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SUMMARY

Results of the present theory on the normal approach elastohydro-

dynamic problem show that:

1.

The features of pressure and deformation profiles during the
early stages of the normal approach agree well with those
obtained in Ref., 4, which neglects the influence of the

local approach velocity. The steepness of the pressure
gradient at the center is strongly dependent upon the
product of the pressure-viscosity coefficient and the center
pressure. This strong dependence is removed if a smaller
pressure-viscosity coefficient is used at high pressures,.
During final stages of the normal approach, present theory
yields considerably different results from those in Ref. 4.
The local approach velocity at the edge of the contact
region becomes far greater than the center approach velocity,
and finally entraps a pocket of the lubricant at the center
of the contact, Both the deformation and pressure profiles
never converge to the dry contact Hertzian distribution,

For a normal approach process under a constant load, the max-
imum center pressure can exceed that of the maximum Hertzian
pressure depending upon the pressure-viscosity coefficient,
By introducing the composite-exponential model for the
pressure-viscosity dependence, the maximum center pressure

is much reduced.

The inclusion of the lubricant compressibility in the analysis
gives arise to a slightly higher load than the incompressible

solution.
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CHAPTER 1 - INTRODUCTION
1.1 Introduction

Whenever any two lubricated contacts approach each other along
their common normal under a heavy load, highly localized pressures are
generated by the squeeze film action within the conjunction, The deter-
mination of the pressure distribution due to the squeeze action consider-
ing the surface deformation is known as the normal approach problem in
elastohydrodynamic (EHD) lubrication,

The squeeze-film action occurs frequently in many machine components
such as gear teeth contacts, cams, and rolling element bearings during
transient loadings. The normal approach problem has a special signifi-
cance in the so-called partial EHD contacts in which the asperity heights
approach the same order of magnitude as the film thickness., Under these
conditions, the entering of any asperity into the conjunction zone is equi-
valent to the squeeze-film EHD problem between a contacting body and a
flat plate,

Mathematically, the normal approach problem differs considerably
from the conventional rolling and sliding EHD theories [1,2,3). For
the rolling problem, the pressure and film distributions are steady-
state: whereas for squeeze-film problem they are time-dependent and
must be obtained by solving the transient Reynolds equation coupled
with the elasticity equation. Because the pressure gradient varies
inversely with the third power of the film thickness and the viscosity
for most lubricants varies exponentially with pressure, the two coupled
equations are highly nonlinear, So far, no analytical solution has

been found for these equatioms,



In 1961, Christensen [4] introduced the first numerical solution
to the present EHD problem for an incompressible lubricant with an
exponentially varying viscosity. In his solution, he has neglected
the squeeze-film action due to the change of deformation. This
effect was recently shown to be significant at small film thickness
by Herrebrugh [57] in a semi-analytical solution for an isoviseous
and incompressible lubricant. Moreover, Christensen was not able to
obtain convergent solutions in the final stage of the normal approach
because of numerical difficulties,

The present investigation is aimed toward seeking a more effec-
tive numerical solution for the transient EHD problem which is capable
of achieving the following:

1. remove the convergence difficulties at small film thickness,

2, incorporate the effect of deformation rate,

3. admit any arbitrary variation of viscosity with pressure,

4, incorporate the effect of the lubricant compressibility.

1.2 Previous Investigations

In spite of the practical significance of the normal approach
problem, it has received relatively little attention in the literature.
Before the theories of EHD had been fully developed, Bowden and
Tabor [6] studied the nature of contact between two colliding solids -
the collision between a soft metal surface and a steel ball when it
is dropped from a certain height. Initially, they were concerned with
the plastic deformation on the dry metal surface by the hard ball

dropped from a measured height. The initial contact is so small



that the impacﬁ pressure momentarily reached a wvalue higher than the
yield stress of the soft metal., The permanent indentation occurred on
the flat surface when a ball of 1 cm diameter was dropped from a
height of only 2 cm. To examine the effect of lubricant on the inden-
tation, they lubricated the flat surface with a viscous fluid, and
by the electrical conductance method, they detected metallic contact
and the duration of contact before the ball rebounded. The experi-
ment with a less viscous lubricant did not give any different results
compared with those of the dry contact case. The amount of metallic
contact and the impact time were not altered. However, the experiment
with a highly viscous fluid showed that during impact metallic
contact did not occur at all, but the flat surface yielded leaving a
permanent indentation. This means that the fluid pressure in the
contact zone at any stage increased beyond the yield stress of the
soft metal. They explained the phenomenon of surface separation by
comparing the impact time with the time required to have the fluid
in the contact region squeezed out completely, If the impact time is
less than the squeezing time which depends upon fluid viscosity, then
direct metallic contact is not possible. It is also seen from their
experiment that the permanent indentation on the lubricated flat
surface showed a sharp conical shape with the central depth deeper
than that of the spherical indentation produced by dropping the ball
on a flat surface from the same height.

For the first time, Christensen {47 made a theoretical study
of the normal approach problem of two cylinders in which he considered

the viscosity of fluid varies exponentially with pressure and the



contact surfaces are elastic, He solved simultaneously the two govern-
ing equations - the transient Reynolds equation and the elasticity
equation - in time sequence as the gap between the two cylinders de-
creases, By assuming that the velocity normal to the contacting sur-
face is uniform within the film, and by employing a direct - iterative
procedure, he was able to obtain a converging solution for successive
intervals during the normal approach. However, when the gap becomes
very thin, the numerical procedure using the direct iteration method
presents great difficulties and Christensen was not able to obtain the
convergent solutions in this important region. Moreover, the assumption
of a uniform velocity is valid only when the film thickness is large
compared to the deformation. For the small film thichnesses, the local
normal velocity not only exceeds the center normal velocity but also
varies drastically along the contact surface., As it will be seen later
in this work, the local normal velocity at the minimum gap can be order
of magnitude more than the center velocity.
Based on his theoretical work, Christensen concluded:
1, When two elastic cylinders, lubricated with oils whose

viscosity varies exponentially with pressure, approach

each other, very high pressures in excess of the maximum

Hertzian pressure can be developed in the fluid film,

The elastic deformation forms a pocket shape with the



contact., As the film thickness further reduces, the deforma-
tion tends to flatten out and eventually converges to the
shape of a Hertzian flat.

2, For a given load applied to the cylinders, the maximum
pressure at the contact center depends upon the parameter,
oE. Harder material and oil with a high o yield a higher
center pressure during the approach.

To make qualitative comparisons with his theoretical results,
Christensen also conducted a series of experiments similar to Bowden
and Tabor's work [6] by dropping a ball on a lubricated flat surface
from a predetermined height. The main objective in his experiment
was to determine the effects of material properties on the permanent
indentation on the flat surface. To achieve this, he used several
pairs of balls and flat surfaces having different material properties,

He succeeded in proving that under a constant load, the maximum
transient pressure in the fluid film increases when the parameter oE
increases. However, he emphasized that this correlation is strictly
qualitative since the theory is based on the assumptions of an elastic
cylinder, whereas the actual experiment involves elastic-plastic de-
formations between a sphere and a flat,

Recently, Herrebrugh (5], in an attempt of solving the normal
approach problem of two cylinders, formulated a single governing
equation by combining the Reynolds equation and the elasticity equa-
tion, Since he obtained the solution only for the isoviscous case
which is far removed from the reality of the problem, his solution is

not complete and his method of solution eventually relies on the
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numerical method, it is hard to see any advantage in his solution
scheme. The solution of this integral-differential equation - the
governing equation - is obtained by the method of successive approxi-
mations with a semi-numerical procedure. He obtained solutions for
the isoviscous case with the same assumption used by Christensen, that
is, the normal velocity is uniform within the contact. However, his
solution only covers regions of high and moderate film thicknésses.
For extremely thin films, the method of successive approximations
fails to converge,

Herrebrugh also noted that as the film becomes small, the ratio
of the local velocity to the center velocity begins to depart from unity.
This demonstrates that the assumption of a uniform velocity is no longer
valid at small film thicknesses. For the isoviscous case at the small
film thickness where he begins to experience convergence difficulty,
the ratio of local velocity to center velocity varies from 0.75 to
1.25. It will be shown in the present work that the pressure-viscosity
relation has a very strong influence on the ratio of local to center
velocity at small film thickness, When the effect of variable wvis-
cosity is included in the solution, the local velocity at the edge

of the contact can be as many as ten times the center velocity.



CHAPTER 2 - MATHEMATICAL FORMULATION
2,1 Geometry

As shown on Fig. 1-1(a), when the two cylinders approach each
other along the line connecting their geometrical centers under a
heavy load, the lubricant between them is pressurized by the squeez~-
ing action of the two cylinders. The contact region where the pres-
sure is much higher than the ambient pressure is very narrow compared
with the radius of the cylinder., This fact will be utilized in the
development of the film thickness formula. The present analysis is
mainly concerned with the phenomena occurring in this narrow contact
region during the normal approach of the two cylinders,

In order to facilitate the mathematical analysis of the problem,
the contact between the two cylinders as shown on Fig. 1-1(a) is re-
placed by the equivalent cylinder with a near-by plane as shown on
Fig. 1-1(b). The geometrical requirement for this conversion is that
at equal value of x the separation between the two cylinders should
be the same as that between the equivalent cylinder and the flat sur-
face,

From Fig. 1-1(a),

( (x >2>1/2 r (x >2 1/2

- t - - - =

hg = ho + Rl[l 1 R1 J‘+ R2L1 (1 R2 ) ] ¢y
where h_ is called the geometrical film thickness and hé is the

separation on the line of centers.

Eq. (1) can be expanded to give,
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Since the width of the contact region is very small, (%—) and C%—)
: 1 2
are both small compared to unity, Thus, by neglecting the terms
higher than the second power in Eq. (2), we obtain the approximate

separation between the two cylinders,
2
b Tn i (el 3)

Eq. (3) can be rewritten as,

2
o X
b, Thl+ 5 )
1 1 1
where R~ R + R .

R=-L2_ (5)

then the geometrical requirement for the conversion from Fig. 1-1(a)

to Fig. 1-1{(b) is satisfied,

2.2 Governing Equations
2,2,1 Elasticity Equation

In the development of the displacement equation a number of




assumptions can be made based on the relatively small width of
the contact region where the pressure is higher than the atmos-
pheric pressure: the contact region is very small compared with
the radius and the length of the cylinder; the displacement is

in the state of plane strain; and the tangential displacement

is neglected because it does not have significant effects on the
lubricated contact surface. The normal displacement by the pres-
sure in the fluid film is calculated on the semi-infinite plane
and then added to the rigid geometrical film thickness. The
displacement equation is derived in Appendix A and is shown

below,
2 o
@) = - 2E=Y [ pigtym |g- x| a8+ c 6

The constant C is eliminated by including it in the center
film thickness formula. Due to this constant the displacement
is not absolute but a relative quantity.
The film thickness between two cylinders is the sum of the
rigid geometrical film thickness and the deformations - displace-

ments - of two cylinders.

2 2
- ! X _ L X
h{,t) = ho(t) + 2R1 + 2R2 + dl(x,t) + dz(x,t) + cq + e, (7)

From Eq. (7),



21 - v )

h(o,t) = h (t) - I p(&,t) n|EldE

T
2

2(1 - v,7) .
- —-—TTTZ— L p(E,t) tn|E|at + c; + o (8)
From Eq. (8),

2(1 - v 2y
¢, + ¢, = h(o,t) - h!(t) +——ﬂ—-——— J‘ p(E,t)4n|E]dE
1

21 - v, )

+—ﬁ— J p(E,t)fn|E]ag 9
2

Substituting Eq. (9) for ¢y + ¢y in Eq. (7) we obtain

2 2 2 - v I c
hee) = RO+ J + - - p(E,0) 40 S EL ag
2 - ¢ ) g - x
c— | f o (E,t) In ag (10)

Let h(o,t) = ho(t), which is the center film thickness including
implicitly the center deformation,

Define E as,

2 2
l=l(1_v1+1_v2> (11)
E 2 E1 E2

where E,, E, and Vis Vv, are Young's modulus and Poisson's

10



ratio of cylinders 1 and 2, respectively.
Using Eq. (11) for E and recalling % = %f +'%—, Eq. (10)

1 2
becomes,

2 n®
hGat) = () + 55 - 7% | p(so0m =l as (12)

which is the film thickness between the equivalent cylinder and

the flat surface,

2,2,2 Hydrodynamic Equation

The inertia force in the flow field between two cylinders
is negligible compared to the viscous force, which is the funda-
mental assumption in the derivation of Reynolds equation. 1In
the present study the transient, one dimensional Reynolds equa-
tion is taken as a governing equation for pressure distribution.
The one dimensional equation is justified by the fact that the
length of the cylinder can be assumed to be infinite if it is
compared with the width of the contact region. Further assump-
tions made in the hydrodynamic equation are: 1) the flow is
isothermal and 2) the weight of the cylinder is negligible in
comparison with the external force.

