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SUMMARY 

Results of the  present   theory on the  normal  approach  elastohydro- 

dynamic  problem show tha t :  

1. The features   of   pressure and deformation  prof i les   during  the 

ear ly   s tages   o f   the  normal  approach  agree w e l l  with  those 

obtained  in  Ref. 4 ,  which neglects   the  inf luence of the 

local   approach  veloci ty .  The steepness of the  pressure 

gradient  a t  the  center  i s  strongly  dependent upon the  

product   of   the   pressure-viscosi ty   coeff ic ient  and the  center  

pressure.  This strong  dependence i s  removed i f  a smaller 

pressure-v iscos i ty   coef f ic ien t  i s  used a t  high  pressures .  

2. During f ina l   s t ages   o f   t he  normal  approach,  present  theory 

y i e lds   cons ide rab ly   d i f f e ren t   r e su l t s  from  those i n  Ref. 4 .  

The local   approach  veloci ty  a t  the  edge  of  the  contact 

region becomes far   greater   than  the  center   approach  veloci ty ,  

and f i n a l l y   e n t r a p s  a pocket of t h e   l u b r i c a n t   a t   t h e   c e n t e r  

of the  contact.  Both the deformation and p res su re   p ro f i l e s  

never  converge t o  the   d ry   contac t   Her tz ian   d i s t r ibu t ion .  

3. For a normal  approach  process  under a constant  load,  the max- 

imum center  pressure  can  exceed  that   of  the maximum Hertzian 

pressure  depending upon the  pressure-viscosi ty   coeff ic ient .  

By introducing  the  composite-exponential model for   the  

pressure-viscosity  dependence,  the maximum center   pressure 

i s  much reduced. 

4. The inclusion  of   the  lubricant   compressibi l i ty   in   the  analysis  

gives arise t o  a s l ight ly   higher   load  than  the  incompressible  

so lu t ion .  
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CHAPmR 1 - INTRODUCTION 

1.1 Introduct ion 

Whenever any two lubricated  contacts  approach  each  other  along 

t h e i r  common normal  under a heavy load,   h ighly  local ized  pressures   are  

generated by the  squeeze  film  action  within  the  conjunction. The de ter -  

mination of t he   p re s su re   d i s t r ibu t ion  due to  the  squeeze  action  consider- 

ing  the  surface  deformation i s  known as the normal  approach  problem i n  

elastohydrodynamic (EHD) lubr ica t ion .  

The squeeze-f i lm  act ion  occurs   f requent ly   in  many machine  components 

such  as   gear   teeth  contacts ,  cams, and rol l ing  e lement   bear ings  during 

t ransient   loadings.  The normal  approach  problem  has a s p e c i a l   s i g n i f i -  

cance in   t he   so -ca l l ed   pa r t i a l  EHD contac ts   in  which the   asper i ty   he ights  

approach  the same order of magnitude as the   f i lm  thickness .  Under these 

condi t ions,   the   enter ing of any asperi ty   into  the  conjunct ion zone i s  equi 

valent  to  the  squeeze-fi lm EHD problem  between a contacting body and a 

f l a t   p l a t e .  

Mathematically,  the  normal  approach  problem di f fe rs   cons iderably  

from the  convent ional   rol l ing and s l i d i n g  EHD theories  [1,2,31.  For 

t h e   r a l l i n g  problem,  the  pressure and f i lm   d i s t r ibu t ions   a r e   s t eady-  

state:  whereas for  squeeze-fi lm problem  they  are  time-dependent and 

must be  obtained by so lv ing   the   t rans ien t  Reynolds equation  coupled 

wi th   the   e las t ic i ty   equa t ion .  Because the   p ressure   g rad ien t   var ies  

inverse ly   wi th   the   th i rd  power of the  f i lm  thickness  and the   v i scos i ty  

f o r  most lubr icants   var ies   exponent ia l ly   wi th   p ressure ,   the  two coupled 

equations  are  highly  nonlinear.  So f a r ,  no ana ly t ica l   so lu t ion   has  

been  found for   these  equat ions.  
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In 1961, Christensen [41 introduced  the  first  numerical  solution 

to the  present EHD problem  for  an  incompressible  lubricant  with an 

exponentially  varying  viscosity. In his  solution, he has  neglected 

the  squeeze-film  action due to  the  change  of  deformation.  This 

effect  was  recently  shown  to  be  significant at small  film  thickness 

by  Herrebrugh [53 in  a  semi-analytical  solution  for  an  isoviscous 

and  incompressible  lubricant.  Moreover,  Christensen  was  not  able  to 

obtain  convergent  solutions  in  the  final  stage  of  the  normal  approach 

because  of  numerical  diffi-culties. 

The  present  investigation  is  aimed  toward  seeking  a  more  effec- 

tive  numerical  solution  for  the  transient EHD problem  which  is  capable 

of  achieving  the  following: 

1. remove  the  convergence  difficulties  at  small  film  thickness, 

2. incorporate  the  effect  of  deformation  rate, 

3.  admit  any  arbitrary  variation  of  viscosity  with  pressure, 

4 .  incorporate  the  effect  of  the  lubricant  compressibility. 

1.2 Previous  Investigations 

In  spite  of  the  practical  significance of the  normal  approach 

problem,  it  has  received  relatively  little  attention  in  the  literature. 

Before  the  theories  of EHD had  been  fully  developed,  Bowden  and 

Tabor [61 studied  the  nature  of  contact  between  two  colliding  solids - 
the  collision  between  a  soft  metal  surface  and  a  steel  ball  when  it 

is  dropped  from  a  certain  height.  Initially,  they  were  concerned  with 

the  plastic  deformation on the  dry  metal  surface  by  the  hard  ball 

dropped  from  a  measured  height.  The  initial  contact  is s o  small 

2 



t ha t   t he  impact  pressure  momentarily  reached a value-higher  than  the 

y ie ld  stress of the   sof t   meta l .  The permanent indentation  occurred  on 

t h e   f l a t   s u r f a c e  when a b a l l  of 1 cm diameter was dropped from a 

height  of only 2 cm. To examine the   e f f ec t  of  lubricant on the  inden- 

t a t ion ,   t hey   l ub r i ca t ed   t he   f l a t   su r f ace   w i th  a viscous  f luid,  and 

by the  e lectr ical   conductance method,  they  detected  metallic  contact 

and the  durat ion of contac t   before   the   ba l l  rebounded. The experi- 

ment with a less viscous  lubricant   did  not   give any d i f f e r e n t   r e s u l t s  

compared with  those of the  dry  contact  case.  The  amount of me ta l l i c  

contact and the  impact t i m e  were not   a l tered.  However, the  experiment 

with a highly  viscous  f luid showed that  during  impact  metall ic 

con tac t   d id   no t   occu r   a t   a l l ,   bu t   t he   f l a t   su r f ace   y i e lded   l eav ing  a 

permanent  indentation. This means tha t   t he   f l u id   p re s su re   i n   t he  

contact zone a t  any stage  increased beyond the   y i e ld  stress of  the 

sof t   metal .  They explained  the phenomenon of surface  separation by 

comparing the  impact  time  with  the  time  required  to  have  the  fluid 

in  the  contact  region  squeezed  out  completely.  If  the  impact t i m e  i s  

less than  the  squeezing t i m e  which  depends upon f lu id   v i scos i ty ,   then  

d i r ec t   me ta l l i c   con tac t  i s  not   possible .  It i s  also  seen from t h e i r  

experiment  that  the  permanent  indentation on t h e   l u b r i c a t e d   f l a t  

surface showed a sharp  conical  shape  with  the  central   depth  deeper 

than  that   of  the  spherical   indentation  produced by dropping  the  bal l  

on a f l a t   s u r f a c e  from the  same height.  

F o r   t h e   f i r s t  t i m e ,  Christensen [4] made a theore t ica l   s tudy  

of the  normal  approach  problem  of two cy l inde r s   i n  which he  considered 

the   v i scos i ty  of f lu id   var ies   exponent ia l ly   wi th   p ressure  and the  

3 
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con tac t   su r f aces   a r e   e l a s t i c .  H e  solved  simultaneously  the two govern- 

ing  equations - t he   t r ans i en t  Reynolds  equation and t h e   e l a s t i c i t y  

equation - i n  time sequence  as  the gap between the  two cylinders  de- 

creases.  By assuming tha t   the   ve loc i ty  normal to   the   contac t ing   sur -  

face is  uniform  within  the  f i lm, and by employing a d i r e c t  - i t e r a t i v e  

procedure,  he was ab le   to   ob ta in  a converging  solution  for  successive 

intervals   during  the normal  approach. However, when the  gap becomes 

very  thin,   the   numerical   procedure  using  the  direct   i terat ion method 

p r e s e n t s   g r e a t   d i f f i c u l t i e s  and Christensen was not   ab le   to   ob ta in   the  

convergent  solutions  in  this  important  region. Moreover, the  assumption 

of a uniform  velocity i s  val id   only when the  f i lm  thickness  i s  la rge  

compared to  the  deformation.  For  the  small  film  thichnesses,  the  local 

normal velocity  not  only  exceeds  the  center normal ve loc i ty   bu t   a l so  

var ies   d ras t ica l ly   a long   th2   contac t   sur face .  As it  w i l l  be   seen  la ter  

i n   t h i s  work, the   loca l  normal v e l o c i t y   a t   t h e  minimum gap can  be  order 

of  magnitude more than  the  center   veloci ty .  

Based on h i s   t h e o r e t i c a l  work, Christensen  concluded: 

1. When  two e l a s t i c   cy l inde r s ,   l ub r i ca t ed   w i th   o i l s  whose 

viscosi ty   var ies   exponent ia l ly   with  pressure,   approach 

each  other,  very  high  pressures  in  excess  of  the maximum 

Hertzian  pressure  can be  developed in   t he   f l u id   f i lm .  

