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1.0. Introduction

The major task carried out under Contract

NAS2-5876 was the development of theoretical and

computational techniques for calculating the time depen-

dent electromagnetic response of a radially inhomogeneous

moon. The importance of this task was two-fold. The

techniques were first used to analyze the experimental

data from the LSM (Lunar Surface Magnetometer) thus pro-

viding the first in-depth diagnostics of the Lunar

interior (Sonett et. al., 1971, a and b). The theory

was also incorporated into an existing computer code

designed to calculate the thermal evolution of planetary

bodies. The previous calculations (Sonett et. al., 1969)

had relied only on unipolar induction. The new program

will provide a tool for examining the effect of heating

from the TE mode (poloidal magnetic field) as well as

the TM mode (toroidal magnetic "field) .

The theoretical discussion of the problem of

the electromagnetic response of a radially inhomogeneous .

moon is presented in Section 2. The method of obtaining

various potential solutions for the vector wave equation

is shown along with the spherical harmonic expansion of

these potentials. Formulas.are derived for the radial

equations which reduce the problem of obtaining the

solutions to an initial value calculation.
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The theory is applied to the problems of the

near surface thermal gradient of the moon, and the

overall lunar electrical conductivity in Sections 3 and

4, respectively. By comparing the experimental data with

calculated results for lunar models, the thermal gradient

is bracketed between 1.5 and 4°K/km near the lunar sur-

face. A computer inversion using the complete experimen-

tal spectrum is invoked in Section 4 to obtain the lunar

conductivity. This work has been reported in Sonett

et. al. (1971, a and b). The major discovery in this

work is a prominent peak in the electrical conductivity

at a radius of 1500 kilometers. The lunar conductivity

exhibits a precipitous fall off on -either -side of 1500

kilometers.

A new version of the computer code used to

generate the data for Sonett et. al. (1969) is described

in Section 5. The major change is the inclusion of the

time dependent' electric fields for the joule heating.

The program with all of its subroutines has been checked

and is operational from an experimental aspect. Because

of the inherent complexity of the overall heating problem,

more short computer runs must be laid out and made in

order to determine an optimum mode of investigation for

this program.
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2.0 Electromagnetic Induction in the Moon

2.1 Mechanism

Electromagnetic induction in the Moon is depen-

dent upon the existence of a large class of discontinuities

and waves in the solar wind. The forcing function which

drives the induction is composed of .the steady interplane-

tary magnetic field upon which is superimposed a hydromag-

netic radiation continuum due to (1) plasma waves arising

presumably in the solar atmosphere and subsequently

convected and propagated outwards, (2) waves due to local

instabilities in the solar wind, and (3) discrete large

amplitude events such as collision-free shock waves,

tangential discontinuities, and Alfven waves.

The formal statement of the electromagnetic

interaction problem rests upon division of the fields

into parts which correspond to toroidal and poloidal

magnetic fields. These are excited respectively by a)

the interplanetary electric field (as perceived in a

frame of reference comoving with the Moon) given by

E = v x B , where v is the velocity of the Moon rela-—m — — —

tive to the solar wind and B the instantaneous inter-

planetary magnetic field, and b) the time rate of change

of the interplanetary field, B . The two modes corres-

pond respectively to transverse magnetic (TM) and transverse

-3-



electric (TE) excitation. Both modes display strong

frequency dependence (f = a)/2ir where CD is the angular

frequency in radian/sec). The magnitude of the TE

transfer function goes to unity as frequency, f -» 0 ,

and increases with increasing, f . The TE mode currents

which close wholly in the lunar interior, tend to be

concentrated where the waves damp substantially. With

increasing frequency, the poloidal magnetic field becomes

compressed into shells of decreasing thickness. The

exclusion of the field from the interior of the moon,

coupled with the confinement of the field at the lunar

surface by the solar wind pressure on the sunlit side of

the moon produces a magnification of the resulta-nt

magnetic field at the lunar surface.

The TM mode attains peak value for f = 0 ; it

remains approximately constant with increasing f until

a combination of core and lithospheric constitutive param-

eters forces the currents to pass wholly through the crust

whereupon it decreases with further increase of f

This mode is responsible for the steady state bow wave

phenomena.

Theoretical treatments of the lunar interaction

with the solar wind generally include the effect of the

solar wind dynamic pressure in confining the induced field

lines (Blank and Sill, 1969; Schubert and Schwartz, 1969).
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This is provided in the model by a field confining surface

current layer in the solar wind just ahead of the lunar

surface. Preliminary examination of the lunar response

using the LSM data shows a strong amplification of inci-
r

dent tangential discontinuities whose free stream proper-

ties are monitored by Explorer 35 (Sonett et. al.,1971 a and b) .

The amplification occurs only for the vector components

tangential to the surface; the normal component tends to

follow the interplanetary value. Thus, the existence of

a thin confining current layer appears verified for the

sunward side of the Moon. The very strong excitation

implies that the lines of force are confined within the

-Moon to a -cr-ustal layer havi-ng :an electrical conductivity

substantially less than that of the deeper layers.

2.2 Theory of the Induction for Harmonic Excitation

A complete treatment.of the electromagnetic

interaction would require appropriate matching of the

interior fields to those in the plasma surrounding the

Moon. A less complicated interaction model can be used

for the present day moon-solar wind electromagnetic induc-

tion problem because the flow field exterior to the sunlit .';>;

side of the moon shows no marked perturbation from the

presence of the Moon aside from the diamagnetic cavity

(Colburn et. al., 1967; Ness et. al., 1967). Based on
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this lack of a scattered field up stream in the plasma,

an analysis for the sunward hemisphere is carried out for

an inhomogeneous Moon immersed within a perfectly con-

ducting space. The compressional effect of the solar wind

momentum flux is taken into account mathematically by

postulating an electrical current layer just above the

lunar surface. ' "

Previous discussion of the electromagnetic

response of the Moon to solar wind forcing functions have

been limited to models of concentric, constant electrical

conductivity spherical shells (Blank and Sill, 1969,

Schwartz and Schubert 1969, Schubert and Schwartz, 1969,

Sill andBlank, 1970). Also, the analyses of Blank and

Sill (1969).and Sill and Blank (1970) are valid only for

low frequencies.. Their work corresponds to the retention

of only the first term in the spherical harmonic expansion

of the forcing field. Electromagnetic waves of frequency

high enough to be confined to the near surface region of

constant temperature gradient require for their complete

description higher order terms in a spherical harmonic

expansion. The theory presented in this section is appli-

cable to a Moon whose electrical conductivity, a ,

varies with radial position in an arbitrary manner. In

addition, higher order terms in a spherical harmonic

expansion of the fields are retained throughout the
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theoretical development.

We consider the interaction of a solar wind

forcing field of the form

H = HQ exp i ( ' - cut)> (1)

E. = x |-tvH exp <, i(± -̂ - oot) J> (2)

with a radially inhomogeneous Moon. The cartesian

-coordi-nate system (x, y, z) wrth unit vectors x., y, z^,

is fixed relative to the Moon and has its origin at the

Moon's center. The Moon moves with speed v in the

negative z-direction. The quantities H_ and J\ = v/f

are the amplitude and wavelength, respectively, of the

magnetic field oscillation and the circular frequency CD

is 2irv/A . The amplitude of the electric field~

oscillation is ^VHO , where U is the permeability of

the solar wind. We follow the formalism of Wyatt (1962)

who considered the scattering of electromagnetic plane

waves from inhomogeneous spherically symmetric objects

The following theoretical development, as applied to the
Moon problem, was first presented by Schubert and Schwartz
(1970). This work was then incorporated into the LSM
report (Sonett et. al., 1971 a,b).
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in connection with the problem of determining the nuclear

scattering cross-sections. His work appears to have been

based on earlier work of Lahiri and Price (1939).

2.2.1 Formal Solution for a(r)

The solutions of Maxwell's equations can be

represented as the superposition of two linearly indepen-

dent fields, the transverse electric (E , HT) and the
s-\ g

transverse magnetic (_E , _H ) . It can be shown that these

two sets of fields are completely determined from two

m cpotentials, fl and n which satisfy the equations

= o (3)

dk

> +*V-0 ^ ..(4)

where

2 2
k = co Me + ia|JoD . (5)

k, = iooe - a (6)
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and H and e are the magnetic permeability and elec-

trical permittivity of the Moon. Although some possibility

exists that local effects are significant in increasing

the value of \JL over the free space value, there is

presently no evidence for this. An upper bound for the

global permeability of 1.8 t-iQ is given by Behannon (1968) .

