration of the Phase I high wing, engine-under-wing configurations

led to a change to the low wing, engine-over-wing configurations shown. This

new arrangement has the following advantages:

• Under-floor gearbox reduces passenger hazard in crash landing

• Under-floor gearbox provides separated work area for inspection and
service

• Under-floor gearbox simplifies gearbox noise insulation

• Ground-land fuel and oil service keeps fuel lines away from passengers

• Rotor blade passage produces less severe pressure pulses on wing

• Transmission of wing and main gearbox loads to landing gear requires
less structural weight

2.1.1.3.2 Interior Arrangement

The interior arrangement of the helicopters is as described in Section

2.1.1.1 except for a minor seating rearrangement to accommodate the rotor

shaft, which passes directly through the passenger compartment from the under-

floor gearbox. The existence of the large concentrated rotor-hub mass directly

above the middle of the passenger compartment will require added structural

support for the case of a hard emergency landing. A review of
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the applicable and proposed FARs shows the requirement for supporting U.5 g

vertically for this condition-. It has been the practice of the rotary wing

industry to provide structure to support items of equipment mounted above

the passengers through any survivable landing. The criterion that this sug-

gests becomes 20 g. To support this load directly, a vertical support column

has been installed in the passenger compartment as shown. This required a

slight rearrangement of the seating.

The seating arrangements are in general accordance with the guidelines of

Sec. 2.1.1.1.

2.1.1.3.3 Aerodynamic Arrangement

The aerodynamic design involves selection of rotor and wing design para-

meters in an optimal fashion. The primary function of the rotor is to produce

all lift in hover, with the load being gradually shifted to the wing (to about

90/9) as speed is increased. Selection of the lift sharing at high speed is

dependent on the capability of the rotor to provide lift without excessive

vibration and loads. A review of existing data has provided the basis for

determining this lift as shown in Figure 2.1-5. This figure provides a boundary

of maximum blade loading (Ĉ /a )*with advance ratio (M-). The CT/O- is a

nondimentional representation of the rotor blade mean lift coefficient and M

is the forward speed divided by blade tip speed. The rotor load is limited to

provide a margin for cyclic control to maneuver the aircraft. The wing is

designed to carry the excess. Benefits in cruise flight can be realized by

slowing the rotor to reduce the profile power required to maintain rotor speed,

but this must be traded against wing-induced power increases due to a higher

wing span loading.

Cm = /„ N2 _2 where: T = Rotor thrust (Ib)
T p(R0) tfR

P = Air density

T = — R = Rotor radius (ft)

= Rotation speed rad/sec

V b = Number of blades

C = Blade chord (ft)

V = Airspeed, ft/sec
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Figure 2.1-5 Blade Loading vs Advance Ratio
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The principal design parameter for the rotor is disk loading. Choice

of disk loading to use on a rotorcraft is analogous to the choice of span

loading on a wing. Higher disk loading, while improving the rotor weight

fraction, degrades the rotor efficiency in hovering flight due to an

increase in induced power and an increase in the download it causes on

the fuselage and wing. The wing must then be limited in span, which in turn,

causes the wing-induced power in cruise flight to increase. The tradeoff made

in this study shows a near optimum disk loading to be 12.5 psf.

Generalized rotor design constraints employed in consideration of the

external noise problem are:

Blade Solidity = 0.115 to 0.118

Blade loading = 75 psf (normal TOGW)

= 90 psf (maximum TOGW)

Tip Speed = 625 ft/sec maximum

These are "judgement" values chosen to permit configuration definition. A

great deal of additional study and analysis would be needed to throughly de-

fine an optimum combination of rotor geometry, engine size, etc, for the

intraurban transport. Further treatment of the noise problem is presented in

Section 2.1.1.9-

The number of rotor blades and blade chord are interdependent. A five-

bladed rotor is used on the 1975 concept for reduced weight. A three-bladed

rotor is used on the 1985 concept to improve the propulsive efficiency of the

rotor tip nozzle drive system. Airfoil sections employed are the NACA 0012,

tapered to NACA 0006 over the outboard 20$ of the span.

The wing was sized to provide the necessary fuel capacity outboard of the

fuselage. The resulting wing loading is approximately 100 psf. A wing span

of 60% of the rotor diameter is used.
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2.1.1.2.4 Propulsion

The propulsion system for a compound helicopter provides the torque

to drive the rotor system which gives the low-speed lift and control, and the

thrust for forward flight. Turbofan engines were selected as the basic

propulsion units.

The 1975 aircraft uses mechanical shafting to couple the rotor

system to the engines. One-way clutches are provided at the engines to disen-

gage a failed engine from the drive train. Figure 2.1-6 shows this arrange-

ment. The "fan-in-fin" is also mechanically driven.

The 1975 propulsion system employs existing state-of-the-art with

low development risk. The engine selected has a 7«5 bypass ratio fan with

variable pitch fan blades (similar to those being developed by Dowty-Rotal in

England). This variable-pitch fan is driven at constant speed with the rotor

drive train. The fan shroud is treated for sound absorption, and when operated

in flat pitch for helicopter takeoffs it has a low noise level. The rotor

drive output shaft is connected through a free-wheeling clutch to shafting

routed through the wing leading edge to the main gear box. This gear box is

insulated from the aircraft through elastomer mounts, and its compartment is

insulated with sound proofing materials. The main rotor is driven by a shaft

routed through the vertical structure column and the fan-in-fin is driven by

shafting routed through the lower fuselage.

Pratt and Whitney STF/S351 convertible engines are employed (study

engine) with power, thrust, and fuel flow characteristics as shown in the

Appendix. These engine data were scaled to meet the power requirements of the

various sized aircraft. The combined effective static (power + thrust)/engine

weight is 9.1. Corresponding static shaft horsepower and thrust specific fuel

consumption values are O.kk and 0.38, respectively. A five minute takeoff

power rating of 26 percent above the continuous rating was assumed.

The 1985 propulsion concept also employs a convertible high bypass

turbofan engine. The gas generated can be used either to drive the thrust fan

through a power turbine in the conventional manner, or it can be diverted to

drive the rotor via sonic nozzles located at the rotor blade tips. Gas is

LOCKHEED "9
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supplied to the nozzles through the ducting, system shown in Figure 2.1-7. A

diverter valve system is employed to divide the flow between the rotor and

the fan power turbine. During hover and low speed flight most of the gas is

used to drive the rotor. During cruise the rotor is unloaded and slowed to

HO percent design RPM and the gas is used to power the thrust fan. The

ducting system is insulated to minimize temperature drop.

The characteristics of this system provide a propulsive efficiency

of 0.1*7 for the rotor drive. The propulsive efficiency for the thrust mode is

shown as a function of nozzle pressure ratio, gas temperature, and tip speed

in the Appendix. An engine thrust to weight ratio is 9-1- The static thrust

specific fuel consumption, TSFC is 0.33 pounds per hour per pound of thrust.

The resulting cruise TSFC is approximately 0.̂ 5.

The propulsion arrangement includes a clutching/braking system

(or in the case of gas propulsion, a valving/braking system) for ground

operation which permits the rotors to be decoupled and stopped for load/unload

operations while the engines remain idling.

The 1985 propulsion system provides essentially torqueless rotor

lift. The fan-in-fin is thus smaller than for the 1975 geared configuration.

It is driven by an air turbine motor supplied by engine compressor bleed.
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2.1.1.U Autogyro STOL Configuration

The autogyro STOL configuration was included in the study to provide an

intermediate field length STOL (1000 ft). In the search for a vehicle to oper-

ate in this distance, while meeting the safety requirements for engine failure

on takeoff and landing, the autogyro concept of the 1930's was considered.

Investigation showed this STOL concept to have been dropped after the success-

ful achievement of VTOL helicopter flight. As technology has developed and

national priorities have changed, it has become evident that this older concept

should be investigated to determine its potential as an intraurban transport.

Modern helicopter technology has been applied to this original STOL concept to

provide a simpler, more efficient rotorcraft with both very short takeoff

and landing distances and a high cruising speed.

The autogyro is outwardly the same as the compound helicopter. The rotor

drive system is, however, much lighter and simpler since its only function is

to transmit sufficient power from the engines prior to takeoff to spin up the

rotor. In flight rotor speed is maintained by operation in the windmilling

mode. The takeoff maneuver is accomplished by powering the rotor to an over-

speed, then accelerating on the ground to a forward speed sufficient for the

rotor to windmill. Collective pitch is applied to use the excess rotor kinetic

energy for liftoff. All lift at low speed is derived from the windmilling

rotor; at high speed, lift is shared between the wing and rotor. The final

approach and landing are made at near zero speed, with the rotor rotational

energy expended in deriving low airspeed lift.

The configuration is refined over that reported in the Phase I Interim

Report. A study of the power required for takeoff acceleration, climb, and

200-knot cruise was conducted to determine the sensitivity of performance to

the rotor disk loading. A study was also conducted to determine the sensitivity

of the aircraft weight t.o the power and disk-loading. Minimum gross weight

was used as the measure of preference in the selection of these design para-

meters, (it is noted here that a more detailed aerodynamic analysis of rotor

performance at takeoff speed is needed for selection of power and disk loading).
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2.1.1.̂ .1 General Arrangement

The autogyro STOL general arrangement is shown in Figure 2.1-4.

The single main rotor provides all lift at low speed and all pitch, roll, and

direct lift control. The fixed wing surface provides approximately 90$ of the

lift during high speed cruise flight. The fan-in-fin provides all directional

control for balancing asymmetric thrust and normal aircraft control over the

broad range of operating speeds. Turbofan engines provide the forward thrust

and the extracted power for rotor speed management. The location of the wing

and engines is consistent with that chosen for the compound helicopters, i.e.,

a low wing with the engines mounted above it on short pylons. The fuselage

and empennage are the same as for the compound helicopter.

2.1.1.U.2 Interior Arrangement

The interior arrangement of the autogyro is the same as that of the

compound helicopter.

2.1.1.̂ .3 Aerodynamics

The aerodynamic design of the autogyro STOL requires the determina-

tion of the low speed drag of an autorotating rotor. Existing data, based on

very low disk loaded machines of the 1930s, describe lower tip speed and lower

airspeed machines than those of interest in this study. A brief study to

optimize the disk loading, using unsophisticated extrapolated data, indicates

the choice of a 10-psf disk loading. At the 65 knot takeoff speed used, the

thrust/weight ratio was less than 0.5. Lower disk loading would reduce this

ratio and might be even more cost effective although somewhat heavier. (It is

noted here that an automated program for use in determining the rotor drag at

low airspeeds is available at Lockheed, but lack of time and resources pre-

vented its use). Additional study is needed for a thorough determination of

the rotor inflow and associated elemental blade aerodynamic lift and drag to

provide a higher confidence in takeoff thrust and provide and optimum disk

loading. In lieu of this, a conservative calculation of low speed performance

was made.

Lift sharing in high-speed forward flight is selected in the same

manner that it is for the compound helicopter. Figure 2.1-5 is used to
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determine the allowable rotor Ĉ /cr versus W. Sufficient margin is allocated

for the cyclic control needed to maneuver, then the wing is sized to provide

the remainder. Slowing of the rotor in cruise flight reduces the rotor drag,

but it also increases the C /Q" and the H, which reduces the allowable rotor

lift.

The wing span used on the autogyro is not constrained by the hovering

download, as it is on the compound helicopter, but it does complicate the flow

field of the rotor. This interaction of the wing and rotor needs further in-

vestigation*. For simplicity, the same wing span as employed on the 1985 com-

pound helicopter is used. The rotor blade loading, tip speed and airfoil data

used are the same as that of the compound helicopter.

2.1.1.U.U Propulsion

' The propulsion system used for the autogyro STOL is comparatively

simple. The turbofan engines have a high air bleed capability for use with air

turbine motors that spin up the rotor prior to takeoff. The takeoff speed,

and consequently the installed power, could be appreciably reduced by continuing

the rotor drive throughout takeoff, but time did not permit examining this

factor. Additional study would show the optimal mix of rotor system drive and

forward propulsion.

The concept employed is shown in Figure 2.1-18. It has a 7-5 bypass

ratio fan with compressor bleed air used for the rotor spinup motors and the

fan-in-fin used for directional control. In forward flight, the main rotor

drive is used only for rpm control. No reverse thrust is needed for the short

field landings, since the uunpowered main rotor acts as a drag chute to provide

aerodynamic braking.

Since the rotor is powered only during rotor spinup prior to flight,

its power requirements are very small (roughly 650 shp for the 60 passenger

configuration compared with the 5000 shp for the compound). The augmentor-wing

turbofan engine concept discussed in the Phase I Report is also a possible

prototype of the engine for this vehicle. The bleed from each engine is

ducted to four _

* The aforementioned Lockheed computer program also has this capability
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individual air turbine drives coupled to the main rotor. Past Lockheed work

on this drive scheme led to the choice of four individual drives rather than

the use of a single remote turbine.

The rotor systems include a decoupling/braking arrangement to permit

the rotor to be stopped quickly for load/unload operations while the engines

remain idling. This will relieve, the adverse thermal shock effects on main-

tenance of having a shutdown-startup cycle at every stop.

2.1.1.5 Deflected Slipstream STOL Configuration

The deflected slipstream STOL Configuration arrangement defined below

is considered representative of both the 1975 and 1985 time periods. The bene-

fits of technology are manifested in this concept only in reduced structural

and propulsion system weights and improved engine performance.

2.1.1.5.1 General Arrangement

The general arrangement is illustrated by Figure 2.1-9. It has

four advanced turboprop engines and is generally similar to the French Brequet

9^1 STOL. This STOL concept has been tested extensively by MSA and several

airlines and is regarded as a feasible approach to a commercial STOL aircraft.

The design emphasis is on providing a means of vectoring the propeller thrust

and thereby augmenting the wing circulation lift to achieve the reduced speeds

required for short takeoff and landing distances.

2.1.1.5-2 Interior Arrangement

The interior arrangement is the same as that shown in Figure 2.1-1.

2.1.1.5.3 Aerodynamics

The wing loading is held to a modest 60 psf as a compromise between

a low value for good airport performance and a high value for good ride qual-

ities. The high lift system is similar to that of the Brequet $kl. configuration

which has the following unique features:.

(1) Most of the wing is immersed in the propeller slipstream which
is equipped with a large chord, full-span, triple-slotted,
trailing edge flap and a cambered leading edge, and

(2) Four propellers, interconnected by a cross shafting system and
having opposite rotation, i.e., the left inboard and the right
outboard turn

LOCKHEED 3̂ 7
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clockwise and the left outboard and the right inboard turn counter-
clockwise

(3) Differential outboard propeller pitch to augment lateral and direc-
tional control, and

(U) The pilot's controls include a conventional stick for lateral and
elevator control,and a single throttle for the pilot's left hand
for all four engines. The system is designed to provide lift
augmentation at takeoff and landing speeds by vectoring the thrust
with the flaps.

The flap chord is 32-36$ of the wing chord, and it is composed of three

chordwise and four spanwise segments with the aft section of the outboard

flap providing partial lateral control. Conventional spoilers, along with

the differential outboard propeller thrust, augment the aileron control at

low speeds. Typical flap sections are shown in Figure 2.1-10.

The sophisticated high-lift system is applied to the 60 psf wing load-

ing to provide the low takeoff and landing speeds necessary for 1500-2500 ft

FAR-type airport performance (70-80 kt).

The empennage is conventional, except that the surface areas are large

to provide extra pitch and directional control power for the low speeds

employed during takeoff and landing. An all movable, veri-cam, horizontal

tail and a double-hinged rudder are also used to further augment control power.

2.1.1.5.U Propulsion

The propulsion system for the deflected slipstream STOL concept includes

a Pratt and Whitney study turboprop engine based on currently available tech-

nology. The configuration consists of a two-stage, single shaft, centrifugal

compressor, an annular reverse flow burner, a two-stage, air cooled, axial

turbine driving the compressor, followed by a two-stage free turbine that

provides power to the propeller. The exhaust system assumed for performance

calculations was sized to optimize the split of propeller power and jet thrust

for low altitude, low Mach cruise conditons. The engine provides advanced

performance with rugged simplicity, ease of maintenance, and simplified diag-

nostics. At sea level static, the engine will produce U.U shp/lb and rated

power fuel flow is 0.̂ 35 Ib/hr/shp.

3̂ 9LOCKHEED J 7
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(A) INBOARD FLAP

APPX. FLAP SETTINGS

FLAP DEFLECTION,Sf, DEC.
MODE
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0
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30
0

65

(B) OUTBOARD-FLAP AILERON

Fig. 2.1-10 Cross Section of Trailing Edge Flap
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An eight-blade, lightweight, Hamilton Standard variable-camber

propeller was selected as the thruster. The propeller is designed to operate

at low tip speed, low power disk loading, and high static thrust per horsepower

- conditions that are favorable for low noise levels. Also, the variable-

camber propeller is quieter than a conventional propeller at low speeds due to

its favorable blade stall characteristics. The maximum propeller tip speed has

been held to 625 ft/sec and was dictated by community noise considerations.
p

The power disk loading of the propeller is 11.8 hp/ft , the thrust disk loading
t~)

is ^5 Ib/ft , at sea level static. Installed performance and sizing data for

this engine/propeller combination are presented in Volume TV. The thrusts

shown have been reduced by 5 percent to provide for installation losses.

The propulsion system for the 1985 technology deflected slipstream

STOL concept includes an advanced Pratt and Whitney turboprop engine which

could be available for 1985- Engineering judgment based upon available advanced

technology estimates indicates that fuel flows can be reduced by 5 percent and

engine weight by 20 percent with the application of 1985 technology at a pract-

ical level. Installed propulsion system performance can be obtained by applying

these factors to the data noted above.

Possible problem areas for either the 1975 or the 1985 propulsion

system include maintenance, development timing, reliability, and noise. Advanced

monitoring techniques for engine parameters should reduce engine maintenance

costs and improve the propulsion system operational relaibility. Timing of the

development of the Pratt and Whitney engine for the 1975 technology aircraft

could be a problem.

The propulsion system is provided with a propeller decoupling/braking

arrangement that will permit the propellers to be decoupled and stopped for

load/unload operations while the engines remain idling. As with the rotary

wing concepts, this will relieve thermal shock effects of an engine shutdown/

startup at'every stop. It also improves safety.

2.1.1.6 Weight Analysis^

The Phase II weight analysis include a re-examination of the weight
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basis employed in Phase I. In general, the Phase I methodology is considered

satisfactory and is applied to the more thoroughly defined Phase II vehicles.

The Phase II weight elements are the same as that employed in Phase

I except that the Phase I rotory wing tail rotors are replaced by the fan-in-fin

concept and the auxiliary power unit has been deleted from all configurations.

Technology factors were applied to 1975 weight estimates at approx.

the same level in both fixed and rotary wing concepts to derive 1985 weights,

with one exception. This was in the area of rotary wing power transmission

from the engines to the main rotor and the fan-in-fin rotor. Here, a completely

different concept was employed for 1985, as discussed in Section 2.1.1.2 and

2.1.1.3. The 1975 rotor mechanical drive system was replaced with a pneumatic

drive system for 1985. A large weight benefit is anticipated from this

development.
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Comparative weight breakdowns for each configuration at 60 passenger

payload are presented in Tables 2.1-3 and 2.1-U. The variation of gross

weight with payload, field length and technology is shown in Figure 2.1-13

to complete the weight comparisons.

Inspection of this weight picture shows the following points of interest:

• Gross weights for the deflected slipstream STOL concept are the same
for both 2000 and 2500 ft FAR field lengths. This is because the
engine size on the 2500 ft version was set by the 250 kt cruise re-
quirement rather than field length.

• An 8fo penalty in gross weight for the deflected slipstream STOL types
results from reducing the field length from 2000-2500 ft to 1500 ft,
caused by the required increase in T/W.

• Application of 1985 technology to the deflected slipstream STOL
types reduces the gross weight by about

• Application of 1985 technology to the compound helicopter VTOL can
provide a gross weight reduction of as much as 35%) with approximately
half of this reduction coming from the pneumatic rotor drive concept.
All rotary wing configurations then become competitive weightwise with
the fixed wing types, and all have shorter field lengths.

• The 1985 compound helicopter VTOL and the 1985 1000 ft autogyro STOL
are estimated to have nearly the same gross weight (the latter has
less complexity, however).

2.1.1.7 Performance Analysis

The performance bases and estimates presented below have been developed

in consideration of the existing and proposed Federal Air Regulations noted

in Section 2.1.1.1. However, the analysis has necessarily been simplified to

meet the time and budget constraints of the study.

2.1.1.7.1 Rotary Wing Configurations

Simplified takeoff and landing operational concepts have been employed

in this analysis. They are summarized as follows:

One speed is employed, "Takeoff Safety Speed" (V̂ oss) which is the
speed at which a 300 ft /rain rate of climb can be maintained with one
engine inoperative.

"Takeoff distance" is defined as that distance required to accelerate
to the critical decision point (CDP), at which point the critical
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Table 2.1-3 Weight Breakdown 60 Passenger Rotary Wing

ITEM

Main Rotor

Wing

Tail Fan

Empennage

Fuselage

Landing Gear

Flight Controls

Nacelles

Engines

Propulsion Systems

Drive System

Instruments

Hydraulics

Electrical

Electronics

Furnishings

Air Cond. & Anti-Ice

EMPTY WEIGHT

Operating Equipment

Crew

Oil, Etc.

