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1.0 Introduction

The major task carried out,uﬁder~Contract
NAS2-5876 was the development.of theoretical and
computational techniques for calculéting the time depen-
dent electromagnetic responseof a radially inhomogeneous
moon. The importance of this task was two-fold. The
’techniquesvwere:first used to analyzZe the experimental
data from the LSM (Lunar Surface Magnetometer) thus pro-
viding the first in-depth diagnostics of the Lunar
interior (Sonett et. al., 1971, a and b). The theory
was also incorporated into an.existing computer code
designed to calculate the thermal evolution of planetary
bodies. The previous calculations (Sonett et. al., 1969)
had relied only on unipolar induction. The new program
will provide a tool for examining the effect of heating
from the TE mode (poloidal magnetic field) as well as

the T™M mode (toroidal magnetic field).

The theoretical discussion of the problem of .
the electromagnetic response of a radially.inhomogeneous
moon is presented in Section 2. The method of obtaining
various potential solutions for the vector wave equation
is shown along with the-spherica{Lharmonic expansion of
these potentials. Fo;mulés_are'dé}{Qed for the radial
equations which reduce éhé problem of obtaining the

solutions to an initial value calculation.



The theory is applied to the problems of the
near surface thermal gradient of the moon, and the
overall lunar electrical conductivity in Sections 3 and
4, respectively. By comparing the éxperimental data with
calqulated results for lunar models, the thermal gradieht
is bracketed between 1.5 and 4°K/km near ;he lunar sur¥
face. A computer inversion using-tﬁe complete experimen-
tal spectrum is invoked in Section 4 to obtain the lunar
conductivity. This work has been reported in Sonett
et. al. (1971, a ana b). The major discovery in this
work is a prominent peak in the electrical conductivity
at a radius of 1500 kilometers. The lunar conductivity
vexhibits a precipitous fall off on -either side of 1500

kilometers.

A new version of the computer code used to
generate the data for Sonett et. al. 4(1969)'is described
in Section 5. The maﬁof change is the inclusion of the
time dependent electric fields for the joule heating.

The program with all of its subroutines has been checked
and is operational from an experimeﬁfal aspect. Because
6f the inherent complexity of the overall heating problem,
more short computer runs must be laid out and made in
order to determine an optimum mode of investigation‘for

this program.



2.0 Electromagnetic Induction in the Moon

2.1 Meéhanism

Electromagnetic induction 4in the Moon is depen-
dent upon the existence of a large class of discontinuities
and waves in the solar wind. The forcing function which
drives the induction is composed of the steady interplane-
tary magnetic field upon which is.superiﬁposed a hydromag-
netic radiation continuum due to (1) plasma waves arising
presumably in the solar atmosphere and subsequently
convected and propagated outwards, (2) waves due to local
instabilities in thé'solar wind, -and (3) discrete large |
amplitude events such as collision-free shock waves,

tangential discontinuities, and Alfven waves.

The formal statement of the electromagnetic
interaction problém rests upon division of the fields
into parts which correspond to toroidal and poloidal
magnetic fields. These are excited respectively by a)
the interplanetary electric field (as perceived in a
frame of reference comoving with the Moon) given by
E, =v x B. , where v is the velocity of the Moon rela-
tive to the solar wind and B the instantaneous inter-
plaﬁetary magnetic field, and b) the time rate of change

of the interplanetary field, B . The two modes corres-

pond respectively to transverse magnetic (TM) and transverse



eléctric (TE) excitation. Both modesvdisplay strong
frequency -dependence (f = w/2m where- w is the angular
_frequency in radian/sec). The ﬁagnitude of the TE
transfer function goes to unity as ffequency, f»+0,

and increases with incréasing, £f . The TE mode currents
which close wholly in the lunar interior, tend to be
concentrated where the waves damp substahtially.- With
increasing frequency, the poloidal magnetic field becomés
compressed into shells of decreasing thickness. The
exclusion of the field from the interior of thé moon,
coupled with the confinement of the field at the lunar
surface by the solar wind pressure on the sunlit side of
the moon‘produceS~a magnification of the reéultant

magnetic field at the lunar surface.

The TM mode attains peak value for £ =0 ; it
femains approximately constant with increaéing f 'until
a combination of core and lithospheric constituti?é param-
eters forces the currents to pass wholly through the crust
whereupon it aecreases with further increase of £
This mode is responsible for the steady state bow wave

phenomena.

Theoretical treatments of the lunar interaction

with the solar wind generally include the effect of éhe
solar wind dynamic pressure in confining the induced field-

lines (Blank and Sill, 1969; Schubert and Schwartz, 1969) .

: o



This is provided in the model by a field confining surface .
current layer in the solar wind just ahead of the lunar
surface. Preliminary examination of the lunar response
using the LSM data shows a strong amblification of inci-
dent tangential discontinuities whose free stream proper- .
ties are monitored by Explorer 35 (Sonett et. al.,l197l aandb).
The amplification 6ccurs'only for the vector coﬁponents
tangential to the surface; the normal component tends to"
follow the interplanetary value. Thus, the existence of

a thin cbnfining current layer appears verified for the
sunward side of the Moon. The very strong excitation
implies‘that the iines of force are confined within the
‘Moon to a crustal laYer having -an electrical conductivity

substantially less than that of the deeper layers.

2.2 Theory of the Induction for Harmonic Excitation

A complete treatment.of the electromagnetic
interaction would require appropriate matchinggxfthe
interior fields to those in the plasma surrounding the
Moon. A less complicated interaction model can be used

for the present day moon-solar wind electromagnetic induc-

tion problem because the flow field exterior to the sunligf;ﬁgig&rfﬁ

side of thé moon shows no marked perturbation from the
. presence -of the Moon aside from the diamagnetic cavity

(Colburn et. al., 1967; Ness et. al., 1967) . Based on



this lack of a scattéred field up stream in the plasma,
an analysis for the sunward hemisphere is'carried-ou£ for
an inhomoéeneous.Moon immersed within a perfectly con-
ducting space. The compressionéj.efféct of the solar wind
momentum flux isAtaken into account mathematically by
postulating an electrical current layer just above the

lunax surface.

Previous discussion of the electromagneﬁic
response of the Moon to solar wind forcing functions.have
‘been limited to models of concentrig, cOnSﬁant electrical
conductiviﬁy sphérical shells (Blahk and Sill, 1969,
Schwartz and Schubert l969,>Schubert and Schwartz, 1969,
8i1l1l andBlank, 1970). <Also, the analyses of Blank and
Sill (1969).and Sill and,Blankv(l970) are valid only for
low frequencies.. Their work'cofresponds to the retention
of only the first term in the épherical harmonic expansion
of the forcing field. Electromagneﬁic waves of frequency
high enough to be confined to the near-sufface fegién pf
constant temperature gradient réquire for their cgmplete
description higher order terms in a spherical harmonic
expansion. The theory presented in this section is appli-
cable.to a Moon whose.eiectrical coﬁductivity, g,
varies with radial'positioﬁ in an arbitrary manner. 1In
addition, higher order terms in a spherical harmonic |

expansion of the fields are retained throughout the



theoretical developmént,*

We consider the interaction of a solar wind

forcing field of the form

H=9H exp{i(Z;fZ - wt>} Q)
E=2% WVH eXP{i(?‘)\Lz - wt)} . o (2)

with a radially inhomogeneous Moon. The cartesian
*coordiﬁate'sfstem (x, y;“z) with unit vectors ‘g, Q, 2,

is fixed relative to the Moon and has its origin at thé

- Moon's center. The Moon moves with speed V. in the
negative z-direction. The quantities Hd “and A = v/f
are the amplitude and wavelength, réspectively, 6f the
~magnetic field oscillation and the circular freqﬁency w
is 27v/N . The amplitude of the electric field" |
oécillation is uvHo ' where M 1is the permeability of)-‘
the solar wind. We follow the formalism of-Wyétt (1962)

who considered the scattering of electromagnetic plane

waves from inhomogeneous spherically symmetric objects

*The following theoretical development, as applied to the
Moon problem, was first presented by Schubert and Schwartz
(1970) . This work was then incorporated into the LSM
report (Sonett et. al., 1971 a,b)-..
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in connection with the problem of determining the nuclear
scattering cross-sections. His work appears to have been

based on earlier work of Lahiri and Price (1939)7

2.2.1 Formal Solution for o(x)

fhe solutions of Maxwell's equaﬁiohs can be
represented as the superposition of-ﬁwo linearly indepen-
dent fields, the transverse electric (ET, g?) and the
transverse magnetic (Ee,.ge) . It can be shown that these
two -sets of fields are completely determined from two

potentials, o® and of which satisfy the equations

v2aR 4 k2Q™ = 0 (3
dk. -
2 e L 1 29 e 2. e _ -
0 - g ae ar @00+ Kt =0 ()
where
k% = o?pe + iow L (5)
k) = iwe - o | -(§)



aﬁd "M and ¢ are the magnetic pefmeability and elec-
tricai permittivity of the Moon. Although some possibility
exists that local effects afe significant in increasing

the value of u over the free space.value, there is.
presently no evidence for’this.f An upper bound for the
global permeability of 1.8 Mo is given by Behannon (1968).
In_ﬁhe following discussion the values assumed for the
globél permeability and permittivity of the Moon are the
free space values of these quantitieé. Possible departures

of the permittivity from the free space value are insigni-

ficant in the subsequent application of this theory.

