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ABSTRACT

This report describes a Monte Carlo simulation of transition flow round

a sphere. Conditions for the simulation correspond to neutral monatomic

molecules at two altitudes (70 and 75 km) in the D region of the ionosphere.

Results are presented in the form of density contours, velocity vector plots

and density, velocity and temperature profiles for the two altitudes. Contours

and density profiles are related to independent Monte Carlo and experimental

studies, and drag coefficients are calculated and compared with available ex-

perimental data. The small computer used is a PDP-15 with 16 K of core, and

a typical run for 75 km requires five iterations, each taking five hours. The

results are recorded on DECTAPE to be printed when required, and the program

provides error estimates for any flow-field parameter.

,1^T rl -SOT ?911M
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1. INTRODUCTION

1.1 Motivation for the Study

1.1.1 The lower ionosphere

The term ionosphere is given to the region of weakly ionized gas which

surrounds the earth from an altitude of 50 km to about 1000 km.

Ground-based radio techniques have shown that the ionization produced

by solar and cosmic radiation form a layer structure, which provides a

convenient method of classifying the various altitude regions.

Whitten and Poppoff (1965) have designated the region between 50 and

150 km as the lower ionosphere, and this is subdivided into E and D regions,

according to the layer structure of the corresponding ionization.

The E region is a well-defined layer of ionization formed during normal

daytime conditions in the altitude region between 90 and 160 km. Above this

is the F region. The D region extends down from 90 km.

1.1.2 D-region measurements

Rocket-borne electrostatic probes provide one of the fundamental techniques

for measuring the properties of the ionosphere. The probe is a small metallic

electrode carried through the plasma by a sounding rocket. A DC power supply

in the rocket biases the probe at various voltages positive or negative with

respect to the piusina and the current collected by the probe provides inform-

ation about the conditions in the plasma, such as concentrations and energy

distributions of the charged particles.

Probe measurements have the unique advantage of being localized, rather

than averaged over a large volume of plasma, so that the accurate interpre-

tation of probe data is very desirable.
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A fundamental aspect of probe flow is the formation of a sheath region

near the probe, where charge neutrality is not satisfied, as it is in the 	 -

undisturbed plasma.

Classical Langmuir probe theory is applicable only where the mean free

path for charged-particle-neutral collision is greater than the sheath thickness,

so that on the average, particles suffer no collisions after entering the sheath.

This condition is satisfied only above about 90 km.

The theory of Gerdien condenser-type instruments treats the motions of

the charged particles as mobility- controlled, which assumes a mean free path

much shorter than the distance over which the electric field changes

appreciably. This neglect of space charge effects is not justified for number

densities higher than 10 3 cm-3 , so that a more general probe theory is required

for D-region applications, where number densities are greater than 10 13 cIn-3.

Cicerone and Bowhill (1967) have developed an analytical theory to cover

a stationary probe immersed in a relatively high pressure, weakly ionized gas.

1.1.3 Monte Carlo study

A complete theory of D-region probes must allow for the possible presence

of two or more negatively charged species and motion of the probe relative to

the plasma, a problem which at present seems intractable using analytical

methods.

A Monte Carlo simulation, made possible by the development of high-

speed digital computers should be able to incorporate the above features,

provided that the required collision cross sections are known. The present

work is concerned with a simpler problem, that of flow about a sphere travel-

ing. at Mach 2.7 through a stationary monatomic neutral gas with temperature

and density corresponding to the neutral constituents of the ionosphere at
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two altitudes (70 and 75 km) in the D region (see Table 1.1). The distribution

obtained by the present study will be used as a neutral background gas for

further studies of ion-probe interactions, using the Monte Carlo technique.

1.2 analytical Treatments of the Shock Problem

For the purposes of this report a shock wave having supersonic flow

behind the shock will be termed a "weak shock", while a shock wave having

subsonic flow behind the shock will be termed a "strong shock".

1.2.1 The Boltzmann equation

The state of a gas or gas mixture at a particular instant is completely

specified for the purposes of analytical kinetic theory if the distribution

function, f(v, r, t) for the molecular velocities v and position r at time

t is known throughout the gas.

Observable properties of the gas may be obtained by suitable averages

over the distribution.

The distribution function, f(v, r, t) is defined such that

dN = f (v, r, t) dv dr

is the number of molecules that have velocities between v and v + dv and

position between r and r + dr at time t.

The most general and fundamental description of the time and space rates

of change of f, due to collisions within the gas is given by the Boltzmann

equation (Boltzmann, 1964)

ofof	 of _ df

8t +	 ar + a 8v	 (dt)coll



4

I

TABLE 1.1 Free stream data (U.S. Standard Atmosphere, 1962).

Parameter

Number density, N.(m-3)

Temperatur,, , T.(°K)

Effective velocity, U.(ms-1)

Molecular mass, m(kg)

Mean free path, A.(m)

Height (km)

70

1.64 x 1021

215

880

4.81 x 10-26

1.03 x 10-3

75

.79 x 1021

195

835

4.81 x 10-26

2.14 x 10 -3
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where a(r, t) is the acceleration of a molecule produced by any external

field when the molecule is at point r a;. time t, and the right-hand side is

the Boltzmann interaction term expressing the net rate of change of the

distribution function at a fixed point due to molecular interactions.

The form of the interaction term depends on the type of force between

two interacting molecules. For example for a central force which is a function

of the distance between two molecules 1 and 2, respectively;

(df 1 /dt) Coll - f (f if2 - 
f 1f2) gb db de dv2

where	 fl, = f(vi, r, t)

f2 = f(v2, r, t)

f l = f(v l , r, t)

f2 = f (v„ r, t)

and (vi, v_2) are the velocities after an interaction of molecules 1 and 2

which had velocities (v l , v2) before interaction, b is the impact parameter

and a the azimuthal angle of the orbital plane of molecule 2 with respect to

1.

Boltzmann's H-theorem (Boltzmann, 1964) shows that molecular encounters

will tend to bring about a Maxwellian distribution of velocities if the gas is

left to itself.

Thus it may be shown that the Boltzmann equation is satisfied by a

Maxwellian type distribution function

_(1112/V2
f (v, r) = A e

where A is a constant and v  is the most probable thermal speed of molecules,

1/2
given by (2kT/m),
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Boltzmann's H is defined by

H(t) = f 'm f (v, t) In f (v, t) dv

A minimum of this function is a necessary condition for equilibrium and

it may be shown that the above Maxwellian distribution for f satisfies this

condition.

Efforts to obtain exact solutions to the Boltzmann equation for the

more general case of non-equilibrium have proved much less successful, both

because of the non-linear nature of the Boltzmann equation and because of

the intractable form of the collision integral.

The most promising analytical approach seems to be the assumption of

an explicit form for f in each particular case (Mott-Smith, 1951), see

Section 1.2.3.

1.2.2 Analytical solutions

The equations of fluid flow may be obtained by solving the Boltzmann

equation for the space and velocity distribution of the molecules by the

Enskog-Chapman method (Chapman and Cowling, 1939).

Boltzmann's equation is expressed in the form ^(f) = 0 and a series

solution

f =	 f(r)

T=O

is assumed, where f (r) is the rth order term in the expansion of f.

This leads to a solution for the distribution function in terms of

the parameter a/ox where a is the mean free path and Ax the distance in

which f changes by an appreciable fraction of itself.



The zero-order terms give the equations of flow of an inviscid fluid.

•	 The first-order terms give the Navier-Stokes equations, and the second

order terms, the Burnett equations. The simplest inviscid flow problem treats

a one dimensional flow of gas produced by the motion of a piston in the axial

direction, within a cylindrical tube (Becker, 1968).

In this case the equation describing the motion reduces to

p (dt+udt)+csd.=o 	 (1.1)
where p is the density, u the velocity at a point, and C s is the local speed

of sound.

The method of characteristics introduces two families of curves T1,

T2

dx
dt- u+Cs

dx
dt u - Cs

which are characterized by parameters a and u respectively, then Equation (1.1)

and the continuity equation may be expressed in a (a, p) coordinate system

as

w + u - const on T1

(1.2)
w - u = const on T2

where	 w(p) = f  Spy, dp
p0 p

the two relations (1.2) then form the starting point for computing p(x, t)

and u(x, t) in a specific problem, i.e., with given initial values.
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Solutions of the Navier-Stoke equation were obtained by Becker (1923),

assuming constant coefficients of viscosity and thermal conductivity. These

solutions were improved by Thomas (1944).

For strong shocks the thicknesses calculated by Becker and Thomas are

very different, but are at most of the o.'er of a few mean free paths. This

throws doubt on the valiuity of the Navier-Stokes equations, since they are

valid only if f changes only by a small fractional amount in a mean free path.

1.2.3 The Mott-Smith method

In the Enskog-Chapman theory, f is represented by a skewed Maxwellian

form, having only one strong maximum. Mott-Smith (1951) has suggested that

a more profitable assumption might be a bi-modal form. Here the distribution

is assumed to be the sum of two Maxwellian terms (representing subsonic and

supersonic streams) with different temperatures and mean velocities but with

unassigned space densities. The densities re obtained from the solution of

a transport equation for un , where n is an integer and u is the component of

molecular velocity in the stream direction.

Since Mott-Smith's method does not take account of interactions between

particles of the same stream, his theory is most suitable for strong shocks

where these are less significant.

The two-fluid model has been improved by Ziering, et al. (1961), and

their results are in good agreement with experiments performed by Sherman

and Talbot for both large and small Mach numbers. (Mach number, M = local

flow speed/local sound speed).

However, the Mott-Smith models predict the wrong value of the Prandtl

number, Pr = Cpn/k (where Cp = specific heat at constant pressure, n = coef-

ficient of viscosity, k = thermal conductivity) near the downstream boundary,
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so that a completely satisfactory analytical solution for arbitrary shock 	 --

strength is still lacking.

1.3 Monte Carlo Evaluation of the Boltzmann Collision Integral

Nordsieck and Hicks (1966) have devised a Monte Carlo method for the

evaluation of the Boltzmann collision integral. The method has a major

advantage over the above analytical approaches in that it can easily be

modified to use any molecular force model as long as the differential cross

sections are known. It may also be used to test any velocity distribution

function proposed as an approximate solution of the Boltzmann equation for

a shock wave or other flow conditions, or to check directly the various

elaborate analytical calculations involved in moment methods (Martikan, 1066).

The procedure replaces the collision integral by an integral over a

finite region of velocity space, taken so as to include most molecules. The

average of the integrand over all values of the line of centers vector is

then approximated by the average of a large and fair sample of particular

values of the =ntegrard, selected by Monte Carlo trials.

The method has been applied to both the pseudo shock (a translational

relaxation of molecules) and the shock structure.

Extensive error analyses performed by Hicks (1968) have estimated that

for a Mach number of 2.5 the random errors in the velocity distribution function

and the collision integral amount to 2% or less, and random errors in moments

of these functions range from 0.03 to 2.7%. The complete program required

8,000 words of storage on a CDC 1604 computer.

A major difficulty with the practical application of approaches based on

the Boltzmann equation is the inclusion of realistic and complicated boundary

conditions, especially surface interactions with bodies placed in th; flow.



In an attempt to solve problems of this type, several Monte Carlo algorithms

have been developed which treat the dynamics of gas molecules more directly.

1.4 Monte Carlo Simulations of Rarefied Gas Flow

Bird (1965) has developed a Monte Carlo technique which was applied to

thc: problem of a gas initially in equilibrium between two infinite, plane,

parallel and specularly reflecting walls. One wall then impulsively acquires

a uniform velocity towards the other, and the numerical experiment studies the

shock wave so formed.

The first step in the procedure is to select a molecule at random, thee:

sample the number density in the vicinity of the molecule, which is retained

or rejected such that the probability of retention is proportional to the local

density. A second molecule is chosen at random, subject to the condition that

its position be within half a local mean free pa;' ,. of the first molecule, on

the right side for a collision to occur. The relative velocity is determined,

and the pair is accepted or rejected so that the probability of retention is

proportional to the relative velocity. When a pair is retained, a line of

impact is chosen at random and new sets of velocity components for the

molecules are computed. Each time such a collision takes place, a new pair

is selected and the time is advanced by

At'Nv
0

where N0 is the number of molecules used in the simulation, and v is the

collision frequency from kinetic theory. After a suitable time, t m , all the

molecules and the wall are moved through a distance appropriate -o t  and their

current velocities. At much larger time intervals the velocity and density

10



Profiles between the walls are sampled. After a run of thirt; minutes on the

Atlas digital computer at the University of Manchester, England, Bird obtained

shock profiles with a standard deviation of two to four percent. The shock

was found to travel at the speEj predicted by the Rankine-Hugoniot equations

and resulting profiles showed good agreement with the Mote-Smith results, at

a shock Mach number of 1.5.

Vogenitz, et al. (1968) have applied Bird's method to transition flow

about cylinders, spheres, wedges and cones. the results were compared with

wind tunnel tests using a free molecular recovery temperature probe, and with

electron beam density measurements. Agreement in both cases was good. The

computation times ranged from 5 minutes using 32,000 words of storage to 20

minutes using 80,000 words, on a CDC 6600 machine.

Bird's technique has been used to provide pictorial simulations of

transition flow (Bird, i9e9), which should prove to be a valuable visualization

technique for this difficult area.

The present program of study is intended to show that comparable results

may be obtained using much smaller computes capacity. The machine used is a

Digital Equipment Corporation PDP15, having 16,000 words, each of 18 bits.

The machine is intended primarily for on-line data reduction of ionospheric

observations of the partial reflection type and the Monte Carlo simulation

can be run whenever the machine is not required for this work, which takes

place only during daylight hours. Monte Carlo studies might well prove to

be valuable users of the small on-line computers having relatively low duty

cycles, which are to be found in many installations about the country.

11
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4

2. THE PROGRAM

2.1 Monte Carlo Choice

The core of any Monte Carlo method is the Monte Carlo choice. The process

to be modeled is reduced to a series of decision points, which are brand-,

points in the process, where any one of a number of future courses is possible.

Probabilities must be assigned to the possible events, according to some theory

of the microscopic kinetics of the system under consideration. The prob eiilities

are mapped onto the interval 0 to 1 as shown in Figure 2. 1, so that the fraction

of the emit interval allotted to each event is equal to its probability.

A random number is now chosen from a distribution uniform between 0 and

1. The event is determined by placing the random number on the probability

interval; if it falls in the interval allotted to event A, then event A is

said to have occurred, if in the interval of B, then B occurred and so on.

Since the random number may fall with equal probability at any point on the

unit interval, the probability of its falling in A is exactly equal to that

i. 'raCi, Ull of tiie wait interval allotted to event A, namely the computed prob-

sbility of event A. In this way events in the real process are modeled on

the computer, provided only that a random number generator of fairly uniform 	 -

distribution is available, and that realistic probabilities can be assigned

to each possible event.

In the present simulation it is also necessary to draw particular events

from a continuous distribution, such as initial position and velocity of a

molecule or velocity after a collision. In this case a modification of the

above procedure is used. The following Equation (2.1) from probability theory

relates a random variable x, with probability density function f(x), to a
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random variable R. uniformly a stributed on the interval 0 to 1 (Shreider, 1966)

x

ki = j f (s) d^	 (2.1)

>` 1

where	 E is a dummy variable

x  is the lower limit of the particular

x in question.

Using this relation and the knows, distribution for the parameter to be

drawn, the Equation (2.1) is integrated and rearranged to give x as an explicit

function of R.. A random, or as in the present program, a pseudorandom number

is then drawn, and used to e7aluate the corresponding x. In this way if the

R  values are distributed between 0 and 1, with distribution approximately

uniform for a large sample, the resulting values of x will have a distribution

close to f (x) .

2.2 The Method

2.2.1 Characteristics of the gas

In the present simulation of rarefied gas fluty , the real events are

collisions between the molecules in the region about the probe.

Using an approach analagous to that of Mott - Smith, the gas near the probe

is considered to consist of three distinct classes of molecules, each character-

ized by a distribution of density, mean velocity and temperature.

Class 1 molecules have not yet encountered either the probe, or a

member of any other class.

Class 2 molecules have been reflected specularly from the probe,

and have only encountered other class 2 molecules since reflection.



is

Class 3 molecules have encountered at least one molecule of another

class, either before or after striking the probe.

