General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



m‘m

2

UNIVERSITY OF ILLINOIS
URBANA

AERONOMY REPORT
NO. 43

COMPUTER SIMULATION OF SUPERSONIC RAREFIED GAS FLOW
IN THE TRANSITION REGION, ABOUT A SPHERICAL PROBE;
A MONTE CARLO APPROACH WITH APPLIGATION
TO ROCKET-BORNE ION PROBE EXPERIMENTS

B. E. Horten
S. A. Bowhill

August 1,1971

§ SIMULATION OF

8 —— lepﬂ'IE
R-123313) FLOw IN THE
_q1284  (uASRC El GAS PRCBE; |
‘ N72- 1129 50¥ JERSONLC RAREFT BOUT A SP“qulca(hllanL
1 Gi ] |
o 'lmﬂs WAR:IZL(J) 3.E. tortony et a csel 20D G3/12
J Al Las A ’QONTE L g - _\971 121 P:uUKY‘
: k“%983~ gniv.) ¥ PU9C eovrn
08o
SR - Aeronomy Laboratory
Supported by Department cfﬂecniglﬁnginm . .,
NhuonﬂlhnunmnksandSpmx1uhnuﬂuﬂnunu R .  University of Illinois ..




UILU-Eng-721-2502

AERONOMY REPORT

N O. 43

COMPUTER SIMULATION OF SUPERSONIC RAREFIED GAS FLOW
IN THE TRANSITION REGION, ABOUT A SPHERICAL PROBE;
A MONTE CARLO APPROACH WITH APPLICATION
TO ROCKET-BORNE ION PROBE EXPERIMENTS

B. E. Horton
S. A. Bowhill

August 1, 1971

Aeronomy Laboratory

Supported by Department of Electrical Engineering
National Aeronautics and Space Administration University of Illinois
Grant NGR=01% Urbana, Illinois

JOP 14-0085-06/3

HE TN T T

il b it A

i igdtiiis:

A e SRRt



iii
ABSTRACT

This report describes a Monte Carlo simulation of transition flow round

a sphere. Conditions for the simulation correspond to neutral monatomic

molecules at two altitudes (70 and 75 km) in the D region of the ionosphere.

Results are presented in the form of density contours, velocity vector plots

Vi it

and densitv, velocity and temperature profiles for the two altitudes. Contours

T

and density profiles are related to independent Monte Carlo and experimental
studies, and drag coefficients are calculated and compared with available ex-
periméntal data. The small computer uséd is a PDP-15 with 16 K of core, and e
a typical run for 75 km requires five iterations, each taking five hours. The

results are recorded on DECTAPE to be printed when required, and the program

provides error estimates for any flow-field parameter.
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1. INTRODUCTION

1.1 Motivation for the Study

1.1.1 The lower ionosphere

The term ionosphere is given to the region of weakly ionized gas which
surrounds the earth from an altitude of 50 km to about 1000 km.

Ground-based radio techniques have shown that the ionization produced
by solar and cosmic radiation form a layer structure, which provides a
convenient method of classifying the various altitude regions.

Whitten and Poppoff (1965) have designated the region between 50 and
150 km as the lower ionosphere, and this is subdivided into E and D regions,
according to the layer structure of the corresponding ionization.

The E region is a well-defined layer of ionization formed during normal
daytime conditions in the altitude region between 90 and 160 km. Above this
is the F region. The D region extends down from 90 km.

1.1.2 D-region measurements

Rocket-borne electrostatic probes provide one of the fundamental techniques
for measuring the properties of the ionosphere. The probe is a small metallic
electrode carried through the plasma by a sounding rocket. A DC power supply
in the rocket biases the probe at various voltages positive or negative with
respect to the plasma and the current collected by the probe provides inform-
ation about the conditions in the plasma, such as concentrations and energy
distributions of the charged particles.

Probe measuremcnts have the unique advantage of being localized, rather
than averaged over a large volume of plasma, so that the accurate interpre-

tation of probe data is very desirable.



A fundamental aspect of probe flow is the formation of a sheath region

near the probe, where charge neutrality is not satisfied, as it is in the

undisturbed plasma.

Classical Langmuir probe theory is applicable only where the mean free
path for charged-particle-neutral collision is greater than the sheath thickness,

so that on the average, particles suffer no collisions after entering the sheath.

This condition is satisfied only above about 90 km.

The theory of Gerdien condenser-type instruments treats the motions of
the charged particles as mobility-controlled, which assumes a mean free path

much shorter than the distance over which the electric field changes

appreciably. This neglect of space charge effects is not justified for number

densities higher than 103 cm_s, so that a more general probe theory is required

for D-region applications, where number densities are greater than 1013 cm-s.
Cicerone and Bowhill (1967) have developed an analytical theory to cover

a stationary probe immersed in a relatively high pressure, weakly ionized gas.

1.1.3 Monte Carlo study

A complete theory of D-region probes must allow for the possible presence
of two or more negatively charged species and motion of the probe relative to
the plasma, a problem which at present seems intractable using analytical
methods.

A Monte Carlo simulation, made possible by the development of high-
speed digital computers should be able to incorporate the above features,
provided that the required collision cross sections are known. The present
wérk is concerned with a simpler problem, that of flow about a sphere travel-
ing at Mach 2.7 through a stationary monatomic neutral gas with temperature

and density corresponding to the neutral constituents of the ionosphere at

-
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two altitudes (70 and 75 km) in the D region (sec Table 1.1). The distribution
obtained by the present study will be used as a neutral background gas for
further studies of ion-probe interactions, using the Monte Carlo technique.

1.2 Analytical Treatments of the Shock Problem

For the purposes of this report a shock wave having supersonic flow
behind the shock will be termed a 'weak shock'", while a shock wave having
subsonic flow behind the shock will be termed a ''strong shock".

1.2.1 The Boltzmann equation

The state of a gas or gas mixture at a particular instant is completely
specified for the purposes of analytical kinetic theory if the distribution
function, f(v, r, t) for the molecular velocities v and position r at time
t is known throughout the gas.

Observable properties of the gas may be obtained by suitable averages
over the distribution.

The distribution function, f(v, r, t) is defined such that

dN = f(v, r, t) dv dr

is the number of molecules that have velocities between v and v + dv and
position between r and r + dr at time t.

The most general and fundamental description of the time and space rates
of change of f, due to collisions within the gas is given by the Boltzmann

equation (Boltzmann, 1964)




TABLE 1.1 Free stream data (U.S. Standard Atmosphere, 1962).

Parameter

Number density, Nw(m_s)
Temperaturz, T_(°K)
Effective velocity, U_(ms 1)
Molecular mass, m(kg)

Mean free path, A_(m)

Height (km)

70

1.64 x 10°!
215
880

4.81 x 107%8

1.03 x 1073

75
.79 x 104!
195
835
4.81 x 107%°

2.14 x 1073
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where gﬁ{, t) is the acceleration of a molecule produced by any external
field when the molecule is at point r at time t, and the right-hand side is
tke Boltzmann interaction term expressing the net rate of change of the
distribution function at a fixed point due to molecular interactionms.
The form of the interaction term depends on the type of force between
two interacting molecules. For example for a central force which is a function

of the distance between two molecules 1 and 2, respectively;

(df /dt) ., = ) (£1£) - £,£,) gb db de dv,

where fi = f(vi, r, t)
£5 = £(yy, x, 1)
£, = £(v;, 1, t)
f2 = f(_\i_)’ I_’ t)

and (Xi’ v5) are the velocities after an interaction of molecules 1 and 2
which had velocities (Xl’ 32) before interaction, b is the impact parameter
and ¢ the azimuthal angle of the orbital plane of molecule 2 with respect to
1.

Boltzmann's H-theorem (Boltzmann, 1964) shows that molecular encounters
will tend to bring about a Maxwellian distribution of velocities if the gas is
left to itself.

Thus it may be shown that the Boltzmann equation is satisfied by a
Maxwellian type distribution function

-yl
f(v, r) =Ae
where A is a constant and Vi is the most probable thermal speed of molecules,

given by (ZkT/m)I/Z.



Boltzmann's H is defined by
H(t) = [ £(v, t) In £(v, t) dv

A minimum of this function is a necessary condition for equilibrium and
it may be shown that the above Maxwellian distribution for f satisfies this
condition.

Efforts to obtain exact solutions to the Boitzmann equation for the
more general case of non-equilibrium have proved much less successful, both
because of the non-linear nature of the Boltzmann equation and because of
the intractable form of the collision integral.

The most promising analytical approach seems to be the assumption of
an explicit form for f in each particular case (Mott-Smith, 1951), see
Section 1.2.3.

1.2.2 Analytical solutions

The equations of fluid flow may be obtained by solving the Boltzmann
equation for the space and velocity distribution of the molecules by the
Enskog-Chapman method (Chapman and Cowling, 1939).

Boltzmann's equation is expressed in the form £(f) = 0 and a series
solution

£=7 £0

r=0

is assumed, where f(r) is the rth order term in the expansion of f.
This leads to a solution for the distribution function in terms of
the parameter A/Ax where X is the mean free path and Ax the distance in

which f changes by an appreciable fraction of itself.




The zero-order terms give the equations of flow of an inviscid fluid.

The first-order terms give the Navier-Stokes equations, and the second
order terms, the Burnett equations. The simplest inviscid flow problem treats
a one dimensional flow of gas produced by the motion of a piston in the axial
direction, within a cylindrical tube (Becker, 1968).

In this case the equation describing the motion reduces to

du

d 2 4
P (3%‘* ug) + ¢ £

s dx - 0 (1.1)

where p is the density, u the velocity at a point, and CS is the local speed

of sound.

The method of characteristics introduces two families of curves T

which are characterized by parameters X and u respectively, then Equation (1.1)

and the continuity equation may be expressed in a (A, u) coordinate system

as
w + u - const on T
(1.2)
w - u= const on 1,
p
where wlp) = f a(p) do )
Do p

The two relations (1.2) then form the starting point for computing p(x, t)

and u(x, t) in a specific problem, i.e., with given initial values.



Solutions of the Navier-Stoke equation were obtained by Becker (1923),
assuming constant coefficients of viscosity and thermal conductivity. These
solutions were improved by Thomas (1944).

For strong shocks the thicknesses calculated by Becker and Thomas are
very different, but are at most of thc c.’er of a few mean free paths. This
throws doubt on the valiuity of the Navier-Stokes equations, since they are
valid only if f changes only by a small fractional amount in a mean free path.

1.2.3 The Mott-Smith method

In the Enskog-Chapman theory, f is represented by a skewed Maxwellian
form, having only one strong maximum. Mott-Smith (1951) has suggested that
a more profitable assumption might be a bi-modal form. Here the distribution
is assumed to be the sum of two Maxwellian terms (representing subsonic and
supersonic streams) with different temperétures and mean velocities but with
unassigned space densities. The densities ve obtained from the solution of
a transport equation for un, where n is an integer and u is the component of
molecular velocity in the stream direction.

Since Mott-Smith's method does not take account of interactions between
particles of the same s<ream, his theory is most suitable for strong shocks
where these are less significant.

The two-fluid model has been improved by Ziering, et al. (1961), and
their results are in good agreement with experiments performed by Sherman
and Talbot for both large and small Mach numbers. (Mach number, M = local
flow speed/local sound speed).

However, the Mott-Smith models predict the wrong value of the Prandtl
number, Pr = Cpn/k (where Cp = specific heat at constant pressure, n = coef-

ficient of viscosity, k = thermal conductivity) near the downstream boundary,




so that a completely satisfactory analytical solution for arbitrary shock
strength is still lacking.

1.3 Monte Carlo Evaluation of the Boltzmann Collision Integral

Nordsieck and Hicks (1966) have devised a Monte Carlo method for the
evaluation of the Boltzmann collision integral. The method has a major
advantage over the above analytical approaches in that it can easily be
modified to use any molecular force model as long as the differential cross
sections are known. It may also be used to test any velocity distribution
function proposed as an approximate solution of the Boltzmann equation for
a shock wave or other flow conditions, or to check directly the various
elaborzte analytical calculations involved in moment methods (Martikan, 1966).

The procedure replaces the cecllision integral by an integral over a
finite region of velority space, taken so as to include most molecules. The
average of the integrand over all values of the line of centers vector is
then approximated by the average of a large and fair sample of particular
values of the integrand, selected by Monte Carlo trials.

The method has been applied to both the pseudo shock (a translational
relaxation of molecules) and the shock structure.

Extensive error analyses performed by Hicks (1968) have estimated that

for a Mach number of 2.5 the random errors in the velocity distribution function

and the collision integral amount to 2% or less, and random errors in moments
of these functions range from 0.03 to 2.7%. The complete program required
8,000 words of storage on a CDC 1604 computer.

A majcr difficulty with the practical application of approaches based on
the Boltzmann equation is the inclusion of realistic and complicated boundary

conditions, especially surface interactions with bodies placed in th2 flow.

i calliiE e
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In an attempt to solve problems of this type, several Monte Carlo algorithms
have been developed which treat the dynamics of gas molecules more directly.

1.4 Monte Carlo Simulations of Rarefied Gas Flow

Bird (1965) has developed a Monte Carlo technique which was applied to
the problem of a gas initially in equilibrium between two infinite, plane,
parallel and specularly reflecting walls. One wall then impulsively acquires
a uniform velocity towards the other, and the numerical experiment studies the
shock wave so formed.

The first step in the procedure is to select a molecule at random, then
sample the number density in the vicinity of the molecule, which is retained
or rejected such that the probability of retention is proportional to the local
density. A second molecule is chosen at random, subject to the condition that
its position be within half a local mean free pa’~ of the first molecule, on
the right side for a collision to occur. The relative velocity is determined,
and the pair is accepted or rejected so that the probability of retention is
proportional to the relative velocity. When a pair is retained, a line of
impact is chosen at random and new sets of velocity components for the
molecules are computed. Each time such a ccllision takes place, a new pair

is selected and the time ic advanced by

2
Lov

At =

where No is the number of molecules used in the simulation, and v is the
collision frequency from kinetic theory. After a suitable time, tm’ all the
molecules and the wall are moved through a distance appropriate to t and their

current velocities. At much larger time intervals the velocity and density
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profiles between the walls are sampled. After a run of thirt; minutes on the
Atlas digital computer at the University of Manchester, England, Bird obtained
shock profiles with a standard dcviation of two to four percent. The shock
was found to travel at the speed predicted by the Rankine-llugoniot equations
and resulting profiles showed good agreement with the Mot.-Smith results, at

a shock Mach number of 1.5.

Vogenitz, et al. (1968) have applied Bird's method to transition flow
about cylinders, spheres, wedges and cones. ihe results were compared with
wind tunnel tests using a free molecular recovery temperature probe, and with
electron beam density measurements. Agreement in both cases was good. The
computation times ranged from 5 minutes using 32,000 words of storage to 20
minutes using 80,000 words, on a CDC 6600 machine.

Bird's technique has been used to provide pictorial éimulations of
transition flow (Bird, 1969), which should prove to be a valuable visu2ziization
technique for this difficult area.

The present program of study is intended to show that compgrable results
may be obtained using much smaller computei capacity. The machine used is a
Digital Equipment Corporation PDP15, having 16,000 words, each of 18 bits.
The machine is intended primarily for on-line data reduction of ionospheric
observations of the partial reflection type and the Monte Carlo simulation
can be run whenever the machine is not required for this work, which takes
place only during daylight hours. Monte Carlo studies might well prove to
be valuable users of the small on-line computers having relatively low duty

cycles, which are to be found in many installations about the country.