In the following discussion the values assumed for the

global permeability and permittivity of the Moon are the

free space values of these quantities. Possible departures

of the permittivity from the free space value are insigni-

ficant in the subsequent application of this theory.

First, consider the transverse magnetic (TM)

or superscript e mode, characterized by the vanishing

of the radial component of the magnetic field. The first

step in obtaining the potential for this mode is to write

out Maxwell's equations using (5) and (6):

VXE = kH (7)

VXH = -k-j; (8)
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where

k2- = -*.*• (10)

It can easily be seen that the radial component of (7) is

satisfied exactly if

r sin 9 9<p

pe _ i Ml.E9 ~ r 86

where r, 9, <p are the spherical .coordinate triplet and

Ue is a scalar potential. If (11) and (12) are next

inserted into the Q and <p components of (8) the

resultant equations are

-10-



- _ .
dr8 ~ sine a<p - (14)

By defining a potential fi by

it can be seen that (13) and (14)" are satisfied exactly

if .

6 ~ " sine

Inserting (15) into (11) and (12) gives

(rne) (is)

—11-



Finally, one mus.t obtain an equation relating

Ee to n and a partial differential equation for ne

From the radial component of (8) together with (16) and

(17) one obtains

or - - (20)

From either of the two transverse components of (8)

together with (16) and (18) or (17) and (18) one obtains

where

E <*r 2 e
3r dr - r 2

1 or
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If separation of variables is assumed, then the only

solution for (21) is £ = 0 . With this result,

equation (20), and after some algebraic manipulation one

obtains

f — } - J- w -I &* ̂ * ^ * / *") O \

r ~ k i ^ ~ î "̂ 1 ~^r "^^ ' (rn ' " ^ '

and the determining partial differential equation for

It should be noted that the vanishing of the divergence

of ,D(= e^) has not been invoked in order to obtain this

set of solutions v'.'.;.This restriction was erroneously

required in Wyatt's paper. In fact, the divergence

equation is used to obtain the charge distribution which

is not zero in the TM mode when the conductivity is a

function of position.

The complete solution of Maxwell's equation

within the sphere requires a second set of solutions,
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the transverse electric (TE) or magnetic solutions,

denoted by superscript m . In these solutions Em = 0 .

One obtains a set of potentials if^ and fim in a

manner completely analogous to the procedure followed

above. In this case, however, the roles of (7) and (8)

are interchanged. From the radial component of (8) one

deduces a potential U™ such that •

r si-n -8 dtp

Then using the transverse components of (7) with equations

(25) and (26) one is led to the potential nm such that

(27)

Hl _ JL
<p ~ ~ d8
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i aom
'9 ~ sin 9 ~&p (29)

sin 9

Following the same technique as for the electrical

potential one obtains for

k2 (rn) (32)
8r

and for .the partial differential equation for Q :

(V2 + k2)nm = 0 (33)

The solution of equations (24) and (33) can now be

obtained via separation of variables. The equations for
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Tn TV* /"v f̂
determining (E , ff ) and (E , H ) from the potentials

m eof fi and n are presented compactly in Appendix A.

2.2.2 Spherical Harmonic Solutions in the Moon

The solutions for equations (3) and (4) are

easily obtained in terms of spherical harmonics by the

method of separation of variables. .The boundary condi-

tions, used to fix the arbitrary constants of the solu-

tions, are that the solutions are bounded at r = 0 and

that the tangential components of the electric field are

continuous at the lunar surface. For the transverse

electric mode this is equivalent to the continuity of

the normal component of the magnetic field (B_ = |OH) .

A discontinuity is permitted in the tangential magnetic

field because of the confinement of the induced field by

the solar wind pressure. This confinement is accomplished

by a current sheet at the moon-plasma interface.

in 6
The potentials Q and Ci are given by

09

s i n < p p G r J P c o s 9 ) (34)

HQ cos (f) 3 A ( r ) P ( c o s 9) (35)
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where (r, 9, (p) are the spherical polar coordinates, a

is the lunar radius, P. (cos 6) are the associated
V

Legendre polynomials and

M-t+i) (36)

m 6
The functions G, and G, are solutions of the differ-

ential equations

dr
2 T y l V T - A / I -,1" / » _ n / -5-7\

2 • - T N J S . >~2 > C 3 ^ ( r ) -0 (37)

dr2 k2 dr dr r " r2

(38)
= 0

G m
In Sonett et. al. (1971a)the appearance of A. and A.

V \f

were suppressed, these constants being incorporated into

m e
the definitions for G, and G. . The exact form of

the boundary condition at r = a is obtained by using

the spherical harmonic expansion for the incident

and internal fields, given in Appendix B. The boundary

conditions for the fields are given by
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(39)

,e £
At dr

2 2
k^A d
^2, da ̂ J^

r=a ^7
(aj.(2iraA)) (40)

where ĵ (x) is the spherical Bessel function of order

I .

2.2.3 Behavior of the Solutions G, and G. Near

r =.0

In. the center of the Moon, near r = 0 , it

dk
is reasonable to assume that ^— becomes vanishingly

m e
small. Then G^ and G. in the vicinity of r = 0

are of the form

Lim Gl^'c(r) -» r j ̂  (k r) (41)
r-»0

where k is the propagation constant at r = 0

Therefore, at r = 0

G™'e(d) =0 (42)
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d |rm,e = 0 (43)

r=0

For numerical calculations the boundary conditions

expressed by (42) and (43) are useless. However, an

auxilliary function can be defined which makes the solu-

tion of (37) or (38) more amenable to digital computer

m etechniques. Define the function N.' (r) by

G™'e(r) = r ' r ) (44)

Then from (37) and (38) the differential equations for

</S are

,2 _ „ ,,,„ dNm
(45)

N. / » . 1 \ J O_. (lnk2,
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and by using (41) the boundary conditions at r = 0

become

(47)

d Mm,e
dr Nl = 0 (48)

r=0

The constant in (47) can also be absorbed in A,' to

give as an alternate condition to (47),

Nm'e(o) = 1 (47a)

The boundary conditions at r = a then become

"? = j.(27raA)/[at+1Nm(a))I I \ I I
-1"A. = (49)
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Ik2*
= l— '-̂  L. (50)

r=a

For those cases where the differential equa-

tion (either (45) or (46)) can be integrated over the

entire range 0 ^ r ^ a the use of the auxiliary func-

tions provides a means for reducing the problem to the

solution of an initial value computation. Care must be

taken, however, because of the nature of the differential

equation. These equations are basically diffusion

equations, the solutions -becoming -exponentially damped

as r decreases from a toward zero. For higher

•frequencies and, hence, smaller local skin depths

r~r~6 =y , the attenuation may become so great that

significance will be lost in the integration scheme.

For these cases an alternative procedure would be to

integrate the original differential equation ((37) or

(38)) from some depth b where the local skin depths

6 is small (6 ̂  (a-b)) , and assume that the fields

vanish for r < b . The equations can then be solved
O TTl

as a boundary value problem with N^' (b) = 0 and

N^'m(a) determined through equations (49) and (50).
•
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3.0 The Near Surface Lunar Thermal Gradient

3.1 Introduction

The initial results from the Apollo 12 lunar .

surface magnetometer experiment show that on the sunward

hemisphere the moon displays a magnetic field response to

the interplanetary electromagnetic field which is larger

by one-half order of magnitude than an equivalent vacuum

bounded case. This strong interaction provides the basic

justification for the current layer at the moon-plasma

interface, which is used in the theoretical development

in Section 2. Without this layer there can be no signal

increase over the vacuum case. The field increase or

amplification is dependent on the combined exclusion of

the induced field by a highly conducting lunar core and

the confinement at the sunward surface of this, same field

by the solar wind pressure.

The interior field exclusion is related to the

damping of the TE wave as it propagates into the moon.

For a constant conductivity moon the damping occurs at

progressively shallower depths as the frequency increases.