The method involves an iterative procedure which gives successively closer

approximations to the actual distributions for the three classes.

2.2.2 Division into cells

The continuous distributions of velocity and temperature are approximated

by dividing the space of interest into discrete cells, each having one value

of every parameter for the three classes of molecules.

Since the probe has axial symmetry, a cylindrical coordinate system is

used (Figure 2.2) having ten cells in the radial and 30 in the axial directions.

The resulting system of 300 cells, are coaxial cylindrical shells (Figure

2.3) and it is assumed that the flow has no mean variation in the azimuthal

direction.

Since class 2 and 3 molecules are found to be confined to the region of

the probe, class 2 velocities are stored only for the ten axial cells nearest

the probe, and class 3 velocities and temperatures only for the 20 axial cells

nearest the probe.

Beyond these regions class 2 mean velocities and class 3 mean velocities

and temperatures are set to the last computed value for that radial shell.

2.2.3 Computational procedure

This section gives a brief outline of the whole computational procedure,

which will be dealt with in more detail in sections 2.3 and 2.4.

A first approximation to the various distributions is taken as a back-

ground gas, into which are introduced test molecules of class 1, starting from

the entrance plane.
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A test molecule is introduced having position and velocity coordinates

chosen at random from distributions calculated for the flux across the input

plane.

The molecule is examined after a fixed interval of time bt, when the

Monte Carlo choice probabilities are calculated, and a random selection is

made to determine whether a collision has occurred in the last time interval

8t, and if so the class of the collision partner.

If a collision has occurred, new velocity components are selected, accord-

ing to the laws of classical gas dynamics.

The velocities and squared velocities of the molecule are recorded for

that position, and a count of particles for the test class is incremented

by one. The test molecule proceeds by straight line path segments towards the

probe, and at each point the position is tested to determine whether the test

molecule has struck the probe, or reached the boundaries assigned to the region

of the study.

If a class 1 molecule reaches the radial boundary it is reflected specu-

larly, so as to model the introduction of new molecules from an infinite real

gas. If a test molecule reaches either axial boundary without striking the

probe, a new test molecule is introduced at the entrance plane and the whole

process is repeated.

If a class 1 molecule strikes the probe, it is reflected specularly and

becomes a class 2 molecule. The mean temperature is assumed to remain unchanged

after reflection.

After a suitably large number of molecules have been followed in this

way, the accumulated parameters are used to calculate a new approximation to	 =

3

the background gas distributions. These values replace the old background
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gas for the next iteration, when the introduction of test particles begins

again.

After a number of iterations, the distributions converge to a stable form

with steady statistical fluctuations, which is taken to be the final estimate

of the model flow.

2.3 Description of the Program

The flowchart, Figure 2.4 shows the logic of the Monte Carlo program.

Subroutine names appear in wide-spaced letters in Figure 2.4 and capitalized

in the text. A complete listing of all programs appears in the Appendix.

2.3.1 Cell system and storage of parameters

As explained in section 2.2.2, the cell system consits of ten cylindrical

shells, each divided axially into 30 equal rings, generating 300 cells so that

300 values of each parameter must be stored (with the exceptions noted in 2.2.2).

In the present study, core storage is limited to 16,000 18-bit words, so

that economy in storage is an important criterion.

Each parameter is stored as a two-subscript array, with the first subscript

representing axial, the second radial cell numbers. The two subscripts for

a given position are found by taking each coordinate, dividing by the corresponding

cell dimension and rounding to the next higher integer.

The PDP-15 requires two 18-bit words to store a real number, as shown in

Figure 2.5. This provides an accuracy of six decimal digits. An integer con-

stant is stored in one word, giving a maximum magnitude of 131071 or 217-1.

It is felt that integer storage can provide adequate accuracy for all background

gas parameters, while real-variable storage is used for all accumulated velocity

parameters to allow for the large magnitudes involved. Number densities are

normalized before storage by multiplying by a constant factor (Fint) of 10-17.

No



Figure 2.4 Main program flow chart.
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The reciprocal 
(Freal), 

10 17 is used to restore the true densityb efore use

in the program.

2.3.2 Read parameters, initialize subroutine RANDU, and arrays,
subroutine SETUP

At the beginning of any run, and only then, the parameters defining the

conditions of the simulation are read prom the teletype keyboard. These

define for example, cell size, ambient free stream conditions and probe posi-

tion (see Section 2.6).

A prime integer is supplied to initalize the random number generator

(Section 2.4.1) and the subrountin:: SETUP sets fixed parameters (such as 1r)

and initial values of all arrays, to free stream conditions for class 1 back-

ground parameters, and zero for all accumulated parameters.

2.3.3 Introduction of a new molecule, subroutines NEWPOS and NEW

The introduction of a new molecule involves two subrountines NEWPOS

and NEMI which are explained in more detail in sections 2.4.2 and 2.4.3.

NEWPOS generates the cylindrical coordinates of the initial position

(0, r, 6) on the entrance plane. The r and a coordinates are chosen from dis-

tributions uniform with area over the entrance plane.

The cell number subscript is assigned as in section 2.3.1 and NEW gen-

erates cylindrical coordinates of the new initial velocity (V z , Vr , Q v) for

a flux of molecules with mean axial speed If.. (Figure 2.6)

2.3.4 Tracing a molecule, subroutine INCPOS

Basic to the operation of the program is the small time increment 6t

at which all parameters of the test molecule are recalculated; this time

increment will be described hereafter as a "moll.

The time is incremented by the chosen 6t, and subrountine INCPOS returns

the next position using the molecular velocity and previous position coordinates.
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Figure 2,6 Velocity coordinate system.
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The molecule is assumed to traverse a stra-ght line path between collisions.

2.3.5 Tests for cell and system boundaries, subroutines NEWCEL, HITSPH,
	 I

RBOUND

The next operation is to make a series of tests on the position coordi-

nates of th;, molecule, to determine whether it has moved into an adjacent

cell, and if so whether that cell lies outside the chosen system boundary,

which is drawn so as to include the surface of the sphere (see Figure 2.2).

If a class 1 molecule has crossed the radial system boundary, the sub-

routine RBOUND simulates the introduction of a new class 1 molecule from

the gas beyond the system, by means of a soecular reflection. Class 2 or

exists from either plane axial boundary (the entrance or exit plane), that

molecule is lost and a new molecule is chosen at the entrance plane.

If the molecule is found to have struck the probe it is reflected specu-

larly. Subroutine HITSPH calculates new position and velocity components

using the probe geometry (see Section 2.4.7).

2.3.6 Collision probability, subroutine VREL

If the molecule has not crossed a cell boundary in the last mo, values

of collision frequency with the three background classes (v l , v l , v 3) and total

collision probability, P(bang), remain the same as for the previous mo. Other-

wise new collision freluencies are generated using the formula,

V i = L reli q Ni

where	 vi is the collision fre quency with back ground class i

Ni is the number density of background class i



Vreli is the mean effective collision speed for the test and ith

background class, given by

cc 0

f
^	 I P(v	 ) dv	 dv,	 dv
l reli	 J l f Iv -	 bi'	 — bi	 bix	 biy	 biz

where	 v bi is a velocity of the ith background class, having Cartesian

components v
bix v

biy vbiz and a Maxwellian distribution

function P(v bi).

v is the test molecule velocity.

This integral is evaluated in Section 2.4.4, and the function VREL returns

-	 a value of Vreli using a 15 step approximation to the integral.

2.3.7 Collision leading to class three test subroutines MONTE, BANG, 	 j
PTNR3, VELS

A Monte Carlo choice (see Section 2.1) now determines whether a collision

occurred in the last mo. RANDU returns a random m.mber which is compared with

the collision probability P(bang). If it is less than P(bang), a collision

is said to have occurred and the subroutine MONTE makes a further Monte Carlo

choice to determine cp the class of the collision partner. Collision proba-

bilitie.- for each class are computed from the corresponding frequencies (see

Section 2.3.6), and mapped onto the unit interval. A random number then deter-

mines the choice of cp.

Subroutine BANG, determines the combination of test class c t and partner

class _:p , so that if the two are different or c t = 3, the correct combination

of parameters is passed to suboutine PTNR3. This subroutine determines the

test molecule velocity after collision, using a hard sphere model and incorpor-

ating the mean persistence of velocities after collision. Subroutine VELS

provides a random thermal velocity, drawn from a Maxwellian distribution with

^^ rLJ

n
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spherical symmetry as in Sections 2.4.5 and 2.4.6. The test molecule now

moves into class 3. If the test and partner molecules were found to be of the

same class, the collision is ignored, unless both were of class 3, in which

case the collision is computed as described above. This ensures that the pro-

cess remains collision dominated even after class 3 molecules predominate near

the probe.

2.3.8 Bookkeeping and iterative procedure, subroutines BKKEEP, NEWBG

At this point, subroutine BKKEEP increments the accumulated parameters

for the present class of test molecule, i, at its present position as determined

by the array subscripts. A count of molecules M  is incremented by 1, and for class

2 or 3 molecules the current velocity is added to accumulated velocity sums

EV `i , EVri for the axial and radial directions. For class 3 molecules only, the

squared velocities are 1.3ded to accumulated s quared velocity sums E(V_,) 2 , E(V 
r
Z)2

..^	 ^

which will be used to calculate mean class 3 temperatures. Again the velocity ac-

cumulations occur only in the region of the probe, as explained in Section 2.2.2.

The procedure then begins again for the next mo.

Each test molecule is traced and recorded until it leaves the system

through one of the boundaries. A new class 1 test molecule is then introduced

at the entrance plane, and the tracing process is repeated.

After a suitable number of molecules have been traced, as determined by

standard deviation estimates (Section 3.1), a new background gas is computed

from the accumulated parameters for each class in each cell as follows. The

new number density N i is given by

M. x F

N. _
i	

vicell

where	 N1. is the accumulated number of molecules of class i recorded in
I

that cell
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vi 
cell is the cell volume

F
norm 

is a constant normalizing factor for the system such that the

total number density at the cell farthest from the probe is that

of the freestream.

The new mean velocity components for classes 2 and 3, (Vzi' Vri) are given

by	 V	 = LVzi	 (2.2)
zi	 M.

i

V . : 
L-	 (2.3)

ri	 M.

where 
LVZi, 

LVr i are the suns of ail axial and radial velocities respectively

recorded in that cell as explained in Section 2.2.3.

The new class 3 temperatures (T Z3
,
 Tr3) are given by

C

	

_ m	 L (
V 2
z3 )	 V	

M 
3

Tz3	 k	 M3	 - z3	 (M3-1)	
(2.4)

V 2

	

': m L 
(V
	

- V	

h1
--2	 3

Tr3	 k	 M3	 r3	 (M3-1)	
(2.5)

where	 m is the mass of molecule

k is Boltzmann's constant

L(V z3) 2 , L (Vr3) 2 are the sums of squares of all axial and radial

velocities recorded in that cell (see Section 2.2.3)

V
z3' Vr3 are the mean velocities of classes 2 and 3 as above

M3 is the total number of class 3 molecules recorded at that cell.

Class 1 temperatures and velocities and class 2 temperatures are assumed in-

variant with position everywhere. Class 2 and 3 velocities and class 3 tem-

peratures are stored only for the region nearest the probe as explained in

Section 2.2.2.
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After the new background parameters have been calculated, all accumulated

parameters are reset to zero and the new iteration begins with the introduction

of the first molecule at the entrance plane.

2.3.9 Program output, subroutines RESULT, GIVL:

The subroutine RESULT can take various forms depending on the output re-

quired. The standard form, included in the binary library file (.LIBRS BIN)

assembled for this program is called RESGIV. This uses subroutine GIVE (not

shown on the main flowchart for clarity) to write the accumulated parameters of

each iteration on DECTAPE in a non-file oriented mode, using the DTF DECTAPE

handler. Each WRITE command fills 256 10 (256 decimal) words (one block) of

the tape from 256 10 words of core. Unused words within this number are filled

with blanks. The data to be written have been arranged so as to fill the tape

in an economical f ashion us i ng this Riede. S-I nce unc. DECTAPE coliiprlses 57610

blocks, up to 36 iterations, each of 16 blocks may be stored in this way.

Alternatively RESNM or RESRAW may be loaded in place of RESGIV, to output either

raw data (RESRAW) or data normalized by free stream values (RESNM) on the tele-

type. Which of the 1900 parameters are printed each time is of course a matter

of choice.

Core storage limitations permit the loading of only one form of RESULT

for any given run.

2.3.10 Off-line data reduction, subroutines NEWBGS, RESNM7, STDV7, RSTDV7

When the required number of iterations have been recorded on DECTAPE,

using RESGIV and GIVE, execution of the main programs may be terminated, and

one of several possible sets of data reduction program loaded instead. NEWBGS

and RESNM7 read the accumulated parameters of each iteration from DECTAPE, com-

pute the corresponding background gas and print the normalized background

parameters on the teletype.

a

i
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STDV7 and RSTDV7 may be used to process the short runs (see Section 3.1)

to give estimates of the mean and standard deviation for a full scale run.

2.3.11 Dumping the program, subroutines DUMP, LSSW, PAWSE

The PDP-15 single-user Advanced Monitor Systen KM1S V4A allows for the

possibility of writing the entire core onto DECTAPE at any time during execu-

tion. The process is initiated by pressing the keys CTRL and Q simultaneously

on the teletype, and is called a dump. An area of DECTAPE must be reserved for

dump, and the dump may be recovered and execution restarted exactly as if no

interruption occurred, provided the program is in a suitable waiting loop such

as a Fortran PAUSE or the Macro subroutine PAWSE used here, when the dump is made.

The Macro routine LSSW provides a way of initiating a recoverable dump

at any time by depressing a specified console data switch. The subroutine

_	 DUMP is then called and the dump may be initiated using the CTRL and Q keys.

'	 After recovery of a dump, DUMP also repositions the data tape correctly, so that

the entire computer and all tape drives are available for other uses between

dumps. In this way execution of the program may be resumed each night, while

the computer is otherwise occupied during the day.

Subroutine LSSW proved very valuable during modification and de-bugging

of the program, since for example, the position of a particle can be printed

when required by the user, rather than every time the program reaches a given

point (see the program comments in Appendix).

The Macro subroutine PAWSE may be used instead of a Fortran PAUSE state-

-	 ment, causing a halt in execution until the keys CTRL/P are struck on the

teletype. The Macro program is considerably smaller than the corresponding

Fortran routine since it cannot handle numbered PAUSE statements. This

facility is not required for the present purpose, and PAWSE is used here to

save core storage.
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2.4 Important Subroutines

2.4.1 Pseudorandom number generator, subroutin(- ItANDU

The pseudorandom number generator used here is of the multiplicative

congruent type, based on CACD1 algorithm 294 (Strome, 1966).

The program generates the next uniformly distributed pseudorandom number

on the interval (0, 1) as in the flow chart (Figure 2.7). The procedure uses

two constants, M and C, chosen to maximize the period and minimize the correlation

of the sequence generated. For the present program the following equations

are used for choosing M and C

M = 1)k

where	 D = number base of the machine

k = entier ((2n+1)/3) i.e., the integer part of ((2n+1)/3)

where n is the maximum number of significant digits for a real variable stared

in the machine.

Then	
C = Dn-k _ q

where
q=3 for Dn-k > 100	 (2.6)

Fortran double precision arithmetic (8 significant decimal digits)

yields; D = 10, n = 8

k = entier (2 x 8 + 1) /3 = 5

n-k = 3

i.e.	 M = 105

3C= 10- 3=997



INITIAL DATA
DU

DU=O?
	 No	

X = DU/M

YES

X=X-C

X = X - ENTIERW

DU=O

X IS THE NEXT
PSEUDORANDOM NUMBER

Figure 2.7 Multiplicative pseudorandom number generator
flowchart, function RANDU.
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I)U should be a positive integer less than and relat.iiely prime to M, here

Kj was chosen to be 8287.

Difficulty was experienced in trying to use sii.1^ precision arithmetic

only, for a pseudorandom number generator on the PDP-15.