The elast ic   deformation forms a pocket  shape  with  the 
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contact.  As the   f i lm  thickness   fur ther   reduces,   the  deforma- 

t i on   t ends   t o   f l a t t en   ou t  and eventually  converges  to  the 

shape  of a Her t z i an   f l a t .  

2. For a given  load  applied  to  the  cylinders,   the maximum 

pres su re   a t   t he   con tac t   cen te r  depends upon the  parameter, 

a. Harder  material and o i l   w i t h  a high CY y ie ld  a higher 

center  pressure  during  the  approach. 

To make q u a l i t a t i v e  comparisons  with h i s   t h e o r e t i c a l   r e s u l t s ,  

Christensen  also  conducted a s e r i e s  of  experiments similar t o  Bowden 

and Tabor's work [SI by dropping a b a l l  on a lub r i ca t ed   f l a t   su r f ace  

from a predetermined  height. The main objective  in  his  experiment 

was to   determine  the  effects  of mater ia l   propert ies  on the permanent 

indentat ion on t h e   f l a t   s u r f a c e .  T o  achieve  this,   he  used  several  

p a i r s  of b a l l s  and f l a t   su r f aces   hav ing   d i f f e ren t   ma te r i a l   p rope r t i e s .  

H e  succeeded in  proving  that   under a constant  load,  the maximum 

t r ans i en t   p re s su re   i n   t he   f l u id   f i lm   i nc reases  when the  parameter CUE 

increases .  However, he  emphasized tha t   t h i s   co r re l a t ion  i s  s t r i c t l y  

qua l i ta t ive   s ince   the   theory  i s  based on the  assumptions of an e l a s t i c  

cylinder,   whereas  the  actual  experiment  involves  elastic-plastic  de- 

formations  between a sphere and a f l a t .  

Recently,  Herrebrugh C51, i n  an attempt of solving  the normal 

approach  problem  of two cyl inders  , formulated a single  governing 

equation by  combining the  Reynolds  equation and t h e   e l a s t i c l t y  equa- 

t ion.   Since  he  obtained  the  solution  only  for  the  isoviscous  case 

which i s  f a r  removed from t h e   r e a l i t y  of the  problem,  his   solut ion i s  

not  complete and h i s  method of so lu t ion   eventua l ly   re l ies  on the 
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numerical method, i t  i s  ha rd   t o   s ee  any  advantage i n   h i s   s o l u t i o n  

scheme. The so lu t ion  of t h i s   i n t eg ra l -d i f f e ren t i a l   equa t ion  - the  

governing  equation - is  obtained by t h e  method of successive  approxi- 

mations  with a semi-numerical  procedure. H e  ob ta ined   so lu t ions   for  

the  isoviscous  case  with  the same assumption  used by Christensen,  that  

i s ,  the normal ve loc i ty  i s  uniform  within  the  contact.  However, h i s  

solution  only  covers  regions of high and moderate  film  thicknesses. 

For  extremely  thin  films,  the method of successive  approximations 

f a i l s   t o  converge. 

Herrebrugh  also  noted  that  as  the f i l m  becomes sma l l ,   t he   r a t io  

of the   loca l   ve loc i ty   to   the   cen ter   ve loc i ty   begins   to   depar t  from unity.  

This  demonstrates  that  the  assumption of a uniform  velocity is  no longer 

val id   a t   smal l   f i lm  thicknesses .   For   the  isoviscous  case  a t   the   small  

f i lm  thickness where he  begins  to  experience  convergence  difficulty,  

t h e   r a t i o  of l oca l   ve loc i ty   t o   cen te r   ve loc i ty   va r i e s  from 0.75 t o  

1.25. It w i l l  be shown in   t he   p re sen t  work tha t   the   p ressure-v iscos i ty  

re la t ion   has  a very  s t rong  inf luence on t h e   r a t i o  of l oca l   t o   cen te r  

ve loc i ty   a t   smal l   f i lm  th ickness .  When t h e   e f f e c t  of va r i ab le   v i s -  

cos i ty  i s  included  in   the  solut ion,   the   local   veloci ty  a t  the  edge 

of  the  contact  can  be  as many as   t en  times the   cen ter   ve loc i ty .  

6 



CHAPTER 2 - MATHEMATICAL FORMLTLATION 

2.1 Geometry 

As shown on Fig. 1-l(a), when the  two cylinders  approach  each 

other  along  the  l ine  connecting  their   geometrical   centers  under a 

heavy  load,  the  lubricant  between them i s  pressurized by the  squeez- 

ing  action  of  the two cylinders. The contact  region where the pres- 

s u r e  is  much higher  than  the  ambient  pressure i s  very  narrow compared 

with  the  radius   of   the   cylhder .   This   fact  w i l l  be   u t i l i zed   i n   t he  

development  of the  film  thickness  formula. The present   analysis  i s  

mainly  concerned  with  the phenomena occurring  in  this  narrow  contact 

region  during  the  normal  approach of the  two cylinders. 

In   order   to   faci l i ta te   the  mathematical   analysis   of   the   problem, 

the  contact between the  two cylinders as shown on Fig .   l - l (a )  i s  re- 

placed by the  equivalent   cyl inder   with a near-by  plane as showa on 

Fig.   1-l(b).  The geometrical  requirement  for  this  conversion i s  t h a t  

a t  equal  value of x the  separat ion between the two cylinders  should 

be  the same as t h a t  between the  equivalent  cylinder and t h e   f l a t   s u r -  

f ace. 

From Fig.   1- l (a) ,  

2 112 2 112 
h g = h '  0 -+ R1[l -(1 -(e) ) ] + R2[1 -(1 -(%) ) ] 

1 

where h i s  ca l led   the  geometrical   f i lm  thickness and h '  i s  the 
g 0 

separat ion on t h e   l i n e  of centers.  

Eq. (1) can be expanded to   g ive ,  

\ 
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Since  the  width of the  contact  region  is  very  small, (L) and (E) X 

Rl I L 

are  both  small  compared  to  unity. Thus, by  neglecting  the  terms 

higher  than  the  second  power  in  Eq. (2), we obtain  the  approximate 

separation  between  the  two  cylinders, 

Eq. (3) can  be  rewritten  as, 

1 1  1 
where " " 

I L  

R Rl  R, 
+f- 

If the  radius  of  the  equivalent  cylinder  is 

R1R2 R =  R i- R2 1 
9 

then  the  geometrical  requirement  for  the  conversion  from  Fig.  1-l(a) 

to  Fig. l-l(b) is  satisfied. 

2.2 Governing  Equations 

2.2.1 Elasticity  Equation 

In  the  development of the  displacement  equation  a  number of 
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assumptions  can  be made based on the  re la t ively  small   width of 

the  contact   region where the  pressure i s  higher  than  the atmos- 

pheric  pressure:   the  contact  region i s  very  small compared with 

the  radius and the  length of the  cylinder;   the  displacement i s  

i n   t h e   s t a t e  of   plane  s t ra in;  and the  tangential   displacement 

i s  neglected  because it does  not   have  s ignif icant   effects  on the 

lubricated  contact   surface.  The normal  displacement  by  the  pres- 

s u r e   i n   t h e   f l u i d   f i l m  i s  calculated on the   semi- inf in i te   p lane  

and then added to   the  r igid  geometr ical   f i lm  thickness .  The 

displacement  equation i s  der ived   in  Appendix A and i s  shown 

below, 

The constant C i s  eliminated by including it i n  the  center  

film  thickness  formula. Due to   th i s   cons tan t   the   d i sp lacement  

i s  not   absolute   but  a re la t ive   quant i ty .  

The film  thickness  between two cyl inders  i s  the sum of the 

r igid  geometr ical   f i lm  thickness  and the  deformations - displace- 

ments - of two cylinders.  

2 2 
h ( x , t )  = hA(t) -E - + - i- dl  (x, t )  i- d2(x, t) -?- c1 + c2 

X X 
2R1 2R2 (7) 

From  Eq. (71, 
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From Eq. ( 8 )  

2 

c1 + c2 = h(0, t) - h '   ( t )  + 2(1 TT - E p(SYt)Rn151d5 
0 1 - w  

Subs t i tu t ing  Eq. (9) f o r  c1 4- c 2   i n  Eq. (7) w e  obtain 

2 2 2 ( 1  - v 
h ( x , t )  = h(O,t)+ - + - -  X X 

2R1 2R2 

Let   h(o, t )  = h o ( t ) ,  which i s  the  center  f i lm  thickness  including 

implicit ly  the  center  deformation. 

Define E as, 

2 2 
" l - Y )  
E 2  E2 

where E E and vlY 1' 2 v2 are Young's  modulus and Poisson's 

10 
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r a t i o  of cylinders 1 and 2,   respectively.  

Using Eq. (11) f o r  E and r e c a l l i n g  - = - + -, Eq. (10) 1 1  1 

R1 R2 
becomes, 

which is  the  f i lm  thickness  between the  equivalent  cylinder and 

the   f l a t   su r f ace .  

2.2.2 Hydrodynamic Equation 

The i n e r t i a   f o r c e   i n   t h e   f l o w   f i e l d  between two cylinders 

i s  negl ig ib le  compared to   the  viscous  force,  which i s  the  funda- 

mental  assumption in   t he   de r iva t ion  of  Reynolds  equation. I n  

the  present   s tudy  the  t ransient ,  one dimensional  Reynolds  equa- 

t i o n  is  taken as a governing  equation  for  pressure  distribution. 