This phenomenon is accentuated when the electrical con-

ductivity increases with depth. Even for an inverted

conductivity profile one can easily be convinced that

the magnetic field compression at the lunar surface in-

creases with increasing frequency.
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The first LSM data points for the magnetic field

magnification were obtained for frequencies at the high

end of the usable band for the Explorer 35 Ames magnetometer

and LSM combination, .02 to.04 Hertz. - These frequencies are

high enough to lead to the expectation that the electromag-

netic damping in the lunar crust will occur at some depth

d where the lunar temperature profile can be described by

a linear thermal gradient approximation; i.e.,

T(r) = T + Tr(a-r) , b < r < a (51)
5 »

where b is the smallest radius for the approximation and

where T is the surface temperature in degrees Kelvin,
fa

a is the lunar radius (1740 kilometers), T is.the thermal

gradient in °K/km and r is the radial distance in kilo-

meters. The estimates of the thermal gradient are depen-

dent on the model conductivity assumed although there are

obvious constraints provided by the range of validity of

the linear gradient approximation and necessary high

internal temperatures for the low conductivity models.

Since only the electrical conductivity a

occurs in the differential equations for the field

(equations 37 and 38) rather than T(r) the model depen-

dence is obvious. As a final point, one should note that
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the magnetic field exclusion occurs at depths where the

local skin depth, 6 = ~\/2/a>|icT , is of the order Of one

kilometer and the quantity (a/cue) is much greater than

unity. Hence, the equations (37) and (38) are basically

diffusion equations and the value of e is of no conse-

quence to the resultant field distribution. By combining

equation (51) with various models for rock electrical

conductivity and then comparing the resultant calculated

magnetic field with the experimental data, a series of

estimates can be obtained for the lunar thermal gradient

near the surface.

3.2 Theory

The refined data from the LSM experiment is

generally present as a ratio of the field measured at the

LSM to the inducing field measured at Explorer 35. This
• \

data is further obtained only after Fourier decomposition

of both original signals. Thus, the experimental data

provides a transfer function of the moon to electromag-

netic induction. In order to make a comparison between

the theoretical and experimental data, a theoretical

transfer function must be defined. This is easily accom-

plished for the TE mode by going to Appendices A and B

of Section 2 and equation (34). First, remember that the

boundary condition for the TE mode requires that the

radial components of the magnetic field be continuous.

-24-



Then the transfer function must relate the tangential

components of the field. A .normalized harmonic transfer

function is defined for the TE mode by

This provides the ratio, for each harmonic, of the TE

mode magnetic field anywhere in the moon to the inducing

magnetic field in that same harmonic at the lunar surface.

This definition for a transfer function which is indepen-
/

dent .of 9 and .<p cannot be made fpr the TM mode mag-

netic fields. Instead, the induced TM magnetic fields

can only be compared to the inducing TE magnetic fields.

The difficulty that arises can be seen by examining the

limiting case as the frequency goes to zero. For this

limit the magnetic field components of the driving field

for the TM mode vanish while the induced TM components can

have any value (theoretically) depending on the electrical

conductivity of the moon model. This would lead to

extremely large values of a transfer function even though

both the driving field and induced field are well behaved.

As an alternative, the TM transfer function has been

defined as
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Ge. (r)

-g-(aj.(27raA))
da 'I/

(53)

For the models used in this section," the T^ values are

too small to be of importance.

3.3 Conductivity Models •

The electrical conductivity of rocky material

is conventionally represented by a function of the form

o=Y aoiexp(-^) (54)

where an. is the mobility (conductivity for T = °° ) /

e. is an activation energy, the energy required to raise

an electron from a valance band into a conduction band,

]< is Boltzmann's constant, and T the absolute temper-

ature. The dependence of conductivity upon temperature

and activation energy as expressed by equation (54)

follows the classical theory of semiconductors, but

information so far developed in geology lags the former

significantly. Nevertheless, from an experimental stand-

point, equation (54) does represent conduction sufficiently

well so that application to the present problem can be

made. The total conduction is made up of an impurity
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range, one in which intrinsic electronic conduction

dominates and lastly an upper temperature range in which

ionic conduction takes over. The latter is likely not

significant in the application of this paper and is dis-

regarded. The use of a conductivity function at atmos-

pheric pressure extrapolated to depth can have the effect

of reducing the apparent conductivity because' of the

presence of interstitial cracks. We have no information

on this for lunar samples. Any error would be in the

direction of increasing the calculated thermal gradient

so that this must be regarded as a limitation, as is the

paucity of samples and the generalization to bedrock.

We consider here two conductivity functions

thought to represent extremes for the lunar material.

For an Apollo 11 lunar crystalline rock (sample 10024-22),

Nagata et. al., (1970) found

6.,/k = 5800 °K , e2/k = 14,500°K

aQ, =7.9 mhos/m and aQ2 = 3.7x10 mhos/m . It has

been found that an Apollo 12 rock (sample 12053-47) has

a more complicated dependence of conductivity upon tem-

perature but displays a generally similar behavior to
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that of the Apollo 11 sample with somewhat reduced con-

ductivity over the range measured.

There is good reason to suspect that these

samples are not representative of the basement rock.

For example, they could not constitute the basic rock of

the Moon for the basalt transforms to eclogite at 12 kb

pressure, and the density of this polymorph is too high

to match the pverall lunar density. Other more subtle

geochemical arguments having to do, for example, with the

incompatible element concentration in the basalts, suggest

that the interior is better represented by a periodtite

containing a substantial fraction of olivine. For this

reason we have chosen as the other end point calculation

an olivine conductivity function (England et. al., 1968)

for which e]L/k = 10,670°K , e2/k = 31,300°K , CTQI =

55 mhos/m and aQ_ = 4x10 mhos/m . The behavior of

the Moon rock and olivine as functions of temperature

are illustrated in Figure 1.

3.4 Numerical Calculations

For sufficiently small skin depths it is

unnecessary to integrate the equations of the previous

section to the center of the Moon. It is sufficient to

replace the deep interior of the Moon by a perfectly con-

ducting sphere and integrate the equations from the lunar

surface to the surface of the perfectly conducting core.
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The exact location of this lower boundary is unimportant

as long as the local skin depth is small. For convenience

in the numerical computations to follow, the lower boundary

has been set at a depth of 250 km. The transfer function

was obtained for several values of the frequency, f , and

a solar wind speed of 400 km/sec. .

The equations derived in Section 2 have been

numerically integrated for the lunar thermal gradient

Moon models described above. For all models T was
s

r

taken as -30°C or 243°K. The behavior of the real and

imaginary parts of the transfer function for the £ = 1

TE mode (equation (52)) is shown in Figure 2 for the

Nagata-Moon rock conductivity, for a frequency of .04 Hz

and thermal gradients of 2, 3 and 4°K per kilometer.

Except-,for the lowest thermal gradient, the magnetic

fields and, hence, the transfer function are well damped

below r = 1500 kilometers.

Extensive calculations for the TE mode, t = 1,

transfer function have been made for the two conductivity

functions. The data from these calculations is shown in

Tables 1 and 2 where the magnitude and phase of the

transfer functions are given for frequencies, of .02, .03

and .04 hertz and for thermal gradients from 1°K to 7°K

per kilometer for the England-olivine conductivity. Data

was calculated only up to 4°K/km for the Nagata-Moon rock
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•

T r(°K/km)

1

2

3

4

.02
•

2.4/-9.50

3.9/-90

5 . 3/-8 . 3 ° .

6 . 7/-8 . 0 °

Freq (Hertz)

.03

2.G/-9. 8°

4.4/-9.20

6.1/-8.60

7 . 5/-8 . 3 °

.04

2.9/-100

4.7/-9.70

6.4/-9.00

8.1/-8.40

TABLE 1

TE Mode I = 1 transfer function

calculated using the Nagata-lunar

basalt conductivity
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Tr (°K/km)

1

2

3

4

5

6

7

.02

1.5/-6.10

2.4/-7.80

3 . 3/-8 . 3 °

4.1/-8.50

4.9/-8.80

5.7/-8.90

6.4/-9.00

Freq (Hertz)

.03 -

1 . 6/-6 . 2 °

2.6/-7.70

3.6/-8.20

4 . 5/-8 . 5 °

5 . 3/-8 . 7 ° • •

6...2/-S ..8 °

7.0/-8.90

.04

1.7/-6.20

2.8/-7.70

3 . 9/-8 . 2 °

4.8/-8.50

5.7/-8.60

6.-6/-8.70

7 . 4/-8 . 9 °

TABLE 2

TE Mode,. -6 = 1, transfer function
calculated using the England-olivine

conductivity
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because of its much higher conductivity and resultant

large transfer functions T? . The amplitude data of

Tables 1 and 2 are displayed graphically in Figure 3.

