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PREFACE

The work described in this report wrts performed by the Guidance

and Control Division of the Jet Propulsion Laboratory.
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ABSTRACT

A program was conducted to study magnetic materials for use in

spacecraft transformers used in static inverters, converters, and

transformer-rectifier supplies. Different magnetic alloys best suited for

high-frequency and high .-efficiency applications were comparatively investi-

gated together with an investigation of each alloy's inherent characteristics.

The materials evaluated were;

Trade name	 Magnetic alloys

Orthonol
	

50% Ni, 50°,%o Fe

Sq. Permalloy
	

79% Ni, 17% Fe, 4% Mo

48 alloy
	

48% Ni, 52% Fe

4
	 Supermalloy

	
78% Ni, 17% Fe, 5% Mo

Magnesil
	

3% Si, 97 1/o Fe

One of the characteristics in magnetic materials detrimental in

transformer design is the residual flux density, which can be additive on

turn-on and cause the transformer to saturate. Investigation of this prob-

lem led to the design of a transformer with a very low residual flux. Tests

were performed to determine the do and ac magnetic properties at 2400 Hz

using square-wave excitation. These tests were performed on uncut cores,

which were then cut for comparison of the gapped and ungapped magnetic

properties. When the data of many transformers in many configurations

were compiled the optimum transformer was found to be that with the

lowest residual flux and a small amount of air gap in the magnetic material.

The data obtained from these tests are described, and the potential uses

for the materials are discussed.

Viii	 JPL Technical Memorandum 33-498
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I. INTRODUCTION

Transformers used in static inverter~, converters and transformer-

rectifier (T-R) supplies intended for spacecraft power applications are

usually of square loop toroidal design. The design of reliable, efficient,

and lightweight devices of this class for such use has been seriously

hampered by the lack of engineering data describing the behavior of both

thi- commonly used and the more exotic core materials with higher fre-

quency square wave excitation.

A program has been carried out at JPL to study this data. An

investigation has been made to ascertain the dynamic B-H loop character-

istics of the different core materials presently available from various

industry sources. Cores were procured in both toroidal and "C" forms

and were tested in both ungapped (uncut) and gapped (cut) configurations.

The following describes the results of this investigation.

PL Technical Memorandum 33-498	 1
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II. l YPIC:A I. OPFRATION

'l rarisformers used for inverters, converters, and T-R supplies
• operate from the spacecraft power bus, which could be do or ac. In some

power applications, a commonly used circuit is a driven transistor switch
arrangement such as that shown in Fig. 1.

One important consideration affecting the design of suitable trans-
formers is that care must be taken to ensure that operation involves
balanced drive to the transformer primary. In the absence of balanced
drive, a net do current will flow in the transformer pri ,,nary, which causes
the core to saturate easily during alternate half-cycles. A saturated core
cannot support the applied voltage, and, because of lowered transformer
impedance, the current flowing in a switching transistor is limited only by
its beta. The resulting high current, in conjunction with the transformer
leakage inductance, results in a high voltage spike during the switching
sequence that could be destructive to the transistors. To provide balanced
drive, it is necessary to exactly match the transistors for VCF (SAT) and
beta, and this is not always sufficiently effective. Also, exact matching
of the 'transistors is a major problem in the practical sense.



r
f;r

III.	 :^lA 1 F':1Z IA I . C_;F-i A 1t AC; .1 H:lt I^ l IC:^

Nlany available corn w..aterials approximate the ideal square loop

characteristic illustrated by the B-11 curve shown in F ij;. I.

Representative dc B-H loops for commonly available core materials

are shown in Fig. 3. Other characteristics are tabulated in Table 1.

Nlany articles have been written about im , erter and c•on%'vrtvr

transformer design. Usually, the author's recommendation represents a

compromise among material characteristics such as those tabulated in

Table 1 and displayed in Fig. 3. These data are typical of coili ► iierc•ially

available core materials that are suitable for the particular application.

As can he seen, the ►Material that provides the highest flux density
(silicon) would result in smallest component size, and this would influence
the choice, if size were the most important consideration. The type

r
	 78 material (see the 78 "0 curve in Fig. 3) has the lowest flux density. This

results in the la y g;est size transformer, but , on the other hand, this
material has the lowest coercive force and the lowest core loss of any other
cc-re material available.