B,
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2. THE PROGRAM

2.1 Monte Carlo Choice

The core of any Monte Carlo method is the Monte Carlo choice. The process
to be modeled is reduced to a series of decision points, which are branch
points in the process, where any one of a number of future courses is possible.
Probabilities must be assigned to the possible events, according to some theory
of the microscopic kinetics of the system under consideration. The probavilities
are mapped onto the interval 0 to 1 as shown in Figure 2,1, so that the fraction
of the unit interval allotted to each event is equal to its probability. %

A random number is now chosen from a distribution uniform between 0 and
1. The event is determined by placing the random number on the probanility
interval; if it falls in the interval allotted to event A, then event A is
said to have cccurred, if in the interval cf B, then B occurred and so on.
Since the random number may fall with equal probability at any point on the
unit interval, the probability or its falling in A is exactly equal to that
Fraciion of the unit interval allotted t¢ event A, namely the computed prob-
ability of event A. In this way events in the real process are modeled on
the computer, provided only that a random number generator of fairly uniform
distribution is available, and that realistic probabilities can be assigned
to each possible event.

In the present simulation it is also necessary to draw particular events

from a continuous distribution, such as initial position and velocity of a

molecule or velocity after a collision. In this case a modification of the
above procedure is used. The following Equation (2.1) from probability theory

relates a random variable x, with probability density function f(x), to a
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random variable Ri uniformly distributed on the interval 0 to 1 (Shreider, 1966)

X
k; = j £(g) dg (2.1)
M
where £ is a dummy variable
Xy is the lower limit of the particular

x in question.

Using this relation and the known distribution for the parameter to be
drawn, the Equation (2.1) is integrated and rearranged to give x as an explicit
function of Ri' A random, or as in the present program, a pseudorandom number
is then drawn, and used to evaluate the corresponding x. In this way if the
Ri values are distiributed between 0 and 1, with distribution approximately
uniform for a large sample, the resulting values of x will have a distribution
close to f(x).

2.2 The Method

2.2.1 Characteristics of the gas

In the present simulation of rarefied gas flow, the real events are
collisions between the molecules in the region about the probe.

Using an approach analagous to that of Mott-Smith, the gas near the probe
is considered to consist of three distinct classes of molecules, eaéh character-
ized by a distribution of density, mean velocity and temperature.

Class 1 molecules have not yet encountered either the probe, or a
member of any other class.

Class 2 molecules have been reflected specularly from the probe,

and have only encountered other class 2 molecules since reflection.
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Class 3 molecules have encountered at least one molecule of another
class, either before or after striking the probe.

The method involves an iterative procedure which gives successively closer
approximations to the actual distributions for the three classes.

2.2.2 Division into cells

The continuous distributions of velocity and temperature are approximated
by dividing the space of interest into discrete cells, each having one value
of every parsmeter for the three classes of molecules.

Since the probe has axial symmetry, a cylindrical coordinate system is
ased (Figure 2.2) having ten cells in the radial and 30 in the axial directions.

The resulting system of 300 cells, are coaxial cylindrical shells (Figure
2.3) and it is assumed that the flow has no mean variation in the azimuthal
direction.

Since class 2 and 3 molecules are found to be confined to the region of
the probe, class 2 velocities are stored only for the ten axial cells nearest
the probe, and class 3 velocities and temperatures only for the 20 axial cells
nearest the prove.

Beyond these regions class 2 mean velocities and class 3 mean velocities
and temperatures are set to the last computed value for that radial shell.

2.2.3 Computational procedure

This section gives a brief outline of the whole computational procedure,
which will be dealt with in more detail in sections 2.3 and 2.4.
A first approximation to the various distributions is taken as a back-

ground gas, into which are introduced test molecules of class 1, starting from

the entrance plane.
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A test molecule is introduced having position and velocity coordinates
chosen at random from distributions calculated for the flux across the input
plane.

The molecule is examined after a fixed interval of time &t, when the
Monte Carlo choice probabilities are calculated, and a random selection is
made to determine whether a collision has occurred in the last time interval
ét, and if so the class of the collision partner.

If a collision has occurred, new velocity components are selected, accord-
ing to the laws of classical gas dynamics.

The velocities and squared velocities of the molecule are recorded for
that position, and a count of particles for the test class is incremented
by one. The test molecule proceeds by straight line path segments towards the
probe, and at each point the position is tested to determine whether the test
molecule has struck the probe, or reached the boundaries assigned to the region
of the study.

If a class 1 molecule reaches the radial boundary it is reflected specu-
larly, so as to model the introduction of new molecules from an infinite real
gas. If a test molecule reaches either axial boundary without striking the
probe, a new test molecule is introduced at the entrance plane and the whole
process is repeated.

If a class 1 molecule strikes the probe, it is reflected specularly and
becomes a class 2 molecule. The mean temperature is assumed to remain unchanged
after reflection.

After a suitably large number of molecules have been followed in this
way, the accumulated parameters are used to calculate a new approximation to

the background gas distributions. These values replace the old background

A
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gas for the next iteration, when the introduction of test particles begins
again.

After a number of iterations, the distributions converge to a stable form
with steady statistical fluctuations, which is taken to be the final estimate
of the model flow.

2.3 Description of the Program

The flowchart, Figure 2.4 shows the logic of the Monte Carlo program.
Subroutine names appear in wide-spaced letters in Figure 2.4 and capitalized
in the text. A complete listing of all programs appears in the Appendix.

2.3.1 Cell system and storage of parameters

As explained in section 2.2.2, the cell system consits of ten cylindrical
shells, each divided axially into 30 equal rings, generating 300 celis so that
300 values of each parameter must be stored (with the exceptions noted in 2.2.2).

In the present study, core storage is limited to 16,000 18-bit words, so
that economy in storage is an important criterion.

Each parameter is stored as a two-subscript array, with the first subscript
representing axial, the second radial cell numbers. The two subscripts for
a given position are found by taking each coordinate, dividing by thec corresponding
cell dimension and rounding to the next higher integer.

The PDP-15 requires two 18-bit words to store a real number, as shown in
Figure 2.5. This provides an accuracy of six decimal digits. An integer con-
stant is stored in one word, giving a maximum magnitude of 131071 or 217—1.

It is felt that integer storage can provide adequate accuracy for all background
gas parameters, while real-variable storage is used for all accumulated velocity
parameters to allow for the large magnitudes involved. Number densities are

normalized before storage by multiplying by a constant factor (Fint) of 10-17.
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Figure 2.4 Main program flow chart.
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17 is used to restore the true density before use

The reciprocal (Freal)’ 10
ir the program. -

2.3.2 Read parameters, initialize subroutine RANDU, and arrays,
subroutine SETUP

At the beginning of any run, and only then, the parameters defining the
conditions of the simulation are read from the teletype keyboard. These
define for example, cell size, ambient free stream conditions and probe posi-
tion (see Section 2.6).

A prime integer is supplied to initalize the random number generator
(Section 2.4.1) and the subrountin: SETUP sets fixed parameters (such as m)
and initial values of all arrays, to free stream conditions for class 1 back-
ground parameters, and zero for all accumulated parameters.

2.3.3 Introduction of a new molecule, subroutines NEWPOS and NEWV

The introduction of a new molecule involves two subrountines NEWPOS
and NEWV which are explained in more detail in sections 2.4.2 and 2.4.3.
NEWPOS generates thc cylindriczl coordinates of the initial position
(0, r, 8) on the entrance plane. The r and 6 coordinates are chosen from dis-
tributions uniform with area over the entrance plane.
The cell number subscript is assigned as in section 2.3.1 and NEWV gen-
erates cylindrical coordinates of the new initial velocity (Vz, Vr’ Ov) for
a flux of molecules with mean axial speed U_. (Figure 2.6)

2.3.4 Tracing a molecule, subroutine INCPOS

Basic to the operation of the program is the small time increment &t

at which all parameters of the test molecule are recalculated; this time
increment will be described herceafter as a "mo".
The time is incremented by the chosen §t, and subrountine INCPOS returns

tie next position usirg the mclecular velocity and previous position coordinates.



Figure 2.6 Velocity coordinate system.
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The molecule is assumed to traverse a stra’ght line path between collisions.

2.3.5 Tests for cell and system boundaries, subroutines NEWCEL, HITSPH,
RBOUND

The next operation is to make a series of tests on the position coordi-
nates of the molecule, to determine whether it has moved into an adjacent
cell, and if so whether that cell lies outside the chosen system boundary,
which is drawn so as to include the surface of the sphere (sec Figure 2.2}.

If a class 1 molecule has crossed the radial system boundary, the sub-
routine RBOUND simulates the introduction of a new class 1 molecule from

the gas beyond the system, by means of a svecular reflection. Class 2 or

- - + .. AL . L 321 it mon L damar —A Tacs Aard 3L aver mnternlna
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exists from either plane axial boundary (the entrance or exit plane), that
molecule is lost and a new molecule is chosen at the entrance plane.

If the molecule is found to have struck the probe it is reflected specu-
larly. Subroutine HITSPH calculates new position and velocity components
using the probe geometry (see Section 2.4.7).

2.3.6 Collision probability, subroutine VREL

If the molecule has not crossed a cell boundary in the last mo, values
of collision frequency with the thrce background classes (vl, v, v3) and total
collision probability, P(bang), remain the same as {or the previous mo. Other-
wise new collision frejuencies are generated using the formula,
v, =V . 0 N,
i reli i
where vy is the collision frequency with background class i

Ni is the number density of background class i



]
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Vreli is the mean effective collision speed for the test and ith

background class, given by

" 4
Vreli = | J J v - vl POys) gy gy S,
where Y obi is a velocity of the ith background class, having Cartesian

components v, and a Maxwellian distribution

bix 'biy 'biz
function P(!_bi).
v is the test mulecule velocity.
This integral is evaluated in Section 2.4.4, and the function VREL returns

a value of Vreli using a 15 step approximation to the integral.

2.3.7 Collision leading to class three test subroutines MONTE, BANG,
PTNR3, VELS

A Monte Cario choice (see Section 2.1) now determines whether a collision
occurred in the last mo. RANDU returns a random number which is compared with
the collision probability P(bang). If it is less than P(bang), a collision
is said to have occurred and the subroutine MONTE makes a further Monte Carlo
choice tc determine cp the class of the collision partner. Collision proba-
bilities for each class are computed from the corresponding frequencies (see
Section 2.35.6), and mapped onto the unit interval. A random number then deter-
mines the choice of cp.

Subroutine BANG, determines the combination of test class c_ and partner

t

class Cp’ so that if the two are different or c, = 3, the correct combination

of parameters is passed to suboutine PTNR3. This subroutine determines the
test molecule velocity after collision, using a hard sphere model and incorpor-
ating the mean persistence of velocities after collision. Subroutine VELS

provides a random thermal velocity, drawn from a Maxwellian distribution with
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spherical symmetry as in Sections 2.4.5 and 2.4.6. The test molecule now
moves into class 3. If the test and partner molecules were found to be of the
same class, the collision is ignored, unless both were of class 3, in which
case the collision is computed as described above. This ensures that the pro-
cess remains collision dominated even after class 3 molecules predominate near
the probe.

2.3.8 Bookkeeping and iterative procedure, subroutines BKKEEP, NEWBG

At this point, subroutine BKKEEP increments the accumulated parameters
for the present class of test molecule, i, at its present pesition as determined
by the array subscripts. A count of molecules Mi is incremented by 1, and for class
2 or 3 molecules the current velocity is added to accumulated velocity sums
v_., Zvri for the axial and radial directions. For class 3 molecules only, the

Z1

squared velocitie

[%]

are «dded to accumulated squared velocity sums Z(V_,)z, Z(Vr1)2
) o

which will be used to calculate mean class 3 temperatures. Again the velocity ac-

cumulations occur only in the region of the probe, as explained in Section 2.2.2.

The procedure then begins again for the next mo.

Each test molecule is traced and recorded until it leaves the system
through one of the boundaries. A new class 1 test molecule is then introduced
at the entrance plane, and the tracing process is repeated.

After a suitable number of molecules have been traced, as determined by
standard deviation estimates (Section 3.1), a new background gas is computed
from the accumulated parameters for each class in each cell as follows. The

new number density Ni is given by

M. x F
N, = & norm
1 Vcell
where Mi is the accumulated number of molecules of class i recorded in

that cell
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vcell is the cell volume

Fnorm is a constant normalizing factor for the system such that the
total number density at the cell farthest from the probe is that
of the freestream.

The new mean velocity components for classes 2 and 3, (Vzi’ Vri) are given

by ZV .
o _ bzi
Vi = (2.2)
i
I
V= Mi (2.3)

where szi’ Zvri are the sums of all axial and radial velocities respectively
recorded in that cell as explained in Section 2.2.3.

The new class 3 temperatures (TZS’ TrS) are given by

2
T ,=2 L) =2 s (2.4)
z3  k M X M,-1) *
3 3
T, 02 , M
T =M Z2T¥ 3 (2.5)
r3  k M, r3 M_-1) :
3
where m is the mass of molecule
k is Boltzmann's constant
Z(st)z, Z(Vrs)2 are the sums of squares of all axial and radial
velocities recorded in that cell (see Section 2,2.3)
st, Vr3 are the mean velocities of classes 2 and 3 as above
M3 is the total number of class 3 molecules recorded at that cell.

Class 1 temperatures and velocities and class 2 temperatures are assumed in-
variant with position everywhere. Class 2 and 3 velocities and class 3 tem-
peratures are stored only for the region nearest the probe as explained in

Section 2.2.2.



After the new background parameters havc been calculated, all accumulated

parameters are reset to zero and the new iteration begins with the introduction

of the first molecule at the entrance plane.

2.3.9 Program output, subroutines RESULT, GIVL

The subroutine RESULT can take various forms depending on the output re-
quired. The standard form, included in the binary library file (.LIBR5 BIN)
assembled for this program is called RESGIV. This uses subroutine GIVE (not
shown on the main flowchart for clarity) to write the accumulated parameters of
each iteration on DECTAPE in a non-file oriented mode, using the DTF DECTAPE

handler. Each WRITE command fills 25610 (256 decimal) words (one block) of

the tape from 25610 words of core. Unused words within this number are filled

with blanks. The data to be written have been arranged so as to fill the tape

in an econeomical fashion using this modc. Since unc DECTAPL comprises 57610
blocks, up to 36 iterations, each of 16 blocks may be stored in this way.
Alternatively RESNM or RESRAW may be loaded in place of RESGIV, to output either
raw data (RESRAW) or data normalized by free stream values (RESNM) on the tele-
type. Which of the 1900 parameters are printed each time is of course a matter
of choice.

Core storage limitations permit the loading of only one form of RESULT

for any given run.

2.3.10 Off-line data reduction, subroutines NEWBG5, RESNM7, STDv7, RSTDV7

When the required number of iterations have been recorded on DECTAPE,
using RESGIV and GIVE, execution of the main programs may be terminated, and
one of several possible sets of data reduction program loaded instead. NEWBGS
and RESNM7 read the accumulated parameters of each iteration from DECTAPE, com-

pute the corresponding background gas and print the normalized background

parameters on the teletype.

.
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STDV7 and RSTDV7 may be used to process the short runs (see Section 3.1)
to give estimates of the mean and standard deviation for a full scale run,

2.3.11 Dumping the program, subroutines DUMP, LSSW, PAWSE

The PDP-15 single-user Advanced Monitor Systen KM1S5 V4A allows for the
possibility of writing the entire core onto DECTAPE at any time during execu-
tion, The process is initiated by pressing the keys CTRL and Q simultaneously
on the teletype, and is called a dump. An area of DECTAPE must be reserved for
dump, and the dump may be recovered and execution restarted exactly as if no
interruption occurred, provided the program is in a suitable waiting loop such
as a Fortran PAUSE or the Macro subroutine PAWSE used here, when the dump is made.

The Macro routine LSSW provides a way of initiating a recoverable dump
at any time by depressing a specified console data switch. The subroutine
DUMP is then called and the dump may be initiated using the CTRL and Q keys.
After recovery of a dump, DUMP also repositions the data tape correctly, so that
the entire computer and all tape drives are available for other uses between
dumps. In this way execution of the program may be resumed each night, while
the computer is otherwise occupied during the day.

Subroutine LSSW proved very valuable during modification and de-bugging
of the program, since for example, the position of a particle can be printed
when required by the user, rather than every time the program reaches a given
point (see the program comments in Appendix).