From this figure it is clear that for a given value of

Tm at a given frequency the olivine conductivity requires

a higher thermal gradient and, hence, a higher internal

temperature. Calculations were also carried out for

higher order harmonics for the TE mode. These results

listed in Table 3 were obtained for f = . 04 Hertz, a

solar wind velocity V of 4x10 m/s and a lunar radius

of 1.74x10 meters. For these values the argument of

the Bessel functions in the driving term (2-rrfa/v =• 2ira/A)

.is approximately unity. It .can be .seen that the ampli-

tude of the transfer functions and, hence, the amplifi-

cation of the field decreases with increasing harmonics.

In addition, for this set of parameters, the higher order

harmonics in the forcing functions are of decreasing

importance in the harmonic expansion of the forcing field

at the lunar surface. These forcing functions are in the

ratio 1.0:0. 18:0. 025:2. 8xlO~3:2.5xlO~4 . Only the second

harmonic produces any appreciable correction in the field.

The magnitude of this correction will decrease with

decreasing frequency since for

n!
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Nagata Moon Rock (Basalt)

Harmonic

1

2

3

4

5

Thermal Gradient

2

4.7/-9.70

3.0/-9.60

2 . 2/-9°

1.8/-8.40

1.6/-7.60

3

6.4/-90

4.1/-8..90

3.0/-8.50

2 . 5/-8 . 2 °

2.1/-7.70

4

8 . 1/-8 . 4 °

5.1/-8.30

3 . 8/-8 . 2 °

3.0/-7.90

2.6/-7.60

England-Olivine

Harmonic

1

2

3

4

5

Thermal Gradient

4

4.8/-8.50

3.0/-8.50

2.3/-7.90

1.9/-7.40

1.6/-6.80

5

5.7/-S. 6°

3.37-8.5°

2 . 7/-8 °

2.2/-7.60

1.97-7.1°

6

6.67-8.7°

4.2/-8.60

3.1/-8.30

2 . 5/-8 °

2.1/-7.60

7

7 . 4/-8 . 9 °

4.7/-8.70

3.57-8.4°

2 . 8/-8 . 2 °

2 . 4/-8 °

TABLE 3

Normalized Surface Tangential Transfer functions for

f = .04 Hertz, v = 4xl05 m/s., a = 1.74xl06 meters.

In the harmonic expansion the forcing functions for
—3 -4

the harmonic are in the ratio 1:0.18:0.025:2.8x10 :2.5x10 ,
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3.5 Discussion

The response functions shown in Figure 2 have

'the general form one would expect for magnetic induction

in a layered spherical conductor for which the inner con-

ductivity is much greater than the conductivity near the

surface. The phase change with increasing depth is a

characteristic of the change of the governing differential

equation from one which is essentially a Laplace equation to

a diffusion equation. The strong damping of the induced

field starts in the region of the phase change. It is

clear that the field penetration decreases as the thermal

gradient increases. The property that the induction is

•relatively constant "in the 'outermost regions corresponds

to the fact that in this region both the real current

J = CTE and the displacement current edE/dt are negli-

gible. The results of the calculation are qualitatively

similar to results which would be obtained for a two

layer calculation. For instance, if the Moon had infinite

conductivity for r < b and zero conductivity for

b < r < a , the transfer function T (r) for those fre-

quencies where 27ra/X« 1 is given by

Tm(r) = 1 + 1/2 (b/r)
3
 b < r < a (55)

1 - (b/a)J
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From this equation it is obvious that if b is close

to a , T (r) is very nearly constant and equal to

1.5/(1 - (b/a)3) . ,

The magnitude of the transfer functions given

in Tables 1 and 2 and shown in Figures 2 and 3 are indica-

tive of the compression of the induced magnetic field

between the solar wind at the lunar surface and the highly

conducting lunar interior. For a given conductivity

function and frequency the field amplification increasing

with increasing thermal gradient. Similarly, for fixed

thermal gradient and conductivity the magnification

increases with frequency.

The penetration of the magnetic field into the

Moon increases as the frequency, decreases for a fixed

thermal gradient and conductivity function or as the

thermal gradient decreases for a fixed frequency and con-

ductivity function. The decrease in the magnetic field

amplification corresponds to the increase in penetration.

Since the true thermal gradients must be expected to

decrease with increasing depth, the lower ifrequency waves

will penetrate even further into the Moon than is indi-

cated by the constant gradient analysis. This analysis

is only meaningful for the highest frequencies where the

major damping occurs within the first 200 to 300 kilo-

meters. The depth of penetration has been obtained for
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some selected cases which are shown in Table 4. The depth

shown in this table corresponds to the position of the

first zero of the real part of the transfer function.

Thermal
Gradient

Nagata Moon-Basalt

,04 Hertz .02 Hertz

2°K/km

3

249 km

178

140

266

189

148

England-'01 ivine

247

207

186

159

264

222

192

170

TABLE 4

Depth of penetration of the induced field

using the first zero of the real part of

the TE , t = 1 transfer function
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T? (a)

It can be seen from this table and from Tables 1 and 2

that similar values of the damping depth give approxi-

mately the same value for the transfer function.

3.6 Comparison with Experimental Data

The presently accepted experimental values for

are shown in Figure 5 with the error bars (Sonett

et al. 1971a and 1971b). The experimental values for .02,

^03 and .04 Hertz are shown in the curves in Figure 3 with

appropriate error bars. An immediate difficulty arises

because the value of T-, for .02 Hertz is greater than for

the other two frequencies. There is, as yet, no theoretical

explanation for this. However, using the data for .03 and

.04 Hertz a lower limit can be obtained for the thermal

gradient of 1.4°K/km. This is obtained for the Negata-

basait. If one uses a less conducting material such ad

the olivine, a higher value of the thermal gradient is

obtained, 2.7°KAm.

It has been suggested that some TM mode

admixture may be occurring. To investigate this possibility

the TM mode £ = 1 transfer function was calculated for a

frequency of .03 Hertz and thermal gradient of 4°K/km

-4using the Moon basalt conductivity. A value of 2.5x10 /0°

was obtained for the transfer function showing that the

low conductivity of the crust was cutting off the
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excitation of this mode within the Moon. To the conduc-

tivity equation given by (54) with the basalt values a

constant conductivity was added; i.e.,

a(T) = <?„ , . (T) + aBasalt o (56)

The results of these calculations are shown in Table 5

TABLE 5

TM transfer functions for f = .03 Hertz ,

Tr = 4°K/km and Nagata Basalt

10

10

10

0

-8

-7

-6

2.5xlO~4/0°

— J /n O7.7x10 /O

.072/-.170

.56/-1.250

It can be seen that the TM mode will not produce any

measurable effect unless the surface conductivity is at
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least of the order of 10 mhos/meter. This corresponds

to a temperature of 365°K for the Moon basalt and 590°K

for the olivine, much higher than the mean surface lunar

temperature of 243°K.
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4.0 The Conductivity of the Moon

4.1 Introduction

In the previous section an attempt was made to

bracket the near surface lunar thermal gradient. In this

section the total spectral data obtained from the LSM

experiment is used to provide an estimate for the conduc-

tivity of the moon from approximately r = 400 km to the

surface. The general properties of both the LSM and Ames

magnetometer on Explorer 35 have been given (Dyal and

Parkin, 1971, Milhalov et. al, 1968). The theory has been

described in Sections 2.0 and 3.0. This work is also

included in Sonett et. al. (1971b).