OPERATING WEIGHT

Payload

ZERO FUEL WEIGHT

Fuel

GROSS WEIGHT

1975 COMP.
HEL. VTOL

5729

1387

1*55
625
8̂39
185̂
2171*
967
3200

871
6799
k$k
280
1012
1178
3190
1̂ 97

365511

*5
380

133

37069

11UOO

U8U69

8050

56519

1985 COMP.
HEL. VTOL

2998

788

65
325
3188
11UU
1250

575
1810
665
1000

321

182

733
875
2552
11̂ 0

19611

5̂
380
152

20188

llUOO

31588

U690

36278

1985 AUTOGYRO
STOL

2801

728

60

300

3169
1058
1250
676
2170
719
270
310
181

733
875
2550
1128

18978

5̂
380
8U

19̂ 87

111*00

30887
50U2

35929
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Figure 2.1-11. Takeoff Weight Vs. Payload
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engine fails , and either the aircraft is braked to a stop or the take-
off is continued to clear a 35-foot obstacle while at

• "Landing distance" is defined as the distance required to land and
come to a braked stop after clearing a 35-foot obstacle

• "Minimum operating speed" cannot be defined for a rotary wing aircraft
as it is for a fixed wing aircraft since the aircraft can be operated
at speeds on the back side of the power curve with complete safety so
long as there is sufficient rotational energy available to check the
rate of descent of the aircraft. A limiting height /velocity relation-
ship (H-V diagram) is normally defined with one engine inoperative
(OEI).

Helicopter Takeoff - Safe takeoff operation of a compound, helicopter may

vary between the extremes of a pure vertical liftoff to altitude and a con-

ventional airplane takeoff. The vertical takeoff would increase the design

gross weight appreciably. A form of this VTOL profile is employed by New

York Airways and other operators on small roof-top heliports. A conventional

rolling takeoff (STOL) permits the maximum takeoff gross weight.

The helicopter takeoff profile typically employed in today's commercial

operations permits weights between these extremes. The helicopter VTOL con-

figurations and their takeoff distance estimates described herein are based on

operation according to this commercial profile, in the following segments:

1. Vertical takeoff to "in ground effect height," all engines operative
(AEO)

2. Accelerate to VTQSS* and 35 feet altitude. The approximate CDP* is
35 kt.

3.- If an engine fails before CDP is reached, flare, land, and brake to
a stop.

k. If an engine fails after CDP, continue climbout.

= Takeoff safety speed

CDP = Critical decision point
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These points are illustrated in the sketch below:

APPROX. - FT.[

-TAKE-OFF DISTANCE-

35'

Autogyro Takeoff - The autogyro is operated as an STOL aircraft. Low

speed performance is limited by the thrust available to balance the drag of

the rotor. Safe descents and landings can be made at near VTOL speeds using

rotor rotational energy to derive lift. Autogyro takeoff operations have tra-

ditionally been accomplished by powering the rotor to an "overspeed" condition

before the takeoff run, then using the excess rotor energy to achieve the re-

quired altitude after V,TOSS is attained. Flight is sustained by extracting

energy from the air to windmill the rotor, thereby maintaining sufficient ro-

tational speed to produce the required lift. Segments are as follows:

1. From a standing start, with the rotor maintained at overspeed in flat
pitch, accelerate on the ground to approximately VrpQgg. This is the
CDP for take-off. VjQgg = 65 kt approximately. (Horizontal accelera-
tion in an autogyro is limited to h^ = 0.5 kt for passenger comfort).

2. If the engine fails, either brake to a stop; or

3. Increase the collective pitch to take-off position. This provides 35
feet altitude and normal operating rotor speed at the field boundary.

k. Continue climbout to the desired altitude while attaining a clean
configuration.
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NORMAL CLIMB-OUT

/;

/
v«wr ^ ___ —-^v i •_,x ®---*r

^̂  ^̂  *** ****_ *̂ * **** ***^ ĵ

Compound Helicopter and Autogyro Landings - Both the helicopter and

autogyro use the same approach and landing techniques; the only difference

being in the Vm̂ ac,. Both types use minimum power approach speed. The air-

craft is first decelerated to VmAaa at the obstacle, then flared for a mini-IvJOo
mum touchdown speed. The segments of this approach and landing, as shown in

the sketch, are:

1. Approach along the glide slope at partial power, and decelerate to
the speed for minimum power required (approximately 90 kt) at 200 ft
altitude.

2. Decelerate from 90 kt to VTngg and 35 ft altitude at the field
boundary. This is the landing CDP.

3> If a safe landing is not assured, the landing may be rejected assur-
ing a 35-ft altitude at the end of the landing field, or,

^. If a safe landing is assured, the aircraft is flared to near zero speed
for touchdown.

The touchdown speed is limited by the deceleration capability with an

acceptable flare attitude. The energy required- to maintain rotor speed is
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200' ^CDP

50 T^ 35'

available from the loss of forward speed. The landing distance is not con-

sidered critical for this study.

The estimated flat plate drag of the rotary wing vehicles is pre-

sented in Table 2.1-5. The reduced values shown for 1985 result largely from

the reduced size of the rotor mast-hub assembly required with the reduced

gross weights shown in 1985.

Helicopter power requirements for the one engine inoperative takeoff-

climb regime are shown in the Appendix, Figure A2.1-12 and -13.

The 1985 autogyro propulsion system was sized for an FAR field

length of 1000 ft. This distance was selected primarily to keep longitudinal

accelerations on takeoff below 0.5 g (see Appendix) and also because this value

falls midway between the minimum field length for the deflected slipstream

STOL configuration and the compound helicopter in ground effect distance of

500-600 ft. The resulting total thrust requirements, assuming the same yaw

control power requirements as for the helicopter, are shown in Table 2.1-6.

LOCKHEED
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Table 2.1-5. Equivalent Plat Plate Area

Number of Passenger

Drag Item

Fuselage

Main Rotor Hub

Horiz plus Vert Tail

Four Nacelles

Protruding & Misc.

Tail Fan

Nacelle/Wing/Fus Interf

Rotor/Fus Interf.

Total, sq. ft

1975 Compound

1*0

9-0

11.1

1.2

1.8

5-1

0.7

0.9

0.9

30.9

60

10.7

15.1

1.7

2.5

6.0

0.9

1.2

1.2

39-3

80

12.5

19.2

2.2

3.2

7.0

1.1

1.5

1.5

If 8. 2

1985 Compound

Uo

8.1

7.8

1.1

1.5

3.5

0.2

0.7

0.7

23.6

60

9-8

10.8

1.5

2.1

U.3

0.3

1.0

1.0

30.8

80

11.2

13.8

1-9

2.7

U.8

0.1*

1.3

1.3

37A

1985 Autogyro

1*0

8.2

8.8

1.0

1.5

3.3

0.2

0.7

0.7

2k .1*

60

10.0

12.0

1.1*

2.0

U.O

0.3

1.0

1.0

31.7

80

11-7

15.9

1.9

2.7

H.7

0.1*

1.3

1.3

39-9

100

13.5

20.1*

2.1+

3A

5.U

0.5

1.7

1.7

1*9-0

Table 2.1-6. 1985 Autogyro STOL Thrust Requirements

• 1000 ft Takeoff Field Length

• 90° ft

• Sea Level

Payload

1*0

60

80

100

Gross Weight Ib.

26,231

35,927

1*6,811*

58,585

1* -Engine Thrust
Req'd, Ib.

11,600

15,600

20,800

26,1*00

LOCKHEED
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Approximate values for lift/drag ratio (L/D) and cruise thrust required

are as follows:

Configuration

1975 Compound
Helicopter

1985 Compound
Helicopter

1985 Autogyro

Effective L/D
(Approx)

U.O

U.O

U.6

Thrust Req'd/Thrust Avail.

200 kt, 2000 ft Cruise

100$

75$

The fuel required to meet the design mission specified in Section 2.1.1.1

varies from 12 to 15$ of the takeoff gross weight.

Stage time and fuel-required information is shown below in comparison

with the deflected slipstream STOL configuration.

The all engine climb gradient capability of the compound helicopters is

approximately 20 at 70-80 kt. Corresponding values for the 1985 autogyro

STOL are approximately 15 at 70-80 kt.

Normal landing approach on the compound helicopters and autogyros will

be conducted near the minimum power speed (80-90 kt) at low power to achieve

approach angles as high as 20 . The engine power is not normally increased

until immediately prior to touchdown since the kinetic energy of forward

flight is used to partially power the rotor in the landing flare..

2.1.1.7.2 Deflected Slipstream STOL Configuration

The basis for the deflected slipstream STOL configuration performance

estimates is essentially the same as that employed in the Phase I analysis,

i.e.,

Clean aircraft drag -
Cn = 0.023k +0.0612 CT2 - which provides an (L/D) max = 13.2 at 170 kts,

and (L/D) . = 10.0 for 250 kt cruise at 2000 ft.cruise
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• Power-on STOL type takeoff and landing lift and drag characteristics

estimated from analysis of appropriate power-on wind tunnel test

results and flight test results of similar configurations.

• Directional control power adequate to balance any FAR required

single element propulsion system failure during takeoff.

Thrust requirements were established to give 1500, 2000 and 2500 ft

field lengths, or the required 250 kt at 2000 ft cruise speed, whichever was

critical. Takeoff thrust requirements were based on Lockheed's judgment of the

takeoff requirements of the final FAR STOL regualtions and the aerodynamic

capability of this concept. The resulting T/W required employing both 1975

and 1985 technologies, are as estimated below.

STOL Field Required Static
Length, Ft. Thrust/Weight Critical Factor

1975 Tech 1985 Tech

1500 . .52 .50 Takeoff Field Length*

2000 .37 .36 Takeoff Field Length

2500 .37 .36 250 kt Cruise Speed

The comparatively large static T/W required to meet the 250 kt cruise

speed requirement comes from the fact that low disk loading, high static re-

covery propellers are employed to provide the required takeoff thrust with low

horse power engines. The resulting lack of power limits the speed accordingly.

The 1975 compound helicopter suffers likewise. This implies that power re-

quirements for intraurban aircraft should therefore include a margin to provide

emergency maneuver capability, etc., without reducing speed since these aircraft

will continually be flying in cramped airspace.

The fuel requirements in terms of fuel weight to gross weight W»/'

ratio are only dependent on design field length ( installed power). Values °

required to meet the design mission are shown below.

* Critical over landing

363
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STOL Field
length, Ft. W fa

1975 Tech. 1985 Tech.

1500 .0570 .0535

2000 .0521

2500 .0518

2.1.1.7.3 Route Time-Distance Performance

The stage time-distance performance for each vehcile concept is

shown in Figure 2.1-12 for 2000 ft cruise. Increasing the cruise altitude to

UOOO ft shows but a slight increase in time with slight reduction in fuel

required. This higher altitude operation may be necessary from a ride comfort

standpoint.

2.1.1.7.k Takeoff Climb Performance

The all engine takeoff climb performance for each configuration is

shown in Figure 2.1-13. These values were employed in the exterior noise

analysis of Sec. 2.1.1.9.

LOCKHEED



CR

o
00

n

O
CO

8

8

O
00

QJ
hO

$

o
CN

NIW - dNnoavNani NIW s ONiamoNi 3wn aovis ivioi

LOCKHCEO 365



CR

w
0)
H
•H
<*-!
O

S
bo

o
0)

•a
H

•H
bD

rH
Crf

•H
•Pa

o
o

H

OJ

0)

LOCKHEED 366



CR

2.1.1.8 Flight Characteristics

Quantitative estimates of the flight characteristics of the Phase II

aircraft concepts are outside the limits of this study. However, the subject

is of significance when considering the applicability of aircraft to intraurban

mass transportation. A review of V/STOL flight characteristics literature

(including Ref. 2.1-1 through 2.1-U) has therefore been carried out to ascertain

the more important factors affecting vehicle design and operation. The follow-

ing discussion was developed from this review.

2.1.1.8.1 Flying Qualities

To be acceptable, intraurban transport operation must be "on

schedule" to an order of magnitude greater than today's intercity air transport

operations.

Airport performance of both VTOL and STOL aircraft requires slow

approach and liftoff speeds, generally less than 80 kt. Detroit's weather

spectrum, as noted in Phase I, involves frequent change, with severe winds

at times, as well as rain and snow. The intraurban transport operation in

this environment will encounter random wind direction changes and large

shifts in "free stream q" (free stream dynmaic pressure). During takeoff

and. landing, this will make it difficult for the pilot to follow the re-

quired, three-dimensional course with precision. His ability here is a

complex function of his own response capability plus the aircraft aerodynamic

stability, damping, control response, and inertia characteristics.

In consideration of the above, it is Judged that the intraurban

transport will require an extensive, reliable, full-time, automatic flight

control system (AFCS) to fly the aircraft essentially 100$ during scheduled

operations in adverse weather. (The AFCS is discussed in Section 2.1.2.5.)

This implies a substantial degree of system redundancy for safety. In

addition, the pilot must be able at least to get the aircraft back on the

ground safely in the event of failure of one or more of the aircraft-

electronics system.

LOCKHEED 36?



CR

By extension, this leads to the question of the proper "quality"

of the flight-characteristics with the AFCS system 100$ off. To change the

aero-mechanical configuration so that the pilot would not have to rely on any

AFCS elements, even to fly off-schedule good weather operations, would increase

aircraft size and complexity, as well as development and maintenance costs.

The above is intended to illustrate the "different" nature of the

intraurban transports flight characteristics requirements in comparison with

current intercity aircraft. Flight loads, fatigue, system reliability, etc.

likewise will require a "different" approach for intraurban transports.

Compound Helicopter VTOL - From a flight characteristics standpoint,

the'compound helicopter VTOL is considered the" most readily adaptable to the

intraurban transport operations. The fund of experience with the pure heli-

copter in limited intracity operations affords a good base for- developing

design and operating limitations. The compound helicopter VTOL is inherently

capable of good low speed control due to the high effective "q" of the rotors

at takeoff and landing speeds. It is considered to have no serious flight

characteristics drawbacks.

Autogyro STOL - The autogyro STOL concept is not backed by any

direct operational experience. However, as noted in Section 2.1.1.1;, it

operates principally like the compound helicopter after liftoff and during

cruise, approach, and landing. It has good transient low speed control

power. Helicopter operational experience is also directly applicable to the

development of design and operating limitations. It is likewise considered

to have no serious flight characteristics drawbacks.

Deflected Slipstream STOL - The deflected slipstream STOL employs

the same powered lift principal as the French Brequet 9̂ 4-1. This aircraft has

been flow extensively by U.S. airlines and NASA flight crews. NASA pilots

have judged it to be basically satisfactory for both VFR and IFR operation.

However, an all weather "hard schedule" intraurban operation acceptable to

FAR may require an augmentation of the low speed, lateral-directional con-

trol power ~ especially for 1500 ft length operation.
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2.1.1.8.2 Ride Comfort

The Intraurban transport's ride qualities are expected to ranfc
equally as important as community noise with regard to public acceptance of
the system. The 'state of the art in airframe design for good ride qualities
has not extended much beyond use of high wing loadings and application of
lateral -directional dampers, with the latter applied primarily to improve

flying qualities. This has 'happened largely because todays fixed-wing in-
tercity transport operations are mostly at high altitudes where turbulence
levels are low and with schedules that allow flying around weather fronts.
This approach will not be possible with the tightly scheduled low-altitude
intraurban transport operation.

An indication of the powerful adverse effect of low altitude operations
atmospheric turbulence (and resultant passenger comfort) is shown in Figure
2.1-11* which has been taken from Reference 2.1-22. This representation is
based on extensive Air Force and NASA evaluation of atmospheric properties,
and represents a statistical interpretation of available information re-
garding Lsotropic turbulence. The format utilized defines the probability
density of root -mean-square gust velocity mathematically to obtain a con-
venient expression for the number of load factor exceedances for any value
of aircraft response function at each altitude, i.e.,

exp

P2 exp ( - -

where

An = Transient vertical acceleration, or incremental loadz
factor due to gust, g's
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Figure 2.1-1**. Generalized Load Factor Exceedance Curve
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= Ratio of r.m.s. load factor response to r.m.s. gust

velocity

n ) = the number of exceedances of A n per unit time
Z 2

PI and Pp represent fractions of total flight time in nonstorm and

storm turbulence, respectively, and

b.. and bp are intensity parameters.

Basically, Figure 2.1-11+ may be considered as depicting the frequency with

which any given load factor will be exceeded at each altitude shown. The

order of magnitude difference between 25 000 and 5000 ft is noteworthy.

It is apparent from the above that development of realistic design

criteria for ride qualities is essential to the intraurban transport program.

Development of methods to improve ride qualities have been the

subject of much statistical and theoretical analysis in recent years, par-

ticularly relating to airframe response to.nonuniform flow. These analyses

have included proposals for application of gust sensing control feedback

systems. The all-weather intraurban transport problem will require application

and extension of this work to give the vehicles acceptable ride qualities.

The rotary wing vehicles with their comparatively high wing

loading flexible rotor blades, and lower cruise speeds, inherently have less

response to turbulence than the moderate wing loading, deflected slipstream,

STOL concept. The vibration element of the total ride qualities picture is

inherently more significant with the rotary wing concepts.
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2.1.1.9 Noise Considerations

The success of an airborne intraurban transportation system will

depend, in part, on the degree of public acceptance of the system, and this

will be strongly influenced by the vehicle exterior and interior noise character-

istics.

The approach employed in considering noise is to (1) define the

degree of public tolerance to the intraurban transport's noise encroachment

as a function of the public's environment, activities, and location; (2) define

the resulting commuterport land allocation requirements; and (3) forecast the

capability of each-configuration/payload combination to meet these noise

requirements .

£.1.1.9.1 Community Noise - General

The work presented in the following sections was carried out in-

dependently of the preliminary community noise estimates of Phase I. The

Phase I analysis, however, served to constrain the Phase II work to a con-

sideration of commuterport vicinity noise only, since it was determined that

overhead flight presented no serious noise problems.

The commuterport noise investigation is limited to a consideration .

of takeoff only since the rotary wing configurations will operate at reduced

power on landing to achieve approach gradients approximately the same as for

takeoff, and the fixed wing configurations will likewise operate at reduced

power on landing (although at limited approach gradients). The takeoff

operation is therefore considered the more critical. In the following analysis

primary emphasis is given to the far field noise generators since they dominate
•4- 'Uo ^r^vvivM! i v> •? 4- •* P- vt ,m-is*o i-tstovNO rPViO no 5> v»o 4- l-i A wo -i v> o v-i/^ 4- a •? 1 v»/^4- /-\*r*C' /^-f* 4* Vi a v /-\ 4- o V* i r

nC v.iw'llUli'.AllJL U j' IJ.WJ- oC O wCllC • XllC OC Cij. *— (jilC itiA^^i. Cwn* .̂ oCi,_u.j_ j. w w^i w w^ W*AN- ±. ̂  UUIMU j

wing configurations and the propellers of the fixed wing configurations.

Secondary noise sources such as compressors, turbines, and fans, produce lesser

noise inputs and are capable of conventional noise suppression treatment. In

addition, the work is limited to noise encroachment in the vicinity of the

commuterport since the performance analysis shows that possible cruise noise

can be relieved if necessary, by increasing the 2000 ft design cruise altitude

to at least UOOO ft without appreciable penalty to block performance or cost.
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Since noise is unwanted sound, the intraurban aircraft acoustic

design problem can be defined as one in which sounds of the aircraft must be

so low that they will be considered to be noises by no more than a small per-

centage of the population, say 10 percent. The design of the aircraft must

therefore br related to commuterport area planning. The object of the joint

design and planning study is to arrive at a compromise between the economics

of quiet aircraft and the economics of land utilization. The first step was

to select an aircraft sound characteristic with a numerical value which can be

translated into both fundamental aircraft design and land use planning

languages.

Aircraft sounds are rated in terms of a subjective annoyance scale

called Perceived Noise level (PNL), in units of Perceived Noise Decibels

(PndB). Two other rating scales are commonly used for evaluation of sounds in

residential areas. The "A" weighted sound pressure level scale, in units of

dBA, is used by municipal authorities to judge the levels of traffic noise and

other sources of community complaints, such as excessively loud music re-

production systems. Speech Interference Level (SIL) is used in general

architectural acoustics and commercial transport aircraft interior design to

judge the relative ease or difficulty of face-to-face communication as a

function of distance between conversationalists.

Different sounds, judged by different ratings, can be compared with

the aid of Figure 2.1-15. The ordinate, PNL, applies to aircraft sounds, and

the abscissa to either dBA or SIL equivalences of the PNL's or to description

of such common community sounds as those of vehicles or powered lawn mowers.

The straight line from lower left to upper right in the figure is generally

accepted for discussion pruposes as an equivalence relation. For example,

municipal traffic noise laws or regualtions, where they exist, usually specify

that vehicle sounds must be exceed 85 dBA at a roadside measurement point. An

aircraft sound with a PNL of 98 PNdB is equivalent to a traffic sound at 85 dBA.

The following quotation from page 128 of "Transportation Noise,

Pollution: Control And Abatement", NASA Contract NGT U?-003-028, 1970, defines

a PNL goal that is widely discussed in current trade literature:
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"The noise certification levels for V/STOL aircraft should be 95

PNdB at 500 feet. It would be a grave mistake to underestimate the resistance

of the communities surrounding a proposed V/STOL port to higher noise levels."

Again, on page 129 of the above reference it is stated that: "A

major research effort should be instituted to develop a quiet and economically

feasible V/STOL aircraft. A V/STOL aircraft (with perhaps a 150-passenger

capacity) should be developed by NASA to ensure that acceptable noise levels

can be attained. An engine noise limit of 95 PNdB at 500 feet in all directions

should be used."

An objective of the acoustic segment of the study was to provide a

basis for establishing relationships between acoustics, aircraft performance,

and systems tradeoffs for the aircraft concepts considered. The acoustic

design criteria, therefore, were selected with cognizance of the currently

discussed 95 PNdB/500 ft limit, but were not necessarily governed by it.