The Macro subroutine PAWSE may be used instead of a Fortran PAUSE state-
ment, causing a halt in execution until the keys CTRL/P are struck on the
teletype. The Macro program is considerably smaller than the corresponding
Fortran routine since it cannot handle numbered PAUSE statements. This
facility is not required for the present purpose, and PAWSE is used here to

save core storage.



2.4 Important Subroutines

2.4.1 Pseudorandom number generator, subroutinc RANDU

The pseudorandom number generator used here is of the multiplicative
congruent type, based on CACM algorithm 294 (Stromc, 1966).

The program generates the next uniformly distributed pseudorandom number
on the interval (0, 1) as in the flow chart (Figurc 2.7). The procedure uses
two constants, M and C, chosen to maximize the period and minimize the correlation
of the sequence generated. For the present program the following equations

are used for choosing M and C

M = DX

number base of the machine

where D

k

it

entier ({2n+1)/3) i.e., the integer part of ((2n+1)/3)
where n is the maximum number of significant digits for a real variable stecred
in the machine.

Then

where
q =3 for "X > 100 (2.6)

Fortran double precision arithmetic (8 significant decimal digits)

yields; D= 10, n = 8

k = entier (2 x 8 + 1)/3 =5

n-k = 3
ie. M= 10°
C=10° - 3= 997



INITIAL DATA
DU

X = DU/M
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X =X-C

X = X~ ENTIER(X)

DU
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o

X IS THE NEXT
PSEUDORANDOM NUMBER

Figure 2.7 Multiplicative pseudorandom number generator

flowchart, function RANDU.




LU should be a positive integer less than and rclatively prime to M, here
U was chosen to be 8287.

Difficulty was experienced in trying to use sii:i~ precision arithmetic
only, for a pseudorandom number generator on the PDP-i5.

While six significant decimal digits are claimed by DEC for single
precision real arithmetic, the sixth decimal digit .lid not prove reliable
enough for this use, so that after a series of calls of the program, incorrect
digits began to appear in the lowest significant decimal places. These werc
increased in significance by successive multiplications, giving the sequence
of pseudorandom numbers undesirable properites. The cffect was a non-uniform
distribution of numbers selected at large, random intervals from the sequence,
which appeared as an incorrect distribution of samples with radius at the
entrance plane. Assuming only five significant decimal digits leads to a
violatior of the requircment (2.6) as ™k < 100.

The double precision version used in the program assumes only eight

significant decimal digits of the nine claimed by DEC.
Figure 2.8 shows the results obtained with the double precision version ;
of RANDU. Numbers introduced in each radial cell Nir are plotted against 2ir-1l
where ir is the cell number. A perfectly uniform distribution with area
would result in the straight line shown, with the standard deviation limits
predicted by a Poisson distribution. The actual points are secen to be in good

agrcement with this hypothesis.

N

2.4.2 Selection of position at input plane, subroutine NEWPOS

The distribution of particles over the input (z = Q) plane must be uniform

with area, as in the real flow.
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New z and ¢ coordinatecs may be chosen at once;

2 = O .
B =
27 RO
where Re is 4 random number chosen from a distribu.i »n uniform on the interval
U tol.

The distribution function, fr’ for r is given by

where T oax is the radius of the system, so that the probability of selection,

P(r), within any radius r, is given by

(" 2r rz
P(r) = e
-~
‘or
max max

a fraction proportional to the area of the disc, radius r.

The distribution is normalized so that the total probability of selection

within the cell system, P(rma ) is 1.

X

rmax 2r'
P(r ) = J =— dr' =1
max o

r 2 %

R { 2 4r == 2
r Jo r2 rZ §
max max =

Ii

3

i.e. r=r . /E: (2.7)

This result is then used to select values of r, using random numbers Rr'
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2.4.3 Selection of velocity at entrance plane, subroutine NEWV

Consider the velocity components of the input class 1 molecules drawn
from the flux crossing the imaginary input plane., at a mean axial speed U .
The class 1 molecules are assumed to have a Maxwellian velocity distribution

with temperature T., so that the number of molecules crossing the input plane

1

in the +z direction, which have thermal velocity components in the range

dv , dv , dv_about v, v , v is
X y Z x’ 'y’ "z

2
N1 -(v; + v2 + vi)/vi
—=(V U) e y dv_dv dv
7T3/2V3 z o Xy z
m

dgq =

where N1 is the free stream number density

v is the most probable thermal velocity in the free stream given
by (Zle/m)
The total flux q of molecules crcssing the input plane is found by inte-

grating this expression for Vo and v, from -« to += and v, from -U_ to +x,

the latter limitation excludes particles crossing in the -z direction (Fan, 1967)

giving

where X(SZ) is a function of the flow velocity in free stream

_52

z 1/2 N
x(SZ) = e + 1 / Sz[1+erf(Sz)]
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where S =U/v
2 ' m
The distribution function of molecules crossing the surface is given

by

)

2 1 v, -(v2+v2+v2)/v’
= - (<2 +5)e * Mgy dv dv_
X(S_\'Vm Vm Z X y yA

“lE

which represents the number of molecules with thermal velocities in the range
dvx, dvy, dvZ about Vs Vy’ v, as a fraction of the total number crossing
ihe input plane in the +z direction.

This is best re-written in the cylindrical coordinates of the present
study; Vz’ Vr’ 3]

\'s

2..2,,2
\Y -(VI+V) /v
%‘i = % 1 vi (;,i +8)e T P TNavdedv . (2.9) .

The marginal distribution functions for the three components Vz, Vr’

er, are each obtained by integrating over the ranges of the remainin; two

components.
Thus
o 27 2 -V2/v2
f=J[Vfde Qv ==-ve T T
T r v z 2 T
U ° Vm
z
B f;oo o ) 1
f@v J . Vrder de = 50
-U_
Y
and ’
(211 ® 2 vz -vi/vﬁl
f = f Vv fdv_ ds ( S )e
\Y Jo 1o ¥ TV x(Sz)vm v, Z .
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The Equation (2.1) relates the above distributions to a uniform dis¢ri-
bution on the interval 0 to 1i.

If the random variable x has a probability density function f(x), then
the distribution of the random numb=zr Ri is uniform on the interval 0 to 1

where

where Xy is the lower 1limit of x.

Applying this to the velocity distribution functions for the input

test molecules gives

2,2
R = e‘vr/vm
T
ev
Ry = 77
and
2
-(V_/v)
Rz = i(s 3 {e z m +n1/2sz[1—erf(vz/vm)]} (2.10)

where Rr’ R RZ are independent uniformly distributed random numbers on

g°
the interval 0 to 1.

In order to select velocities, the above three equations must he re-arranged
so that Vr, ev, and VZ appear explicitly, in terms of Rr Re RZ respectively.

In the first two cases this is simple, giving

V_=v_ VIn(l/R)
m T

r



and

However the z component of thermal velocity cannot bc cxpresscd cxp.acitly
in terms of RZ. Instead the Equation (2.10) is fitted by a polynomial, using
a standard computer routine,

For a given value of Sz, 50 pairs of corresponding values of (Vz/vm)

and RZ are computed. It was found that good results could be obtained by

a least squares fit to a polynomial of seventh degree in terms of n where

n = {1n(1/Rz)}1/4

So that the corresponding 50 values of n ana Vz/vm are fed into the

subroutine, yielding the coefficients a through a, for the equation
_ 2 3 4 5 6 7
Vo /Vp T 3 ¥ @ N*a N tagnTea n agn eagn agn

The coefficients are tabulated in Table 2.1 for 14 values of SZ in the
range of interest (Fan, 1967).

Once the coefficients are known for a given Sz’ values of Rz can be fed
into the polynomial yielding any number of velocity selections.

2.4.4 Collision probabilities, subroutine VREL

The following is a more detailed explanation of the theory used in choosing
collision probabilities. The argument follow Jeans (1954).
Consider a test particle of speed c colliding with a molecule chosen

from one class of the background gas, of number density n, having speed c'.
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The chance of collision per unit time is equal to the probable number
of molecules of the background gas whose centers lie within a cylinder of
base area 40 and height V where o is the collision cross section of a particle,
V the relative velocity.

Let ec be the angle between ¢ and c¢', and let ¢ be an azimuth angle for

The number of background molecules per unit volume for which c', 6, ¢
lie within small ranges dc' dec d¢ is

N CRA I

3/2v3)e c'” sine d6  dedc!

n

(n/n

where Vo is the most probable thermal speed of the background gas molecules.
Multiplying by 40V and integrating over all values of ¢ gives the number of
background particles within the cylinder of volume 4cV such that c¢', ec lie

within dc', dec as

N,

3.1/2 m

(8ng/v n ')V e

¢'? sino do 4 (2.11)
m C c C

when ¢, c' are given, V depends on ec as

2 2 2

Vi=c¢c +c¢'" - 2cc! cosOc
Differentiating with respect to ec for constant c, c'

VdV = cc' sino de
c ¢

Substituting in (2.11) gives
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5 172, (e )

(8na/von'/%ye ™ er/e)det V2 av . (2.12)

. 2 . .
Integrating V- with respect to V, keeping ¢, c¢' constant

c+c'

' 2
f Vzdv = VS/SIIETE,I = c(c2+3c' ) ¢t >c¢
le-c|
c'(c'2+3c2) c' < ¢

TSRS

Thus integrating (2.12) with respect to V gives

when 2 9
-(e'7/N)
¢'>c ; (16 no/SVinl/z)e m c'(c2 + 3c'2) dc!
when 2,2
(e /)
c'<c ; (16 no/Sviﬂl/z)e m (c'z/c)(c'2 + 3c2) de!

The mean collision probability per unit time is then found by integrating

from c¢' = 0 to » using the appropriate expression as c¢' is greater or less
than ¢
2,2 2,2
0 -C! - 1
16no {J C'(C2+3c'2)e c /dec' . JC ¢|2(C|2+3c22 . (c /Vm)dc'}
3vin1:2 c o ¢

The first integral may be evaluated directly as
2,2
-c’/v
2,2 4 m
(2¢ /vm + 2/3) v,e

The second integral cannot be evaluated in finite terms, but replacing

c'z/v; by y2 the integral becomes



5

v c/V ) 2

EE-J y2(y2 + 3c2/vri)e'y dy
[o]

which after continued integrating by parts becomes

v =N 2
...IE -e m (-—-——
c { 4+ 2
v
m

2 c/v 2
S D i& J " o)
my
m o

Hence the sum of the two integrals is

3vm c -c2/V; 2C2 C/Vm _yz
o § ror D e’ )
m Vm (o]

This may be expressed as

Where
g 2
erf(g; = 2 [ e X dx
the 50 called error function.

Alternatively Jeans (1954) has tabulated values of the function

2 £ 2
pE) = et e v f e * dx
[o]

In terms of which (2.13) becomes

42

(2.13)

(2.14)

iiiMili&lmm‘nlii":»umnwmm..m.;.m.,.“.,(,
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3vs

7= ve/v)

The mean collision probability per unit time, v for a test particle of speed

c is then given by

1/2

v = 4no (Vi/Cﬁ )w(c/vm) . (2.15)

The above derivation is for zero mass motion of the background gas.
The Monte Carlo study requires a background gas of mean velocity Ypi® 8° that
the above results may be used if ¢ is replaced by an effective test velocity

found by subtracting from the true test velocity for the study, v _ as

Yi

—t
€5 % " Ny
At this point, a quantity
4vi
Vrel = ;T7§:-w(c/vm) (2.16)

is introduced, which may be regarded as the mean effective collision speed
of the test and the background particles.

It is assumed that the time &t representing any mo is so small that
the probability of two collisions occurring therein is negligible, so that
collisions with each background class are mutually exclusive. Hence total
collision probablity per unit time is found by addition and the total collision

probability in time 4t, P(bang) is

P(bang) = (v1+v2+v3) st
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Subroutine VREL first determines the equivalent test particle speed
|c| as above, and hence the current speed ratio S = Igj/vm. If this is found
to be less than 0.1 the corresponding error function is taken equal to S,
and if S is greater than 1.5 the error function is taken equal to 1. The
expression (2.14) for y(S) is then evaluated directly. For values of s between
0.1 and 1.5, 15 values of the function y(S) are stored for s from 0.1 to 1.5
in steps of 0.1. The y(S) corresponding to any S value is then used, and
in all cases expression (2.16) is used to return the value of vrel‘

2.4.5 Collision dynamics, subroutine BANG, PTNR3, VELS

Having chosen the class of the colliding partner, it remains co determine
the test molecule velocity after collision.

One way to do this would be to select a collision partner from the
partner class, according to some distribution. The laws of dynamics could
then be used to determine the test velocity after collision.

However the distribution of partner molecules should be weighted by the
relative velocity of the colliding molecules, so that the resulting expressions
would be similar to those used in picking the initial velocity of a test
molecule (Section 2.4.4). In this case the variable Sz would be different
for each collision. Since Sz determines the coefficients used in the polynomial
fit. a large table of possible coefficients would be needed. This approach
would lead to very large penalities in time and storage.

If the test molecule were completely accommodatcod into the partner class,
its new velocity could be determined from the mean velocity of the partner
class, plus a random velocity drawn from a Maxwellian distribution of thermal
velocities corresponding to the partner class temperature. A relatively

simple procedure.
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However the test molecule cannot be regarded simply as a member of the
partner class after collision. It is found that the original velocity tends
to persist so that the expectation of the thermal velocity after collision
is in the same direction as the original test velocity (Jeans, 1954).
The test and partner molecules are assumed to be elastic spheres of
cross section o. The directions of motion relative to the center of gravity
of the two particles are AB, DE before impact, BC, EF after impact (Figure 2.9).
In order for a collision to occur, AB produced must cut the plane perpen-
dicular to AB within a circle of area 40 about E, say P. Also, all positions
of P within the circle are equally probable so that the probability of EP

being between r and r + dr is

r=dr
2a

.1 1 _ 1.

= sin §-¢c cos §-¢ d¢c = 7 sin ¢c d¢c
as

1/2

P _4_0_ 3 ] 4

T = (TT ) sin 3 ¢, .

Thus all directions for EF are equally probable. Hence the expectation
of the component of velocity of either molecule after impact in any direction
is equal to the component of the mass center velocity in that direction.

For molecules cf equal masses if OP and OQ represent the initial velocities
of the test and colliding molecules, then OR represents the velocity of their
mass center (Figure 2.10).

To find the average velocity of the test molecule after impact OR is

first averaged for all directions of the partner molecule, keeping its



Figure 2.9 Collision model.
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Figure 2.10 Collisiox velocities.




48

magnitude constant. The average component of OR perpendicular to OP is zero,

leaving the average of ON to be determined.

The probability of collision is proportional to the relative velocity

of the test and partner molecules, thus the probability that POQ lies

between 6 and 6+d6 is

PQ sin 6 dé

giving the average value of Ol as

_ " oN PQ sine ds

m ™
° j PQ sind de
o
let OP = ¢ 0Q = ¢! PQ =V
so that
V2 = c2 + c'2 - 2cc! cosb . (2.17)
Then 1 1
ON = E-(OP+OM) = §{c+c'cose)
_ 1 2,22
= Zc (3¢™+c' -V

differentiating (2.17) gives

VdV = cc' sind dé

giving "
o = | (3c“+c'2-V22 VZdV
ac [ viav

ﬂW&WW LN o e
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using the previous results (2.15) and integrating from V = |c'-c| to V = ¢'+c¢
4 4
W = EE—".—ZET c > ¢!
10c(3c™+c'™)
2.2
ov - SBElsse) oo
5(3c'"+c")

The expectation of the velocity after collision is therefore in the

same direction as the velocity before collision, for either molecule

let c¢/c' =«x and ON = ¢

then a/c represents the persistence of original velocity in collision given
by

4
WA 'S
10 (3™ + 1)

a/c = —— k <1
5(” + 3)

evaluation of these expressions for various values of x between 0 and «
show that a/c varies from .333 to .500.