4.2 Experimental Data

The spectral determination and coordinate trans-

formations for the experimental data were carried out at

Ames Research Center (Sonett et. al. 1971b). The forcing

field defined by Explorer 35 measurements is transformed

into the local LSM coordinate system (x is along the normal

outwards from the surface, y is easterly and z is northerly

at the site of ALSEP and the LSM). Power spectral densities

are obtained for the magnetic field time series at both

Explorer 35 and LSM for all three components.

A representative set of spectra at both Explorer

and LSM for the y and z magnetic field components (tangent

to the surface) is shown in Figure 4. The forcing spectra

-2are seen to display the expected f dependence characteristic
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of interplanetary fluctuations, while the LSM shows an

f~ dependence. Thus, significant frequency dependent
/

power amplification is apparent in the record. A combi-

nation of all the data points A(f) =ji (A2 (f) + A2 (f)) . 5-^ y z j z

for all frequencies up to 0.040 Hz has been made. See

Figure 5.

4.3 Lunar Electrical Conductivity Profile

The theory of lunar induction, discussed earlier,

has been used to derive a profile of electrical conduc-

(1)
tivity from the empirical transfer function. The theo-

retical amplification for the lowest TE mode, computed by

numerically integrating equation (45) with a radially de-

pendent conductivity, is matched to the empirical trans-

fer function using a Newton-Raphson iterative scheme.

This scheme readjusts the entire conductivity profile to

yield amplifications which best fit the data in a least-

squares sense over the entire frequency range. This has

been carried out using frequency values of 0.83, 1.75, 5,

12, 17, 22, 25, and 35 millihz. The conductivity profile

is characterized by its values at the radial locations

r = 800, 1200, 1400, 1450, 1490, 1510, 1550 and 1740 km.

For r <8CO km the conductivity a is set to the value at

r = 800 km; elsewhere a linear interpolation of log a is used,

(1) This theory, and the computer program for deriving
the conductivity profile from the empirical transfer
function were developed by American Nucleonics Corp.
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The computer calculation is started with a

continuous conductivity profile defined by 8 parameters,

as described above. Numerical integrations are carried

out to obtain values of amplification at the eight fre-

quencies. A comparison of these amplifications with the

data provides the Newton-Raphson scheme with the input

required to adjust the 8 conductivity parameters to yield

a profile whose corresponding theoretical amplification

curve is a better least-squares fit to the empirical

transfer function. The iteration is continued until an

adequate fit is obtained. . The result of such a fit to

— /1 2 2 1 "2"the empirical amplification curve A = <— (A + A )/

.is .shown .in .Figure 5. ..The ..differences between the theo-

retical amplification and the empirical A are very

likely attributable to the various complications of the

excitation process not accounted for by the theory, as

well as considerations of .computer running time which

limits the number of frequencies and conductivity para-

meters (spatial resolution) employed.

A conductivity profile is associated with the

theoretical amplification curve of Figure 5 and is shown

in Figure 6. The conductivity profiles derived from the

iterative least squares inversion for A , A and their

on standard deviation limits (see Sonett et. al., 1971, a

orb). The prominent spike is an invariant characteristic
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of the inversion for each set of data. It is centered

at about r = 1500 km where the conductivity is nearly

-2
10 mhos/m. The inner minimum lies at about r = 1400 km

and the conductivity appears to rise at greater depth.

Gross bounds on the conductivity profile are seen in the

insert; these are determined from the one standard devia-

tion limits of the various A's, but do not themselves

represent one standard deviation limits on the conductivity

profile.

The computer calculations for Figures 5 and 6

-4
started with a constant conductivity of 10 mhos/m

However, a number of computations have been carried out

using different values for uniform starting conductivities

— 3 —5(e.g., 10 and 10 mhos/m) and different radial

locations. In every case tested, initial convergence

was rapid and the final conductivity profile invariably

displayed the prominent spike near r = 1500 km . For

the profiles reported here, several values of r were

chosen in the neighborhood of r = 1500 km to better

define the conductivity spike.

Whereas the large spike in conductivity is a

persistent feature of the inversions, the character of

the conductivity profile at greater depth, where the

conductivity appears to rise, is not so certain and our

results for the conductivity at these depths must remain
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tentative. The surface amplification is a rather insensi-

tive function of core conductivity because of the relatively

small core volume and the distance to the surface.

4.4 Comparison with Other Conductivity Profiles

A physical understanding of the appearance of

the large conductivity spike can be obtained as follows.

In a two layer model with an infinitely conducting core

and a non-conducting shell the amplification of the tan-

gential magnetic field components' equation (55), can be

written in the form

_ . _3 (Core volume)
2 (Shell volume)

This simple result requires that the high frequency skin

depth barrier be near r = 1500 km for an amplification

ss 4 . At frequencies above 0.02 Hz essentially no wave

penetration takes place through this barrier. Thus, the

volume available in the core for field lines is insigni-

ficant compared to that in the non-conducting shell.

This means that the amplification becomes independent of

frequency; i.e., dA/df -» 0 at high frequency. Con-

current with the high frequency limitation is the require-

ment that A drop to near unity at the lower frequencies.

If it were assumed that the electrical conductivity were

monotonic, so that the interior conductivity were uniformly
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high, then the low frequency amplification would be in

excess of the observed values.

The inadequacies of monotonic conductivity

profiles are shown in Figure 7 . The experimental r.m.s.

amplification data A (circled points with associated

error bars) can be compared with the amplification curve

for the A conductivity profile of Figure 6 (labelled

"best fit") and amplification curves of several monotonic

conductivity profiles. The "2 layer" amplification curve

was calculated for a model with a core of radius of 1560 km

—4and a constant conductivity of 7.6x10 mhos/m , and a

shell of zero conductivity. This value of the core

conductivity provides a best fit to the experimental A

for the given core radius. Other best fit two layer

models with different core radii have been investigated;

the one used in Figure 7 yields an amplification curve

which matches the data most closely. The amplification

curve labelled DYAL and PARKIN (1971) was computed from

a 3 layer conductivity model proposed by these authors.

The parameters of their model are a = 10 mhos/m for

-40 < r < 1044 km , a = 1.7x10 mhos/m for 1044 km <

r < 1653 km and a = 0 in the outer shell. In other

3 layer conductivity models consistent with the data

analysis of DYAL and PARKIN (1971), the outer boundary

of the region of intermediate conductivity can be located
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anywhere between r = 1653 and 1740 km . We have

computed the amplification curves for a number of these,

additional 3 layer models; none provide a better fit to

the observational curve. Also shown in Figure 7 are

amplification curves from conductivity profiles proposed

by SILL (1971) (model 3 in that paper) and NESS (1969).

Other conductivity models investigated by SILL (1971) fit

the experimental data no better than his model 3. The

conductivity model of NESS (1969) consists of a core of

radius 1426 km with a = 8x10 mhos/m , and a non-

conducting shell. Amplification curves from conductivity

models of WARD (1969) were also considered but these were

rejected upon comparison with the observational data.

The "2 layer" amplification curve shown in

Figure 7 is, compared to the experimental data, high at

f < 0.0035 Hz and f > 0.03 Hz , and low in the range

0.01 Hz < f < 0.02 Hz . The data show a flat response

at frequencies above 0.02 Hz, whereas the slope of the

"2 layer" curve is high at these frequencies. Further-

more, as the frequency increases the curvature of the

data changes from positive to negative at about 0.003 Hz.

The "2 layer" amplification curve is everywhere concave

up. This "s" shaped character of the experimental data

is faithfully reproduced only by our "best fit" conduc-

tivity profile. Further work is in progress to improve
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the high frequency slope of our "best fit" model. This

will probably lead both to a higher value of the maximum

conductivity and a steeper slope of the conductivity

profile at the outer edge, effects which will tend to

sharpen the conductivity spike in order to allow pene-

tration of low frequency magnetic field fluctuations.

4.5 Compositional and Thermal Model

The electrical conductivity profile cannot be

explained by a uniform material and a plausible thermal

profile. In the region from the surface to r = 1500 km

where the conductivity attains its maximum value, the

rise of conductivity with depth is a reasonable consequence

of the accompanying increase of temperature in a material

of uniform composition. Below R =1400 km the apparent

rise in conductivity is again explainable by an increase

in temperature. On the other hand, the precipitous

decrease of electrical conductivity by 2 to 3 orders

between r = 1500 and 1400 km cannot be explained as due

to temperature. Either a compositional change, phase

change, or a combination of the two is required. Thus,

a reasonable model for stratification of the Moon, limited

by the present poor spatial resolution of the analysis

indicates a core out to r « 1400 km overlain by a mantle

of higher conductivity material, plus possibly a transition

layer at r = 1400 - 1500 km .
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In order to infer a temperature profile from

the conductivity profile it is necessary to use conduc-

tivity-temperature functions of known rock materials.