Instead, the allowable noise from the intraurban aircraft transportation system

was established as a function of the community segment affected, with the

limiting values as shown in the "Aircraft Design" section. Corresponding 500

ft values are approximately as follows:

1975 IOC 102 PNdB

1985 IOC 95 PNdB

Residents will unlikely to complain about aircraft sounds that do

not disrupt such normal activities as neighborhood socilizing at backyard

picnics. An extraneous sound at 75 dBA, with an SIL of 65, corresponds to

approximately 85 PWdB per Figure 2.1-15 and this level would cause individuals

conversing at normal voice levels to instinctively raise their voices to moderately

higher levels. Consideration of this along with a general understanding of

the intrusive character of aircraft sounds in an outdoor environment was used

as a basis for selecting a design goal limit of 85 PNL for intraurban aircraft

sounds perceived in suburban residential areas. As shown by Figure 2.1-15, 85

PNL is no more intrusive than the sounds of most automobiles operating in a 30

MPH speed zone. The surburban residential environment was chosen since it is

probable location for some of the communterports and will, therefore, impose

the most severe aircraft noise - commuterport land allocation requirements.
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For aircraft design purposes it is necessary to translate the 85 PNdB

residential design requirement into a unique frequency spectrum representative

of the intraurban transport to permit evaluating the noise produced by the

candidate propulsion systems. As an aid to the subsequent discussion the PNL

calculation procedure is briefly reviewed below.

The portion of the audible frequency range from 50 to 10,000 Hz

(hertz: IHz = 1 cycle per second) is divided into 2k bands, each covering

one-third of an octave. Sound spectra are frequently analyzed in terms of

one-third Octave Band Levels (OBL) of sound pressure. Eacn one-third OBL has

a subjectively determined annoyance value expressed in units called "NOYS". *

The PNL value is determined from the expression:

PNL = kO + 33.3 l°g10(HOYtotal),
 PNdB

The design goal of 85 PNdB is equivalent to a NOY value of
" "

22.6 NOYS. The NOY, , . calculation makes use of each of the 2k NOY valuestotal
including the numerically greatest, called NOY , as follows:nicLX

NOY. .. = NOY + 0.15 x (the sum of the remaining 23 NOY values),

and it is noted that no unique relationship exists between the NOY value

and the one-third OBL's; i.e., there are a great number of widely different

one -third octave band spectra which would yield the same NOY, , .. value.

Perceived noise levels cannot be scaled directly from one aircraft-

to-listener sound propagation distance to another. Scaling of aircraft sounds

must be accomplished by extrapolation of each of the 2k one-third OBL readings.

The extrapolation is performed by considering two type of sound attenuation

correction; the first depends on distance between source and receiver independent

of sound frequency; the second depends on extra air at attenuation, or atmospheres,

the extra air attenuation term is a complex function of atmospheric conditions

defined in units of dB/1000 ft of sound path length. The atmospheric absorption

can be. expressed in simplest terms if extrapolations are performed with re-

ference to a standard day atmosphere in which temperature and absolute humidity

are independent of altitude. In practice, a standard day constant temperature

of 77°F and an absolute humidity of 15-9 gm/m , which corresponds to a relative

* Basic unit employed to calculate PNL in PNdB from measured sound pressures.
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humidity of 70 percent at a sea level pressure of 29.92 in. Hz, are defined

as reference conditions.

An 85 PNdB intraurban transport one-third octave band design goal

spectrum, considered appropriate to both rotary and fixed wing types was de-

veloped for use in assessing the total noise characteristics of each concept.

This development is based largely on.analysis of flyover measurements of re-

presentative rotary and fixed wing aircraft and includes consideration of noise

sources capable of acoustic treatment such as compressor and fan noise, as

well as largely untreatable sources such as rotors, propellers and turbine

exhaust sounds. Atmospheric attenuation and background noise were also con-

sidered. It was developed as follows: An 85 PNdB spectrum in which the one-

third octave OBL's each have an annoyance value of 5 NOYS was assigned to the

condition of a 2000 ft sideline aircraft-to-listener distance in a surburban

residental community (see curve 1 of Figure 2.1-16). The 2000 ft value was

chosen following a consideration of Detroit land costs and associated commuter-

port size costs, as opposed to the cost and risk of providing aircraft having

lower noise levels. This spectrum was then extrapolated downward to 250 ft

(curve 2 of Figure 2.1-26). This technique provides for the direct comparison

between the frequency spectra of the noise criterion and that of a candidate

propulsion system with the effects of atmospheric attenuation largely removed

from the analysis. The resulting spectrum at the 250 ft reference distance

was reshaped, as described above, to obtain a realistic design goal spectrum

(curve 3 of Figure 2.1-16). This design goal spectrum was then extrapolated

from the 250 ft distance back to the 2000 ft aircraft-to-listener distance

(curve h of Figure 2.1-16). It is the target spectrum for the intraurban

aircraft operating out of a suburban residential commuterport since the 95 PMB

value (22.6 NOY. . ,) is retained.v total'

The establishment of vehicle noise frequency spectrum design criterion

and associated reference distance combined with knowledge of the anticipated

vehicle performance allows the development of commuterport PNL contours that

are then used for land use planning around each commuterport. It was initially

assumed that the intraurban transport vehicles would be capable of a 15 all

engine climbout gradient from a 2000 ft field length commuterport. Assuming
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85 PNL at 2000 ft, combined with 15 deg. climb performance, and impressing

the PNL contours on a suburban area produces the recommended land allocation

shown in Figure 2.1-17.

Residential districts would be restricted to areas outside the 85 PNL boundary.

The area within the 95 PNdB contour is considered satisfactory for the area

immediately adjacent to the commuterport and is approximately 330 acres.

Possible uses for the allocated land not required for the commuterport are

also shown in the figure. They are based on the logic that higher noise levels

are permissible in these areas.

The suggested land allocations of Figure 2.1-1? were made without

specifying the flight frequency to and from the heliport. However, in final

analysis, acceptable allocations will be a function of this factor - which is

included in the Noise Exposure Forecast scale (NEF), and the F.A.R. Effective

Perceived Noise Level (EPNL). Scale for the NEF basis doubling or halving

the frequency of operation increases or decreases the NEF by five PMB and will

therefore change land allocation requirements. Also, local land use and the

associated background noise will also affect these requirements. The land

allocations shown in Figure 2.1-17 should be considered accordingly. All

engine takeoff flight profiles are shown for each concept in Figure 2.1-13.

The rotary wing concept are both shown to have profiles greater than the 15

degree "330-acre" profile while the deflected slipstream STOL, shows lower

gradients. The 330 acre land allocation shown in Figure 2.1-17 has been used

in the cost analysis of Section 2.1.3.

2.1.1.9.2 Vehicle Exterior Noise-Rotary Wing Configurations

The 1975 and 1985 IOC compound helicopter concepts are basically

the same "noisewise" except for the differences in the main rotor drive. The

1975 concept has a conventional mechanical engine to rotor power transmission

and the 1985 concept has a hot gas pneumatic system to supply sonic rotor tip

jet nozzles. The 1985 IOC autogyro concept is similar "noisewise" to the 1985

helicopter except that the pre-takeoff rotor spinup power is transmitted via

engine compressor bleed to air turbine motors which provide the rotor torque.

Rotor tip speeds are held to 625 ft/sec in all cases to reduce noise without

seriously compromising rotor performance. Rotor blade passage frequency

379LOCKHEED ~" *



CR

2 |2tt i I —

Jd
"^ — i

i
i i

0 i i
"

i § Z 2

OOOfr 4(W 0221)

8
M

CO
•p

0)
CQ
•H
Os

0
O

o•p

c
oo
o-p
uco
•H

O
O

(W Ot̂ 2) Id 0008 H

c
cc!

1
CO

H
I

H
•

C\J

8
§>

LOCKHEED
380



CR

thereby decreases with increasing vehicle size, and this will partially relieve

the usual increase in PNL with size since the peak OBL's in the spectrum will

be shifted to a lower frequency as the size increases (in general, PNL decreases

as frequency decreases for a constant sound pressure level (SPL)).

The 1985 main rotor tip nozzle drive system cannot, with current

state-of-the-art, be quieted sufficiently to meet the proposed community noise-

land allocation requirements without an excessive weight penalty, particularly

in the larger sizes. Nevertheless, this rotor drive concept is retained in

the confidence that the combined acoustic and airframe design state-of-the-art

will, with ten years to solve under the stimulus of the public demand for less

noise, develop sufficiently to provide the art for quieting this concept

within the 1985 IOC date without excessive penalties.

The multibladed, lightly load fan-in-fin directional control

concept shown for all configurations is not sufficiently defined for quantitative

analysis but is selected from a consideration of current attempts to reduce

tail rotor noise. Basic noise features are envisioned as follows: tip speed

approximately 625 ft/sec, disc load approximately 30 psf; low blade loading

possibly with canted blades (non-radial). The. required fan-in-fin directional

control power during takeoff, and its resulting noise output, will be greatest

for the 1975 helicopter since it must overcome the main rotor torque. The

1985 helicopter and autogyro will inherently have lower values since the

torqueless main rotor will allow the fan-in-fin to operate near a no load

condition.

A real world noise correlation was obtained by utilization of in-

house flight test measurements on a large 28,000 Ib gross weight current

technology helicopter. Fly-by measurements, extrapolated to the 2000 ft

reference distance give 80 PNL. At this weight the 1975 intraurban compound

helicopter would carry approximately 25 passengers.

2.1.1.9.3 Vehicle Exterior Noise-Fixed Wing Configuration

The primary source of community noise for this concept is the

propellers. Propeller noise is basically composed of rotational noise (discrete

tones) occurring at the fundamental and harmonics of the blade passage
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frequency, and "vortex" noise (broadband random frequency noise). A number of

parameters influence propeller noise intensity, the most influencial being

tip speed. In the proposed configurations, propeller noise intensity will be

minimized by holding tip speed to 625 ft/sec.

Most propellers on current and past transport types, such as Lockheed

Electra and Douglas DC-7, operate during the early stages of the takeoff with

their propeller blades partially stalled, and this results in additional noise.

This is alleviated in the proposed concept by using Hamilton-Standard variable

camber propellers which provide a wider angle of attack range without stalling.

The propeller noise prediction theory of Gutin, expressed in

engineering terms by H.H. Hubbard in Ref. 2.1-23, has proven to be accurate

for predict the sound levels for the fundamental of the rotational noise.

For example, agreement within one dB was obtained between measured

sound pressure levels for a four engine Lockheed Electra and theoretical SPL's

derived from the aforementioned report. Figure 2.1-18 shows a comparison

between the Electra spectrum at take-off power and the design goal frequency

spectrum for the conditions of a flyover at the reference 250-ft altitude on

a standard day. The Electra SPL peak at 63 Hz would require a reduction of

13 dB to meet the 96 dB peak low frequency SPL of the design goal spectrum.

Figure 2.1-19, derived from the above reference, indicates the

dependence of SPL at the blade passage frequency, on tip Mach Number for four-

bladed propellers at blade diameters of 12, 16 and 20 ft., with total horsepower

in the range of 2000-6000SHP as a parameter. The propellers for the deflected

slipstream STOL concept must fall within the 96 dB design criterion line to

meet the proposed 85 PNdB community noise limit.

The variation of PNL with distance during takeoff is shown in

Figure 2.1-20 for the above intraurban transport design goal spectrum and the

Electra, where the latter values are based on flight test measurements. Also

showr is a calculated value for the French Brequet 9^1 based on limited flight

test measurements. The similarity between the shape of the curves lends sub-

stantiation to the intraurban transport design requirements.
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The Brequet 9^1 has approximately 35$ of the power of the Electra

yet its PN1 level at 500 ft is shown to be only 2 PNdB lower than for the

Electra. This is attributed to the fact that the Brequet has a propeller tip

speed of 925 ft/sec whereas the ocrresponding value for the Electra is but

720 ft/sec. The strong effect of propeller tip speed is thus illustrated.

The Electra is a 116,000 Ib gross weight aircraft employing four

3750 hp turboshaft engines driving 13.5 ft diameter four-bladed propellers

which develop a total of 15,000 Ib of thrust with a tip speed of 720 ft/sec.

The largest vehicle in the present study is the 1975 technology, 100-passenger,

1500 ft takeoff field length aircraft whose four propellers develop a total

fo 22,150 Ib of thrust at takeoff from four 1̂ 50 hp engines. The higher total

thrust but lower power required to develop this thrust, combined with the

variable camber, lower tip speed propellers indicates that this vehicle

probably can meet the design goal of 85 PNdB at the 2000 ft reference distance.

Therefore, all the remaining DSS STOL vehicles should likewise fall within

this design goal.

2. 1.1. 9^ Community Noise - Summary

In summary, this exterior noise review indicates that with proper

consideration of the noise problem at the outset of an intraurban transport

development program, the following capability to meet the exterior noise

requirements of section 2.1.1.1 with the commuterport land allocations of

Figure 2.1-17 should be attainable.

1) The 20 to 60 passenger 1975 compound helicopter VTOL's could

meet the requirements with little compromise. However, at the

current state-of-the-art, payloads beyond 60 passengers will

require some weight or performance penalties.

2) Assuming a continued public insistence on less noise - with the

corresponding necessity for a strong noise research program -

it is judged that the acoustic and airframe design art will

evolve sufficiently during the coming 10 years to permit de-

velopment of the suggested 1985 rotor tip nozzle drive compound

helicopter to 80 passenger size' without significant weight or

performance penalties.
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3) The 1985 Autogyro STOL concept should have no problem in meeting

the requirements up to 80 passenger size.

*0 The 1975 and 1985 deflected slipstream STOL concepts should meet

the requirements at all sizes.

2.1.1.9.5 Interior Noise

1975 Compound Helicopter VTOL - It is anticipated that the main rotor

gearbox, mounted under the cabin floor, will be the major interior noise source.

Gearbox noise is characterized by several harmonically related series of

discrete frequency tones commencing with the fundamental gear tooth contact

frequency of each stage of the transmission. There are two paths for this

noise to enter the cabin area. One is the airborne path by which vibration of

the gearbox housing radiates noise into the surrounding air space and this

noise in turn penetrates sourrounding structure, including the floor, into the

cabin area. Application of an acoustical treatment composed of materials such

as plastic foam or glass fiber batts and lead -impregnated vinyl fabric can

effectively reduce the airborne transmitted noise. The second path is through

the structure, whereby the gearbox vibrations pass directly through the attach-

ment points into the airframe. These vibrations cause the wall and floor

panels of the cabin to vibrate, thereby radiating noise. Installation of

state- of-the-art vibration isolation will minimize this contributor to the

interior noise. Effective gearbox noise reduction necessitates the treatment

of both noise transmission paths - failure to do so will lead to excessive

interior noise levels.

Secondary interior noise sources are the fan engines and the en-

vironmental control system (ECS). Tailoring the side wall acoustic treatment

to the intensity of the engine noise along the fuselage should effectively

control this noise source. Acoustical treatment methods for ECS are well

established, and therefore control of this source of cabin noise should not

be a problem. In summary, the interior noise of these vehicles can be kept

within acceptable limits if priority is given to integrating the acoustical

treatment into the overall vehicle design.

1985 Compound Helicopter VTOL - The interior noise from the rotor

blade tip nozzle drive system employed in this configuration will not require
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the extensive noise control measures necessary with drive systems using a

gearbox. Any noise generated by the main rotor blade tip nozzles will most

likely be high frequency noise which is readily attenuated by relatively

lightweight acoustical treatment. The only other potential contributor to the

interior noise, that can be attributed to the main rotor drive system, will be

airborne engine noise conducted through the main rotor drive air ducts. Care-

ful design of the ducting system and appropriate acoustical treatment should

hold the interior noise contributed by this source to a satisfactory level.

The secondary interior noise sources discussed for the 1975 compound

helicopters will also be applicable to the 1985 compound helicopter vehicles

as well as the associated noise control measures.

1985 Autogyro STOL - Air turbine motors (ATM) drive a below-the-floor

gearbox to bring the main rotor up to speed prior to takeoff. This will require

30 to kQ seconds. The noise radiated by typical ATM's is generally high

frequency and therefore readily amenable to reduction by an acoustical treatment

employing plastic foan of glass fiber batting in combination with lead-impregnated

vinyl fabric. Considerable high frequency noise reduction can be obtained by

relatively lightweight acoustical treatment; however, this treatment must be

used in conjunction with effective vibration isolation. Lack of proper

vibration isolation, required to minimize structureborne noise, will result

in a "short circuit" of the acoustical treatment used for reduction of the

airborne noise. Consequently, control of the interior noise attributable to

the ATM's should present no serious technical' problems providing the appropriate

control measures are followed.

The secondary interior noise sources discussed for the 1975 compound

helicopters will also be applicable to the 1985 autogyro configuration as well

as the associated noise control measures.

1975 and 1985 Deflected Slipstream STOL - The major contributors to

interior noise in the DSS aircraft will be the propellers. Propeller noise, as

discussed above, is composed of both discrete frequency tone (occurring at the

blade passage frequency and its harmonics), and a broadband random "vortex"

noise. The rotational noise is low frequency (60 to 80 Hz) for the fundamental,

which makes reduction of the associated noise very difficult.
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However, the low tip speed, variable camber propellers used to reduce exterior

noise together with low power loadings and large propeller to fuselage clear-

ance are also beneficial with regard to the interior noise problem. Such

noise control measures as the use of thick double-or-triple-glazed windows,

lead-impregnated vinyl cloth in the side wall acoustical treatment, and the

usual damping treatment tailored to the intensity of the propeller noise on

the fuselage should keep the propeller noise within acceptable limitsj however,

low frequency noise reduction measures require the use of relatively heavy

acoustical treatment.

The secondary contributors to interior noise (and the measures to

control them) will be the same as those discussed for the 1975 compound

helicopter.

In summary, means are believed available to provide interior noise

levels within the proposed 85 dBA on all of the intruarban transport concepts

if the problem is treated as an integral part of the design-development effort.
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2.1.2 SCENARIO DEVELOPMENT

The scenario developed in Phase I has been expanded to include

more detailed discussions of the regional peculiarities that influence the

travel trends and demand forecasts of the Detroit area.

Factors of significance and unique to the total transportation

picture in the TALUS region have "been defined, broadening the scenario to

include a definition of freeway and highway networks, industrial centers,

geographic features, existing airports, etc.

2.1.2.1 Economic Development

The future growth of the Detroit area is discussed in Detroit

Edison's research project report:

Urban Detroit Area Research Project - Doxiadis - Emergence
and Growth of an Urban Region, Volume 1; Analysis, 1§66,
The Detroit Edison Company

Parts of the text that apply to Detroit's mass transportation problem are

quoted as follows:

"The Detroit area lies in the heart of the east north
central division which has about 20 percent of the national
population, personal income and retail sales. Across the border
lies the most densely populated part of Canada, with enormous
potential for development. The Detroit area is centrally located
within the industrial belt running from New York to the west. It
is on the main axis of transportation which follows approximately
the same direction, although the center is slightly to the north.

"Briefly, the benefits of its location are:

• Because of its central location within the emerging Great
Lakes megalopolis, the Detroit area has a tremendous
marketing area for consumer goods. Its similarly
advantageous position in the industrial belt provides
the Detroit area with an excellent market for semiprocessed
materials, parts and finished products.

• The Detroit area has unusual opportunities for developing
into an important center for services with high order
functions.

c It has the characteristics of a gateway for United States-
Canadian trade as well as for domestic transportation
following the east-west route through Canada. This
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advantage vill be enhanced when the Canadian section of the
Great Lakes megalopolis attains higher levels of economic
development.

• Because of its location on the lakes and at the intersection
of the east-west transportation axis and the tvo axes heading
south through the Mississippi and Ohio valleys, the Detroit
area may become the gateway for international trade of the
entire north central region of the United States. This
position gives Detroit the opportunity for maximum market
penetration at low cost.

" . . . Manufacturing in the Detroit area is concentrated in
the production of durable goods rather than the many kinds of
consumer products it could provide from its central location in a
marketing area containing 35 million people. Moreover, the
durable-goods production consists mainly of automobiles and allied
products and not many of the semi-finished and intermediate pro-
ducts that would meet the demands of other industries. This
somewhat one-sided industrial development is due to historical
and accidental factors.

"This reliance and emphasis on a single branch of industry
may be responsible for the relative underdevelopment of services.
In I960 services accounted for a smaller percentage of employment
in the Detroit area than the national or Great Lakes area average
despite the fact the Detroit area is a metropolitan area. In a
similar way the Detroit area has not developed fully its potential
as a major transportation center.

"Since the 1950's Detroit has been passing through a critical
phase in its economic history. Several postwar developments,
primarily a trend toward the decentralization of the automobile
industry, have weakened the employment potential and caused some
migration from the area. However, a trend toward more diversi-
fication of industry and more intensive growth in services is
already evident."

2.1.2.2 Highway and Public Transportation Networks

In May 1969 the TALUS transportation staff issued a working paper

entitled, "Preliminary 1990 Transportation Networks for Alternative Testing

Highways - Transit."

The following paragraphs are the summary of this working paper and

present the basic transit plans Lockheed used in developing its air

transportation system routes and V/STOL commuterport locations.
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"The highway and public transportation elements of the TALUS
Transportation and Land Use Plan will fee designed to accomplish
two major puposes; first, to serve the travel demands that will
be generated by the land use plan; and secondly to encourage
growth and development in accordance with the land use plan.
Within the framework of these objectives the purpose of the trans-
portation system must be to provide good transportation, that is,
an integrated system of facilities that can provide successfullly
for the movement of people and goods with a minimum of delay with
total cost a. major criterion, though by no means the sole
determinant.

"Increasing accessibility, widens the choice of residence
and work opportunities. For employers, this means enlarging the
size of the available labor pool; for the employee, a broadened
choice of job opportunities for his skills, because existing and
new areas would be brought within reasonable commuting time. Good
transportation will increase the mobility of people affording
greater opportunities to avail themselves of a wider selection of
goods and services. This will increase both the volume and variety
of demands for these goods and services.

"Good transportation is safe transportation. By eliminating
congestion and reducing conflicts among vehicles, it reduces both
the costs of policing traffic and the human and financial costs
of traffic accidents. Good transportation must be capable of
safely moving a large number of people in a short amount of time.