While six significant decimal digits are claimed by DIT for single

precision real arithmetic, the sixth decimal digit .lid not prove reliable

enough for this use, so that after a series of calls of the program, incorrect

digits began to appear in the lowest significant decimal places. These were

increased in significance by successive multiplications, giving the sequence

of pseudorandom numbers undesirable properites. The effect was a non-uniform

distribution of numbers selected at large, random intervals from the sequence,

which appeared as an incorrect distribution of samples with radius at the

entrance plane. Assuming only five significant decimal digits leads to a

violatior of the requirement (2.6) as Dn-k = 100.

The double precision version used in the program assumes only eight

significant decimal digits of the nine claimed by DEC.

Figure 2.8 shows the results obtained with the double precision version

of RANDU. Numbers introduced in each radial cell Nir are plotted against 2ir-1

where it is the cell number. A perfectly uniform distribution with area
would result in the straight line sho%tin, with the standard deviation limits

predicted by a Poisson distribution. The actual points are seen to be in good

agreement with this hypothesis.

2.4.2 Selection of position at input plane, subroutine NEWPOS

The distribution of particles over the input (z = 0) plane must be uniform

with area, as in the real flow.

a
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New z and e coordinates may be chosen at once;

z = 0

e= 2 T r R e

where R H is x random number chosen from a distribn:i,n uniform on the interval

U to 1.

The distribution function, f
r

, for r is given },-

fr	2---
r
max

where r
max 

is the radius of the system, so that the Probability of selection,

P(r), within any radius r, is given by

, o r	 r

	

max	 max

a fraction proportional to the area of the disc, radius r.

The distribution is normalized so that the total probability of selection

within the cell system, 
P(rmax ) is 1.

	

P(rmax) 
= f

o

rmax 2r'	 drI = 1

 r
max

Setting this distribution function in the general relation (2.1) gives

R _ (r 2r,	 = r2r	
j o 

r2	 dr'	 r2

max	 max

where R
r 

is a random number uniformly distributed on 0 to 1.

i.e.	 r = r	 AR—	 (2.7)
max r

This result is then used to select values of r, using random numbers Rr.
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2.4.3 Selection of velocity at entrance plane, subroutine NEW

Consider the velocity components of the input class 1 molecules drawn

from the flux crossing the imaginary input plane. at a mean axial speed U..

The class 1 molecules are assumed to have a ?laxwellian velocity distribution

with temperature T 1 , so that the number of molecules crossing the input plane

in the +z direction, which have thermal velocity com ponents in the range

dvX , dvy , dvz about vx , vy , vz is

N	 -(v2 + v2 + v2)/v2

	

dq _ ^ 3/2v3 (vz U) e x	 y	
z mdvXdvydvz

m

where	 Nl is the free stream number density

vm is the most probable thermal velocity in the free stream given

by (2kTl/m)

The total flux q of molecules crossing the input plane is found by inte-

grating this expression for vx and vv frem -- to +- and v z from -U to +-,_	 00

the latter limitation excludes particles crossing in the -z direction (Fan, 1967)

jC0	 r°°
=	 dq

V =UZ	 v = -m v =-^
y	 x

giving

N1

q 
= 271 

2 vm X(Sz)

_	 where X(S z) is a function of the flow velocity in free stream

2

	

y(sZ) _ o
-Sz 

+ 1T	 Sz[1+erf(Sz)]
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where	 Sz = U m/vm

The distribution function of molecules crossing the surface is given

by

v	 -(v2+v2+v2)/v`

Q	 I.

l	

3 (
yz 

+ Sz)e	
x y z	

m dvxdv^dvz

	

-	 m

	

X( S 	 v	 m

which represents the number of molecules with thermal velocities in the range

dvx , dvy , dv z about v x , vy , v  as a fraction of the total number crossing

-,he 4nput plane in the +z direction.

This is best re-written in the cylindrical coordinates of the present

study; V z , Vr , ev

2 2	 2

q = 2 
1 vm (-1 +S )c r z 'V dVdedV	 (2.9)

x(	z 	 m	
z	 r r z

The marginal distribution functions for the three components V z , Vr,

er , are each obtained by integrating over the ranges of the remainin- two

components.

Thus
27T
	

-V 
2/v2

	f r =	 ^Vrf dev dVz = ?
2 Vre

r 
m

U °	 v 
z

_

	 f o

_

fev	 J 	 VrfdVr dvz
	 2Tr

-U
z

and

27r W	 V	 -V2 /v2

	

_ (	 =	
2	 ( z	 )	 z m

fV	V fdV de v 
x(SJo o r 
	

z)vm m S

z e	 r
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The EquaV.on (2.1) relates the above distributions to a uniform dis'ri-

bution on the interval 0 to 1.

If the random variable x has a probability density function f(x), then

the distribution of the random number R. is uniform on the interval 0 to 1
i

where

i = J xR 	 f (^) d^

x 

where x  is the lower limit of x.

Applying this to the velocity distribution functions for the input

test molecules gives

=
-V2/V2

R	 e 
r

9
_ y

Re 	 2n

and

(( -(V /v )2
Rz = X(S ) je	 z m +" 1/2S z [1-erf(V z /vm)]}	 (2.10)

Z	 ll	 1

where Rr , Re , R  are independent uniformly distributed random numbers on

the interval 0 to 1.

In order to select velocities, the above three equations must be re-arranged

so that Vr , ev , and V  appear explicitly, in terms of R  Re R  respectively.

In the first two cases this is simple, giving

V  = V Vln( IIR 
r)
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and

Ov = 2ir Re

Howe'v'er the z component of the rmal velocity cannot be CXprCSSCd CxI,_^Cltly

in terms of R
z . 

Instead the Equation (2.10) is fitted by a polynomial, using

a standard computer routine.

For a given value of S z , 50 pairs of corresponding values of (Vz/vm)

and R  are computed. It was found that good results could be obtained by

a least squares fit to a polynomial of seventh degree in terms of n where

n = ^ln(1/Rz)11/4

So that the corresponding 50 values of n ana V z m/v are fed into the

subroutine, yielding the coefficients a  through a 7 for the equation

Vz/vm = a  + a1n+a2n2+a3n3+a4n4+a5n5+a6n6+a7n7

The coefficients are tabulated in Table 2.1 for 14 values of S  in the

range of interest (Fan, 1967).

Once the coefficients are known for a giver. S
z	 z, values of R can be fed

into the polynomial yielding any number of velocity selections.

2.4.4 Collision probabilities, subroutine VREL

The following is a more detailed explanation of the theory used in choosing

collision probabilities. The argument follow Jeans (1954).

Consider a test particle of speed c colliding with a molecule chosen

from one class of the background gas, of number density n, having speed c'.
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The chance of collision per unit time is equal to the prob «ole number

of molecules of the background gas whose centers lie within a cylinder of

base area 4a and height V where a is the collision cross section of a particle,

V the relative velocity.

Let 8 c be the angle between c and c', and let ^ be an azimuth angle for

c'.

The number of background molecules per unit volume for which c', e,

lie within small ranges dc' de
c 

dip is

-(c'2/v2)
(n/7r 3/2V3 ) e	 m c' ̀sine cde c d^dc'

where v  is the most probable thermal speed of the background gas molecules.

Multiplying by 4aV and integrating over all values of ^ gives the number of

background particles within the cylinder of volume 4aV such that c', 
o  

lie

within dc', de
c 

as

-(c'2/V2)
(8na/v

3
7T
1/2

)V e	 m c 12 sine dA d
m	 c c c

when c, c' are given, V depends on e  as

V2 = c2 + C' 2 - 2c C' COse
C

Differentiating with respect to 8 c for constant c, c'

VdV = cc' sine de
c c

(2.11)

Substituting in (2.11) gives



41

(8na/vmnl/2)e	 m (c' /c)dc' V2 dV	 (2.12)

T	

Integrating V2 with respect to V, keeping c, c' constant

=,,^ 	̀ `+c

j V 2dV = V3/3^I^+^,I = 3 c(c 2 +3c' 2 )	 c' > c

_	 ^ cJ-c'

-	 Thus integrating (2.12) with respect to V gives

when

-_	 c'>c	 (16 
na/3v3^1/2)`	 m c,(c2 + 3c'

2) dc'
__=	 m

when	 _(c,2/v2)

c'<c	 (16 na/3vm^rl/2)e	 m (c'2/c)(c'2 + 3c2) dc'

'The mean collision probability per unit time is then found by integrating

from c' = 0 to W using the appropriate expression as c' is greater or less

than c

16no	 ^	 2	 2 
-c'2/vm	

c c' 2 (c' 2+3c2) -(c ^ 2/vm)	 l
3 1 2 {! c' (c +3c' ) e	 dc' + (	 c	 e	 de' } .

3v n	 c	 J o	 JJ
m

_	 The first integral may be evahuated directly as

-c2/v2
(2c 2/vm + 2/3) vme	

m	
.

The second integral cannot be evaluated in finite terms, but replacing

c' 2/vm by y2 the integral becomes

^_.
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v5 c/V	 2

cm j Y^(Y2 + 3c2/vm)e
-y
 dY

0

which after continued integrating by parts becomes

vm /-(c2/Vm) c 2c 2 	3	 3 2c2	 c/vm	 2	 l
c {-e	 v(2 +

4) + 4(2 +1)	 e-Y dy}
ll	 my	 v	 111111

m	 m	 o

Bence the sum of the two integrals is

3vm c -c2/Vm Zc2
	 jc^vm	 2

4c' (v e
	 + 2 + 1) 1	 e-y dy)	 (2.13)

m	 v	 o
m

This may be expressed as

5	 - 2 /v2 	 /

4cm (y e c

	
m + 

2 1. 2(222 + 1) erf(c
/vm))

m	 v
m

Where

2	 ( ^ -x2

	

erf (^ _^ 1 
2 J 

o e	 dx

the so called error function.

Alternatively Jeans (1954) has tabulated values of the function

2	 ^	 2

V^(^) = e - ^ + (2^2 + 1) ( e-x dx	 (2.14)
0

3
In terms of which (2.13) becomes
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3v5

4cm V+(c
/vm)

The mean collision probability per unit time, v for a test particle of speed

c is then given by

v	 Ono (vm/cal/2)^V(c/vm)
	

(2.15)

The above derivation is for Zero mass motion of the background gas.

The Monte Carlo study requires a background gas of mean velocity vii , so that

the above results may be used if c is xeplaced by an effective test velocity

found by subtracting 
vii 

from the true test velocity for the study, ^ as

c=wt ^i	 '

At this point, a quantity

4v2

vrel ' 1 2 ^,(c
/vm)	 (2.16)

=,	 ^	 c

is introduced, which may be regarded as the mean effective collision speed

of the test and the background particles.

It is assumed that the *_ime 6t representing any mo is so small that

the probability of two collisions occurring therein is negligible, so that

collisions with each background class are mutually exclusive. Hence total

collision probablity per unit time is found by ac?dition and the total collision

probability in time 8t, P(bang) is

P(bang) _ ( v l
+v 2

+v 3) 6t
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Subroutine VREL first determines the equivalent test particle speed

^c^ as above, and hence the current speed ratio S = (c^/vm . If this is found

to be less than 0.1 the corresponding error function is taken equal to S,

and if S is greater than 1.5 the error function is taken equal to 1. The

expression (2.14) for ^,(S) is then evaluated directly. Fot values of s between

0.1 and 1.5, 15 values of the function ^(S) are stored for s from 0.1 to 1.5

in steps of 0.1. The ^(S) corresponding to any S value is then used, and

in all cases expression (2.16) is used to return the value of Vrel'

2.4.5 Collision d^namics^ subroutine BANG1 PTNR3^VELS

Having chosen the class of the colliding partner, it remains co determine

the test molecule velocity after collision.

One way to do this would be to select a collision partner from the

partner class, according to some distribution. The laws of dynamics could

then be used to determine the test velocity after collision.

However the distribution of partner molecules should be weighted by the

relative velocity of the colliding molecules, so that the resulting expressions

would be similar to those used in picking the initial velocity of a test

molecule (Section 2.4.4). In this case the variablN S Z would be different

for each collision. Since S Z determines the coefficients used in the polynomial

fit, a large table of possible coefficients would be needed. This approach

would lead to very large penalities in time and storage.

If the test molecule were completely accommodated into the partner class,

its new velocity could be determined from the mean velocity of the partner

class, plus a random velocity drawn from a Maxwellian distribution of thermal

velocities corresponding to the partner class temperature. A relatively

simple procedure.
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However the test molecule cannot be regarded simply as a member of the

partner class after collision. It is found that the original velocity tends

to persist so that the expectation of the thermal velocity after collision

is in the same directio:i as the original test velocity (Jeans, 1954).

The test and partner molecules are assumed to be elastic spheres of

cross section a. The directions of motion ► relative to the center of gravity

of the two particles are AB, AE before impact, BL, EF after impact (Figure 2.9).

In order for a collision to occur, AB produced must cut the plane perpen-

dicular to AB within a circle of area 4Q about E, say P. Also, all positions

of P within the circle are equally prob able so that the prob ability of EP

being between r and r + dr is

rt:dr
2cr

= sin 2 ^ c cos 2 ^ d^c = 2 sin ^c dmc

as

4Q 1^2
r = (n )	 sin 2 we

Thus all directions for EF a^ •e equally probable. Hence tt^e expectation

of ttie component of velocity of either molecule after impact in any direction

is equal to the component of the mass center velocity in that direction.

For molecules cf equal masses if QP and OQ represent the initial velocities

of the test and colliding molecules, then OR represents the velocity of their

•	 mass center (Figure 2.10).

To find the average velocity of the test molecule after impact OR is

first averaged for all directions of the partner molecule, keeping its
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magnitude constant. The average component of OR perpendicular to OP is zero,

leaving the average of ON to be determined.

The probability of collisior. is proportional to the relative velocity

of the test and partner molecules, thus the probability that POQ lies

between B ar►d a+de is

PQ sin a d6

giving the average value of Oii as

OPI - ^
n ON FQ sin8 d9

0 J0̂ 

PQ sing d6

let	 OP=c	 OQ=c'	 PQ=V

so that	
V2 = c 2 + c' 2 - 2cc' cos8
	

(2.17)

Then
ON = 2 (OP+OM) = 2(c+c'cos8)

differentiating (2.17) gives

VdV = cc' sine de

giving	 ^

Oh' = f (3c +c' 2-V2) V2dV

4c f V2dV

w

_^
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using the previous results (2.15) and integrating from V = ^c'- c^ to V = c'+c

ON = 15c4 +2 c' 42	 c ^ c,

lOc(3c +c' )

5(3c'2
+c2)

The expectation of the velocity after collision is therefore in the

same direction as the velocity before collision, for either molecule

let c/c' = K and ON = a

then a/c represents the persistence of original velocity in collision given

by

a/c = 15K 4 + 1	
K > 1

1	 lOK 2 (3K 2 + 1)

2

a/c = 3k 2+ 5	 K < 1
5 (K + 3)

evaluation of these expressions for various values of K between 0 and m

show that a/c varies from .333 to .500.

The distribution of K values is found to be

5c; (3a: 2 + 1
—^– dK

^r2(1 + K 2) 7 2	 '

So that multiplying by the mean expression for a/c, and integrating for K

between 1 and ^ gives the mean persistence of all velocities after collision

^_,
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4	 2
W 25K	 + 6K	 +, 12

 ^ _ ^ + I ln(1+ f) _
j l

.406
-

2

4^ic 1 + K	 4^(	 )

The above derivation gives the mean persistence of the test molecule

velocity after collision in the direction of the test molecule velocity before

collision.	 The derivation was carried out assuming a background gas with zero

mean mass motion.	 For the case of collisions with a mean motion of the back-

ground gas, the system may be reduced to the above situation by adding to the

test molecule velocity, a velocity equal in magnitude and opposite in direction -

to the mean velocity of the background class. -

The algorithm for generating velocities after collision must incorporate

the concept of persistence of velocity, and must also be applicable in the -

following two extreme cases:

(A)	 Test molecule at rest; warm partner gas with zero mean motior ► . -

(S)	 Test particle with finite velocity v t , cold partner gas with zero

mean motion.

For case (A) the temperature of the test r.^olecule population after -

collision may be found analytically as follows.

Using the spherical coordinates defined in Section 2.4.4 the flux of x

molecules crossing the plane normal to the velocity of the collision partner

is given by

^	 2n	 r^	 - (
Vt

/vz ) t
K ^	 ^	

J	
V cose e	 m V2 sine dV d^ d6 a

0	 0	 0 ,

where K is a constant, V is the magnitude of a partner velocity, 8 is a polar

angle with respect to the partner velocity vector and ^ is an azimuthal angle.