First, consider the transverse magnetic (TM)
or superscript e = mode, characterized by the vanishing
- of the radial component of the magnetié field. The first
step in obtaining the potential for this mode is to write

out Maxwell's equations using (5) and (6):
VXE = k.H (7)

VXH = -k ,E (8)



where . ko = 1M - - (9)

k% = -k, k, | (10)

It can easily be seen that the radial component of (7) is

satisfied exactly if

© =T sin 8 oY | (11)

1 3u° ~ S
Eg =T o6 f - (12)

where r, 6, ¢ are the spherical .coordinate triplet and
u® is a scalar potential. If (11) and (1l2) are next
inserted into the 6 and o components of (8)' the

resultant equations are

e
D e - g A0
5 (M) = *1 S | (13)

-10-



-k e '
of el _ 1 13U '
Br(rHG T sin8 3¢ - (14)
By defining a potential o by
e_1 3 e ‘
v® = 5 (20) - ()

-l

it can be seen that (13) and (14) are satisfied exactly

if

H?a =T silne 'Q—Qg | ' (16)
HZ = %9—; - (17)
';nserting (15) into {(11) and (12) gives
g€ = ;l. 3° (x0®) | | (18)
- 78 klr ar§9 : :

-11-~



e ".1.  82

_ e
© k;r sin® 3rde (xQ™) : (19)

E

Finally, one must obtain an equation relating

e

© to 0% and a partial differential equation for Q

r

E
From the radial component of (8) together with (16) and

(17) one obtains

2e 1 3 |2 aa®
= -V —_ e 3
r a- + r2 or ( ar

(20)

From either of the two transverse components of (8)

together with (16) and (18) or (17) and (18) one obtains

9 d _ .
8¢'Or 36 E =0 (21)
where
k,ES 3k 2
_ _1r 2. e 1 l 3 e 1l o e
£ =—F— - ka + k,r or ar(rQ ) - 7 arZ(rQ ) (22)

-12-



If separation of variables is assumed, then the only
solution for (21) is £ = 0 . With this result,
equation (20), and after some algebraic manipulation‘one

obtains

32 1 % 5 2

2 k,r dr ar +k (ra

1
E_ =% (23)

1l | orx

and the determining partial differential equation for

Qe :

+ k)" - — —= 9 (r0®) = d . AA(24)

It should be noted that the vanishing of the divergence

of D(= eE) has not been invoked in order to obtain this

set of solutiong ﬁ;ﬁpié“réstrictioh was erroneously
-required ithyaEtfs paper. In fact, the divergence
equation is used to. obtain the charge distribution which

is not zero in the TM mode when the conductivity is a

function of position.

The complete solution of Maxwell's equation

within the sphere requires a second set of solutions,

-13-



the tfaﬁsverse electric (TE) or magnetic.solutions;
denoted by superséript m . In these solutions E$4= o .
One obtains a set of potentials U™ and O™ in a

manner completely analogous to the procedure followed
above. In this case, however; the roles of (7) and (8)
are interchanged. From the radiél componen£ of (8) one

deduces a potential U™ such that

Sl '
KXl (25)

1 U™ | ' :
32 " r sin 9 J¢p ' (26)

Then using the transverse components of (7) with equations

(25) and (26) one is led to the potential O such that

™ = -}% a—ar(rﬂm) ‘ : (27)
Ef“; - - 3‘% Qm | | (28)

-1l4-



E =f—r——¥——— (29)

m 1 82 m Y
Hg = K,r 3r3s (ra™) (30)
2 : .o
- 1 . d m
® k,r sin 6 aratp(rQ ) (31)

2

Following the same technique as for the electrical

potential one obtains for H? :

. 32 '
Y = ki -3—2 + k2| ed™ (32)
2\ dr : :

and for .the partial differential equation for Q"

(92 + xHa" =0 (33)

The solution of equationé (24) and (33) can now be

obtained via separation of variables. The equations'fot

-15_.



determining (gé, gm) and (E-, H from the potentials

of Q" and o are presented compactly in Appendix A.

2.2.2 Spherical Harmonic SolutiQns'in the Moon

The sdlutions for equations (3) and (4) are
easily obtained in terms of spherical harmonics by the
method of separation of variables. The boundary condi-
tions, uSed to fix the arbitrary constants of the solu-
tions, are that the solutions are bounded at r =0 and
_that the tangential components of the electric field are
continuous at thé lunar surface. For thé transverse
electric méde this_is_equivalentAto the continuity of
the'normal_component of the maénetic field Q§;= MH)

A discontinuity is permitted in the tangential magnefic
field because of the‘confinement of the induced field by

the solar wind pressure...This confinement is accomplished

by a current sheet at the moon-plasma interface.

The potentials .Qm and o° are given by

-}

- . 1
™ = uVHo % sin ¢ 2{: BLA?G?(r)PL(cos 8) (34)
=1
oW
e _ a - .e.e 1
o = Ho > COs © Ej BCALGL(r)PL(COS 8) (35)
' 1=1 ’



where (r, 8, ¢) are the spherical polar coordinates, a
is the lunar radius, Pi(COS 8) are the associated -

Legendre polynomials and

L ' :
By = likif}%l ;oi=y-1 (36)

The functions ‘G? and Gi are solutions of the differ-

ential equations.

a%c™ 3 |
4
—5 +qk? - MDA Ry =0 (37)
dar N Y .
dee 2 ac$ (38)
¢ _ 1 a” Ty {kz L) | ey g
ar? 2 dr dr _ 2 L

In Sonett et. al. (1971la) the appearapge of Af and A?
were suppressed, these constants being incorporated into
the definitions for G? and Gi .« The exact form of
the boundary condition at r = a 1is obtained by using
the spherical harmonic.ekpansion for the incident

and internal fields, given in Appendix B. The boundary

conditions for the fields are given by

-17-



A} Gy (a) =3, (2ma/A) (39)

e
- dGL k2)\2 a

e _ a :
S = Z;E; ia (aJL(Zva/X)) (40)

where jL(X) is the spherical Bessel function of order

L
. e
2.2.3 Behavior of the Solutions G? and G, Near
r =0
In the center of the Moon, near r =0 , it

is reasonable to assume that 'g% becomes vanishingly
small. Then G? and Gi in the vicinity of r =0

are of the form

Lim G?’e(f) + rjy (k) (41)
r-0 .

o
o

where kd is the propagation constant at r

Therefore, at r =20
m,e' Y = '
G, (o) 0

-18-




=0  (43)

Fér‘numericél calculations the boundary conditions
expressed by (42) and (43) are useless. However, an
auxilliary function can be defined which makes thé sélﬁ; 
tion of (37) or (38) more amenable to digital computer

techniques. Define the function .N?'e(r) by

'G?'e(r) = rL+lN?’e(r) - (44)

Then from (37) and (38) the differential equations for

m, e
NL' are

2 o dN® _
4a 2 (4+1) { 2..m _
E—E ) + = dr~+ ka&(r) —'0 (45)
r
2.e e
a°N dN
L 2 (4+1) d 2 L 2 1.4 2 e _
3 3 + - 3 (Ink”) _75?.+ k - E;(lnk ) Nt(r) 0
r
(46)

-19-




and by using (41) the boundary conditions at' r =0

‘become

1, 4

e 2 Lfko :
sz (o) = oD © (47)
'd .m,e _ 4,
aa My | =0 (48)
' r=0

The constant in (47) can also be absorbed in A?’e to
give as an alternate.condition to (47),
'er'e(o) -1 (47a)
The boundary‘conditions at r = a then become
A = 3';,<2na/x')/(a“lNIE(a_)) (49)

-20-



(k??xz/‘lfrza']d—i.(.éj{(21ra/7\)}) -
A, = _g_{f£+lNe(r)} |
L

(50)
dr ’

For those cases where the differential equa-
‘tion (either (45) or (46)) can be irtegrated over the
entire range 0O < r < a the use of the auxiliary func-
tions provides a means for reducing the problem to the
solution of an initial value computation. Care must bé
taken, howeQer, because of the natﬁre‘of the differéntial
equation.’\These'equations are.basically diffusion
equations, the solutions .becoming .exponentially damped
as r decreases from a 'toward zero. For higher
-frequencies and, hence, smaller_local skin depths
8 =\/$%3 , the gﬁtenuation may‘become so great that
" significance will be lost in'thé integration scheme.
For these cases an alternative procedure would be to
iptegréte the original differential equatibn ((37).or
(38)) from some depth b where the local skin depths
§ 1is small (& £ (a-b)) , and assuﬁé that the fields
vanish for r <b . The equations can then be solved
as a bouﬁdary value problem with Ni'm(b) = 0 and

€M 4) determined through equations (49) and (50) .