"The first requirement in order to meet total travel demands
within the Detroit Metropolitan Region is an extensive and effec-
tive highway system. This requires a complex of freeways, major
arterials, and collector and distributor roads. Construction,
programming and planning of regional freeways in the Southeast
Michigan area is already well advanced. The plans to carry these
to completion and supplement the system must be strongly supported.
In addition, substantial improvements in the arterial system and
especially the major mile roads will be required in future years
in order to serve total demands. However, if these freeways and
highways are to function successfully terminal facilities such
as bus terminal and auto parking facilities must be so located
and connected by high capacity feeder streets to the arterial
system that traffic flows freely to its final destination.

"An additional requirement in order to provide the degree of
mobility necessary to serve a metropolitan region such as this is
an extensive public transportation system. The level of public
transportation service currently provided in the region is not
adequate. Extensive improvement is required.
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"The total transportation system should comprise a compre-
hensive network so combining automobile and transit facilities
that each can serve that part of the total demand for vhich it is
best suited. The public transportation system, including its
rapid transit component, must be designed and operated as an
integral part of the total network and must have adequate capacity
and service to meet rush hour demands for commuters and other
travelers to urban centers and sub-centers. The regional highway
system must have the capacity to serve those transportation demands
which require the use of the private automobile ..."

" . . . The TALUS staff then proceeded to develop two
alternative 1990 highway networks for testing purposes.

• 1990 Test Highway Network I

A minimal highway plan which relates closely to existing
planned levels of freeway and arterial facilities as
determined by local and state highway officials with minor
adjustments related to the preliminary 1990 land use plan
(Figure 2.1-21).

• 1990 Test Highway Network II

A maximal highway plan which includes most of highway
network plan I plus substantial freeway facilities that
have been identified in context with the 1990 alternative
land use plan (Figure12.1-21) .

"These highway networks will be tested with inputs yielded
from the preliminary 1990 land use plan which has been approved
for testing purposes by the TALUS Administrative Committee. In
connection with each of these highway alternatives is a test
transit plan.

"The maps which follow this chapter show the 1975 freeway
network, 1990 Test Highway Network I, 1990 Test Highway Network
II, and the Rapid Transit portion of 1990 Transit Test Network II.

"In 1965» ^10 miles of freeway were complete and open to
traffic within the seven-county TALUS region. The additional
mileage, which is represented by the 1975 network, is 11*0.3
miles. Test Network I adds 51.6 miles to the 1975 network.
Test Network II adds 128.0 miles beyond the additions in Test
Network I.

"Thus, a minimal freeway network to serve the needs of the
region by 1990 would include some 601.9 miles of freeway. The
maximal mileage required, to serve 1990 needs, would be 729.9
miles.
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Figure 2.1-21 TALUS - Alternative Test Highway Systems

LOCKHEED



CR

"TALUS' final recommendations of a highway system to serve
1990 needs will "be baaed on analysis of the vehicular trips
assigned to each link in the two alternative 1990 highway systems.
This analysis will almost certainly result in the recommendation
of a network which lies somewhere between the minimal and maximal
networks; with some facilities being deleted, other facilities
being shifted somewhat in their location, and the possible addition
of some links or facilities not shown on either test network.

"Two alternative 1990 test networks for transit have been
developed.

• 1990 Test Transit Network I

An all bus system characterized by local, express and inter-
urban transit routes.

• 1990 Test Transit Network II

An extensive rapid transit system supported by local bus
service and a feeder bus network serving rapid transit
stations (Figure 2.1-22)."

"The two transit networks are based on the needs it is
assumed will be generated by the preliminary 1990 land use plan
which has been approved for testing purposes by the TALUS
Administrative Committee. Test Transit Network I, the all bus
system, is designed to complement Test Highway Network II, the
maximal freeway system; Test Transit Network II, which is based
on an extensive rapid transit system, is designed to complement
and supplement Test Highway Network I, the minimal freeway
network.

"The modeling process and assignment of predicted 1990
travel demands to the two transit networks will provide data
for analysis and the development of a third transit network. It
is probable that this third transit network will lie somewhere
between Test Transit Networks I and II; that is, that it will
recommend an extensive bus network for the region and a somewhat
less extensive rapid transit network for the region than is
contemplated by test network II.

"Test Network I represents an improvement of present-day
service levels with substantial extensions of service into
additional areas of existing and future urbanization. This
network assumes that a single unified system will exist in 1990
allowing for maximum inter-area mobility, integration of systems
and scheduling and ease of transfer.
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Figure 2.1-22. 1990 Test Rail Rapid Transit System
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"Test Network II is characterized primarily "by the introduc-
tion of an entirely new mode of travel in the Detroit Metropolitan
Region. This system is also based on the preliminary 1990 land
use plan. Its basic goal is the provision of rapid transit
facilities for fast, efficient travel and service to the greatest
number of individuals in the region.

"In developing this system, a number of alternative rapid
transit corridors were identified and evaluated. Those which were
selected for inclusion in Test Transit Plan II are the following:

Mack Avenue
Van Dyke
Woodward Avenue
Grand River/Schoolcraft
Michigan Avenue to Detroit Metropolitan Airport
South Fort Street

"Speeds averaging UO-^5 miles an hour with headways of two to
ten minutes are assumed for the rapid transit lines. Speeds
averaging 10 miles an hour with headways of 10 minutes are assumed
for the feeder bus lines and 13 mile an hour speeds with variable
headways are assumed for local bus lines.

"A major consideration in making transit location and design
decisions must be the level of service provided those people in
the population who are largely or completely dependent on public
transportation service for mobility. The transit lines and the
feeder bus service to these lines are laid out to take into
consideration the travel needs of residents of low income, high
unemployment and high sub-employment areas; access to areas which
provide large numbers of employment opportunities; and access to
areas of high levels of activity both currently and in the future
as shown on the preliminary 1990 land use plan.

"The feeder bus system is an integral part of the rapid
transit system in the inner parts of the region, expanding the
potential service area of the transit lines beyond normal walking
distance. In the outlying parts of the region, extensive park-
ride and kiss-ride facilities would be provided to make the
service attractive to trip-makers to whom automobiles are
available.

"The bus system in outlying areas would be oriented to the
rapid transit system in two ways; providing service along major
arterials which would serve to pick up residents of the area
destined for the rapid transit system; and providing service
between the suburban transit stations and employment centers,
both commercial and retail activity centers and places of
industrial activity and Job opportunities.
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"In this manner, the rapid transit system, the feeder bus
system and the additional bus service in outlying areas can accom-
plish several major purposes; providing a high level of transit
service as an alternative to the automobile for those suburban
residents whose work and shopping places are served by the system;
reducing highway travel demands in the center of the region to
some extent by the integration of parking facilities with the
transit stations so that a portion of the total trip can be made
by transit; increasing the mobility of central city residents
through the extensive bus feeder and rapid transit system; and
increasing the Job opportunities of central city residents by
providing access to major centers of commercial, retailing and
industrial employment in suburban areas through the use of the
total system of feeder buses, transit facilities and suburban
bus lines.

"Test Transit System I, the all bus system, is based on the
following considerations:

• Modification of existing bus service to reflect 1990 land
use and transit requirements, using many of the existing
line patterns.

• Preservation of service in outlying areas based on 1990
growth patterns and location of activity centers.

• Service in outlying areas with a basic orientation to the
various activity centers rather than merely an extension
of service of existing routes.

- A system of transit service areas wherein local bus service
as well as inter-area express or local service will be
developed to serve mass transit needs of the region.

"As outlined above and detailed in the following sections of
this report, the highway and transit test systems are designed to
provide the data upon which analyses can be conducted to permit
the development and further evaluation and testing of a final
transportation plan. This balanced plan for highway and transit
systems will undoubtedly lie somewhere between the test systems
described herp.

"Although this report discusses in some detail only the free-
way segments of the highway system and the rapid transit portions
of the Transit Network, the networks which will be described to
the computer and to which travel demands will be assigned include
all of the existing major highway and street facilities in the
region and the improvements and additions which are anticipated
for the planning year; as well as the surface bus systems, both
existing and anticipated to be necessary to serve future
requirements.
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"During the continuing planning process, additional assign-
ments to different combinations of highway and transit networks
based on modifications to the preliminary 1990 Land Use Plan will
be required to aid in the refinement of the transportation systems
and the making of detailed decisions. The transportation planning
process is not static. It must be continually responsive to
changes in the distribution of people and activities, policy
changes relating to the availability of funds for different por-
tions of the transportation system, and to technological change.

"The Preliminary 1990 Land Use Plan will certainly be subject
to changes as public hearings are held and the plan is considered
for final adoption by the SEMCOG General Assembly.

"These modifications in the.plan will affect the output of
the Regional Growth Model and thus affect the travel demands
generated.

"Legislative changes at the national level relating to the
future of the Interstate Highway Program, the degree to which funds
will be made available and the highway systems for which these
funds can be used, as well as changes in state and local policy
will clearly relate to the degree of emphasis which will be
possible on different elements of the highway system.

"The United States Congress is currently contemplating the
creation of a Transit Trust Fund which would provide significant
amounts of money on a 2/3 Federal, 1/3 Local basis for the con-
struction of transit systems. Such, legislation would increase
substantially the likelihood of TALUS' rapid transit recommenda-
tions being implemented. State funds which might also be provided
for transit purposes and local governmental policies in this
regard will also be major determinants of future system testing.

"The possibility of significant technological development
in public transportation systems cannot be ignored. If some of
the extensive public and private research currently under way
should prove that significant increases in speeds or the develop-
ment of completely new systems are feasible, additional investi-
gations of these possibilities would have to be conducted through
the transportation planning process and the modeling systems."

2.1.2.3 Aviation Facilities

In 1965 there were 1*5 state-licensed and two military airports in the

study area. Since 195Q the number of airports has declined due primarily

to urbanization, i.e., the airports were absorbed by urban growth forces for

a more demanding land use.
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Airports and air activities can be broadly categorized into two

general classifications: commercial and general aviation Commercial air-

ports are those that serve or provide scheduled commercial airline traffic,

while general aviation is applicable to those fields and activities dealing

with business or sport flying by private aircraft. Both types of airports

are important in that they provide a definite level of needed service.

From the standpoint of traffic operations and available facilities,

i.e., runway length, electronic landing devices, etc., the following are

considered to be the major airports in the Study Area:

Detroit Metropolitan Wayne County Airport
Willow Run
Detroit City
Oakland-Pontiac

Others however, such as Mettetal (near Plymouth) and McKinley (Fraser,

Macomb County) are extremely important when total general aviation operations

are considered.

With the completion of additional terminal and service facilities in

1966; and the transfer of the remaining major scheduled airlines operating

from Willow Run, Detroit Metropolitan Wayne County Airport has become the

principal airport facility for southeastern Michigan. In 1965, approximately

two million passengers enplaned at Detroit.

An analysis of the city pairs between which Detroit passengers travel

shows that one traveler in three is going to either Chicago or New York.

Seven cities account for over half of all airline passenger trips to and

from Detroit: New York, Chicago, Washington, Miami, Los Angeles, Philadelphia,

and Boston.

In addition to Detroit Metropolitan, Detroit City Airport located only

four miles from downtown Detroit, provides a facility for general aviation

(particularly business flying) and for the rapidly growing air-taxi companies

that operate aircraft in scheduled service to Cleveland, Columbus, Chicago

and other nearby points.
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The grovrth in volume of air cargo has teen even more rapid than

the growth of passenger traffic. From 1960 to 1965 air cargo volume increased

at the rate of 20$ per year. Approximately two-thirds of all air carge

handled at Detroit is outbound, and the principal commodities include auto-

mobile parts and printed matter associated with automobile sales promotion.

Figure 2.1-23 shows the distribution of the kj airports in the

Study Area and Figure 2.1-2U shows the facilities and features at each airport

i.e. runway length, control tower, etc.

2.1.2.U Communterport Design/Operation

The Phase I analysis showed that the commuterport operation

contributes a significant portion of the total system cost. The Phase II

route-schedule-fleet size analysis showed that the maximum traffic flow at

each commuterport could be accomodated with a single loading facility. A

conceptual commuterport layout, considering these factors, was therefore

developed and is shown in Figure 2.1-25. Commuters pass between the aircraft

and the terminal via under ground walkways, using stairs to the surface, as

shown, with painted walkways leading to and from the aircraft. This concept

should permit unload-load operations within the five minutes allowed in the

economic, and route and schedule analyses.

The arrangement assumes a single runway located symmetrically about

the loading area. Approximately 5 acres are involved in the runway, loading

area, terminal and parking facilities. It is equally applicable to both

rotary and fixed wing aircraft and is commensurate with the land allocations

of section 2.1.2.9.

Nine operating personal per commuterport were assumed for the cost

analysis. However, if a safe reliable operation involving an automatic

ticketing arrangement (perhaps on board the aircraft). Coupled with a fenced-

off runway - taxiway area could be conceived it might be possible to make a

substantial reduction in commuterport operating personnel. Also, it might be

possible: to develop a dual purpose installation wherein the terminal

facility personnel could perform usefuel non-intraurban transportation system

work between intraurban operations.

LOCKHEED



CR

• MILITARY
• COMMERCIAL
• GENERAL

<S>® PUBLIC OWNERSHIP
H COMMUTER PORTS

A LOAN AC
ANN ARBOR
CENTRAL BUSINESS
DISTRICT

MCLE MOUNT CLEMENS
METRO METROPOLITAN

AIRPORT
MON MONROE
NC NEW CENTER
PH PORT HURON
PONT PONTIAC

Figure 2.1-23. Airports in Greater Detroit Area
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CLASSIFICATION OF

AIRPORTS IN STUDY AREA

LENGTH OF LONGEST RUNWAY

• less than 3,500'

3,500' to 4,999'

5,000* to 9.999'

10,000' and ov«r
,
I1, [ALIGHTED RUNWAY(S) QAIRPORT WITH TOWER
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INCLUDED IN NATIONAL AIRPORT PLAN

TRANSPORTATION AND LAND USE STUDY TALUS STUDY I-10

WAYNE COUNTY ROAD COMMISSION
A-3
JUNE 1MT

Figure 2.1-2U. Airport Facilities
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2.1.2.5 Communication, Navigation, and Air Traffic Control

In the conceptual development of the overall traffic control,

navigation, and communication network envisioned for intraurban transport

operation during the 1975 time frame, extensive utilization of current state-

of-the-art technology is employed. Systems currently being used in the L-1011,

7^7 > and DC-10 type aircraft are consistent with the needs of the intraurban

transport.

In this 1975 time frame, it is expected that control of the

intraurban transport during arrival and departure will be under the direct

responsibility of control towers. En route air traffic control for the

overall intraurban airways structure will be built upon central contact of

all aircraft within the closed system. A central digital data processing

computer complex will handle the major share of the day-to-day, long term,

flight planning for' the total system. Central air traffic controllers,

monitoring the overall operation, can handle emergencies such as disabled

aircraft, both in the air and on the ground, that might otherwise cause delays

and disrupt the smooth flow of the system.

On board each aircraft, precision navigation equipment will provide

the basic control and guidance of the individual aircraft and generate the

necessary monitoring annunciation to the pilot to aid him in maintaining the

aircraft in its "slot" and process any changes in flight plans relayed from

the central ground control facility.

A major emphasis must be placed on the inherent problem created

by the high traffic densities throughout the route structure. For safety of

flight considerations the airspace throughout the intraurban transport routes

must be tightly controlled and exclusively reserved for the intraurban

aircraft.

Although the intraurban transport route structure, frequency, and

tight scheduling, is of specialized nature, the electronics, controls, and

procedural standards are advanced to the point where 1975 operation can be

expected to function with no major resort to long term development cycles.

In defining these concepts and how they might be integrated into

the intraurban operational doctrine, the overall details of the navigation and

control concepts for these aircraft are outlined in the following paragraphs.
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2.1.2.5.1 Landing, Taxi, and Takeoff Operations

The frequency of operation on a single runway will "be limited

primarily by the safety criteria selected. Previous studies have shown

that the frequency can range from'55 to l66 aircraft landings and takeoffs

per hour. Adverse weather conditions should not have a significant influence

on these figures, as any control system employed must have a high degree of

precision and automation. Collision and hazard avoidance will be ensured

by detailed preplanning q'f the route structure as well as by the inclusion

of on-board, self-contained radar and collision avoidance systems, monitored

by the central en route ATC board plot, and radar surveillance of the arrival

and departure areas of the separate commuterports.

The task of developing individual intraurban transport operational

subsystem concepts will be concerned with the following phases of operation:

• Flight planning

• Taxi-out, takeoff

• En route navigation

• Descent, final approach, touchdown

• Rollout, taxi to ramps, turnaround

These operations, of course, influence both the design of the

airborne equipment and the design of the associated ground air traffic

control and ILS instrumentation.

As a general philosophy, even in the 1975 time frame, the above

operations must' be carried out with a high degree of automation in both

airborne and ground operations. Also, in order to be cost effective, numbers

of crews, traffic controllers, and maintenance and terminal operations

personnel must be kept minimal consistent with safety regulations and

passenger convenience and comfort.
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With regard to Weather Minimum Categories (CAT's), current projec-

tions indicate that an automatic all-weather landing capability through to

CAT Ill(b) will be available by 1975. By 1985, this will almost certainly

have extended through to CAT IIl(c) (Zero/Zero). These minimums dicate the

degree of the instrumentation required both on the ground and in the air.

Table 2.1-7 quantifies the categories for identifying the

system requirements. These standards have applied specifically to the CTOL

aircraft environment, but will be generally applicable to the intraurban

transport operation. Runway visible range (RVR) is, by definition, a horizontal

measurement made along the runway. For shallow glide slopes the RVR at the

CAT I and II decision heights conforms generally to the actual ground

situation. At the steeper glide slopes used by the intraurban type transport,

this RVR definition will not be quite so meaningful to the pilot. However,

a CAT Il(b) requirement for the intraurban transport appears to be absolutely

mandatory if satisfactory day-by-day schedules are to be maintained throughout

the year.

TABLE 2.1-7 - ICAO STANDARDS FOR WEATHER MINIMUMS AS APPLIED

TO INTRAURBAN TRANSPORT OPERATIONS

CAT

I

II -A

II-B

III-A

III-B

III-C

RVR (ft)

2,hOO

1,600

1,200

700

150

0

Decision Ht (ft)

200

150

100 Current aircraft
minimums

See to rollout

See to taxi

Zero/Zero -

- 1975 time period

1985 time period

With a CAT Ill-b capability in the 1975 period, the 150 ft RVR

limitation means that the intraurban transport pilot, after touchdown with his

auto-land system, will be able to see the first rows of taxi lights which

outline the runway boundaries. Taxiing can then be accomplished visually
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even though at a slow speed. To speed up this taxi process and thus maintain

the scheduled turnaround times, the runways and taxiways will have high

intensity centerline lighting systems with appropriate identifying symbols

at the taxiway exits and ramp locations. A television camera located at

the nose wheel of the aircraft could facilitate effective steering control.

The ground instrumentation most suitable for control and automatic

landing at the 1975 intraurban commuterport would include a microwave scanning

beam ILS system. The standards of operation will be along the lines of the

current RTCA (Special Committee 117) recommendations. Figure 2.1-26

illustrates two concepts that could be applicable to the intraurban transport.

These systems provide for fully automatic touchdown, broad coverage in both

azimuth and elevation, relative freedom from beam bending (which makes them

effective even in heavily populated and built-up areas), and utilization with

cruved approach and variable glide paths. These features make these systems

particularly desirable for intraurban transport operations.

En route Airport Surveillance Radar (ASR) information will be made

available for hand-off to control tower personnel. The combination of separate

curvilinear approach and departure paths and ASR further enhances collision

and hazard avoidance capability, particularly where tall buildings may lie

within the commuterport area. Figure 2.1-27 illustrates this capability.

Wide angular coverage permits acquisition by aircraft well separated in

altitude, position, and touchdown time. Obvious advantages in terms of

collision and hazard avoidance are apparent in the two views shown. Acqui-

sitions at time t.. has the aircraft widely separated in position and altitude.

Programmed curvilinear paths result in the separation on final approach shown

at time t?.

For the purpose of maintaining high frequency of flight schedules

in arrivals and departures, especially during the peak hours (corresponding

to the surface "rush hour" periods), flight separation and altitude standards

must be rigorously maintained. Since this impacts on tne total intraurban

network, rather than on a station-to-station basis, keeping track of and

maintaining the steady flow of traffic will be the. function of a central

intraurban Air Traffic Control Center. Here, by use of air-to-ground data
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link, surveillance radar, secondary radar, and a cooperative Collision

Avoidance System, a ground control digital data processor/computer will track

all aircraft in the network and display their tracks on a Traffic Management

Display Console.

Intruders would be quickly noted and warning and avoidance instruc-

tions could be fed to the affected aircraft. Figure 2.1-28 depicts a

typical arrangement concept for the 1975 time frame. For the 1985 time frame,

the data link system would have to be able essentially to "fly" each aircraft

automatically, throughout the route structure and institute landing and

takeoff procedures via satellite controls at the terminal areas.

2.1.2.5.2 Navigation Collision Avoidance and Separation Standards

Airborne navigation equipment, as previously defined in the Lockheed

Phase I report includes precision area navigation systems, data link, micro-

wave ILS receiver, weather radar, collision avoidance, and other appropriate

systems. The basic area navigation (R-Nav) system concept will utilize

received signals from existing, as well as supplemental, VOR/DME stations, in

conjunction with a computer and stable platform to provide position data. The

area navigation feature is obtained through the computer by "moving" the

VOR/DME station(s) to points intermediate along the flight path. This gives

the crew continuous bearing and distance information in terms of the new

"location" of the VOR/DME. Separation of parallel tracks is thus easily

obtained. Use of area navigation allows the most flexible routing for the

fleet without constraint upon VOR radial tracking and/or high crew workload.

Thus, an instant capability would be available for fast route changes

extending routing and ferry flights, weather and hazard avoidance. Routes

may be coordinated within the intraurban transport structure as well as for

flights outside the local system. Standard VHF/UHF ILS receivers/couplers

will be included to allow conventional approaches whenever necessary at

alternate airports.