The one  dimensional  equation i s  j u s t i f i e d  by the   f ac t   t ha t   t he  

length of the  cylinder  can  be assumed t o  be i n f i n i t e   i f  i t  i s  

compared with  the  width of the  contact  region.  Further assump- 

t ions made i n   t h e  hydrodynamic  equation are: 1) the  flow i s  

isothermal and 2)  the  weight of the  cyl inder  is  negl ig ib le   in  

comparison  with  the  external  force. 

The governing  equation  for  pressure  distribution i s  

a (&4)=m 3 

ax 1 2 ~  ax a t  

11 



Due t o   t h e  symmetry of   the  contact   surface  a t  x = 0, the   p ro f i l e s  

of  pressure and f i lm  thickness   are   symmetr ical   a t  x = 0. 

The boundary  conditions  for Eq. (13) a r e  

p = o  a t x = - a  

Eq. (13) i s  in tegra ted  from x = - x t o  x = 0 using  the  second 

boundary condition  of (14), thus w e  ob ta in  

& = , I 9  so a(ph) dx ax a t  ph3 -x 

A new va r i ab le  Q i s  introduced  in   order  t o  f a c i l i t a t e   t h e  

use of several   v iscosi ty   funct ion  in   the  governing  equat ion.  Q 

i s  defined  as:  

where p = - and p i s  the  ambient  viscosity.  -cL 

VS 
S 

The s p a t i a l   d e r i v a t i v e  of Q i s  

The p res su re   de r iva t ive   i n  Eq.  (15) i s  replaced by Eq. (17), thus 

we obtain 

12 
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In   the above equation  the  viscosity  term i s  replaced by a(gn K) 
aP 

which i s  the  simple  pressure - v i s c o s i t y   c o e f f i c i e n t   i f  p i s  an 

exponential  function of p. 

- 

Integrat ing Eq. (18)  from x = - m t o  x gives 

where Q-, = 0 because a t  x = - t he   v i scos i ty  i s  the same as the 

ambient  viscosity. 

The value of Q a t  the   f i lm  center  i s  

The above equation w i l l  be  used in   t he   ca l cu la t ion  of the  center 

approach  velocity. 

The instantaneous  load  per  unit  width of the  cylinder i s  

the   i n t eg ra l  of the   p ressure   d i s t r ibu t ion  

w(t) = p(x, t )dx 
-m 

2.2.3 Approaching  Velocity 

Since  the  deformation  term i n  Eq.  (12) is  the   re la t ive   defor -  

13 



mation  based on the  center  deformation which i s  not  known, the 

approach  velocity i s  a l so   t he   r e l a t ive   ve loc i ty ,   no t   t he   abso lu t e  

veloci ty .  However, the  re la t ive  approaching  veloci ty  i s  incorpo- 

ated  in  the  formation  of  the  present  problem  because,  in  general, 

the   difference between these two v e l o c i t i e s  i s  extremely small i n  

the  regime of elastohydrodynamic  lubrication. Of course,   i f  one 

would a t t empt  to  solve  the  impact  problem of two cyl inders   l ike  

the  experiment of [61, he  should  f ind  the  absolute  velocity which 

plays  the  important  role  in  the  solution  of  the  impact problem. 

Dif fe ren t ia t ing  Eq. (12) with  respect  to  t ime we obtain 

It is  thus  seen  that   the   local   approaching  veloci ty   consis ts  of 

two terms:  the f i r s t  i s  the  approach  velocity of the  contact 

center  and the  second i s  the   ve loc i ty  due to  deformation-deforma- 

t i on   ve loc i ty  - which i s  also  dependent on t i m e  and varies  along 

the  contact  surface.  

ah 
0 and v = - - p(5, t )An  dz Let  vo = - - 4 a  

a t  d 1~ E a t  ,oJ 
then Eq.  (22) can  be  written as: 

14 



2.3 Viscosi ty  and Density  Variations 

Both the   v i scos i ty  and the  densi ty   of   the   lubricant   are  assumed 

to  be  functions  of  pressure  only.  Two types  of   viscosi ty   funct ions 

have  been  used in   the   p resent   ana lys i s .  The f i r s t  type is  t h e   s t r a i g h t  

exponential   relation  between  the  viscosity and pressure.   This   re la t ion 

can  be  expressed as 

P = pse Qp 

The second  type i s  the  so-called  composite-exponential   relation between 

the   v i scos i ty  and pressure .   In   th i s   re la t ion ,   the   v i scos i ty   increases  

exponentially  with  pressure  according  to a large  exponent  in  the low 

pressure  region and much smaller  exponent  in  the  high  pressure  region. 

Mathematically, i t  can  be  expressed  as 

PJ = PJse ap f o r  p s- p 1 

where p = 40,000 p s i  and p = 70,000 psi. 1 2 

The v i scos i ty  between p and p2 i s  increased  asymptotically  as 1 

shown on Fig. 1-2. 

The composite model was f i r s t   i n t roduced  by Allen, Townsend  and 

Zaretsky [73. Their viscosi ty   vs .   pressure  curve  consis ts  of two 

s t r a i g h t   l i n e s  on the  semi-log  paper  with a discont inuous  viscosi ty  

g r a d i e n t   a t  p = 55,000 p s i .  Since  this  discontinuous  gradient i s  

15 



physically  inconceivable,  before employing the i r   v i scos i ty   func t ion   i n  

the  present   analysis   the  discont inui ty  is  removed as mentioned in   t he  

above  paragraph.  Their  theoretical  spinning  torque  based on t h i s  

empirical   equation of v i s c o s i t y  matched exce l len t ly   wi th   the i r  measured 

torque. The moderation of v i scos i ty   increase   a t   h igh   pressure  seems 

to  be  quite  reasonable though the  exact  behavior of the  lubricant  

under  the dynamic conditions i s  not known. 

The primary  purpose  of  employing  the  composite-exponential  lubri- 

can t   in   the   p resent   ana lys i s  i s  to  understand what e f f e c t s   t h i s   l u b r i -  

cant may exhib i t  on the  pressure,   f i lm  thickness,   load and approach 

veloci ty .  By comparing  ?he two solut ions - the one  based on the 

s t ra ight   exponent ia l   lubr icant  and the  other  on the  composite - ex- 

ponent ia l   lubr icant -  one would come  up with  the  plausible  conclusion 

on which lubricant  model y i e lds   t he   r ea l i s t i c   so lu t ion   i n   r e spec t   t o  

pressure and load  during  the normal  approach. 

To f ind   ou t   the   e f fec t  of Cy alone on the   p ressure   p rof i le ,   the  

two d i f fe ren t   va lues  of CY in   the   s t ra ight   exponent ia l   lubr icant   a re  

used  in   this   invest igat ion.  

The densi ty   funct ion  used  in   this   invest igat ion i s  

where ps i s  the  ambient densi ty ,  and a and b a re   the   coef f ic ien ts  

determined  from ASME Report [SI. Eq. (26)  was originally  introduced by 

Dowson and Whitaker [SI. 

1 
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2.4 Formulation of  Eias  tohydrodynamic  Problem 

2.4.1 Coupled  Time-Dependent  Elastohydrodynamic  Equations 

It has  been  shown  in  many  previous  works on EHD  lubrications 

that  the  solutions for  pressure  and  film  thickness  must  be  com- 

patible  with  each  other, i.e.,  the pressure  profile  obtained  from 

the  hydrodynamic  equation  with  a  certain  film  thickness  profile 

must  be  equal to the  pressure  profile  required  to  deform  the 

contact  surface  to  the  same  film  thickness.  This  demands  that  the 

hydrodynamic  equation  and  the  elasticity  equation be solved 

simultaneously  at  each  instantaneous  location  of  the  cylinder. 

The  two  major  equations  to  be  solved  simultaneously  for  the 

pressure  and  film  thickness  are: 

2.4.2 Normalization 

Introduce  the  following  non-dimensional  variables, 

h h 
p , p  , H = -  0 X 

PO R ’ Ho R 
= -  , x = -  

a ’  
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V 
0 - PO a - 8  

E ’ R  - 4pHZ PO 
T = t, PHz - -  ” 

y 8 = -  y 

W - P w = -  p = -  y CY=- 
- CY 

a 1 
ER ’ 

- 
P pS PO “”E (27) cont. 

where  a is the  Hertzian  half-width  and  the  subscript “0” indicates 

the  variables  at  the  film  center. 

The  normalized  governing  equations  are  written  as: 

2 

H = H + 8PHz2X2- ( 7T ) P(Z,T)h dZ 
16’HZ 

0 -03 

Eq.  (19)  and  (20)  are  normalized  as fol~ows: 

The  dimensionless  load  becomes 

w = -  P(X,T)dX 2 
4pHZ 

-m 

The  dimensionless  normal  velocity  is  obtained  by  differentia- 
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. . .. . . .. . _.  ._ .. . __ . . ._ . 

t i n g  Eq. (291, 

9 
L 

" 6pHZ 
ar aH- - 1 - ( Tr ) & p P ( Z , T ) h w d Z  -00 

From Eq. (31), w e  obtain  the  center  normal ve loc i ty  V 
0 

- Qo v =  

(33) 

(35 1 

Method of Solution 

2.5.1  Outline of  Approach 

Since  the  pressure and f i lm  prof i les   are   symmetr ical   wi th  

respec t   to   the   cen ter  of the  contact ,  it i s  necessary  only  to 

obta in   so lu t ions   for   ha l f  of a contact.   For  the  present  analysis,  

t he   so lu t ions   a r e   ob ta ined   i n   t he   l e f t   ha l f  of the  contact .  This 

half   region i s  fur ther   d iv ided   in to  two regions - t h e   i n l e t  and the  

middle  region. The d iv i s ion  i s  made i n  such a way t h a t   i n   t h e  

middle  region  the  pressure  gradient i s  fa r   s teeper   than   the  

mild  pressure  increase  in   the  inlet   region.  