The governing equation for pressure distribution is

3
_a_ (.& _aE = _a_gfhl (13)
dx \l2u ox ot

11



Due to the symmetry of the contact surface at x = 0, the profiles

of pressure and film thickness are symmetrical at x = 0.

The boundary conditions for Eq. (13) are

p =0 at x = -
%E = 0 at x = 0 (14)

Eq. (13) is integrated from x = - x to X = 0 using the second

boundary condition of (14), thus we obtain

(15)

3 _ _ 12 J° a(ph) 4
ax 3 ot
ph™ -x

A new variable Q is introduced in order to facilitate the

use of several viscosity function in the governing equation. Q
is defined as:
1
=1-= 16
Q 0 (16)
where E = ﬁ— and b is the ambient viscosity.
s
The spatial derivative of Q is
99 _13(fny) % (17)
3x © 9p ox

The pressure derivative in Eq. (15) is replaced by Eq. (17), thus

we obtain

12
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P A (4 3(ph
Ro-t MR am as)
ph

-X

In the above equation the viscosity term is replaced by éi%;—ﬁl
which is the simple pressure - viscosity coefficient if E is an

exponential function of p.

Integrating Eq. (18) from x = - ® to x gives
X —
1 o(4n W) d(ph)
- =_]_2|,Lj[—————-—— dg | dx 19
Q- Qe s Vo b3 O J . ot (19)
where Q__ = O because at x = - ® the viscosity is the same as the

ambient viscosity.

The wvalue of Q at the film center is

Qy = = 12 ¥y ﬁ[p:; aésn ) E Ba‘i‘“) d€] dx (20)

The above equation will be used in the calculation of the center
approach velocity.

The instantaneous load per unit width of the cylinder is
the integral of the pressure distribution

0

w(t) = J p(x,t)dx (21)

-C0

2.2.3 Approaching Velocity

Since the deformation term in Eq. (12) is the relative defor-

13



mation based on the center deformation which is not known, the
approach velocity is also the relative velocity, not the absolute
velocity. However, the relative approaching velocity is incorpo-
ated in the formation of the present problem because, in general,
the difference between these two velocities is extremely small in
the regime of elastohydrodynamic lubrication, Of course, if one
would attempt to solve the impact problem of two cylinders like
the experiment of [6], he should find the absolute velocity which
plays the important role in the solution of the impact problem.

Differentiating Eq. (12) with respect to time we obtain

shee,e) _ ) 4 a
3t T m™E dt

-
j p (5, t)fn 15 %'x dg (22)
—

It is thus seen that the local approaching velocity consists of
two terms: the first is the approach velocity of the contact
center and the second is the velocity due to deformation-deforma-
tion velocity - which is also dependent on time and varies along

the contact surface,

oh, 4 D J” £ - x
Let Vo= 3¢ and Vd=?T—E-a—t--wp(§,t)Zn g dg
then Eq. (22) can be written as:
3h _
"V "~ Vg (23)

14



2,3 Viscosity and Density Variations

Both the viscosity and the density of the lubricant are assumed
to be functions of pressure only. Two types of viscosity functions
have been used in the present analysis. The first type is the straight
exponential relation between the viscosity and pressure. This relation

can be expressed as
b= p e (24)

The second type is the so-called composite-exponential relation between
the viscosity and pressure, 1In this relation, the viscosity increases
exponentially with pressure according to a large exponent in the low
pressure region and much smaller exponent in the high pressure region.

Mathematically, it can be expressed as

for p < Py

(op; + B - py))
L=p e for p > Py (25)

s
where P; = 40,000 psi and Py, = 70,000 psi.
The viscosity between Py and P, is increased asymptotically as
shown on Fig. 1-2,
The composite model was first introduced by Allen, Townsend and
Zaretsky [7]. Their viscosity vs. pressure curve consists of two
straight liﬁes on the semi~log paper with a2 discontinuous viscosity

gradient at p = 55,000 psi. Since this discontinuous gradient is

15



physically inconceivable, before employing their viscosity function in
the present analysis the discontinuity is removed as mentioned in the
above paragraph, Their theoretical spinning torque based on this
empirical equation of viscosity matched excellently with their measured
torque, The moderation of viscosity increase at high pressure seems

to be quite reasonable though the exact behavior of the lubricant
under the dynamic conditions is not known,

The primary purpose of employing the composite-exponential lubri-
cant in the present analysis is to understand what effects this lubri-
cant may exhibit on the pressure, film thickness, load and approach
velocity. By comparing the two solutions - the one based on the
straight exponential lubricant and the other on the composite - ex-
ponential lubricant - one would come up with the plausible conclusion
on which lubricant model yields the realistic solution in respect to
pressure and load during the normal approach.

To find out the effect of @ alone on the pressure profile, the
two different values of « in the straight exponential lubricant are
used in this investigation.

The density function used in this investigation is

- _bL_>
P ps<1 * 1+ alp (26)

where Py is the ambient density, and a; and b are the coefficients
determined from ASME Report [8]. Eq. (26) was originally introduced by

Dowson and Whitaker [9].
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2.4 Formulation of Eiastohydrodynamic Problem
2,4,1 Coupled Time-Dependent Elastohydrodynamic Equations
It has been shown in many previous works on EHD lubrications
that the solutions for pressure and film thickness must be com-
patible with each other, i.e., the pressure profile obtained from
the hydrodynamic equation with a certain film thickness profile
must be equal to the pressure profile required to deform the
contact surface to the same film thickness. This demands that the
hydrodynamic equation and the elasticity equation be solved
simultaneously at each instantaneous location of the cylinder.
The two major equations to be solved simultaneously for the

pressure and film thickness are:

dp _ _ 12 JO 3(ph)
% 3 >t 9 (15)
ch™ -x
2 (oe}
_ x4 g - x
h = ho + R TE Imp(g,t)f,n g dg (12)

2.,4,2 Normalization

Introduce the following non-dimensional variables,

P h _ ho X
Fep, > B 7k > Bo= g > X=35
o
12y 12p,
g s S _4d
2 > % TR % VT ® Y TR @D

17



Yo Py a = B8
T=% & Pyp=% > R T 4Py ’ B=p_; ’
- p - o al
W=gg o © " b 2 9= e Tl 273
P s Po po cont,

where & is the Hertzian half-width and the subscript "o indicates
the variables at the film center,

The normalized governing equations are written as:

op _ (1 6PHZV0}J:> JO 3 (—H) ax (28)
oX 3- oT
Hp -X

2
16P o
_ 2.2 ( HZ )J zZ-X
H=H +8P, K- \—— J_ P(Z,T) In =57 dZ 29)

Eq. (19) and (20) are normalized as follows:

=X _ _
- - (omgt,) | Bl |20 e ]ax (30)
g, - - {1z, J:, [;:13 A 1 Je 200 4 | ax (1)

The dimensionless load becomes

W= —t 5 L P(X,T)dX (32)

4PHZ

The dimensionless normal velocity is obtained by differentia-

18



2,5

ting Eq. (29),

2
16P o
M _ (%mz V3 z - X
57 = " 1 (—fﬁ———> ST Jm P(Z,T) in l—TET—l dz (33)

2

V=-v, [1 + (&) %E :f: P(Z,T) fn -li‘%-‘ﬁ dz:l (34)

From Eq. (31), we obtain the center normal velocity VO

- Q
V (35)

- J° [_1 a(zn ) £ a-gﬂ) dZ] ax

Method of Solution
2,5.1 Outline of Approach

Since the pressure and film profiles are symmetrical with
respect to the center of the contact, it is necessary only to
obtain solutions for half of a contact. TFor the present analysis,
the solutions are obtained in the left half of the contact. This
half region is further divided into two regions - the inlet and the
middle region. The division is made in such a way that in the
middle region the pressure gradient is far steeper than the
mild pressure increase in the inlet region,

In the inlet region, the pressure variation is less abrupt,
and the method of direct iteration can be applied here without

intrcvducing any convergence difficulties. In the direct itera-

19



tion, the pressure is calculated by the direct integration of the
hydrodynamic equation for the previously iterated film profile,
and the succeeding film profile is calculated by integrating the
elasticity equation according to the newly integrated pressure
profile. This method is simple and efficient, but is only ef-
fective for cases of relatively large f£ilm thickness. As demon-
strated by Christensen [4], for extremely small film thickness,
the direct iteration fails to yield a convergent solution,

In the middle region, the system uations are solved by
Newton-Raphson method., The solution of the system equations gives
the pressure correction at every grid point, The Newton-Raphson
method is very effective in solving a system of nonlinear equa-
tions and usually yields the converged solution in several itera-
tions. One drawback in the Newton-Raphson method is the calcula-
tion of partial derivatives of all the variables in the system
equations and the inversion of the matrix of which elements con-
sist of these derivatives. A substantial portion of the calcula-
ting time for the present problem is expended in the operation
of the matrix inversion., Details of numerical treatment for the
inlet as well as for the middle region are given in the next

sections,

2.5,2 Integration of Pressure in the Inlet Region

The integration of pressure in the inlet region is represented

20



by Eq. (30) and is rewritten below:

-X
Q= - <16PHZVO> { LKI[B;:a a(zn u) JO a(pH) dz] dx

J:XKO [_1 3(dn ) L‘; agﬂ) dZJ dX} (30)

3 9p

In the above equation the integral is split into two parts: the
first in the integral over far left of the inlet region
(-0 <X < - XKI) and the second is the remaining of the inlet

region (-X ., <X <- X))

We can approximate the integrand of the first integral,

X1- X1
1 3Un ) j" 20 az]ax = [ X
Jo L3 T3P - o ow

9%%-&2 dx (36)

where we assumed that

~ ~ 2.2 d(pH) ~
=1, By = 1+ &,°X" + Dy, ST =

Since the pressure in the inlet region is not high, the normalized
density is close to unity. DKI is the deformation at X = - XKI
which is the lower limit of the deformation integral. The defor-
mation in this region is assumed to be constant., This assumption

will not produce much error since the approach velocity due to

the deformation is relatively a small term compared to the other
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terms in the integrand.

Regardless of which viscosity model is used in the governing
equation, the viscosity varies exponentially with pressure in the
inlet region. Therefore,'égég—ﬁl =o.

Eq. (36) is integrated amalytically,

9 2D g

-®  Hp 16Py, Hey

NQl

37)

2 2
where HKI =1+ SPHZ XKI + DKI .

The integrated Q written at Kth grid point and time T is

K 2(tn By )
P e X [ gl o

X

Once the converged solution for the pressure in the middle region
is obtained, the integrand in Eq. (38) is assumed to be known
except density because the pressure distribution in the middle
region plays the dominant role in determining £ilm thickness

and approach velocity. In the inlet region the normalized density
can be approximated to unity for the first iteration, Applying
the trapezoidal rule for the integration of Eq. (38), we obtain

QK,m' Then PK,m in the inlet is determined from QK,m as:
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K,m (39)

It
-
1
o

Thus the pressure equation in the inlet region is

PK,m = -.é fo (1 - QK,m) (40)
2.5.3 CGalculation of Deformation

The deformation for an arbitrary pressure distribution can
ﬁot be determined by the straightforward numerical integration
because the integrand in the deformation equation becomes singular
at X = Z, Care must be exercised in the formulation of the nu-
merical integral formula by which the singularity at X = Z can
be removed.