The distribution of « values is found to be

2
(2,
Sk {3« +217 : dx .
V2(1 + k9

So that multiplying by the mean expression for a/c, and integrating for «

between 1 and = gives the mean persistence of all velocities after collision
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o 4 2
f 25¢" + 6k 2«*712 de = %+ L 1n(1+v2) = .406
1 4/2¢(1 + «°) ; Z

The above derivation gives the mean persistence of the test molecule
velocity after collision in the direction of the test molecule velocity before
collision. The derivation was carried out assuming a background gas with zero
mean mass motion. For the case of collisions with a mean motion of the back-
ground gas, the system may be reduced to the above situation by adding to the
test molecule velocity, a velocity equal in magnitude and opposite in direction
to the mean velocity of the background class.

The algorithm for generating velocities after collision must incorporate
the concept of persistence of velocity, and must also be applicable in the
following two extreme cases:

(A) Test molecule at rest; warm partner gas with zero mean motiom.

(B) Test particle with finite velocity Vs cold partner gas with zero

mean motion.

For case (A) the temperature of the test molecule population after
collision may be found analytically as follows.

Using the spherical coordinates defined in Section 2.4.4 the flux of
molecules crossing the plane normal to the velocity of the collision partner
is given by

T e (v
K J J J V cos6 e m V2 siné dV d¢ de
o ‘o o
where K is a constant, V is the magnitude of a partner velocity, 6 is a polar

angle with respect to the partner velocity vector and ¢ is an azimuthal angle.
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Integrating for 6 and ¢ gives

2,2

® -(V*/v)

J KV e ™ or(1/2) AV
0

Hence the mean speed of partner molecules is given by

2,2
o« 4 - (v /Vm)
J Ve dav
o)

= W)
[ v e OV /v gy
[o]

and the mean squared speed by

2
® 5 _(Vz/vm) 6
V- e dv Vm 2
=2v
m

;7 o _
flux ~ 2,2 - 4
[ Wiy /Y,

The mean squared speed of the gas at a point is given by

. 4 ~OPAD
ZooLve Y3y
point - vl 2 2 m

[2vE e (Vv gy

o

Thus

7 B 2
Vigwx = (4/3) Vpoint

The flux energy is divided equally, in the mean, at the first collision of

type (A). A test molecule initially at rest therefore acquires an average

temperature 2/3 that of the background gas at a point in its first collision.
In the case (B) the test molecule is scattered isotropically, and using

the Jeans (1954) result for c/c' = =, the persistence is 0.5. The velocity
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of the test after collision is on a sphere of center 0.5 and radius

v
—t

0.5 i!tl in velocity space, where is the original velocity of the test

Ve
molecule. A warm partner gas in case (B) will lead to a thickening of the
sphere to a spherical shell of thickness corresponding to a velocity drawn
from a Maxwellian distribution of temperature equal to half that of the back-
ground gas.

The above considerations suggest the following method for generating

the test molecule velocity after collision. The test velocity after collision

xé is given by

vi=p(yv) vy +aly-v [+ v ] (2.18)
where Ves» Yy are the test velocity and mean background class velocity
before collision
r is a random unit vector drawn from a spherically symmetric
distribution
[\_/c]rT is a random thermal velocity drawn from a Maxwellian
distribution with temperature rT, where T is the femperature
of the background gas (see Section 2.4.6)
P, q, T are constants whose values depend on the type of collision.
The range of values of p, q, and r is as follows
Case A Case B
p 0.33 to 0.5 (the persistence)
q v 0.5 for this problem

r 0.67 to 0.5
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Energy conservation for the special case of collision between a test molecule

of class 1 and a partner, also of class 1, gives an additional constraint;

T

in this case

é‘<

=4t [!r]Tl

where !1, T1 are the mean velocity and temperature of class 1

vl

v p[zl,]T1 MCUUARES [xr]rTl LA

p[zr]Tl + q[xrlT1 * [xr]rT1 Yy

¥
2, 2, .1/2
=(" +q +r)/[1r]T *yy
1

But since the test molecules after collision must have the temperature

class 1 molecules, Tl’
@+’ 41 =1
For the purposes of the present study the values
p=q=r1-=0.5

were chosen, as an adequate representation of all the above considerations.

The subroutine PTNR3 uses subroutine VELS to give both [!c]T and r by
independent random selections from a Maxwellian distribution. In the seléction
of r a softwarc switch is set to 1, which causes VELS to jump round the

selection of a velocity magnitude, so that only the direction unit vector

is returned to PTNR3.

PR T
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2.4.6 Thermal velocity with spherically symmetric distributions,
subroutines VELS

The fraction of particles moving outwards through unit area in unit

time (Figure 2.11) with velocities in d3V about the velocity (V, 6, y) is

R (%
— Ve siny dy do dv (2.19)

21rv4
m

where v, = most probable thermal speed of molecules. The marginal distribution

functions £ , f

v foo fV are found by integrating as follows (Fan, 1967)

2,2
21 o 4 3 Y /vm
f dy = J J (1/2nv) Vo e dv d8 siny dy
Y m
o ‘o0
4
1 Vm
='——7{—'2-' 27 siny dy
27V
m
1 .
=z siny dy
-V2/v2

‘"’ 0
£,de J J (1/2nv:) Ve M 4V siny dy do
0o ‘0

4
v
1 m
==— 2.2 d0
2'nv4 2
m
_do
"
21 ¢m 4 3 -VZ/V:
fvdV = f J (1/2nvm) siny dy d6 V™ e dv
°o ‘o
4,3 'VZ/V;
= (4n/2v1)V° e av

- (2/v;) Ve ' May
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vZsinvdyde

Figure 2.11 Spherical coordinate system.
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Again using equation 2.1, and setting R, uniformly distributed
on the interval, 0 to 1, equal t¢ the cumulative distribution function

(see Section 2.1)

where the random variable x has the distribution f(x),which is then solved
for x given any value of Ri'

The above distributions give, fer ¢, ¢, V

8
Re = 3
R = 1 (1 - cosy)
v o 2

2,2
-V /\m

2, 2
(1 +V /vm) e

RV

where Re, Rw, Rv are independent random numbers uniformly distributed on 0 to

1. The latter expression cannot be rearranged to yield V as an explicit
function of RV’ however if the distribution function is re-stated in cylindrical
coordinates, an expression may be obtained for V explicitly in terms of two
independent random numbers RVz’ RVr uniformly distributed on the interval

0 to 1 (Pertmutter, 1966)

whence

-
"

v VIn(I/R R ) (2.20)
Y= cos'l(l -2 Rw)

8 = 27 Re

as used by subroutine VELS.

3
2
;
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2.4.7 Surface interaction subroutine HITSPH

As remarked above (section 2.3.5) a specular reflection model is assumed
at the surface uf the probe. Other workers (Fan 1567) have used a more real-
istic diffuse reflection model incorporating Lambert's cosine law of scattering.
Heve the velocity and temperature of the re-emitted molecule is determined by
its incident velocity, probe geometry and probe temperature. It is felt that
this additionél refinement can be traded against the extra storage required
for variable class 2 temperatures, without severely compromising the realism of
the simulation.

For specular reflection the molecule temperature is assumed to be unchanged
by reflection. The test molecule velocity after reflection is found by re-
versing the velocity component radial to the sphere, that is the velocity after

reflection is given by

ve-2(v,-O)r (2.21)

where Ve is the test velocity before reflection

T 1is a unit vector radial to the sphere at the point of impact.

2.5 Time-Saving Techniques

In any program involving multiple iterations, the problem of time economy
becomes very important. The Monte Carlo program obviously falls into this cate-
gory, since in tracing one particle, parts of the program are executed several
hundred times, and a typical iteration consists of 10,000 particles.

An examination of execution times for various FORTRAN operations on the
PDP-15 points to some obvious economics.

Real exponentiation on the PDP-15 takes 30 times as long as real multi-

plication, so that raising to any integer power less than 30 should be accomplished

bhv reneated miltinlication rather than exnonentiation.
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The function SQRT is four times faster than real exponentiation, so that
it should be used in preference to exponentiation to power 0.5. Logical IF
statements are faster in execution than arithmetic I} statements, so that where
only two branches are desired a logical IF should always be used. Complex logical

IF statements such as

IF(A.GT.B.OR.A.GT.C) GO TO 1
shouid be replaced by sequences of simple IFs as

IF(A.GT.B) GO TO 1

IF(A.GT.C) GO TO 1

as the complex expression will always be tested in its entirety whereas the
first simple expression mav fulfill the condition without the second being
executed, especially if the condition most likely to be fulfilled is placed first.

An expression such a:

3 4
X +a X

_ 2
y = ajx+a,x"+a, A

should be arranged

v = (a1+[a2+(a3+adx)x]x)x

The former requires ten multiplications and three additions, while the latter
requires only four multiplications and three additions.

If the same array clement is to be uscd morc than orce, it is quicker to
set a simple (unsubscripted) variable equal to the subscripted array element,
and use the simple variable in subsequent expressions, so that the array must

be accessed only once.
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Similarly if the same combination of constants is to be used more than
once, a new constant should be introduced, equal to the combination. The above
are good practice in any FORTRAN program, although the time saving will be
greatest where much of the time is spent in execution, rather than in input/
output.

2.6 Operating the Program

The following handler assignment must be made before calliug the loader;
"A DTC2 -4,-5/DTCO -1/DTF3 3"

The C handler is limited to read only (for program loading) and is much smaller

than the usual A handler (68010 instead of 22901 The F handler is also small

0)'
and will read or write in the non-file oriented mode (for data). The loader is
now called by typing "GLOAD" and when the loader responds, the main programs are
loaded by typing "«MCSPH7". All subroutines are contained in a .LIBRS BIN user
library file, and are loaded automatically.

The main programs request the input data shown in Table 2.2 which must be
determined by the user, and typed in on the teletype.

The number density, temperature and velocity for free stream are determined
by the problem to be simulated. The number of cells is determined by core avail-
ability, and IZMAX and IRMAX have been set for the present program to maximum
figures of 30 and ten respectively.

The cell sizes must be determined by short trial runs. A good criterion is
that the cell size should be of the order of half a mean free path, and the time
for one mo such that the distance travelled in a mo is half an axial cell, based
on the mean effective speed in the free stream. The position of the probe

(ZPROBE) is constrained by the fact that class 2 velocities are stored only for
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TABLE 2.2 Input data {or programs

Main Programs

Symbol Meaning

KM Number of particles per iteration

1ZMAX Number of axial cells (30)

IRMAX Number of radial cells (10)

CREF Reflection coefficient (normally = 1)

DU Seed for RANDU, see section 2.4.1

DZ Axial cell size

DR Radial cell size

DT Time increment per mo )
ZPROBE z coordinate of probe front

N free stream nwiber density ‘
T1 free stream temperature

\'s! free stream effective velocity

Data reduction programs, NEWBG7
FMFP tfree stream mean free path
T1S free stream stagnation temperature
Standard deviation program STDV7

FMFP free stream mean free path
T1S free stream stagnation temperature

L1 switch; 0, 1, 2 or 3 for density, temperature,

axial or radial velocities respectively

IRT radial cell number
NI

iteration number

.
a0l (sl e




61

the front ten axial cells from the exit plane. The front tip of the probe should
not extend more than seven axial cells from the exit plane.

The reflection coefficient CREF is always set 1 in this form of the program.

The number of particles per iteration is set by trial and error after per-
forming standard deviation checks (see section 2.3.10). A sample size of 10,000
is adequate in most cases.

After typing in the data, the program will repeat all parameters as a check.
If the data is found to be incorrect, striking CTRL/S will restart the program and
the whole must be retyped. Otherwise execution will begin. The program will con-
tinue until it is dumped or control is returned to the monitor by striking CTRL/C
on the teletype.

After an adequate number of iterations have been completed and stored on

tape, the data may be retrieved and printed by loading the off-line data re-

duction program NEWBG7, and either RESNM7 or RESRW7. In either case, the F

handler must first be assigned by typing "A DTF3 3". The loader is then called
by typing "GLOAD" and the programs loaded by typing '<NEWBG7, RESNM7" or
"<NEWBG7, RESRW7.
Alternatively, the programs STDV7 and RSTDV7 may be used to calculate stand-
ard deviations for any parameters by typing: "A DTF3 3'", "GLOAD", "«STDV7, RSTDV7'".
The off-line data reduction programs also require input parameters from the
teletype (Table 2.2). FMFP and T1S are the free stream mean free path and stag-
nation temperature used to normalize output parameters. L1, IRT, NI determine

which standard deviations will be computed.
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3. RESULTS

3.1 Convergence and Accuracy

For any iterative scheme, a criterion must be found to evaluate the conver-

gence rate and determine a satisfactory end point of the procedure. In the present

study a continuous plot was made for the density ratio in a cell in the flow field

after each iteration. Figures 3.1 and 3.2 show that the density ratios for one

particular cell (iz = 23, ir =

5) at each altitude, converge satisfactorily to
stable values. After the flow field has become stable there remain statistical
fluctuations, so that error limits must be established such that the iterative

procedure may be stopped when further changes between successive iterations are

lost in statistical fluctuations. The Monte Carlo scheme permits an easy solution

of this problem, as the standard deviation of any flow-field parameter may be i

estimated in the following way. An iteration of, say 10,007 molecules is com-

pleted in the usual way and the results are stored on tape.
The same iteration is then repeated, say ten times, using short runs of
a lesser number, n of molecules, say 1000, the resulting parameters from each
short run are also stored and from these, separate programs (STDV7, RESNM7) compute

a best estimate of the standard deviation e of any required flow field parameter,
X, according to the usual formula
2

of = {2x%/n- (2X/n) % In/n-1 (3.1)

It may be shown that the standard deviation of a Monte Carlo calculation

decreases as 1//ﬁ;'where No is the sample size, so that a best estimate of the
standard deviation % on for the original run of 10n molecules will be

%on = %n/"10

T
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The best estimate for the mean, X, of the 10n run will be the same as

that of the n run,

Wherever possible the plots that follow are given error bars corresponding to
plus and minus one standard deviation computed as above.

Since for a normal distribution, 64% of values fall within plus and minus
one standard deviation of the mean, changes of the order one to two standard
deviations between successive iterations are considered statistical fluctuations.
Figure 3.1 shows the mean and standard deviation computed for the seventh iter-
ation for a sample size 10,000 and indicates that for these conditions corres-
ponding to 70 km, five iterations would be adequate. Figure 3.2 shows a similar
plot for 75 km where 12 iterations are required. As ambient density increases,
the effect of class 3/class 3 collisions becomes more important, so that more
iterations are required to establish the final flow field. For 75 km, the first
13 iterations had a sample size of 2000, since statistical fluctuations would at
first be lost in flow field convergence. Iteration 14 was of 10,000 molecules,
to give low statistical fluctuation in the final results.

3.2 Flow Field

Figures 3.3 and 3.4 show density contours for the two altitudes treated, 70

and 75 km. Points on the contours are interpolated from plots of density ratio,

o/p, against radial distance tor each axial cell. Near the axis, accuracy of the

data is poor because of the small cell area in the radial plane, and correspondingly

small sample size. A quadratic curve fit is used for density ratio as a function
of radius since its Taylor expansion reduces by symmetry arguments, to that of an
even function, having only even power terms. Density ratio in the first three

radial cells was plotted against r2 and a best straight line drawn through the

It b
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resulting points. Figure 3.5 shows density contours fcr a sphere at Kn = 0.26,
S =5 from Bird (1968), a Monte Carlo simulation. The form of the contours is
similar to those of the present study, Figure 3.4, but with the shock front
spreading out further trom the probe axis and swept back more steeply because of
the higher speed rates, S.