N,

=21-



3.0 The Near Surface Lunar Thermal Gradient

3.1 Introduction

‘The initial results from the Apollo 12 lunar .
surface magnetometer experiment show that on the sunward
hemisphere the moon displays a maénetic field response to
the interplanetary electromagnetic field which is larger
'by one-half order of magnitude than an equivalent vacuum
bounded case. This strong interaction provides the basic
justificatinnrfor the current layer at the moon-plasma
.interface,-which is used in the theoretical development
in Section 2. Without tnis layer there can be no signal
increase over the vacuum case. The field increase or
ampiification is dependent'on ﬁhe combined exclusion of
the induced field by a highly conducting lunaf core and
the confinement at the sunward surface of this same field

. by the solar wind pressure.

The interior field exclusidn is related to the
damping of the TE wave as it propagates into the moon.
For a constant conductivity moon the damping occurs at -
progressively shallower depths as the ffequency increases.
This phenomenon is accentuated when.the electrical con-
ductivity increases with depth. Even for an inverted
conductivity profile one can easily be convinced that
the magnetic field compression at the lunar surface in-

creases with increasing frequency.

-22-.



The first LSM data points for the magnétic'field
magnification were obtained for ffequencies at the high
‘end of the usablé band for the Explorer 35 Ames magnetometer
and LSNlcombinatiqn,.OZ to.04 Hertz. - These frequencies are
high enough to lead to the expectatioﬁ that the electromag-
netic damping in the lunar crust_w;ll occﬁr at some depth
d where the lunar temperaturevprofile can be described by

a linear thermal gradient approximation; i.e.,
T(x) = TS + Tr(a—r) , b <r<a (51)

where b is ﬁhe smallest radius for the approximation and
where 'Tsv is the surface temperature in degrees Kelvin,

a 1is the lunar rédius (1740 kilometers), T, is .the thermal
gradient in °K/km and r is the radial distance in kilo-
meters. The estimates of the thermal gradient are depen-
dent on the model conductivity assuﬁed although.there are
obvious.constrainﬁs provided by the range of validity of

the linear gradient approximation and necessary high.

internal temperatures for the low conductivity models.

Since only the electrical conductivity o
occurs in the differential equations for the field
(equations 37 and 38) rather than T(r) the model depen-

dence is obvious. As a final point, one should note that

-23-



the magnetic field exclusion occurs at depths where the
local skin depth; 6 =wﬁZZEEE , is of the order of one
kilometer and the quantity (c/we) is much greater than
unity. Hence, the quations (37) aﬁd (38) are basically
diffusion equations and the value of ¢ is_of no conse-
quence to the resultant ficld distribution. By combining
equation (51) with varioos models for rock electrical
conductivity and then comparing the resultant calculated
ﬁagnetic field with the experiﬁental data, a series of
estimateé can be obtained for the lunar thermal gradient

near the surface.

3.2 Theory

- The refined data from the LSM experiment is
generally present as a ratio of the field meacured at the
LSM to the inducing fieid measured at Explorer 55. This
data is further obtained ohiy after Fourier decomposition
of both original signals. Thus, the experimental data
provides a transfer function of the moon to electromag-
nétic'induction. in order to make a comparison between
the theoretical and expefimental data, a theoretical:
transfer function must be'defiﬁed. This is easily accom-
plished for the.TE mode by going to Appendices A and B
of Section 2 and equation (34).  First, remember that the
boundary condition for the TE mode reouires that the

radial components of the magnetic field be continuous.

-24-



Then the transfer function must relate the tangential
components of the field. A normalized harmonic transfer

function is defined for thé TE mode by

d m

Tm(r) _. Ir GL(

t L d a3, (2ra/N)
a da 'oJplemash

r)

(52)

This pfovides the ratio, for each harmonic, of the TE
mode magnetic field anywhere in the moon to thé inducing
'magnetic field in that saﬁe harmonic at the lunar surface.
This definition for a tréhsfer function which is indepen-
dent of 6 ~and @ cannot be made for the TM mode mag—/
netic fields.  Instead, the induced TM magnetic fields

éan only be compared to the inducing fE magnetic fiélds.'
The difficulty that arises can be seen by examining the
limiting case as the frequency.goeé to zero, éor this
limit the magnetic field componénts'of'the driving field
for the TM mode vanish while the induced TM components can
have any value (theoretically) depending on the electrical-
conductivity of the moon model. This would lead to
extremely large values of a transfer function even though
both the driving field and induced‘field are well behaved.

As an alternative, the TM transfer function has been

defined as

-25-



o e
2ria GL(r)
AT

e o
.TL(I) = (53)

L (aj, (2ma/2))

For the models used in this section, the Ti values are

too small to be of importance.

3.3 Conductivity Models

The electrical conductivity of rocky material

is conventionally represehted by a function of the form

7

_Y i |
o f-E: %i exp (- T | (54)

where % is the mobility (conductivity for T = « },

€; is an activation energy, the energy reqoired to raise
an électron fromla valance band into a conduction band,

kX is Boltzmann's constant, and T the absolute temper-
‘ature. The dependence -of cOnductivity‘upon temperatufe

and activation energy as expressed by equation (54)

‘follows the classical theory of semiconductors; but
information so far developed in geology lags the former
significantly. Nevertheless, from an experimental stand-
point, equation (54) does represent conduction oufficiently

well so that application to the present problem can be

made. The total conduction is made up of an impurity

-26-




range, one in which intrinsic electronic conduction
dominates and lastly an'ﬁpper temperature range in which
ionic conduction takes over. The latter is likely not
significant in the application of this paper and is dis-
regarded. The.use of a conductivity function at atmos-
pheric pressure extrapolatéd to depth can have the effect
of reducing the apparent‘conductivity because of the
presence of interstitial cracks,llwé have no information
on this for lunar samples. Any error would be in the
direction of increasing the calculated thermal gradient
so that this must_be regarded as a limitation, as is the

paucity of samples and the generalization to bedrock.

We consider here two conductivity functions
thought to represent extremes for the lunar material.
For an Apollo 1l lunar érystalline rock (sample 10024-22),

Nagata et. al., (1970) found
. ¢y/k = 5800°K e,/kK = 14,500°K ,

' _ 6
01 = 7.9 mhos/m and 99 = 3.7x10° mhos/m . It has

been found that an Apollo 12 rock (samplé 12053-47) has

(%)

a more complicated dependence of conductivity upon tem-

 perature but displays a generally similar behavior to

-27-



that of the Apollo 11 sample with somewhat reduced con-

ductivity over ths range measured.

There is good reason to suspect that. these
samples are not representative of thé basement rock.
For example, they could not constitute the basic rock of
the Moon for the basalt ;ransforms to eqlogite at 12 kb
pressure, and the density of this palymorph is too high
to match the overall lunar density. Other more subtle
geochemical arguments haQing to do, for example, with the
incompatible element concentration in the baéalts, éuégest
that the inferior is better represented by a periodtite
containing a substantial fraction of olivine. For this
reason we have chosen as the other end point calculation
an olivine conductivity function (England et. al., 1968)
for which e;/k = 10,670°K , e,/k = 31,300°K , oy, =

55 mhos/m and o = 4x107 mhos/m . The behavior of

02
the Moon rock and olivine as functions of temperature

are illustrated in Figure 1.

3.4 Numerical Calculations

For sufficiently small skin depths it is
unnecessary to integrate the equations of the previous
section to the center of the Moon. It is sufficient to
replace the deep interior of the Moon by a perfectly con-
ducting sphere and integrate the equations from.the lunar

surface to the surface of the perfectly conducting core.

-28- R




The exact location of this lower boundary is unimportant

as long as the loéal skin depth is ' small. For convenience
in the numerical,combutations to lelow,bthe lower boundary
has}been set at a depth of 250 km. fhe transfer function
was obtained for several values of the frequency, f , and

a solar wind speed of 400 km/sec.

The equations de;ived in Séction 2 have been
numerically integrated for the lunar thefmal gradient
Moon modgls described above. For all models Ts was
taken aé -30°C or 243°K. The behavior of the real and.
imaginary parts of the transfer'function for the 4 % 1
TE mode (equation (52)) is shown in Figure 2 for the
Nggata—Moon rock conductivity, for a frequency of .04 Hz
andvtherﬁal gradients of 2, 3 and 4°K ber kilometer.