__.



Integrating for 8 and Q gives

r^ 
3 

_ (V2/vm)

1 
K V e	 2n (1/2) dV

0

Hence the mean speed of partner molecules is given by

(^ 4 _(V2/vm)

J 
V e	 dV

0

1
 ^ V3 e- (^^2/vm) dV
0

and the mean squared speed by

f^ 5 

-(V2/vm)	 6
2	

o V a	 dV	 Vm	
2

Vf^ux f^ V
3 e-(V2/vm) dV (1/2)vm - 

vm

0

The mean squared speed of the gas at a point is given by

_	
f ^ - (V2/vim)

2	
o V a	

dV 3 2

Vpoint	
^ V2 

e_(V2/v2 )	 - 2 vm
	

'
f	 m dV
0

Thus

_	 2
V 

flux	
(4/3) V

point	 '

Ths flux energy is divided equally, in the mean, at the first collision of

type (A). A test molecule initially at rest therefore acquires an average

temperature 2/3 that of the background gas at a point in its first collision.

In the case (B) the test molecule is scattered isotropically, and using

the Jeans (1954) result for c/c' = m , the persistence is 0.5. The velocity

51
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of the test after collision is on a sphere of center 0.5 
vet 

and radius

0.5 ^v{ ) in velocity space, where ^ is the original velocity of the test

molecule. A warm partner gas in case (B) will lead to a thickening of the

sphere to a spherical shell of thickness corresponding to a velocity drawn

from a Maxwellian distribution of temperature equal to half that of the back-

ground gas.

The above considerations suggest the following method for generating

the test molecule velocity after collision. The test velocity after collision

v^ is given by

^t- p(vt^) +^+q^^^^r+ [-vc^rT
	 (2.18)

where	 vt, v^ are the test velocity and mean background class velocity

before collision

r is a random unit vector drawn from a spherically symmetric

distribution

[^]rT is a random thermal velocity drawn from a Dlaxwellian

distribution with temperature rT, where 7' is the temperature

of the background gas (see Section 2.4.6)

p, q, r are constants whose values depend on the type of collision.

The range of values of p, q, and r is as follows

Case A	 Cass B

	

p 0.33	 to	 0.5 (the persistence)

q ti 0.5 for this problem

	

r 0.67	 to	 0.5
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Energy conservation for the special case of collision between a test molecule

of class 1 and a partner, also of class 1, gives an additional constraint;

in this case

Yb = vl

vt = vl + [_Vr]T1

where v_l , T 1 are the mean velocity and temperature of class 1

= P[vr]T
1	 1
+ gI[vr] T lr + [vr ] rT + vb

= P[vr]T 1 + q[v 1r ] T + [vT 
1

] rT + Yb

= (P2 + q2 + r) 1/2 [vr] T + Y-b
1

But since the test molecules after collision must have the temperature of

class 1 molecules, TV

(P2+q2+r) = 1

For the purposes of the present study the values

p = q = r = 0.5

were chosen, as an adequate representation of all the above considerations.

The subroutine PTNR3 uses subroutine VELS to give both [v
C

] T and r by

independent random selections from a Maxwellian distribution. In the selection

of r a software switch is set to 1, which causes VELS to jump round the

selection of a velocity magnitude, so that only the direction unit vector

is returned to PTNR3.
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2.4.6 Thermal velocit y with spherically symmetric distributions
subroutines VELS

The fraction of particles moving outwards through unit area in unit

time (Figure 2.11) with velocities in d 
3 
V about the velocity (V, e, *) is

-(V2/v2)

1 4 V3 e	 m sinr d^ do dV	 (2.19)
2Try

m

where v  = most probable thermal speed of molecules. The marginal distribution

functions f., f o , f  are found by integrating as follows (Fan, 1967)

2Tr f

o

°°	 4	 3	
V2 /V2

f d^ =	 (1 /2Trvm) V e	 dv d9 sinV dy,
f0 

4

- 1	
vm	

2Tr s inry d^
2Trv4 2

M

1
2 sinry dry

2/ 2

fo do 
= fo

Tr 	
(1/2Trv) V3 a-V vm dV sin g dry do

 f	 m	 %.0	 =
4

- 1	vm 2 d
2Trv4 2

m

de
- 27r

2Tr fTr	
4	 3 -V2/vm

fVdV = 10	 (1/27rvm) sin^y dry do V e 	 dV
0 0

_V2/v2

	

(4Tr/2Trv4 )V3 e	 m dV

-V2/v2

= (2/v4) V3 e	 m dV
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Figure 2.11 Spherical coordinate system.
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Again using equation 2.1, and setting R, uniformly distributed

on the interval, 0 to 1, equal to the cumulative distribution function

(see Section 2.1)

x
Ri = ff(C)  dE

x 

where the random variable x has the distribution f(x),which is then solved

for x given any value of Ri.

The above distributions give, for e, 4,, V

_ e

R e 2ir

R^ = 2 (1 - cos W)

R ^ 	 2 2	 -V2/V2V = (1 + V /v m) e

where RV R RV are independent random numbers uniformly distributed on 0 to

1. The latter expression cannot be rearranged to yield V as an explicit

function of RV , however if the distribution function is re-stated in cylindrical
F

coordinates, an expression may be obtained for V explicitly in terms of two

independent random numbers 
R
Vz' RVr uniformly distributed on the interval

0 to 1 (Pertmutter, 1966)

whence
V = vmVln(ll 

RVzRVr	
(2.20)

COS (1- 2 R^)

e= 2w R e

as used by subroutine VELS.
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2.4.7 Surface interaction subroutine HITSPH

As remarked above (section 2.3.5) a specular reflection model is assumed

at the surface of the probe. Other workers (Fan 1967) have used a more real-

istic diffuse reflection model incorporating Lambert's cosine law of scattering.

Here the velocity and temperature of the re-emitted molecule is determined by

its incident velocity, probe geometry and probe temperature. It is felt that

this additional refinement can be traded against the extra storage required

for variable class 2 temperatures, without severely compromising the realism of

the simulation.

For specular reflection the molecule temperature is assumed to be unchanged

by reflection. The test molecule velocity after reflection is found by re-

versing the velocity component radial to the sphere, that is the velocity after

reflection is given by

-2(vt r)r	 (2.21)

where	 v{ is the test velocity before reflection

r is a unit vector radial to the sphere at the point of J-npact.

2.5 Time-Saving Techniques

In any program involving multiple iterations, the problem of time economy

becomes very important. The Monte Carlo program obviously falls into this cate-

gory, since in tracing one particle, parts of the program are executed several

hundred times, and a typical iteration consists of 10,000 particles.

An examination of execution times for various FORTRAN operations on the

PDP-15 points to some obvious economics.

Real exponentiation on the PDP-15 takes 30 times as long as real multi-

plication, so that raising to any integer power less than 30 should be accomplished

by repeated multiplication, rather than exponentiation.
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The function SQRT is four times faster titan real exponentiation, so th,,-.t

it should be used in preference to exponentiation to power U.S. Logical IF

statements are faster in execution than arithmetic IF statements, so that where

only two branches are desired a logical IF should always he used. Complex logical

IF statements such as

IF(A.GT.B.OR.A.GT.C)	 GO TO 1

should be replaced by sequences of simple IFs as

IF(A.GT.B)	 GO TO 1

IF(A.GT.C)	 GO TO 1

as the complex expression will always be tested in its entirety whereas the

first simple expression may fulfill the condition without the second being

executed, especiall y if the condition most likely to be fulfilled is placed first.
An expression such a.

y = alx+a2x2+a3x3+a4x4

should be arranged

y	 (a 1 + [ a2+ (a3+a4x ) x ] x ) x	 g

The former requires ten multiplications and three additions, while the latter

requires only four multiplications and three additions.

If the same array clement is to be used more than orce, it is quicker to 	 ZZ

set a simple (unsubscripted) variable equal to the subscripted array element,

and use the simple variable in subsequent expressions, so that the array must

be accessed only once.
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Similarly if the same combination of constants is to be used more than

once, a new constant should be introduced, equal to the combination.	 The above

are good practice in any FORTRAN program, although the time saving will be

greatest where much of the time is spent in execution, rather than in input/

output.

- 2.6	 Operating the Program

The following handler assignment must be made before calli:,g the loader;

"A DTC2 -4,-5/DTCO -1/DTF3 3"

The C handler is limited to read only (for program loading) and is much smaller

_-- than the usual A handler (680 10 instead of 2290 10 ).	 The F handler is also small

and will read or write in the non-file oriented mode (for data). 	 The loader is

now called by typing "GLOAD" and when the loader responds, the main programs are
}

loaded by typing 11+MCSPH7 11 .	 All subroutines are contained in a .LIBR5 BIN user

9W
library file, and are loaded automatically.

The :rain programs request the input data shown in Table 2.2 which must be

determined by the user, and typed in on the teletype.

The number density, temperature and velocity for free stream are determined

by the problem to be simulated. 	 The number of cells is determined by core avail-

ability, and IZMAX and IRMAX have been set for the present program to maximum e

figures of 30 and ten respectively.

The cell sizes must be determined by short trial runs.	 A good criterion is

that the cell size should be of the order of half a mean free path, and the time

for one mo such that the distance travelled in a mo is half an axial cell, based

on the mean effective speed in the free stream. 	 The position of the probe

(ZPROBE) is constrained by the fact that class 2 velocities are stored only for
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Symbol	 Meaning

W Number of particles per iteration

IZMAX Number of axial cells 	 (30)

IRMAX Number of radial cells 	 (10)

CREF Reflection coefficient (normally = 1)

DU Seed for RANDU, see section 2.4.1

DZ Axial cell size

DR Radial cell size

DT Time increment per mo

ZPROBE z coordinate of probe front

N free stream number density

T1 free stream temperature

V1 free stream effective velocity

Data reduction programs, NEWBG7

FMFP free stream mean free path

T1S free stream stagnation temperature

Standard deviation program STDV7

FMFP free stream mean free path

T1S free stream stagnation temperature

L1 switch; 0, 1, 2 or 3 for density, temperature,
axial or radial velocities respectively

IRT radial cell number

NI iteration number

i
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the front ten axial cells from the exit plane. The front tip of the probe should

not extend more than seven axial cells from the exit plane.

The reflection coefficient CREF is always set 1 in this form of the program.

The number of particles per iteration is set by trial and error after per-

forming standard deviation checks (see section 2.3.10). A sample size of 10,000

is adequate in most cases.

After typing in the data, the program will repeat all parameters as a check.

If the data is found to be incorrect, striking CTRL/S will restart the program and

the whole must be retyped. Otherwise execution will begin. The program will con-

tinue until it is dumped or control is returned to the monitor by striking CTRL/C

on the teletype.

After an adequate number of iterations have been completed and stored on

tape, the data may be retrieved and printed by loading the off-line data re-

duction program NEWBG7, and either RESNM7 or RESRW7. In either case, the F

handler must first be assigned by typing "A DTF3 3". The loader is then called 	 =

b typing GLOAD and the programs loaded b t
y

ping 11 -NEWBG7 RESNM7" orY YP g "	 "	 P g	 Y YP ^ g

114-NEWBG7, RESRW7.

-. Alternatively, the programs STDV7 and RSTDV7 may be used to calculate stand-

-	 and deviations for any parameters by typing: "A DTF3 3", "GLOAD", "<-STDV7, RSTDV7".

The off-line data reduction programs also require input parameters from the

teletype (Table 2.2). FMFP and T1S are the free stream mean free path and stag-

_	 nation temperature used to normalize output parameters. L1, IRT, NI determine

which standard deviations will be computed.

RF

_	
s
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3. RESULTS

3.1 Convergence and Accurate

For any iterative scheme, a criterion must be found to evaluate the conver-

gence rate and determine a satisfactory end point of the procedure. In the present

study a continuous plot was made for the density ratio in a cell in the flow field

after each iteration. Figures 3.1 and 3.2 show that the density ratios for one

particular cell (iz = 23, °-r = 5) at each altitude, converge satisfactorily to

stable values. After the flow field has become stable there remain statistical

fluctuations, so that error limits must be established such that the iterative

procedure may be stopped when further changes between successive iterations are

lost in statistical fluctuations. The Monte Carlo scheme permits an eas y solution

of this problem, as the standard deviation of any flow-field parameter may be

estimated in the following way. An iteration of, say 10,000 molecules is com-

pleted in the usual way and the results are stored on tape.

The same iteration is then repeated, say ten times, using short runs of

a lesser number, n of molecules, say 1000, the resulting parameters from each

short run are also stored and from these, separate programs (STDV7, RESNM7) compute

a best estimate of the standard deviation an of any required flow field parameter,

X, according to the usual formula

an = { EX 2/n- (EX/n) 2 }n/n-1	 (3.1)

It may be shown that the standard deviation of a Monte Carlo calculation

decreases as 11 
o

 where No is the sample size, so that a best estimate of the

standard deviation 
alOn 

for the original run of lOn molecules will be

a
lOn = an/'fl-0
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The best estimate for the mean, X, of the ion run will be the same as

that of the n run,

X - EX
n

Wherever possible the plots that follow are given error bars corresponding to

plus and minus one standard deviation computed as above.

Since for a normal distribution, 64% of values fall within plus and minus

one standard deviation of the mean, changes of the order one to two standard

deviations between successive iterations are considered statistical fluctuations.

Figure 3.1 shows the mean and standard deviation computed for the seventh iter-

ation for a sample size 10,000 and indicates that for these conditions corres-

ponding to 70 km, five iterations would be adequate. Figure 3.2 shows a similar

plot for 75 km where 12 iterations are required. As ambient density increases,

the effect of class 3/class 3 collisions becomes more important, so that more

iterations are required to establish the final flow field. For 75 km, the first

13 iterations had a sample size of 2000, since statistical fluctuations would at

first be lost in flow field convergence. Iteration 14 was of 10,000 molecules,

to give low statistical fluctuation in the final results.

3.2 Flow Field

Figures 3.3 and 3.4 show density contours for the two altitudes treated, 70

and 75 km. Points on the contours are interpolated from plots of density ratio,

p/p. against radial distance for each axial cell. Near the axis, accuracy of the

data is poor because of the small cell area in the radial plane, and correspondingly

small sample size. A quadratic curve fit is used for den::ity ratio as a function

of radius since its Taylor expansion reduces by symmetry arguments, to that of an

even function, having only even power terms. Density ratio in the first three

radial cells was plotted against r 2 and a best straight line drawn through the
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resulting points. Figure 3.5 shows density contours for a sphere at K  = 0.26,

S = 5 from Bird (1968), a Monte Carlo simulation. The form of the contours is

similar to those of the present study, Figure 3.4, but with the shock front

spreading out further from the probe axis and swept back more steeply because of

the higher speed rates, S.

A quadratic fit was used also t o give points on the front stagnation line

density profiles shown in Figures 3.6 and 3.7. Error bars are not shown on these

two plots. Figure 3.6 also shows the results of electron beam density measure-

ments for a sphere taken under conditions similar, though not identical, to those

of the Monte Carlo run. The measurements were made by Russell of JPL and are

taken from a paper by Vogenitz et al. (1968). The experimental results show a

thicke r shock layer and higher density rise which would be expected for the lower

Knudsen number and higher speed ratio used. Exactly corresponding experimental

results are not available at the present time.

Figures 3.8 and 3.9 show velocity vector plots in the plane of the sphere

axis. Stagnation near the head-on point of the sphere, and deflection of the

flow off axis may be clearly seen. Figures 3.10 and 3.11 show stream-lines

sketched from these velocity vectors which show the expected form for specular

reflection,approaching a tangent to the sphere surface.

Figures 3.12 and 3.13 show plots of the normalized mean temperature ratio,

(T-Tm)/(Ts„ -T00
), along the stagnation line at the two altitudes. Where T = mean

temperature computed :"rom the average energy over all classes relative to an ob-

server moving with the y mean velocity of the flow in the cell

TM = static temperature in free stream

2]TsW = stagnation temperature in free stream given by Tsca = T. (1+1/2(Y-1)Mm
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where y = 1.66 the ratio of specific heats for the monatomic molecules of the

simulation

h1 =the free stream Mach number

t_'nmparison of Figures 3.6 and 3.12, 3.7 and 3.13 show that a sharp tempera-

.	 ture rise coincides with the beginning of the shock, represented by the density

rise.