Usually, inverter transformer design is aimed at the smallest size,
with the highest efficiency, and adequate performance under the widest
range of environmental conditions. Unfortunately, the core material that
car, produce the smallest size has the lowest efficiency. The highest
efficiency materials result in the largest size. Thus the transformer
designer roust make tradeoffs between allowable transformer size and the
minimum efficiency that can be tolerated. The choice of core material
will then be based upon achieving the best characteristic on the most
critical or important design parameter, and acceptable compromises on
the other parameters.

Based upon analysis of past design performance, most engineers
select size rather than efficiency as the most important criteria and select
an intermediate core material for their designs. Consequently, square loop

E

50-50 nickel-iron has become the most popular material.

JPL Technical Memorandum 33-498	 3
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T V. CORE. SATURATION DEFINITION

To standardize the definition of saturation, several unique points
on the B-I1 loop are defined as shown in Fig. 4.

The Straight line through (H0 , 0) and (fl., B s ) may be written as:

B = dH (H - HO )	 (1)

The line through (0, B s ) and (H s , B s ) has essentially zero slope and may be

written as:

B	 B2 = Bs

Equations (1) and (2) together defined ''saturation'' conditions as follows:

dBB s = FdH (H s - HO)

Solving Eq. (3) for Hs,

B
H s = H0 + s

µ0

where

µ0 	 dB
dH

by definition.

4

(2)

(3)

(4)

4
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Saturation occurs when the peak exciting current is twice the average

exciting current as shown in Fig. 5. Analytically this means that:

H p K = 2.P

Solving Eq. (1) for H 1 , we obtain

D

^i 1 = H 0 4- 1
µ0

To obtain the presaturation flc margin (Cali), Eq. (4) is subtracted from

Eq. (3):

AH = H s - H 1 = Bs B1
µ0

The actual unbalanced do current must be limited to

1D s Rt (amperes)

where

N = TURNS

I = mean magnetic length

Combining Eqs. (7) and (8) gives

1	 s Bs - B1 (amperes)
DC	 µ0 NI

rl

y JPL Technical Memorandum 33-498
..^^Yi`Y , Sp
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i
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f

(6)

(7)

(8)

(9)
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•	 a

As mentioned earlier, in an effort to prevent core saturation, the
switching transistors are matched for beta and V CE (SAT) characteristics.
The affect of core saturation using an uncut or ungapped core is shown in
Fig. 6, which illustrates the effect on the B-H loop when traversed with a
do bias. Figure 7 shows typical B-H loops of 50-50 nickel-iron excited
from an ac source with progressively reduced excitation; the vertical scale
is 0. 4 T/cm. It can be noted that the minor loop remains at one extrerne
position within the B-H major loop after reduction of excitation. The
unfortunate effect of this random minor loop positioning is that when con-
duction again begins in the transformer winding after shutdown, the flux
swing cottld begin from the extreme, and not from the normal zero axis.
The effc ct of this is to drive the core into saturation with the production of
spikes that can destroy transistors.

e

it	 y

t

f

ij
1

4

i
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;t	 V. THE TF,ST SETUP

A test fixture, schematically indicated in Fig. 8, was built to effect

comparison of dynamic B-H loop characteristics of various core materials.

Cores were fabricated from various core materials in the basic core con-

figuration designated No. 520214 for toroidal cores manufactured by

Magnetics, Inc. The materials used were those most likely to be of interest

to designers of invert,!r or converter transformers. Test conditions are

listed in Table 2. Winding data was derived from the following;

V • 104
`	 NT = 4.0 B	 F Am	 c

where

N T = Number of turns

B	 = Flux density, T

X	 F = Frequency, Hz

#'4 Ac = Core area, cm2

V = Voltage

r

The test transformer represented in Fig. 9 consists of 54-turn

	

primary-wave secondary windings, with square 	 excitation on the

primary. Nor-nally switch S1 is open. With switch S1 closed, the sec-

ondary current is rectified by the diode to produce a do bias in the sec-

ondary winding.