. Exceptﬁﬁor the lowest thermal gradient, the magnetic
fields and, hence, the transfer function are well damped

1500 kilometers.

below r

[}

Extensive calculations'for the TE mode, 4 =1,
transfer function have been made for the two conductivity
functions. The data from these calculations is shown in
Tables 1 and 2 where the magnitude aﬁd phase of the
'transfer'functions are given for freguencies of .02, .03
and .04 hertz and for.thermal gfadients from 1°K to 7°K
pef kilometer for the England-olivine cénductivity. Data

was calculated only up to 4°K/km for the Nagata-Moon rock

T=-29-



g‘ _ Freq (He;tz)
; T (°K/km) .02 : .03 . .04
1 2.4/-9.5° 2.6/-9.8° | 2.9/-10°
2 3.9/=9° | 4.4/-9.2° | 4.7/-9.7°
3 | 5.3/-8.3° | 6.1/-8.6° | 6.4/-9.0°
4 v6..7£—8.0° 7.5/-8.3% | 8.1/-8.4°
| TABLE 1

TE Mode £ =1 transfer function
calculated using the Nagata-lunar

basalt conductivity
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Freq (Hertz)

Tr(°K/km) .02 .03 - .04
1 .5/=6.1° | 1.6/-6.2° 7/=6.2°
2 .4/-7.8° |2.6/-7.7° .8/-7.7°
3 .3/-8.3° |3.6/-8.2° .9/-8.2°
4 .1/-8.5° |4.5/-8.5° .8/-8.5°
5 .9/-8.8° |5.3/-8.7° .7/-8.6°
6 .7/-8.9° |.6.2/-8.8° 6/-8.7°
7 .4/-9.0° |7.0/-8.9° .4/-8.9°
TABLE 2

TE Mode, 1 =1

7

transfer function

calculated using the England-olivine
conductivity




because of its much higher‘conductivity and resultant

large transfer functions f; . The amplitude data of

Tables 1 and 2 are displayed graphically in Figure 3.

From this figure it is clear that for a given value of

m
1

a higher thermal gradient and, hence, a higher internal

™ at a given frequency the olivine conductivity requires
.temperéﬁure. Calculations were also carried out for
higher order harmonics for the TE mode. These results
listed in Table 3 were obtained for f = .04 Hertz, a
solar wind velocity V of 4le5 n/s and a lunar.radius
of l.74x106 meters. For these values the argument of

the Bessel functions in the driving term (27fa/v = 2m1a/A)
is approximately unity. It can be seen that the ampli— 
tude of the transfer functions and,'henéé, the amplifi-

- cation of the field decreases with increasing harmonics.
In addition, for this set 6f parameters, the higher order
harmonics in the forcing functions are of decreasing
'importanCe in the harmonic expansion of the forcing field
at the lunar surface. These forcing functions are in the

3:2.5x10™% . only the second

- ratio 1.0:0.18:0.025:2.8x10"
harmonic produces any appreciable correction in the field.
The magnifude of this correction will decrease with
decreasing frequency since for

(2x)" n!

Lim j_(x) = :
vao O (2n+1) ¢
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Nagata Moon Rock' (Basalt)

Thermal Gradient
 Harmonic 2 3 4
1 4.7/-9.7° 6.¢Z:gi ‘8.i£—8.4°
2 3.0/-9.6° 4.14;8.9° | 5.1/-8.3°
3 '2.2/-9° 3.0/-8.5° | 3.8/-8.2°
4 ;.84-8.4° 2.5/-8.2° | 3.0/=7.9°
5 1.6/-7.6° 2}14—5.7° .2.64—?.6;
England—olivine4
Thermal Gradient
Harmonic 4 »5 6 7
1 4.8/-8.5° 5.7/-8.6° | 6.6/~8.7° 7.4/-8.9°
2 3.0/-8.5° 3.34—8{5° 4.2/-8.6° 4;7/—8.7°
3 2.3/-7.9° 2?74:§j | 3.1/-8.3° 3.5[—8.4°
4 1.9/-7.4° | 2.2/-7.6° | 2.5/-8° 2.8/-8.2°
5 l.6£-6.8°. 1.9/=7.1° | 2.1/=7.6° 2.4/-8°

TABLE 3

Normalized Surface Tangential Transfer functions for

f =

.04 Hertz, v = 4xlO5 m/s, a =

l.74x106 meters.

‘In the harmonic expansion the forcing functions for

the harmonic are in the ratio 1:0.18:0.02552.8x10-3:2.5x10-
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3.5 Discussion

The response functions shown in Figﬁre 2 héve
"the general form one would expeét for magnetic induction
in a layered spherical conductor fo£ thch the inner con-
ducti&ity is much greater than the conductivity near the
sﬁrféce. The phase change with increasing depth ié a
characteristic of the change of the.governing differential
equation fromone which is essentially a Laplace equation to
é diffusion equation. The strong damping of the induced
field starts in the region of the phase change; It is
clear that the field penetration decreases as the thermal
gradient increases. The property that the induction is
~relatively constant ‘in the’oufermost regions corresponds
to the fact that in this region both the real current.
J = oE and the displacement current €3E/3t are negli-
gible. The résults of the calculation are qualitatively
similar to results which would be obtained for a two
layer calculatioh. For instance, if the Moon had infinite
conductivity for r < b and zero donduqtivity for
b <r <a , the transfer function T (r) for those fre-

quencies where -l2wa/k|<< 1l 1is given by

_ 1+ 1/2(b/x) >

3 b<r<a (55)
1l - (b/a)”
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From this equation it is obvious. that if b is close
to a , ™ (r) is very nearly constant and equal to

1.5/(1 - (b/a)) . o | /

The magnitude of the transfer functions given
in Tables 1 and 2 and shown in Figures 2 and 3 are indica-
tive of the compression of the induced magnetic field
between the solar wind at the lﬁﬁar.surface ané the highly
conducting lunar interiqr; For a given conductivity
function and freéuéncy_the field amplificatidn increasing
with inéreasing thermal gradient. Simiiarly, for fixed
thermal gradient‘and conductivity the magnification

increases with frequency.

The pénetration:of the magnetic field into the
Moon incfeases as the freéuency.decreaées for a fixed
thermal gradient and conductivity function or as the
thermal gradient decreases for a'fixed frequency and con-
ductivity function. The decrease in the magnetic field
amplificétion:corresponds to the incteaSe in pengtratién.
Since the true thermal gradients @ﬁst be.expected to
décreése with inc;easing depth, the lower ffequency waves
will penetrate even.further into tﬁe Méon than'is~indi-
cated by the constant gradient analysis. This analysié
is only meaningfui for the hiéhest frequencies where the
major dampiﬁg occurs within the first 200 to 300 kilo-

meters. vThe depth of penetration has been obtained for
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some selected cases which are shown in Table 4. The depth
shown in this table corresponds to the position of the

first zero of the real part of the transfer function.

Nagata Moon-Basalt
Thermal
Gradient .04 Hertz. ..02 Hertz
2°K/km 249 km 266
3 | 178 189
4 | 140 148
EngiandJOlivine
4 | o 247 264
5 207 222
6 _ 186 192
7 159 ‘ 170

TABLE 4

Depth of penetration of the induced field
using the first zero of the real part of
the TE , L =1 transfer function
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It can be seen from this table and from Tables 1 and 2
that similar values of the damping depth give approxi-

mately the same value for the transfer function.

3.6 . Comparison with Experimental Data

The presently accepted experimental values for

TT (a)| are shown in Figure 5 with the error bars (Sonett

et al. 1971la and 197lb).‘ The egpg;imgntal values for .02,
.03 and .04 Hertz are shown in the curves in Figure 3 with
apprOpriaté error bars. An immediate difficulty arises
because the value of TT for .02 Heftz:is greater than for
the other two frequencies. There is, as yet, no theoretical
explanation for this. However, using the data for .O3'énd
.04 Hertz a lower limit can be obtainéd for_the thermal
gradient of 1.4°K/km. This is obtained for the Negata—
baéait.' If one uses a less conducting material such as

the olivine, a higher value of‘the ﬁhefmal gradient is

obtained, 2.7°K/km.

It has been suggested‘that some TM mode
admixture may be occurring. To investigate this possibility
the TM mode ¢ = 1 transfer function was calculated for a
frequeﬁéy_of .03 Hertz and thermal gradient of 4°K/km |
using the Moon basalt conductivity. A value of 2.5x10_4'égi:
was obtained:f6r thé;£féﬁsfer'fﬁnction showing that the

low conductiVity. of the <crust was cutting off the
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excitation of this mode within the Moon. To.the conduc-
tivity equation given by (54) with the basalt values a

constant conductivity was added; i.e.,

O(T) = %gasalt (T) + Oo ' (56)

The results of these calculations are shown in Table 5.