Data link exchange with ground terminal sources, including the main

Air Traffic Control Center described previously, will allow four-dimensional

guidance and monitoring to be maintained consistent with the strategic control

plan. Use of an inertial platform, while not considered absolutely necessary
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for navigation and guidance purposes alone, would however be desirable as an

aid in effective flight path control during final approach when used in con-

junction with the automatic flight control system. Pilot confidence during

Category III approaches would also be greatly enhanced by use of a self-

contained landing monitor radar system and display. This landing radar

would also be of significant value in collision and hazard avoidance with

other aircraft or buildings.

The precision demanded of a Category III landing within the

intraurban transport system will, of necessity, preclude the pilot from

being actively involved in the control loop. Essentially automated flight

control is envisioned from takeoff to touchdown. The pilot and copilot will

act primarily as vehicle system monitors with the capability to intervene and

override the operation of automatic systems in the event of impending or

actual malfunction. (The automatic flight control is also discussed in

Section 2.1.1.7.)

In navigating between takeoff and landing points with the short

separations dictated by the high frequency of service demands, it can be

seen that the desired 30-second spacing in cruise flight amounts to about

12 000 feet separation. An on-board collision avoidance system would be

mechanized so that other similarly equipped aircraft could never get closer

than 6000 feet without an avoidance maneuver being commanded (climb or dive).

Aircraft which might have inadvertently drifted into the intraurban system

traffic lanes and altitudes must be assumed to be lost or illegally present

in this air space. By 1975* legislative standards for the control of airspace

will almost certainly have to be adopted to cover this aspect of intraurban

transport operations. These intruders would generally be detected by the en

route ground radar surveillance system, by visual observation (in VFR

situation), and by on-board radar if utilized. High intensity collision

lights would be installed on all aircraft in the system.

The on-board R-Nav system, which might also include a moving map

display or readout would present not only its own aircraft track but encompass

(via its data link/collision avoidance system) those aircraft within a 10-mile

radius. This would enable the pilot to adjust his spacing in cases where other

aircraft might be experiencing difficulty in maintaining airspeed.
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2.1.2.5.3 General Avlonic Systems, Communications and Supporting Subsystems

Table 2.1-8 lists those items of avionics that will most likely

be used in the intraurban transport of the 1975 time frame. The standard

communication .equipment listed will be provided as detailed in the Lockheed

Phase I report. Air-to-ground voice contact will be primarily used to verify

hand-off from departure area to en route and then to arrival area in the 1975

system. It could also be used to report emergency situations, such as equip-

ment failure, on-board mishaps or illness. This complete 1975 system could

be compatible with use on VTOL and STOL type aircraft which could utilize up

to a 45 maximum glide slope approach.

To bring the 1975 system to full fruition, a complete listing of

hardware and software must be properly defined and specified. The several

vehicle types under consideration for the intraurban transport have approach

and departure characteristic differences that will influence the coordination

of guidance system accuracy, precision of command links with the ground

environment, and traffic control safety criteria. After these vehicle

characteristics have been delineated, the optimization of the avionic

equipment and the detailed route structure planning can begin.

Production of the hardware for 1975 is essentially current state-

of-the-art; and integration of the hardware, software, and the human operators

(ground and airborne) represents the major challenge for immediate development.

Figure 2.1-29 presents a block diagram of the aircraft avionic system for

the 1975 intraurban aircraft.

2.1.2.5.k Development Into the 1985 Time Frame

The 1985 intraurban system envisions an even more tightly integrated

structure for overall intraurban transport operations. This will take the form

of improved computation and data exchange capability and will allow the single

centralized Air Traffic Control Center to service the entire extended area.

Extension to Category III-c (zero-zero) weather conditions would almost

certainly be implemented. Overall equipment weights may lighten somewhat due

to advancing technology, and increased integration, but this may be offset by

the need for utilization of additional functions.
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TABLE 2.1-8. AVIONICS WEIGHT SUMMARY*

System

VHF Communications
Passenger Address
Interphone
Selcal System and Data Link Receivers
Voice Recorder
Flight Data Recorder
Air Traffic Control Transponder
VOR/LOC/Glide Slope (iLS) for use at

CTOL ports
Precision Landing Aid (Microwave ILS)
Distance Measuring Equipment (DME)

Dual Frequency
Marker Beacon
Independent Landing Monitor Radar
Radar Altimeter
Weather Radar and Display

(Multipurpose )
Collision Avoidance System
Area Navigation System**
Attitude and Heading Reference System
Air Data System
Flight Director
Instrument Monitoring System

1975

Weight per
System
(lb)

17.5
90
20
10
20
25
20
20

15
1(0

3
150
20
55

90
65
25
40
25
5

Number of
Systems

2
1
1
1
1
1
2
2

2
2

1
1
2
1

(2 Ind)
1
1
2
1
2
1

Total
Weight
(lb)

35
90
20
10
20
25
1*0
ItO

30
hO

3
150
ko
55

90
65
50
to
50
5

1975 1985

Subtotal 898 600

Installation 300 275

Total Installed Weight 1,198. 875

* Does not include FCS/AFCS

** Computer, Data Storage, Control and Display

LOCKHEED



CR

H

t
U

f
a

•p

(D
O

ON
OJ

CM

(U

LOCKHEED



CR

The areas in which this enhanced and increased automation are

most apparent would be in the terminal commuterports. While the basic ILS

approach as defined above will.be the same, the landing and takeoff scheduled

times will be remotely controlled by signals from the Main Air Traffic Control

Center. A degree of latitude should be allowed for at the ramp to take into

account passenger imponderables and mishaps, but takeoff times will be rigidly

controlled. Any minor delay would be made up en route by speed command via

the central computer.

The pilot's job will then be that of supervisor of the airborne

system part of the overall system. Any deviation in flight paths and schedules

would be noted by the ground computer and the pilot would get instructions

from the ground control. Failure of the aircraft system to maintain the

schedule (due to malfunctions) would require that the aircraft land at a

directed point in the network or at another commuterport possibly selected by the

pilot. The computer control would readjust speeds, courses, and altitudes to

bring the remaining aircraft back into the normal schedule of operations.

Likewise, as traffic density demands diminish, as during off-peak loads,

aircraft could be redirected or taken out of the system.

Since operation will be required down to CAT III-c, automatic

taxiing to the ramp will be mandatory. This could be achieved by buried

cable for induction-coil servo guidance control of the nose-wheel steering

machanism.

The equipment needs for both the airborne and ground stations

will still be quite similar to the 1975 baseline concepts described previously.

Since the 1975 system already possesses the capability of automatically

landing the aircraft in a hands-off operation, the major differences will be

in the area of remote control of the separate terminal operations.

This, however, will add significantly to the software mechanization

at the Central Computer. It will also require an order of magnitude increase

in system redundancy to avoid temporary havoc upon catastrophic failure of

the central traffic control system due to such factors as power failures,

lightning, earthquakes, etc. Of course, the pilot will always have the option

of complete reversion to manual or semiautomatic control modes, and can

operate to any airport under normal navigational procedures.
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2.1.2.5.5 Summary of Technological and Economic Factors

In summarizing the impact that the intraurban transport would have

upon the basic state-of-the-art in airborne and ground-based facilities and

operations, it may be stated that'the approaches described previously require

no major development efforts to arrive at a viable system for the 1975 time

frame. Most of the subsystems concepts utilize existing technology while the

specialized needs for the interface of computer/hardware systems would be met

by systems design practice.

With regard to economic factors of costs and real estate acquisition

requirements, it has been the intent to consider those system concepts that

impose a minimum burden on the local airport planning and management agencies.

This has been achieved by the heavy utilization of a single, central control

and management system approach minimizing major systems complexities at the

local intraurban terminal areas.

2.1.2.5.6 Automatic Flight Control System

The systems described above are based on use of an automatic

flight control system (AFCS). General characteristics of the system are

discussed below.

Operating AFCS Modes - Many of the AFCS modes will be identical

to those currently used in conventional jet airline equipment. These mode

titles include: Stability Augmentation, Altitude Select and Hold, and AutoWav.

Somewhat novel, but state-of-the-art for 1975> are modes such as Auto Throttle

(ETA control using navigation data), Auto Land (automatic capture of microwave

ILS and path and letdown guidance). Possible system modes and functions for

the various phases of flight are listed below.

Stability Augmentation Improves handling qualities

Control Wheel Steering Provides uniform vehicle response to

pilot input

Altitude Hold and Select Maintains desired radio or barometric .

altitude and allows selection of

another altitude and climb rate

LOCKHEED
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AutoNav Maintains ground track as specified by

selected navigation source

IAS Hold Maintains airspeed through conventional

surfaces

Auto Throttle Controls ground speed through navigation

inputs for schedule and collision

avoidance control

Auto Land Controls the aircraft "by airport

referenced inputs: curvilinear

approach guidance, letdown, flare

and rollout

Design for the modes listed vill have to include transition

blending of vehicle response characteristics, especially in the takeoff and

landing modes.

One of the primary considerations in the design of an

automatic flight control system is safety'and functional reliability. This

is particularly important for the intraurban transport which must make

Category III landings. For adequate safety" the reliability must be very high.

For example, a measure of reliability for an automatic landing system which

is currently considered satisfactory in some circles is one landing failure
7

in 10 landings. Since it is not possible to design hardware which will
7

experience no more than one failure in 10 landings, the system must conse-

quently be designed to permit one or more failures without causing a

significant degradation in system performance. This is achieved through

redundancy.

The optimum redundancy level is that which achieves the desired

reliability at minimum cost. In the design of the automatic flight control

system, the redundancy level for each of the several modes of operation is

normally selected by means of a trade-off study in which various redundancy

models are compared on the basis of reliability and cost.

The redundancy configuration selected for 1975 must be compatible

with the following:

1*19
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• In the automatic landing mode, the system should "be fail-

operative for the first failure and fail-safe for the second

failure.

• After two failures in the normal automatic landing mode, the

system should still be fail-operative for a conventional

(shallow approach angle) mode of landing.

The above requirements are based upon the belief that after two

AFCS failures in an automatic IUT landing, the pilot would elect to revert

back to the "conventional" mode of approach and divert to Detroit

Metropolitan Airport.

For 1975 period, the use of four instrument landing receivers is

assumed. Two will be microwave ILS type, and two will be conventional ILS.

In-line monitored, fail-safe ILS receivers are currently available for use

with existing ILS systems. These same techniques can be applied to the new

microwave ILS receivers. A pair of in-line monitored receivers make a fail-

operative combination since any failure in one receiver will cause it to be

disconnected while the second receiver continues to function.

To meet the stated requirements, it is necessary that those

portions of the AFCS which are used for both automatic landing and automatic

cruise operation be quadruplex. This portion of the system would include

common sensing and computation equipment and actuators for the aerodynamic

controls which are used for all phases of flight.

The redundancy configuration for 1985 must be compatible with

the following: in the automatic landing mode, the system should be fail-

operative for the first and second failure.

By 1985> the use of microwave ILS will be expanded to include

conventional airline operations, and the need for two present day ILS

receivers will be gone. One microwave ILS receiver will replace the conven-

tional receivers. The degree of reliability necessary for operation is still

maintained. Also, by 1985> means for automatic taxi guidance should exist,

and these can be coupled into nose wheel steering actuators for fully

automatic Category III-C operations.

LOCKHEED 20
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Impact of Microelectronics on AFCS Design - The usage of micro-

electronics in flight controls is quite a recent development, but the interest

in this application is groving at a tremendous rate. The projected use

indicates that for an AFCS to be operational in 1975 as much as Qd% of the

electronic functions will be using microcircuits, in one of the various forms,

distinguished from discrete components. This prediction is based on the

present "analog" type of AFCS. If a digital autopilot has been developed

by 1975> the percent usage of microelectronics could be as high at 95$.

It is likely that the equipment/systems will contain microelec-

tronics in more than one of its forms; i.e., monolithic, hybrid, chip or

hybrid film circuitry. In general, all digital functions will be accomplished

with monolithic (off-the-shelf) circuits and some type of custom Medium-Scale

Integration (MSI). The linear functions will be accomplished by monolithic

operational amplifiers and custom chip and hybrid film functional elements in

addition to a few necessary discrete components.

The reasons why future AFCS will demand the extensive use of micro-

electronic elements are fairly obvious and can be listed!

• Decreased size and weight

• Increased system reliability

• Lower power drain/less heat rejection

• More effective maintainability

• New system design concepts possible

• Lower purchase costs

« Lower system development costs

• Simplified logistics

• Simplified inventory

• Improved availability

• Improved system effectiveness

• Lower maintenance costs

LOCKHEED
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Many of these factors are interrelated and interdependent. For

instance, increased system reliability and more effective maintainability

tend to lower maintenance costs, simplify logistics, simplify inventory and

ultimately improve availability and system effectiveness.

The important point to note is that microelectronics is not

simply to reduce size and weight of the AFCS, but allows the use of whole

new avenues of design in terms of redundancy, complex adaptive control,

multiplexing, digital control, etc.

Analog vs Digital Mechanization - It is clear from the above

discussion on modes and redundancy that the IUT AFCS will be quite complex

by today's standards. The level of redundancy required is higher than any

currently in operation. Also the combination of flight path control require-

ments, along with load alleviation, requires additional modes, signal paths

and actuators. System complexity makes the digital computer a strong contender

for this application since it is generally agreed that while the analog

approach is better for simple systems, digital is better for complex. It is

difficult to Judge where the crossover point occurs without further design

refinement.

Several criteria can be used for comparison of the analog and

digital approaches. Consider the following: -

• Accuracy

• Flexibility

• Cost of ownership

• Reliability

With regard to accuracy it is generally agreed that the digital

computer can be made more accurate than the analog. Achieving analog

accuracies better than 1$ is difficult, but an order of magnitude improvement

can be achieved with a digital approach. However, the accuracy of the analog

system may be adequate for this application. The absence of drift in the

digital computer makes unnecessary the cross-channel balancing which is

required in redundant analog systems, especially where series integration

is used.
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Flexibility is an important feature during the development phases

of a flight control system since a number of changes are normally found to

be unnecessary as a result of flight test or field experience. The variable-

increment digital computer shovs a clear advantage in this area since the

program can be changed by modifying the plug in programmer board, regardless

of the magnitude of the change. Large-magnitude changes in an analog computer

might require a complete redesign.

Total cost of ownership depends not only on initial cost but on

the cost of maintaining the system during its life. Regarding the initial

cost, the digital system is likely to be less expensive primarily because

it will be less complex. Cost of maintenance depends on reliability and

ease of repair. At this time there is no firm basis for assigning a

reliability advantage to either system, except on the basis of parts count.

Both systems would make extensive use of microcircuitry and be completely

solid state. The analog system would be easier to repair.

It is predicted that if the choice between analog and digital

were made purely on the basis of the criteria listed above, the digital

computer would be chosen. It is likely, however, that additional factors

will be considered in arriving at a choice. One is the fact that the analog

system is easier to understand, on an intuitive basis, and flight crews

typically feel more comfortable using a system they can understand. Also,

analog is the traditional form of mechanization for aircraft automatic flight

control systems, and the human natural reluctance to change may delay the

introduction of the digital approach until it represents an overwhelming

cost effectiveness advantage.

LOCKHEED ^
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2.1.3 ECONOMIC ANALYSIS

The Phase I effort established the cost elements and the cost

estimating relationships for these elements and combined them into computer

models for the determination of Direct-Operating Cost (DOC), Indirect Operating

Cost (IOC), and Total System Cost (TSC). These models are displayed in

Volume II, paragraphs 1.2.1.3 and 1.3.1.2. The models are used in the

development of the parametric data, and in the system synthesis and selection.

The results are found in Volume I.

The cost analysis effort in Phase II is devoted primarily to a

more detailed examination of the systems operational parameters and cost

factors, and a final evaluation of the vehicles selected in Phase I. The

results of the examination of these items are reported in the area of cost

where they are used. For instance, the maintenance analysis is reported under

DOC cost and the analysis for the personnel for the commuterports is included

under IOC. The major items that were examined for their effect on cost are:

« Engineering

• Flight Test

• Maintenance

• Airport land ratio

• Number of system personnel

• Number of work shifts

• Parking area required

• Airport field length for helicopters

• Runway capacity

• Fueling time

o Publicity

A few of the changes resulting from the Phase II effort are

direct changes to the cost estimating relationships in the various models,

and others are input changes. The input changes are tabulated in Table 2.1-9.

These refinements on costs are noted by comparing the costs
resulting from these changes with the costs reported in Phase I. The comparison

is based on the same ground rules that were used in Phase I so that the effect

LOCKHEED
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TABLE 2.1-9

INPUT DATA CHANGES

DATA

Number of Shifts Worked

Airport Land to Runway Ratio

Traffic Servicing Personnel

Fueling Personnel

Dispatch & Comm. Personnel

Annual Pay for System
Personnel

Publicity Cost Factor

Helicopter Field Length

SYMBOL

SHFT

RLAND

PERST

PERSF

PERSD

PAY

PCF

RUN

UNITS

-

-

-

-

-

$/yr

$/Pass

ft

PHASE I
VALUE

3

3

6

2

2

10,000

.50

150

PHASE II
VALUE

2

15

k

I

0

13,500

.25

600

LOCKHEED
1*25



CR

of the changes may be noted. The effect of the changes is compiled for all

of the cost elements under Total System Cost in paragraph 2.1.3-^«

2.1,3.1 Aircraft Development Cost

The engineering hours for development of the airframe for the

aircraft in the Intraurban Transportation Systems Study are projected by the

use of an estimating relationship that was developed by the RAND Corporation

(see page 1̂ 6.of LR 23820-6, Volume 2). This device has been used extensively

in parametric data analysis of many types and has provided reasonable results.

The estimating relationship estimates the total engineering hours

for development, with the exception of the flight test hours for which there

is a separate equation. The independent variables in the engineering hour

estimating relationship are maximum design speed and total maximum thrust.

These variables were changed significantly for each concept. The interrela-

tionships between thrust, weight, and field length are shown in Table 2.1-10.

These airplanes, in the deflected slipstream family were chosen because they

were the closest in size to the Lockheed Electra and represented the entire

range of thrust-to-weight ratios. Since design speed is constant for all

cases, the variation in cost is caused by the variation in maximum thrust.

Thrust is used as the unit for the parameter because the eshp is converted
to thrust in the ASSET program. The same conversion constant is used for

all of the turboprop eshp's to thrust. As noted by the comparison of

engineering hours in Table 2.1-1Q, the hours calculated by the estimating re-

lationship are in agreement with the actual hours for the Electra. None of the

deflected slipstream aircraft may be directly compared to the Electra because

of the size difference, as measured in empty weight and thrust-to-weight

ratios. The No. (2) deflected slipstream has approximately the same thrust-

to-weight ratio as the Electra, but is only 65$ as large as the Electra in

terms of weight empty. Ratloing the actual engineering hours of the Electra

by the empty weights would give an estimate of 2 800 000 hours, for the No. (2)

deflected slipstream, whereas the calculated estimate is approximately 13%

less than this. This is considered reasonable because of the differences in

design requirements between the Electra and the Intraurban aircraft. The

intraurban aircraft does not require a pressurized cabin, does not require a

LOCKHEED 1+26
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galley, and the cabin furnishings are austere. The landing gear is fixed,

and the aerodynamic design is straightforward and simple. These factors

would tend to reduce the hours for design and ground test.

The No. (1) airplane is smaller than the Electra, in terms of

weight empty, but requires more engineering hours because of the higher T/W

ratio. The effect of the T/W ratio on cost is shown by examination of the

information on Table 2.1-10.

The estimate of the flight test cost is dependent upon the gross

weight and maximum speed of the airplane and the number of airplanes assigned

to the flight test program. The cost of the flight test program for the

intraurban aircraft is determined on the basis of six aircraft in the flight

test program. The flight test costs, as determined by the equation in

LR 23820-6, Volume 2, are shown in Table 2.1-11. The Electra actuals are

given in hours then converted to dollars using the same engineering rate as

is used in the design engineering cost.
The comparison indicates that the calculated flight test cost for

the Electra is lower than the actuals by U3$. Since the flight test is

calculated in dollars rather than hours, the estimate is affected by inflation.
The flight test equation was derived from data that is several years old and

needs to be adjusted for inflation. The amount of inflation varies by year

with the latter years approaching 6%. Modifying the equation by the year of

the data base produces an inflation factor of 1.32. Applying the inflation

factor to the calculated flight test cost brings the cost to that shown in

the last column of Table 2.1-11. The application of the inflation factor

orings the calculated flight test cost for the Electra more in line with the
actual.

The intraurban aircraft adjusted flight test cost appears reason-

able in comparison with that of the Electra. The intraurban aircraft are

smaller and less complicated because of the fixed gear and the unpressurized

cabin. The intraurban aircraft flight test costs are higher than those of

the Electra if size is considered as the scaling factor for computing the

relative cost. Moreover, they are proportionately higher because there were

six intraurban aircraft assigned to the flight test program whereas there

LOCKHEED
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were four Electras. The flight test cost equation is adjusted for inflation

for the final economic evaluation of the intraurban aircraft. The adjustment

increases the development cost slightly, but the overall effect on the DOC

is insignificant.

2.1.3.2 Production Costs

The basic aircraft configurations studied during Phase I and II

are listed in Table 2.1-12 and 2.1-1$ along with the technology levels
assumed and a brief description of their important design features. Several

features that are common to all configurations and that have a bearing on the

purchase and operating cost are listed below:

• Uhpressurized cabin

• Fixed landing gear

• Austere passenger accommodations

• No galley

• Nc cabin crew

The Phase I activity for estimating the production cost of the

aircraft involved the establishment of basic ground rules, development of

appropriate cost factors for labor and material, modifying existing computer

programs, and establishment of the flyaway cost for the Phase I configurations.