Cores were fabricated from each of the materials by winding a

ribbon of the same thickness on a mandrel of a given diameter. Ribbon

termination was effected by welding in the conventional manner. The

cores were vacuum impregnated, baked, and finished as usual.

Figures 10, 11, 12, 13 and 14 show the dynamic B-H loops obtained

for the different core materials designated therein. Figure 15 shows a

PL Technical Memorandum 33-498	 7
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composite of all the B-H loops. In each of these, switch S1 was in the

open position so that there was no do bias applied to the core and windings.

The photographs designated Figures 16, 17, 18, 19 and 20 show the

dynamic B-H loop patterns obtained for the designated core materials when

the test conditions included a sequence in which switch S1 was open, then

closed, and then opened. It is apparent from these views that with a small

amount of do bias, the minor dynamic B-H loop can traverse the major

B-H loop from saturation to saturation. In Figs. 16 to 18, it will be noted

that after the do bias had been removed, the minor B-H loops remained

shifted to one side or the other. Because of ac coupling of the current to

the oscilloscope, the photographs do not present a complete picture of

what really happens during the flux swing.

}
F

^J

r

l•

8	 JPL Technical Memorandum 33-498
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Vl. CORE SATURATION THEORY

The domain theory of the nature of magnetism is based on the

assumption that all magnetic materials consist of individual molecular

magnets. These minute magnets are capable of movement " ,^, ithin the

material. When a magnetic: material is in its unmagnetized state, the

individual magnetic particles are arranged at random, and effect: rely

neutralize each other. An example of this is shown in Fig. 21, where the

tiny magnetic particles are arranged in a disorganized manner. The north

poles are represented by the darkened ends of the magnetic particles.

When a material is magnetized, the individual particles are aligned or

oriented in a definite direction. (Fig. 22).

The degree of magnetization of a material depends on the degree of

alignment of the particles. The external magnetizing force can continue

up to the point of saturation, that is, the point at which essentially all of

the domains are lined up in the same direction.

In a typical toroid core, the effective air gap is less than 10 6 cm.

Such a gap is negligible in comparison to the ratio of mean length to

permeability. If the toroid were subjected to a strong magnetic field

(enough to saturate), essentially all of the domains would line up in the

same direction.

If suddenly the field were removed at B m , the domains would

remain lined up and be magnetized along that axis. The amount of flux

density that remains is called residual flux or B r. The result of this

effect was shown earlier in Figs. 16 to 18.

JPL Technical Memorandum 33-498 9



VII. AIR GAP

An air gap introduced into the core has a powerful deniagnetizing

effect, resulting in ''shearing over' of the hysteresis loop and a con-

siderable decrease in permeability of high-permeability materials. The

do excitation follows the same pattern. However, the core bias is -oii-

siderably less affected by the introduction of a small air gap than the

magnetization characteristics. The magnitude of the air gap effect also

depends on the length of the mean magnetic path and on the characteristics

of the uncut core. For the same air gap, the decrease in permeability

will be less with a greater magnetic flux path but more pronounced in a low

coercive force, high-permeability core.

a

10	 JPL Technical Memorandum 33-498



1. 25 N `(Ic X 10_4 
(tesIas)

+ 1ni
1g Fide

Bdc

VIII. EFFEC 1' U1 GAPPING

Figure 23 shoxs a comparison of a typical toroid cord B-1I loop

^V ithout and « p ith a gap. The gap increases theeffective length of the

magnetic path. When voltage E is impressed across primary «finding N 1

of a transformer, the resulting current i 
III 

« , ill be small because of the

highly inductive circuit shown in Fig. 2 .1. For a particular size core,

maximum inductance occurs when the air gap is minimun).