In   t he   i n l e t   r eg ion ,   t he   p re s su re   va r i a t ion  i s  less abrupt,  

and the  method of d i rec t   i t e ra t ion   can   be   appl ied   here   wi thout  

introducing any  convergence d i f f i c u l t i e s .   I n   t h e   d i r e c t   i t e r a -  
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t ion,   the   pressure i s  calculated by the   d i r ec t   i n t eg ra t ion  of the 

hydrodynamic equat ion   for   the   p rev ious ly   i t e ra ted   f i lm  prof i le ,  

and the  succeeding  f i lm  prof i le  i s  calculated by in tegra t ing   the  

e las t ic i ty   equa t ion   accord ing   to   the  newly integrated  pressure 

prof i le .   This  method i s  simple and e f f i c i en t ,   bu t   i s   on ly   e f -  

fec t ive   for   cases  of re la t ive ly   l a rge   f i lm  th ickness .  A s  demon- 

s t r a t e d  by Christensen L.41, for  extremely  small   f i lm  thickness,  

t h e   d i r e c t   i t e r a t i o n   f a i l s   t o   y i e l d  a convergent  solution. 

In  the  middle  region,  the  system  uations are solved by 

Newton-Raphson method. The solution  of  the  system  equations  gives 

the  pressure  correction  at   every  grid  point.  The Newton-Raphson 

method i s  very   e f fec t ive   in   so lv ing  a system of nonlinear equa- 

t ions and usually  yields  the  converged  solution  in  several   i tera- 

t ions.  One drawback in   t he  Newton-Raphson method i s  the  calcula- 

t ion  of pa r t i a l   de r iva t ives  of a l l  the  var iables   in   the  system 

equations and the  inversion of the  matrix of  which  elements  con- 

s i s t  of these  der ivat ives .  A subs tan t ia l   por t ion  of the  calcula- 

t i n g  time for   the  present  problem i s  expended in   the  operat ion 

of the  matrix  inversion.  Details of numerical  treatment  for  the 

i n l e t  as w e l l  as   for   the  middle   region  are   given  in   the  next  

s ec t ions. 

2.5.2 Integrat ion of Pressure   in   the   In le t  Region 

The integrat ion of pressure  in   the  inlet   region i s  represented 
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by Eq. (30) and is  rewr i t ten  below: 

J" aT  dz] dX} (30) 
-X 

In   the above  equation  the  integral i s  s p l i t  i n t o  two par t s :   the  

f i r s t   i n   t h e   i n t e g r a l   o v e r   f a r   l e f t  of t he   i n l e t   r eg ion  

(-m < X < - %I) and the  second i s  the  remaining of t h e   i n l e t  

region (-5 < X < - 1 S o )  

We can  approximate  the  integrand of t h e   f i r s t   i n t e g r a l ,  

where we assumed t h a t  

" N 2 2  
p = 1, HI = 1 + fPHz X + DKI , a(Pm '2 - 1 . 

a T  

S ince   the   p ressure   in   the   in le t   reg ion  is  not  high,  the  normalized 

densi ty  i s  c lose  t o  uni ty .  DKr i s  the  deformation  a t  X = - %I 
which i s  the  lower l i m i t  of the  deformation  integral .  The defor- 

mat ion  in   this   region is  assumed t o  b e  constant.  This  assumption 

w i l l  not produce much error   s ince  the  approach  veloci ty  due to  

the  deformation i s  r e l a t i v e l y  a small term compared to   the   o ther  

2 1  



terms in   the   in tegrand .  

Regardless of which v i scos i ty  model is  used  in  the  governing 

equat ion ,   the   v i scos i ty  varies exponentially  with  pressure i n  the  

inlet   region.  Therefore,  a ( a n , =  

- 
aP 

Eq. (36) is  in tegra ted   ana ly t ica l ly ,  

2 2  
where %I = 1 + 8PHz )kI -k DKI . 

The in tegra ted  Q 

QK, m 
= - (16PHz) 

w r i t t e n   a t  Kth - gr id  point  and t i m e  T i s  
m 

;k- 1 

Once the  converged  solution  for  the  pressure  in  the  middle  region 

i s  obtained,   the   integrand  in  E q .  (38) i s  assumed to   be known 

except  density  because  the  pressure  distribution  in  the  middle 

region  plays  the dominant role   in   determining  f i lm  thickness  

and approach  velocity. In the  inlet   region  the  normalized  density 

can be  approximated t o   u n i t y   f o r   t h e   f i r s t   i t e r a t i o n .  Applying 

the   t rapezoida l   ru le   for   the   in tegra t ion  of E q .  (38), we obtain 

QK,m 
. Then p i n   t he   i n l e t   i s   de t e rmined  from Q as:  

K,m  K,m 
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1 -1" 
'K,m 

-m 

- 
QK,m 

= 1 - e  K,m 

Thus  the  pressure  equation  in  the  inlet  region is 

(39) 

2.5.3 Calculation  of  Deformation 

The  deformation  for  an  arbitrary  pressure  distribution  can 

not  be  determined  by  the  straightforward  numerical  integration 

because  the  integrand  in  the  deformation  equation  becomes  singular 

at X = Z. Care  must  be  exercised  in  the  formulation  of  the  nu- 

merical  integral  formula  by  which  the  singularity  at X = Z can 

be removed. 

The  detailed  derivation  of  the  quadrature  formula  for  the 

singular  integral  kernel  is  presented  in  Appendix A and  the 

quadrature  formula  is  written  below, 

where 
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and 

u = - z j - s  
j 

3 

2 2 

s j = u ( s   j j - 6   Y ) - u  

Since  the  pressure  prof i le  i s  symmetrical  about X = 0,  the  second 

ha l f  of the  deformation  integral  can be approximated i n   t h e  same 

form of Eq. (41) by changing -Z . to Z . i n  K 1, % and K3, thus 
J J 

v KO- 2 

J*'Pm(Z)AnlZ - s ! d Z  = {Pjy .Kl( -Sy-Zj )  + K2(-%,Zj) ] 
-%I j=1,3,5 
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and following  the above procedure we obtain 

KO-2 

P 1 p m ( Z )  In l Z  (dz = 1 {P . JK1(So,-Z j )  + K (X Z ) ] 
-51 

J, 2 KO, j 
j=1,3,5 

where so = 0. 

For  the  convenience of d i f f e r e n t i a t i n g  D with  respect  to 

P K1 , K and K are rearranged  in  such way t h a t  P has a 

s ing le   coe f f i c i en t  R(-% - Z j ) :  

K ,m 

j ,my 2 3 j ,m 

Y 

It(-%,- Z j )  = S 1 ( - S y -  Z j )  j = l  

even 2 j KO - 1 

( = s3,-%,- Zjm2)  1- S1(-$,- Z j )  1 odd 3 j 5; KO - 2 

j = KO (51) 

where 
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where 

The f i n a l  form  of the  deformation  equation i s  

KO 

K,m = - c3 1 R(-%,- Z j )  Pj,, 
j = l Y 2 , - -  

16'HZ 
2 

TT 

2.5.4  Elastohydrodynamic  Equation i n   t h e  Middle  Region 

Eq. (28) w r i t t e n   a t  Kth gr id   po in t  and time Tm i s  - 

(53) 

The de r iva t ive  ( aT ) i n  Eq. (54) may be s p l i t  i n to   t h ree  

terms and can be approximated  by  the  Lagrangian  three  point 

quadrature as 

KYm 
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where 

and 

H = H  2 2  

gK,m 0 , m  8pHZ 5 

(55) 
cont . 

(59) 

The f i r s t  two terms on t he   r i gh t  hand s i d e  of E q .  (55) can  be 

grouped  together and expressed by y m ( - s )   i n  which a l l  the 

var iab les  were determined  in  the  previous t i m e  steps.  Therefore, 

ym(-%) i s  not a function of P 
j ,m. 

After   rearranging  the  integrand  in  E q .  (55) t o  a pressure 

dependent term and a pressure  independent term, E q .  (55) may be 
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wri t ten  as 

Thus 

where A xi = xi+l - Xi,1 K 4- 1 5 i KO-1 

= x  i+l - xi i = K, KO 

Subs t i tu t ing  Eq. (53) f o r  D. i n  Eq. (61) and rearranging 
1 ,m 

where 

28 
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KO 

i=K+1/ 2 

The integral   term and the  defon-nation terms i n  Eq. (54) a re  

replaced by Eqs. (62) and (52) respect ively.  The d i sc re t i zed  

form f o r  Eq. (54) a t  -XK+l/2 can  thus  be  writ ten as 

(‘.. 1 imiKpK m ) 

KO 

gK+1/2 ,m i= 1 

KO 

-(8p HZ V o,m ) { 1 i V  ~m ( - X i j  \, - w m p .  1 , m  (H - 1) ] A X i  

i = K + 1 / 2  g i  ,m 

KO - 
\ ’  1 

+ wmc3 L(-xK - Z j  j P j ,m } 
j=l 

Eq. (63) i s  one  of the  typical  equations  in  the  system  equations.  

If Ym(P) i s  wr i t t en   a t   eve ry  mid poin t  between gr id   spacings  in  

the  middle  region,  there are N equations  with N unknown, 

where N i s  the number of grid  points  in  the  middle  region. 
‘K,m’ 

Applying  the Newton-Raphson technique  to  the  system  equations, 

we obta in  
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r - 7  
where { } and L J represent a column matrix and an N x N matrix, 

respect ively,  and A. i nd ica t e s   pa r t i a l   de r iva t ive  i s  t o  be taken 

with  respect  to Pm. n is  the  level  of i t e r a t i o n .  