The detailed derivation of the quadrature formula for ihe
singular integral kernel is presented in Appendix A and the

quadrature formula is written below,

KO-2
JO P (2)nlz - XKle =z Pk (-—XK,-Zj>
kI j=1,3,5
(%, 2;) |
+ Py ok (-xK’-zj) + P oK -xK’-zJ.) | (41)

where
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i . -
K1<‘XK,'ZJ-_) -7 (-3SJ-- Sj+2> - ’:;J_z - usCale] - D (42)

3

25
=2 —1

KZ(_ ,'Zj> = aj (Sj+ Sj+2> + 35 2 (43)

1 S,
K3<— ,—Zj) = EE; (-Sj- 3Sj+2> - ;;lf + uj+2(£nluj+2| - 1) (44

and

8§, =z, - 7, (45)

J J j+l

=z - 46
uJ ZJ XK (46)
2
u, 3

55 = - (zn]ujl -3 (47)

u2 u 2

- _J_> _rr_z_)
Sj uj(Sj 3 uj+2 <Sj+2 3 (48)

Since the pressure profile is symmetrical about X = 0, the second
half of the deformation integral cam be approximated in the same

form of Eq. (41) by changing -Z, to Z. in K K2 and K,, thus
3 3 1,

X, KO-2
I :
f P (2)nlz - X |az =Z {Pj,m[K1<-XK,-zj> + Kz(- ’zj> j

K1 j=1,3,5

™

+ Pj+]_’m[K2(-XK’-Zj>+ K2<-X1(,Zj> ]* Pj+2,m[K3<-xK,-zj) + K3(-‘X1<,Zj>ilL

24



and following the above procedure we obtain

Ko-2

X
J;{ZIPm(Z)EnIZle = z {Pj,m[Kl(xKo,—zj> + K2<XK0,Zj) ]

K1 j=1,3,5

F 2 d KK 2) + 55 7)) ]

+ Pj+2,ml:K3<xKo,_zj> + K3(xl<o,zj> 1} 0
where XKo = 0,
For the convenience of differentiating DK o with respect to
3>
Pj,m’ Kl’ K2 and K3 are rearranged in such way that Pj,m has a
single coefficient R(- - 2.):
g (-Xg - 25
R(— -z\=s<- -z) j=1
b S VAR AN T
- ( 7 ) 2 <3 <K 1
= SZ'-XK,- j—l/ even j o -

il

W
_~
1

\
- - - €3 < -
3\ XK, Zj-2> + Sl( XK Zj) odd 3 j Ko 2

Ko  (51)

]
[72]
w
/'\
-
'
e
]
[\
~—
Cae
]

where
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sn(-xK’- zj> = Kn<-XK’- zj) + Kn(-XK,Zj> - Kn(XKo’- zj>

- Kn< o’zj) (52)

The final form of the deformation equation is

om ™ 0L Bl - zy)e 3
j=1’2>"

16P 2

where C, = HZ
3 ﬁ

2,5.4 Elastohydrodynamic Equation in the Middle Region

Eq. (28) written at Kth grid point and time T is

() .. 0., 3(gH) )
\ax> Ko (16sz) ("K Fe / J;( ( 3T/ dx (54)

The derivative éé%ﬂl) in Eq. (54) may be split into three
K,m
terms and can be approximated by the Lagrangian three point

quadrature as

= Qm—Z[HgK Ek m-2+ (;b)K m—2:| (55)
m X >

H
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r - - ]
+w H + (pD
m-lL.gK n pK,m-l (e )K,m-l

+ QELH pK,m + (pD)K,mJ - pK,m (55)
s cont.
where
Tm- Tm--l
w = L (56)
m-2  {r -7 -T>
\V'm-2" "m-1/ Vm-2T Tm

m Tm-l
w = — Y ( \ 7
NS Tm--2/) Tm-l- Tm/

. (Tm- Tm_1‘> + (Tm_Tm_2>
m (Tm- T ) (Tm- T _27

(58)

and
H = Ho,m + 8PHZ XK (59)

The first two terms on the right hand side of Eq. (55) can be
grouped together and expressed by Vﬁ(_XK) in which all the
variables were determined in the previous time steps. Therefore,
Ym(-XK) is not a function of Pj,m'

After rearranging the integrand in Eq. (55) to a pressure

dependent term and a pressure independent term, Eq. (55) may be
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written as

20mY Ly (wx ) - [ S
( oT X.m Yo XK wmpK,m Hg,K,m + DK,m 1.J (60)
Thus

Ko , \ Ko
_lz (- 1y V35 T
=5 ym\xi/Axi-zme 0. iH 4D,

i=K i=K ’

= - < 4i < -

where A Xi Xi+1 Xi-l K+1 i Ko-1
=X - X i =K, Ko

Substituting Eq. (53) for D, . in Eq. (61) and rearranging
2

Ko
[Gm) w-1{) [v(x)
“Xga1/2 K,m i=K+1/2
V7 N
—_— S
I .~ 1) & +wC) L(-—XK’- ZJ> PJ’mj (62)
3 j=1

where
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Ko

( y )
L-\-XK’Zj) =) pi’mR<-Xi,— zj) A X,
i=K+1/2
The integral term and the deformation terms in Eq. (54) are

replaced by Eqs. (62) and (52), respectively, The discretized

form for Eq. (54) at _XK+1/2 can thus be written as

B Pri1/2.m

( K+1/2> ( K+1 m Pk, m) ( T A1P1<+1/2,m>

EXP(& Pre1/2, m>

Ko
N i i
"G5 L R( Xg+1/2, zj> P m>3

>
i=1

(u

gK+1/2,m

-<8PHZV > {z |Y ( X, ) - wop, “‘<Hgi - 1) j] AX,

1—K+1/2 ?

Ko
Y (x ) | 63
+wC -X_ - Z_
m3L'L K’ j/Pj’rn ()
j=1
Eq. (63) is one of the typical equations in the system equations,
If Ym(P) is written at every mid point between grid spacings in
the middle region, there are N equations with N unknown, PK ,
,M

where N is the number of grid points in the middle region,

Applying the Newton-Raphson technique to the system equations,

we obtain
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v o }% {A P LA-Y @] (64)

r 7
where { } and ! | represent a column matrix and an N x N matrix,

L
respectively, and A. indicates partial derivative is to be taken
with respect to Pm. n is the level of iterationm.
From Eq. (64) we obtain

(n+1 ) T 1 S
e} e Tay @] ™y @) j® (65)

The right hand side of Eq. (65) is assumed to be known from

1 (n+1)

the lower level iteration, and {A P is defined as

f A Pm}(n+1) _ {Pm}(n+1) N {Pm}(n) (66)

The elements of the matrixes in Eq. (65) are detailed in Appendix

B.
The center approach velocity and the load at time Tm are
vV o= %
3 — - a(in [ — -
o (16P )J’ 2 +_r" L (n“&m)r(a(pﬁ) az | dx
HZ/ Lo 2 2 T d L= 3 P x" T
uz UKI,m 1Pk, miK ,m - m
(67)
and
. J~XKI
W = P (X)dX (68)
m,p 2 m

HZ XKI
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where

Q, = l-e for the straight exponential lubricant
and
-{op_+ B(1-2)}
Q, = 1l -e for the composite-exponential
lubricant,

The film thickness written at Kth grid point and time T, is

2. 2

He o= 1+ 8By, X° + D (69)
Ko , \

Dgm =" Cs z R(-% - 2,) 2, o (53)
j=1’2’--

2.5.5 Outline of Numerical Procedure

For the computational convenience, it is assumed that the
center pressure is constant while the value of load varies as the
cylinder approaches the flat surface from a high point. The
calculations are performed to obtain the several series of the
solutions in which each series represent the solutions at various
center f£ilm thicknes; with a fixed center pressure,

The best approach to the problem is to obtain analytically
the pressure distribution for a high center film thickness by

neglecting the deformation term in the hydrodynamic equation, and
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at each time step the center film thickness is reduced a certain
amount and is kept constant,
Written below are the precedures of numerical calculation at
each time step:
1) At the first time step analytically obtained pressure
distribution is used as an initial guessed pressure,
From the second time on, the initial guessed pressure
is determined by linearly extrapolating the previous
pressure distributions,
2) Using the initially guessed pressure distribution, the
film thickness, density and viscosity are calculated.
Then the approach velocity is determined from these
values., We set up system equations (63) to obtain the
pressure correction terms in the middle region. Once
the pressure distribution in the middle region is
corrected by {A Pm}, the inlet pressure profile is de-

termined by linear interpolation with the factor

(n+1) (n) (n+1)
PKA,m /PKA,m where PKA,m

the system equation. The film thickness is calculated

is obtained from

using the newly obtained pressure,

3) If the converged solution for the pressure in the middle
region is obtained, Eq. (38) is solved for the inlet
pressure and the center approach velocity Vo,m is de~
termined by Eq. (67). Now the overall pressure distribu-

tion is checked for convergence. If it has converged, the

load Wm is calculated by Eq. (68) and one moves to the
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next time step. Otherwise, the above procedures (2)
and (3) are repeated until the converged solution is

obtained,
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CHAPTER 3 - DISCUSSION OF RESULTS

3.1 Introduction

The results of the present study are presented as a series of
curves for pressure, film thickness, load and approach velocity cal-
culated at a prescribed center pressure and at successive reductions
of the center film thickness,

The pressure and film profiles for various parameters at successive
stages during a normal approach process are plotted for the left half
of the contact region., The integrated load and the approach velocity
during each normal approach are plotted against the center film thick-

ness or the minimum film thickness.

3.2 Pressure Profiles

Shown on Fig. 1-3 to 1-13 are the series of the pressure profiles.
Each figure displays the change in pressure with film thickness as
the cylinder approaches the flat surface for a given center pressure.
The range of the center pressures employed in the present study is
from 2.5 X 107psi (1.723 X 10°N/n%) to 1.5 X 10°psi (1.034 X 10°N/m>)
which are typical maximum stresses encountered in concentrated
contacts.,

In general, the trend of change in pressure with respect to the
center film thickness is qualitatively similar for all cases, namely,
at high film thickness the pressure level decreases steadily through-
out the contact region with decreasing film thickness until it reaches

a stage when the integrated load becomes a minimum., After this

stage the pressure in the middle region reverses its trend and begins
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to rise, but the pressure in the inlet region still continuously de-
creases as the center film further decreases. In all cases, the pres-
sure rise is confined within a small fraction of the Hertzian half-
width, and it does not appear to reach the Hertzian semi-elliptical
shape.

For the straight-exponential lubricant, the pressure-viscosity
coefficient, o, has a marked influence upon the pressure gradient near
the center of the contact. For example, Fig. 1-9 shows that the pres-
sure gradient for @ = 12,8 at the center is far steeper than that
appearing in Fig. 1-5 for @ = 9.5,

The change in the center pressure also produces a very strong
effect upon the pressure gradient at the center. A higher center
pressure produces a sharper pressure spike at the center., The effect
becomes increasingly stronger at higher center pressures., For example,
at center pressure equal to 150,000 psi (1.034 x 109N/m2), the pres-
sure gradient gradually tends to become infinite. The existence of
such sharp pressure spikes in practice appears to be highly question-
able, since the shear stress would also become incredibly large under
these circumstances. It appears very unlikely that the fluid can
withstand such high shear stresses, particularly in the light of
recent work on traction studies [10], [11], and [12] which demonstrate
the existence of a limiting shear stress for any lubricant. In the
vicinity of this limiting shear stress, the fluid behaves in a non-
Newtonian fashion, and an increase in shear rate has little effect on

the shear stress.

The effect of the non-Newtonian behavior can be accounted for indirect-
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ly by introducing the so-called composite-exponential model for the
lubricant viscosity. This was demonstrated by Allen et al [7] in a
spinning torque study. The resulting pressure profiles using a com-
posite-exponential model similar to that in [7] are shown in Fig.
1-10 to 1-13. These curves show considerably different features com-
pared to the pressure curves for a straight exponential lubricant.
For example, the pressure gradient is much more moderate near the
contact center, showing the absense of a pressure spike which is so
characteristic for the straight exponential lubricant. Moreover, the
steepness of the pressure gradient near the contact center is not
influenced greatly by the increase in the center pressure, For example,
there is very little difference in the pressure gradient between

Fig. 1-10 and Fig. 1-13 at the same film thickness,

It should be emphasized that the results for the composite-expo-
nential lubricant are intended to show the qualitative effect of the
reduction of pressure-viscosity coefficient on the characteristics of
pressure and film profiles, These results should not be used quanti-

tatively for design purposes,

3.3 Film Thickness

The film thickness profiles are plotted in conjunction with the
corresponding pressure profiles in Fig, 1-3 to 1-13. At the early
stage of normal approach, a pocket is formed elastically at the contact
center, and its shape does not change much for subsequent reductions of
the center film thickness., The pocket depth defined as the difference be-

tween the center film thickness H0 and the minimum £ilm thickness, is depen-
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dent upon the center pressure for a given lubricant. A higher center
pressure produces a deeper pocket.