Figures 3.14 and 3.15 show density ratio profiles off axis, plotted directly

from the data for the fifth radial cell. Error bars are shown, representing plus

and minus one standard deviation calculated as in section 3.1. The fifth radial

cell represents the limit of the sphere surface at both heights, so that the

fall of density behind the sphere may be seen. Large standard deviations near

the surface correspond to cells cut b y the surface, and thus having less samples.

Densities have been corrected to allow for the reduced cell volume corresponding

to the cut cells.

Figures 3.16 and 3.17 show off axis plots for 70 km of temperature ratios

as previously defined, and axial and radial velocity ratio, again for the fifth

radial cell. The temperature in Figure 3.16 rises at the shock, then falls back

towards free-stream conditions behind the s phere, an effect somewhat blurred by

high sampling errors in the cells cut by the sphere. Figure 3.17 shows the fall

of axial velocity and corresponding rise: in radial velocity as the particles are

deflected past the sphere, again returning towards free-stream conditions behind

the :,phere .

3.3 Drag Coefficient

	

The sphere drag coefficient C p was calculated for the two altitudes 70 and 	 .

75 km as

DP
Cp - 1^2p^V^^

.^ ..



O

N
i

t0

m

O

N
i

t0

m
O ^

6
iC	 ^+
^	 n

^	 .^

W ^^
H
Z
W	 o
U	 `"

a^
W .^
m N
O a

a	 .^
NF
b

O	 ^
x
O

W ^
V	 ^^
Z M
Q	 H

^_ b̂0
.'.,

O "

^r

^ 4o O
_ ^

4
O

79

^'

^-- ^ ---I

./^\
F-•^

HIS

.^

/'^• -i

^I^

^.
r- \L

L

r'\
f"I^

^ I^

^' I-'^

/^
F I-^

^;

^'^
F•-^



---	
^,^-

^—, ^ ,

• ^_—^

^I^

(---•-i

^'1

/^^ I^

H^

E-•

1---i

i-•-^

^.. ^

^'^

^I^

1F ^^

--^ -

^o

i

,^ N

0
.^CM ^

WH
Z

^j V

m
O

^ d
^ ^

^ U
Z
QF-
^/!
0

8D

^,

H
.,,
^,
v
u

c.
0w
a^
.,

w
0
tia
r
.^

c
n^b

^;

no
.,,^,

^^ 0	 O



ry

H H
^- 1

—	 O

F- • -^

81

^^^

^^^

F-•

`•-\
^•

.^

^^

I•

^^

^ ^.n

^ u

^ ^.'.,

tt W ^,
^ ^ ^.

Z U
W c
V w

a^

W
^ m

O o"a
a

.^
F

i

Q

^

0.

^
6
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where	 ^P = change of momentum flux ac _ •oss the sphere

c = fraG stream uen^ity

^` =free stream velocitym

A =projected frontal area of sphere

G^ may be calculated from the density ra*_io anc^ velocity rdfi.io given by the

Monte Carlo program:
10

DP = E m { (Nj Vj 2Aj) in
- (Nj Jj ^Aj ^ out }

j=1

where m is the mass of a molecule, A is the cell area in the radial plane, N

and V are the number density anu mean eelocity and s!!bscr ;,nr j refers to the

jth ;adial cell

83

CD = (2 drfr
sphere )( ^'in °out'	

(3.2)

E =1F1 pJ (^ ) 2 (2j-1)

7 -

where

';	 .

^.

l
sphere = sphere radius

dr = radial cell width

The resulting values of CD are shown in Table 3.1, along with values from

Aroesty (1963).

The Reynolds number Re. the usual parameter for experimental work is defir.^d

as
P^V^2rsprorA

RP =
u^

where u^: = free stream coefficient of vicosity. Re is related to the Mach

number, M, and Knudsen number, Kn by

Re = i.37 ^	 ,

Drag coefficients would be expected to be higher than experimental values;

because the calculation makes no allowance for the axial momentum flux lost through
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TABLE 3.1 Comparison p p experimental and calculated
drag coefficients.

Parameter	 Height (km)

7O 7^

Kn 0.1 0,21

M 2,74 2.74

P p 37'6 17.9

C D (Monte Carlo) 4'8 4.2 

CD (Arnesty 1963) l.82 2.23

^I



the cylindrical walls of the system with class 2 and 3 particles. This ex-

pectation is confirmed by the results in Table 3.1.
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4. CONCLUSIONS

4.1 Limitations and Suggested Refinements

The major simplifications involved in tie present study relate to the

mechanism of intermolecular collision and surface interaction. Hard sphere

molecules have been used in the present program, for the sake of simplicity,

but the program could easily be modified to model other types of intermolecular

force law with different exponents v. Hard sphere molecules correspond to

v = -, while for example Maxwellian molecules correspond to v = 5 and another pro-

posed model has v = 9 (Bird 1970). The principal difference between these models

relates to the shock thickness for ver y strong shock waves, which is predicted

to be independent of shock strength for hard spheres an.: directly proportional

to shock Mach number for Maxwellian molecules.

The present study treats only monatomic molecules, so that an obvious refine-

ment would be the introduction of more realistic diatomic molecules, with their

associated rotational and vibrational energy states. Again this would not change

the program in overall concept, although execution and storage would be increased

somewhat.

Specular reflection at the probe surface, while simple to program, is not

very close to known surface interactions in real studies. A more realistic model

involves diffuse re-emission of the incident molecules, with velocities dependent

on surface temperature as well as incident velocity.

Further refinement of the program using core storage at present available on

the PDP-15 will probably involve splitting the cell system so that only part of

the cells are resident in core at any time, the remainder being stored on DECTAPE. .

The system might be divided into two cylindrical shells, each containing five

radial cells. Background parameters for the inner block would be read into core

a,

11
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first, and molecules would be introduced at the entrance plane. They would

be traced in the usual way, except that on crossing the radial boundary into

the outer block, their positions and velocities would be stored for use in

the second part of the iteration. After a suitable number of tests had been

run, the accumulated data for the inner cells would be read onto tape, and

the background parameters for the outer cells read into core; "swapping".

Molecules would now be introduced, from the input plane, and a suitable number

recorded, including those crossing back to the inner block. The molecules

which had previously crossed to the outer block would now be re-started at their

stored positions and velocities. Most of them should leave the end wall. of the

s ,'-stem, while a lesser number would be stored as returning to the inner block.

Fhe blocks would now be swapped again and the new molecules, stored at the boun-

dary , released. After two or three swaps the number of molecules to be intro-

du__d n' t tbo dividing boundary should have fallen to an insignificant level,

when flhP iteration would be completed in the usual way.

11	 e of the small area of the innermost cells, few molecules are introduced

there, causing higher statistical fluctuations. A system of weightings by radius

could be introduced to improve accuracy of the near stagnation line parameters,

while maintaining the effectively uniform distribution with area.

4.2 Summary

The Monte Carlo direct simulation technique has been used to model supersonic

(i,i = 2.7) gas flow round a spherical probe in the transition regime. The two

cases completed correspond to a probe of diameter 1 cm at heights of 70 and 75 km,

the D region of the ionosphere. Monatomic hard sphere molecules are used and

specular reflection is assumed at the probe surface. The technique can be modi-

fied to treat other types of molecule and surface interaction without undue dif-

ficulty.
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Density contours are shown for the two altitudes, and compared with those

of an independent Monte Carlo simulation. Velocity vector fields and stagna-

tion line profiles of density, temperature and velocity are compared with avail-

able experimental data. Drag coefficients are computed and compared with those

derived from wind tunnel testing under similar conditions. Standard deviation

estimates are included for data plotted directly from the program output.

The work was carried out on the Aeronomy Laboratory PDP-15 computer, a

small (16K) machine used principally for on-line data processing of a partial-

reflection experiment. The study shows that Monte Carlo simulations are feasible

using the limited core memory, often available in on-line machines, having a

1 01^r -hit ," cycle.

Because of the nature of partial-reflection measurements, the PDP-15 on-

line pTucessing takes place during daylight hours only, so that the machine is

F	
available at night for Monte Carlo runs. A typical iteration of 10,000 mole- 	 -

cules takes five hours for an altitude of 75 km. The results of each iteration

are stored on DECTAPE. The present Monte Carlo results will be incorporated

in future work to simulate ion-collection by the rocket-borne probes launched

at Wallops Island by the Aeronomy Laboratory. These simulations will relate

probe currents to ambient conditions in the D region, a problem intractable using

present analytical riethods.
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APPENDIX

C MCSPH7
c
C A DTC2 -4,-5/DTCO -1/DTF3 3
C
C MONTE CARLO SIMULATION OF GAS FLOW PAST A SPHERE IN TRANSITION
C REGIME.
C
C (M.K.S. UNITS)
C KM_	 #PARTICLES/ITERATION
C IZMAX=	 #AXIAL CELLS
C IRMAX=	 /RADIAL CELLS
C CREF=	 REFLECTION COFFFICIENT (1.)
C DU=	 SEED FOR RANDU (72870
C DZ=	 AXIAL CELL SIZE
C DR=	 RADIAL CELL SIZE
C DT=	 TIME INCREMENT/MO
C ZPROBE=	 AXIAL DISTANCE FROM ENTRANCE PLANE TO FRONT OF PROBE
C	 (PROBE RADIUS= . 0115)
C N=	 FREE STREAM NUMBER DENSITY
C T1=	 TEMPERATURE
C V1=	 VELOCITY
C
C DATA SWITCH SET 	 EFFECT
C	 00	 WRITE TEST CLASS d CELL 0 EACH MO
C	 01	 STANDARD DEVIATION MODE AFTER THIS ITERATION
C	 05	 PREPARE TO DUMP
C	 06	 RESTART !WITH BACKGROUND FROM DECTAPE
C	 14	 REPEAT ITERATION 1
C	 17	 WRITE DATA ON DT3
C

INTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL LSSW
DIMENSION N1(301,10) , N2C30, 1 3),N3<3O,1O) ,MI(3O,1O) ,M2(3O,1O)
2,M3(3O,1O),SVZ3(21,1O),VZ3(21,1O),SVZ39(2O,1O),
3SVXY3S(2!7,1:7),IT;(21,10),YI (3),
4SVR3(20,1O).VR3(2O.1O).TM2O(1O),MSO(1O)
COMMOII/I I /R MAX,PI ,I RMAK,VM /JJ/DT/MM /IZMAX,ZMAX/FIN/M3,SVXY3S,
2SVZ3S,SVZ3,SVR3,IZ,IR,'Ii,N2,N3,MI,M2,VZ3,VR3,IT3,
3 M1O(10 ),FINT,FPEAL/KK/ZCTR,RPROBE/LL/SVRZ(191,1O),
4 SVZ2(1O,1O),VZ2(1O,1O),VR2(1O,1O)/III/RK2,VMT1,UZ2,UR2
5 ,UZ,UP.,V1,COSTH,T3C,SINTH/JJJ/DP.,DZ,T1,I,K,ZPROSE
6 /XKK /IZC,CT,CP,S,N/LLL/L1/Y,KM/KM/V/VZ,VX,VY
C NU(ND,VA I,VA2,VA3,VB I ,VBZ,COSTH,SI NTH) =S*FREAL* FLOAT (ND)*VREL'
2 VAI,VA2 ,VA3,VRI,VB2,COSTH ,SINTH)

1	 WRITE (6,2)
2	 FORMAT (2X,64H TYPE KM , IZMAX , IRMAX ,CREF ,DU,DZ,DR,DT ,ZPROBE

2,N,TI,V1 I PER LINE )
READ (4,4)KM,IZMAX,IP,MAX,CR£F,DU,DZ,DR,DELT,ZPROBE,N,TI,VI

4	 FORMAT(I6/I3/23/FF.2/F6.O/(E1^1.2))
WRITE ( 6,4) KM , IZMAX , IRMAX , CREF ,DU,DZ ,DR,DELT,ZPROBE , N,T1,V1
R=PANDU(DU)
1=0
XMT=KM/10
L1=0
REWIND 3

9	 CALL SETUP(N)
IF(X.GE.XM) GO TO 416
IF(IT.GE.1O) L1=0

C
C NEW PARTICLE
10	 CALL NFWPOS!Z,R,THETA)

C OSTH=C OS (THETA)
SI NTH=SI N(THETA)
X=P*COSTH
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Y 2t *SI NTH
IZ:Z/DZ+1.
IZC-IZMAX-IZ+I
I R =R /DR+ I .
M IV) (IR)=M10(IR)+1
CT--I
VM_VMTI
CALL NFVlf(V1,0.,VX,VY,VZ)
DT=DFLT*RANDU(DU)

C
C ItXRFMF' NT TIME
21	 CALL INCPOS ( Z,X,Y,R,COSTH , SINTH , VZ,VX,VY)

DT=DELT

C NEXT CELL?
IZNEW=Z/DZ+I.
IR NEW =R /DR+1 .
IF(LSSW(0))WRITE(b,50)CT,IZNEW,IRNEW

5 0 	FORMAT(3I3)
IF(IZNEW.f1E.IZ) 00 TO 100
IF'(IR^FW . f1E.IR) GO TO 100
IF(IZ.EQ.I) GO TO I00
GO TO 118

C NEW CELL
z 1913	 1  = IZINEW

IR=IRNEW
CALL NEWCEL (Z,X,Y,R , VX,VY,VZ,CREF,J)
GO TO (302,110,120), J

110	 VM=VMT1
c
C COLLISION PR09ABILITIES

CNUI=CNU ( t)I (IZ,IR) , VZ,VX,VY,VI,0.,1.,0.)
IF(N2(IZ,IR).rF.1) GO TO 113
IF(N3(IZ,IR).GE.I) GO TO 113
PBANG=C NU I *DT
CNU2=0.
CNU3=0.
CO TO 118

113	 CNU2 = CNU(N2 ( IZ,IR) , VZ,VX ,VY,UZ2 ,UR2,COSTH,SINTH)	 =
VM_SORT(RK2*T3C)
CNU3 = CNU(N3 (IZ,IR),VZ,VX , VY,UZ , UR,COSTH ,SINTH)

g	 PRANG=(C NUI+CNU2+CNU3)*DT
118	 IF ( RANDU ( DU).LT . PPAf1G ) GO TO 140

f 12A IF(MI(IZ,IR).rT.i31000) GO TO 312
IF(M2(IZ,IR).rT.130090) CO TO 312
IF(M3(IZ,IR).rT.130000) r0 TO 312

130	 CALL BKXEEP(VX,VY,VZ)
GO TO 21

C
C COLLISI ON: 14HAT CLASS?
140	 IF(CNU2.GT.0.) GO TO 150

IF(CNU3.GT.0.) GO TO 150
CP:1
GO TO 152

15A	 YI ( I)=CNUi*DT /PBANG
YI (2) =CNU2*DT /PBANG	 a
YI (3)=C NU3*DT/PBA NG
CP=MONTE(YI>
IF(CT.E9.3) GO TO 160

152	 IF(CP.EO.CT) GO TO 120
160	 CALL BANr,(CT,CP)

GO TO 130
300	 IF(LSSW(5)) CALL DUMP
310	 K=K+I	 -
C
C ENOUGH PARTICLES?