From Eq. (64) we obtain 

The r i g h t  hand s ide  of E q .  (65) i s  assumed to  be known from 

the  lower  level   i terat ion,  and {A Pm)(n+l) i s  defined as 

The elements of the  matrixes  in E q .  (65) are   de ta i led   in  Appendix 

B. 

The center approach ve loc i ty  and the  load a t  time T a re  m 

- Q, 
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where 

-a 
- 

Q o = l - e  for   the   s t ra ight   exponent ia l   lubr icant  

and 

- G P S +  5 ( l - P s )  5 
Qo=l - e for  the  composite-exponential 

lubricant .  

The f i lm   th i ckness   wr i t t en   a t  K G  gr id   point  and t i m e  T i s  m 

KO 

2.5.5 Outline of  Numerical  Procedure 

For  the  computational  convenience, i t  i s  assumed tha t   the  

center   pressure is constant  while  the  value of load  varies  as  the 

cyl inder   approaches  the  f la t   surface from a high  point.  The 

calculations  are  performed  to  obtain  the  several series of the 

so lu t ions   i n  which  each se r i e s   r ep resen t   t he   so lu t ions   a t   va r ious  

center   f i lm  thickness   with a f ixed  center   pressure.  

The best  approach  to  the  problem i s  to   ob ta in   ana ly t i ca l ly  

the   p ressure   d i s t r ibu t ion   for  a high  center  f i lm  thickness by 

neglecting  the  deformation term in   t he  hydrodynamic  equation, and 

I 
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a t  each t i m e  s tep  the  center   f i lm  thickness  is reduced a c e r t a i n  

amount and i s  kept  constant. 

Written below are the  precedures of numerical   calculation a t  

each  time  step: 

A t  t h e   f i r s t  t i m e  s tep   ana ly t ica l ly   ob ta ined   pressure  

d i s t r i b u t i o n  i s  used as an i n i t i a l  guessed  pressure. 

From the  second  time  on,  the i n i t i a l  guessed  pressure 

is  determined by l inear ly   extrapolat ing  the  previous 

pressure  dis t r ibut ions.  

Using t h e   i n i t i a l l y  guessed  pressure  dis t r ibut ion,   the  

f i lm  thickness ,   densi ty  and v iscos i ty   a re   ca lcu la ted .  

Then the  approach  velocity i s  determined  from  these 

values. We se t  up system  equations ( 6 3 )  to   obtain  the 

pressure  correct ion terms in  the  middle  region. Once 

the  pressure  dis t r ibut ion  in   the  middle   region i s  

corrected by IA Pm}, t h e   i n l e t   p r e s s u r e   p r o f i l e  i s  de- 

termined by l inear   in te rpola t ion   wi th   the   fac tor  

i- 

the  system  equation. The f i lm  thickness  i s  calculated 

using  the newly obtained  pressure.  

I f  the converged so lu t ion   for   the   p ressure   in   the   middle  

region i s  obtained, Eq. (38) is  so lved   fo r   t he   i n l e t  

pressure and the  center  approach  velocity V i s  de- 

termined by Eq. (67). Now the   overa l l   p ressure   d i s t r ibu-  

t ion  is checked f o r  convergence.  If i t  has  converged,  the 

load W i s  calculated by Eq. (68) and one moves to   t he  

0 ,m 

m 
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next t i m e  step.  Otherwise,  the above  procedures (2) 

and (3) are repea ted   un t i l   the  converged so lu t ion  i s  

obtained. 
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CHAPTER 3 - DISCUSSION OF RESULTS 

3 . 1  Introduction 

The r e s u l t s  of  the  present  study are presented as a series of 

curves   for   pressure,   f i lm  thickness ,   load and  approach ve loc i ty  cal- 

culated a t  a prescribed  center  pressure and at   successive  reduct ions 

of the  center   f i lm  thickness .  

The pressure and f i lm  prof i les   for   var ious   parameters   a t   success ive  

stages  during a normal  approach  process  are  plotted  for  the  left   half  

of the  contact  region. The integrated  load and the  approach  velocity 

during  each  normal  approach  are  plotted  against  the  center  film  thick- 

ness  or  the minimum film  thickness.  

3.2 Pressure  Prof i les  

Shown on Fig.  1-3  to  1-13  are  the series of t he   p re s su re   p ro f i l e s .  

Each f igure  displays  the  change  in   pressure  with  f i lm  thickness  as 

the  cyl inder   approaches  the  f la t   surface  for  a given  center  pressure.  

The range of the  center   pressures  employed in   the  present   s tudy i s  

from 2.5 X 10 p s i  (1.723 X 10 N/m ) t o  1.5 X 10 p s i  (1.034 X 10 N/m ) 

which a re   t yp ica l  maximum stresses  encountered  in  concentrated 

contacts.  

4 8 2  5 9 2  

In   general ,   the   t rend of  change in   p ressure   wi th   respec t   to   the  

center   f i lm  thickness  i s  qua l i t a t ive ly   s imi l a r   fo r  a l l  cases,  namely, 

at   high  f i lm  thickness  the  pressure  level  decreases  steadily  through- 

out   the  contact   region  with  decreasing  f i lm  thickness   unt i l  i t  reaches 

a s tage  when the  integrated  load becomes a minimum. Af ter   th i s  

s tage   the   p ressure   in   the   middle   reg ion   reverses  i t s  trend and begins 
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t o  r i se ,   bu t   the   p ressure   in   the   in le t   reg ion  s t i l l  continuously de- 

creases   as   the  center   f i lm  fur ther   decreases .   In   a l l   cases ,   the   pres-  

s u r e   r i s e  is confined  within a small   f ract ion of the  Hertzian  half-  

width, and i t  does  not  appear  to  reach  the  Hertzian  semi-elliptical 

shape. 

For  the  straight-exponential   lubricant,   the  pressure-viscosity 

coe f f i c i en t ,  CY, has a  marked influence upon the  pressure gradi’ent  near 

the  center  of the  contact.  For  example,  Fig.  1-9 shows that   the   pres-  

sure   g rad ien t   for  ; = 12.8 a t   t he   cen te r  i s  f a r  s teeper  than  that 

appearing  in Fig.  1-5 fo r  CY = 9.5. 

- 

- 

The change in  the  center  pressure  also  produces a very  strong 

e f f e c t  upon the  pressure  gradient   a t   the   center .  A higher  center 

pressure  produces a sharper   pressure  spike  a t   the   center .  The e f f e c t  

becomes increasingly  s t ronger   a t   h igher   center   pressures .  For  example, 

at   center  pressure  equal  to  150,000 p s i  (1.034 x 10 N/m ), the  pres- 

sure  gradient  gradually  tends  to become i n f i n i t e .  The existence of 

such  sharp  pressure  spikes  in  practice  appears  to  be  highly  question- 

able ,   s ince  the  shear   s t ress  would a l so  become incredibly  large  under 

these  circumstances. It appears   very  unl ikely  that   the   f luid can 

withstand  such  high  shear   s t resses ,   par t icular ly   in   the  l ight  of 

recent work on t r ac t ion   s tud ie s  [lo], [ll], and 1121 which demonstrate 

the  existence of a l imi t ing   shear   s t ress   for  any lubricant .   In   the 

v i c i n i t y  of t h i s   l imi t ing   shea r   s t r e s s ,   t he   f l u id  behaves i n  a non- 

Newtonian fashion, and an   increase   in   shear   ra te   has   l i t t l e   e f fec t  on 

the   shear   s t ress .  

9 2  

The e f f e c t  of the non-Newtonian behavior  can  be  accounted for   ind i rec t -  
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l y  by introducing  the  so-called  composite-exponential  model f o r   t h e  

lubricant   viscosi ty .   This  was demonstrated by Allen e t  a1  [7] i n  a 

spinning  torque  study. The resu l t ing   p ressure   p rof i les   us ing  a com- 

posite-exponential  model similar t o   t h a t   i n  [7] are shown i n  Fig. 

1-10 t o  1-13. These curves show cons iderably   d i f fe ren t   fea tures  com- 

pared  to   the  pressure  curves   for  a s t ra ight   exponent ia l   lubr icant .  

For  example,  the  pressure  gradient i s  much more moderate  near  the 

contact   center ,  showing the  absense of a pressure  spike which is  so 

cha rac t e r i s t i c   fo r   t he   s t r a igh t   exponen t i a l   l ub r i can t .  Moreover, the  

steepness of the  pressure  gradient   near   the  contact   center  is  not  

inf luenced  great ly  by the  increase  in   the  center   pressure.   For  example, 

there  i s  ve ry   l i t t l e   d i f f e rence   i n   t he   p re s su re   g rad ien t  between 

Fig.  1-10  and  Fig.  1-13 a t   t h e  same f i lm  thickness ,  

It should  be  emphasized t h a t   t h e   r e s u l t s   f o r   t h e  composite-expo- 

nent ia l   lubr icant   are   intended  to  show the   qua l i t a t ive   e f f ec t  of the  

reduction of pressure-v iscos i ty   coef f ic ien t  on the   cha rac t e r i s t i c s  of 

pressure and f i lm   p ro f i l e s .  These results  should  not  be  used  quanti-  

ta t ively  for   design  purposes .  

3.3 Film  Thickness 

The f i lm  th ickness   p rof i les  are plot ted  in   conjunct ion  with  the 

corresponding  pressure  profiles  in  Fig.   1-3  to  1-13. A t  t he   ea r ly  

stage  of normal  approach, a pocket i s  formed e l a s t i c a l l y   a t   t h e   c o n t a c t  

cen ter ,  and i t s  shape  does  not  change much for  subsequent  reductions of 

the  center   f i lm  thickness .  The pocket  depth  defined  as  the  difference .be- 

tween the  center   f i lm  thickness  Ho and the  minimum fi lm  thickness ,  i s  depen- 
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dent  upon the   cen ter   p ressure   for  a given  lubricant.  A higher  center 

pressure  produces a deeper  pocket. 