When the center film thickness decreases to a certain level, a
quite different phenomenon occurs. At this point, the normal approach
velocity at the center suddenly drops almost to zero, while
the local approach velocity elsewhere in the contact continues,
This condition produces a deeper pocket during the final stages of the
normal approach, In all cases investigated, the growth of the pocket
persists all the way down to the very end when the edge of the contact
at the minimum film thickness point practically touches the opposing
surface, For perfectly smooth surfaces, the point of the minimum film
would eventually form a seal and the lubricant inside this point
would be trapped. Thus, by including the local approach velocity
in the analysis, one can show that both the pressure and film thick-~
ness profiles never reach thesemi-elliptical Hertzian shape as sug-
gested by Christensen in (4], Instead, the pressure remains to be
confined in the center region, and the surface deformed into a pocket
inside which a portion of the lubricant is entrapped. As shown in
these deformation shapes, the center pressure has a definite influence
upon the depth as well as the width of the pocket, In general, the
pocket becomes deeper and wider as the center pressure increases,

The pocket formation is more pronounced for the case of the com-
posite exponential lubricant. The pocket depth is somewhat greater
than the corresponding case for the straight exponential lubricant.
The change of the pocket shape during normal approach is qualitatively

similar to that for the straight exponential lubricant. At the last
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time step when the minimum film thickness H, is less than 5 x 10-6

the pocket depth increases rapidly while the location of the minimum
film thickness moves slightly toward the outer edge of the contact
region., The highest value of pocket depth for all cases investigated
occurs at a center pressure, PO =1,5x 105psi (1.034 x 109N/m2),

with the composite exponential lubricant, The value of the maximum
depth exceeds 30 x 10_6, and there is practically no significant
pressurization outside of the pocket. It is thus expected that during
the normal approach of two cylinders the pressurization is effectively
contained inside the pocket and that the width of the pocket is approxi-

mately one-half of the Hertzian contact width based on the same center

pressure,

3.4 Load

Shown on Fig. 1-14 are the load wvs. center film thickness curves
at a constant center pressure for the straight-exponential lubricant.
In general, the dependence of load on the pressure-viscosity coefficient
« and the center pressure in the present analysis confirms Christensen's
conclusions: first, for a given center pressure, the load is strongly
dependent upon the pressure viscosity coefficient, i.e., the higher
o produces much smaller load. For example, the load for o= 12,8
and P = 100,000 psi (6.894 x 108N/m2) is approximately equa; to the
load for o = 9.8 and Po = 25,000 psi (1.723 x 108N/m2); and second,
once the center pressure is sufficiently high, the increase in load
is negligibly small for further increase in center pressure, i.e.,

the load becomes insensitive to the center pressure, As described
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before in Section 3.2, this insensitivity of load to the increase in
center pressure is caused by a strong pressure-viscosity coefficient
. Thus, one would expect that if the increase in viscosity with pres-
sure is milder, the load becomes more dependent upon the center pres-
sure, as will be seen in the results of the composite-exponential
lubricant.

Also in Fig., 1-15, a quantitative comparison is made between
the load curves obtained by Christensen [4] and those calculated from
the present analysis., On the right side of the minimum load, the two
theories shows fairly close agreement, the present analysis yielding
a slightly higher load. This slight discrepancy in load is attributable
to two effects: first, the approach velocity in the present analysis
is higher than that in [4] where the local deformation velocity is
neglected, resulting in stronger squeezing action on the fluid by the
cylinder, and second, the effect of the compressibility of the lubricant
which was also neglected in [4]. On the left side of the minimum load,
the effect of the local deformation velocity becomes very important,
and the present theory gives considerably higher load than Christensen's
results, Furthermore, there is also considerable difference in slope
between the two results. The present theory predicts a much steeper
slope on the left side of the minimum load, indicating that there is
virtually no reduction in the center film thickness while the minimum
film thickness steadily drops to zero as shown on Fig. 1-15,

It should be noted that the maximum load obtained in the present
analysis is substantially less than the corresponding Hertzian load

based on the same center pressure. This result directly contradicts
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Christensen's conclusion that the load increases to the Hertzian load
as the minimum film thickness decreases to zero.

As shown on Fig. 1-18, one may find the variation of center pressure
at a constant load during the normal approach of the two cylinders from
Fig, 1-15 and 1-17, If a horizontal straight line is drawn at any
specific load on Fig, 1-15 or Fig, 1-17, depending upon the lubricant
used, the change in Po with decreasing center £ilm thickness can be
determined from the intersection of the straight line and load curve.
The center pressure gradually increases with decreasing center film
thickness, and then increases abruptly to the maximum value; the maxi-
mum is much larger than the initial P,* The center pressure finally
decreases rapidly for further decrease in center film thickness,

In Figs, 16 and 17, results of the composite-exponential lubricant
show that in general, the loads are much larger than the corresponding
loads for the straight-exponential lubricant, The change in load with
the center film thickness, or with the minimum film thickness, is some-
what moderate. No abrupt increase in load is seen, The most noticeable
effect produced by the composite-exponential lubricant is the relation-
ship between load and center film thickness. The load is strongly de-

pendent upon the center pressure,
3.5 Approaching Velocity

As mentioned in Section 2.2.3, the center approach velocities

shown on Fig. 1-19 are not the absolute velocities -~ the
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velocities of the approaching cylinder center they are the relative
center approach velocities, i.e,, the time derivative of the
center film thickness. However, it is known that in the normal approach
problem of EHD lubrication the difference between them is negligibly
small,

It is apparent from Fig. 1-19 that the center approach velocity
Vo decreases with decreasing center film thickness at a constant center
pressure, and the rate of reduction in Vo is a function of Ho and Po.
In the region of high Ho’ the center approach velocity approximately
varies with the square of the center film thickness for a given center
pressure, This trend agrees with that predicted by the normal approach
solution between two rigid cylinders. This parabolic relation between
Ho and Vo ceases to exist as Ho is reduced to a certain value depending
upon P . For example, for P = 1.25 x 105 psi (8.617 x 108N/m2) and

Ho approaching 3 x 10-5

s V0 decreases rapidly for further
decrease in Ho. For low center pressure, this transition occurs at a
much smaller value of Ho' The rapid reduction of the center
approach velocity for high center pressure can be explained by con-
sidering the flow quantity through the gap between the bump and the
flat surface, The gap is not more than 10 microinches so that the
lubricant flow through this gap is very small; consequently very little
squeezing on the lubricant is necessary to maintain a constant Pe

It is interesting to note that the center velocity Vo required to
produce a high center pressure P_ at a constant center film thickness

Ho is considerably lower than that for a lower Po. This trend directly

opposes that based on the rigid cylinder theory for which a greater
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Po requires a high center velocity Vo at a same center film thickness
Ho' This discrepancy can be accounted for by the deformation effect,
At a higher pressure, the contact region is larger, the squeezing
action is thus much more effective; and it requires a smaller center
velocity to produce the required center pressure,

Fig, 1-20 shows the ratio of local approach velocity to center
approach velocity vs. H/W for three points of the contact region
X = -0.25, ~0.5 and -0.75. For the sake of comparison, typical data
from [5] are also shown on Fig. 1-20, As expounded in Section 2.2,3,
it is known that local approach velocity varies along the contact
surface and the most severe variation occurs when the film thickness
is very small., The data from [5] is based on the assumption of iso-
viscous lubricant, which shows the variation of local velocity is
relatively small compared with that for the lubricant of variable
viscosity. This comparison clearly indicates that it is much more
difficult, sometimes almost impossible, to obtain the converged solu-
tion when the center film thickness is small because controlling the
local velocity numerically between two successive iterations is very

difficult.
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CHAPTER 4 - SUMMARY OF RESULTS

It has been found that the full s>lulion of the normal.approach

problem of two elastic cylinders, with a compressible lubricant between

them whose viscosity varies exponenai:ially with pressure, can be obtained

by solving numerically the coupled transient Reynolds equation and the

elasticity equation using a combination of direct iteration and Newton-

Raphson method.

The results show that:

1

2)

In general, the pressure profile for the straight exponential
lubricant shows a sharp spike near the contact center; a
higher center pressure or a higher pressure-viscosity coef-
ficient results in a steeper pressure profile at the contact
center. However, for the case of the composite-exponential
lubricant the steepness of the pressure profile at the con-
tact center does not depend so strongly upon the center pressure.
For all cases studied, a pocket is formed elastically on
the cylinder surface near the contact center during the

early stage of the normal approach, and it remains without
much change in its shape until the final stages of the normal
approach, resulting in a quantity of lubricant inside the
pocket being entrapped. Thus, the film profile never reaches
the semi-elliptical Hertzian shape as suggested by
Christensen [4]. The depth of the pocket is dependent upon
the center pressure for all cases investigated. In compari-
son, the pocket depth for the composite-exponential lubri-

cant is much deeper than the corresponding one for the
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3)

4)

straight-exponential lubricant.

In general, the load increases very rapidly from its minimum
value with virtually no reduction in the center film thick-~
ness, This result can be attributed to the fact that the
entrapped lubricant inside the pocket is effectively pres-
surized further by closing the gap between the minimum film
thickness and the flat surface. This pressurization, in
turn, deepens the pocket depth further, Thus, for all

cases investigated, the lnad never increases to the Hertzian
load based on the same center pressure as the minimum film
thickness decreases to zero. In contrast to the cases for
the straight exponential lubricant where for a sufficiently
high center pressure and at any given center film thickness
the load is insensitive to the center pressure, the load fo
the composite-exponential lubricant is strongly dependent
upon the center pressure,

At early stages of the normal approach, the local approach
velocity does not deviate from the center approach velocity.
However, during the final stages, the ratio of local velocity
to center velocity greatly exceeds unity, indicating that the
center film thickness is almost constant while the film
elsewhere continuously decreases, For a given center film
thickness, the center approach velocity vequired <o produce
a higher center pressure is considerably lower than that

for a lower pressure, This trend is more pronounced at the
final stages of the normal approach when the deformation

overtakes the geometrical film thickness.
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APPENDIX A
QUADRATURE FOR INTEGRATION OF ELASTICITY EQUAIION*
Referring to [13] for detailed derivation, the normal displace-
ment for any x on the surface of semi-infinite solid due to vertical
forces is given by
Z - X

P_(2)%n dz (A.1)

X
» K1
J ;

D_(X) =

I

where the symbol |Z - XI represents the positive distance between the

force element at Z and the point of interest at X as shown on Fig, A-1,

k1 er——

P (2)

dz—\l/L—Z—'
<4—— X

Fig., A-1

Since the integrand is singular at X = Z, the numerical quadrature
formula should be developed in such a way that the singularity at X = Z
can be removed. It consists of approximating the function P by a para-
bolic polynomial in each subinterval, performing the integration in
closed form in the subinterval, and summing over the whole region of

integration.
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We subdivide the right half of the contact region into N sub-
intervals, requiring that the widths of two consecutive subintervals

equal and assuming the pressure distribution is known. Then

: y
IX) = Jo pm(z)znlz - XK|dZ =L L,® (A.2)
§=1
where
3+
L&) = fz- Pm(Z)!Ln'Z - XKIdZ (A.3)
i

The parabolic representative of the pressure distribution in the

subinterval [Zj, Zj+1] is
P2 = [ (z - Zj+1/2) <Z - Zj+1> Pj,m' 2<Z - Zj> (z - Zj+1) Pj+1/2,m

e

ZJ‘> <Z i Zj+1/2> Pj+1,mj /ZAJ-Z (A.4)

where

d
=
B
fl
+d
8
T~
N
e
S~—

From (A.4),
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' = pt = (- -
SRR C R R N T