IF(K.GF.KM) GO TO 312



IF(LI.E(1.l) GO TO 500
GO TO 10

C
C NEW BACKGR OUND I OUTPUT
312	 I =I+1

WRITE(6,415) I,IT,K
415	 FORMAT(3H I=,I3,1H.912/3H K:,I6)

CALL RESULT(IZMAX,IRMAX)
C Ll SETS TO STANDARD DEVIATION MODE

L1e0
IF(LSSW(1)) L1=1

416	 CALL NEWBG(IZMAX.,IRMAX)
IT=O
IF(LSSW(14)) GO TO 9

417	 K =0
GO TO 10

500	 IF(K.LT.KMT) GO TO 10
CALL RESULT(IZMAX,IRMAX)
IT=IT+1
WRITE(6,415) I,IT,K
K=0

-	 GOTO9
END

-	 C RANG7
C SUPPLIES CORRECT COMBINATION OF PARAMETERS TO PTNR3
C

SUBROUTINE AANr,(CT,CP)
INTEGER CT,CP

_ COMMON/II I/RK2,VMT l,UZ2,UR2,UZ,UR,VI,COSTH,TSC,SI NTH/II/RMAX,PI,
2 IRMAX,VM/V/VZ,VX,VY

=-	 C SET VEL FOR PT!:R3;CP-CT DEALT WITH ABOVE UNLESS CT=3
IF(CT-2)155,175,195

155 IF(CP.r,T.2) GO TO 170
VM:.7A7*VMT1
CALL PTA.'R3(UZ2 ,UR2,COSTH,SINTH,V1,0.,1.,0.)
GO TO 210

170 VMa.707*SGRT(RK2*T3C)
' CALL PTNR3 (UZ,UR,COSTH,SINTH,V1,0.,1.,0.)

GO TO 210
ZEE-	 175 IF(CP.rT.t) GO TO 195

VM_.707*VMTI
-= CALL PTtJR3(V1.0.,l.,0.,UZ2,UR2,COSTH,SINTH)

GO TO 210
185 VMs .707*S0RT(RK2*T3C)

CALL PTNR3(UZ,UR,COSTH ,SINTH,UZ2,UR2,COSTH,SINTH)
GO TO 210

195 IF(CP-2)	 197,199,205
197 VM=.707*1,MTt

CALL PTNR3 (V1,A.,1.,0.,UZ,UR,COSTH,SINTH)
GO TO 210

199 VM=.707*VMTI
CALL PTNR3(UZ2,UR2,COSTH,SINTH,UZ, IJR,COSTH,SI NTH)
GO TO 210

205 VM_.707*SORT(RK2*T3C)
CALL PTNR3(UZ,UR,COSTH,SI NTH,UZ,UR,COSTH,SI NTH)

210 CT=3
RETURN

=` END
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C DKKP7
C ACCUMULATES PARAMETERS
C

SUBROUTINE BKKEEP(VX,VY,VZ)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL LSSW
DIMENSION N!(30,10),N2t30,i0),N3(30,10),MiC30,10),M2(30,10)
2,M3(30,10),SVZ3(20,10),VZ3(20,10),SVZ3S(20,10),
3SVXY3S(20,10),IT3(20,10),YIt!),
+SNR3 (20,10),VP.3 (20,10),M20(10),M33(10)
COMMON/I I /RMA X,P I ,I RMA X,VM/JJ/DT/MM/IZMAX,ZMA X/NN/M3,SVXY3S,
2SVZ3S,SVZ3,SVR3,IZ,IR,N1,N2,N3,MI,M2,VZ3,VR3,IT3,
3 MIO(ID),FINT,FREAL/KK/ZCTR,RPROBE/LL/SVR2(10,10),
4 SVZ2(10,10),VZ2(10,10),VR2(10,10)/III/RK2,VMTI,UZ2,UR2
S ,UZ,UR,Vi,t;OSTH,T3C,SINTH/JJJ/DR,DZ,TI;I;K,ZPROBE
6 /KKK/IZC,CT,CP
IF(2—CT) 130,125,122

122	 M1(IZ,IR)=Mi (IZ,IR)+l
RETURN

125	 M2(IZ,IR)=M2(IZ,IR)+l
IF(IZC.GT .10) RETURN
SVR2(IZC,IR)=SVR2(IZC,TR)+VX*COSTH+VY*SINTH
SVZ2 (I ZC,I R) =SVZ2 (IZC, I R)+VZ
RETURN

130	 M3(IZ,IR)=M3(IZ,IR)+l
IF(IZC.GT .20) RETURN
VR = VX*C OSTH+VY* S I NTH
SVXYSS(IZC,IR)=SVXY3S(IZC,IR)+VR*'vR
SVZ3S(IZC,IR)=SVZ3S(IZC,IR)+VZ*VZ
SVZ3(IZC,IR)=SVZ3(IZC,IR)+VZ
SVR3 (IZC,IR)=SVR3 (I ZC,I R)+VR
RETURN
E ND

C DMPTK5
C DUMP 3 RECOVER
C

SUBROUTINE DUMP
COMMON/-' IJ/DR,DZ,TI,I,K,'PROBE/KKK/IZC,CT,CP,S,N
WRITE;o,5)

S	 FORMA_	 .4 MOUNT TAPE & TYPE: tQ2)
CALL PAWSE

C REPOSITION DATA TAPE
REWI r+D 3
DO 8 I7=1,I
60 8 IREAD=1,16

6	 READ (3) A
WRITE(6,10)

!0	 FORMAT(22H PROGRAM HAS RESTARTED)
RETURN
E NO

C HITSP6
C SURFACE REFLECTION
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SUBROUTINE HITSPH(VX,VY,VZ,Z,R,X,Y)
C OMM 0 N /K K /ZCTR ,R PR OB E /MM / I ZMA X,Z MA X

ASSUME HIT AT PRESENT R
ZSP=SORT (R PR OBE*RPR OBE —R *R)
ZSP=SIGN (ZSP. (Z-ZCTR) )
IF((ZCTR+ZSP).GE.ZMAX) ZSP=—ZSP
Z=ZCTR+ZSP
RM=SORT(X*X+Y*Y+ZSP*ZSP)

UNIT VECTOR FROM PROBE CENTER TO POINT OF IMPACT
RXU=X/RM
RYU=Y/RM
RZU=ZSP/RM
VDOTRU=VX*RxU+VY*RYU+VZ*RZU
VX=VX-2.* VDOTRU*R XU

, VY=VY-2.*VDOTRU*RYU
VZ=VZ-2.*VDOTRU*RZU
RETURN
END

C GIVES
C ACCUMULATED PARAMETERS TO DECTAPE
C

95

SUBROUTINE GIV (DR,DZ,N)
INTEGER VR2,VZ2,VR3,VZ3
REAL N
LOGICAL LSSW
COMMON /II/RMAX ,PI,IRMAX ,VM/MM / IZMAX,ZMAX/NN/M3 (30,10),
2 SVXY3S<20,10),SVZ3S<23,13),SVZ3(20,10),SVR3(20,10),
3 IZ,IR , N1(30,10),N2(30 , 10),N3C30 , 1a),MI (3x,13>,
4 M2(30 ,1^1>,VZ3c?_ 0,i0),VR3c2a , 10),IT3c20,10),
5 M10(10),FIF4T,FREAL/LL/SVR2(10,10),
6 SVZ2(10,10),VZ2(10,10),VR2(10,10)/KK/ZCTR,RPROSE/III/RK2,
7 VMTI,UZ2 , UR2,UZ , UR,VI,THETA,T3C/JJJ/DRD,DZD,T1
WRITE(6,10)
FORMAT Q FH PREPARE DT3, THEN SWITCH 17)
C ONTI NUE
IF(.NOT.LSSW(17))GO TO 11
J=1
K=15
x21=1
K22=5
X31=1
X32=10

C FOR EFFICIENT USE OF DECTAPE
DO 20 L=1,2
WRITE !3) ((M1 (IZ , IR),IZ =J,K),IR= 1,10),IZMAX
VRITEt3)((M2(IZ,IR),IZ=J,K),IR=1910)
WRITE(3)(CM3(IZ,IR),IZ=J,K),IR=1,10),IP,MAY
WRITE (3)((SVR2 ( IZ,IP,) ,SVZ2(IZ , IR),!Z=XP I X22),IR=I I0),PI
WRITE(3) ((SVR3 (IZ,IR),IZ=K31,K32),IR=1,10),RMAX
WRITE ( 3) ((SVZ3 ( IZ,IR) , IZ=K31,K32) , IR=1,10)
t_'iITE (3) ((SVZ3S( IZ,IR),IZ=K31,K32),IR=1,1 0),ZIAX
WRITE ( 3) ((SV)(Y3S(IZ,IR) ,IZ=K31,K32),IR=1 ,10),DZ , DR,N,RPROBE
2 ,V1,ZCTR , FI NT , FREAL ,T 1,R K2
J=16
K=30
X21=6
X22=10
X31=11

20
	

X32=20
R ETUR N
E ND

l0
11
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C INCPS6
C INCREMENTS TEST POSITION BY STRAIGHT LINE PATH FOR ONE MO
C

SUBROUTINE INCPOS (ZD,X,Y ,RD,COSTH,SINTH ,VZD,VXD,VYD)
COMMON/JJ/DT /II/RMAX,PI,IRMAX,VM
DX=VXD*DT
DY=VYD*DT
X =X+DX
Y sY+DID
RD =SQR T (X*X+Y*Y)
C OSTH =X/RD
SINTH=Y/RD

IS	 ZD=ZD+VZD*DT
RETURN
END

C MONTE
C DISCRETE VARIABLE M/C CHOICE
C

FUNCTION MONTE(YID)
DIMENSION YID (3)
Y=O.
DU=;.
YR t1A NDU (DU)
NY=1

528	 Y =Y+YID(NY)
IF(YR .LE.Y)GO TO 600
NY=NY+l
GO TO 520

600	 MONTE=NY
RETURN
END

C NEWBG7
C A DTF3 3
C OFF-LINE DATA PROCESSING ; LOAD WITH RESNM7
C

INTEGER CT ,CP,VZ3 ,VR3,VZ2,VR2
REAL N
LOGICAL LSSW
DIMENSION NI(3a,10), ^YT(30,10>,N3t30 , l0),Mlt30 , 10),M2:38,10)
2,M3 (30,10),SVZ3 (20,1 !'1),VZ3 (2P1,10),SVZ3S (20,10),
3SVXY3S(?.0,1!^I),IT3(?.O,IO),YI (3),
4SVR3(20910),VR3(20,10),M20(10),M33(10)
COMMON/I:/RMAX ,PI,IRMAX ,VM/JJ/DT/MM/IZMAX ,ZMAX/NN/M3 ,SVXY3S,
2S V7.1^S , SVZ3,SVR3 ,IZ,IR,NI , N2.N3,MI,M2,VZ3 ,VR3,IT3,
3 M18(10) ,FINT , FREAL/KK/ZCTR ,RPROBE /LL/SVR2 ( 10,10),
4 SVZ2 ( 10,10),VZ2( 1 0,10),VR2 ( 10,10)/III /RK2,VMTl ,UZ2,URZ
5 ,UZ,UR , V1,THETA ,T3C/JJJ /DR,DZ,TI,I,K,ZPROSE
6 /KKK/IZC,CT,CP,S,P)/LLL /Li/IJ/FMFP,TIS

C READ ACCUMULATED PARAMETERS
REWIND 3
WRITE(6,50)

50	 FORMAT ( 151(1 TYPE. FMFP,TIS)
READ(4,SO)FMFP,TIS

Be	 FORMAT ((E10.3))
WRITE(6,80)FMFP,TIS

.



C
300	 WRITE(6,425)

CALL TAKE(DR,DZ,N)
VOL=Pl * FLOAT ( If.MAX* IF..MAY—(IRMAX — i)*(IRMAX-1))

312	 DO 3471 IZ=I,IZMAX
IF(Ml(IZ ,IP.MAX).GT.1) GO TO 350

340	 C ONTI NUE
M1 (I7MAX ,IR"+1X)=1

350	 FNORM = N*VOL :FLOAT (MI(IZ,IRMAX)+ IC2(IZ, IRMAX) + M.3(I'4, ,%MAX))
C REV NUMBER DENSITIES

DO 421 IR=I,IRMAX
VOL=PI* FLOAT CI R*IR—"R-1)* (IR-1) )
DO 360 IZ=I,IZMAX
RM1=M1lIZ,IR)
RM2=172 (IZ,IR)
RM3=M3 ( IZ,IP. )
Ni(IZ,IR)=FINT*F4GR2 ,*RMI/VOL
N2(IZ,IR)=FItiT*` NORM*RM2/VOL
N3 (IZ,IR)=FI NT*FNORM*RM3/VOL

360	 CONTINUE
C REV TEMPS & VELS FOR r+ ASS 3

DO 400 IZ=1I,IZMAX
RM3=M3 ( IZ,IR)-1
IZC=IZMAX—IZ+I
IF(RM3.GT.1.) GO TO X70
ITZ3=Tl
ITR3=T1
GO TO 400

370	 VZ3 ( IZC,IR )=SVZ3( IZC,IR)/RM
VR3(IZC,IR)=SVR3 (IZC,IR)/RM3
UZ=VZ3(IZC,IR)
UR =VR3 (I ZC,I R )
ITZ3=ABS((2./RK2)*((SVZSS(IZC,i.t)/RM3)
2—UZ**2))
ITR3=A3S(2.*(SVXY3S(IZC,IR)/RM3-,UR*UR)/RK2)

400	 IT3 ( IZC,IR )=( ITZ3+2*ITR3)/3
C NEW VELS FOR CLASS 2

DO 421 IZ=21,30
IF(M2 ( IZ,IR) .LE.0) GO TO 401
IZC=IZMAX—IZ+1
RM2=MZ(IZ9IR)
V'_2(IZC , IR)=SVZ2(IZC,IR)/RM2

_	 VR2(IZC , IR)=SVR2 ( IZC,IR)/RM2
401	 C ONTI NUE
C
425	 FORMAT ( ISH IF WRITE THIS;SW4)

R N=FttEAL *FLOAT ( NI (23,5)+N2 (23,5) + N3 (23,5)) IN
WRITE ( 6,4201) RN

420	 FORMAT (2X,FG.2)
IF(.NOT .LSSW( 4)) GO TO 300
CALL RESULT(IZMAX,IRMAX)
GO TO 300
END

NEWB G
NEW BACKGROUND DURING SIMULATION

SUBROUTINE NEWBG ( IZMAX , IRMAX)
INTEGER CT,CP,VZ2,VR2,VZ3,VR3
REAL N
COMMON/NN/M3 (30,1?1),SVXY3S(20,1(3),SVZ3S( 20, lo!),SVZ3 (20,12),
2 SUR3(20,10),IZ,IR,N1(30,10),N2(3^1,10),t73(3:7,13),
3 MI(30,10),M2(30,101),VZ3(2(3,10),VR3(20,10),IT3(20,10)
4 .M10(IO),FINT.FREAL/LL/SVR2(10,13)
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- S	 ,SVZ2(10,10),VZ?.(10,10),VR2(!0,la)/III/RK2,VMTl,
6 UZ2,UR2,UZ,UR,VI,THETA,T3C/II/RMAX,PI,IRMXD,VM
7 /KKK/IZC,CT,CP,S,N/JJJ/DR,DZ,T 1,I,K,ZPROBE

C
= WRITE(6,305)

305 FORMAT(3X,3HTZ3,3X,3HTR3)
VOL=PI*FLOAT(IRMAX*IRMAX-(IRMAX-1)*(IRMAX-1))

31? DO 340 IZ=I,IZMAXe
IF(MI(IZ,IRMAX).GT.1) GO TO 350

340 CONTINUE
- 14.1 (IZMAX,IRMAX)=1

350 FNORM=N*VOL/FLOAT(MI(IZ,IRMAX)+M2(IZ,IRMAX)+M3(IZ, IRMAX))
C

DO 421 IR=I,IRMAX
VOL=PI*FLOAT(IP.*IR—(IR—I)*(IR-1))
DO 360 IZ=I,IZMAX
RM1=MI(IZ,IR)
RM2=M2 (IZ,IR)
RM3=M3(IZ,IR)
N1(IZ,IR)=FINT*FNORM*RMI/VOL
N2(IZ,IR)=FINT*FNORM*RM2/VOL
N3 (IZ,IR)=FINT*FNORM*RM3/VOL
MI (IZ,IR)=0
IF(IZ.LE.20) M2(IZ,IR)=0
IF(IZ.LE.10) M3(IZ,IR)=0

360 CONTINUE
C

DO 400 IZ=1I,IZMAX
RM3=M3(IZ,IR)
IZC =I ZMA X—I Z+1
IF(RM3.GT.1.) GO TO 370
ITZ3=T1
ITR3=T1

_ GO TO 380
37rd VZ3(IZC,IR)=SVZ3(IZC,IR)/RM3

VR3(IZC,IR)=SVR3(IZC,IR)/RM3
UZ=VZ3(IZC,IR)
UR=VR3(IZC,IR)
ITZ3=ABS((2./RK2)*((SVZ3S(IZC,IR)/RM3)
2—UZ*»2))*RM3/(RM3-10

= I'R3=ASS(2.*(SVXY3S(IZC,IR)/RM3—UR*UR)/RK2)*RM3/(RM3-1.)
380 IF(IR.EG.5) WRITE(6,385)ITZ3,ITR3
385 FORMAT(2I6)

IT3(IZC,IR)=(ITZ3+2*.LTR3)/3
M3 (IZ,IR)=0
SVR3(IZC,IR)=0.
SVZ3(IZC,IR)=0.
SVZ3S(IZC,IR)=0.