A quadratic fit was used also to give points on the front stagnation line
density profiles shown in Figures 3.6 and 3.7. Error bars are not shown on these
two plots. Figure 3.6 also shows the results of electron beam density measure-
ments for a sphere taken under conditions similar, though not identical, to those
of the Monte Carlo run. The measurements were made by Russell of JPL and are
taken from a paper by Vogenitz et al. (1968). ‘The experimental results show a
thicker shock layer and higher density rise which would be expected for the lower
Knudsen number and higher speed ratio used. Exactly corresponding experimental
results are not available at the present time.

Figures 3.8 and 3.9 show velocity vector plots in the plane of the sphere
axis. Stagnation near the head-on point of the sphere, and deflection of the
flow off axis may be clearly seen. Figures 3.10 and 3.11 show stream-lines
sketched from these velo:ity vectors which show the expected form for specular
reflection, approaching a tangent to the sphere surface.

Figures 3.12 and 3.13 show plots of the normalized mean temperature ratio,
(T—Tm)/(TSm-Tm), along the stagnation line at the two altitudes. Where T = mean
temperature computed ‘rom the average energy over all classes relative to an ob-
server moving with the mean velocity of the flow in the cell

T_ = static temperature in free strecm

Tsm = stagnation temperature in free stream given by Tew = T, [1+1/2(y-1)Mw2]
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where y = 1.66 the ratio of specific heats for the monatomic molecules of the
simulation
M = the free stream Mach number

o©

Comparison of Figures 3.6 and 3.12, 3.7 and 3.13 show that a sharp tempera-
ture rise coincides with the beginning of the shock, represented by the density
Tise.

Figures 3.14 and 3.15 show density ratio profiles off axis, plotted directly
from the data for the fifth radial cell. Error bars are shown, representing plus
and minus one standard deviation calculated as in section 3.1. The fifth radial
cell represents the limit of the sphere surface at both heights, so that the
fall of density behind the sphere may be seen. Large standard deviations near
the surface correspond to cells cut by the surface, and thus having less samples.
Densities have been corrected to allow for the reduced cell volume corresponding
to the cut cells.

Figures 3.16 and 3.17 show off axis plots for 70 km of temperature ratios
as previously defined, and axial and radial velocity ratio, again for the fifth
radial cell. The temperature in Figure 3.16 rises at the shock, then falls back
towards free-stream conditions behind the snhere, an effect somewhat blurred by
high sampling errors in the cells cut by the sphere. Figure 3.17 shows the fall
of axial velocity and corresponding rise in radial velocity as the particles are
deflected past the sphere, again returning towards free-stream conditions behind
the sphere.

3.3 Drag Coefficient

The sphere drag coefficient CD was calculated for the two altitudes 70 and

75 km as

AP

“D = 772 V2R

-
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where AP = change of momentum flux ac -oss the sphere
e = free stream density
V_ = free stream velocity
A = projected frontal area of sphere

AP may be calculated from the density ratio and velocity ratio given by the
Monte Carlo program:
10 2 ’
AP = T m {(N.V,7A.). -(N.V.A.) .}
j=1 33 3°in "33 Jeout
where m is the mass of a molecule, A is the cell area in the radial plane, N

and V are the number density and mean velocity and subscript j refers to the

jth radial cell

= (2 PCHENN .
CD ( dr/rsphere)[zin out* (3.2)
where
10 T 2
t=3 2 @hH @i-n
s pee Ve
}=1
rsphere = sphere radius

dr

radial cell width

The resulting values of CD are shown in Table 3.1, along with values from
Aroesty (1963).

The Reynolds number Re. the usual parameter for experimental work is dcfined

as

where 1. = free stream coefficient of vicosity. Re is related to the Mach
number, M, and Knudsen number, Kn by

Re = 1.37 —MK;‘-

Drag coefficients would be expected to be Ligher than experimental values;

because the calculation makes no allowance for the axial momentum flux lost through



TABLE 3.1 Comparison cf experimental and calculated

- drag coefficients.

f Parameter Height (km)

70 5

? Kn 0.1 0.21

=

‘ M 2.74 2.74
Re 37.6 17.9
CD (Monte Carlo) 4.8 4.2
CD (Aroesty 1963) 1.82 2.23

g

“

e
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the cylindrical walls of the system with class 2 and 3 particles. This ex-

pectation is confirmed by the results in Table 3.1.

|
%
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4. CONCLUSIONS

4.1 Limitations and Sugggsted Refinements

The major simplifications involved in the present study relate to the
mechanism of intermolecular collision and surface interaction. Hard sphere
molecules have been used in the present program, for the sake of simplicity,
but the program could easily be modified to model other types of intermclecular
force law with different exponents v. Hard sphere molecules correspond to
v = =, while for example Maxwellian molecules correspond to v = 5 and ancther pro-
posed model has v = 9 (Bird 1970). The principal difference between these models
relates to the shock thickness for very strong shock waves, which is predicted
to be independent of shock strength for hard spheres anu directly proportional
to shock Mach number for Maxwellian molecules.

The present study treats only monatomic molecules, so that an obvious refine-
ment would be the introduction of more realistic diatomic molecules, with their
associated rotational and vibrational energy states. Again this would not change
the program in overall concept, although execution and storage would be increased
somewhat.

Specular reflection at the probe surface, while simple to program, is not
very close to known surface interactions in real studies., A more realistic model
involves diffuse re-emission of the incident molecules, with velocities dependent
on surface temperature as well as incident velocity.

Further refinement of the program using core storage at present available on
the PDP-15 will probably involve splitting the cell system so that only part of
the cells are resident in core at any time, the remainder being stored on DECTAPE.
The system might be divided into two cylindrical shells, each containing five

radial cells. Background parameters for the inner block would be read into core
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first, and molecules would be introduced at the entrance plane. They would

be traced in the usual way, except that on crossing the radial boundary into

the outer block, their positions and velocities would be stored for use in

the second part of the iteration. After a suitable number of tests had been
run, the accumulated data for the inner cells would be read onto tape, and

the background parameters for the outer cells read into core; 'swapping'.
Molccules would now be introduced, from the input plane, and a suitable number
recorded, including those crossing back to the inner block. The molecules

which had previously crossed to the outer block would now be re-started at their
stored positions and velocities. Most of them should leave the end wall of the
system, while a lesser number would be stored as returning to the inner block.
The blocks would now be swapped again and the new molecules, stored at the boun-

dary, released. After two or three swaps the number of molecules to be intro-

e

J PR
QUC ST

at the dividing boundary should have fallen to an insignificant level,

when the iteration would be completed in the usual way.

Bccause of the small area of the innermost cells, few molecules are introduced
there, causing higher statistical fluctuations. A system of weightings by radius
could be introduced to improve accuracy of the near stagnation line parameters,
while maintaining the effectively uniform distribution with area.

4.2 Summary

The Monte Carlo direct simulation technique has been used to model supersonic
( = 2.7) gas flow round a spherical probe in the transition regime. The two
cases completed correspond to a probe of diameter 1 cm at heights of 70 and 75 km,
the D region of the ionosphere. Monatomic hard sphere molecules are used and
specular reflection is assumed at the probe surface. The technique can be modi-
fied to treat other types of molecule and surface interaction without undue dif-

ficulty.
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Density contours are shown for the two altitudes, and compared with those
of an independent Monte Carlo simulation. Velocity vector fields and stagna-
tion line profiles of density, temperature and velocity are compared with avail-
able experimental data. Drag coefficients are computed and compared with those
derived from wind tunnel testing under similar conditions. Standard deviation
estimates are included for data plotted directly from the program output.

The work was carried out on the Aeronomy Laboratory PDP-15 computer, a
small (16K) machine used principally for on-line data processing of a partial-
reflection experiment. The study shows that Monte Carlo simulations are feasible
using the limited core memory, often available in on-line machines, having a
low duty cvele,

Because of the nature of partial-reflection measurements, the PDP-15 on-
line processing takes place during daylight hours only, so that the machine is
available at night for Monte Carlo runs. A typical iteration of 10,000 mole-
cules takes five hours for an altitude of 75 km. The results of each iteration
are stored on DECTAPE. The present Monte Carlo results will be incorporated
in future work to simulate ion-collection by the rocket-borne probes launched
at Wallops Island by the Aeronomy Laboratory. These simulations will relate
probe currents to ambient conditions in the D region, a problem intractable using

present analytical methods.
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APPENDIX
MCSPR7
A DTC2 =-4,-5/DTCO® ~1/DTF3 3

gONTE CARLO SIMULATION OF GAS FLOW PAST A SPHERE IN TRANSITION
EGIME,

(M.KeSo UNITS)

KMz #PARTICLES/ITERATION
1ZMAaX= FAXIAL CELLS
IRMAX= #RADIAL CELLS
CREF=z REFLECTION COFFFICIENT (1,)
DU= SFED FOR RANDU (2287,)
DZ= AXIAL CELL SIZE
DR= RADIAL CELL SIZE
DT= TIME INCREMENT /MO
ZPROBE:= AXIAL DISTANCE FROM ENTRANCE PLANE TO FRONT OF PKOBE
(PROBE RADIUS=.035)
N= FREE STREAM NUMBER DENSITY
Ti= " *  TEMPERATURE
vi= ® ®  VELOCITY
DATA SWITCH SET EFFECT
n2 WRITE TEST CLASS & CELL # EACH MO
21 STANDARD DEVIATION MODE AFTER THIS ITERATION
a5 PREPARE TO DUMP
ne RESTART WITH BACKGROUND FROM DECTAPE
14 REPEAT ITERATION |
17 WRITE DATA ON DT3

INTEGER CT,CP,VZ3,VR3,VZ2,VR2

REAL N

LOGICAL LSSy

DIMENSION N1(30,10),N2(30,10),N3(30,12),M1(38,10),M2(30,108)
2,M3(30,12),5Vz3(2n,1@),VZ3(23,10),SVvz3s(2¢e,1d),
3SVXY3S(29,12),I1T3(23,1,YI (D),
ASVR3(28,13),VR3(23,1M),%2a(12) ,M38(1D)
COMMON/IT/RMAX,PL ,IRMAX , UM/JI/DT /MM /IZMAXY ,ZMAX/HN/M3 ,SUXY3S,
2SVZ3S5,SVZ3,SVR3,IZ,IR,M1,N2,N3,M1,M2,VZ3,VR3,ITS,

3 MIB(1@),FINT,FREAL/KK/ZCTR ,RPROBE/LL /SVR2(12,13),

4 sSVZ2(123,10,VZ2(10,1®),VR2(12,12) /111 /]K2,VMT] ,UZ2,UR2

5 ,UZ,UP,V!,COSTH,T3C,SINTH/JJJ/DR,DZ,T1,! ,K,ZPROBE

6 /KAK/1ZC,CT,CP,S,M/LLL/L1/KKM/KM/V/VZ VX, VY

CNU(ND,VA1,VA2,VA3,VB],VB2,COSTH,SINTH) =S*FREAL*FLOAT (ND )*VREL (

2 VAl,VA2,VA3,VR],VB2,COSTH,SINTH)

WRITE (6,2)

FORMAT(2Y,64H TYPE KM,IZMAX,IRMAX,CREF,DU,DZ,DR,DT,ZPROBE
2,8, T1,VI | PER LINE )

READ (4,4)KM,IZMAX,IRMAX,CREF,DU,DZ,0R,DELT,ZPROBE,N,TI, V1
FORMAT(I6/I3/713/FE,2/F6,3/(E12,2))

WRITE(S6,4) KM,I1ZMAX,IRMAX,CREF,DU,DZ,DR,DELT,ZPROBE,N,T],VI
R sPANDY(DU)

1:=0

XMTzKM/19

Li=n

REVIND 3

CALL SETUP(M)

IF(X,GE.XKM) GO TO Al6

IF(IT.GE.10) Li=0

NEW PARTICLE
CALL NEWPOS/Z,R,THETA)
COSTH=COS(THETA)
SINTH=SIN(THETA)
X=R*COSTH

91
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Y =R*SINTH

12:=2/D2+1,

1ZCz1ZMAX=12+]

IR=R /DR+],
MIACIR)=MIACIR)+!

CT=1

UMz\MTI

CALL NEVV(VL, R, ,VX,VY,VZ)
DT=DELT*RANDU (DY)

c
C INCREMENT TIME

21

CALL INCPOS(Z,X,Y,R,COSTH,SINTH,VZ,V¥X,V
STo0ELT 1XoY,R, ’ 2 VZ,VX,VY)

€ NEXT CELL?

592

1ZNEV=Z /D2+1,

IRNEW=R /DR+1,
IFCLSSW(AIWRITE(E,5A)CT ,IZNEW,IRNEW
FORMAT (313>

IF(IZNEV,NE,IZ) GO TO 100
IFC(IRVEW,MELIR) GO TO |08
IF(1Z.EN.1) GO TO 122

GO TO 118

C NEV CELL

100

110
c

1Z=IZNEV

IRzIRNEW

CALL NEWCEL(Z,X,Y,R,VX,VY,VZ,CREF,J)
GO0 TO0 (3;2,110,128), J

VMzVUMT !

C COLLISION PROSABILITIES

113

130

CNUI=CNU(HNI(IZ,IR),VZ,VX,VY,V],0,,1.,8,)
IF(N2CIZ,IR)GELL1) GO TO 113
IF(N3CIZ,IR)W.GE.I) GO TO I3

PBANG:=CNU1*DT

cnu2:=0,

cNU3=z2.

GO TO 118
CNU2=CNU(N2(IZ,IR),VZ,VX,VY,UZ2,UR2,COSTH,SINTH)
VUM=SORT (RK2*T3C)
CNU3=CNU(NI(IZ,IR),VZ,VX,VY,UZ,UR,COSTH,SINTH)
PBANG=(CNUI+CNU2+CNUJ )*DT

IF(RANDUCDU) ,LT,PRANGIGO TO 149

IFMICIZ,IRY GT.137203) GO TO 312
IFM2(1Z,IR)GT, 130a30) GO TO 312
IFM3I(IZ,IR).GT.1373373) G0 TO 312

CALL BXXEEP(VX,VY,VZ)

GO TO 21

c .
C COLLISION:WHAT CLASS?

140

152

152
160

3ne
318

IF(CNU2,.G6T,.A,) GO TO 1580
IF(CNU3.GT.?.) GO TO 158
cpP=1

G0 TO 152

YIC(1Y=CNUI*DT /PBANG
YI(2)=CNU2*DT /PBANG
YI(3)=CNUZ*DT /PBANG
CP=MONTE(YI)

IF(CT.EQ.3) GO TO 160
IF(CP.EQ.CT) GO TO 1202
CALL BANG(CT,CP)

GO TO 130

IF(LSSW(5)) CALL DuMP

K =K+1 .

c
C ENOUGH PARTICLES?