! = ! = -
Pit1,m Pm<zj+l> (Pj,m 41’j+1/2,n{"Pj—;—1,1n>/2Aj,

2

V. (A.5)

* PJ‘+1,m/ J

" = 1" = -
1:’j,m 1:.j~l-1,m (Pj,m 21)j+1/2,m

We integrate Eq. (A.3) by parts several times to obtain

1) = [Pm(z)nf'l{znlz - xl} - P;(Z)bez{inlz - xl}

3 2343
+ BM(2)D, {Jzn lz - xl} Jz (A.6)
j
where
Df'l{zn[z - xl} = I tnlz - x|daz
Df'z{zn|z - x!} = ” tlz - x| az
Df'3{zn|z - xl} = Hf nlz - x{az (A.7)
Thus
Df'l{znlz - xl} = (@2 -z - x| - (- x
Df'z{fznlz - XI} =-;j @ - x)zznlz - x| - % z - x)? (A.8)
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o mlz - xl} -t @0l xl-Re-0® an

Substituting (A.8) in (A.6) and some manipulation yields

IJ.(x) = I:(z - x){znlz - X] - 1} {Pm(Z) - -;—'(z - X)PI;I(Z) + (Z - X)ZP;;(Z)/GJ'

J+1
+ (Z ~ X) P ) - 5( -~ X)P"(Z)/9}/4J (A.9)

J

37
Let u, = 2, - X uj+1=Zj+1-Xande=—u LG|u|-—-

with these variables and noting that at the end points of each sub-

interval in the interior of [- XKI 0], there is exact cancellation of
3

the Pm(Z) contribution, Eq. (A.9) is rewritten as:
' - ( _1 2)
1) = <J,m i Pj+1,msj+1> 3 Pml%y \55 76 Yy

tun?) ]
T Ui (Sj+1 "% Y (4.10)

Substituting Eq. (A.5) for P' and P" in (A.10) and summing over

the entire interval, We obtain,

KI
I P (Z)n|z - xKldz Z LPJ K K 20 Ry Ko Z)
° 1,3,5
P20 (szj)] (A.11)

where
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’ )z ]
\3Sj + Sj+2 - 35_2 - uj Zn‘uj| -1,
J

' _ 1
K1<XK,Zj> BL

( \ 2 < . 28,
KZ XK,Zj/=_5; Sj+Sj+2/'+—Ls§2 5
h|

+ Zn‘uj+2‘ - 1],

/ \ 1/ ) .
b (o - .
Ry\Xg 25 ) 253 ( 5 3sj+2 2 Ui
j
and

T culs 1,2 (_1_2>
S. =u Sj 3 uj ) uj+2 Sj+2 3 uj+2 .

*
The quadrature formulation for the singular kernel in the integrand
written here is exactly the same as that of Ref, [14] .
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APPENDIX B
CALCULATION OF MATRIX ELEMENTS IN EQ. (64)

For eoonvenience, Eq. (63) and (64) are rewritten below

1+ BPK+1/2,m
v <P ) ~ (PK+LLm_PK,m> L+ A1PK+1/2,m>
m\ K+ /27 TN\ /=
Hx EXPA\Y Pri1/2.m
KO \
H ) R< z,)®, >3

1=K+1/2 ’

KO
+w_C, Z L (-xK,- zj> Pj’m} (63)

=1
{1y} + fi} [r,] - o

The calculation of the matrix elements in [A-‘i’m(P)] involves the
differentiation of {‘i’m(P)} with respect to {Pm}. Before differentia-

tion, Eq. (63) is rewritten in the following form:

P - T 3
Ym(PK+1/2)=% < K+1’A}H£K PK,m) <—:z+ljz’m) <H'[(+1,m+ H'K,m>
+1/2,m

. \ >
y <4PHzVo,m/ (IK+1,m+ X,m (.1)
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where
KO p \ KO
3 T oy oy, - M Daln )
=) LY, (-X)) -0 Pim \Hgi ) 1)| &+ 0 C, LL( X zj Pim
i= =1 (B.2)
and

The variables, H‘K+1/2 n and I , are expressed as the average
b

K+1/2,m
of the two values at -XK and -XK+1 as

_ L ( )
I1<+1/2,m T2 I1<+1,m * IK,m (8.3)
-1 (x + ) (B.4)
H'K+1/2,m 2 K+1,m HK,m )

The Pret1/2,m 2™ Fgi1/2.m

pressure, % (P

are taken as a function of the average

X1 m+ PK,m) and expressed below:

1s ( )
- -2 Pr+1,m TR,m 5.5)
PK+1/2,m 1, <P ) .
K+1, m K m
m —ep (2 (e,, w2, )] (5.6)
uK-{-l/Z,m P {32 K+tl,m "K,m :

The derivative of the variables in Y (P 2) are derived below:

K+1/
o) -
—'—B;K : = me3L(-)%<’- Zj) - (63)(wmAXK) <—§—§>K m(HK’m- 1) (B.7)
where
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§ =1 for j =K

S
6S =0 for j <K
and
X0
s s _ -z =y 5 - -
1f § 7 KA, LG - 2 =) o RCX; - Z)AX,
i=
KO KA
if § = KA, L(- -z>=z N R(-X-Z)(fiﬂ—>Ax
it s L(-Xgp = 24 Lo Pia i 450\ i
. . KA,m
i=KA j=1

In this way, we can take into account the effect of the pressure

distribution in the inlet region on DKA m the deformation at the
b

is

dividing point between the inlet and middle region, since DKA m t
3>

strongly dependent upon the inlet pressure distribution.

If j=Kor K+ 1, then

a]..l..K -
+1/2,m d < -/ 3
SP 5o, \e®pi5 ¥ \Ppyy F Bl
J,m J,m
e (8.8)
2 ¥ Mge1/2,m y
3p Ly (P + >
pK+1/2,m 3 2 K+l,m PK,m
oP, m " e, m Hr 1 +-l A (P + P )
1> 3> 2 "IVR+1,m “K,m
= B ) (8.9)
2+ A1<PK+1,m+ PK,m
Since the deformation, DK o depend upon the overall pressure dis-
3 Ed
tribution, the derivative of DK o with respect to any Pj m exists,
3 3
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Thus
BH§+1/2 m
_'a_g:_ =" <3 C3RRK,j> ( +1,m HK,m) (8.10)
where
RR 5 = R(— Xer1,” zJ.) + R(—XK’- zj) for j # KA, KA + 1
KA
RRy =Z {[R(-XK_H,— zi> + R(—XK’- zi> ] C—;—:—“m> } for j = KA, KA + 1

i=1
The reason for summing the products of the deformation kernel and
the inlet pressure ratio over the entire grid in the inlet
region is to take into account the effect of the inlet pressure
distribution on D

kA,m' PRA+1,m’
Using Eqs. (B.7), (B.8), (B.9) and (B.10), the derivative of

Ym(PKﬁl/Z) is written as:
Y (P P - P
an’mK+1/2__(g 3) <RRK ) (H1<+1 m' g, >2<u::1;§ 2) ( K+i;(;n =)

'(4 HZom>{[wm03[L 'Z>+L( }%(+1'Z>] <sm/

b e e ) 0 ¢ (1) (o) 1}

2+ 4 (PK+1 o

<HK+1m + >3{<

|J'K+1/2,m

2+ AIGK+1,m+ % m)

2

(B.11)

+ (éu) R+l,m K m> [
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4

L

. Guse

where

and

Eq.

form of E

BY_(Py)

P ?

KA,m

BY e

_K4+1/2,m a
K+1/2, Z> J

(B.11) is one of the

q. (64) is

A (Py,)

aPKA.-I-l,m

) BY (®

KA-F1
BP

KA m
'

¥ _(p

ra+1)
>

KA+1,m
1
§

i
) aYm(P

KO-1
BPKA’m

KO-l)
aPKA+1,m

H

<MK+1/2 m

() }

K+1/2,m

j # K, K+tl,

j # K, K+l,

oY (P

aPKO-l,m

N Cras1)

BPKO—l,m

a‘ym(PKO-l)

aPKO-l,m
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typical matrix elements,

(B.11)

coni,

The expanded




The pressure correction term at the contact center, APKO,m’ is
not necessary since the center pressure is assumed to be constant.
The center velocity Vo,m is kept constant during the calculation of
the pressure correction terms. The center velocity is recalculated

after the converged solution for the pressure distribution in the

middle region is obtained.

55



NO

APPENDIX C

COMPUTER PROGRAM FLOW DIAGRAM AND FORTRAN LISTINGS

!

CALCULATE 1, P LB .V

!

— SET UP SYSTEM EQUATIONS j—————

SOLVE THE SYSTEM EQUATIONS
BY THE NEWTON-RAPHSON METHOD

3

OBTAIN NEW Pm IN THE
MIDDLE REGION

y

CALCULATE INLET PRESSURE BY
LINEAR INTERPOLATION

'

CALCULATE um’pm’Hm’vom

BY NEW P
m

’

IS THE CONVERGED SOLUTION FOR
THE PRESSURE IN THE MIDDLE
REGION OBTAINED

l YES

OBTAIN THE INTEGRATED
INLET PRESSURE

'

CALCULATE I, P H Y,

BY NEW P
m

i

START
; Fig. C-1
Flow Chart For
P aIngTH Program Elasto
0’ 3 > 3 0)1
| COMPUTE CONSTANTS |
' ASSUME FILM PRESSURE l|ILNEXT TIME STEP

IS THE CONVERGED SOLUTION FOR THE

OVERALL PRESSURE DISTRIBUTION OBTAINED

NO

L YES

CALCULATE LOAD Wm
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27

39
37

63

PROGRAM ELASTC (IWNPUTs QuUTPUTs PulkCHs TAPED=INPJUTs TAPEo=0UTPUT)
COMMON/A/AKFs ALPHs ENs EDs HEs Htls ALPHLs i

COMMON KIe KAs KKIs KKFy KF29 KF3s Vo KKCs ISs Ne NiNe PUs K9 .9
1Pwris PCs KOs EPs EUs we wWas wrle iKAs NUs Piike PUls Xhs UXs ULUls U
2HG sH P s VIS s VISDsDENSDLND s TsUTsVUSUP sHU s 5E sAsB s s SUsAmsP oy
30MEG3 s OMEG2 s UMEGL s UENT s DU sUS s ChsCh sl l siwsPALl sicTsPLlsPLaVISL,

4VIS25VIo3sDPVsCOsEBFsLUBVsC st sPRAIDPRR

DIMENSIUN XH(51)sDX(51)s0{(20193)srG(51s3)sH(0i93)s01(2L1)
1IP(5193)sVIS(21)aVISU(ILL)sLN(5193)sUeEND(5193)sT(35)9V(35)
2DT(35)sVD(51)sDP(51)srO(508)sw(35)sSELDL)sA(51)sp(51)slC(51)
BF(51)sR(51951)sBET(H1951)s00(H1)sPS{51)s0MEG3(3)s0imb0L(3) >
GOMEGI (3)sDENTI(51)9sd(51951)sPAI(51)sS5JBVIE1)sC{2s390]1)sCE(5])

DIMENSION TEM(S1)sNI(D]144)

READ(S,2u3) Kly KFs “MIs MFs ECs ENy ALPHSs PH

READ(54203) EPs EUs HOl, RA

READ(54206) (XH(K)Ys K=K sKF)

READ(S5,2Ub) ((G(KsJ) s J=KIsnF)s n=kls KF)

KKI=KI+1

KF2=KF-2

N«=3

KF3=1

KaF=KF~-1

E=33eb6E+6

HOl=20ueuE—-6

EN=FN%]1 a25000=ED#* 1 e 25 bALPA=ALPH*L ¢ 25bPH=12200040

WRITE(69217) EDs ENs ALPHs PH

WRITE(69841) (KyXH(K) K=K sKF)

MI=2 3 NI=3

KA=3b5

pPrnZ=PH/E
Ca=1lbauH*PHL » Co=C4*%¥PAZ » Co=CH/2e1l4

WRITE (6205 ) PHZs C4s C5s (COHs E

Il"(NT-EQ.l) 479 39

READ(59205) (P(Ks2)sK=KIsKF)

READ(55205) (P(Ksl)s K=KIs KbF)

READ(54231) H(KAs1)sT(1)

READ(545231) HIKAs2)s T(2)

I11=2 » l5=Z2 » MM=1 » =1 » CAaLL vVD » CALL HDT
M=l 15=2 % Mm=2 b CALL wVvo 3 CALL HOT

WRITE(6+668) (Ks P(Ksd)s K=KIs KF)

WRITE(6+s2.6) H{KAsL)Ys T(1)

WRITE(62206) HIKAsZ)s T(2)

WRITE(6s668) (Ks H(Ksl)s k=KIs KF)