The Apollo basalts (Schwerer et. al., 1970; Nagata et. al.,.

1970) are representative of the most conducting rock

matter known. On the other hand, .olivine (dunite) or

olivine-peridotite (England et. al.,' 1968) is represen-

tative of poorly conducting geological material. The

peak conductivity value found in the lunar mantle corre-

sponds to a temperature of. about 450 °C for lunar basalt

or 950°C for olivine. Since the temperature just under

the lunar surface is -30°C, the corresponding thermal

gradients in the outer .mantle .are .about .2 °K/km and 4°K/km.

These estimates correspond to those obtained in Section

3.0 for .02 Hertz.
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5.0 Early Planetary Heating by Electromagnetic

Induction

5.1 Introduction .

Sonett et. al. (1968) and Sonett et. al. (1970)

have given convincing argument for the possibility of a

short, intense heating episode caused, by electromagnetic

induction, this episode occurring during the initial

formative years of the planetary body. In these two

papers the electrical heat source was the unipolar induc-

tion field which is the d.c. limit of the TM mode discussed

in Section 2.0. The model parameters have been thoroughly

presented in the two references and in Schwartz (1969).

An obvious deficiency of the theory, as presented to date,

is the reliance on only the d.c. field component to the

exclusion of the rest of the frequency spectrum. To

remedy this situation, the original planetary heating

computer program has been rewritten to provide a method

for evaluating the separate and combined contributions

to the planetary heating from the TM and TE modes as a

function of frequency. The program is still in the check-

out stage as far as practical results are concerned. The

individual subroutines have all been checked out but the

actual modes of operation have not been worked out. Some

brief runs have been made to ensure that all the routines

work properly together.
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5.2 The Driving Field

As described in Sonett et. al. (1970) it is

assumed that the sun passed through a T Tauri stage 4.5

billion years ago on the way to becoming a main sequence

star. During T Tauri the sun maintained both a high spin

rate, near the centrifugal limit, and a high surface

magnetic field. The driving field for the electromagnetic

induction is assumed to be the quasi steady state rotating

sector structure of the .magnetic field and the frozen-in

V x B electrical field which is convected past the planet

by the solar wind. A two level sector structure for the

magnetic field is assumed so that the magnetic field H

and also the electric field 13 = V x |OH have magnitude

H and E , respectively, but change sign (direction)

every half period of the solar rotation. If the solar

period is 2r(r = TT/OD where CD is the local time solar^ o o

spin rate) then the time dependence of driving fields is

given by

H

+1 2nr ̂  t s (2n+l) r

T £ t ^ 2(n+l)T
(57)
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The average power deposited by joule heating can be

obtained using Fourier Series techniques with the result

that for any given mode (i.e., TE or TM)

+ 00

H(r) = a(r)

n=-°°

C V (r)n n
(58)

where H(r) is the power density in watts/m , a(r) is

the electric conductivity in mhos/meter, V (r) is the

normalized electric field in volts/meter and C is the

Fourier coefficient for the driving term

C =n

E \ j On even

H I I •=2± n odd
o/ I mr

(59)

The square of the total input electric field is

E
R \ ' _O ")
\ \ (2m+l) Z = E£
TT I i

m=o

(60)
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Thus, the total driving field looks, in magnitude, iden-

tical to the driving field for a constant field of E

In fact, the total input for the TM portion of the driving

field is equivalent to the input for the unipolar induc-

tion where one assumes C =1 and C =0 for n = 0o n

The highest solar spin rate, at t = 0 years,

— 4is (oj ) = 4.2x10 radians/sec or (f ) =o max v c max
_ 5

6.67x10 Hertz . If one sums the magnitude from the

first 10 terms of the TM mode, the omitted terms consti-

tute 2% of the total used.

5.3 General Program Concept

The main program, called HEAT03> solves the

basic problem of the thermal history of a planetary body.

Input data is read into the program in the main body and

through a subroutine CONIN. Provision is made for

radio nuclide heat sources in the subroutine set RADIO

and AHEAT. The electromagnetic heat sources are obtained

through the subroutine ERAD and a subsidiary subroutine

FSET. The subroutine ERAD sets up the T Tauri flow

parameters, the driving electromagnetic field, solar spin

rate and the electrical conductivity. The calculations

o.f the electric fields and the joule heating are carried

out through FSET. In the present version of the code,

the calculation can be made for:
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(1) the d.c. unipolar generator

(2) the TE mode for a series of n frequencies

(n ;> 1) where f = (2n-l) f where fn o o
is the solar spin rate

(3) the TM mode for the same series of n

frequencies as (2).

Combinations of (1) and (2) or (2)'and (3) can also be

obtained. For the present n is set equal to 1 in

FSET because more investigation is needed to determine an

optimum method for running the program. The program is

designed for no melting and therefore no radioactive

concentration. The radioactive sources are assumed to be

uniformly distributed within the body. The electrical

heating te'rm 'has two parts, one from the tangential

electric field and one from the radial electric field

(TM mode only). The program can be set through input

data to use either or both parts.

5.4 Input Deck .

The following is the make up of a typical run.

Each card set is explained. •

Card 1 This is a descriptive header card using columns

2 through 80. It must be used but can be blank.

Card 2 Name List Ml. There are three inputs on this

name list.
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ATIM is the start time of the calculation

in years.

TTESTZ is a skip time in years. For TTESTZ

= 6 > 0 the electric field joule

heating will not be calculated any

more often than 6 years, except

when a printout of the thermal profile

and the heat sources is called for.

EFCT determines which components of the

electric field will be used for the

joule heating.

1. Er , aE2

p c» oF1

Tangential' r
j

3. a(E2 + E2)

Card Set 3 Name List M2. This name list has 15 inputs.

GTC This is the time constant, y, for

the solar magnetic field in units of

-1 9
eons (1 eon = 10 years). The

maximum permissible value is .457.

For any larger value the sun becomes

centrifugally unstable at time zero

according to the despin theory used

for the program. The magnetic field
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has the variation

B(t) = B exp y(4.5-t)

REAR This is a parameter which might just

as well be an internal constant, equal

to r2/r where r = 6.99765 x 108s se s

meters solar radius. r = 1.495se

x 10 meters - earths distance from

sun. REAR = 3.2754 x 10 meters.

RG . This is the distance between the sun

and the planetary body under investi-

gation, measured in astronomical units

(a.u.). For the earth, RG = 1.

DP This is a constant term which is

added to the electrical conductivity

in ERAD. DP can have any value (in

mhos/meter) but for the most recent cal-

culations, DP = 0.

ENZ This is the particle flux density of

the solar wind at 1 a.u. and at

t = 4.5 eons. The present val.ue is

taken as 10 protons per cubic meter.
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ENTTZ This is the particle flux density for

a T Tauri 'flow at 1 a.u., t = 0 ,

and normalized to a solar mass loss

AM = MQ = 2 x 10 kilograms . For

the assumed velocity and time decay/

14ENTTZ = 8.6 x .10 protons per cubic

meter.

GSW Time constant for the solar wind flux

density, taken as 1.0214 per eon.

GTT Time constant for the T Tauri flux

density, taken as 1200 per eon.

VTZ T Tauri flow velocity at t = 0 :

2 x 10 meter/sec.

VELZ Solar wind flow velocity at t =

4.5 eons; 4 x 10 meters/sec.

GVZ Solar wind velocity time constant;

85.5/eon.

TS Average space temperature at

T = 4.5 eons - normal, 273° Kelvin.

TTS Increment in space temperature caused

by T Tauri obscuration; 0 ̂  TTS ̂  500°

GTTS Time constant for decay of obscuration:

1.2 x 10 per year.
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Card Set 4 Name List M3 has six entries.

DELA Spatial difference step for inner

portion of the planetary body in the

solution of the thermal diffusion

equation,' normally 2 x 10 meters .