IF(K.GF.KM) GO TO 312



IF(L1.EQ.1) GO TO 589

60 TO 10
c
C NEW BACKGROUND 3 OUTPUT
312 I1:z141

WRITE(6,415) 1,IT,X '
als FORMAT (3H 1=,13,1H,,12/3H Kz,16)
CALL RESULT (IZMAX,IRMAX)

C L1 SETS TO STANDARD DEVIATION MODE
Li=0

IF(LSSW(1)) L1=1
A16 CALL NEWBG(IZMAX,IRMAX)

17=0
IF(LSSW(14)) GO TO 9
417 K=0
GO To 10
500 1F(X.LT.XMT) GO TO 10
CALL RESULT(IZMAX,IRMAX)
IT=1T+]
WRITE(S,415) I,IT X
| &
Go T0 9
END

C BANG?
g SUPPLIES CORRECT COMBINATION OF PARAMETERS TO PTNR3

SURROUTINE BRANG(CT,CP)
INTEGER CT,CP
COMHON/III/RK2,VMTl,UZ2.UR2.UZ,UR,VI,COSTN.TGC,SINTH/II/RMAX.PI.
2 IRMAX,VM/VU/VZ,VUX,VY
C SET VEL FOR PTNR3sCP=CT DEALT WITH ABOVE UNLESS CT=3
IF(CT~2)155,175,195
155 IF(CP.GT.2) GO TO 17@
UMz, TA7*\WMT
CALL PTMR3(UZ2,UR2,COSTH,SINTH,V1,8,,1.,8.)
GO TO 210
170 VM=, 787*SQRT (RK2%T3C)
CALL PTNR3(UZ,UR,COSTH,SINTH,V1,8,,1.,08,)
GO TO 214
173 IF(CP.GT.1) GO TO 1RS
VM= -707*‘”1'
CALL PTMR3(V],N,,1.,d,,UZ2,UR2,C0STH,SINTH)
G0 TO 219
185 UMz, TA7*SERT (RK2%T3C)
CALL PTNR3(UZ,UR,COSTH,SINTH,UZ2,UR2,COSTH,SINTH)
G0 T0 210
195 I1F(CP-2) 197,199,205
197 UMz, 787« WT !
CALL PTNR; (vl .ao ] l LX) G. .Uz ’UR ,C OSTH .SI NT“)
GO0 TO 21n
199 UMz . 787« WT |
CgL% P;?RS(UZZ.URZ,COSTH,SINTH.UZ,UR,COSTH,SINTH)
60 70 f
205 VM=, 70 7*SORT (RK2%T3C)
CALL PTNR3(UZ,UR,COSTH,SINTH,UZ,UR,COSTH,SINTH)
210 CT=3
RETURN
END
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C BXKP?
C ACCUMULATES PARAMETERS -

c
SUBROUTINE BKKEEP (VX,VY,VZ)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL LSSV
DIMENSION N1(32,10),N2(30,183,N3(¢30,108)>,M1(33,13),M2(38,10)
2,M3(30,10),5V23(208,106),VZ3(28,10),5V235(208,13,
3SVXY35(20,12),1T3(20,18),YI{I3,
4ASVR3(202,19),VR3(203,10),M20(10) ,M33(10)
COMMON/II/RMAX,PI,IRMAX ,VM/JJ/DT/MM/IZMAX ,ZMAX/NN/M3 ,SUXY3S,
2SVZ3S,SVZ3,SVR3,1Z,IR,N1,N2 N3 ,M],M2,VZ3,VR3,IT3,
3 M19(10),FINT,FREAL /KK/ZCTR ,RPROBE/LL/SVR2(18,18),
4 SVZ2(19,10>,V22(18,19),VR2(18,18)/111/RK2,MT! ,UZ2,UR2
5 ,UZ,UR,V1, 0STH,T3C,SINTH/JJJ/DR,DZ,T! T .K,ZPROBE
6 /KKX/1ZC,CT,CP
1F(2-CT) 139,125,122

122 MICIZ,IRI=MICIZ,IR)+1
RETURN

125 M2 (1Z,IR)=M2(1Z,IR)+1
IF(1ZC.GT.18) RETURN
SVR2(IZC,IRY=SVR2(IZC,IRI+VX*COSTH+VY*SINTH
SVZ2(1ZC,IR}=SVZ2(IZC,IRI+VZ
RETURN

1306 M3(IZ,IRY=M3(IZ,IR)+1
IF(IZC.GT.28) RETURN
VR =VX*COSTH+VY*SINTH .
SUXY3S(IZC,IR)=SVXY3S(IZC,IR)+VR®\R
SVZ3S(IZC,IR)=SVZ3IS(IZC,IR)I+VZ*VZ
SVZ3(1ZC,IR)=SVZ3I(IZC,IRI+VZ
SVR3(IZC,IR)=SVR3(IZC,IRI+VR : .
RETURN
END

C DMPTKS
g DUMP & RECOVER

SggROUTINE DUMP
COMMON/.' 1J/DR,D2Z,T :
COMMON/! 1J/0R D2, 1,1,X,ZPROBE/KKK/1ZC,CT,CP,S,N
s FORMA” \2°4 MOUNT TAPE & TYP

CALL PAWSE YPEs 192)
C REPOSITION DATA TAPE

REWIMD 3

DO 8 IT=1,I

L0 8 IREAD=1,16
g READ (3) A
o :Z;TE(S,IG)

MAT (22H PROGRAM HAS RESTART
gzruau TARTED)
ND

C RITSP6
C SURFACE REFLECTION
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SUBROUTINE HITSPH(VX,VY,VZ,Z,R,X,Y)
COMMON/KX/ZCTR ,RPROBE /MM /IZMAX,ZMAX

C ASSUME HiT AT PRESENT R

ZSP=SQRT (RPROBE*RPROBE-R*R)
ZSP=SIGN(ZSP, (Z-2CTR))
IF((ZCTR+ZSP} L GE.ZMAX) ZSP=-ZSP
Z=ZCTR+ZSP

RMz=SORT (XxX+YxY+ZSP*ZSP)

C UNIT VECTOR FROM PRORE CENTER TO POINT OF IMPACT

C GIVES

RXUzX/RM

RYUzY/RM

RZU=ZSP/RM .
VDOTRU= VX*R XU+ VY*R YU+ VZ*RZU
UX=UX=2 . xVDOTRU%R XU

L VY=VY=2 WD OTRUXRYU
VZ=VZ=2,*VWOTRU*RZU

RETURN

END

C ACCUMULATED PARAMETERS TO DZCTAPE

c

SUBROUTINE GIVE (DR,DZ,N)
INTEGER VR2,VZ2,VR3,VZ3
REAL N
LOGICAL LSSW
COMMON/II/RMAX,PI,IRMAX,UM/MM/IZMAX,ZMAX/NN/M3 (30,12),
2 SVXY35(20,18),5VZ35(23,193),5V23(20,10),SVRI (22,18,
3 I12,IR,N1(33,18),N2(30,10),N3(30,13),M1(32,1d),
4 M2(30,10),VZ3(20,10),VR3(23,19),1T3(25,18),
5 MI0C13),FINT ,FREAL/LL/SVR2(10,18),
6 SVZ2(10,10),VZ2(18,19,VR2(106,18)/KK/ZCTR,RPROBE/I11 /RK2,
7 VMT1,0Z2,UR2,UZ,UR,V1,THETA,T3C/JJJ/DRD,DZD,T!
WRITE(E,1®)
FORMAT(28H PREPARE DT3, THEN SWITCH IT)
CONTINUE
3F(.NOT.LSSW(I7))GO T0 11!
=1
K=15
K21=1
K22:=5
K31zt
K32:=10

C FOR EFFICIENT USE OF DECTAPE

29

DO 20 L=1,2

WRITE *3) ((M1¢1Z,IR),1Z=J,K),IR=1,18) ,IZMAX

VRITEW3) ((M2(IZ,IR),1Z=J,K},IR=1,18)

WRITE (3) ((M3(IZ,IRY,IZ=J,K},IR=1,10),IRMAX

WRITE (3> ((SVR2(1Z,IR),5VZ2(1Z,IR),i2=K21,K22),IR=1,10),PI
WRITE(3) ((SVR3(1Z,IR),1Z=K31,K32),IR=1,12) ,RMAX

WRITE (3) ((SVZ3(IZ,IR),1Z=K31,K32),IR=1,10)

VIITE(3) ((SVZ3S(I1Z,IR),1Z=K31,k32),IR=1,12),ZMAX

WRITE (3) ((SVXY35(¢IZ,IR),1Z=K31,K32) ,IR=1,18),0Z ,DR,N,RPROBE
2 ,V1,2CTR,FINT,FREAL,T1,RK2

- Jz=16

X=30
K2i:=6
K22=10
K31=11
X32:-20
RETURN
END

95
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1MCPS6
INCREMENTS TEST POSITION BY STRAIGHYT LINE PATH FOR ONE Mo

SUBROUTINE INCPOS(ZD,X,Y,RD,COSTH,SINTH,VZD,VXD,VYD) -
COMMON/JJ/DT /11 /RMAX,PI,IRMAX, VM 3
DX=VXD*DT -
DY=VYD*DT
X=X+DX
YzY+DY
RD 2SQRT (X% X+Y2Y)
COSTH=X/RD
SINTH=Y/RD

15 ZD 32D+ VZD*DT
RETURN
END

c
c
c

C MONTE
C DISCRETE VARIABLE M/C CHOICE
c

g T B iy

FUNCTION MONTECYID)
DIMENSION YID(3)
Y=@.
Du=92,
YR sRA NDU (D)
NY:=1

520 Y=Y+YID (NY) )
IF(YR.LE.Y)GO TO 608
NY=NY+1
GO TO 52¢

(1] MONTE=NY
RETURN
END

FRUTINE

it die Hipigrsiine

C NEWBGY
C A DTF3 3
C OFF-LINE DATA PROCESSING3;LOAD WITH RESNM7

c
I NTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL LSSW
DIMENSION NI1(32,12),N2(30,10),N3(30,18),M1(30,10),M2:30,13)
2,M3(307,10),S5V23(23,17,Vz3(22,10),5VZ235(20,1®),
3SVXY3S(28,1m),I1T3(20,12),Y1(3),
ASVR3(202,10) ,VR3(208,12),M22(12>,M33(12)
COMMON/1T/RMAX,PI,IRMAX ,UM/JJ/DT/MM/IZMAX,ZMAX/NN/M3 ,SVXY3S,
28V735,SVZ3 ,SVRS,IZ,IR,N1,N2,N3,M! ,M2,VZ3,VR3,IT3,
- 3 mia(12),FINT,FREAL/KK/ZCTR,RPROBE/LL /SVR2(10,18),
4 SVZ2(19,10),V22¢18,10) ,VR2(10,10)/111/RK2,VMT1,UZ2,UR2
5 ,UZ,UR,VI,THETA,T3C/JJJDR,DZ,T1,1,K,ZPROBE
6 /XKK/IZC,CT,CP,S,N/LLL/L1/1J/FNMF?P,TIS
€ READ ACCUMULATED PARAMETERS

ST C TSI

SRR e iy

3

REVIND 3

WVRITE(6,58) o
50 FORMAT (1SHI TYPE FWFP,TIS)

READ(4,BA)FMFP,TIS
8@ FORMAT((E10,3))

WRITE(E,83)FMFP,TIS
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c
3008 WRITE(6,425)
CALL TAKE(DR,DZ,NY
VOL=PI*FLOAT (IEMAX*IEMAXY-CIRMAX=1)%(IRMAX~1))

312 DO 342 1Z=1,1ZMAX
IF(M1CIZ,IRMAX)4GT 1) GO TO 332
340 CONTINUE
MICIZMAX, IRMAX) =
358 FNORM= N VOL /FLOAT (MI(IZ,IRMAX)+12 (1Z, IRMAXI+M3 (I, i xMAK))

C NEV NUMBER DENSITIES
DO 431 IR=1,IRMAY
VOL=PI*FLOAT CIR*If=¢IR=1)%(IKk=1))
DO 360 Iz=1,IZNAX
RMI=M1CIZ,IR)
RM2:=M2(1Z,IR)
RM3:=M3(1Z,IR)
N1CIZ,IR)=FINT*FNORMERM I /VOL
N2(IZ,IR)=FINT*" NORM*RM2 /VOL
N3CIZ,IR)=FINT*FNORM*RM3 /VOL
360 CONTI NUE
€ NEV TEMPS & VELS FOR f'3SS 3
DO 480 1Z=11,I1ZMAX
RM3=M3(IZ,IR)-1
1ZC=1ZMAX=1Z+1
IF(RM3.GT.1.) GO TO 178
11T23=T1
1TR3=T1
GO TO 400
370 VZ2(1ZC,IR)=SVZ3(IZC,IR) /RN’
W3(1ZC,IR)=SVR3 (1ZC,IR) /RM3
uz=vz3dzc,IR)
UR=WR3(1ZC,IR)
ITZ3:=ABS((2,/RK2)% ((SVZ3S(1ZC,T.) /RM3)
2-UZ#%2))
ITR3=A35(2.*(SVXY3S(1ZC,IR) /RMS-URXUR) /RK2)
490 IT3(1ZC,IR)=(ITZ3+2*ITR3) /3
C NEVW VELS FOR CLASS 2
DO 42! 17:=21,38
IF M2 (1Z,IR) LE.@) GO TO 401
1ZC=I1ZMAX-IZ+1
RM2:=M2 (1Z,IR)
VI2¢1ZC,IR)=SVZ2(1ZC,IR) /RM2
VR2(1ZC,IR)=SVR2 (1ZC,IR) /RM2

401 CONTINUE
c
425 FORMAT (184 IF WRITE THIS3;Swa)

RN=FAEAL*FLOAT (N1(23,5)+M2(23,5)+N3(23,5))/N
WRITE(6,427) RN
420 FORMAT (2X,F6,2)
IF(.NOT,LSSW(4)) GO TO 300
CALL RESULT(IZMAX,IRMAX)
GO TO 329
END

WBG
¥ BACKGROUND DURING SIMULATION

SUBROUTINE NEWBG(IZMAX,IRMAX)

INTEGER CT,CP,VZ2,VR2,VZ3,VR3

REAL N

COMMON/NN/M3 (32,17),5VXY3S(208,10),5VZ35(28,12),SVZ23(20,12),

2 SVR3(20,1M),I1Z,IR,N1(38,12),N2(30,10),N3(33,12),

3 M1(30,10),M2(30,12),V23(20,18),VR3(23,10),1T3(20,18)

4 MBI FINT,FREAL/LL/SVR2(10,13)

NE
E

aAamo

)
H
:




323
312
340
350
c

360

376
380

385

400

401
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S ,SVZ2(1m,19),VZ2(10,19),VR2(10,123/111/RK2,VMTI,
6 Uz2,UR2,UZ,UR,V],THETA,T3C/I11/RMAX,PI,IRMXD,VM
7 /XKK/12C,CT,CP,S,N/JJJ/DR,DZ,T1,I,K,ZPROBE

WVRITE(6,305)

FORMAT (3X,3HTZ3 ,3X,3HTR3)

VOL=PI*FLOAT (IRMAX*IRMAX=(IRMAX=1)*(IRMAX=1))

DO 349 1zZ=1,1ZMAX

IF(MICIZ,IRMAX).GT.1) GO TO 350

CONTINUE

M1CIZMAX,IRMAX) =1

FNORM= N« VOL /FLOAT(MICIZ ,IRMAXI+M2(IZ ,IRMAXI+M3 (IZ,IRMAX))

DO 421 IR=1,IRMAX
VOL=PI*FLOAT(IR*IR=(IR=1)%*(IR=1))
DO 3608 IZ=1,IZMAX
RMI=MICIZ,IR)

RM2=M2(1Z,IR)

RM3=M3CIZ,IR)
N1CIZ,IR)=FINT®FNORM*RM{ /VOL
N2(1Z,IR)=FINT*FNORM*RM2 /VOL
N3 (1Z,IR)=FINT*FNORM*RM3 /VOL
M1(1Z,IR)=0

IF(IZ.LE.22) M2(1Z,IR)=0
IF(IZ,LE.108) M3¢IZ,IR)=0
CONTINUE

DO 4082 1Z=11,1ZMAX

RM3=M3(IZ,IR)

12C=IZMAX-1Z+1

IF(RM3.GT.1.) GO TO 370

1T23=T1

1TR3=T1

80 TO 387
VZ3(12C,IR)=SVZ3(1ZC,IR) /RM3
VR3(IZC,IR)=SVR3(1ZC,IR) /RM3
UZ=VZ3(1z¢,IR)

UR=VR3(IZC,IR)
17Z3=ABS((2,/RK2)*((SVZ3S(1ZC,IR) /RM3)
2-UZ*::2))*RM3 /(IM3=1,)

ITR3=ABS (2, *%(SVXY3S(IZC,IR) /RM3=UR*UR) /RK2)*RM3 /(RM3=1,)
IF(IR.EQ.5) WRITE(6,385)ITZ3,ITR3
FORMAT(216)
IT3C1ZC,IR)=(ITZ3+2%ITR3) /3

M3 (IZ,IR)=0

SWR3(1zC,IR)=0,

svz3dzc,IR):=2,

SVZ3s(IzC,IR) =0,
SVXY3S(1ZC,IR) =0,

DO 401 1Z=21,33
IFM2(1Z,IR).LE.?) GO TO 401
1ZC=1ZMAX-1Z+1

RM2:=M2 (1Z,IR)
vz2(1zC,IR)=SVZ2¢12C,IR) /RM2
VR2(1ZC,IR)=SVR2(IZC,IR) /RM2
M2¢1Z,IR)=0

SWR2(IZC,IR):=3,
svVz2(1ZC,IR)=2,

CONTINUE

RETURN

END



C NEVWCELS
g NEXT CELL3;TEST FOR SYSTEM BOUNDARY

SIBROUTINE NEWCEL (Z,X,Y,R,VX,VY,VZ,ZREF,J)

INTEGER CT,CP,VZ3,VR3,VZ2,VR2

REAL N

LOGICAL LSSW

DIMENSION N1(32,1@),N2(32,10),N3(¢30,10),M1¢30,12),M2(30,10)
2,M3(38,12),5V23(28,19),VZ23(20,10),5V235(20,198),
3SVXY35(22,10),1T3(23,12),Y1¢3),

ASVR3(20,123) ,VR3(22,12) M20(] 2) ,M30(12)
COMMON/ITI/RMAX,PL,IRMAX,UM/JJ/DT /¥M/ 1ZMAX , ZMAX/NN/M3 ,SVYYSS,
25VZ3S,SV23,SVR3,1Z,IR,N1, N2, N3 ,M1,M2,VZ3,VR3,IT3,

3 M16(108),FINT,FREAL /KK/ZCTR,RPROBE /LL /SVR2(10,13),

4 SVZ2€18,18),VZ2(12,13) ,VR2(10,10) 7111 /RK2 ,UMT1,UZ2,UR2

5 ,UZ,UR,V1,COSTH,T3C,SINTH/JJJ/DR,DZ,T1,1,K,ZPRUBE

6 /KKK/1ZC,CT,CP

C RADIAL BOUNDARY?