VRITE(6s668) (Ks mHi{Ks2)s K=KI» KI)

wKITE(6s668) (Ks DI(Ksl)s K=K1s KF)

WRITE(6+668) (Ks DI(Ks2)s K=KI1Is KF)

CALL INTEGL(XHA(KI) sXA(KF)sZ2sP(lsg)sKFsVALJESIER)

DU 394 K=Kl1s KKF

DX{K)=XH(K+1)—XHI(K)

ALPH1=ALPH*U«5

DU 37 K=KIsKF

BIK)Y=ALPH
AP=1leu—-(1e0/EXPLALPH))

ALKF)=AP

Dy 50 Min=1ls35

KF3=2

KAl=KA-1

IF(NM=2) 83s 569 57

ALPHI=ALPH®T &5 S7



=1
Nl'\l=0 » JO=U
Du 1 K=xK1s KK&KF
DX(K)=XA(K+1)=-XA(K)
1 HIKoM)=rd0Ll+CoXQeb®* (XH(K) *%2)
H{KFsM)=HO1
AP=leu=(1leu/cXP(ALPH))
DC & K=KIs KF
APC=AP% ( (HOY/H (Ko A) ) %#%2)
APO=14U—APC
5 PIKoM)I=—(1ed/ALPH)I*ALOG(APU)
WRITE(69668) (Ks P(Ksii)s K=KIs KF)
DO 8 K=KIs KF
8 PLIK)Y=P(KsM)
HU(M) =HUL
Ti{M)=1ewv
HE=HO (M)
Jo=2
CALL DVU
CALL HDT
PAI(KF)=040
DU 6 K=KIs KKF
J=KF-K
6 PAT(J)=PAT(J+1)-DX{I)¥(DEN(Jsi)+DEN(I+1sM) ) ¥0eb
DO 4 K=Kls KF
4 voIK)Y=(PAT(K)IZ*BIK) )Y/ (H{KsM)#*FIXPDEN(K9iv) )
CALL INTEGLIXA(KI)sXA{KF)sZ2sVUsrFsVALULSIER)
EBF=VALUE-ALPH/(16e 3% (H(KIsm)*RHL)*#%2)
EF1=E4F
DU 181 K=KAs KF
DU 181 J=KAs KF
BET{KsJ)=vel
181 CONTINUE
GU TO 499
56 M=2 $ GO TO 58
57 M=3
58 NnN=0 3 I0=0
IF(M1eLEe&4)98U4581
580 HuUl{M)=HU{m=-1)-204,0E-0
GU TO 9483
581 BM=MM $ bMF=MF
IF{MMeLEs1lS) 982,988
982 RAI=RA*¥(1led—-DM/BMF)
HO{M)=(1lev—RAL)#*HO(M=1)
Gu TO 9383
988 HU(IM)=(1lewu=CalB)¥HO(M-1)
983 DT(M)=HO(M=1)=HO ()
23 TIM)=T(m—=1)+0DT ()
IF(MMaEWeZ) Gu TU 161
CALCULATION uwb Trz INITIAL GUEOSobU PRLSouRRz oY LINEAR
EXTRAPOLATIUNG
TI=(T(n) =T =1y ) 7 (T =2y =T{wim1))
T2={T(M)=T (=231 /{T(m=1)=T(¥—2))
DU 751 Kk=K1s KF
751 PIKoM)=T1#*#P(Kohd=2)+T2%¥P (K s—=1)
Io=2 » 11=2 » CALL LVD % CALL HDT
15=3 $ CALL INTEG
HE1=HO (m—=1) 58



b

C

161
162

164
499
1513
1614

118

72

73

78
T4

75

76
77

71

467

1504

1553

101

HE=HO (141)
Gu TO 164

DU 162 K=KIls KF

P(KsM)=P(Ksii—1)

KC=4 3 “RITE(6s20u) &K

I5=2 % 11=2% CALL vwVD $ CALL HDT

EF 1=E&F

IF(NN+1eEQel) 1613, 118

DU 1614 K=KIs KKF

POIKY=P (K si1)

CALCULATIUN UF THE SYSTEM cwuATIUNS AND THE UERIVATIVED
OF THE SYSTEM EQUATIONS,

1S=3 5 11=3 % CALL VD

PKA=P (KAsi1)

CE=EBF/(4eJ%A(KF))

DU 71 K=KAs <KF

Kik=K-KA+1
CoDXP=C8/UX(K)#{P(K+1oM)=P (R ) )FDENERsM)/VIS(R)*(H(K+1 M)
X+ {KoM) )%
EL(KK)=CBUXP#{H(K+1sm) +H(Ksi) )= (PAT(K+1)+PAL(K))
DO 71 J=KAs KKF

JJ=J-KA+1

IF(JeEQeKRA) 725 78

Qud=Ue v

DU 73 I=Kls KA

QUO=QUQH (W K s I ) +GUIK+La[))#P (I o0d)

Qu@=QUQ/P (KA si)

GC TO 74

QWUTGE(KsJ)+WiR+19J)

RIKKeJJI)=—3 e UCOFCBUORP#QUW—(LETI{K+LsJ)+DbT(NnsJ))
[F(JeEQer) GU TO 7>

IF(JeEQak+1) GO TU 76

Gu TO 71

SIGI\Iz"loU

GU TO 77

SIGN=1eU

RIKK s JJ I =RIKK o JI I HF(CB/HUDXIRK)IFVISINI I IFL (R (N+1 o) =P IRK»™) ) ¥ (DENU

Ko M)=DEN(K o) #VIOGD(IK) /VIGIK)Y)+FLIGNHFOERTINsm ) )L (A (RK+Lom) +
XH{KosM) ) *3x35)

CUNTINUL

Te=KKF-KA+1

10=KF-KA

LIBRARY SuUBRUUTINEs IN1SPs IS TAkE UPERATIUN UF MATKRIX
INVERSIONW WHAERE THE GAUSSIAN cLImINATIUN Imbkinde 19 JbGEDe
CALL INLSPIRKsIGolaebi~=TsIEERKsSLsTEMsNI)

IF(IEER) 1503 4 L1503 1504

WRITE(69200) IEECR

Gd TO 1uub

DC 1Gu KK=KI»IE

Ao=Ued

DU 191 JJ=KI1s IE

ASSASHR (KK o dJ ) #ER(JU)

K=KK+<KA-1

DP{K)==AS

PIKsM)=P{nsM)+DP (X))

PolK)=P(rm)

CoNTINUE

ARITE(S692-0) NNs U
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s

1vo

11>
117
111
112

791

axITE(69217) EF1s coF
WRITE(H69842) (KeEE(R) sK=KI»12)
WX ITE(69843) (KesUPI(R)YsK=KAIKAF)
LU 146 n=ilAs KKF

5u=1fb—UP(K)

IF{SU) Y9os Y929 140
WRITE(S6217) LU 6 GO TC 1000
CuMNTINJUE

Pu=0Ded 2 Pu=ved)

DU 106 K=KAs KXF

Puw=Pa+DP (N}

Pa=PU+pP (Ksw)

P—U=ALSIPN/PW)

KAl=KA-1

IF(PRU-vVecuus) 1uds 108s 117
Nev=NN+T b IF(NNebLE 20 111, 192
IF(MeEJel) 112s 11>

Io=2 % [I=1 & CALL ovo 3% CALL AuT
PAT(KF)Y=veu

LU 791 K=KIs KKF

J=KF =K

PAI(J)=FAI(J+l)-DX(J)*(DE“(J,M)+JtN(J+l,m))%305

CALL INTEG

Gu TG 1258

[o=2» II=1 » CALL uLVu

CrlL ADI

I«=3 » w0=3 » CALL INTZG

Gu TO 128

Ir{I0+1leEwel) 1lcy 1352
IF{MMN+1eEGel) 153y 113

p,.-:\-;"u » Pad= el

Nin=0

DU 224 KzﬂﬁlsKKF
Pra=Pu+pP(Kew)=P5(K)

Pu=PU+P (K904)

Paws=ABS5(Pw/PY)

Tk CALCOLATlLun wb Teie InTonossaioo Lacel
Du 322 n=ixls KA
VUIlK)I=PAI () /(e w) %330 a(iwem))
Onb=le L e /LAPLALPH®P (LA ) )
AlKIY=0es » RAal=dA-1

DU 325 AZKI’ RAl

17=K » [TI=xk+1

PRLOOVRE e

Colll TRTEG2(Xm(IT) oA (ITI)slaVisnbsVabuk s TER)

AITh)y=n(ITY+vVvAaL oL

Do 224 n=als AL
WNTIIEAFA (S ) /78 (RA)D

q“:l.v_uk

Ir CURYBsls 301 54

Pl )=—ALvutllel—wr) /ALPH

Ge 1L 3zo

ol =dna-1 o aRITaelosdl M) un

Dw 2he onzale XAl

DU o )= IN)HF (la e ) /PRA

AT TE(Seda8) (Kerf (s ) sl=nlonp)
D R0 ~n=ale WKNF

2o() =2

(
Ii(“.'._l':'_ol.'_) 71 427
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=

427
471
227
153

192
197

198

851

852

853

854

861

863

557
52

41

1259
517

IF(PRQ-LE.U.UU&,Z) 197> 227

IF(PRUeLE«SaCULl) 197y 227

IC=I0+1 % IF(I0.LFe30) 1115 192
EBF=U-5*(CC(KF)—ALPH/(lé-U*(H(KI9M)*PHZ)**2)+EF1)
EF1=CC(&F)—ALPH/(lﬁ-o*(H(KI9M)*PHZ)**2)

GO TO 118

Nu=1

DU 168 K=KIs KKF

SP=ABS(P(&sm))

IF(SP~1leu) 198, 195 1000

CUNTINUEZ

TALS CALL I35 FOR THE CALCULATIUN OF LOAY bY THE 3UbRUUTINE
INTEGl.

CALL INTEGZ(XH(KI)sXH(KF)sZsP(lsM)s&FaVALUEaIER)
wlM)=2 4 UxVALUE

IF(MMaGZe7) 351y 852

PUNCH 2U5s (P(KsM)s K=KIs KF)

PUNCH 231s HIKAsM) s T

WRITE(656068) (Ks PAI(K), K=i1ls K&F )

PRIMNT Cul-LuAus CENTLER FILM THlICRNESOSS PRELOOURE »
ACT=ALPA* e 25/ (HIKI s M) %52 )

VIM)==AP/ (C4*EBF)

WRITE(B691vu9) AUT

VC=AP® (D (M) %% 2 ) %¥PHO/ALPH

WRITE(691509) VC

DO 853 K=KIsKF

VOIK)=XA(K) /HIK M) ##3

DP(KI)=-J0'J

DU 854 K=«KI 4KKF
DF(K+1)=DP(K)+G-D*(VQ(K+1)+VU(K))*DK(K)
VF=—AP/(LQ*(OP(K)*ALPH—ALPH/(lboO*(ﬂ(&lam)*PHL)**Z)))
WITE(G217) VFsuUP(&F)

WRITE(6s220) e i (i) 0 () o Tl ) sUT G ) sV (i)
WRITE(69210) (Ks PlKswvi)y n=iasls &F)

l’-,’t(ITE(é’le) (K HI{Kosv) s =1y KF )

WRITE(65215) (Ks D{Kasm)s K=1s &F)

[F{MMelLbe2) GU Tu 863

DU 861 K=K1, KF
VU(K):V(]'-])*(UA"IEGJ.(r‘i)'x‘n)(.<,l"'l)+u:'»t‘_ué(l"i)';"’L)(f\’:':“‘l)+u1‘.’:LJ3(r'l)7""L)((\9r’(—

X=1la:)

WRITE(6+2.9) (Ks VD(K)s K=KIs &KF)
WOSLaURC{PH/E Y% %2 ) %W {11)

WT=1leb%uw (1)

WRITE(63217) wTs ab

Io=2 3 II1=2% CALL wVL & CaLL tDT

IF(MU=~2) 50, 50 52

DU 41 M=1s2

TIM)=T (1+1)

Ho (M) =HO{M+1)

DG 41 K=KIs KF

DEN(K s ) =DEN(KyM+1)

DIKsMI=D(RKsm+1)

HIK ") =H (s M+1)

Pl ) =P(nsm+]])