When S1 is closed, an unbalanced do current flows in the N 2 turns and

the core is subjected to a do magnetizing force, resulting in a flux density

that may be expressed as

N,^.I h e r e

1m = Mean length, cm

1g = Gap, cm

Bdc = do flux density, T

I

dc = Unbalanced direct current, A

µdc = do permeability

N = Number of turns

In converter and in°rerter design, this is augmented by the ac flux

swing, which is:

4
=	 E 10

Bac	 K F AC N (tesias)

JPL Technical Memorandum 33-498
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k

A

f

r

where

II ac = ac flux density, T

E, = ac voltage

F = Frequency, Ilz

A C = Core area, cm2

K = 4. 0 for a square wave

K = 4. 4 for a. sine wave

N = Number of turns

If the sum of B d c and B ac shifts operation above the maximum operat-

ing flux density of the core material, the incremental permeability ( ►iac) is

reduced. This lowers the impedance and increases the flow of magnetizing

current i m . This can be remedied by introducing an air gap into the core

assembly, which effects a decrease in do magnetization in the core. How-

ever, the amount of air gap that can be incorporated has a practical limita-

tion since the air gap lowers impedance, which results in increased

magnetizing current (im ). The magnetizing current is inductive in nature.

The resultant voltage spikes produced by such currents apply a great stress

to the switching transistors, and may cause failure. This can be minimized

by tight control of lapping and etching of the gap to keep the gap to a

minimum.

From Fig. 23, it can be seen that the B-H curves depict maximum

flux density B  and residual flux B r for ungapped and gapped cores, and

that the useful flux swing is designated AB, which is the difference between

them. It will be noted in Fig. 23a that B r approaches B m, but that in

Fig. 23b there is a much greater AB between them. In either case, when

excitation voltage is removed at the peak of the excursion of the B-H loop,

flux falls to the B r point. It is apparent that introducing an air gap then

reduces B r to a lower level, and increases the useful flux density. Thus

insertion of an air gap in the core eliminates, or reduces markedly, the

voltage spikes produced by the leakage inductance due to the transformer

saturation.

12
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Iwo types of core configurations were investiga ted in the iron: lip+^d

and gapped states. Figure 25 slioxs the type of toroidal core that was c•cit

and Fig. 26 sliolvs the type of C cord that teas cut. Toroidal cords ts

c, nventiona'ly fabricated are virtually gapless. To increase the gap, the

cores were physically cut in half and the cut edges were lapped, acid

etched to rewove cut debris, and handed to forni the cores. A riiiniinur>> air

gal) on the order of lass than 25 µm was established.

As \will be noted from Figs. 27 to 31, \^, , hich show the 13-11 loops of the

tincttt and cut cores, 	 the results obtain(-(] indicated that the effect of gapping

was the same for both the C-cores and the toroidal cores subjected to

testing.	 It will be noted however, 	 that gapping of the toroidal cores pro-

duced a lowered squareness characteristic for the B-1i loop as sho"%'n in

`. Table 3; this data was obtained from Figs. 	 27 to 31.	 Also,	 from Figs.	 27

•^ to 31,	 all was extracted as shown in Fig. 	 32 and tabulated in Table 4.

A direct comparison of cut and uncut cores was made electrically

by means of two different circuit configurations.	 The magnetic material

used in this branch of the test was Orthonol.	 The operating frequency was

_ 2. 4 kI-la,	 and the flux density was 0. 6 T.	 The first circuit,	 shown in
. Fig.	 33, was a driven inverter operating into a 30 W load, with the Iran-

t	 4

`y sistors operating; into and out of saturation.	 Drive was applied continu-

ously.	 S1 controls the supply voltage to Q1 and Q2.
4r:

With switch S1 closed, transistor Q1 was turned on and allowed to

saturate.	 This applied E-V
C

(SAT) acros r, the transformer winding.

Switch Sl was then opened.	 The flux in transformer T2 then dropped to the

residual flux density B r .	 Switch S 1 was closed again.	 This was done

' several times in succession to catch the flux in an additive direction.

Figures 34 and 35 show the inrush current measured at the center tap of T2.

It will be noted in Fig. 34 that the uncut core saturated and that

inrush current was limited only by circuit resistance and transistor beta.

It can be noted in Fig.	 35 that saturation did not occ,.r in the case of the

cut core.	 The high inrush current and transistor stress was thus virtually

eliminated.
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The second test circuit arrangement is shown in Fig. 16. The purpose

of this test was to excite a transformer and catch the inrush current using
a current probe. A square wave power oscillator \%'as used to excite trans-

former T2. S ,,ti , itch Sl was opened and closed several times to eaten the flux

in an additive direction. 	 Figures 37 and 38 show inrush current for a cut

and uncut core respectively.