When the  center  f i lm  thickness  decreases  to a c e r t a i n   l e v e l ,  a 

qu i t e   d i f f e ren t  phenomenon occurs. A t  t h i s   po in t ,   t he  normal  approach 

velocity  at   the  center  suddenly  drops  almost  to  zero,   while 

the  local   approach  veloci ty   e lsewhere  in   the  contact   cont inues.  

This condition  produces a deeper  pocket  during  the  f inal   stages of the  

normal  approach.  In a l l   cases   inves t iga ted ,   the  growth  of the  pocket 

p e r s i s t s  a.11 the  way  down to   the   very  end when the edge  of the  contact 

a t   t h e  minimum film  thickness  point  practically  touches  the  opposing 

surface.   For  perfectly smooth surfaces ,   the   point  of the minimum f i l m  

would eventually form a s e a l  and the   lubr icant   ins ide   th i s   po in t  

would be  trapped.  Thus, by including  the  local  approach  velocity 

in   t he   ana lys i s ,  one  can show tha t   bo th   the   p ressure  and f i lm  thick-  

ness   prof i les   never   reach  thesemi-el l ipt ical   Hertzian  shape  as   sug-  

gested by Christensen  in [41. Instead,  the  pressure  remains  to  be 

confined  in   the  center   region,  and the  surface deformed i n t o  a pocket 

ins ide  which a por t ion  of the   lubr icant  i s  entrapped. As shown i n  

these  deformation  shapes,  the  center  pressure  has a def in i te   in f luence  

upon the  depth  as w e l l  as  the  width of the  pocket.   In  general ,   the 

pocket becomes deeper and wider  as  the  center  pressure  increases.  

The pocket  formation is  more pronounced for   the   case  of the com- 

posi te   exponent ia l   lubr icant .  The pocket  depth i s  somewhat grea te r  

than  the  corresponding  case  for   the  s t ra ight   exponent ia l   lubr icant .  

The change of the  pocket  shape  during  normal  approach i s  qua l i t a t ive ly  

s imi l a r   t o   t ha t   fo r   t he   s t r a igh t   exponen t i a l   l ub r i can t .  A t  the  last 
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time  step when the minimum film  thickness H, is  less  than 5  x  10 

the  pocket  depth  increases  rapidly  while  the  location of the minimum 

film  thickness moves s l i g h t l y  toward the  outer  edge of the  contact 

region. The highest   value of pocket  depth fo r   a l l   c a ses   i nves t iga t ed  

= 1.5  x 10 p s i  (1.034  x 10 N/m ), occurs a t  a center   pressure,  

with  the  composite  exponential  lubricant. The value of the maximum 

depth  exceeds 30 x  10 , and there  is  p r a c t i c a l l y  no s ign i f i can t  

pressurizat ion  outs ide of the  pocket. It i s  thus  expected  that  during 

the normal  approach of two cyl inders   the   p ressur iza t ion   i s   e f fec t ive ly  

contained  inside  the  pocket and that  the  width of the  pocket is  approxi- 

mately  one-half of the  Hertzian  contact  width  based on the same center  

pressure,  

-6 

5 9 2  

-6 

3.4 Load 

Shown  on Fig. 1-14 are  the  load  vs.  center  film  thickness  curves 

a t  a constant   center   pressure  for   the  s t ra ight-exponent ia l   lubr icant .  

In  general,  the  dependence of load on the  pressure-viscosi ty   coeff ic ient  

cy and the  center  pressure  in  the  present  analysis  confirms  Christensen's 
- 

conclus ions :   f i r s t ,   fo r  a given  center prP-s:;:lre, the  load i s  s t rongly 

dependent upon the  pressure  viscosi ty   coeff ic ient ,   i .e . ,   the   higher  

cy produces much smaller  load For  example, the  load  for r 12.8 
- 

and Po = 100,000 p s i  (6.894  x  10 N/m ) i s  approximately  equal t o   t he  8 2  

load  for = 9.8 and Po = 25 , 000 p s i  (1.723  x 10 N/m ) ; and second, 8 2  

once the   cen ter   p ressure   i s   suf f ic ien t ly   h igh ,   the   increase   in   load  

i s  negl igibly  small   for   fur ther   increase  in   center   pressure,   i .e . - ,  

the  load becomes insensi t ive  to   the  center   pressure.  As described 
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before  in  Section 3.2, t h i s   i n s e n s i t i v i t y  of load  to   the  increase  in  

center  pressure i s  caused by a s t rong  pressure-viscosi ty   coeff ic ient  

cy. Thus,  one  would expect  that i f  the   increase  in   viscosi ty   with  pres-  

sure  is  mi lder ,  the  load becomes more dependent upon the  center  pres- 

sure ,   as  w i l l  be seen   i n   t he   r e su l t s  of the  composite-exponential 

lubricant .  

- 

Also i n  Fig.  1-15,  a  quantitative  comparison is made between 

the  load  curves  obtained by Christensen E43 and those  calculated from 

the  present  analysis.  On the   r igh t   s ide  of the minimum load,  the two 

theories shows f a i r l y   c l o s e  agreement,  the  present  analysis  yielding 

a s l ight ly   higher   load.  This slight  discrepancy  in  load is a t t r ibu tab le  

t o  two e f f e c t s :   f i r s t ,   t h e  approach  velocity  in  the  present  analysis 

i s  higher  than  that   in E41 where the  local  deformation  velocity i s  

neglected,   result ing  in  stronger  squeezing  action on the   f lu id  by the 

cyl inder ,  and second,  the  effect of the  compressibil i ty of the  lubricant ,  

which was also  neglected  in  [43. On t h e   l e f t   s i d e  of the minimum load, 

the   e f fec t  of the  local  deformation  velocity becomes very  important, 

and the  present  theory  gives  considerably  higher  load  than  Christensen's 

results.  Furthermore,  there i s  also  considerable   difference  in   s lope 

between the two r e su l t s .  The present  theory  predicts a much s teeper  

slope on the l e f t  s ide  of the minimum load,   indicat ing  that   there  is 

v i r t u a l l y  no reduct ion  in   the  center   f i lm  thickness   while   the minimum 

film  thickness  steadily  drops  to  zero  as shown  on Fig. 1-15. 

It should  be  noted  that  the maximum load  obtained  in  the  present 

analysis  is substantially  less  than  the  corresponding  Hertzian  load 

based on the same center  pressure.  This r e su l t   d i r ec t ly   con t r ad ic t s  
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Christensen's  conclusion  that   the  load  increases  to  the  Hertzian  load 

as the minimum film  thickness  decreases  to  zero.  

As shown on Fig. 1-18, one may f ind   t he   va r i a t ion  of center  pressure 

a t  a constant  load  during  the  normal  approach of the two cyl inders  from 

Fig.  1-15 and 1-17. I f  a h o r i z o n t a l   s t r a i g h t   l i n e  i s  drawn a t  any 

specif ic   load on Fig.  1-15  or  Fig. 1-17, depending upon the  lubricant  

used,  the change i n  P with  decreasing  center  f i lm  thickness  can  be 

determined  from  the  intersection of t h e   s t r a i g h t   l i n e  and load  curve. 

The center   pressure  gradual ly   increases   with  decreasing  center   f i lm 

thickness,  and then  increases  abruptly  to  the maximum value;   the  maxi- 

mum i s  much l a rge r   t han   t he   i n i t i a l  p . The center   p ressure   f ina l ly  

decreases   rapidly  for   fur ther   decrease  in   center   f i lm  thickness .  

0 

0 

In  Figs. 16 and 1 7 ,  r e s u l t s  of  the  composite-exponential  lubricant 

show that   in   general ,   the   loads  are  much larger  than  the  corresponding 

loads  for   the  s t ra ight-exponent ia l   lubr icant .  The change i n  load  with 

the  center   f i lm  thickness ,   or   with  the minimum fi lm  thickness ,  i s  some- 

what moderate. No abrupt  increase  in  load is  seen. The most not iceable  

e f f e c t  produced by the  composite-exponential  lubricant i s  the   re la t ion-  

ship between  load and center  f i lm  thickness.  The load i s  strongly  de- 

pendent upon the  center   pressure.  

3.5 Approaching Velocity 

As mentioned in   Sect ion 2 . 2 . 3 ,  the  center  approach  velocit ies 

shown on Fig. 1-19 a re   no t   the   absolu te   ve loc i t ies  - the  
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v e l o c i t i e s  of the  approaching  cylinder  center  they  are  the  relative 

center  approach  velocit ies,  i.e., the  t i m e  de r iva t ive  of the 

center   f i lm  thickness .  However, i t  is  known t h a t   i n   t h e  normal  approach 

problem  of EXD lub r i ca t ion   t he   d i f f e rence  between them i s  negl igibly 

small. 

It i s  apparent  from  Fig.  1-19  that  the  center  approach  velocity 

V decreases  with  decreasing  center  f i lm  thickness  at  a constant  center 

pressure,  and the  rate of reduct ion   in  V is a funct ion of H and P . 
In   the   reg ion  of high H the  center  approach  velocity  approximately 

varies  with  the  square of the  center   f i lm  thickness   for  a given  center 

pressure.  This trend  agrees  with  that   predicted by the  normal  approach 

so lu t ion  between two r ig id   cy l inders .  This parabol ic   re la t ion  between 

H and V ceases   to   ex is t   as  H i s  reduced t o  a certain  value  depending 

upon P . For  example, f o r  Po = 1.25 x 10 p s i  (8.617 x 10 N/m ) and 

H approaching 3 x V decreases   rapidly  for   fur ther  

decrease   in  H . For low center   p ressure ,   th i s   t rans i t ion   occurs   a t  a 

much smaller  value of H . The rapid  reduction of the  center  

approach  velocity  for  high  center  pressure  can  be  explained by con- 

sidering  the  f low  quantity  through  the gap between the bump and the  

f l a t   s u r f a c e ,  The gap i s  not more than  10  microinches so  t h a t   t h e  

lubricant   f low  through  this  gap i s  very  small;  consequently  very l i t t l e  

squeezing on the   lubr icant  i s  necessary  to  maintain a constant P 

0 

0 0 0 

0' 

0 0 0 

5 8 2  
0 

0 0 

0 

0 

0 .  