IF(IR.LE.IRMAX) GO TO 102
IF(CT.NE.1) RETURN
CALL RBOUND (IR,R,VX,VY,COSTH,SINTH)

¢ PROBE?

182

C AXIAL
128
112

IF(Z.LE,ZPRORE)Y GO TO t0R
IF(R.,AT,RPRO3E)Y GO TO 108
ZRNG=Z-ZCIR

RADSQ sR*R4+ZRNG*ZRNG

IF (RADSA ,RE, (RPROBEXRPROBE)Y) GO TO 198
IF(RANDUCDU) +GT ,CREF) RETURN
CALL HITSPH(VX,VY,VZ,Z,R,X,Y)
12=Z2/0Z2+1.

1ZC=IZMAX=1Z+1

IF(CT.LT.2) CT=2

J:=3

RETURW

BOUNDARY?

IF(IZ.GT.IZMAX) RETURM
IF(1Z.LT.1> RETURN
IZC=IZMAX=1Z+1

IF(IZC.GT.23) 60 TO 1018

¢ NEXT CELL B/G PARAMETERS

1618

1929

1129
1125

C NEWPOS

T3C=IT3(12C,IR)
UZ=vZ3(1ZC,IR)
UR=VWR3(IZC,IR)
GO TO 1920
T3C=IT3(20,1IR)
Uz=vZ3(20,IR)
UR=VR3(20,IR)
IF(IZCLE.10) GO TO 1120
UzZ2=vzZ2(10,IR)
UR2:=VR2(192,1R)
GO0 TO 1125
UZ2:=VZ2(IZC,IR)
UR2=VR2(IZC,IR)
J=2

RETURN

C POSITION ON ENTRANCE PLANE

SUBROUTINE NEWPOS(ZD,RD,THETAD)
COMMON/II/RMAX,PI,IRMAX,VM

99



C NEWV

100

py=@8,
R2:zRANDU(DU)
Zhz=0,
RD=SQRT(RI)*RMAX
THETAD=2,*P1*R2
RETURN

END

C VELOCITY AT ENTRANCE PLANE

SURROUTINE NEWV(UZD,URD,VX,VY,VZ)

COMMON/II/RMAX,PI, IRMAX i1

DATA A0,A1,A2,A3,A4,A5, AS AT/=2.55179,4,57444,-2,51282
2 ,-.92546,3, 86399 -2 64662,.64784, .02726/

pu=2.

RZ=RANDU (DY)

¢ POLYNOMIAL FIT

X=(ALOG(1,/RZ))**,25

T YzABHCAL+F A2+ (A34 (AA+(ASH(AGHATRX) X XI ¥ X) % XI* XI R X)X

VT=WMxY
VZ =VT+UZD

RR=RANDU (DU}

VRD =URD+WM%SAQRT (ALOG (1./RR))
RTHETA=RANDU (DU)
THETAD =2 ,xPI*RTHETA
VX=VRD*COS(THETAD)
VY=VRD*SIN(THETAD)

RETURN

END

C PTNR37
C TEST VELOCITY AFTER COLLISION

SUBROUTINE PTNR3(V3ZD,VBRD,COSTHB,SINTHB,UZD,URD,COSTHU,SINTHY)
COMMON/V/VZD , VXD, VYD

C New VZ

vec=2,

CALL VELS(VC,COSPSI,THC)

vsu:=i,

CALL VELS(VSW,CSPSIR,THR)

vsw=g,

VB X=VBRD*COSTHR

VBY =VBRD*SI NTHB
VR-SQRT((VBZD-VZD)*(VBZD-VZD)+(VBX-VXD)*(VBX—VXD)+(VBY-VYD)
2 *(VBY-VYD))

VZD = ,5%VZD+,5%VBZD+, S*VR*CSPSIR+VC*COSPSI

C NEW VX

SINPSI=SORT (] ,=COSPSI*COSPSI)
SNPSIR=SQRT(1,-CSPSIR*CSPSIR)
VXD 2.5%VUXC+,5%VBX+, 5% VR*SNPSIR*COS (THR)+VC*SINPSI*COS(THC)

C NEW VY

C RANDD

VYD 5% VYD+ 3% BY+ . 5% VR*SNPSIRKSIN(THR)+VC*SI NPSI*SIN(THC)
RETURN
END

C PSEUDORANDOM NUMBER GENERATOR




C RBNDS

FUNCTION RANDU(DU,X)
DOUBLE PRECISION X,DXI
IF(DU.GT.!.) X=DBLE(DU)/1.,DS
X=X%997,D@
IXI=zIDINT(X)
RXI=FLOAT(IXI)
DXI=DBLE(RXI)

X=X=DXI

pu=a.

RANDU=SNGL (X)

RETURN

END

€ RADIAL SYSTEM BOUNDARY REFLECTION
c

c

Ll

SUBROUTINE RBOUMD (IRD,RD,VX,VY,C,S)
COMMON/II/RMAX,PI,IEMAX, UM

IRD =IRMAX

RD =R MA X

VDOTRU= UX*C+ VY*S

VXzVX=2 ,*UD OTRU*C

VYzVY-2 ,*UDOTRUS

RETURN

END

C RESGIV
C OUTPUT TO DECTAPE

SUBROUTINE RESULT (IZMAX,IRMAX)
INTEGER CT,CP

REAL N
COMMON/JJJ/DR,DZ,T1/KKK/1ZC,CT,CP,S,N
CALL GIVE(DR,DZ,N)

RETURN

END

C RESNM?

C OFF-LINE DATA REDUCTION: OUTPUT NORMALIZED PARAMETERS,LOAD
C WITH NEWRG?

SUBROUTINE RESULTCI1,12)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2

REAL N

LOGICAL LSSW

DIMENSION NI(37,13),N2(3%,10),83¢33,12),M1¢30,12),M2(33,10)
2,M3(20,17),5V23(29,12),V25(29,18),5V235(23,190),
35VXY35(23,1%),1T3(29,12),Y1(3),

ASVR3(20,19) ,VR3(24,10),%23(13),M32(10) ,RNORM(13),T(10),RN(1D),
S RVZ(17),PVR(1A)

COMMON/II/RMAX,PT, IRMAX,Y¥/JJ/DT/MM/IZMAY ,Z¥AX/NN/M3 ,SVXY3S,
25VZ3S,5VZ3,SVR3,17,IR, NI, N2, 13 ,M1,M2 V23, VRZ,1T3,

3 M1AC17) ,FINT,FREAL /KK /ZCTR ,PPROJE/LL/SVRP2(13,10),

4 SVZ2(10,1),V22¢17,10),YR2(12,18) /111 /RY2,UNT1,UZ2,UR2

s ,uzZ,UR,V1,THETA,T3C/JJJ/DR,DZ,T1,1,K,ZPROSE

€ /XKK/1ZC,CT,CP,S,N/1J/FYFP, TIS/LLL /L1, UZM(3®) ,URM(3D)

101



10
22
490
45

47

b1

55

2202
277

275

102

EQUAIVALENCE (KNORMC1),RNC1),PVZ(1),T(1),RVR(1))

WMEAN(X1,X2,X3,N1,N2,N3)= (XI*FLOAT(N1)+X2%FLOAT (N2)+
2 X3*FLOAT(N3)) /FLOAT (NI+M24N3)
RK2:574,

DZMFP=DZ /FMFP

DRMFP zDR/FMFP

ZCTMFP=ZCTR/FMFP

WRITE(E,1@) FINT,FREAL

FORMAT (1H1,2E11,2)

WRITE (€,27)

FORMAT (18X,8H T TABLE /22X,5HRNORM)
DO 42 IR=1,19

RNORM (IR )=DR¥FP*FLOAT (IR)
VRITE(S,45) (RNORM(CIR),IR=1,1)
FORMAT (8X,10F6.1/2¥,6H ZNORM)

DO 100 IZ=11,IZMAX

DO 68 IR=1,12

12C=1ZMAX~1Z+1

RMI=MI(IZ,IR)

RM2=M2(1Z,IR)

RM3=MZ(IZ,I?)

RM=RMI+RM2+RM3
SVZIS=RMI%((TI*%RK2*(RMI=1,))/(2,%RM1)+VI*V])
IF(RM.GT.!.) GO TO A7

™=T1

GO0 TO 60

SVR1S=SVZ1S=-VI=V]I*RMI

IFCIZC.LE.1®) GO TO S8

uz2=-v1

UR2:=8,

GO TO 55

VZ2(1ZC,IR)=SVZ2(1ZC,IR) /RM2
VR2(I12C,IR)=SVR2(1ZC,IR) RM2

uz2=vz2(1zc,IR)

UR2=VR2(I1ZC,IR)

SVZ2S=RM2* ((TI*RK2*(PM2a],)) /(2,%RM2)+UZ2%xUZ2)
SVR2£:-SVZ2S-UZ2*UZ2%RM2
UZMCIZ)=(VI*RMI+UZ2*RM24+SVZ3I(IZC,IR) ) /RM
TZRM*2 % ((SVZ | S+SVZ25+SVZ3S(IZC,IR) Y /RM=UZM(IZI*UZM(IZ))>/( (RN~
2 1.)%RK2)

URMCIZ) = (UR2*RM2+SVRI(IZC,IR) ) /RM

TR=RM*2 . *((SVR]S+SVR2S+SVXY3IS(IZC,IR) ) /RM=-URM(IZI*URM(IZ) )/ ((RM=~
2 1,)*RK2)

TM=(TZ+2.,*TR) /3.

TUARI=(TM=T) /(TI1S~-T1)
ZNORM=DZMFP*FLOAT(IZ)=-ZCTMFP

WRITE(6,85) ZNORM, (T(IR),IR=1,10)
FORMAT(F6.1,2X,10F6,.2)

CONTINUE

IFCLSSVW (D)) RETURN

WRITE(6,205)
FORMAT (/)

VRITE(6,21%)

FOPRMAT(1PX,54 RN TASLE)

DO 270 I1Z=1,1ZMAX

DO 224 IR=1,1R
RNCIR)=FREAL*FLOAT(NI(IZ,IR)+N2(1Z,IRI+N3C1Z,IR)II/N
ZNORM=DZMFP* FLOAT (1Z)=ZCTMFP

WRITE(6,85) ZNORM, (RNCIR),IR=1,1®)

WRITE (6,275)

WRITE(6,275)

FORMAT (1RY,SH VZ TABLE)

DO 399 I1Z:zit,IZMAX
DO 3ed IR=!,12
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[ZC:zIZMAX=1Z+!
IFCIZC.LE.1®) GO TO 352

vz2c:=-vi
GO TO 3719
350 VZ2C:=VZ2(IZC,IR)
370 V23C=VZ3I(IZC,IR)
VMEAN=VWMEAN(VI,VZ2C,VZ23C,N1(IZ,IR) ,N2(IZ,IR)
2 GNI(IZ,IR))
380 RVZ(IRI=VMEAN/VIL
ZNORM=DZMFPxFLOAT(I12)=ZCTMFP
390 WRITE(6,85) ZNORM,(RVZ(IR),IR=1,10)
c
VRITE(6,395)
395 FORMAT(//18%X,9H VR TABLE)
DO 2460 1Z=1]1,1ZMAX
DO 450 IR=1,IPMAX
1ZC:-I1ZMAX-1Z+1
IF(IZC.LLE.17) GO TO 430
YR2C:=0
GO TO 44D
430 VR2C=VR2(IZ2C,IR)
340 VRXC:=VP3(IZC,IP)
VRMN=WMEA N(A, ,VR2C,VR3C,NI(IZ,IR) ,N2(IZ,IR),N3(1Z,IR))
458 RVR (IR)=VRMN/VI
ZNORM=DZMFPxFLOAT(IZ)-ZCTMFP
A6D WVRITE(6,85) ZNORM,(RVR(IR),IR=1,10)
RETURN
C RESRW7Y
C OFF-LINE OUTPUT NON-NORMALIZED PARAMETERS.,
c LOAD WITH NZIWBG7.
c

402

422
425

426

428
439

440

SUBROUTINE RESULT(IZM,IRM)
INTEGER VZ2I,VR3,VZ22,VR2,CT,CP
REAL NT,NTOT,M
DIMENSION NTOT(1ID)
COMMON/HN/%3 (30,18 ,SVXY3S(22,10),5V235(20,19),5VZ3(20,10)
oSVRI(20,18),1Z,IR,NI(3A,10),N2(3N,1M),NI (30,17
JMI(30,10),M2(30,17),VZ23(23,10),VR3(23,12)
s1T3C20,1D) ,MIAC10),FINT ,FREAL/LL/SVR2(19,10)
WSVZ2(12,12),vZ2CIB, 1M ,vR2(12,12) /JJIJ/DR,DZ,TI1 /KKK /12C,CT,CP
»SyN/1T/RMAX,PI ,IRMAY/MM/IZMAX ,ZMAX/1 1] /RK2,UMT I ,UZ2,UR2
sUZ,UR, VI, THETA,T3C
WRITE(S,402) FINT,FREAL
:ORMAT(GH FINT=,E9.2,7H FREAL=,E9,2)
R=5
WRITE(6,422) IR
FOPMAT (4H IR=,I13)
WRITE(6,425)
FORMAT(3X,3HVZ22,3X,3HVR2,3X,3HVZ3,3X,3KVR3)
DO 428 1Z=11,I1ZMAY .
1Z2C=1ZMAX-1Z+1
IFCIZC.LE.IM) GO TO A26
1vVzZ2:z=-v}
IVR2:=0
G0 10 428
1VZ2=VZ2(12C,1IR)
IVR2=VR2(1ZC,IR)
WRITE (6,437 1VZZ,IVR2,VZ3(IZC,IR),VRI(IZC,IR)
FORM/T (41 6)
WRITE(6,440)
FORMAT(9H N2 TABLE)

~NOAVDHN

AT EL



DO 445 1z:=1,1ZMAX
D0 442 IR:z],IRMAX
C NTOT USED HERE TO SAVE STORAGE

442 NTOT (IR)=FREAL*FLOAT (N2 (12,IR))

445 WRITE (6,465) (NTOT C(IR) ,IR=1,6)
WRITE(6,455)

455 FORMAT(SH N3 TABLE)

DO 460 1Z:=1,1ZMAX
DO 457 IR=1,IRMAX
457 NTOT (IR)=FREAL*FLOAT(N3(IZ,IR))