A small amount of air gap, less than 25 µm, has a powerful deniagne-

tizing affect and this gap has little effect on core loss. This small al>>ount of

air gap decreases the residal magnetism by "shearing over" the hysteresis

loop. This eliminated the ability of the core to remain saturated.

A typical example showing the merit of the cut core was in the check-

out of a Mariner spacecraft. During the checkout of a prototype science

package, a large (8 A, 200 µs) turn-on transient was observed. The normal

running current was 0. 06 A, and was fused with a parallel-redundant 1,/8-A
fuse as required by the Mariner Mars 1971 design philosophy. With this
8-A inrush current, the 1/8-A fuses were easily blown. This did not happen
on every turn-on, but only when the core would "latch up" in the wrong

direction for turn-on. Upon 3spection, the transformer turned out to be
n SO-50 N;-Fr- tnrniri_ Thr• design was changed from a toroidal core to a

ap. The new design was completely successful

on transient.

JPL Technical Memorandum 33-498
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IX. 5U'.IXIARY

I.ow-loss tape-wound toroidal c().e materials that have a very Squat•41

hysteresis chara,:teristic (£3-11 loop) have been used extensively in the de sh,n

of spacecraft transformers. I)ue to the squaren(-ss (.' the B-11 1 )ops of these

mat erials, transformers designed with then tend to saturate quite caasily.

As a result, large voltage and curt', , n t spikes, which cause undue s t ress on

the electronic circuitry, can occur. Saturation occurs when there is any
unbalance in the ac drive to the transformer, or when any cic excitation

exists. Also, due to the square characteristic, a high residual flux state
(13 r ) may remain when excitation is removed. Reapplication of excitation in

the same direction may cause deep saturation and an extremely large cur-

rent spike, limited only by source impedance and transformer \vinding

resistance, can result. This can produce catastrophic results.

By introducing a st-nall (less than 25- [Lm) air gap into the cord, tho

problems describect above can be avoided and, at the same time, the love

loss properties of the materials retained. The Etir gap has the effect of

"shearing over'' the B-I-1 loop of *he material such that the residu,^.l flux

state is low and the margin between operating flux density and saturation
flux density is high. The air gap thus has a powerful demagnetizing effect

upon 1-he square loop materials. Properly designed t ransfor ► iiers using

"c ,,it" toroth or ''C-core" square loop materials will not saturate upon

turn-on and can tolerate a certain amount of unbalanced drive or do

excitation.

It should be emphasized, however, that because of the nature of the

material and the small size of the gap, extreme care and control must be

taken in performing the gapping operation, otherwise the desired

effect will riot be achieved and the low-loss pr. operi-ies destroyed.

must be very carefully cut, lapped, and etched to Frovide smooth,
free surfaces. Reassembly must be performed with equal care.

JPL Technical Memorandum 33-498
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Table 2. Materials and constraints

Core type Material 3m, T	 NT
Frequency,

Hr nil,	 CI-11

52029 (2A) Orthonol 1. 54 9.47

52029 (2D) So.	 Permalloy 0. 75 54 2. 4 9.17

52029(2F) Supermalloy 0. 75 54 2. 4 9.47

52029 (2H) 48-Alloy 1. 15 542. 4 9.47

52029 (2H) Magnesil 1. 6 54 2. 4 9.47

Table 3. Comparing B r /B on uncut and cut cores

J

Code Material Uncut B r/Bm Cut Br`Bm

(A) Orthonol 0. 96 0. 62

(D) Mo-Permalloy 0. 86 0.21

(K) Magnesil 0. 93 0. 22

(F) Supermalloy 0.81 0.24

(H) 48 Alloy 0. 83 0. 30

I
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Table 4. C;onlparing 
AIi—QHOP 