TABLE 5 . -
_TM transfer functions for £ = .03 Hertz ,
T. = 4°K/km and Nagata Basalt 5
' e
cov T -
’ -4 o
0 : 2.5x10 /0 ‘
. :
1078 7.7x1073/0°
1077 .072/-.17°
107 .56/-1.25°

It can be seen that the TM mode will not produce any

measurable effect unless the surface conductivity is at
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least of the order ofllO_6 mhos/meter. This corresponds
to a temperature of 365°K for the Moon basalt and 590°K
for the olivine, much higher-than the mean surface lunar

temperature of 243°K.
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4,0 - The Conductivity of the Moon

4.1 ' Introduction

| In the'preyioué’section an attempt was made to
bracket £he near surface lunar thermal gradient./ In this
section thé total spectral data obtained from the LSM
_experiment is used to provide an estimate for the condué—
tivity of the moon from approximately r = 400 km to the
surface. The general properties of both the LSM and Ames
magnetometer on Explorer 35 have been given (Dyal and
‘Parkin, 1971, Milhalov et. al,vl968); The theory has been
described in Sections-Z.O and 3.0. This work is alsq

included in Sonett et. al. (1971Db).

4,2 Experimental Data

The spectral determination and coordinate trans-
formaéions'for the experimental data were carried out at
Ames'Research Centér (Sonett et. al. 1971b). The forcing
fiela defined by Explorer 35 measurements is tfansformed
" into the local LSM coordinate system fx is aiong the normal
outwards from the Sufface, y is easterly and z is northerly
at the site of ALSEP and the LSM). Power spectral densities -
are obtained for the magnetic field time series at both

Explorer 35 and LSM for all three components.

A representative set of spectra at both Explorer
and LSM for the y and z magnetic field components (tangent
to the surface) is shown in Figure 4. The forcing spectfa

are seen to display the expected f.-2 dependence characteristic
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‘of interplanetary fluctuations, while the ‘-LSM shows an -
f“l dependence. Thus, significant frequency dependent

power amplification is apparent in the record. A combi-

nation of all the data points 'X(f) ={% (Ai(f)'+ Ag(f)ﬁ.%
for all frequencies up to 0.040 Hz has been made. See
Figure 5. | |

4.3 Lunar Electrical Conductivity Profile

"The theory of lunar induction, discuséed earlier,
has been ﬁséd to derive a profile of electrical conduc-
tivity from the empirical transfer function. b The theo-
retical amplification for the lowest TE mode, cbmputed by
numerically integrating equation (45) with a radially de-
pendent conductivity, is matched to the empirical trans-
fer function using a Newton-Raphson iterative scheﬁe.

This scheme readjuéts the entire coﬁductivity profile to
yield amplifications which best fit the data in a-least—
squares sense over the entire frequency range. This has
" been carried out using frequency values of 0.83, 1.75, 5,
12, 17, 22, 25, and 35 millihz. The conductivity profile
is characterized by its values at the radial locations

r = 800, 1200, 1400, 1450, 1490, 1510, 1550 and 1740 km.

For r <8C0 km the conductivity © is set to the value at

- r = 800 km; elsewhere a linear interpolation of log ¢ is used.

(1) This theory, and the computer program for deriving
the conductivity profile from the empirical transfer
function were developed by American Nucleonics Corp.
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The computer calculation.is started with a
continuous conductivity profile defihed by 8 parametérs,
as described aboVei Numerical integrations are'cérriéd-
out to obtain values of amplificatian at the eight fre-
quencies. A comparison of these amplifications with the
data provides the Newton-Raphson scheme with the input
required to adjust the 8.conductiviﬁy parametéré to yield
a profile whose corresponding theoreticél amplification
curve is a bettér least-squares fit to the empirical
transfer function. Thé iteration is continued until an
adequate fit is obtained. . The result of such a fit to

2 Ty
is shown .in Figure 5. .The .differences between the theo-

the'empirical amplification curve A = {l-(A2 + Aﬁﬁ’z'
retical amplification and the empirical A are very
likely attributable to the various complications of the
excitation process not achunted for by the theory, as
well as considerations of computer running time which

limits the number of frequencies and conductivity para-

~meters (spatial resolution) employed.

A conductivity profiie is associated with the
theoretical amplification~cur§e of Figure 5 and-is shown
in Figure 6. The conduétivity profiles deriyed from the
iterative least squares inversion for Ay. . A, and their
on standard deviation limits (see Sonett et. al., 1971, a

or b). The prominent spike isan invariant characteristic
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of the inversion for each set of data. It is centered

at about r = 1500 km where the conductivity is néafly
1072 %hos/m. The inner minimum lies at about r = 1400 km
and the conductivity appearé to risé at greater depth.
Gross bounds on the conductivity profile are seen in the
insert; these are determined from the one standard devia-
tion limits of the varioﬁs A's, but‘ao not themselves
represent one standard deviation limits on the conductivity
profile.

The computer calculations for Figures 5 and 6
started with a constant conductivity of lO_4 mhos/m
However, a number of computations have been carried out
using different values for uniform starting cénductivities

(e.qg., 1073 ana 107°

mhos/m) and different radial
locations:. In every case tested,rinitial convergence
was- rapid and the fihal:conductivity profile invariably
displayed the prominent spike near r = 1500 km . For
the profileé reported here, several values of r were

chosen in the neighborhood of r = 1500 km to better

define the conductivity spike.

Whereas the lafgé spike in conductivity is a
persistent feature of the inversions,-the character of
the conductivity profile at greater depth, where the
-conductivity appears to rise, is not so certain and our

results for the conductivity at these depths must remain
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tentative. The surface amplification is a rather insensi-
tive function of core conductivity because of the relatively

small core volume and the distance to the surface.

4.4 Comparison with Other Conductivity Profiles

A physical understanding of the appearance of
the large conductivity spike can be obtained as follows.
In a two layer model with an infinitely conducﬁing core
and a non-conducting shell the ampiification of the tan-
‘gential magnetic field components' equation (55), can be
written in the form |
3 (Core volume)

T=1+ 2 (Shell.volume)

This simple result requires that the high frequency skin

depth barrier be near r = 1500 km for an amplification

~ 4 . At frequencies above 0.02 Hz essentially no wave
pPenetration takes place through this barrier. Thus; the
volume available in the core for field lines is insigni-
ficant compared to that in the non-conducting shell.

This means ‘that the amplification becomés independent of
frequency; i.e., da/df - 0 at high frequency. Con-
'current with the high frequency limitation is the reqﬁire—‘
ment that A drop to near unity at the lower frequencies.

If it wére assumed’ that ﬁhe-electrical conductivity were

monotonic, so that the interior conductivity were uniformly
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high, then the low frequency amplification would be in

excess of the observed values.

The inadequacies of monotonic conductivity
profiles are sthn in Figure 7. Thé,experimental r.m.s.
amplification data A (circled points with associated
error bars) can be'coﬁpared with the amplification curvé.
for the A conductivity profile of‘Figuré 6 (labelled
"best fit") and amplification curves of several monotonic
conductivity profiles. The "2 layer" amplificdation curve .
was calculated for a model with a cofe of radius of 1560 kﬁ
and a constant conductivity of 7.6x10-4 mhos/m , and a
shell of zero éonductivity. This value of the core
conductivity provides a best fit to the experimental A
for the given core radius. Other best fit two layer
models with different corevradii have been inveétigated;
the one used in Figure 7 yields an amplificétioﬁ curve“
which ma;ches the data_moét closely. The amplifiéation
curve labelled DYAL and PARKIN (1971) was combutéd from
a 3 layer conductivity model proposed by these authors.
The parameters of their model are o = 10-2 mhqs/m for
0 <r <1044 km , © =Vl.7x'10—4 mhos/m for 1044 km < |
r <1653 km and ¢ =0 in the outer shell. In other
3 layer conductivity models consistent with the data
analysis of DYAL and PARKIN (1971) , the outer boundary

of the region of intermediate conductivity can be located
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anywhere between >r = 1653 and 1740 km . We have
computed the amplification curves for a number of fhese.
additional 3 layer models; none provide a better fit to
the observational curve. Also showﬁ in Figure 7 are
anmplification curves from conductivity profiles proposed
by SILL (1971) (model 3 in that paper) and NESS (1969) .
Other condﬁctivity modelé investigafed by SILL (1971) fit
the experiméntal data no better than his model 3. The
conductivity model of NESS (1969) consists of a core of
radius 1426 km with o = 8x10 ° mhos/m , and a non-
conducting shell. Amplification curves from conductivity
models of WARD (1969) were also considered but these were

rejected upon comparison with the observational data.

Thé "2 layer" amplification curve shown in
Figure.7 is, compared to the experimental data, high'at
£ < 0.0035 Hz and £ > 0.03 Hz , and low in the range
0.01 Hz < £ < 0.02 Hz . The data show a flat response
at frequencies above 0.02 Hz; wheregs thé slope of the
"2 layer" curve is high at these frequencies. Fﬁrther—
more, as the frequency increases the curvature of the
data chanées from positive to negative at about 0.003 Hz.
The "2 layer" amplification curve is eVerywhere concave

up. This "s" shaped character of the experimental data

is faithfully reproduced only by our "best fitf conduc-

tivity profile. Further wprk;is in progress to improve
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the high frequepcy slope of our "best fit" model. This
will probably lead both to a higﬁer value ef the maximuﬁ
conductivity and a steeper slope of the conductivity
-profile at the outer edge, effects thch will tend to
sharpen the conductivity spike in order to allow pene-

tration of low frequency magnetic field fluctuationms.