DELB Spatial difference step for the outer

layer of the planetary body in the

solution of the thermal diffusion

equation. For early heating v/ith T

Tauri flow 1 x 10 meters is used.

For late times or when T Tauri is

not important '5, 10 or 20 x 10 meters

can be used.

FINR Fraction of a solar mass being lost

during the T Tauri stage: 0 ^ FINR.

We have been using FINR = .5.

PELT First estimate for a time step (in

years) in the solution of the thermal

diffusion equation. PELT must be

greater than 0 , preferably 10 years

for T Tauri heating, 10 years for

heating by radionuclides only.
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MSTEP Total number of points in the spatial

grid for the solution of the thermal

diffusion equation. It cannot exceed

200. With DELA = 2 x 106 meters and

DELD = 105 meters MSTEP =183 and

IMSTP =83 for the moon.

IMSTP Number of space points using DELA.

If r. is the radial distance from

the center of the planetary body to

the i point then

ri= (i-l)DELA ; 1 ̂  I ̂  IMSTP

(IMSTP-l)DELA + (i-IMSTP)DELB;

IMSTP ^ MSTEP

Card Set 5 Name List M4, four entries.

XI = 0 , XI is the normalized start point for

the integration of the electric field

equation.

INIT = 2 I These two parameters set up the

~ J integration scheme as an initial

value problem. For cases where the

internal conductivity of the planet

becomes too large, INIT is switched

to zero automatically. NSAV is an
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internal program parameter which

must be zero initially but takes on

the value one for program switching.

If INIT becomes zero, XI is stepped

to a value greater than 0 , and the

field equations are solved as a

boundary value 'problem. This is a

time consuming method and should be

avoided if at all possible.

IFCT This parameter determines which

joule heating method will be used.

1. Unipolar generator (DC limit of

TM mode)

2. TE mode

3. TE mode and unipolar generator

4. TM mode

5. TE mode and TM mode

The following data cards are called from the auxilliary

subroutine CONIN:

Card Set 6 Name List Cl.

NT This is the number of times at which
i

thermal profile and output data will

be printed out. 1 ̂  NT ^ 50
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TIB

The time points TB must be set up

so that TIB(I+1) > TIB(I)

Time points for output, in years.

Card Set 7 Name List C2.

NT0 Number of points for the starting

temperature, T0(I) in °C• as a

function of position R0(I) in

kilometer. 2 £ NT0 <: 50

R0(I) Position at which the temperature is

T0(I) The data from T0 is interpolated

to cover the points for the thermal

integration in the main program

using the subroutine TINTR.

NSORC This is the number of radio nuclide

heat sources 1 £ NSORC £ 8

The next card set, set 8, numbering from one to eight,

depending on NSORL, gives the radio nuclides for the

planetary heating. The cards are in a 3 x, 3A4, 3E15.5

format. The 3A4 portion of the format reads in the radio

nuclide name.

TEXT(I) Radio nuclide name ( = 1,2,3).

W(I) Radio nuclide abundance,

grams/gram.

-60-



B(I) Radio nuclide heat generation,

j oules/gram-year.

FLAM(I) Radio nuclide decay constant, per

year.

Card Set 9 Name List C0N.

DENS The planetary density in grams/cc

(assumed uniform in this program).

FN Index of refraction used in thermal

conduction formula: FN = 1.7.

E Energy gap in e.v. for the portion

of the radiation opacity derived from

the electronic conduction term:

E = 3 electron volts.

N

CP Heat capacity: 1.2 Joules/gram-degree

FKF Not used in program: = fi

Ef6 The opacity (=100/cm) .

SIG0 Supposed electrical conductivity at

infinite temperature (=10 mhos/cm).

C Lattice thermal conductivity (=7.889

x 105 Joule/cm-year-°K).
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Card Set 10 Name List C3.

Al(I) 1 = 1 , 6. These coefficients are

for the electrical conductivity

a(T) in mhos/meter, where T is

the temperature. The conductivity

is given by '

V I 1a(T) = ̂  Al(2i-l)exp <^-Al(2i)/TS

In ERAD the conductivity becomes

oT(T(r)) = a(T) + DP

where a(T) is shown above and DP

is the additive constant in read in

name list M2.

5.5 Test Cases

A limited number of test cases were run with

the new computer program. In each case the electrical

conductivity function used was Olivine (Rikitake 1966)

with

a(T) = 0.1e~5800/T + 10.e~^""WJ- + 3.5 x
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Further, only a uniform temperature moon model was used

with T = 500°C = 773°K giving a constant lunar conduc-

tivity of 5.4 x 10 mhos/meter

First, consider the TM mode and the unipolar

generator. For the unipolar generator the joule heating

during the T Tauri phase was 8.7 x 10 joules/gram-year

each from both the radial and tangential electric fields.

There was a K factor of .37 and a power ratio of 2.4

(see Sonett et. al.,1970 for complete explanations of

these terms). For the TM mode test case only the n = 1

harmonic was used. The resultant heating was 7.4 x 10

joules/gram-year with a k factor of .36 and a power

ratio of 2.5. The contributions from the higher harmonic

_2
decreases as (2n+l) . The ratio of the TM heating to

2
unipolar heating is (8/ir ) if one takes into account the

slight difference in the k factors. Note that the

heating input in this case is four orders greater than

the radio nuclide heating for a chondritic source,,

1.28 x 10~ joules/gram-year (Fricker and Reynolds, 1967).

The contribution from the TE mode is somewhat

more difficult to analyze. The electric field for the

TE mode is proportional to the frequency for the.low

frequencies of interests. Figure 8 shows the TE heat

input for the first harmonic and the sum of the first

125 non zero harmonics. Note that the sum term is
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approximately 100 times greater than the single harmonic.

This occurs because the amplitude of each harmonic electric

field is proportional to (2n+l)o> where en is the solar

spin rate and the exciting field decreases as (2n-fl)~

Thus, except for the affect of attenuation with depth,

each harmonic produces the same electric heating input.

The contributions begin to drop off significantly for

frequencies greater than 0.1 Hertz (2-rra/A > 1) .

5.6 Summary

Only the preliminary portion of the investi-

gation of.planetary heating by time dependent electro-

magnetic induction has been completed. The major tool

for the investigation is essentially complete, the computer

program. Because of the complexity of the program and the

problem of planetary heating, great care must be taken in

laying out a plan for examining the possible effects of

electromagnetic induction on planetary evolution. So far,

only a constant temperature case has been investigated

for the TE mode. This case produced an inverted heat

source with up to ten times greater energy disposition

than chondritic nuclides toward the planetary surface.

More conducting moon models would have sharpened the slope.

Further, in the light of this small data sample, it would

appear that the TE mode can not be used for the rapid

heating near time zero. The TM mode heating can deposit
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3 4
10 to 10 more energy. However, the TM mode heating is

critically dependent on the state of the planetary surface

electrical conductivity, whereas the TE mode should be

unaffected by the surface. Therefore, more initial time

models must be examined before one embarks on a long

calculation scheme.
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6.0 Summary of Report

6.1 Electromagnetic Induction in the Moon

The major effort for the past year, upon which

all the other work was based, was the formulation of the

theory of electromagnetic scattering by a 'radially inho-

mogeneous moon. This formulation was a synthesis of

techniques described by Wyatt (1962) and also used

originally by Lahiri and Price (1939) and many others.

The formalism was combined with the lunar boundary con-

dition first proposed by Blank and Sill (1969) for a 'two

layer moon model. The major advance obtained during this

program was generalization to models where the lunar

electrical conductivity is an arbitrary function of the

radius. Discontinuities can also be handled within this

framework. A spherical harmonic expansion was carried

out for this theory and harmonics higher than the first

are retained. The resultant radial wave function has

been transformed in order to produce a mathematical

problem which is more tractable for computation; i.e.,

an initial value problem. For special cases, as in the

near surface thermal gradient calculations of Section 3,

the solutions were obtained on the computer by a two

point boundary value calculation which requires much

longer running time.
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6.2 Near Surface Thermal Gradient

The initial application of the formalism of

Section 2 was the calculation of the TE transfer func-

tion for various moon models which could be characterized

by a constant thermal gradient near the surface. The

compositional models were derived from a lunar basalt

(Nagata et. al., 1970) and an olivine (England et. al.,

1968). The former constitutes one of the most highly

conducting rock materials while the latter is, for low

temperature, one of the least conducting rocks. To

obtain solutions of the differential equations of Section

2, an iterative technique was carried out to solve a

boundary value problem. At some inner point, the field

was assumed zero and the slope of the radial term was

varied in order to match the surface boundary condition.