011 uncut an(l cut cords

Material Fi	 Trr, B	 T
ac BT

do

Uncut Cut

All	 Ali	 OHOP	 013
A-t/cni

.111
 ----

Orthonal 1,	 14 1.	 15 0. 288 0. 0125 0, 0 0. 895 0. 178

48 Alloy 1.	 12 0, 89 0. 2 "1 4 0, 0250 (1, 0 1 0 0. 350

Sq. Permalloy 0. 73 0. 58 0. 146 U. 01 0. 005 0. 983 0, 178

S upe rn ,. a I lov 0. 68 0. '8 0. 136 0. 0175 0. 005 0. 4 0 1 0. 224

Magnesil 1. F4 1. 23 0. 31 0. 075 0. 025 7. 15 1. 78

r

.Y
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2.4 KHz

B

H

P^

4

t

Fig. 1. Typical driven transistor inverter

Fig. 2. Ideal square B-H loop
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40NOL
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Ix

fi

B, T

H, A-t/cm

Fig. 3. The typical do B-H loops of magnetic rriaaterials
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s
SATURATION OCCURS WHEN B = 2A

Fig. 5. Excitation current
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Fig. 6. B-11 loop with do bias
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lg. 7. Typical square loop material with
ac excitation
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OSCI t LATOR

?.4 kHz

SQUARE WAVE

o	
TEST

TRANS- i
i FORMER

1Oka'

0.7
µF

R1

VERf = 0.5 T/cm
HORIZ - 100 mA/cm

GND OSCILLOSCOPE
VERT TEKTRONIX

CURRENT
	

536

PROBE
	

HORIZ
P6042

Fig. 8. Dynamic B-H loop test fixture

Fig. 9. Implementing do unbalance

I•'ig. 10. Magnesil (K) B-H loop
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VERT = 0.5 T/cm
HORIZ a 50 mA/cm

VER = 0.5 T/cm
HORIZ = 50 mA/cm

°i

VERT = 0.2 T/cm
HORIZ = 10 mA/cm

Fig. 11.	 ^,do B -il loop

Fi b;. 12. 48 Alioy (li) b-H loop

Fig. ' 3, Sq. Per.iialloy (P) B-H loop
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VERT = 0.2 i/cm
HORIZ - 10 mA/cm

ifs?
INV INfall-I'mOWMAN

RVA

VERT = 0.5 T/cm
HORIZ = 50 mA/cm

VERT - 200 mA/cm
HORIZ - 0.3 T/cm

,-Ng. 14. S>>nerma1,riv (F) R-H loop

Fig. 15. Compo!: .te 52029 (2K), (A), (H), (P), and (F) B-H loops

a
	

Fib;. 16. Mzia;nusil (K) B-TT loup ,vith and without do
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`VERT a 100 mA/cm
HORIZ a 0.2 T/cm

VERT = 50 mA/cm
HORIZ = 0.2 T/cm

VERT 20 mA/cm
HORIZ = 0.1 T/cm

i^'ig, 17. Orthonoi (A) B-H loop with and without do

k'ig. 18. 4b Alloy (H) B-ii luup witii and without do

r'i 
	

1 9. Sq. Permalloy (P) B-H iuup with and without do
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VERT - 20 mA/cm
HORIZ	 0.1 T/cm

Fig. 22. Magnetized material
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Fig. 20. Supe rii;., i loy (I') B-H loop with and without do
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Fig. 21. Unniagnetized material
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i m —♦'

WITHOUT GAP	 WITH GAP
A	 B

Fig, 23. Air gap increases the effective length uI the magnetic path

Fig. 24. Implementing do unbalance
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IL

Fig. 25. Typical cut toroid

Fig, 26. Typical cut "C" core
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2.4 kHz
SQUARF WAVF

30 W

CURRENT MEASUREMENT

.R

r

Fig. 33. Inverter inrush current measurement

Fig. 34. l ypical inrush of an uncut core
in a driven inverter

Fig. 35. Typical inrush current of a cut core
in a driven inverter
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T')

/.4 kHz

CURRENT MEASUREMENT

Fig. 36. T-R supply current measurement

Fig. 37, Tvpical inrush current of an uncut
core operating from an ac source

Fig, 36. Typical inrush current ui a cut
core in a T-R

n
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