4.5 Cempositional and Thermal Model

The electrical conductivity profile cannot be
explained by a uniform material and a plausible thermal
profile. In the regioﬁ from the surface to r = 1500 km
whefe the condﬁctivity attains its maximum value, the
rise of(conductivity with depth is a reasonable consequence
of the accompanying increase ef temperature in a material
of uniform composition. Below ﬁ = 1400 km the apparent
rise in cenductivity is again explainable by an increase
~in temperature. On the other hand, the precipitous
decrease of electrical conductivity by 2 to 3 orders
between r = 1500 and 1400 km cannot be explained as due
to temperature. Either a compositionel change, phesel
change, or a combination of the two is required. Thus,

a reasonable model for stratification of the Moon, limited
by the present poor spatial reselution of the anelysiS'

indicates a core out to -r A l400ikm overlain by a mantle-
of higher conductivity material, plus possibly a transition

layer at r = 1400 - 1500 km
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In order to infer a temperature profile from
the conductivity profile it is necessary to use conduc-

tivity-temperature functions of known rock materials.

The Apollo basalts (Schwerer et. al., 1970; Nagata et. al.

1970) are representative of the most conducting rock
matter known. On the other hand, olivine (dunite) or
volivine—peridotite (England et. al., 1968) .is represen-
tative of poorly conducting geological material. The
peak conductivity value found in the lunaf mantle corre-
sponds to a temperature of about 450°C for lunar basalt
or 950°C for olivine. Since the temperature just under

the lunar surface is -30°C, the corresponding thermal

gradients in the outer mantle are .about 2°K/km and 4°K/km.

These estimates correspond to those obtained in Section

3.0 for .02 Hertz.
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5.0 Early Planetary Heating by Electromagnetic

Induction

5.1 Introduction

Sonett et. al. (l968) and Sonett et. al. (1970)
have giveﬁ convincing argument for the possibility of a
short, intense heating episode caused by electromagnetic
induction, this episode occurring during the initial
fofmativevyears of the pianetary body. 1In these two
papers the electrical heat source was the unipolar induc-
tion field which is the d.c. limit of the TM mode discussed
in Section 2.0. The model parameters have been thofoughly
presented in the two references and in Schwartz (1969) .
An obvious deficiencyjof the theory, as presented to date,
is the reliance on‘only the d.c. fiéld componeﬁt to the’
eXclusion of the rest of the frequency spectrum. To
remedy this situation, the original planetary heating
computer program has been rewritten to provide a method
for evaluating the separate and combined contributions
to the planetary héating from the TM and TE modes as a
function of freéuency. The program is still in the check-
out stage as.far as practical results are concerned. The
individual subroutines have all been checked out but the
actual modes of operation have not been worked out. Some
brief runs have been made to ensure that all the routines

work properly together.
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5.2 The Driving Field

As described in Sonett'et. al. (1970) it is
assumed that the sun passed through a T Téuri stage 4.5
billion years ago on the way to becoming a main sequence
star. During T Tauri the sun maintained both a high spin
rate, near the centfifugal limit, and a high surface
magnetic field. The driving field for the electromagnetic
induction is assumed to be the quasi steady state rotating
sector structure of thelmagnetic field and.thé frozen-in
V x B electrical field which is convected past the planet
by the solar wind. A two level sector structure for the
magnetic field is assumed so ﬁhat the magnétic field H
‘and also the eleétric field E =V x uH have magnitude
Hy and E, . respectively; but change sign (direction)
every half period of the solar rotaﬁion{ If tﬁe solar
_beriod is 27(T = v/wo where Wy, is the local time solar

spiﬁ raﬁe) then the time dependence of driving fields is

given by

E E +1 2nT £t £ (2n+l) T .
= o N I ¥ )
H H -1 (2n+l)T st = 2(n+l) T
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The average power deposited by joule heating can be
obtained using Fourier Series techniques with the result

that for any given mode (i.e., TE or TM)

4+

H(r) = o(r) Z

n:—@

2

cn?in(r) (58)

o

where. H(r) is the power density in watts/m3, o(r) is
the electric cdnductivity‘in mhos/meter, Vn(r) is the
normalized electric field in volts/meter and C, is the

Fourier coefficient for the driving‘term'

' EO 0 n even
cC = 14 4 (59)
N lm Z21 ;) oad :
(o} nmw

2 2 8 =2 2 :
= E = 0
|El E, —5 (2m+1) E, ' - (60)
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Thus, the total driving field 1looks, in magnitude, iden-
tical to the driving field for a constant field of Eo

In fact, the total input for the TM-portion of the driving
field is equivaleht to the input fo& the unipolar induc-

tion where one assumes e, =1 and c, =0 for n=20

The highest solar spin rate, at t = 0 years,
. _ 4 ' L
is (wo)max = 4.2x10 radians/sec or '(fc)max =
6.6‘7x10”5 Hertz . If one sums the magnitude'from the

first lO'terms of the TM mode, the omitted terms consti-

tute 2% of the total used.

5.3 General Program Concept

The main program, called HEATO03; solves the’
basic problem of the thermal history of a plapetary body .
Input datais read into the programin the main body and |
through a subroutine CONIN. Provision is made for
radio nuclide heat sources in the sﬁbroutine set RADIO °
and AHEAT.‘ The electromagnetic heat sources are obtained
through the subroutine ERAD and a subsidiary subroutine
FSET. The subroutine ERAD sets up the T Tauri flpw
parameters, the driving e;ectroﬁagnetic field, solar spin
rate and the electrical conductivity. The calculaﬁiohs
of the electric fields and the jouie heating are cérried
out through FSET. 1In tﬁe present version of the code,

the calculation can be made for:
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(1) the d.c. unipolar generator
(2) the TE mode for a series of n frequencies .

(n =2 1) where fn = (2n—l)fO where _fo

is the solar spin rate
(3) the T™M mode for the séme series of n

frequencies as (2).
Combinations of (1) and (2) or (2) and (3) can also be
~ obtained. For the present n is sef equal to 1. in
FSET because more investigation is needed to determine an
optimum method for running the program. The program is
designed for no melting and therefore no radioactive
concentratiqn. - The radioactive sources are assumed to bé
uniformly distributed within the body. The electrical
heating term ‘has two parts, one from the taﬁgential
electric field and one from the radial electric field
(T™ mode only)} The program can be set through input

data to use either or both parts.

5.4 Input Deck

The following is the make up of a typical run.

Ea¢h card set is explained.

Card 1 This is a descriptive header card using columns

2 through 80. It must be used but can be blank.

‘Card 2 - Name List Ml. There are three inputs on this

name list.
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ATIM

TTESTZ

EFCT

is the start time of the calculation

in years.

is é skip time in years. For TTESTZ

= 8 >0 the electric field joule
heating will not be calculated any
more often than & years, except
when a printout.of the thermal profile

and the heat sources is called for.

determines which components of the
electric field will be used for the
joule heating.

2.

1. E_ ., o©E
'r °r .
2
2. ETangential' °E,

L, 2 2
3. c(Er+ET)

Card Set 3 Name List M2. This name list has 15 inputs.

GTC

ThiS-ié the time cénstant, v, for
the -solar magnetic field in units of
eons-l (lAeon = 109 years) . fhé
maximum permissible value is .457.
For any larger value the sun Eecomes
centrifugally unstable at time zero
according to tﬁe despin theory used

for the program.-_The magnetic field
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RBAR

RG

DP

ENZ

has the variation

B(t) = B4'5 exp 7(4,5—t)

This is a parameter which might just

as well be an internal constant, equal

2 v _ 8
to rs/rSe where r = 6.99765 x 10
meters solar radius. oo = 1.495
xllOll

meters - earths distance from

sun. RBAR = 3.2754 x lO6 meters.

This is the distance between the sun

and the planetary body under investi-

gation, measured in astronomical units

(a.u.). For the earth, RG = 1.

This is a constant term which is
added to the electrical conductivity
in ERAD. DP can have anybvalue kin
mhos/meter) but for the most recent cal-:

culations, DP = 0.

This is the particle flux density of
the solar wind at 1 a.u. and at .
t = 4.5 eons. The present value is

taken as 107'protons per cubic meter.

-55-



ENTTZ This is the particle flux density for
a T Tauri flow at 1 a.u., t =0 ,
and normalized to a solar mass loss
M = Mgy = 2 X 1630 kilograms . For
the assumed velocity and time decay,
ENTTZ = 8.6 x.lOl4 protons per cubic

meter.

GSW Time constant for the solar wind flux

density, taken as 1.0214 per eon.