400 SVXY3S(IZC,IR)=0.
C

DO 401 IZ=21,30
IF(M2(IZ,IR).LE.7)) GO TO 401
IZC=IZMAX-IZ+1
RM2=M2(IZ,IR)
VZ2(IZC,IR)=SVZ2(IZC,IR)/RM2
VR2(IZC,IR)=SVR2(IZC,IR)/RM2
M2(IZ,IR)=0
SVR2(IZC,IR)=0.
SVZ2(IZC,IR)=0.

401 CONTINUE
RETURN
END
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C NEWCEL6
C NEXT CELL;TEST FOR SYSTEM BOUNDARY
C

SUBROUTINE NEWCEL(Z,X.,Y,R,VX,VY,VZ,CREF,J)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL LSSW
D?MENSION NI(3?1,10>,N2(39, 10), N3t30,1f1),M1t30,i71),M2t30,10>
2,M3(30,13),SVZ3(20,10),VZ3(20,1(3),SVZSS(20,10),
3SVXY3S(271,10),IT3(20,111),YI(3),
4SVR3 (20, 13),VR3 (2'f, l0),M20(1 3),M30(10)
COMMON/I I/RMAX,PI,IRMAX,VM/JJ/DT/MM/IZMAX,ZMAX/NN/M3,SVXY35,
2SVZ3S,SVZ3,SVR3,I Z,IR,NI, N2,N3,M 1,M2,VZ3,VR3,I T3,
3 M10( 10),FINT,FP,EAL/KK/ZCTR,RPROBE/LL/SVR2(10,161),
4 SVZ2(1 0,10),VZ2(10.10).VR2(10.1(3)/III/RK2,VMTI.UZ2.UR2
5 ,UZ,UR,V1,COSTH,T3C,SINTH/JJJ/DR,DZ,TI,I,X,Z)'MUBL
6 /KKK/IZC,CT,CP

C RADIAL BOUNDARY?
J-1
IF(IR.LE.IRMAX) GO TO 102
IF(CT.NE.I) RETURN
CALL RBOUND(IR,R,VX,VY,COSTH,SINTH)

C PROBE?
102 IF(Z.LE.ZPROgF) GO TO 10R

IF(P..RT.RPR03F) GO TO 108
ZRNG=Z-ZCTR
RADSO :R *R+ZR NG*ZR NG
IF(RADS0. r,E.(RPROBF*RPROBE)) GO TO 108
IF(RANDU(DU).GT.CRFF) RETURN
CALL HITSPH(VX,VY,VZ,Z,R,X,Y)
IZ=Z/DZ+I.
IZC=IZMAX-IZ+1
IF(CT.LT.2) CT=2
J:3
RETURN

C AXIAL BOUNDARY?
128	 IF(IZ.GT.IZMAX) RETURN
112	 IF(IZ.LT.1) RETURN

IZC=IZMAX-IZ+1
IF(IZC.r,T.20) GO TO 1010

C NEXT CELL B/G PARAMETERS
T3C=IT3(IZC,IR)
UZ=VZ3(IZC,IR)
UR=VR3(IZC,IP,)
GO TO 1020

1010	 T3C=IT3(20,IR)
UZ=VZ3(20,IR)
UR=VR3(20,IR)

1020	 IF(IZC.LE.10) GO TO 1120
UZ2-VZ2(10,IR)
UR2=VR2(10,IR)
GO TO 1125

1120	 UZ2=VZ2(IZ(,,IR)
UR2=VR2(IZC,IR)

1125	 J_2
RETURN

C NEWPOS
C POSITION ON ENTRANCE PLANE

SUBROUTINE NFWPOS(ZD,P.D,THETAD)
COMMON/II/RMAX,PI,IRMAX,VM
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DU=O.
R2:RANDU(DU)
ZD=O.
RD=SORT(RI)*RMAX
THETAD=2.*PI*R2
RETURN
E ND

C NFWV
C VELOCITY AT ENTRANCE PLANE

SUBROUTINE NEWV(UZD,URD,VX,VY,VZ)
COMMON/II /RMAX,PI,IRMAX,VM
DATA AO,A1,A2,13,A4,A5,A6,A7 /-2.55179,4.57444,-2.51282
2 ,-.92546,3.86399,-2.64662,.64784,-.02726/
DU=O.
RZ=RANDU(DU)

C POLYNOMIAL FIT
X=(ALOG(1./RZ))**.25
Y=AO+(A 1+(A2+(A3+(A4+(A5+(A6+A7*X)*X)*X)*X)*X)*X)*X
VT=VM*Y
VZ=VT+UZD

RR=RANDU(DU)
VRD=URD+VM*SORT(ALOG(1./RR))
RTHETA=PANDU(DU)
THETAD=2.*PI*RTHETA
VX=VRD*COS(THETAD)
VY=VRD*SIN(THETAD)
RETURN
E ND

C PTNR37
C TEST VELOCITY AFTER COLLISION

SUBROUTINE PTNR3(VBZD,VBRD,COSTHB,SINTHB,UZD,URD,COSTHU,SINTHU)
COMMON/V/VZD, VXD ,VYD

c NEW Vz
VC = 0.
CALL VELS(VC,COSPSI,THC)
VSW=I.
CALL VELS(VSW,CSPSIR,THR)
VSW=O.
VBX=VBRD *COSTH9
VBY=VBRD*SI NTHR
VR =SORT ((VBZD -VZD)*(VBZD -VZD)+(VBX-VXD)*(VBX-VXD)+(VBY-VYD)
2 *(VBY-VYD))
VZD=.5*VZD+.5*VBZD+.5*VR*CSPSIR+VC*COSPSI

C NEW VX
SINPSI=SnRT(1.-COSPSI*COSPSI)
SNPSIR=SCRT(1.-CSPSIR*CSPSIR)
VXD=.5*VXC+.5*VBX+.5*VR*SNPSIR*COS(THR)+VC*SINPSI *COS (THC)

C NEW VY
VYD=.5* VYD+.5*VBY+.5*VR*SNPSIR*SIN(THR)+VC*SINPSI*SIN(THC)
RETURN
F. ND

C RAND D
C PSEUDORANDOM NUMBER GENERATOR
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FUNCTION RANDU(DU,Y,)
DOUBLE PRECISION X,DXI
IF(DU.GT.1.) X=DBLE(DU)/I.DS
X=X*997.DO
I XI =IDI NT (X)
RXI=FLOAT(IXI)
D XI =DBLE (R XI )
X=X-DXI
DU=O.
RANDU=SNGL(X)
RETURN
E ND

C RBNDG
C RADIAL SYSTEM BOUNDARY REFLECTION

SUBROUTINE RROUND (IRD,RD,VX,VY,C,S)
C OMMON/I I /RMAX,P I,IP.MAX,VM
IRD=IRMAX
RD=P.MAX
VD OTR U= VX*C+ VY* S
VX=VX-2.*VDOTRU*C
VY=VY-2.*VDOTRU*S
RETURN
E ND

C RESGIV
C OUTPUT TO DECTAPE
C

SUBROUTINE RESULT (IZMAX,IRMAX)
INTEGER CT,CP
REAL N
COMMON/JJJ/DR,DZ,T 1 /KKK/IZC,CT,CP,S, N
CALL GIVE (DR,DZ, N)
RETURN
E ND

C RESMM7
C OFF—LINE DATA REDUCTION: OUTPUT NORMALIZED PARAMETERS.LOAD
C WITH NEWgG7

SUBROUTINE RESULT (I 1 ,12)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL LSSW
DIMENSION NI(30,1a),v2(30,13),N3(3a,la),MI(30,1a),M2(3a,10)
2,M.3 (30,1?!),SVZ3 (2:7,1 "),VZs (20, 10>,SV23S (2:7,10),
3SVXY3S(21,10),IT3(23,10),YI(3),
4SVR3(20,10),VR3 (2 q ,I0),M20(l0),M30(10),R NORM (10),T(I0),R N(10),
S RVZ(10),PVP(lM)
COMMON/I I/RMAX,PI, IPMAX,'lY/JJ/DT/MM/IZMAY,Z-AX/NN/M3,SVXY3S,
2SVZ3S,SVZ3,SVR3,IZ,IP,,N1,N2,k3,M1,M2,VZ3,VRZ,IT3,
3 MIfl(1t7),FINT, FPFAL/KK/ZCTR,PPRO
A SVZ2(10,10),VZ2(10,I0),VR2 (191,10)/111/RY.2,VMTl,L'Z2,UR2
3 ,UZ,UR,V1,THETA,T.0/JJJ/DR,DZ,TI,I,X,ZPP.013E
6 /KKK/IZC,CT,CP,S,N/IJ/F"!FP,TIS/LLL/LI,UZM(30),URM(30)
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EQUIVALENCE (HNORM(1),RN(1),PVZ(I),T(l),RVR(1))
C

WMEAN(Xl,X2, X3, NI, N2,N3)=(XI* FLOAT (NI)+X2*FLOAT(N2)+
2 X3*FLOAT(N3)) /FLOAT (NI+N2+N3)
RK2=5 74 .
DZMFP=DZ/FMFP
DRMFP=DR/FMFP
ZCTMFP=ZCTR/FMFP
WRITE(6, 10) FI NT,FREAL

I0	 FORMAT(IH1,2E11.2)
WRITE(5,2q)

211	 FORMAT(ISX,SH T TABLE/20X,5HRNORM)
DO 40 IR=1,10

491	 R NORM (IP.)=DRMFP* FLOAT (IR)
WRITE(5,45) (RNORM(IR),IR=1,1,1)

45	 FORMAT (SX,IOF6.1/2X,6H ZNORM)
C

DO 100 IZ=II,IZMAX
DO 60 IR =1,13
IZC=IZMAX-IZ+I
RM1=M1(IZ,IR)
RM2=M2(IZ,IR)

RM=RMI+7-M2+RM3
SVZIS=RMI*((Ti*RK2*(RM1-1.))/(2.*RMI)+V1*VI)
IF(RM.GT.I.) GO TO 47
TM=T1
GO TO 60

47	 SVRIS=SVZIS-VI*Vl*RMI
IF(IZC.LE.10) GO TO 50
UZ2=-Vl
UR 2= 0.
GO TO 55

50 VZZ(IZC,IR)=SVZP.(IZC,IR)/RM2
VR2(IZC,IR)=SVR2(IZC,IR)/RM2
UZ2=VZ2(IZC,IR)
UR2=VR2(IZC,IR)

55	 SVZ2S=RM2*((TI*PX2*(RM2-1.))/(2.*RM2)+UZ2*UZ2)
SVR2E=SVZ2S-UZ2*UZ2*RM2
UZM(IZ)=(VI*RMI+UZ2*RM2+SVZ3(IZC,IR))/RM
TZ=RM*2.*((SVZIS+SVZ2S+SVZ3S(IZC,IR))/RM-UZM(IZ)*UZM(IZ))/((RM-
2 l.) *RK2)
URM (I Z) _ (UR2*RM2+SVR 3 (I ZC, I R)) /RM
TR=RM*2.*((SVRIS+SVR2S+SVXY3S(IZC,IR))/RM-URM(IZ)*URM(IZ))/((RM-
2 1.)*RK2)
TM=(TZ+2.*TR)/3.

60	 T(IR)=(TM-Tl)/(TIS-TI)
ZNORM=DZMFP*FLOAT (IZ)-ZCTMFP
WRITE(6,P5) ZNORM,(T(IR),IR=1,10)

95	 FORMAT(FG.1,2X,10F6.2)
100	 CONTINUE

IF(LSSW(0)) RETURN

WRITE(6,205)
205	 FORMAT(/)

WRITE(6,211)
210	 FOP.MATCIPX,9H RN TABLE)

DO 270 IZ=I,IZMAX
DO 22 14 IR=1,10

220	 RN(IR)=FREAL*FLOAT(NI(IZ,IR)+N2(IZ,IR)+N3(IZ,IR))/N
Z NORM=DZMFP* FLOAT (IZ)-ZCTMFP

270	 WRITE(6,R5) ZNORM,(RN(IR),IR =1,10)
WRITE(6,205)
WPITE(6,275)

275	 FORMAT (11'X, 9H VZ TABLE)
C

DO 390 IZ=, I,IZMAX
DO 3F0 IP=1,10
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IZC =IZMAX-IZ+I
IF(IZC.LE.10) 60 TO 350
VZ2C =- V l
GO TO 3701
VZ2C = VZ2(IZC,IR)
VZ3C = VZ3(IZC,IR)
Vl4EAN=WMEAN(Vl,VZ2C , VZ3C , NI (I Z,IR) , N2(IZ,IR)
2 ,N3(IZ,IP))
RVL(IP)=%fFAN/VI
ZRt)RM=DZMFP * FLOAT ( IZ)-ZCTMFP
WRITE(6,85) ZNOPM,(RVZ(IR),IR=1,10)

WRITE(6,395)
FORMAT(//ISX,9H VR TABLE)
DO 460 IZ=1I,IZMAX
DO 450 IP,=I,IPMAX
IZC=IZMAX-IZ+1
IF(IZC .LE.IM) GO TO 430
YR2C=0
GO TO 440
VR2C=VP.2(IZC,IR)
VR3C=VP. 3(IZC,IP)
VRMN=WMEA N(O.,VR?.C, VR3C, N1(IZ,IR)
RVR (IR) = k'PMN/VI
ZNORM = DZMFP* FLOAT (IZ)-ZCTMFP
WRITE(6,95) ZNOP, M,(RVR(IR),IR=1,10)
RETURN

- C RESRW7
_ C OFF-LINT OUTPUT NON-NORMALIZED PARAMETERS.
- C LOAD WITH W WBG7.