The basic ground rules for the airframe cost analysis are:

• These estimates are for engineering analysis purposes only,'

and no price quotes are implied or intended

• Estimates are in constant 1970 dollars

• An Bo% learning curve is used for production labor

• A 95$ learning curve is used for materials

• Basic production quantity is assumed to be 300 aircraft

• Composite material for the 1985 technology is assumed to be

graphite, and its material cost .is estimated at $50 per Ib.
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The flyaway costs for the Phase I aircraft are shown in Volume 2

in Tables 1.3-3 and 1.3-6. The flyaway cost information for the Phase II air-

planes is tabulated in Tables 2.1-lU through 2.1-1?. The flyaway costs shown

in these tables are based on a production quantity of 300 for the 60 passenger

configuration only. For costs at other production quantities Figure 2.1-30 is

provided. For a detailed breakdown of the airframe cost, at the 300 production

quantity Tables A2.1-3 through A2.1-10 of the Appendix (Volume k) are provided.

2.1.3.2.1 Airframe Production Cost

The airframe cost includes all structure and functional systems

as well as the installation of engines and avionics, but not the initial cost

of these two items. The cost elements included in the production airframe

cost are described below.

• Production Labor - This is all labor expended directly for

fabrication, assembly, and installation by production groups

and organizations. All labor cost includes appropriate

direct labor, overhead and general and administrative

costs (G & A).

• Quality Assurance Labor - This includes all hours expended for

the various inspection and quality assurance functions. A

factor of 20$ of production labor hours is used.

• Material - Raw materials, purchased parts, major equipment,

and subcontracted tiems are included.

• Sustaining Engineering - Costs for maintaining drawings and

data, support to production and other organizations, product

improvement, and other necessary engineering functions are

sustaining engineering costs.

• Sustaining tooling - Cost of tooling changes, and the removal

and replacement of worn tooling are sustaining tooling costs.

• Technical Data - Technical orders and manuals, handbooks of

instructions, flight and maintenance manuals, vendor handbooks,

spares provisioning and certain other data and drawings

constitute technical data costs.

LOCKHEED ^33
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TABLE 2.1-1U. SUMMARY COMPARISON - 40 PASSENGER CONFIGURATION

40 Passenger Configuration

Technology Level

Gross Takeoff Weight (ib)
Weight Empty (lb)
Number of Engines
Thrust per Engine (lb)
Development Cost ($-M)
Development Cost/AC ($-M)
Production Cost ($-M)

Air frame
Engines
Avionics

Total Flyaway Cost ($-M)

Total Flyaway Cost (incl. Dev. )

Deflected
Slipstream

1975

32,158
22,272

1*
2,970
129.6
0.432

1.222
0.244
0.350

1.8l6

2.248

1985

28,065
18,414

4
2,594
11*4.1
0.480

1.578
0.285
0.350

2.213

2.693

Compound *
Helicopter

1975

40,716
27,589
4

3,412
131.8
0.439

1.887
0.334
0.350

2.571
3.010

1985

26,539
14,814

4
2,880
107.2
0.357

1.492
0.288
0.350

2.130

2.487

Autogyro

1985

26,231
14,396

4
3,550
120.2
0.401

1.425
0.308
0.350

2.083
2.484

TABLE 2.1-15. SUMMARY COMPARISON - 60 PASSENGER CONFIGURATION

60 Passenger Configuration

Technology Level

Gross Takeoff Weight (lb)
Weight Empty (lb)
Number of Engines
Thrust per Engine (lb)
Development Cost ($-M)
Development Cost/AC ($-M)
Production Cost ($-M)

Airframe
Engines
Avionics

Total Flyaway Cost ($-M)

Total Flyaway Cost (Incl. Dev.)

Deflected
Slipstream

1975

1+2,204
27,951

4
3,902
149.1
0.497

1.516
0.276
0.350

2.144

2.641

1985

36,969
23,018

4
3,417
165.4
0.551

1.971
0.324
0.350

2.645

3.196

Compound
Helicopter

1975

56,519
36,517

4
4,525
160.0
0.533

2.n60
0.404
0.350

3.214

3.747

1985
36,278
19,611

h
3,900
132.8
0.443

1 r\]ir\
• y+y

0.372
0.350

2.671

3.114

Autogyro

1985

35,929
18,978

4
4,875
152.0
0.507

1.853
0.428
0.350

2.631

3.138
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TABLE 2.1-16. SUMMARY COMPARISON - 80 PASSENGER CONFIGURATION

80 passenger Configuration

Technology Level

Gross Takeoff Weight (ib)
Weight Empty (ib)
Number of Engines
Thrust per Engine (Ib)
Development Cost ($-M)
Development Cost /AC ($-M)
Production Cost ($-M)

Airframe • ' •
Engines
Avionics

Total Flyaway Cost ($-M)

Total Flyaway Cost (Incl. Dev.)

Deflected
Slipstream

1975

52,082
33,̂ 73

k
M15
166.7
0.556

1.806
0.305
0.350

2.1*61

3-017

1985

U5,721
27, ̂80

k
U,227
18̂ .7
0.6l6

2.363
0.357
0.350

3-070

3.686

Compound
Helicopter

1975

72,332
5̂,7̂ 8

1*
5,650
190.8
0.636

3.0̂ 0
0.510
0.350
3.900

.̂536

1985
U6,U73
2lt,5Mf

k
M50
155-9
0.520

2.U20
0.1+36
0.350

3.206

3.726

Autogyro

1985

U6,8lU
2̂ ,556

k
6,1*30
185.1
0.617

2.U07
0.56U
0.350

3.321

3.938

TABLE 2.1-17. SUMMARY COMPARISON -.100 PASSENGER CONFIGURATION

100 Passenger Configuration

Technology Level

Gross Takeoff Weight (ib)
Weight Empty (ib)
Number of Engines
Thrust per Engine (ib)
Development Cost (R-M)
Development Cost/AC ($=M)
Production Cost ($-M)

Airframe
Engines
Avionics

Total Flyaway Cost ($-M)

Total Flyaway Cost (incl. Dev.)

Deflected
Slipstream

1975

62,290
39,306

k
5,759
iQk.O
0 = 613

2.110
0.331
0.350

2.791

3.̂

1985

5̂ ,68U
32,139

h
5,056
203 A
0.678

2.782
0.388
0.350

3.520

U.198

Compound
Helicopter

1975

— —

—
-

--

—
—__

—
—

—

—

1985
__,

--
-

--
--
—__

~
•>-

—

—

Autogyro

1985

58,585
30,98̂

If
8,150
221.9
0.7̂ 0

2.971
0.676
0.350

3.997

.̂737
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1975 COMPOUND HELICOPTER

1985 COMPOUND

60 PASSENGER CONFIGURATION
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1 1985 AUTOGYRO
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60 PASSENGER CONFIGURATION

100

AIRCRAFT PRODUCTION QUANTITY

1000

FIGURE 2.1.30. AIRCRAFT FLYAWAY COST VERSUS QUANTITY
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• Miscellaneous - Costs associated with production that are

not included in any of the other flyaway cost elements are

miscellaneous costs.

• Engineering Change Orders (ECO's) - Costs for changes and

modifications are ECO costs.

• Warranty - A warranty factor of 5$ was applied to all of the

above cost elements.

• Profit - A profit factor of 12% was applied to all of the

above cost elements.

Basic statistical cost factors were developed in terms of produc-

tion manhours and material dollars per pound of empty weight for the 1975

conventional takeoff and landing (CTOL), propeller powered configuration.

This formed the basis for extrapolation of data representative of the other

configurations. Major design differences were analyzed and their cost

impact included in the baseline cost factors. The basic cost factors are

assumed for a 30 000 pound empty weight vehicle at the 100th cumulative

average cost.

The labor hours and material dollars are summed, and a cost-

sizing factor is applied to the totals to adjust for increases and decreases

from the basic 30 000 pound baseline. An analysis of historical aircraft

manufacturing costs indicates that as aircraft empty weight increases, the

cost per pound decreases. The cost per pound increase approximates a

straight line on log-log graph paper, similar to a cost/quantity plot

except that dollars are plotted against weights. For this study, it is

assumed that typical slopes for aluminum aircraft of 96% for labor and 99$

for material can be applied against the total labor and materials.

Straight line, logarithmic, cumulative average learning curves

are then applied to arrive at appropriate cost for a given quantity. • The

basic production quantity for all of these configurations was assumed to

be 300 aircraft. The other elements of flyaway costs are then calculated

and summed to arrive at the total airframe flyaway cost.

LOCKHEED
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Data for establishing basic cost factors were obtained from such

Lockheed military aircraft as the F-10U, P-3, C-130, C-lkl, C-5a, AH-56A, and

S-3A as well as commercial aircraft including the Electra and the L-1011.

Extrapolations were made from basic data when required to provide cost data

consistent with the overall requirements.

Graphite was selected as the composite material for use in these

cost studies. There is practically no agreement within the aircraft and

related industries as to either the current or the future price of composites.

Near term projections range from as high as $1+00 per pound to as

low as $26 per pound, while projections for the 1975-80 time period range

from $50 to $1 per pound.

The yearly usage plays an important part in determining the cost,

and projections of usage vary as much as the price estimates. For purposes

of this study, a cost of $50 per pound of graphite was used, based on a

production rate of 10 000 to 20 000 pounds per month, although it is recog-

nized that this price may vary with the usage on a specific aircraft as well

as usage on other programs. Due to the uncertainty of price projections for

graphite composites, it was decided that a variation in the price to corres-

pond with usage was not warranted; therefore, $50 per pound was used throughout

the study.

Costs in terms of hours and material dollars per pound were based

on a study conducted for another program in the preliminary design phase.

An analysis of structural component applications for items such as skins,

stringers, formers, and ribs was conducted for each structural weight group

(wing, tail, body, etc). Consideration as to whether these components could

be layed up by machine, rather than by hand was part of the study. Basic

aluminum costs for fabrication, labor and material costs were developed.

Appropriate complexity factors for fabrication of components with graphite

were developed based on the manufacturing operations involved for each

specific component. These complexity factors were multiplied by the basic

aluminum costs and were applied against the estimated weights of the components,

Summation of costs for both aluminum and composites provided an adjustment

factor for the fabrication labor and material costs.

LOCKHEED
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2.1.3-2.2 Propulsion Production Cost

The engine production cost is determined by modified estimating

relationships developed by the RAND Corporation (RM-̂ TO-PR, July 1965> an^

RM-638Vl-PRj September 1970). These equations (turboprop, and turbojet/

turbofan) were modified to reflect the cost of commercial engines rather than

military. These equations are provided in Volume 2, paragraph 1.2.1.3.2.

2.1.3.2.3 .Avionics Production Cost

The avionics package is a category II system and is the same for

all aircraft in terms of capability and cost. The total procurement cost

is $350 000 per aircraft. This does not include the installation cost, which

is included under airframe cost.

LOCKHEED 3̂9
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2.1.3.3 Operations Cost

The operations costs include both DOC and ICC. The elements and

cost estimating relationships are given in Volume 2, paragraphs 1.2.1.3 and

1.3.1.2.

2.1.3.3.1 Direct Operations Cost (DOC)

The fhase I analysis shows that maintenance is the largest item

of cost in DOC, and is the most promising from the standpoint of cost reduc-

tion. The maintenance model is re-examined to determine whether it is

producing realistic costs. The justification is based on a maintenance cost

comparison between the Fairchild Killer F-2? and the deflected slipstream

intraurban aircraft. The major contributors to maintenance cost are also

examined for possible cost reduction. Because a detailed examination is not

possible within the scope of this study, such examinations were made in a

parametric manner.

The maintenance cost for the fixed and rotary wing aircraft is

determined by a number of estimating relationships that are presented in

Volume 2, paragraph 1.2.1.3. These relationships are established in terms

of labor and material dollars as well as by flight cycle and flight hour. An

example of the maintenance cost breakdown is shown in Table 2.1-18. These

costs are for the 60-passenger deflected slipstream aircraft operating from

a 1500-foot runway.

A gross comparison of the major design parameters reveals that

the Deflected Slipstream - 1975 design is similar to the Fairchild Killer F-27.

These characteristics are reflected in Table 2.1-19.

The maintenance cost information contained in Table 2.1-18 was

used to determine the maintenance cost per flight hour in terms of flight

time per stage length, and compared with the F-27 maintenance cost. This

comparison is reflected in Figure 2.1.31. The average flight time per flight

for the F-27 is 0.63 hours and its reported maintenance cost is $61.70 per

flight hour. This is slightly above the curve generated for the Deflected

Slipstream airplane.
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TABLE 2.1-18. MAINTENANCE COST

MAINTENANCE COST

M A T E R I A L S MAKE-UP

EQUIPMENT AND FURNISHINGS
LANDING GEAR
T I 3 E S AND 8 R A K E S
OTHER S Y S T E M S
STRUCTURE
OTHER POWER PLANTS
PPJPeLLERS
GEAR AND SHAFTING
ENGINES - TURBOJETS
ENGINES - TURBOPROPS

T O T A L M A T E R I A L S C O S T

LABOR MAKE-UP

EQUIPMENT AND FURNISHINGS
LAUDING GEAR
TIR F.S AND SHAKES
OTHER SYSTEMS
S TR UC TUR £
OTHER POWER P L A N T S
PPOPfcLLERS
GF.AR AND SHAFTING
eiMf, INES - TURBOJDTS
ENGINES - TURBOPROPS

TOTAL LABOR COST

TOTAL MAINTENANCE C O S T

D C L L A R S
PER

FLIGHT
CYCLc

21.HO

15.235

1.453
2.326
3.359
1.508
1.544
3.161
0.517
0.669
C.O
6.652

21.190

1.^72
1.324

1.175
2.659
0.382
2.009
0.9*2
0.0
4.372

15.235

36.425

PERCENT

49.211

35.381

6.859
10.978
1 5 . 85 1
7.118
7.288

14.917
2.439
3.159
0.0

31.392

100.000

9.659
11.971

7.715
17.453

5.787
13.189

5.526
0.0

28.699

1 00.003

84.592

DOLLARS
PER

FLIGHT
HOUR

3.334

3.301

0.045

0.484

0.641
0.100
0.026
0.0
2.035

3.334

0.221

0.568

0.341
0.518

0.0
1.654

3.301

6.635

TOTAL
CCST

IN
PERCENT DOLLARS

7.743 24.524

7. £66 18.536

43.060

1.357

14.531

19.231
2.995
0.845
0.0

61.041

100.000 24.52*-

6.696

17.202

10.321
15.682

0.0
50.098

100.000 18.536

15.408 43.060

PERCENT

56.953

43.047

100.000

56.953

'3.047

100.000

LOCKHEED



CR

C
M

P
A

R
IS

O
N

o

I
COw

ON
rH
1
H

CVJ

3

Hw
c^

£^4 1
H pti
wo

§

JS
TR

E
A

M

H LTN
M C~-

ft O
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Examination of the data in Table 2.1-18 indicates that the tires,

brakes, landing gear, and engines comprise a large part of the total mainten-

ance cost. The table offers opportunity for design-for-maintenance philosophy.

The appearance of the landing gear is not so important as the ruggedness. The

drag imposed on the aircraft by the fixed gear is not important for the short

stage lengths used in .the Detroit scenario, and therefore the gear can be

fixed and rugged so as to reduce maintenance. Beefing up the landing gear

would impose a weight and cost penalty on the airplane, but this would, no

doubt, be offset by the decrease in maintenance cost. For instance, if one-

half the maintenance cost on the landing gear, tires, and brakes could be

saved by a beef-up, even if it doubled the purchase cost of these items, the

total savings in two years would be more than the additional purchase cost.

This rough analysis does not include the effects the beefed-up landing gear

would have on the other structure of the airplane but even so, the savings

over the 12-year operational period would more than offset the cost of the

indirect effects.

A reduction in maintenance cost is also possible by operating

with derated engines or using an engine that has more structural material

for the same thrust rating. That is, accepting a lower thrust-to-weight

ratio for the sake of lower maintenance. Using a heavier engine would

compromise the airplane performance, but at these short ranges it would not

be significant. A reduction in fuel load does not have a major impact on

the economics of the system, whereas maintenance does. A preliminary analysis

indicates that a saving of $92 000 per airplane could be obtained for the

12-year period if a 20% increase in engine weight (costing $15 800 per engine)

is added to strengthen the high maintenance items assuming a 10% savings in

maintenance cost is realized.

The net result in DOC would be an increase of $6700 per year in

depreciation and a $UO 1*30 decrease in maintenance for an overall DOC saving

of $33 230 per airplane per year.

It is perhaps questionable that doubling the cost of the gear

would result in reducing the maintenance cost by one-half. Therefore the

assumption is changed to a 20$ saving. This would result in a saving of
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$15 000 per year, or practically paying off the additional cost of $52 000

for beefing up the landing gear in the first two years of operation.

The summary of the analysis with various assumptions as to the percent saving

in maintenance cost is presented in Table 2.1-20.

2.1.3.3.2 Indirect Operating Cost (IOC)

The personnel for the operation of the commuterports and the

fueling of the aircraft is the predominate cost in the indirect operating cost

(IOC). A more detailed examination of the personnel functions during the

critical time of loading and unloading is carried out to determine the number

of personnel at the commuterports.

The personnel requirements are established on the basis of the

five-minute turnaround and the number of flights arriving or leaving during

the peak periods of the day. The number of flights vary with the commuter-

port location as well as time of day; therefore, each terminal is analyzed

separately. The number of personnel is determined by the maximum number of

flights per three-hour peak period for each commuterport.

The Phase II analysis includes an evaluation where an operation

schedule is met rather than where the schedule is a fallout of the demand

and the minimum load criteria. The scheduled operation creates flights with

very few passengers as well as fully loaded flights, which imposes a work

load consistent with the passenger demand.

The high demand peaks are from six to nine o'clock in the morning

and from three to six in the afternoon. There are no passengers from midnight

to six in the morning. This leaves 18 hours when passenger service is

required. The passenger demand distribution creates an uneven work load and

causes difficulty in maintaining efficiency if three 8-hour shifts are

employed. If the 18 hour period is divided into two 9-hour shifts, the

number of people may be reduced and the complication of split shifts is

avoided. The first shift works from six in the morning to three in the

afternoon, and handles 55$ of the demand. The second shift works from three

in the afternoon to midnight and handles U5 percent of the demand. One hour

of overtime payment is required for each shift and the annual wage is raised

accordingly. The number of personnel is determined by the physical
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characteristics of the airplane and the various functions that have to be

performed. The amount of time spent performing the various functions is

shown in the chart below.

60 Passengers

Reduce Power
Connect Hookups
Open Exit Doors
Open Entrance Doors
Passenger Unload
Baggage Unload
Baggage Load
Passenger Load
Close Doors
Disconnect Hookups
Accel, to Taxi Pvr.

0 1

(minut e s)

Assumptions;

• 100% Load factor - arriving and departing

• One piece checked baggage per three passengers

• Baggage handling rate - 15 bags/minute

The personnel required at the gate positions is determined by the

required actions at the gate and the times allocated for each. The personnel

stations are noted in Figure 2.1-32. Their responsibilities are noted in

the following paragraphs.

The traffic servicing personnel, noted by fA\ handle the baggage

and passengers. The copilot, (A-l) opens the front doors when the aircraft

has parked and watches for any delays in passengers leaving from the front

exits. The copilot could unlock the two exit doors manually as the airplane

taxis in and then operate the power openers when the plane is docked.

The ramp personnel, noted by H3j , dock the airplane and handle

the baggage Qjy guiding the aircraft to the proper position in the dock

for extending the loading and unloading passenger gates. These gates are

extended by the operators (fi2) on each side of the aircraft. The sequence

is to extend the front gates first and allow the passengers to start exiting
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before the rear doors are opened for passengers entering. When operators

^2) have extended the front gate, they then extend the rear gates and passenger

service personnel Qm open the rear doors for passengers waiting to enter

the airplane. t

Immediately after the airplane has been positioned in the dock,

the baggage handlers (A^ open the baggage compartment and load the baggage

onto a mechanical ramp.that takes it directly to Baggage B where it is picked

up by the passengers as they leave. The personnel who extend the gates (B2)

are positioned to see both the front and rear doors of the aircraft and to

help expedite the baggage handling for passengers leaving the terminal or

catching another airplane. The personnel at the rear doors (A3) see to it

that incoming passengers deposit their baggage at baggage@where it is

rapidly sent to the baggage handlers (A2) by mechanical devices.

Reservations and sales are handled by personnel (A3) in addition

to their duty at the rear gates.

The copilot rAl) and the personnel at the rear doors (A3J indicate

to the gate operators, via telephone circuits, when the gates may be

retracted. Closed circuit TV may also be used to show the gate operators

when the gate passageways are clear of passengers.

This Phase II analysis reduces the number of terminal and fueling

personnel projected in Phase I (Table 2.1-21).

TABLE 2.1-21 PERSONNEL PER GATE

Traffic servicing (A2, A3)

Ramp servicing (Bl, B2)

Dispatch

Sales

Subtotal

Fueling

Total

Phase I

6

3
2

1

12

2

1U

Phase II

U

3
0

1

8

1

9
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The fueling personnel are calculated separately from the passenger

gate personnel.

Personnel cost has been reduced by cutting the number of shifts from

three to two, first keeping the personnel factors the same as in Hiase I, then

reducing the personnel factors in accordance with the analysis described

above. Table 2.1-22 shows the overall results of the two-step reduction in

personnel for an 80-passenger deflected slipstream airplane at 20% demand,

75$ minimum load factor and 2500 foot runway.

TABLE 2.1-22 IOC COMPARISON

IOC X $1000

Facilities depreciation

Personnel

Other expense

Facilities maintenance

Maintenance burden

Ground equipment depreciation

Fare ($/passenger)

Phase I
3 Shifts

16U. 0

5M*.0

379-0

215.0

61*. 6

5.5

1,372.1

k.9k

Phase 1
2 Shifts

161*. 0

1*30.7

362.1

215.0

61*. 6

5-7

l,2Ul.9

U.77

Phase 2
2 Shifts

162.1

285. 1*

3U0.3

211*. 1

61*. 2

5.7

1,071.8

U.W*

The overall result of using two shifts and decreasing the number

of personnel is a U7«5$ reduction in personnel cost and an 11% decrease in

fare.