GTT Time constant for the T Tauri flux

density, taken as 1200 per eon.

VTZ T Tauri flow velocity at t =0 :

2 X 105 meter/sec.

VELZ Solar wind flow velocity at t =

4.5 eons; 4 x lO5 meters/sec.

GVZ Solar wind velocity time cdnstant;
85.5/eon.
TS Average space temperature at

T = 4.5 eons ~ normal, 273° Kelvin.

TTS Increment in space temperature caused

by T Tauri obscuration; O < TTS < 500°.

GTTS Time constant for decay of obscuration:

1.2 x lO-6 per year.
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"Ccard Set 4 Name List M3 has six entries.

DELA

DELB

FINR

PELT

Spatial difference step for inner
portion of the planetary body in the
solution of the thermal diffusion

equation,” normally 2 x lO6 meters

Spatial difference step for the outer
layer of the plénetary bbdy in the
solution of the thermal diffusion
equation. For early heating with T
Tauri- flow 1 x lO5 meters 1is used.

For late times or when T Tauri is

" not important 5, 10 or 20 x 10° meters

can be used.

FPraction of a solar mass being lost
during the T Tauri stage: O < FINR.

We have been using FINR = .5.

First estimate for a time step (in

years) in the solution of the thermal
diffusion equation. PELT must be
greater than 0 , preferably 103 years
for T Tauri heating, 106 yearé for

heating by radionuclides only.
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MSTEP Total number of points in the spatial
grid for the solution of the thermal
diffusion equation. It cannot exceed

\ 200. With DELA-= 2 x lO6 meters and
DELD = lO5 meters MSTEP = 183 and

IMSTP = 83 for the moon.

IMSTP Number of space points using DELA.
If» r. is the radial distance from
the center of the planetary body to

the ith point then

(i-1)DELA ; 1 < I < IMSTP

(IMSTP-1)DELA + (i-IMSTP)DELB;
IMSTP = MSTEP '

Card Set 5 Name List M4, four entries.

XI = 0 , XI is the normalized start point for
the integration of the elect;ic field
equation.

INIT==2} These two parameters set up the

NSAV =0 integration scheme as an initial

vaiue problem. For éases where the

internal conductivity of the planef

becomes too large, INIT is switched

to zero automatically. NSAV is an
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IFCT

internal program parameter which
must be zero initially but takes on

the value one for program switching.

If INIT becomes zero, XI 1is stepped '

to a value greater than 0 , and the
field equations are solved as a

boundary value ‘problem. This is a

time consuming method and should be

avoided if at all possible.

This parameter determines which

joule heating method will be used.

1. Unipolar generator (DC limit of
TM mode)

2. TE mode
3. TE mode and unipolar generator
4. TM mode

5. TE mode and TM mode

The following data cards are called from the auxilliary

subroutine CONIN:

Card Set 6 Name List Cl.

NT

This is the number of times at which
thermal profile and output data will

be printed out. 1 £ NT < 50
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The time points TB must be set up

so that TIB(I+1)

TIB
Card Set 7 Name List C2.

NTd

temperature,
function of position

kilometer.

RO (1)

TS (I)

Time points for output, .

The data from T@

> TIB(I)

in years.

Number of points for the starting

OC‘
RE (1)

2 £ NT@ < 50

T3 (I) in

as a

in

Position at which the temperature is.

is interpolated

to cover the points for the thermal

integration in the main program

using the subroutine TINTR.

NSORC This

heat

The next;card set, set 8,
depending on NSORL, gives
planetary heating.
format.

nuclide name.
TEXT (I)

W(I)

The cards are in a 3 X,

Radio nuclide name (

is the number of radio nuclide

sources 1 < NSORC < 8

numbering from one to eight,
the radio nuciides for the

3A4, 3E15.5

The 3A4 portion of the format reads in the radio

=1,2,3).

Radio nuélide abundance,

grams/gram.’
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J“Card Set 9

~ B(I)

FLAM (I)

Radio nuclide heat generation,'

joules/gram-year.

Radio nuclide decay constant, per

year.

Name List C@N.

DENS

FN

Ccp

EP

SIGH

The planetary density in grams/cc

(assumed uniform in this program).

Index of refraction used in thermal

conduction formula: FN = 1.7.

Energy gap in e.v. for the portion
of the radiation opacity derived from
the electronic conduction term:

3 electron volts.

E
Heat c;pacity: 1.2 Joules/gram-degree.
Not used.in program: .= J)

The opacity (=100/cm).

Supposed electrical conductivity at

infinite temperature (=10 mhos/cm) .

Lattice thermal conductivity (=7.889

x 10° Joule/cm-year- °K) .
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card Set 10 Name List C3.

Al (I)

PR

I =1, 6. These coefficients are
for the electrical conductivity
o(T) in mhos/meter, where T is

the temperature. The conductivity

~is given by

3
o(T) = Al (2i-1)exp {-Al(Zi)/T}
1=1 -

In ERAD the conductivity becomes

oT(T(r)) = g(T) + DP

where o(T) is shown above and DP

-is the additive constant in read in .

name list M2.

Test Cases

A limited number of test cases were run with

the new computer program. In each case the electrical

conductivity function used was Olivine (Rikitake 1966)

with

o(T)

0.

1l

e-S800/T

+ 10.

4 -35000/T

e—l9000/T + 3.5 x 10°e
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Further, only a uniform temperature moon model was used
with T = 500°C = 773°K giving a constant lunar conduc-

tivity of 5.4 x '107° mhos/meter

First, consider the TM ﬁode and the unipolar
generator. For the unipolar generator the joule heating
during the T Tauri phase was 8.7 X lO_3 joules/gram-year
each from both the radial and tangeﬁtial eiectric fields.
There was a K factor of .37 and a power ratio of 2.4
(see Sonett et. al.,1970 for complete explanations of
these tefms). For the TM mode test case only the n =1
harmonic was used. The resultant heating was 7.4 x 10—3
joules/gram-year with a k factor of .36 and a power
ratio of 2.5. The contributions from the higher harmonic

decreases as (2n+l)—2

The ratio of the TM heating to
-unipolar heating is (8/v2) if one takes into account the
‘slight difference in the k factors. Note that the
heating input in this case is four orders-greater than

the radio nuclide heating for a chondritic source,

1.28 % 10—6 joules/gram-year (Fricker and Reynolds, 1967).

The contribution from the TE mode is somewhat
more difficult to analyze. The electric field for the
TE mode is proportional to the frequency for the low
frequencies of interests. Figure 8 shows the Tﬁ heat -
iﬁput for the first harmonic and the sum of the first

125 non zero harmonics. Note that the sum term is
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approximately 100 times greater than the single harmonic.

This occurs because the amplitude of each harﬁonic eiectric
field is proportional to (2n+l)w, where o, 1is the solar
spin rate and the exciting field decreases as (2n+l)—.l
Thus, except for the affect of attenuation with depth,
each harmonic producés the same electric heating input.

The contributions begin to drop off significantly for

frequencies greater than 0.l Hertz (2ma/A > 1)

5.6 Summary

Only the preliminary portion of the investi-
gation of planetary heating by time dependent electro-
magnetic induction has been completed. The major tool
for the investigation is essentially complete, the computer
program. Because of the éomplexity of the program and the
problem of planetary heating, great care must be taken in
laying out a plan for examining the possible effects of
eiectromagnetic induction on planetary evolution. ' So far,
only a constant temperature case has been investigated
for the TE mode. This case produced an inverted heat
source with up to ten times greater energy disposition
than chondritic nuclides toward the planetary surface.
More conducting moon models would have sharpened the slope.
Further, in the light of this small data sample, it would
appear that the TE mode can not be used for the rapid

heating near time zero. The TM mode heating can deposit
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lO3 to 104'more energy. However, the TM mode heating is

critically dependent on the state of the planetary surface
electricél conductivity, whereas the TE mode should be
unaffected by the surface. Therefore, more initial time
models must be examined before one embarks on a long

calculation scheme.
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6.0 Summary of Report

6.1 Electromagnetic Induction in the Moon

The major effort for the past year, upon which
all the other work was based, was the formulation of the
theory of electromagnetic scattering by a 'radially inho-
mogeneous moon. This formulation was a synthesis of
techniques described by Wyatt (1962) and also used
originally by Lahiri and Price (1939) and many others.
The formalism was combined with the lunar boundary con-
dition first proposed by Blank and Sill (1969) for a 'two
layer moon model. The major advance obtained during this
program was deneralization to models where the lunar
electrical conductivity is an arbitrary function of the
radius. Discontinuities can also be handled within this
framework. A spherical harmonic expansion was carried
out for this theory and harmonics higher than the first
are retained. The resultant radial wave function has
been transformed in order to produce a mathematical
problem which is more tractable for ¢Qmputation; i.e.,
an initial value problem. For special cases, as in the
near‘surface thermal gradient calculations of Section 3,
the solutions were obtained on the computer by a two
point boundary value calculation which requires much

longer running time.