C
SUBROUTINE RESULT ( I ZM, I RM)
INTEGER VZ3,VP3 , VZ2,VR2,CT,CP
REAL NT,NTOT,II
DIMENSION NTOT (1 n)
COMMON/IIN/^"3 (sn,10) ,SVXY3S (2P,, 10) ,SV238 (20,10),SVZ3 (20,10)
2	 ,SVR3(20,10),IZ , IR,'I1(3A , 1(7),N2(3fl,lf^),N3(30,1:7)
3	 ,M1(30,10),M2(3f7,1t7).VZ3(20,10),VR3(20,10)
4	 ,IT3 (20,1(7),MIM ( 10),FINT,FPEAL/LL/SVR2(11,10)s
5	 ,SVZ2 ( 10,12),VZ2( 1 0,ltl),VP,, 2(10,10) /JJJ/DR , DZ,TI/KKK / IZC,CT,CP
6 ,S,N/II/RMAX,PI,IRMAX /"1M/IZMAX ,ZMAX/III/RK2 , VMTI,UZ2,UR2
7 ,UZ,UR,V1,THFTA,T3C
WRITE(6,402)	 FItiT,FREAL

402 FORMAT(6H FINT=,E9.2,714 FREAL=,E9.2)
IR=S
WRITEC6,422) IR

422 FOPMAT(4H IR=,23)
WRITE(6,425)

425 FORMAT(3X,3HV72,3X,3HVR2,3X,3HVZ3,3X,3HVR3)
DO 428 IZ=1I,IZMAY
IZC =IZMAX-IZ+1
IF(IZC.LE.10) rO TO 426
IVZ2=-VI
IVR2=0
00 TO 428

426 IVZ2=VZ2 (IZC,IR )
_ IVR2=VR2(IZC,IR)

42 ft WRITE(6,4351)	 IVZ2,IVR2,VZ3(IZC,IR),VR3(IZC,IR)
430 FORMI,T(4I6)

g WRITE ( 6,440)
440 FORMAT(9H N2 TABLE)
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00 445 IZ-I,IZMAX
DO 442 IR-I,IRMAX

C NTOT USED HERE TO SAVF. STORAGE
442 NTOT(IR)-FREAL*FLOAT(N2(IZ,IR))
445 WRITE(6,465)(NTOT(IR),IR=1,6)

WRITE(6,455)
455 FORMAT(9H 173 TABLE)

00 460 IZ-I,IZMAX
00 457 IR- I,IRMAX

457 NTOT(IR)=FREAL *FLOAT(N3(IZ,IR))
460 WRITE(6,465)(NTOT(IR),IR-1,6)
465 FORMAT(6E9.2)

WRITE(5,485)
485 FORMAT(9N NI TABLE)

DO 4901 IZ-I,IZMAX
DO 487 IR-I,IRMAX

487 NTOT(IR)-FREAL *FLOAT(NI(IZ,IR))
490 WRITE(6,465)	 (NTOT(IR),IR=1,6)

RETURN
E ND

C RSTDV7
C OFF-LINE OUTPUT STANDARD DEVIATION.LOAD WITH STDV7.
C

SUBROUTI NE RESUL (11 12)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL LSSW
DIMENSION N!(30,1fl),N2(30,10 ),N3(30,10),M1(30,1fl),M2<30,10)
2,M3 (30,10) ,SVZ3 (2.01,13),VZ3 (20,10) ,SVZ3S (20, 10),
3SVXY3S(21,101),I'i (271,10),YI (3),
4 SVR3(20,10),VR3(20,175)
COMMON/I I/RMAX,PI,IRMAX,VM/JJ/DT/MM/IZMAX,ZMAX/NN/M3,SVXY3S,
2SV73S,SVZ3,SVR3,IZ,IR,N1,N2,N3,Ml,M2,VZ3,VR3,IT,
3 M1'7( 10),FINT,FP,EAL/KK/ZCTR,RPROBE/LL/SVR2(13,:J),
4 SVZ2(10,101),VZ2(113,10),VR2(1(3,10)/III/RK2,VMT1,UZ2,U'12
5 ,UZ,UR,V1,THETA,T3C/JJJIDR,I)Z,TI,I,K,ZPROBE
6 /KKK/IZC,CT,CP,S,N/ IJ/FMFP,T1S,XM(30),SSQ(30)/LLL/L1,UZM(30),
7 URM(30)

C
IMI-1) 200,50,300

C
50	 DO 100 IZ-II,IZMAX

IZC-IZMAX-IZ+1
TM-IT(IZC,IP.)
P.T-(TM-Tl)/(T1S-T1)
XMIIZ)=XM(IZ)+RT

100	 SSO(IZ)= SSG (IZ)+RT*RT
RETURN

C
200	 DO 270 IZ-I,IZMAX

RN-FREAL*FLOAT(N1 (IZ,IR)+N2(IZ,IR)+N3(IZ,IR))/N
XM(IZ)-XM(IZ)+RN

270	 SSQ(IZ)=SSO(IZ)+RN*RN
RETURN	 -

C
360	 DO 320 IZ-1I,IZMAX

IF(L1.GT,2) GO TO 350 	 t
RVZ-UZM(IZ) /VI
XM(IZ)-XM(IZ)+RVZ	 =_

326	 SSQ(IZ)-SSQ(IZ)+RVZ*RVZ	 =
RETURN

C	 =_=



350	 DO 370 IZ=II,IZMAX
RVR-URM(IZ)/VI
XM(IZ)=XM(IZ)+RVR

370	 SSQ(IZ)=SSQ(IZ)+RVR*RVR
RETURN
END

C SETAK6
C SET UP INITIAL PARAMETER S.BACKGROURD FROM ANY PREVIOUS
C ITERATION IF DATA SWITCH 6 SET

SUBROUTINE SF.TUP(N)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2
PEAL N
LOGICAL LSSW
DIMENSION N!(30,t0),H^<30,10),N3(30,lA),MIt30,10),M2(30,10)
2.M3(30,l0),SVZ3(20,10),VZ3t?.A,fO),SVZ3S(20,10),
3SVXY3S(2^, l0),IT3(:'.^'Lf 0),YI t3),
4SVR3(20,1A>,VRt(^0,10),I"? a(10),M3Q(IA)
COMMON/II/RMAX,PI,IRMAX•VM/JJ/DT/MM/IZMAX,ZMAX/NN/M3,SVXY3S,
2SVZ3S,SVZ3,SVR3,IZ,IR,Nl,N2,N3,MI,M2,VZ3,VR3,IT3,
3 MIO(10),FINT , FRFAL/XX/7CTR ,RPROSE/LL/SVHZ(IH,10),
4 SVZ2(10,10),VZ2(10,10),VR2(10,10)/III/RX2,VMTI,UZ2,UR2
S ,UZ,UR , V1,THE. TA,T3C /JJJ/DR,DZ,TI,I , X,ZPR06E
6 /KKR/IZC,CT,CP,S/LLL/LI/KXM/XM

C
K=0
RX2=574.

C RX2=2*X/M
S=.105E-IS
VMT1=SQRT(RK2*TI)
FINT= I.E-17
FREAL=1.017
P1=3.14159
RMAX=DR * FLOAT ( IRMAX)
ZMAX =DZ*FLOAT ( IZMAX)
R PP. OBE= . 2105
ZCTR=ZPROBE+RPROBE

C
IF(.NOT.LSSW(6)) GO TO 2
REWIND 3

C
WRITE(6,100)

100	 FORMAT(13H / ITERATIONS)
READ(4,110) I

110	 FORMAT(13)
WRITE(6,110)I
DO 120 IT=1,I

120	 CALL TAXE(DR,DZ,N)
K_KM
RETURN

C
C
2	 DO 9 IR=1,10

DO 6 IZ=I,IZMAX
IF(L1.EQ.1) GO TO 3

t	 N1(IZ,IR) = 9*FINT
N2(IZ,IR)=0
N3(IZ,IR%=0

3	 MI(IZ,IR)=0
M2(IZ,IR)=0

6	 M3(IZ,IR)=0
r,
C
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UU 15 AL=1.Lvn

SVZ3(IZ,IR)=0
SVR3(IZ,IR)=0
SVZ3S(IZ,IR)=0
SVXY3S(IZ,IR)=0
IF(LI.EQ.i) GO TO 8
VZS(IZ,IR)=9
VR3(IZ,IR)=0
IT3(IZ,IR)=T1

8	 CONTINUE
C
C

M10(IR)=0
DO 9 IZ=1,10
SVRZ(IZ9AR)=0.
SVZ2(IZ,IR)=0.
IF(LI.EQ.I) GO TO 9
VZ2(IZ,IR)=-VI
VR2(IZ,IR)=0

9	 CONTINUE
RETURN
END

'	 r

C STDV7
CA D#33
C OFF-LI NE STANDARD DEVIAfI ON & MEA N.-LOAD- WITH RSTDV7.
C

INTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL LSSW
DIMENSIO(J N1(31,1D),N2(30,1^),N3130,10),MI(30,10),M2(30,12>
2,M3 (3(3, l0) ,SVZ3 (23,1 3),VZ3 (20,1 PJ) ,SVZ3S (20, 10),
3SVXY3S(20,10),IT3 (2 1,1 ti),YI (3),
4SVR3 (20,13),VR3 (20,1 3),M20(13),M30 (1(!)
COMMON/I I/RMAX.P I.IRMAX.VM/JJ/DT/MM/IZMAX.ZMAX/NN/M3 .SVXY3S.
2SVZ3S,SVZ3,SVR3,IZ,IRT,N1,N2,N3,M1,M2,VZ3,VR3,IT3,
3 MIOJ(10),FINT,FREAL/KK/ZCTR,RPR09E/LL/SVR2(10,10),
4 SVZ2(IO,IA),VZ2(10,171),VR2(13,10)/III/RK2,VMTl,UZ2,UR2
5 ,UZ,UR,V1,THETA,TSC/JJJ/DR,DZ,Tlil,X,ZPROBE
6 /KKK/IZC,CT,CP,S,N/LLL/L1,UZM(30),URM(30)/IJ/FMFP,TIS,XM(30),
7 SSQ(30)

100	 REWIND 3
WRITE(6,200)

200	 FORMAT04H TYPE LI,IP.,NI)
READ(4,220)Li,IRT,NI

220	 FORMAT((I3))
WRITE (6,220)LI ,IRT,NI
WRITE(6,50)

50	 FORMAT(14H TYPE FMFP,TIS)
READ(4,80)FMFP,TIS

80	 FORMAT ((E10.3))
WRITE(6,90)F4FP,TIS
DO 250 I=I,NI

250	 CALL TAKE(DR,DZ,N)
ZCTMFP=ZCTR/FMFP
DZMFP=DZ/FMFP
DO 290 IZ=1,30
UZMCIZ)=V1
URM(IZ)=0.
XM(IZ)=0.

290	 SSQ(IZ)=0.
C

DO 410 I=1,10
300	 CALL TAKE(DR,DZ,N)

VOL=PI*FLOAT(IRMAX*IRl"AX-(IRMAX-i)*(IRMAX-1))



312	 DO 340 IZ=I,IZMAX
IF(M1(IZ,IRMAX).GT.I) GO TO 350

340	 CONTINUE
MI(IZMAX,IRMAX)=1

350	 FNORM=NOVOL/FLOAT(M1(IZ,IRMAX)+M2(IZ,IRMAX)+M3(IZ,IRMAX))
IR =IRT
VOL=PI*FLOAT(IR*IR-(IR-1)*(IR-1))
DO 360 IZsi,IZMAX
RM1=MI(IZ,IR)
RM2=M2 (IZ,IR)
RM3=il3(IZ,!R)
NI (IZ,IR)=FI NT*FNORM*RMI /VOL
N2 (IZ, IR)=FI NT*FNORM*RM2/VOL
N3 (I Z, IR) = FI NT*FNOR(4*RM3 /VOL

360	 CONTINUE
DO 401 IZ=1I,IZMAX
IZC=IZMAX-IZ+I
RM1=M1(IZ,IR)
RM2=M2(IZ,IR)
RM3=M3(IZ,IR)
RM=RMI+RM2+RM3
SVZIS=RMI*((T1*RK2*(RMI-1.)) /(2.*RMI)+V1*Vi)
SVRIS_SVZ1S-Vl*VI*RMI
IF(IZC.LE.10) GO TO 3713
UZ2=-VI
UR 2= 0.
GO TO 375

370	 VZ2(IZC,IR)=SVZ2(IZC,IR)/RM2
VR2 (IZC,IR)=SVR2 (IZC,IR) /RM2
UZ2=VZ2 (IZC,I R)
UR2=VR2(IZC,IR)

3 '.5	 SVZ2S=RM2*((TI*RK2*(RM2-1.))/(2.*RM2)+UZ2*UZ2)
SVR2S=SVZ2S-UZ2*UZ2*RM2
UZM(IZ)=(Vl*RMI+UZ2*RM2+SVZ3(IZC,IR))/RM
TZ=RM*2.*((SVZIS+SVZ2S+SVZ3S(IZC,IR))/RM-UZM(IZ)*UZM(IZ))/((RM-
2 1.)*RK2)
URM(IZ)=(UR2*RM2+SVR3(IZC,IR))/RM
TR=RM*2.*((SVRIS+SVR2S+SVXYSS(IZC,IR))/RM-URM(IZ)*URM(IZ))/((RM-
2 1.)*RK2)
IT3(IZC,IR)=(TZ+2.*TR)/3.

401	 CONTINUE

CALL RESULT(IZMAX,IRMAX)
410	 CONTINUE
C

U'RITE(6,430)
430	 FORMAT (l_2H Z NORM 	 MEAN	 STDV )

DO 450 IZ=I,IZMAX
Z NORM=DZMFP*FLOAT (IZ)-ZCTMFP
AVG=XM (IZ) /l 0.
STDV=SQRT(ABS(SSO(IZ)/10.-AVG*AVG)/9.)

450	 WRITE(6,460) ZNORM,AVG,S'IDV
460	 FORMAT(F6.1,2F6.4)

GO TO 100
END

TAKES
READ IN ACCUMULATED PARAMETERS FROM DECTAPE.

SUBROUTINE TAKE(DR,DZ,N)
INTEGER VR2,VZ2,VR3,VZ3
REAL N
LOGICAL LSSW
COMMON/II /RMAX,PI,IRMAX,VM/MM/IZMAX,ZMAX/NN/M3 (30,10),
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2 SVXY3S(27,10),SVZ3S (20,10),SVZ3 (20,10),SVP,3 (20,10),
3 IZ,IRT,N1 (30,10),N200,10),N3(30,10),M1 (30,10),M2(30,10),

VZ3 (20,10),VR3 (20,1 0),ITN3 (20,10),
S M10(IO), FINT,FREAL/LL/SVR2(10,10),SVZ2!113.11),
6 VZ2(10,10),VP2(IM,11)/KK/ZCTR,RPROBE/Iil/RK2,
7 VMTl,UZ2,UR2,UZ,UR,VI,THETA,T3C
S. /JJJ/DRD,,DZD,T 1
WRITE(6,IS)

l0	 FORMAT(10H DT3;Std 17)
11	 CONTINUE

IF(,NOT,LSSW(17))GO TO 11
J=1
K =1S
X21=1
K22=S
K31=1
K32=10
DO '20 L=1,2
READ (3) ((M 1(IZ,IR),IZ=J,K),IR= 1 ,10),IZMAX
READ(3)((M2(IZ,IR),IZ=J,K),IR=1,10)
READ(3)((M3(IZ,IR),IZ=J,K),IR= 1,10),IRMAY
READ (3) ((SVR2(IZ,IR).SVZ2(IZ.IR ),IZ=K21.K22),IR=1 ,10),PI
READ(3)((SVR3(IZ,IR),IZ=Kt1,)(.2),IR=1,10),RMAX
READ (3) ((SVZ3 (IZ,IR ),IZ=K31 .K32),IR= l ,10)
READ (3) ((SVZSS(IZ,IP.) ,IZ=K3l ,X32) ,IR=1.10).ZMAX
READ(3)((SVXY3S(IZ,IR),IZ=Y,31,K32),IR=1,10),DZ,DR,N,RPROSE
2 ,VI,ZCTR,FINT,FREAL,T1,RX2
J=16
K=30
K21=6
X22=10
X31=11

20 X32=20
RETURN
END

1
1	 -

1

C VELS7
C RANDOM VELOCITY VECTOR WITH SPHERICALLY SYMMETRIC MAXWELLIAN
C DISTRIBUTION.

SUBROUTINE VELS(VCD,COSPSI,THCD)
COMMON/II/RMAY,PI,IRMAX,VM

C VCD=I;UNIT VECTOR ONLY.
IF(VCD.EQ.1.) GO TO 10
R 7=RA NDU (DU)
R8=RANDU(DU)
ALG=ALOG(l./(R7*RR))
VCD=VM*SORT (ALG )

10	 R9=RANDU(DU)
COSPSI =1 .-2.*R9
R10=RANDU(DU)
THCD =2.*PI*R 10
RETURN
E NO
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C VREL7
C MEAN EFFECTIVE COLLISION SPEED.
C

FUNCTION VREL( VZA,VXA,VYA,VZB,VRB,COSTHB,SINTHB)
DIMENSION PSI (20)
COMMON/II /RMA}C,PI,IRMAX,VM
DATA PSI (I ),PSI (2),PSI (3),PSI (4),PSI (5),PSI (6),
2 PSI(7),PSI(8),PSI(9),PSI(10),PSI(11),PSI(12),
3 PSI(13),PSI(14),PSI(15)/.2007,.4953,.6178,.8420,1.0813,
4 1.3390,1.6182,1.9213,2.2507,2.6083,2.9958,3.4145,
5 3.8654,4.3494,4.8671/

C
X6=4. *VM*VM/1.771
CX=VXA- VRB*COSTHS
CY=VYA-VRR*SINTHS
CZ=VZA-VZB
C=SQRT'(CX*CX+CY*CY+CZ*CZ )
S =C /VM

C
IF(S.LT.1.5) GO TO 5
ERF=1.
GO TO 17

5	 IF(S.GE.O.I) GO TO 7
ERF=S
GO TO 17

C
7 KK=INT((S+.05)*10.)

PS=PSI(KK)
GO TO 20

C
17 PS=S*EXP(-S*S)+(2.*S*S+I.)*.885*ERF

<	 20 VREL=PS*X6/C
RETURN 
E ND
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