CUNTINLE

IF(HO(M) oLt elLeuc~6) L2CUsluYyy

IF(MMeEuWe3) H17s 515

#3=WH) B HI=HO(m) » T3=T(m) » V3=Vii) o 0T3=0T(a) o ou Tu 50
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blo
DU
ILovo
lovd

519

[6;]
a
L

[ [ G G

NN NN NN
4
N EWN =D

(SN

no
P
O

21¢
211
215

214

223
220
221
OGeu
7321
G4y
T
Tle
731

666
569
668
SR
1.8
16.C
1.1
21l
217

3ZY

XElbeTs =X #A0(M

wiMMI=n (M) o T(wie)=T0n) o dulem)=hulig) o Vae) =V o vTlemm)=oT (M)

CuTInUL

anlTE(Ss0.7)

Du 583 I=e1 et

IF(IeEQe3) 51%s D03

Al IY=wW3bA01)=H3sT (1 )=T38V (1 })=Vv3zuT{[)=pT3

WRITE(S9221) T w(l)erAD(I)sTHI)eT(l)evil
STOP 1

FURYAT (4159 ¢Flueds Tl0ale FLCe0)

FORMAT(4F1548)

FURMAT(5Z1542)

FURMAT(F15eZs Floels 219425 Floe3)

FURMAT(4F luels Llveecgs F1lGe1)

FURMAT(EELZe2)

FURMATIOELZeD)

FUuRMAT(GFluel)

FURMATIOX/ /40X o %RELATIVE VOZLUCITYs VKoM )=/ /2K s ¥ K 920K s%u® 940K
FRF 9 ZURNsTRF 9L Ao T R s 20X 9 ¥R2/ /(0135106 923K)))

FURMAT(3X//750Ky #P(Ranl)=i#//2Xs #r¥y 20X HR%, 20Xy ¥R¥F,

X2.Xs %K%y 20Xs #u%320Xy ¥K¥//{(6(15, £15e75 3X)1))

FORMATISX//5GXe #rilneia) =%/ /2Ky Fadts Z20XKe #¥Fy 2UKe H#nity

)(\Zu)\" 'ny"\'fS 2'\))\5 '*1\.‘:*"9&()/'&9 *.\*//(O(IB’ L._].Jc/’ j)()))

FURMAT(oX/ /900K ke FU (Ko )=%//cAhs FnFe Z2ORs ¥a¥s Z0OXse HnFy

X2.Xoe #Kiy ZUAs HR%9llAhky % #//(0(15s tivaly 34)))

FUrRMMAT(oX/ /124K %1k ~nIGLD ouuY PREDLURLS FlNs)=%/ /2K

X%nFe 20K #i¥s Z2UuAs %L ¥, Zuhs FTaFelUXs Fa¥s LUKy ¥RF// (w3

KEL9De7s 35X)1))

%o I39 2Xe Fwlin)=%y £ldels 4Xy Fuu=i,
¥ Zl%els UXs HV=ke piu=T)
=its 1Zs 3Xs Fol{4)=%s LloeTls 3XKs FHU(m) =%,

FORMVAT (IRl s 35X .

et

>

) =
FURMAT(LHL s 5As #4

XEL1DeTs 3Xs *¥T(w)=%y £15,7s 3Xs ®UT(m)=%s 5154754Xs *V(11)=%,E1%47)

FORMAT(SX o ¥ in=® g 1395 e%m (i) =% 9L lbals3A0Wriv() =k,

XELDe (o3 Xe®T (1) =%ob 12 /,3}(9*.J]-(|'|)=%,L.Li')oi’é&";eV(:‘l):*’tJ.‘J. {)

FURMAT{OX/Z//215s DA %EP To [TUu osiALL%)

FORMAT(ZEZ2Ue b u)

FURMGATI3X s ®ii—iKy PRLuoodrbl JalAs//7/(ollos Floes))// /)

FURMAT (oA To//7(allse Flbdeol)i

FORAT(5XKs [y d4rlzes)

FURMAT (Lrils S3Ae su=%y [3a S5Ae F,()=%s Li3els LUXe Fuushy Ll3els

XoAns ¥Ad () =%, £1347)

FOURMAT(¢cIose 7TE1GeY)

FURMAT(LIHLIZ/ (6(]4s 1Xs Flbed)))

FURMATIZX//(6(14s 1Xs Floec)))

FURYAT(OX/ /750Xy #VATRIX K{&Ksw)=%//(6(2]143ELZeD)))
FORMATOIHL/2Xs #V=%y £E1Ged)

FUlk AT (X yvi=%xy
FOl nATU45 s #ul)=Xy E16e3)
FEor AT (ansXs ¥TRU =
FoemrATIo(rLllets
FurR=“AT({vE L 0el)
FokiAT{cXs #0ATRIX 1o SIhoubmic®s 2X)
FORGAT (oA # PR )=%/ /(6] sdAscinel)))
Forko AT locasdnit{nNY=%/7/16{las¢cAs=10e5)))
ForirATlau Ao wm_ (< )=3//(6(JdscXoti2e7)))
FORYAT G A %P ()= // (5 (]4sdAsCiYal)))
T
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[aNaNa!

3l
3u0

42
21

310

25

CALCULATI UG oF FiLs TrnlCantoso Anv CuecFFIllenTs OF LAURANGIL AN
TOuREE=PUInNT LGuALKAl UKL

CoMUOIN/A/SNT s ALPrie LiNe Ue 1iCe 11cls ALPI1 s i

Cuririic Il e e Alls niFy KFds RKF3s Ve arkts Ius ins hlNs Pus Ks s
1Pis PCyr nus Py Eus s wwe oty KAs KUy Pinlks PULls Aris UXs wls v
2109 H P sVIoesVIousuiiNsLeNEsTouTaVusUPsrUsoL s sl sSusnisPoy
S0mEG3 90Ul osunmEUl sunT oDusviLsCh4sCnsilsuwrsPAlscTsPloPr2aviils
4V I029VIo3s0PVesCOsEF sV el Lol sPrRAIUPRIK

DIMENSTIUN Ar{21)s0A(D1)y(5193)emia{nins)erilolss)suwllui)y
IP(5193)sVIs(Dl)sVISU(HB1)sDENIDIe3)sveNU(DLeso)sT(53D)sVIioD)

20T (35) sVUISL)sLP(51)9srO(50) 9w (35) s {51) sAlB1)sD{5L)sCL(H1),
BF(51)sR(51921 Yoo T(2195]1)swuidi)sPa(5i)sumtGal(s)sribGZ(3)
GOMEGL(3) sDENTI(DL) s G (D151 ) sPAI(D1)s5uBVIDL)sC (23951 )sLE(21)

DU 200 K=wls KF

DS':'\.:'.‘J

DU 3C1 J=KIs KF

Du=G(K s J)*P(JsM)+DS

D{Ksrt)y==CoO¥Ub

Du 303 K=KIs KF

IF(KF34EQel) 224 42

IF{MYeEWel) 21y 22

FOUlK o) =adu(m)l+ e 0#CHH* (XHIN)#%L)

RIKsM)=nG (Ko vit) +U (Lo}

Guv TO 393

HO(K s M) =HO i)+ L e 3 CH¥ (X (n)FH2)

H(K"‘-”):HG(T\'Q:‘:)‘*‘D Koet)

CUNTINUE

He (MY =HIKF si)

IF(vE=1) 510s 3iUs oil

DTE)Y=HI (=1 )-HU ()

TY=T (=LY +DT ()

+F (MM=2) 31es 355s 351

OI'lE(.-)l(ll"l)=l-v/UT(m)

Gv TO 31ic

CorbG3 () =0T () =Te=1)) /7T Chi—2) =T (=1 ) % LT Ci=2) =T () ))

OnEGZ2 () =(T L) =T =20 /(T =1y ={(m=2)) ¥ (T (=1)=T () ))

OrmEGLEM)I = (T LAYy =TLom=1) )4+ (T =T =210/ T m)=T{= 1) )% (T () =T (=2
X))

COUNTINUE

RETURN

B

SCBROUTINE INTEG

ChnLCutAllun o Tric [nWTEZ0KAL Ay werkaVATIVL ul Tee TonlTouRAL

Iiv WHICH Trie INTeoRAnMD 15 Tlelm wieRIVATIVe OF Tic

PRODUCT OUF CensSITY Anw FlLew TallaRESoe

CurMiON/ A/ F s AwPids BNy Eus tices ricle ALPHLs mnl

Courituin ~l s ~NAs Kals NAF s AFcs NEDs Vo nince Llos v NIke PUo s s
1Pris PUs &Ko ZPs LLus as Jwe ovis KA NUs PiNiks Puls Xihie u%9 Jis e

-
[
L]

2ticeHsPsvicevioosinNsui Ml suTeVUusuPsmUsoLsnsnsCaciishmisr s
30063 90Ul surmical suinT siwswosChal sl TowsPinlsoucisPlePssviols
GYISE29VIaDsCPVeCHaZLF o5 )iV s CCabE sPrnsUPRYR

DIVENSITUN XH(21)sUA(D1)Y e (D193)erdG{O L) ord{olon) sl (bi)y
IP(5)193)YsVION{ 1) s WVILU(DT) s uUN(DLel) s lENZIDLed)sT(25)sV(35),
ZOT 035 )9 v (D1 )sOP 1) sl ou)onlo)sob(D1)sAlD1l)eslol) sl {D1)s
DF(D1)exk{Sres]l)smcl(olesldecu(ovi)sPolor)rsunmmudlio)suricod(3)
GUAMtOL (3 ) st {ol)swlDisnl)ebPnlioi)scouvioLl)slldsssvi)szlor)
KAal=Ka-1

[F{=2) 591ls 2 63



I e 2 N=ERls oAr
pranTla)=luonilsm)=OLiviEeyn—=1)1) /0T ()
Sul)=luvlasr)=Ulinmer ) =D len=1)+0 kA =1) ) /0l ()
SelE)=0omine ) Floo{n)—led ) Fitlino ) #0TinT ()
PAl(RF)I=Ceu
Co 4 K=ole SKF
NEE SR
G PATIUY=PAT(I+1IY+OX{O) R (SE(J)V+EE(I+1)I1%Ded

Gu TS 31
Z Uw 19 K=lis nF

CoHT{r) =0l )% udin (L e=2 ) tunn G2 () F o (=104
AC-eGl ()% yline.n)
Sl )=o) funinlnsm=2 )Y 0 (ivsv=2 ) turicu2 () e nsm—1) %0 (i svi=1)

o

Atoatn Ol ) #umin (o) Fu(ils)
1y SclR)=—=Uininsr)+oula)ridinsm ) o (N)
PrI(KF)Y=veu
Lv 25 =19 wnF
J=ilF—=K
25 PAI(J)Y=PAT(0+1 )+ X H(SZ(0)+5E(U+1))%Deb
31l IF(ISeEuweld) 15, 24
1o Do 16 K=KA1ls KF
BT (KF e R) =0 ey
16 CeMTINJE
KAal=KA-1
KE2=KF-2
Dv 150 RK=rnAs KF
De 120 Jd=dns F .
RIhsJ)=ce- & IF(Jefwesxa) 101ls iDZ
151 Do 12% 1=K1s KA
155 RIKed)=lKlinod)+u (o I)®2 (T o)/ Pl{nmsm)
Co TO 100
52 RIKsJ)=wled)
150 CUNTINJZ
I J.\Il NENAS wF
ou 0l JU=niAs KF
U LT e
2 1e.o mw=ws walk
1vd SUS=SLE-ULEN (s ) ¥ (ivad)# (A + 1) =Anilix—1))
Co=SSS+UE (e ) RN ) EDX (N—1)
:)sts_')[l\(f\F 9-'!)"'(';1(-"\FSJ)*QX(A\P.F)
BLTIK s J)=0nE Gl (W) *{6%55% 06D
TE(J=-K) luls 157s 103
107 BLETIC e )= b T (L ed) oo (Jem) ¥OX(J)#(un 2ol ) ®n(Jde)—1e0)%0eb
Gu TO 1ul
1.8 HoTiKed) =T (R edtruENnS(Jer ) F (AR (o+1) =X (Jd=1) )Y #F(UmTEL ()
Al det)=1lau)# 6D
11 CoNTINOC
Do 33 <=NAls AF
32 BTk sn)=ced
Go TJ 6o