Another item of IOC that has been reviewed is the amount of land

required for the commuterport. The noise criteria outlined in paragraph

2.1.1.8 have placed certain minimum restrictions on the amount of land

surrounding the commuterport, and this is discussed in paragraph 2.1.1.8.1.
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The amount of land in relation to the runway area is on the order of 15 to 1.

The ratio used in Hiase I was 3 to 1. The significance of this change in IOC

and TSC is illustrated in the summary cost tables in paragraph 2.1.3.̂ .

The field length chosen for the helicopter for the Phase I

analysis was based on the Heliport Design Guide AC150/5390-1A where the area

was defined by the relationship of the length and width of the aircraft.

The width being defined by the diameter of the rotor.

Area = (2.0 x Length)(1.5 x Width)

Applying the expression to the helicopter results in a landing area of

approximately 26 000 sq ft. Adding the peripheral area gives a total area

of Ul 000 sq ft. Since the cost estimating relationship is based on a

standard 300-foot width, the length need be only 150 feet to satisfy the

minimum requirement.

In Phase II, the emphasis is on reducing helicopter design require-

ments, not the land area, since the land cost is not a critical item for

Detroit. By adding more runway, the danger from engine failure is overcome

by forward speed. This reduces the power requirement over that required for

the safety factor for hovering, and reduces the overall weight of the

helicopter. The length of runway chosen for the helicopter is 600 feet.

Another cost consideration is the amount of parking space allocated

at the commuterport. The parking area is sized for the peak three-hour

period. The ratio of parking spaces to passengers is taken as one space per

passenger, with 250 square feet per space. The square footage allocation

is reasonably close to the FAA recommendation (276 square feet) and this

factor remains as established during the Phase I effort. The number of

parking stalls per auto does not allow for nonpublic space, as would be

required for high traffic level intercity airports. The commuterports do

not include service other than passenger ticket sales and loading and unloading

of passengers. Therefore one stall per passenger is considered adequate.

The fueling of the intraurban aircraft is conducted at only one

of the commuterports and not during one of the normal passenger stops.

Fueling is a separate activity; it calls for a deadhead flight to the
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designated fueling port. The tradeoff between the number of deadhead flights

and the location of the fueling port is described in Volume 3 paragraph 2.I.U.

The fueling time is important from the scheduling standpoint; it must be

within the system constraints. As indicated in the tabulation below,

fueling times are well within the constraints if only a 100 gpm rate is

assumed (600 gpm is possible).

Fueling Time - minutes

_ . _ , / v hd passenger 120 passenger
Pumping Rate (gpm) Defiected Slipstream Deflected Slipstream

100 U.3 10.9

300 l.U 3-6

600 0.7 1.8

Another consideration of cost is the number of runways required

at each commuterport. The maximum number of operations per hour that can
occur on a single runway is a function of the aircraft approach speed and

the approach separation distance. The intraurban aircraft has an approach

speed of approximately 70 knots. Allowing for two mile separation, a single

runway capacity would approach 80 operations per hour (Reference 2.1-2U).

A comparison of the available peak capacity to the peak load from the demand

data contained in Volume I shows that the single runway is sufficient in all

cases. The commuterport with the greatest number of flights per three hour

peak period is Mount Clemens with the 30$ demand for the Uo passenger air-

plane. The maximum number of flights is 96. This is 32 flights per hour
or 6k operations per hour. This is within the 80 operations available with

the 70 knot approach speed and the two mile separation distance. All of the

commuterports are costed on the basis of a single runway, but with various

numbers of gates.

The factor used for the determination of publicity cost, in the

IOC model was based on current cost factors for airline operations and is

Judged to be too high for a commuter system. The intrastate operation does

not warrant the publicity effort expended by the trunk lines because they are
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only interested in attracting people who are in a specific region. The

publicity cost factor is reduced to $0.25 per passenger rather than the

$0.50 that was used in Phase I.

2.1.3.̂  Total System Cost

Total system cost is a combination of the DOC and IOC elements and

therefore will also reflect the changes that are recorded in Table 2.1-23.

The total system cost model is described in Volume 2, paragraph 1.3.1.2.

The results of the changes are illustrated in Table 2.1-23. The

table reflects the difference between the costs as they were reported in

Phase I and the cost for the same vehicle with the Phase II changes. The

only cost change that caused a change in DOC is in the flight test cost

equation, which is a part of the development cost. The overall effect on

the insurance and depreciation is insignificant. Most of the major changes

had to do with IOC, and TSC. These changes are noted as follows.

• The reduction in the number of work shifts from three to two

and the resulting increase in annual pay reduced the personnel

cost by 27%. A further reduction in the number of personnel

decreases the personnel cost by kj.̂ %. The reduction in

personnel reduces the cost for the headquarters facility and

a reduction in depreciation under IOC.

• The increase in the amount of land required because of the

noise restraint causes an increase in facilities cost for TSC

but not in IOC. Land cost is not included in IOC, whereas

it is in TSC. Therefore there is a decrease in facilities

depreciation cost due to the reduction in system personnel

but an increase in facilities cost in context of total

system cost.

• The decrease in facilities operating cost under TSC is due to

the reduction in the number of systems personnel.
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TABUE 2.1-23 PHASE I AND PHASE II COST COMPARISON

60 Passenger DS Aircraft
20f0 Demand; 75$ Min LF

1500 ft Runway

DOC

Plight Crew

Fuel and Oil

Insurance

Depreciation

Maintenance

Total ($/yr/AC)($-1000)

IOC

Facilities Depreciation

Personnel

Other Expense

Facilities Maint.

Maintenance Burden

Ground Equip. Depreciation

Total ($/yr/AC)($-1000)

Total System Cost

Aircraft

Spares

Facilities

Ground Equipment

Aircraft Operating Cost

Facilities Operating Cost

Total ($-millions)

(1) Fare ($/Passenger)

(2) Fare ($/Passenger)

Phase I
Cost

49.96

54.73
78.76

271.31
636.26

1,091.02

102.82

385.56

298.39

119.10

35.73
5.62

947.22

25.13
5.23

18.99
0.65
94.15
96.34

240. 1*9

5.00

4.97

Phase II
Cost

U9-96

54.73
78.90

271.72

636.26

1,091.57

99-55
201.75
150.52
292.00

88.23
5.62

837.67

25.60 '

5.25
U7.70
0.65
94.15
57.90

231.25

4.81

4.71
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• The resulting change in fare is noted. Fare (l) is derived

by dividing the total system cost, plus profit, by the total

number of passengers served during the 12 year system life.

Fare (2) is derived by totalling the DOC plus IOC and profit

and dividing by the total annual passengers served by one

aircraft.

2.1.3.5 Fare Structure

The fare for the intraurban transportation system is calculated

in various ways for comparison purposes. The various methods of calculation

allow for different assumptions dealing with ownership and grants . The

various fare structures are described below.

« The first method (l) is a calculation of the fare on the

basis of total system cost. The fare is determined by

dividing total system cost plus profit by the number of

passengers served during the 12-year life of the aircraft

system.

_ (TSCKPROF)
Fare ~ APASS (DA)

0 The second method (2) is a calculation of fare on the basis

of the DOC and IOC. This method differs from (l) in that it.

does not include the cost of the land. Land cost is not

included in the depreciation of facilities in the determination

of IOC, but it is included in the facilities cost in total

system cost. Land may be donated by the city at no cost to

the operator.

(DOC + IOC) PROF
Fare ~ APASS/XNAC
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• The third method (3) is an attempt to derive a fare structure

similar to that of current airlines. The cost for the facilities

and the facilities maintenance is subtracted from total system

cost, and the fare is calculated from the remainder.

TSC-(TRMCST + XMPROP)
=

_
Fare APASS(DA)

2.1.3-6 Subsidies /Grants

There are numerous possibilities for some form of subsidy or grant

that would affect fare levels. These are considered in the discussion of

economics, paragraph 2.2.1.3.

2.1.3-7 Funding

The funding patterns estimated for each aircraft are based on the

development and production schedules and the cost for each of the elements

within these schedules. The 60 passenger, deflected slipstream compound

helicopter, and the autogyro are selected for examples of the funding

patterns. The estimated schedules are illustrated in Figure 2.1-33- The

corresponding funding patterns are shown in Table 2.1-21+.

The schedules and funding are based on the 1985 airplanes. This

is done to include the autogyro, which is only considered for the 1985

technology. The airplanes are similar in characteristics and performance,

so it follows that the schedules and costs do not have large variations .

The patterns shown here for the 1985 technology airplanes would be a close

approximation of the airplanes in the 1975 technology as well. The project

design and test programs are composed of several tiems. The project design

includes.

• Airframe engineering

• Tooling

• Avionics integration

• Special support equipment design

• Operator trainer design

• Maintenance trainer design

• Technical data
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Test Programs consist of:

• Plight test

• Ground test

• Spares

• Test articles

Fabrication cost is the cost of producing the 300 airplanes. The

first six airplanes are used in the flight test program and then reworked for

commuter service.

The engine development cost includes all the items necessary for

arriving at a production engine. Engine development cost does not include

the continuing cost for product improvement. This will be absorbed in the

production cost by the users of the engine.
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2.1.U SYSTEM OPERATION

2. I.U.I Route and Schedule Development

In phase II, the ASSET route and schedule subroutine (RASP) was

employed to generate representative routes and schedules for the Detroit in-

traurban air transportation system. The addition of this subroutine to ASSET

gave the model a total system simulation capability and permitted detailed

analyses of the various aircraft system concepts and sensitivities.

The logic flow diagram of the subroutine is presented in Figure

2.1-3*1. The basic approach is to start a single aircraft at the zone-pair

having the highest demand, then routing the aircraft through the network of

commuterports by alwsys selecting the destination having the highest demand.

This process is repeated iteratively until all the demand is satisfied.

The inputs to the routing and scheduling subroutine are:

• Minimum Permis sable Frequency of Service

• Number of passengers per hour from port to port for each hour

of the day (demand)

• The times required to go from port to port, including landing

and unloading of passengers

• Port to port flight distances

• Minimum time between flights having the same origin and

destination

• Minimum iiime between flights taking off from the same port

• Minimum number of flights before refueling

• Maximum number of flights before refueling

• Refueling location

• Time required. to refuel

The routing and scheduling subroutine solves for:'

• Route and flight schedule for each of the aircraft

• The number of aircraft needed in the fleet

• The number of flights per aircraft per day

• The number of passengers carried by ..each aircraft

• Average number of passengers per flight per aircraft

LOCKHEED
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INPUT DATA

• DEMAND "TIMES
•RANGE • CONSTRAINTS

COMPUTE FREQUENCY OF SERVICE

LOCATE STARTING LOCATIONS

IS
FLIGHT TO

REFUELING PORT
DEADHEAD

TEST
OPERATIONAL
CONSTRAINTS

DETERMINE DESTINATION

Figure 2.1-3̂ . Routing & Scheduling Logic Plow
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• The number of deadhead flights made by each aircraft

• Total number of flights each day by the entire fleet

• Total number of passengers carried by the fleet each day

• Total number of deadhead flights of the entire fleet

• Average number of passengers carried per flight by the fleet

• Total distance flown by fleet per day

• Average flight distance per aircraft per day

Using the combined ASSET model, system sensitivity to changes in

demand, variations in the number of commuterports, and changes in the fueling

locations was determined. Each of the candidate aircraft concepts was analyzed

over the range of passenger capacities considered (20 - 100 passengers)

Figure 2.1-35 presents a map of the TALUS region showing the nine

commuterport locations, and the routes between ports. The routes were selected

to minimize noise impact on residentail cummunities by making use of existing

transportation rights of way, waterways, and agricultural or undeveloped land.

The stage distance/time relation for all route pairs shown in

Figure 2.1-35 is presented in Table 2.1-25. These data were employed in the

route - schedule analysis.

Table 2.1-26 presents a typical aircraft scheduling summary showing

the complete daily schedule for a single aircraft. Table 2.1-27 presents a

typical fleet scheduling summary showing daily fleet activity.

LOCKHEED 1*62
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TO CLEVELAND

(100 MILES)/ DETROIT INTRAURBAN AIR
TRANSPORTATION SYSTEM ROUTES (161 Km)

T * (WITH EXTENDED ROUTE
' / STRUCTURES SHOWN)

AL
ANN
CBD

MCLE

MILES-H
(P Km)

TO TOLEDO (60 MILES)

(97 Km)

ALGANAC
ANN ARBOR
CENTRAL BUS!NESS
DISTRICT
MOUNT CLEMENS

METRO METROPOLITAN
AIRPORT

MON MONROE
NC NEW CENTER
PH PORT HURON
PONT PONTIAC

Figure 2.1-35. Comnruterport Locations
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2.1.̂ .2 Commuter Service Analysis

In Phase II of the study, the operational impact of varying the

commuter service offered by an intraurban air transportation system was studied

by considering' changes in area coverage by (l) decreasing the number of

commuterports, and (2) enlarging the commuterport service zones from five mile

radii to ten mile radii.

The nine commuterports in the Detroit region were ranked by the

daily number of passengers served, from maximum to minimum, as follows:

1) Mount Clemens (MCLE)

2) Central Business District (CBD)

3) New Center (NC)

**) Pontiac (PONT)

5) Metropolitan Airport (METRO)

6) Ann Arbor (ANN)

7) Monroe (MON)

8) Algonac (AL)

9) Port'Huron (PH)

To consider the impact of decreasing the number of communterports,

two alternate cases were analyzed. They are (1) only the top six commuter-

ports comprized the ground system, and (2) only the top four commuterports were

considered (with the further constraint that CBD and NC commuterports were

combined into a single port at the central business district). In each case

a 60-passenger Deflected Slipstream STOL aircraft having 2500 ft field lengths

served as the air vehicle, and the 1985 20 percent demand capture projections

established the demand levels. The results of these analyses are presented

below.

COMMUTERPORT VARIATION ANALYSIS

TSC

FARE

Annual Passengers

9-PORTS

$ U66 Million
$ 8A6

6-PORTS 3-PORTS

$ 372 Million $ 230 Million

$ 7-97 $ 6.75

$ 5.28 Million $ k.kj Million $ 3.26 Million

LOCKHEED 1*67
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As can be seen from these data, a diminishing return is realized in

both fare and annual passengers carried when investment (as represented by TSC)

is increased to add commuterports from a basic system of three. In other words,

to go from three to nine commuterports requires a change in investment from

$230 to $U66 million (or 102 percent), while fare only decreases 25 percent,

and annual passengers carried increases only 62 percent.

The second approach to analyzing the impact of varying area coverage

was to increase the radius of the service zones extending around each of the

commuterports from five miles to ten miles. Since the average distance between

commuterports is 22 miles, the 10 mile service zone radius allowed consideration

of commuter trip distances of down to 12 miles (assuming edge-to-edge zone

pair travel). An increase in demand results and this was quantified through

use of certain elements of the Boeing Company's corresponding Phase I analysis

(Reference 2.1-25) as a factor of 1.57 to be applied to the initial market

demand to account for the reduced trip distances and increased area of coverage.

This increased demand level forms the basis for the Phase II system evaluation.

2.1.14-.3 Fueling Location

In Phase I of the study, a tenth port was postulated which would

serve as the fueling, maintenance, and service facility and would be separate

from the nine commuterports. In Phase II of the study, however, consideration

was given to locating the fueling, maintenance, and service facilities at one

of the nine commuterports. The RASP subroutine was exercised to study the

impact of fueling location on scheduling and subsequently on fleet size re-

quirements. The results of the analysis are summarized in Figure 2.1-36. On

the basis of fleet size and percentage of deadhead (empty) flights, the MCLE,

NC, and CED commuterports appear to be the favored locations for the fueling

facility. However, if land value enters into the evaluation, the comparatively

lower value of land at MCLE than at NC or CED leads to the conclusion that the

MCLE would be the favored location. Consequently, MCLE is employed as the

fueling location for the Phase II systems evaluation.
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2.1.5 RAPID TRANSIT SYSTEM/AIR TRANSIT SYSTEM INTERFACE

Of prime importance to transportation planners is the interaction

and interface between the various transportation modes serving a common

market. Historically, and principally due to the U.S.. free enterprise system,

divergent transportation systems have been viewed, analyzed, and operated as

competing systems. Interface was treated only as an economic or operational

necessity rather than a desired characteristic. However, as the complexity

of transportation systems and their requirements increased, the trend toward

total transportation planning and development has become more pronounced.

In the analysis of intraurban transportation systems, Lockheed

views fixed-track rapid transit systems and air transportation systems as

being complementary in the intraurban role.

In any dynamic metropolitan area, such as Detroit, there exist

both stable (or fixed) transportation corridors, and growing or developing

corridors. The fixed-track rapid transit concept is ideally suited to

serving established corridors with high density traffic. The V/STOL air

transportation system is characterized by its flexibility, and the ease

with which its operations and routes can be modified to meet the changing

requirements of developing corridors.

An interesting phenomenon associated with the introduction of a

new, relatively high capacity transportation system along a low density

transportation corridor is the acceleration of the corridor's development

into a stable, high density corridor.

Another advantage of an air transportation system in a dynamic

metropolitan area, is its relatively low installation costs; especially

compared with fixed-track systems. An air transportation system serves as

an adequate interim system along established routes until the funds or demand

become available to warrant construction of rapid transit right of ways.

The primary advantage of an intraurban air transportation system

from the passenger point of view is its speed and the resulting in total trip

time. The air transportation system maintains this advantage over fixed-track

rapid transit systems whose great passenger capacity and comparatively short

stage lengths result in slower average speeds (or increased total trip times).

For this reason, the demand for an airborne transportation system would

LOCKHEED
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not necessarily be reduced for trip lengths in excess of 20 miles by the

introduction of a rapid transit system. In some respects,, it is possible

that a rapid transit system would increase (indirectly) the total air market

over the long term, since it would serve to increase the percentage of the

population that would use public transit instead of the private automobile.

In other words, the introduction of rapid transit would decrease public

dependence on private transportation.

Based on these premises, it is probable that an air transpor-

tation system would be able to maintain its clientele upon the introduction

of rapid transit; although a temporary loss of passengers would result during

the initial period of rapid transit service (due to its novelty and initially

low load factors).

LOCKHEED
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2.1.6 VEHICLE ALTERNATE USES

The aircraft defined above have been conceived specifically for

intraurban mass transportation operations. However; they could, with

minor modification or production-lirie change, be converted to serve other

roles. Some possible uses of the Detroit intraurban transport fleet and

alternate applications of the basic 60-passenger aircraft model are discussed

below.

2.1.6.1 Cargo Capacity

The approximate cargo capacity of the 60-passenger size vehicles

is expressed for three levels of modification as follows:

Approx. Cargo
Change load (ib)

1) Minimum change - Remove seats 15,000
to provide cargo area — no floor
beefup. Suitable for light cargo;
i.e., mail, light freight, etc.

2) Convertible - Remove seats and 13,000
add floor beefup for heavy cargo
with provisions for reinstallation
of seats.

3) Production cargo configuration 18,000

Door sizes are considered adequate.

2 1 »6 . 2 PprformH.Tiffe Tilflll1is

The single-stage range capability at design pay load varies from

300 to 350 statute miles. The range pay load potential of 60-passenger

vehicles is shown by Figure 2.1-37 « Long-range cruise speeds are approx-

imately 150 and 190 kt for the rotary and fixed wing aircraft, respectively.

The usable high speed capability of the rotary wing vehicles will be limited

to the vicinity of the design value of 200 kt. The corresponding value for

the deflected slipstream STOL is 275-300 kt as a function of design field

length (installed T/W) .

LOCKHEED 472
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The absence of cabin pressurization will limit cruise altitudes

to less than 10 000 ft.

2.1.6.3 Scenarios

Consideration of the intraurban transport potential to serve in

other scenes suggests the following possibilities:

• During off peak hours mail and light freight could be carried

by removing some of the "quick remove" seats.

• The full payload range capability is adequate to provide good

intercity V/STOL service between cities such as Detroit,

Lansing, Battle Creek, Traverse City, etc. The modest cruise

speed-altitude performance is of little consequence at these

short ranges.

• A convertible configuration could give flexibility to the

fleet by offering a substantial V/STOL cargo miles per day

capacity over short ranges. The large fuselage doors lend

feasibility to the convertible configuration.

• The intraurban fleet would provide a useful and available

air reserve for use in case of emergency, disaster, military

action, etc.

• A production cargo version of the intraurban transport for

military use could be produced with little engineering/

production-line change. Cargo load capacity up to approximately

32 000 Ib is available.

LOCKHEED
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2.1.7 NETWORK EXPANSION

The development of a V/STOL commuter system in the Detroit area

should follow a plan of incremental expansion. This expansion should be

based on the predicted growth and development of the Detroit region and its

associated travel patterns, and the development and growth of rapid transit

in the region.

Current estimates indicate that the two primary corridors for

travel in Detroit are the Woodward and Michigan corridors (Figure 2.1-22 )

It will be along these corridors that the first rapid transit lines will be

located and service initiated.

An intraurban air transportation system would be ideally suited to

serve as an interim transportation system along the two corridors until the

rapid transit becomes operational. The Michigan and Woodward corridors

would also provide the demand to support the initial V/STOL system.

The next extension of the V/STOL service should be along the Mack

corridor (Figure 2.1-22) extending from the CBD to the Grosse Pointe area

and on to Mount Clemens.

As the system matures and a clientele is established, the V/STOL

service will be expanded so that a network of routes between the nine V/STOL

commuterports previously described will be established.

Because a main characteristic or feature of air transportation is

flexibility, the network expansion of the intraurban air transportation system

will follow a heuristic approach; that is, starting with a simple route

structure serving the primary travel corridors, and then expanding the system

based on operational experience and self-generating demand.