It i s  in t e re s t ing   t o   no te   t ha t   t he   cen te r   ve loc i ty  V required  to 
0 

produce a high  center  pressure Po a t  a constant  center  f i lm  thickness 

H is considerably  lower  than  that   for a lower P . This t r end   d i r ec t ly  

opposes  that  based on the   r ig id   cy l inder   theory   for  which a g rea t e r  

0 0 



P requires  a high  center   veloci ty  V a t  a same center  f i lm  thickness 

This  discrepancy  can be accounted f o r  by the  deformation  effect. 

0 0 

HO' 

A t  a higher  pressure,   the  contact  region is larger,   the  squeezing 

act ion is thus much more e f f ec t ive ;  and it  requires  a smaller  center 

velocity  to  produce  the  required  center  pressure. 

Fig. 1-20 shows t h e   r a t i o  of l oca l  approach  velocity  to  center 

approach veloci ty   vs .  H/W for   th ree   po in ts  of the  contact  region 

X = -0.25, -0.5 and -0.75. For the  sake of  comparison,  typical  data 

from [SI are   a l so  shown  on Fig. 1-20. As expounded in  Section 2.2.3, 

i t  is  known that  local  approach  velocity  varies  along  the  contact 

surface and the most severe  variation  occurs when the f i l m  thickness 

i s  very  small. The data  from t5I  is  based on the  assumption of iso- 

viscous  lubricant,  which shows the   var ia t ion  of loca l   ve loc i ty  i s  

relat ively  small  compared with  that   for   the  lubricant  of var iab le  

viscosity.   This comparison c lear ly   ind ica tes   tha t  i t  is  much more 

d i f f i c u l t ,  sometimes  almost  impossible,  to  obtain  the converged solu- 

t i on  when the  center  f i lm  thickness i s  small  because  controlling  the 

local  velocity  numerically between two successive  i terat ions i s  very 

d i f f i c u l t .  
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CHAPTER 4 - SUMMARY OF RESULTS 

It has  been found that  the f u l l  .s3l.gtion of the normal approach 

problem of two elast ic  cylinders,  with a compressible  lubricant between 

them  whose v iscos i ty  varies exponerltially  with  pressure, can  be obtained 

by solving  numerically  the  coupled  transient Reynolds equation and the 

elasticity  equation  using a combination of d i r ec t   i t e r a t ion  and Newton- 

Raphson  method. 

The resu l t s  show that:  

1) In  general,  the  pressure  profile  for  the  straight  exponential 

lubricant shows a sharp  spike  near  the  contact  center; a 

higher  center  pressure  or a higher  pressure-viscosity  coef- 

f i c i en t   r e su l t s   i n  a steeper  pressure  profile a t  the  contact 

center. However, f o r  the  case of the  composite-exponential 

lubricant  the  steepness of the  pressure  profile  at   the con- 

tact   center does not depend so  strongly upon the  center  pressure. 

2 )  For a l l  cases  studied, a pocket i s  formed elaszical ly  on 

the  cylinder  surface  near  the  contact  center  during  the 

ear ly   s tage of the normal approach, and i t  remains  without 

much change in  i t s  shape unt i l   the   f ina l   s tages  of the normal 

approach, resu l t ing   in  a quantity of lubricant  inside  the 

pocket  being  entrapped. Thus, the  film  profile  never  reaches 

the  semi-elliptical  Hertzian  shape  as  suggested by 

Christensen [4I. The depth  of  the  pocket i s  dependent upon 

the  center  pressure  for a l l  cases  investigated.  In compari- 

son,  the  pocket depi-h for  the  composite-exponential  lubri- 

cant i s  much deeper  than  the  corresponding one for  the 
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straight-exponential  lubricant. 

3) In  general,  the  load  increases  very  rapidly from i t s  minimum 

value  with  virtually no reduction  in  the  center  film  thick- 

ness. %is r e su l t  can  be at t r ibuted  to   the  fact   that   the  

entrapped  lubricant  inside  the  pocket i s  effectively  pres - 
surized  further by closing  the gap between the minimum fi lm 

thickness and the  f lat   surface.   This  pressurization,  in 

turn, deepens the  pocket  depth  further. Thus, f o r   a l l  

cases  investigated,  the la>ild never  increases  to  the  Hertzian 

load  based on the same center  pressure as the minimum film 

thickness  decreases  to  zero.  In  contrast  to  the  cases  for 

the  straight  exponential  lubricant where for  a suf f ic ien t ly  

high  center  pressure and a t  any given  center f i l m  thickness 

the  load i s  insensitive  to  the  center  pressure,  the  load  fo 

the  composite-exponential  lubricant i s  strongly dependent 

upon the  center  pressure. 

4 )  A t  early  stages of the  noma1  approach,  the  local  approach 

velocity does not  deviate from the  center  approad1  velocity. 

However, during  the  f inal   stages,   the  ratio of local  velocity 

to  center  velocity  greatly exceeds unity,   indicating  that   the 

center  film  thickness i s  almost  constant  while  the  film 

elsewhere  continuously  decreases.  For a given  center  film 

thickness , the  center approach velocity r'2qtt!Lred :IO produ.ce 

a higher  center  pressure i s  considerably lower than  that 

for  a lower pressure.  This  trend i s  more pronounced a t   t he  

f inal   s tages  of the normal approach when the  deformation 

overtakes  the  geometrical film thickness. 
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APPENDIX  A 

QUADRATURE FOR INTEGRATION OF ELASTICITY EQUATION 
* 

Refer r ing   to   [ l3 ]   for   de ta i led   der iva t ion ,   the  normal displace- 

ment f o r  any x on the  surface  of   semi- inf ini te   sol id  due t o   v e r t i c a l  

forces  i s  given by 

where the symbol l Z  - X I  represents   the   pos i t ive   d i s tance  between the  

force  element at Z and the   po in t  of i n t e r e s t   a t  X as  shown  on Fig. A-1. 

I -%I 
" c 

Fig. A-1 

Since  the  integrand i s  s i n g u l a r   a t  X = Z ,  the  numerical  quadrature 

formula  should  be  developed  in  such a way t h a t   t h e   s i n g u l a r i t y   a t  X = Z 

can  be removed. It consists  of  approximating  the  function P by a para- 

bolic  polynomial  in  each  subinterval,   performing  the  integration  in 

c losed  form  in   the  subinterval ,  and  summing over  the whole region of 

in tegra t ion .  
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We subdtv ide   the   r igh t   ha l f   o f   the   contac t   reg ion   in to  N sub- 

in te rva ls ,   requi r ing   tha t   the   wid ths   o f  two consecutive  subintervals 

equal and assuming  the  pressure  dis t r ibut ion i s  known.  Then 

where 

The parabol ic   representa t ive  of the   p ressure   d i s t r ibu t ion   in   the  

subin terva l  [Zj  , Z j + l l  i s  

where 

From ( A . 4 )  , 

- . "" . - . .... 
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where 

Df "(An l Z  - XI} = JJJ An lZ - XldZ 

-2 r ' 1  3 2 
D~ \An lz - xlj. = ;i (z 2 - X) anlz - X I  - z (Z - X) 
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Subs t i tu t ing  (A.8) i n  (A.6) and some manipulation  yields 

j 

1 2' 31 L e t  u = Z j j - %, uj+l = 'j+l - X a n d S  = -  u j   L a n b j I  - rJ 
with  these  var iables  and not ing   tha t  a t  the  end poin ts  of each  sub- 

i n t e r v a l   i n   t h e   i n t e r i o r  of [- X 03,  there  i s  exact   cancel la t ion of 

the P (Z) contr ibut ion,  Eq.  (A.9) is r ewr i t t en  as: 
K I  , 

m 

- u  j+l ('j+l 6 uj+l 
- -  ')I (A. 10) 

Subs t i tu t ing  E q .  (A.5) f o r  PI and PI' i n  (A.lO) and summing over 

t h e   e n t i r e   i n t e r v a l .  We obtain,  

(A. 11) 

where 
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f I) 

and 

* 
The  quadrature  formulation  for  the  singular  kernel  in  the  integrand 
written  here  is  exactly  the  same as that  of  Ref. . 
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APPENDIX B 

CALCULATION OF MATRIX ELEMENTS IN EQ. ( 6 4 )  

For coonvenience, Eq. ( 6 3 )  and ( 6 4 )  are  rewritten  below 

KO 

KO 

- (8P HZ V o,m ) { 1 [Ym(-Xi) - W m 7. l,m (H - 1) ] AXi 
i=K+l/  2 gi ,m 

j=l 

The  calculation of the  matrix  elements  in [ A - Y  (P)] involves  the 

differentiation of {Ym(P)] with  respect  to {P '5. Before  differentia- 

tion, Eq. ( 6 3 )  is rewritten  in  the  following  form: 

m 

m 



where 

KO KO - 
Tc = 1 [Y (-xi) - wm Pi,m (H - l)] Axi+ wmc3 L L(- s , - z j )  Pj,m 

c 
m 

i=K g i  ,m j=1 
(B.2) 

and 

The variables,  %+1/2 ,m and 'K+l/2 ,m' 
are  expressed  as  the  average 

of the two values  at  -5 and -SF1 as: 

1 
'K+l/Z ,m = 7 ( I K + l , m  

1 - 
%+1/2,m - ('K+l,m 0 . 4 )  

The 'K+1/2 ,m and 'K+1/2 ,m 
1 pressure, - 2 ('K+l,m K,m + P ) and expressed below: 

are  taken  as a function of the  average 

- - - 
PK+1/2,m 1 + P  

The derivative of the  variables  in Y (P ) are  derived below: m K+1/2 

where 
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6 = 1  
S 

6 = o  
S 

f o r  j 2 K 

f o r  j < K 

and 

i = K  

I n   t h i s  way, we can  take  into  account   the  effect  of the  pressure 

d i s t r i b u t i o n   i n   t h e   i n l e t   r e g i o n  on D - the   deformation  a t   the  

dividing  point  between t h e   i n l e t  and middle  region,  since D is  

strongly  dependent upon the   i n l e t   p re s su re   d i s t r ibu t ion .  