N

1l

" e -
2w 9l KERAS

Pe Lo JU=Ame WF

L

SuT sl ) T e
o oI Inoo
GJd Lo a4l (=il nF
47 VOE) SR IRYRPALI LAY/ {1y ) RFIFTE y(1ven))
Tl TNTZ02 00X (R]) sAniiF )ecovie SFo Vibdose [Ei)
CIURFI=vaot
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*

20 CuHTINUC
RETUKN
gD
S50BROJTINE DOvD

CARLCULATION oF wenolTrs VIoCuosilY ARy lTHels UeRkIVATIVLO

WITH REOPLECT TS PREaziLRE,
CoHMOR/ZA/SF s APy s Evse tlis icle alPtils v

Cu'lv0Om RIs KAs KAIls KRKFs KFZs wF3s Ve KKEs 15e i

1Pxs PCsy Kis EPs Lus ws viws s 1xAs AU Piuiks PUT s

Nive POy Ko

Xite

UXs Ul

2Lt aP o VILeVIvTsuinoveMls o T oVusUuPeriUsoesinsnesCabusiiriarhs
SOmEQ3sUrmEO2 summcGlovnint susvoslasilDollswsPAl s ToPlsPeaVIibly

GVIH2sVIL3:0PVsCOhetpF sV el sbRAasUPiReig

DIMEMSTUN X (21 )Y suA(DL)Ysul{olesn)snl(Die3)er(oies)suvl(ol)s
IP(S1s3)aVIolol)sviowinol)soun(oleod)suenU(o193)sT(25)sVIion)s
ZGT(?-E))s'\/‘.)(fl)MJP(‘)L)_MIC}(DU),':'-4(33)9;:!:(51)’F\(Dl)3L5('D.L)!LL(Dl)s
BF(B81)aRI5195 1) a2 T (51651 )s5D(HL)YosPS(H1)soumiG3{(3)yUmcG2(3) s
40 L GL(3) s 0ENT (51 sw(21aB8]l)oPALIDL) s0usvIinl)sC(Z2es90l)sbE(S])

IF{IS=2) 2uuws 2¢2s 207
20 VISIK) = XPALPH® P (i m) )
VISDI)=ALPH*¥VI S (L)
DEN(K ot )= la G+ {ENYP (Lo} )/ (Levt+oORPIRKsi) )
RLND O ) =N/ {Leou+P {Ks )LL) ¥¥2)
Gw T 2o
202 Ou 265 w=KIls KF
VISTK)Y=LAP (ALPH*P { e ))
VISDIRK)Y=ALPA®V ]I s (wW)
DLllKev)=lavt+ (ot Fri{nes ) )/ (lavtilwdr (Ko} )
25 DnNDINs ) SLA/ ([ lewtBP{Kenj)Rpw)¥ikg)
GU TO 2ub
2vT Do 2U9 ~Eais AOF
P3=(PIK+1s)+P (L)) /260
VIS Y= XP (ALPA%*P3)
VIGN(IK )= Lo SHRALPHIVI S (K)
gl el s tee+ {(Lin#P3) /(14 0+ou¥*rs)
29 DLNO{ L )T e FEn/(Lle o+ 3%y )#%2)
2.0 1 (Ilezwel) 469 Zu
G KAL=EMA~L
IF(N A +laecwel) Zos 0D
g0 o 47 K=xls wAl
O7 PlKe™ ) =P s )R (s Aen ) /20A
2o CounMTlimdu
CTURN
il

SJUHROUTIN: ITRTeEGL(ul sl2enCTeslFsnPoaVaLwisloikik )

i s

rlX(L))

THTCEGRATZ G Trme Nuie cGdlIlolAnleY Trocemiceg Fordliloun
oo Te EEN Teiz LIviilo o o AND Ce

A NMOLIFILL. anThUw Ul uVERLaAFiF e PAcAcunno o o PLoeYioe
A LHECUNe ©AaTRY Polnd 'Inloould' 1o Proviviw roug aowe T

InTeGRAalIcn un Tiiw Drall olViolaive ur Xe Title CAVew

Cr CALCOLATING Tz w1l lou ronlTlunce

e vl
Fore Tlme

ok oo —

A Lunois LIall oF ITalaoknlivive

[ JPFEn LIl T WF Dindidcaamllioune

X ARKRKAY CF Anud Iz NT Valouizoe ool o sunieTonmlmoLY

IanlivEAST e iy oo T b wlobinsluinew tire

]

F ARKSAY O FunddlTTon Vakutees wool o vl nnaolaney ile
"P NJBER oF PLItiThe  al o oausT 0E Giialon Trian
VLl Aol Tael velul oF Ta fefoonnTlune
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b3

e

15

3G

50

C AEIGHATING FUNCTION PASSED TU Tdk wALN PRUGKAM
FOR 5TCRAGE

TERR RESULTART ERROR PARAMETERS

REWUIRED SUSPROGRAMS — NONE

CUMMON STCRAGE -

THE WEIGHTING FUNRCTION € IS 5TUReDd Ia THE WALk PRUGGRAM AND

REQUIRES THE FOLLUWING DIsbnsIUN STATEMEAT WHERE UeGEeNPa

ERROK [NOICATIONS ~

IERR = 0 INOICATES HU ERRURe
IERR = 1 INDICATES WP 1S Leod -THAN Ge
IERR = ¢ INUICATES TAE LIMITS OF INTEGRATIUN Axc UUT CF

T RANGE OF THE TABLEa

COMMORN/ZA/XKF9 ALPrds ENs EFUs Hos fEls ALPHLS i

COMMON KIs KAs KKIs KiFy KF29 KF3s Vo KKEs I5s iNo NNs POs Ko My
1Pms PCy Koe EPs EUs wse wWdse wMs RAs KOs PNRs PUILs Xhis UXe uls Us
ZHOSHIP s VIOLaVISD s UENIDLND s ToUT s VU IDP sHUsoLsAssCeSUusAmelP Sy
30MEG3s0MeG2sCMEGLsUENT sDU L9 C 49 Cos T swsPAlsoLTIPLlsP2sVIblo
4VISL29VIO3sUPVsCOHSEBF s UV Ll s PKAIIPRIK ’
DIMENSTIUN XH({51)sDX(21)sD{(2193) sriG{(51e3)sri(5193)s01(D1)y-
IP(9193)sVIn(ol)sVISUID1T)sUEN(DL93) s NU(D193)sT(535)sVI532),
2DT(35) s VD(B51)sDP(351) sHO(20) 94 {35) 9L (51) sA(B1)st3(51)sCCI5]1)
3F(D1)sR(51e51)sBET(5H51951)030(51)sPS(51)sUMEGS(3)2umbEG2(3),
GO0¢EGLI(3) sUENT(51) ow(b51951)sPAI(51)s5ubVib1}sC(z293s51)sE(51)
NP MUST BE GREATER THAM 3

IF (NPerLEWL3) GO TO 96

CALCULATICHN UF INTZRVALS OF X

NR=NP-1

DU 10 I=1,NH

DAL ) =XH(I+1)=-XR(1I)

DU 20 I=1s ind

DoFINE COcFFICIZNTS OF FIRST PARALULA

IF{leclel) Gu TO 1o
C(lolol)==DX(I[)#%¥3/ (6 QFUA(I=1)%(DA(CI=1)+DA(L1)))
Clle2sI)=DX(I)#*(3eU%UX(I~-1)+0A(1) )/ (6e0%UX(1-1))
Cllo3sI)=LA{I ) *{B340%LA(I=1)4+2eURLUX(1I))/(B6eUF(UX{LI=1)+UX(])))
CONTIN &

IF(leEQeNH) GO TO £0

DEIFINE COEFFICIEnNTS OF SECONU PARIsULA

C (231 ] )=OX(I)H(Z2eCHUX(T)+3eU0FOX(I+1) )/ {6 U¥{UX(LY+DX(I+1})))
Cl2o2sT)=0DX{I)*¥(DX(I}+3,0%0X(I+1))/(6a0%UX(I+1))
C(2931)=—DX(1)##3/(CeCxUuX(I+1)*(DX(I)+UX(1I+1)))

CONTINUE

ENTRY INTEGZ

INITIALLIZE sweiriAl lun VARIAoLE

VALUE=D ey

Ir(GZ2-G1) 4092930

B I5 GReEATER THANWN A

ALIM=G1

BLIM=G2

SIGN = lev

Gu TO 5u

A IS GREATER THAN ©

ALINVM=G2

BLIM=G1

SIGN =—lo:

NH=NP-1

IF(KCTeEQel) L1299 123

CALCULATIUN UF INTEURAL UVER SUBINTERVAL
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123 DU 80 I=1s NH
SuBVII)=Uau
IFIXH(I) eEQeALLM) SUBV(II=ClZrslsI)*F (1)+C (29251 )#*F(1+1)
X+C (293, 1)%F (1+2)
IE(XH(I+1) eEeblIM) 303VIII=Cl1lslsl)#F(I=1)+C(1ls2s [ )%F (1)
X+C(193sI)%F(I+1)
IFIXHI{TI) oGTeALIMe ANDeXHII+1) oL TeblIm) SuBV(I)=0eb%¥(Cllslsl)
X#F(I~1)+(C(1 9251 )+C(2913 1) )*F(II+(C (1391 )1+C(292s1) ) #*F(I+1)}+
XCU233511%F(1+2))
80 VALUE=VALUE+SUBV{1)

VALUE=5IGN*VALUE

GO TO 92
125 DO 110 I=1s NH

SUBVI(I)=Ua0

IF(XH(I)eEQeALI4) 111»s 110
111 JH{IeEQeNH) 113 1li4
113 SUBVIII=Cllslsl)¥F(Ll=1)4+C(Llsls)¥F(1)+C(Ls3el)%F(1+1)

GG TO 120
114 IF{l1eGE«2) 115, 116
115 SUBVII)=U0eS#(C(1alal ) ¥F(I-1)+(C(1s2s1)+C(2s1sl))¥F(I)+(C{1s3s1)

X+C(202s I))*¥F (I+1)+C (293, 1)#F(1+2))

GU TO 120 £
116 SUBVII)I=Cl2s 1l ) #F(I)+C (2929 L) HE(1+1)+C(2s3s 1 )%F(1+2)
120 VALUE=SIGH#5UBV(I) % GO TO 92
110 CUNTINUE

SET ERRUR PARAMLTER FOR NORMAL RETURN
92 IERR = v

RETURN

SET ERRUR PARAMETER FOR TOu FEwW POINTS
96 1ERR = 1

RETURN

SET ERRUR PARAMETER FUOR A ANU/UR b OUT UF RANGE OF TAULE
97 [ERR = /Z

RETURN

END
END UF RECORD
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LIST OF SYMBOLS
a Half of Hertzian width

a coefficient of density

o
mlm

o
b coefficient of density

b
B=32

0
c constant in deformation formula
1 constant in deformation formula of cylinder 1
¢y constant in deformation formula of cylinder 2
cg coefficient of deformation formula
d Deformation

d
D=3
E Equivalent Young's modulus
E1 Young's modulus of cylinder 1
E, Young's modulus of cylinder 2
h Film thickness

h
H=7z
hé Rigid center film thickness
ho center film thickness

ho
Hy™ R
hg geometrical film thickness
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Minimum f£ilm thickness

A dummy index

See Eq. (B.7)

A dummy index
A dummy index

See Eqs. (42), (43) and (44)
See Eq. (62)
An index for time step

2
Newton/meter
Pressure

Center pressure

Hertzian pressure

Radius of equivalent cylinder

Radius of cylinder 1
Radius of cylinder 2
See Eq. (B.10)

time
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u.,= -Z.-
J
v
v - 12p.S
ER
v
o
2
\ =1MS
o,m ER
Ya
b4
Xx=2=
a

™

ol

o

o

Approach velocity

center approach velocity

Deformation velocity

coordinate along film

Coordinate separating the inlet and middle region

Load per unit width of cylinder

Dummy coordinate along film

Pressure-viscosity coefficient

Second pressure-viscosity coefficient
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vm(-XK)

See Eq. (60)

viscosity

Ambient viscosity

Poisson's ratio of cylinder 1
Poisson's ratio of cylinder 2

See Eqs. (56), (57) and (58)

System equation

Derivative of Tﬁ(p) with respect to P,

Density

Ambjent density
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Fig., 1-1 Geometyy of the normal approach elastohydrodynamic problem.
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