Along with the growth or expansion of the intraurban service,

development of interurban service between Detroit, Toledo, Cleveland, and

Buffalo (Figure 2.1-38) should be initiated. These routes are to be

established for off-peak utilization of the aircraft. Current commercial

air line experience has demonstrated the economic feasibility of this intercity

service.

LOCKHEED
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2.2 EVALUATION

2.2.1 COMPARATIVE EVALUATION

In order to evaluate these aircraft concepts in a real world en-

vironment it is necessary to determine the effects of varying the aircraft size

and then superimposing this aircraft on the market senario of the Detroit area.

This encompasses a complete total system synthesis of the aircraft characteristics

with that of the movements of the daily commuter. This total system synthesis

will solve for the following:

• The total number of flights required to satisfy the commuter

demand as a function of the size of aircraft design

• The size of the fleet needed to satisfy this demand as a

function of the aircraft size

• The number of commuters who pass through the terminal gates

per hour

• The frequency of service per hour at each of the commuter ports

• The total number of dedhead flights made to satisfy the commuter

demand

• The actual route and time history each aircraft flys

• The total system cost and fare paid by the commuter

For a given fixed commuter demand, the fleet size is inversely

proportional to the design capacity of the aircraft. As the aircraft size is

increased, the fleet size is reduced. A smaller fleet size in turn reduces

the frequency of service to the commuter. As a basic ground rule to this

analysis, at least one flight per hour is provided to the commuter. This

means that there is some minimum number of airplanes required to satisfy this

constraint. Thus, as the aircraft size is increased, a point of deminishing

returns is reached where increasing the aircraft size no longer reduces the

total number of airplanes in the fleet.

From the cost analysis it is determined that the direct operating

cost of the aircraft is the largest single item in making up the total system

cost. Within the direct operating cost, maintenance is the highest cost item.

Maintenance cost of an aircraft is made up of the fixed flight cycle cost and

the costs per flight hour. In this type of commuter operation, 80 percent of

the maintenance cost is of the fixed cycle type. This means that a smaller
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aircraft which requires a larger fleet size has very high direct operating

cost. Increasing the aircraft size reduces the fleet size and thus the total

direct operating cost of the fleet. However, a point is reached where the

fleet size is no longer reduced and the operating cost increases because of

the increased size of the aircraft.

By properly combining the aircraft size with a fixed market demand

it is possible to solve for the best mix of aircraft size, fleet size, load

factor, frequency of service, in terms of minimum fare or total system cost.

Each of the aircraft concepts for both market time periods is subjected to

this analysis. By comparing these results, it is then possible to evaluate

each concept, relative to each other concept, on a consistent basis. Examples

of the associated total system synthesis computer runs for a variation in

aircraft size of 60 to 1^0 passengers are shown on Tables A2.2-1 through

A2.2-30 for the 1975 deflected slipstream STOL aircraft operating in the 1975

market scenario of the Detroit area.
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2.2.1.1 Utility

2.2.1.1.1 Frequency of Service

In order for a commuter transportation system to be viable and

effective, it is necessary to provide some reasonable frequency of service to

the commuter. The frequency of service provided between any two of the commu-

ter ports is a direct function of the number of commuters commuting between

those ports and the size of the aircraft used. Table 2.2-1 is an example of

the frequency of service provided by a 100 passenger deflected slipstream

STOL aircraft operating in the 1985 demand time period. The commuter demand

for this particular situation varies from 30-passengers per hour to 303 passen-

gers per hour.

The table shows that the frequency of service for this situation

varies from one flight to four flights per hour depending on the number of

commuters located at each of the commuterports. The 100-passenger aircraft

makes four flights/hour to carry the 303 commuters from the Central Business

District (CBD) to Mount Clemens. These four flights from CBD to Mount Clemens

would have an average load factor of ?6 percent. The single flight/hour

from Monroe to Ann Arbor, which carries 30 passenger, has a load factor of

only 30 percent. This mixing of all of these varying flight frequencies over

an l8-hour work day becomes a rather complicated but necessary step of analysis

to arrive at a real-world route and schedule for each of the aircraft and

commuterports. The frequency of service provided at each commuterport is a

function of the aircraft size and the number of commuters to be transported.

However, no matter how small the commuter demand is, at least one flight per

hour is provided.

2.2.1.1.2 Field Length

At the start of Phase II, all of the basic grounds under which the

study was to be conducted were reviewed and modified where necessary. The

concepts choosen in Phase I were re-examined in greater detail, and all of

the detailed weight, performance, and costing data were modified where required.

Because of this, both of the 1975 and 1985 deflected slipstream STOL designs

were again investigated from the standpoint of choosing the best FAR field
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length. Each of the concepts were investigated for 1500, 2000, and 2500 foot

FAR field length requirements with varying passenger size and for both market

demands.

These designs were run through the total system synthesis analysis;

with results per Figure 2.2-1. It was determined that very little change in

fare would result from choosing one field length over another. A field length

of 2000 feet minimizes the fare for all aircraft sizes in both of the market

demand time periods. This effect is primarily due to the low cost of land in

the Detroit area as compared with many other major metropolitan areas.

2.2.1.1.3 Growth Potential

A comparison of the growth potential of deflected-slipstream to

the compound helicopter concept is presented in Table 2.2-2. The optimum air-

craft sizes shown on this table represent the minimum fare designs. Increasing

or decreasing the aircrafts size from this minimum fare point increases the

fare.

TABLE 2.2-2. AIRCRAFT GROWTH POTENTIAL COMPARISON

AIRCRAFT
CONCEPT

DEFLECTED-
SLIPSTREAM

COMPOUND
HELICOPTER

OPTIMUM AIRCRAFT SIZE
(PASSENGER CAPACITY)

MINIMUM 1975
MARKET DEMAND
(15,700 PASS./
DAY)

5^

U2

MAXIMUM 1985
MARKET DEMAND
(U7,000 PASS./
DAY)

llU

72

AIRCRAFT
GROWTH

111$

72%

The deflected slipstream concept reaches a minimum fare at a design

capacity of 5^- passengers. The study (based on 1975 market demand) showed

that a 20-passenger reduction increased the fare by 7%; a 20-passenger increase

likewise increased the fare by 2%. In the case of the compound helicopter

concept, a U2-passenger design resulted in minimum fare. The same 20-passenger

decrease resulted in a 10$ increase in fare; the 20-passenger increase in

capacity increased the minimum fare by 8%

LOCKHEED
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The penalty in terms of increased fare is approximately the same

when the aircraft size is reduced for both concepts, but when the aircraft

size is increased to accommodate more passengers, the deflected-slipstreams

fare increases at one fourth the rate of the compound helicopter. Hence a

greater growth potential is possible with the deflected-slipstream concept

in terms of minimizing changes in fare.

The table shows what happens if you start with the minimum 1975

market demand and later discover that your market demand is actually much

larger than expected. The deflected slipstream design shows a potential growth

of 111% as compared with a J2% growth potential for the compound helicopter

design.

2.2.1.2 Risk Sensitivities

The technical risk involved in developing 1975 IOC configurations

having the characteristics shown herein is judged to be low, except that the

larger compound helicopter VTOL may not meet the recommended community noise

limitation criteria without some weight/performance/cost penalities.

The technical risk IOC involved in developing 1985 configurations

having the characteristics shown herein is judged to be low, assuming continued

government and private research activity in materials and fabrication methods,

propulsion, and acoustics.

The sensitivity of system costs to technology is relatively low,

except that vehicle maintenance costs exert a significant effect.

New regulations and other operational factors associated with the

development of an airborne intraurban transportation system are judged to

have the same impact on the deflected slipstream and autogyro STOL concepts,

but somewhat less for the compound helicopter VTOL which is currently operating

in a related scenario.

Passenger appeal and community acceptance are judged to be the

same for all concepts.

LOCKHEED
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2.2.1.3 Economics

The overall results of the phase II cost analysis are shown in

the Comparative Evaluation section of this report. The information is in

parametric form and does not show the breakdown of the various cost items.

The cost for each element in the IOC/DOC and TSC are shown in the DOC/IOC/TSC

summary sheets, Tables 2.2-3 and 2.2-U. These tables represent the

evaluation of each type of airplane for one set of data. The data presented

here are for the 60-passenger configurations, with the 30$ demand (factored by

1.57), and using the nine commuterports. This is one set of data from among

many that are shown in Comparative Evaluation section. It is representative

of the aircraft in the area of minimum fare.

As may be noted by the cost breakdown of Tables 2.2-3 and 2.2-.U,

the predominant costs are maintenance of the aircraft and facilities, deprecia-

tion, and other expense which includes publicity and G&A. This is also illus-

trated in the percentage bar charts which show the breakdown of the cost elements

of DOC/IOC and TSC as percentages of the total. The percentage makeup of each
type of cost is shown in Figures 2.2-2, 2.2-3, and 2.2-U. Figures 2.2-5 and

2.2-6 shows the TSC/DOC/IOC makeup by cost.

2.2.1.3.1 Subsidies/Grants

There are numerous possibilities for some form of subsidy or grant

that would affect the fare level. Four plans (A through D) are listed below,

and the effect of each on the fare structure is shown in the Subsidy/Grant

Comparison Table (Table 2.2-5).

A. The City or State owns and maintains the commuterport

facilities and runways with no cost to the system operators

B. A general subsidy of 2.0 dollars per passenger is received.

G. A capital Grant is received for 2/3 of the operating cost that

cannot reasonably be financed from revenues (urban Mass

Transportation Act of 196̂ ). The revenue is predicated

on a fare of $1.73. This fare is based on the assumption

that the commuter is willing to pay five cents per mile,

which is equivelent to the operating cost of his own car

but not the depreciation or insurance.

LOCKHEED
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Do The same as subsidy "C" except that the revenue is

predicated on a fare of $3.̂ 5» The fare is based on the

assumption that a commuter is willing to pay this, provided

the commuter service makes it possible for him to get rid

of his second car.

The subsidy/grant analysis is based on the 1975 60-passenger deflected

slipstream airplane. The amount of subsidy required for the other aircraft types

would be in proportion to the fares without subsidy. The subsidies or grants

are applied against fare (l)as noted in the total system cost summary (Table 2.2-̂ +).

In the case of subsidy "C" and "D" the grant aid would be $23.83 million and

$12.6 million, respectively per year for 2/3 of the operating cost not covered

by revenue. The remainder in each case ($11.9̂  million and $6.3 million) would

have to be subsidized by another agency. The total system cost without subsidy

in each case is what the operator would be responsible for and the remainder

would be covered by some form of subsidy or grant to bring the fares to the levels

shown. The fares include a profit for the operator of the system.

2.2.1.3-2 Fare Structure

The fare for the intraurban transportation system is calculated in

various ways for comparison purposes. The various methods of calculation allow

for different assumptions dealing with ownership and grants. The various fare

structures are described below.

• The first method (1) is a calculation of the fare on the basis

of total system cost. The fare is determined by dividing

total system cost plus profit by the number of passengers

served during the 12-year life of the aircraft system.

/, N fTsc) (PROF)
Fare (1) • APASS(DA)

• The second method (2) is a calculation of fare on the basis

of the DOC and IOC. This method differs from (1) in that

it does not include the cost of the land. Land cost is not

included in the depreciation of facilities in the determination

LOCKHEED 1+93
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of IOC, but it is included in the facilities cost in TSC.

Land may be donated by the city at no cost to the operator

- (-DOC-F*reFare

• The third method (3) is an attempt to derive a fare structure

similar to that of current airlines. The cost for the

facilities and the facilities maintenance is subtracted from

total system cost, and the fare is calculated from the remainder.

w /_x TSC-(TRMCST + XMPROP)
Fare <3) = APAS(M) -

The fares, as calculated by the above methods, are shown in

Table 2.2-U.
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2.2.1.U Technical, Operational Risks

Comparative risks from a technology viewpoint are judged to be

low for all vehicle/time period combinations, except that the acoustics art

needed for the 1985 rotor tip nozzle drive system is considered an unknown at

this time.

The sensitivity of the several design and operational factors

affecting cost are believed to be about the same for all vehicles as noted

below.

• Community Noise - Ability to meet design criterion -

1975 Compound
helicopter

1985 Compound
helicopter

1975, 1985
Deflected Slip-
stream STOL

1985 Autogyro

20 pass - good
UO pass - good
60 pass - marginal
80 pass - marginal

Good at all sizes with
reasonable level of acoustic
research through the 70's

Good at all sizes

Good at all sizes

• Interior Noise - Ability to meet design criterion - Good

for all concepts and sizes

• Maintainability reliability - low risk for all vehicles

if given proper attention in design stages

« Ride Qualities - Ride quality is a signficant problem,

but somewhate less severe for the rotary wing vehicles.

• Flying Qualities - All concepts can be provided with good

flying qualities with about the same design effort and

aircraft complexity.
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2.2.2 RESULTS

The results of exposing each of the aircraft concepts to the total

systems synthesis in both the 1975 and 1985 time period can be shown in terms

of (l) the number of aircraft of a given size that are needed to satisfy the

commuter demand, (2) the frequency of service to be provided, and (3) the re-

sulting fare to be paid for this service.

Two curves make up the resulting analysis for each of the aircraft

concepts investigated, namely the fare and fleet variation curves. There is

a set of these curves for each of the aircraft concepts investigated.

These results are presented on the following figures:

Figure 2.2-7 1975 Deflected Slipstream STOL Fare Variation

Figure 2.2-8 1975 Deflected Slipstream STOL Fleet Variation

Figure 2.2-9 1975 Compound Helicopter Fare Variation

Figure 2.2-10 1975 Compound Helicopter Fleet Variation

Figure 2.2-11 1985 Deflected Slipstream STOL Fare Variation

Figure 2.2-12 1985 Deflected Slipstream STOL Fleet Variation

Figure 2.2-13 1985 Compound Helicopter Fare Variation

Figure 2.2-lU 1985 Compound Helicopter Fleet Variation

Figure 2.2-15 1985 Autogyro Fare Variation

Figure 2.2-16 1985 Autogyro Fleet Variation

For each of these concepts and within the upper and lower limits

of the market demand investigated, the optimum combination of aircraft size,

load factor, fleet size, and frequency of service has been determined in terms

of minimum fare. Using the fleet variation curve in conjunction with the

fare variation curve for each of the concepts, it is possible to readily see

the effect of changing the fleet size and/or the load factor, or any of the

other parameters. For all of the data points shown on these curves a real-

world route and flight schedule has been solved for and used in the analysis

to determine the total system cost.

The final step consist's of cross plotting the minimum fare points

against the number of passengers served for each of the concepts in both the

1975 and 1985 time periods. Figure 2.2-17 shows the final stacking of the

aircraft concepts for both time periods. In both the 1975 and 1985 time

periods, the deflected slipstream STOL concept proves to be the minimum fare

system.
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In addition to analyzing the previously described concepts, the

1985 autogyro was projected into the 1975 market and the 1975 conventional

compound helicopter was extended into the 1985 market.

The 1000 foot STOL autogyro fares lie half way' between the 1975

conventional compound helicopter and the 2000 foot deflected slipstream STOL.

However in a high land cost situation the 1000 ft STOL autogyro might well

provide the minimum fare.

The conventional compound helicopter extended into the 1985 market

shows no advantage over all of the other concepts analyzed in this time

period and proves to be the most expensive.

LOCKHEED
C*LI»Q»NUfc COMJANV
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3.0 CONCLUSIONS

3.1 AIRCRAFT DESIGN-DEVELOPMENT-OPERATION

• Current technology is adequate for the development of an

intraurban transport aircraft for the 1975 IOC time period.

• Advanced technology appears to offer largely indirect benefits

to the intraurban transport, if., potential for reduced main-

tenance costs, reduced noise, more reliable automated systems,

etc.

• The compound helicopter VTOL, and deflected slipstream STOL

concepts are judged to be low design-development risks for

both 1975 and 1985 IOC time periods. The 1985 autogyro STOL

is likewise considered low risk.

• The autogyro STOL is believed to have more growth potential

through configuration development than either the compound

helicopter VTOL or the deflected slipstream STOL.

• Aircraft operation in the intraurban scenario is grossly

different from intencity operations, and its development will

require new design and operational standards.

• Aircraft noise and ride qualities are key elements in the

development of an acceptable intraurban transport system

• An aircraft intraurban transport operation will reduce air

pollution slightly in the Detroit area.

3.2 COST/FARE/SCHEDULE

• For all of the market demands invesitgated, the 2000 foot

deflected slipstream STOL concept is the most cost effective

aircraft in terms of minimizing the fare by a margin of U to

22 percent, depending on the demand.

• The 1000 foot STOL autogyro shows -promise where land is not

available for the building of a 2000 foot STOL commuterport

• The optimum aircraft size for the deflected slipstream STOL in

this market is 110 passengers and would provide a frequency of
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service of three to four flights per hour at the high demand

commiterports. A fleet of 20 aircraft would be required to

satisfy this demand and would operate with an average load

factor of U2 percent.

3.3 GENERAL

This study has shown that the application of aircraft to relieve

the Detroit intraurban mass transportation problem is feasible.

None of the three aircraft concepts evaluated is distinctly

superior to the others, although indications are that the deflected slipstream

STOL may be somewhat better.
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U.O RECOMMENDATIONS

The autogyro STOL is shown to be generally competitive with

the helicopter VTOL and fixed wing STOL concepts. It is there-

fore recommended that the study be extended to permit a more

complete design analysis of this new STOL transport concept.

In particular, an invesitgation of the aero-structural rotor

geometry for this 100% windmilling mode is needed.

Using the knowledge gained through this work, a first generation

intraurban transport should be defined.

In consideration of the long calendar time involved in establish-

ing certification standards for aircraft, initial study efforts

for the forthcoming, intraurban transport aircraft should

commence now.

Public acceptance of an intraurban transport will depend to

a significant degree on -its "noise in the neighborhood" and

its ride comfort. Both intraurban transport oriented acoustic

research studies, and ride comfort studies should be initiated.

Study results show maintenance to be a predominate cost, and

the portion of maintenance sensitive to flight cycles to be

responsible for over Qd% of the total maintenance cost. Study

limits did not permit a detailed design-for-maintenance analysis

wherein each major component of the airplane is examined for

the tradeoff between cost, maintenance, and performance. The

short stage lengths (20 to 30 miles) reduces the sensitivity

of the aircraft performance to cost. Additional weight or drag

does not significantly affect the overall system cost. Thus,

additional weight (at some cost) may be added to the airframe,

engine, or subsystems to increase their reliability and decrease

maintenance without a large degradation in system performance.

In view of the above, it is recommended analysis be undertaken

to determine how much cost may be reduced through the design-

for-maintenance philosophy, and how much degradation in system

performance will result.
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There is a critical need for continued research in the area of

modal split analysis, and especially for the development of a

simple model or methodology for the generation of gross modal

split data based on the origin-destination demand data integral

to the various regional transportation studies. It is suggested

that such a model be based on the value of time concept that

considers the fundamental differences in productive, recreational,

and nonproductive time (as defined or determined by the traveler) .

The output of such a model should be families of generalized

curves (functions) that relate dollar value to travel time for

various factors such as trip purpose, trip length, income levels,

etc. The curves could then be used by all contractors perform-

ing demand analyses for government agencies and not requiring

high degrees of accuracy. These curves would be especially

well-suited to parametric analyses. In addition to this, the

relationship between frequency of service and commuter demand

should be developed.

512



CR i.i

REFERENCES

1.1-1 NASA Request for Proposal A- 15990 (NK-6) for a Study of Aircraft
in Intraurban Transportation, 5 J^n 1970

1.1-2 Lockheed Technical Proposal for A Study of Aircraft in Intraurban
Transportation Systems, Lockheed Report LR 23379-1, 16 Feb 1970

1.1-3' Summary and Analysis Feasability Study Designs of V/STOL
Transport Ai re raft , Wallace H. Beckert and Lav id H. Rickey,
presented in Volume 7,- No. 1 of AIAA Journal of Aircraft

1.1-̂  A Standard Method for Estimating VTOL Operating Expense „
R. F. Stoessel, Lockheed-California Company and Jolin F. Gallegher,
N.Y. Airways, Inc., Lockheed Rep. CA/TSA/C13, Oct. 1967

1.1-5 Tentative Airworthiness Standards for Verticraft/Powered Lift
Transport Category Aircraft, Department of Transportation.
Federal Aviation Administration System, July 1968

1.1-6 A Design Study of a Metropolitan Air Transit System, NASA
CR 733̂ 2, Dept. of Aeronautics and Astronautics, Stanford
University, August 1969

1.1-7 The World's Airlines, Peter W. Brooks. Putman and Co., Ltd.
London, 1962

1.1-8 The Boeing 7̂ 7.- James F. Horecn, Airports 1'cr the Future
Conference, Institution of Civil Engineers. London, April 1967

1.1-9 Analysis of Passenger and Baggage; Flows in Airport Terminal
Buildings. by Robert Horonjeff, AIAA Paper 68-111, Oct. 1968

1.1-10 Federal Aviation Regulations, Part 121, Certification and
Operations: Air Carriers and Commercial Operations of Large
Aircraft, Federal Aviation Administration, Washington, B.C.

1.1-11 Design Study - CV-7A Transport Aircraft ModJ i'ication to Provide
an Augmentor Wing Jet STOL Aircraft. F.R. Kompor and
D.J. Renselaer, prepared by North American Rockwell Corp. under
contract to Ames Research Division, NASA, March 1969.

LOCKHEED -^



CR

REFERENCES (Continued)

1.1-12 Wind Tunnel Investigation of Longitudinal Aerodynamic
Characteristics of Three Propeller Driven VTOL Configurations
in the Transition Speed Range Including Effects of Ground
Proximity. Richard E. Kuhn, William C. Hayes, Jr., NASA
Technical Note TN D- 55. Feb. 1960

1.1-13 Large Scale Wind Tunnel Tests of a Deflected Slipstream STOL
Model with Wings of Various Aspect Ratios. V. Robert Page.
NASA Technical Note 7ND-Ŵ 8, March 1968.
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