460 WRITE(6,465) (NTOT(IR),IR=},6)

A6S FORMAT (6E9.2)
WRITE(6,485)
485 FORMAT(SH N! TABLE)

DO 4599 1Z:=1,1ZMAX
DO 487 IRz1,IRMAY
487 NTOT(IR)=FREAL*FLOAT(NICIZ,IR))
450 WRITE(6,465) (NTOT(IR),IR=1,6)
RETURN
END

C RSTDV?
g OFF=LINE OUTPUT STANDARD DEVIATION,LOAD WITH STDV7.
SUBROUTINE RESULT(I1,I12)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2
REAL N
LOGICAL Lssw
DIMENSION N1(390,12),N2(38,18),N3(38,13),M1(39,18),M2(32,102)
2,M3(39,198),5V23(20,13),V23(20,10),5VZ35(22,1d),
3SVXY3S(2a,18),17(22,12),YI1(3),
4 SVR3(20,10),VR3(20,17)
COMMON/II/RMAX,PI,IRMAX,UM/JJ/DT /MM/IZMAX,ZMAX/NN/MS ,SVXY3S,
2SVZ3S,SV23,SVR3,1Z,IR,N1,N2,N3,MI,M2,VZ3,VR3,IT,
3 MI3C1® ,FINT,FREAL /KK /ZCTR,RPROBE/LL/SVR2(13,.2),
4 SVZ2(10,1%,VZ2(10,18),VR2(10,10)/111/RK2,VMTI,UZ2,UR2
5 ,UZ,UR,V1,THETA,T3C/JJJ/DR,DZ,T1,I,K,ZPROBE
6 /KKK/1ZC,CT,CP,S,N/IJ/FNFP,T1S,XM(33),5SQ(33) /LLL/L1,UZM(32),
7 URM(30)

c
IF(LI-1) 200,50,300

c

se DO 100 12=11,I1ZMAX
12C=1ZMAX=1Z+1
TM=IT(1ZC,IP)
RT=(TM=-T1)/(T15=T1)
XMCIZ)=XM(IZ)+RT

108 §50(12)=55Q (1Z)+RT*RT
RETURN

c

200 DO 279 1Z=1,IZMAX
RNzFREAL*FLOAT (NI (IZ,IR)+N2(IZ,IR)+N3(CIZ,IR))/N
XMCIZY=XMCIZ)+RN

279 SSQ(IZ)=SSQ(IZ)+RN*RN
RETURN

C

3980 DO 329 1Z=11,1ZMAX
IF(L1.GT.2) GO TO 358
RVZ=UZM(1Z) /VI
XMCIZ)=XM(IZ)+RVZ

329 S§SQ(IZ)=SSQ(1Z)+RVZ*RVZ
RETURN

104
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350 DO 370 1Z=11,1ZMAY,
RVRzURM(IZ) /V]
XMCIZ)=XM(IZ)Y+RVR

370 $S0(1Z)=SSQ(1Z)+RVR*RVR
RETURN
END

C SETAKS

C SET UP INITIAL PARAMETERS,BACKGROUND FROM ANY PREVIOUS
C ITERATION IF DATA SWITCH 6 SET

SUBROUTINE SETUP(N)
INTEGER CT,CP,VZ3,VR3,VZ2,VR2

PEAL N

LOGICAL LSSW

DIMENSION N1(3@,10),M2(37,108),N3(30,10),M1¢30,10) ,M2(33,18)
2,M3(30,19),5VZ3(22,10),VZ3¢27,10),5V235(20,18),
3SVXYIS(20,10),1T3(23,18),Y1(3),

ASVR3 (20,17 ,VR3(20,18),M20(10) M30C10)

COMMON/TI/RMAX,PI ,IRMAX,UM/JJ/DT/MM/1ZMAX ,ZMAX/NN/MS ,SVXY3S,
2SVZ3S,5VZ3,SVR3,IZ,IR, N1, N2, N3 M1 ,M2,VZ3,URS,ITS,

3 MIAUM ,FINT ,FRFAL/XK/ZCTR ,RPROBE /LL /SVRZ(1¥,11),

4 SVZ2(10,17),V22(18,10),VR2(10, 1) /111 /kK2,VNT1 ,UZ2,UR2

S ,UZ,UR,VI,THETA,T3C/JJJ/DR,DZ,T1,1,X,ZPROGE

6 /XKK/1ZC,CT,CP,S/LLL/L1/KKM/KM

XK=0
RX2:=%5174,

C RX2:=2#X/M

120

NOO

O

S=.105E-18

VMT 1=SQRT (RK2%T1)
FINT=1,E=-17
FREAL=1,C17
PI=3,14159
RMAX=DR*FLOAT (IRMAX)
TMAX=DZ*FLOAT CIZMAX)
RPROBE=, 2P
ZCTR=ZPROBE+RPROBE

IF(,NOT,LSSW(6)) GO TO 2
REVIND 3

VRITE (6,190

FORMAT(13H # ITERATIONS)
READ(4,118) I

FORMAT(13)

VRITE(6,118)]

DO 120 1T=t,I

CALL TAKE(DR,DZ,N)

K=KM

RETURN

DO 9 IR=1,19@

DO 6 12:1,IZMAX
IFCL1.EQ.1) GO TO 3
HECIZ,IR)=NeFINT
N2(1Z,IR)=0
N3(1Z,1R =0
MIC1Z,IR)z0
M2(1Z,IR):0
M3(1Z,IR)=0




[z Xe X}

€~

C STOV?

DU 8 L1L-1eim
SVZ3(1Z,IR)=0
SVR3(IZ,IR)=0
SVZ3S(1Z,IR)=0
SVXY3S(IZ,IR)=3
IFCL1.EQ.1) GO TO 8
vZ3(1Z,IR) =2
W3z, IR)=0
IT3C1Z,IR) =TI

CONTI NUE

M1O(R)=0

D0 9 1Z=1,12
SWR2(Z,IR)=0, '
svza2(1z,IrR)=0,
IF(L1.EQ.1) GO TO 9
VZ2(I1Z,IR)==-V!
VR2(1Z,IR)=8
CONTINUE

‘" RETURN

END .

C A DIF3 3 B '
C OFF-LIMNC STANDARD osvrnfron & MEAN.LOAD uxru RSTDVT,. :

c

100
200
2290

50
88

258

299

300

INTEGER CT,CP,VZ3,VR3,VZ2,VR2

REAL N

LOGICAL LSSW

DIMENSION NI(30,12),N2(30,10),N3(38,10),M1(30,12),M2(38,12)
2,M3(30,19) ,5V23(23,12),VZ3(23,13),5V235(23,1M,
3SVXY35(20,1M),IT3(23,13),YI(3),

4SVR3 (20, 12) ,VR3 (28, 12),M20(12) M30(10) .
COMMON/IT/RMAX P1, IRMAX.UN/JJ/DT /MM /1ZMAX ZMAX/NN/M3 .SUXY3S.
25VZ3S,SVZ3,SVR3,12,IRT, NI, N2, N3 M1 ,M2,UZ3 ,VR3,1 T3,

3 M19¢18),FINT,FREAL /KK /ZCTR R PROBE /LL /SVR2 (10,10,

4 SVZ2(10.10),V22(18,123),VR2(12,18) /111 /RK2,WMT1,UZ2 ,UR2
s ,uzZ,UR,V1,THETA, TSC/UJJ/DR.DZ.TI 1,X,ZPROSE

& JKKK/12C,CT,CP,3 N/LLL/LI,UZM(SB),URM(SZ)/IJ/FFFP T1S,XM(38),
7 SSQ(39)

REVIND 3

WVRITE(6,200)

FORMAT (14H TYPE L1,IP,NI)

READ (4,220)L1,IRT,NI

FCRMAT ((13))

WRITE(6,22ML1,IRT,NI

WRITE (6,57 -

FORMAT (14K TYPE FMFP,TIS)

READ (4,82)FMFP,T1S ¢

FORMAT ((E10,3))

WRITE(6,80)FNFP,TIS

DO 250 I=1,N]

CALL TAKE(DR,DZ,N)

ZCTMFP=ZCTR/FMFP

DZMFP=DZ/FMFP

DO 290 12:1,32

uzncIzy=vl

URM(12)=0,

XMCIZ)=0,

$SQ(1Z)=0.

DO 410 I=1,10
CALL TAKE(DR,DZ,N)
VOL=PI%FLOAT (IRMAX*IRMAX=CIRMAX=1)% (IRMAX=1))
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e

312 DO 340 1Z2:=1,IZMAX
IFMICIZ,IRMAX) . GT.1) GO TO 352
340 CONTINUE
MICIZMAX,IRMAX) =
350 ;gozg;n*v0LI?LOAT(M!(IZ.XRMAX)+M2(IZ.IRMAX)+83(IZ.IRMAX))
VOL=PI*FLOATC(IR*IR~(IR«1)%x(IR=1))
DO 362 IZ:1,IZMAX
RMI=MI(IZ,IR)
RM2:=M2(1Z,IR)
RM3I=M3(IZ,IiR)
NICIZ,IR)=FINT®FNORM&RM] /VOL
N2(1Z,IR)=FINT*FNORM*RM2 /VOL
N3(IZ,IR)=FINT*FNORM®RM3 /VOL
368 CONTINUE
DO 481 1Z=11,IZMAX
IZC=1ZMAX-1Z+]
RMI=M1CIZ,IR)
RM2:=M2(IZ,IR)
RM3=M3 (IZ,IR)
RM=RM1+RM24RM3
SVZISzRMI%((TI%RK2*(RM1=[.)) /(2. %RM1)+VIxV])
SVR1S=SVZIS-Vi*xV]I+PM|
IF(IZC.LE.18) GO TO 372
Uz2=-vi
UR2:=8,
GO TO 375
372 VZ2(1ZC,IR)=SVZ22(1ZC,IR) /RM2 z
VRZ2(IZC,IRY=SVR2(IZC,IR) /RM2
uz2=vzZ2(1zc,IR)
UR2=WR2(IZC,IR) .
375 SVZ2S-RM2* ((T14RK2% (RM2~1,)) /(2,%RM2)+UZ2%UZ2)
SVR2S:=8SVZ2S=-UZ2*UZ2*RM2
UZMCIZ)=(VI*RMI+UZ2%RM2+SVZI(12C,IR) ) /RM
TZ;RM*Z.*((SVZ]S+SV225+SVZSS(IZC,IR))/RM-UZM(IZ)*UZM(IZ))/((RM-
2 1,)*RK2) .
URM(IZ )= (UR2*RM2+SVR3(IZC,IR))/RM =1
TR=RM42 % { (SUR1S+SVR25+SVXY3S(1ZC,IR) ) /RM-URMCIZ)*URM(IZ))/( (RM~ :
2 1.,2¥RK2)
IT3(IZC,IRY=(TZ+2,.*TR) /3.
471 CONTINUE

Hosb it i

"CALL RESULT(IZMAX,IRMAX)
A1 CONTINUE

c

WRITE(6,430)
430 FORMAT (22H ZNORM  MEAN STDV)

DO 450 1Z=1,IZMAX

ZNORM=DZMFP*FLOAT (IZ)-ZCTMFP

AVG=XM(IZ) /10,

STDV=SQRT (ABS(SSQ(1Z)/10,~AVG*AVG)/9.)
450 WRITE(6,460) ZNORM,AVG,STDV
460 FORMAT(F6.1,2F8.4)

GO TO 199

END

5

g ggx% IN ACCUMULATED PARAMETERS FROM DECTAPE,
c

SUBROUTINE TAKE(DR,DZ,N)
INTEGER VR2,VZ2,VR3,VZ3
REAL ¥ :

LOGICAL LSSW
COMMON/II/RMAX,PI,XRMAX.VM/MM/IZMAX.ZHAX/NN/MS(SG,IB),
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20

¢ VELS?

108

2 SVUXY3S(22,10),5VZ235(234,10),5V23(20,1M),SVR3 (20,13,
3 1Z,IRT,N1(32,18),M2(¢302,10),N3(30,10) ,ML(33,17),M2(30,18),
4 VZ23(20,10),VR3(292,12),1TN3(20,1]0),
S M1eC1?) ,FINT,FREAL/ALL/SVR2(10,12),SVZ2010,1), -
6 VZ2(19,12),VR2(¢10,12)/KK/ZCTR,RPROBE/II [ /RK2,
T WMT1,U22,UR2,UZ,UR,VI,THETA,T3C
8 /JJJ/DRD,DZD,T!
WVRITE(6,10)
FORMAT(I{8H DT3:SW I
CONTINUE
5F(.NOT.LSSW(I7))GO To 11
=1
X=13%
X21:=1
K22=5
X31=1
K32:=18
DO 20 L=1,2
READ(3)YCMMICIZ,IR) ,IZ=J,K),IR=1,1),1ZMAX
READ(3)((M2(1Z,IR),1Z=J,K),IR=1,1D)
READ (3) ((M3(I1Z,IR),1Z=J,K),IR=1,13),IRMAX
READ (3) ((SVR2(1Z,IR),SVZ2(IZ,IR),IZ=K2! ,K22),IR=1,108),PI
READ (3Y((SVR3I(IZ,IR),IZ=K31,K32),IR=1,10),RMAX
READ (3) ((SVZ3(1Z,IR),IZ=K31,K32),IRz1,10)
READ(3)((SVZ3S(IZ,IR),1Z=K31,K32),IR=1,10),ZMAX
READ (3) ((SVXY3S(IZ,IR),1Z2=K31,K32),IR=1,12),DZ,DR,N,RPROBE
2 ,V1,ZCTR,FINT,FREAL,T1,RK2
J=16
X=308
K21=6 p
K22=10
X31=11
K32=29
RETURN » o
END -

C RANDOM VELOCITY VECTOR WITH SPHERICALLY SYMMETRIC MAXWELLIAN
C DISTRIBUTION,

SUBROUTINE VELS(VCD,COSPSI,THCD)
COMMON/II/RMAY,PI,IRMAX,UM

C VCD=13UNIT VECTOR ONLY,

. THCD =2 ,%P[*R 7

IF(VCD.EQ.1.) GO TO 14
R7=RANDU (DU)

R8=RANDU (DU)

ALG=ALOG (1,/(R7T*RR))
VCD=VM*SQRT (ALG)
R9=RANDU(DU)
COSPSI=],~2,%R9
R12=RANDU (DU)

RETURN
END
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C VREL?
C MEAN EFFECTIVE COLLISION SPEED.
c

FUNCTION VREL (VZA,VXA,VYA,VZB,VRB,COSTHB,SINTHB)
DIMENSION PS1(20)

COMMON/II /RMAX,PI,IRMAX,UM

DATA PSI(1),PSI(2),PSI(3),PSI(4),PSI(5),PSI(6),

2 PS1(7),PS1(8),PS1(9),PSIC1B),PSIC11),PSI(12),

3 PSI(13),PS1(14),PSIC(15)/.2007,,4953,.6178,.84206,1,8813,
4 1,3390,1.6182,1,9213,2,2507,2,6283,2,9958,3,.4145,

5 3.8654,4,3494,4,8671/

X6=4,xWk\M/1,.771
CX=VXA=-VRB*COSTHB
CY=VYA-VRB%SI NTHB
CZ2=VZA-VZR
C=SQRT(CX*CX+CY*CY+CZ*CZ)
S=C/WM

IF(S,LT.1.,5) GO TO 5
ERF=1 .
GO TO 17

5 IF(S.GE.2.1) GO TO 7
ERF=S
GO TO 17

7 KK=INT ((S+,05)*1d,)
PS=PSI (KX)
GO TO 20

17 PS=SkEXP (~=5%S5)+(2,%5%5+1,)*,885%ERF
20 VREL=PS*X6/C

RETURN

END

il
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