6.2 Near Surface Thermal Gradient

The initial application of the formalism of
Section 2 was the calculation of the TE transfer func-
tion for various moon models which could be characterized
by a constant thermal gradient near the surface. The
compositional models were derived from a lunar basalt
(Nagata et. al., 1970) and an olivine (England et. al.,
1968). The former constitutes one of the most highly
conducting rock materials while the latter is, for low
temperature, one of the least conducting rocks. To
obtain solutions of the differential equations of Section
2, an iterative technique was carried out to solve a
boundary value problem. At some inner point, the field
was assumed zero and the slope of the radial term was
varied in order to match the surface boundary condition,
In combination with the initial LSM data (Sonett et. al.,
1971 a and b) these calculations bracket the thermal
gradient between 1.4 and 4°K/km. These results were

based only on the high frequency response, .02 to .04 Hz.

6.3 Wwhole Body Lunar Conductivity

By using the entire experimental spectrum from
'LSM an iterative fit was obtained for the lunar electrical
conductivity. The figure of merit for this fit was the’

sum of the squares of .the deviation of the calculated
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transfer function from the experimental transfer function.
For an eight frequency fit, this value was .06 after five
iterations. Much more work remains to be done on this
problem to improve the spatial resolution of the conduc-
tivity profile. However, a major discovery is the
apparent presence of a high peak in the electrical con-
dAuctivity in the vicinity of r = 1500 kilometers in the

moon.

6.4 Primordial .Planetary Joule Heating

The mathematical results of Section 2 have been
incorporated into a computer program for calculating the
thermal evolution of planetary bodies. The thermal
sburces now include the effects of both the TE mode and
TM mode. All of the pertinént subroutines have been
checked for errors and one set of test runs has ‘been‘
made for each type of joule heating individually. These
initial results indicate that the TE mode contribution
may be significantly greater than the proposed chondritic
radionuclide sources over the outer lunar shell. Further
investigation is required, however, to determine ‘the
effects of different thermal and conductivity models on
this form of heating. The major advantage of TE heating
is its insensitivity to a low (or zero) conductivity

surface layer.
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Appendix A

The fields (_E_m, I_im) and (ge, y_e) are related

m e

to the potentials Q , Q accordir;.g to
' 2 dk ’
e 1 d 1 1 3 2}, e 1 4(441) e
E_=E =1 (25 - = == = 4+ k7| (x0%) == 22 (08 -
r r kl ar2 kl dr odr kl r2
_ e m 13 (. 20f 1 3™
Fg = Fo * B M ¥ 37 (r ae) Sind 8¢ ’
_ e m _ 1 d >0 ) . g™
E<pf E<p + E<p - kT sin® Jr '(r © ) Y ,
k 2
S U (R A e ,
k or
6 o . D 1 20 K15 [ o
o~ 6 8 sinB 3¢ T (2 _ar |" 3 '
e k -.m
e =19} 1 ) [o]9]
H =H +H =S5 - I - Tol
@ ¢ ¢ ° kK'r sinb or ( ¢ )
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Appendix B
The spherical harmonic expansions for the

potential and the electromagnetic fields of the transverse -

.electric part of the solar wind excitation are

Q = MVH sin ¢ E;-B&j 2vr Pt(cos 9)

1
i dpP’, (cos 8)
H? = HO Ajsinoe d( 2vr L
= 3 Z B, 2|3 i
H 2T1T | 6g L dr L k 1
@ °l =1 PL(cos 8)/sin 6
H A ®
Hl; '= 2'(r)rir sin ¢ ZBLL(M:L) j &(%) P]{:(COS 8)
V {,:l .
( W ( ) 4 [N
m 1 -
E9 cos o PL(COS 8)/sin 6
< L: uVHo< z BLJ L(21rr) ) 1 r
Em —sin @ | =1 dPL(COS )
\ ¢ p L J { dg J
' iﬂzua)
where , BL = i = ,\/j]-_

The electromagnetic fields and potential for the trans-

verse electric mode in the lunar interior are
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a . : m_m 1
" = WVH T sin ¢ Z ByRGy (r) Py (cos 6)
1=1

( ’ TN 4 l
] dap;, (cos ) )
! . L
HI% Ha |STRO 20 dGIEJ as
1 (7 27ir ) BPrar y 0
HI:;J‘ cos @ | 1=1 PL(cos 8)/sin 6
\ \ J > ")
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Eg cos | ® PL(COS 8)/sin 6
. a Z Mg 6M(py )
) m HVHo r 3 B ALBLGL(r) 9 dP%(COS )

The corresponding formulae for the transverse

'magnetic mode driving field are

Pi(cos 8) /sin 6

)9 dpt(cos 8)

e . .
Hy sin ¢| o .-
- : T
cos ¢| 4~=1
?
, 3 3
ES cos
d 0 .uVHo)‘ A d . (27,
(= 2 >ZBL (T3 R )
ES -sin ¢ | £=1
L
\ P, \ /
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pVHOA

r  27ir

1=1

cos ¢ }: BL L+l)%§2wr/k P (cos )

For the interior fields we have

= ~uVH

uVHo

2ria
cos o Za L(HI)A
o) kkzrz L

=1
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FIGURE CAPTIONS

The electrical conductivity of two representétive
minerals vs. temperatures; a moon basalt after
Nagata et. al. (1970) and olivine after England et.
al. (1968). The former corresponds to a highly
conductive rock while the latter corresponds to a
low cdﬁductivity'rock.

Behavior of the real and. imaginary parts of the TE

transfer function as a function of radius in the

moon. This data was obtained using the basalt con-
ductivity (Nagata et. al., 1970) o = 7.9 e—'s/kT
+5.1 x 10° o 1-25/kT
to follow the equation T(r) = 243°K + %(a—r) with
a = 1740 km . Thermal gradient ; of 2, 3 and

The temperature was assumed

S g Ao e e -

4°K/km were used. The ffequency is .04 Hertz.

The TE mode transfer function for the basalt and

olivine conductivity calculated as a function of the
thermal gradient for frequencies of .02, .03 and .04
Hertz. The LSM

o=

A + A

2 2
— _ | 3
A = 2

[

is also shown.:

Power spectral density determination for simultaneous
magnetic field observations on the lunar surface
(Apollo 12) and in the solar wind near the Moon
(Explorer 35) (prepared by NASA/ARC). The y com-

' ponent is east and the z component north at the

Apollo 12 site. Significant amplification is observed,
increasing with frequency. Length of the time series

is 2 hours, &= 107° gauss.
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The rms tangential lunar transfer function, A =

[0.5 (A§ + Ai)] /2 and the normal transfer function

A as a function of frequency. The x direction is
normal to the lunar surface. The solid line is the
value of amplification calculated from the conductivity
profile whose corresponding amplification is fitted to
experimental values at frequencies of 0.83, 1.7, 5,

12, 17, 22, 25, and 35 millihz.

Lunar bulk electrical conductivity profiles determined

from the individual transfer functions AY ' AZ , and .

A. The prominent rise of o¢ from the surface inwards

to r = 1500 km is apparent for all three cases as

well as the subsequent decrease inwards to r = 1400 km
followed by a more gradual rise. A tentative version
of a lunar thermal profile is shown as the grey overlay
with temperatures indicated on the right hand margin.
This profile is a fit of conductivities to a Nagata
basalt in the mantle, an England olivine in the core,
and the known subsurface temperature of -30°C. The
insert is shown to suggest extreme values og the o's
using the one standard deviation limits of the A's

to calculate conductivities (see Sonett et. al. 1971

a and b).

The experimental r.m.s. tangentiai lunar transfer
function, A , as a function of frequency. The error
bars are the same as those in Figures 2 and 4. The
curve labeled "best fit" are the values of the ampli-
fication for the conductivity profile labelled A in
Figure 5. The "2 layer" curve was calculated for a
modél with a core of radius 1560 km and a constant -
conductivity of 7.6x10~% mhos/m, and a shell of zero

conductivity. This value of the core conductivity
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provides a best fit to A for the given core radius.

The Dyal and Parkin (1971) amplification curve was. N
calculated for a model with an inner core of radius
1044 km and a conductivity of 1072 mhos/meter, a
middle layer extending to 1653 km with a conductivity

of 1.7x107% mhos/m and an outer layer of zero con-

ductivity. Other amplification curves are based on
conductivity models proposed by Ness (1969) and Sill
(1971). Note that the "2 layer" curve does not dupli-
cate the "S" nature of the experimental data.

T Tauri electrical (joule) heating from the TE mode
for a 500°C Rikitake-olivine Moon. The %% curve
repreéents the contribution from the first 125 har-

monic terms. The TE, cuxrve is the contribution from

the first harmonic. The horizontal line at 1.25x10"°

joules/gram-year is for a uniform chrondritic radio-

nuclide source after Fricker et. al. (1967) .
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