KA,m 

m,m 

I f  j = K o r  K + 1, then 

= -  1" 
2 CY 'K+l/2,m 

- 
apK+l/2 ,m a 

ap =-(1" ap l + - A  1 P 
j ,m j ,m 2 1 K+l,m K,m + P  

Since  the  deformation, D depend upon the   overa l l   p ressure   d i s -  
K,m, 

t r ibut ion,   the   der ivat ive  of  D with  respect   to  any P e x i s t s .  
K,m j ,m 
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Thus 

(B. 10) 

where 

The reason  for  summing the  products of the  deformation  kernel and 

the   i n l e t   p re s su re   r a t io   ove r   t he   en t i r e   g r id   i n   t he   i n l e t  

region is  to   t ake   in to   account   the   e f fec t   o f   the   in le t   p ressure  

d i s t r i b u t i o n  on D a , m +  DKA+l,m' 

Using E q s .  (B. 7) , (B. 8), (B. 9) and (B. 10) , the   der ivat ive of 

*m "Kt-1 / 2 ) i s  wri t ten  as :  
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(B. 11) 
cont . 

where 

6 = o  
U 

j # K, K+I, 

6 = I  j # K, K+I, 
U 

and 

6 = 1  j = K-l-1, 
g 

6 = -1 j = K .  
g 

Eq.  (B.11) i s  one of the  typical  matrix  elements.  The expanded 

form of Eq. ( 6 4 )  is 

(B. 12) 
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I$ 
, 

The pressure  correct ion t e r m  a t   the   contac t   cen ter ,  “KO, m 5 
i s  

not  necessary  since  the  center  pressure is assumed t o  be constant. 

The center   ve loc i ty  V is  kept  constant  during  the  calculation of 

the  pressure  correction  terms. The center   ve loc i ty  i s  recalculated 

a f t e r   t h e  converged  solution  for  the  pressure  distribution  in  the 

middle  region i s  obtained. 

0 r m  
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APPENDIX C 

COMPUTER  PROGRAM  FLCW DIAGRAM AND FORTRAN LISTINGS 

Fig.  C - 1  
F l o w   C h a r t  For 
P r o g r a m   E l a s  t o  

COMPUTE CONSTANTS 
I 

1 
4 

I ASSUME FILM PRESSURE  T  TIME STEP 
I 

SET U P  SYSTEM  EQUATIONS 

BY THE NEWTON-RAPHSON  METHOD 

OBTAIN NEW Pm I N  THE 

1 CALCULATE I N A T  PRESSURE BY 
LINEAR  INTERPOLATION 

c 
CALCULATE 'lm 3 Pm 9 Hm > Vom 

BY NEW Pm 

" 

4 

4 YES 

I S  THE CONVERGED SOLUTION  FOR 

REGION  OBTAINED 
NO THE PRESSURE IN THE MIDDLE 

I OBTAIN THE INTEGRATED 
INLET  PRESSURE 

I S  THE CONVERGED SOLUTION  FOR THE 
OVERALL PRESSURE  DISTRIBUTION  OBTAINED 

NO 

1 YES 
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3 5 5  
146 
1 3 3  

115 

111 
111 

1 1 7  

791 

214 

L 

32% 

324 
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a 

a 1 

%= p, a 

b 

b B = -  
PO 

C 

c1 

c2 

c3 

d 

E 

E2 

h 

h' 
0 

h 
0 

h 
g 

LIST OF SYMBOLS 

Half  of  Hertzian  width 

coefficient of density 

coefficient  of  densety 

constant  in  deformation  formula 

constant  in  deformation  formula  of  cylinder  1 

constant  in  deformation  formula  of  cylinder  2 

coefficient  of  deformation  formula 

Deformation 

Equivalent  Young's  modulus 

Young's  modulus of cylinder  1 

Young's  modulus  of  cylinder  2 

Film  thickness 

Rigid  center  film  thickness 

center  film  thickness 

geometrical  film  thickness 
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hm 

h 

i 

m 

N/m2 

P 

p = -  P 

'HZ' E 
R 

R1 

' R2 

Minimum film  thickness 

A dummy index 

See Eq. (B. 7) 

A dummy index 

A dummy index 

See Eqs. (42) , (43) and (44 )  

See Eq.  ( 6 2 )  

An index  for  time step 

Newton/meter 

Pressure 

Center  pressure 

2 

Hertzian  pressure 

Radius  of equivalent  cylinder 

Radius of cyl inder  1 

Radius of cyl inder  2 

See Eq. (B.lO) 

t t i m e  

T =-t 0 

R 
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v 

V 
0 

m s  v = -  
o,m ER 

Vd 

X 

W 

5 

5 
a 

= -  

CY 

B 

Approach ve loc i ty  

center  approach  velocity 

Deformation ve loc i ty  

coordinate  along  f i lm 

Coordinate  separating  the  inlet  and middle  region 

Load per  unit   width  of  cylinder 

Dummy coordinate  along  f i lm 

Pressure-v iscos i ty   coef f ic ien t  

Second pressure-v iscos i ty   coef f ic ien t  

- 6  B = -  P 
0 
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Ym(-’k> 

V 1 

P 

PS 

See Eq. (60) 

v i s c o s i t y  

Ambient v i scos i ty  

Poisson’s   ra t io  of cylinder 1 

Poisson’s   ra t io  of cylinder 2 

See Eqs. (56), (57) and (58) 

System equation 

Derivative of Y (p)  with  respect  to p m m 

Dens i t y  

Ambient densi ty  
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Fig. 1-1 Geometry of the  normal  approach  elastohydrodynamic  problem. 
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Fig. 1-2 The  relation  between  viscosity and pressure  for  a  composite- 
exponential lubricant. 
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H =  

l ub r i can t ,  G = 3180, p, = 5 x lo4 p s i  
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Fig. 1-4 Pressure and deformation  profiles,  straight  exponential 

lubricant, G = 3180, Po = 7.5 x 10  psi 4 
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Fig.  1-5 Pressure  and de fo rma t ion   p ro f i l e s ,   s t r a igh t   exponen t i a l  
x = x l a  

l u b r i c a n t ,  G = 3180, p, = 10 p s i  5 
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Fig. 1-6 Pressure and deformation  profiles,  straight  exponential 
X = x/a 

lubricant, G = 3180, p = 1.25 x lo5 psi. 
0, 

1.0 
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p = PIP, 

0.4 

0.2 

79 

L 



\ 

14.0 x 

Line  Center  Film  Thickness \ 
1 10.7 x \ 

\ 
\ 
\ 
\ 

PIP, 

H -  

X = x l a  
Fig.   1-7  Pressure and de fo rma t ion   p ro f i l e s ,   s t r a igh t   exponen t i a l  

l u b r i c a n t ,  G = 3180, p o =  1.5 X lo5  p s i .  
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1-8 Pressure and deformation  profiles,  straight  exponential 

l ub r i can t ,  G = 5000, p, = 5.0 x lo4 psi. 
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Fig. 1-10 Pressure and deformation  profiles,  composite  exponential 
X = x/a  

lubricant, Po = 7.5 x 10 psi, G = 3180. 4 
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(a)  Composite  exponential  lubricant. 

Fig. 1-ll Pressure  and  deformation  profiles, p, = 10 psi, G = 3180. 5 
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(b)  Comparison  between  straight  and  composite 
exponential  lubricant. 

Fig. 1-ll Pressure  and  deformatioa  profiles , po = 10 psi, G = 3180. 5 
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Fig. 1-13  Pressure and deformation  profiles,  composite  exponential 

0.5 0.0 

lubricant = 1.5 x 10  psi, G = 3180. 5 
' Po 

87 



3 .O 

w =  !- 
ER 

2.0 

1.0 

O.( 

G = 3180 

- - - G = 5000 

Line Max. Pressure (Psi) 

1 1.5 x  10 

2 1.25 x  10 

3 1.0 x  10 

4 0.75 x  10 

5 0.5 x  10 

6 0.25 x 10 

7 1.0 x  10 

8 0.5 x 10 

5 

5 

5 

5 

5 

5 

5 
5 

9 a po = 7.e 

10 a p, = 10.0 

"- Christensen's Data 

Ho = ho/R 

Fig. 1-14 Variation of load with  center film thickness,  straight 
exponential lubricant. 
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Fig.  1-15 Var i a t ion  of load  with  the minimum f i lm   th i ckness ,   s t r a igh t  
exponent ia l   lubr icant .  
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Fig.   1-16  Variation of load  with minimum film,  composite  exponential  
l ub r i can t .  
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Fig. 1-17  Variation of  load with  center film, composite  exponential 
lubricant. 
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Fig, 1-20 Variation of local  approach  velocity  with  the  ratio of 
center  film to  load. 
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