In combination with the initial LSM data (Sonett et. al.,

1971 a and b) these calculations bracket the thermal

gradient between 1.4 and 4°K/km. These results were

based only on the high frequency response, .02 to .04 Hz.

6.3 Whole Body Lunar Conductivity .

By using the entire experimental spectrum from

LSM an iterative fit was obtained for the lunar electrical

conductivity. The figure of merit for this fit was the

sum of the squares of .the deviation of the calculated
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transfer function from the experimental transfer function.

For an eight frequency fit, this value was .06 after five

iterations. Much more work remains to be done on this

problem to improve the spatial resolution of the conduc-

tivity profile. However, a major discovery is the

apparent presence of a high peak in the electrical con-

ductivity in the vicinity of r = 1500 kilometers in .the

moon.

6.4 Primordial .Planetary Joule Heating

The mathematical results of Section 2 have been

incorporated into a computer program for calculating the

thermal evolution of planetary bodies. The thermal

sources now include the effects of both the TE mode and

TM mode. All of the pertinent subroutines have been

checked for errors and one set of test runs has been

made for each type of joule heating individually. These

initial results indicate that the TE mode contribution

may be significantly greater than the proposed chondritic

radionuclide sources over the outer lunar shell. Further

investigation is required, however, to determine xthe

effects of different thermal and conductivity models on

this form of heating. The major advantage of TE heating

is its insensitivity to a low (or zero) conductivity

surface layer.
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Appendix A

The fields (Em, if1) and (E6, He) are related

TTl
to the potentials fi , Q according to

= Ee = _L [^
•r Er k, 1^2 dr (rne)

E0 ~ E8 + E™ M kF "^F r TT

m

e m 50
sinG 39

Hr = tfr

He - He "9
i arf ki _a_ ( anm

v ,2 ar r a e
k r \ i

sin6

k r sine
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Appendix B

The spherical harmonic expansions for the

potential and the electromagnetic fields of the transverse

electric part of the solar wind excitation are

C5m = HVH sin <p
O

P. (COS 0)

1
ri Ao sin tf)

COS <p

^ t

dr

0)

(cos 9)/sin 9

H
S n

j (1ZT) pl(cos
•v A v

' <

E1
V

0

cos p

-sin cp

CO

/ 0 » J j ' "V ' Sl_ , v v A

P^(cos 9)/sin 9
V

1

d9 J

where

The electromagnetic fields and potential for the trans-

verse electric mode in the lunar interior are
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sin <p

' 1
9 [ HQXa

f 27rir <

I ' l

' ^

s in 0

cos cp

* ^

H* =
 HQAa

 sin p
,r 2-irir

E9

inEi
> = (JVH a. <

o r

cos

.—sin
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V m dGt
' l-f

 A-t/^-t dr '
t=l

' -L A \ N

d9

2_
P . (cos

00
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\

<p
00

5T — '

» -|

/-m
1

r

>

9) /sin 9

f

P^cos 9)•c

., <

P^(cos 9)/sin 9

dP, (cos 9)
V

*

The corresponding formulae for the transverse

magnetic mode driving field are

<

>

T?e
E9

n

H6
H9

e

. *.

> = H <o

.^VHo^

sin <p

cos (p

>

cos cp

-sin (f>

00

Z . ,2-jrr.
p . 3 . ( T / <•I/ </ A

P^(cos 6)/sin 9

d9

00

1 / P^ x ^ v - I J / * Ti 1

t-1

t

r i idP . (cos 9)v
de

P (cos 9)/sin 9
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E = 27rjr cos <p J ( 2 i r r A ) P ( c o s 9)

For the interior fields we have

N

E9

E6

<P

H6He

He

H^a
o
r

sin <p

COS (f>

TTrT 2-iria— P.VH ~- <
0 Ark

CO

ZQ _e / \ » e
^•t -t -^

» —</—

, i

-cos <p

sin (p

1

P^(cos 9)/sin 9
V

dP (cos 9)
•u
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/

Z 6 <f
P • 9 «Q -u-v </ air

t

f dP1 (cos 8)
v

d8

P,(cos 9)/</

= • -HVH 2 7 r aa
0 cos tft V p

r
2 L-*

<fc=l
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FIGURE CAPTIONS

1. The electrical conductivity of two representative

minerals vs. temperatures; a moon basalt after

Nagata et. al. (1970) and olivine after England et.

al. (1968). The former corresponds to a highly

conductive rock while the latter corresponds to a

low conductivity rock.

2. Behavior of the real and.imaginary parts of the TE

transfer function as a function of radius in the

moon. This data was obtained using the basalt con-

ductivity (Nagata et. al., 1970) a = 7.9 e~'5'kT

6 —1 25/kT+5.1 x 10 e ' . The temperature was assumed

to follow the equation T(r) = 243°K + T(a-r) with
o

a = 1740 km . Thermal gradient T of 2, 3 and

4°K/km were used. The frequency is .04 Hertz.

3. The TE mode transfer function for the basalt and

olivine conductivity calculated as a function of the

thermal gradient for frequencies of .02, .03 and .04

Hertz. The LSM

f ' +A-.— \r

is also shown.

4. Power spectral density determination for simultaneous

magnetic field observations on the lunar surface

(Apollo 12) and in the solar wind near the Moon

(Explorer 35) (prepared by NASA/ARC). The y com-

ponent is east and the z component north at the

Apollo 12 site. Significant amplification is observed,

increasing with frequency. Length of the time series

is 2 hours, 6= 10 gauss.
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5. The rms tangential lunar transfer function, A =
2 2 1/2fO.5 (A + A )n and the normal transfer function

A as a function of frequency. The x direction is

normal to the lunar surface. The solid line is the

value of amplification calculated from the conductivity

profile whose corresponding amplification is fitted to

experimental values at frequencies of 0.83, 1.7, 5,

12, 17, 22, 25, and 35 millihz.

6. Lunar bulk electrical conductivity profiles determined

from the individual transfer functions A , A , and
— y z
A. The prominent rise of cr from the surface inwards

to r = 1500 km is apparent for all three cases as

well as the subsequent decrease inwards to r = 1400 km

followed by a more gradual rise. A tentative version

of a lunar thermal profile is shown as the grey overlay

with temperatures indicated on the right hand margin.

This profile is a fit of conductivities to a Nagata

basalt in the mantle, an England olivine in the core,

and the known subsurface temperature of -30°C. The

insert is shown to suggest extreme values of the a's

using the one standard deviation limits of the A's

to calculate conductivities (see Sonett et. al. 1971

a and b).

7. The experimental r.m.s. tangential lunar transfer

function, A , as a function of frequency. The error

bars are the same as those in Figures 2 and 4. The

curve labeled "best fit" are the values of the ampli-

fication for the conductivity profile labelled A in

Figure 5. The "2 layer" curve was calculated for a

model with a core of radius 1560 km and a constant

conductivity of 7.6x10 mhos/m, and a shell of zero

conductivity. This value of the core conductivity
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provides a best fit to A for the given core radius.

The Dyal and Parkin (1971) amplification curve was

calculated for a model with an inner core of radius
_2

1044 km and a conductivity of 10 mhos/meter, a

middle layer extending to 1653 km with a conductivity
-4of 1.7x10 mhos/m and an outer layer of zero con-

ductivity. Other amplification curves are based on

conductivity models proposed by Ness (1969) and Sill

(1971). Note that the "2 layer" curve does not dupli

cate the "S" nature of the experimental data.

8. T Tauri electrical (joule) heating from the TE mode

for a 500°C Rikitake-olivine Moon. The £ curve
TE

represents the contribution from the first 125 har-

monic terms. The TE, curve is the contribution from
— 6the first harmonic. The horizontal line at 1.25x10

joules/gram-year is for a uniform chrondritic radio-

nuclide source after Fricker et. al. (1967).
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