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1.0 Introduction

The major task carried out,uﬁder~Contract
NAS2-5876 was the development.of theoretical and
computational techniques for calculéting the time depen-
dent electromagnetic responseof a radially inhomogeneous
moon. The importance of this task was two-fold. The
’techniquesvwere:first used to analyzZe the experimental
data from the LSM (Lunar Surface Magnetometer) thus pro-
viding the first in-depth diagnostics of the Lunar
interior (Sonett et. al., 1971, a and b). The theory
was also incorporated into an.existing computer code
designed to calculate the thermal evolution of planetary
bodies. The previous calculations (Sonett et. al., 1969)
had relied only on unipolar induction. The new program
will provide a tool for examining the effect of heating
from the TE mode (poloidal magnetic field) as well as

the T™M mode (toroidal magnetic field).

The theoretical discussion of the problem of .
the electromagnetic response of a radially.inhomogeneous
moon is presented in Section 2. The method of obtaining
various potential solutions for the vector wave equation
is shown along with the-spherica{Lharmonic expansion of
these potentials. Fo;mulés_are'dé}{Qed for the radial
equations which reduce éhé problem of obtaining the

solutions to an initial value calculation.



The theory is applied to the problems of the
near surface thermal gradient of the moon, and the
overall lunar electrical conductivity in Sections 3 and
4, respectively. By comparing the éxperimental data with
calqulated results for lunar models, the thermal gradieht
is bracketed between 1.5 and 4°K/km near ;he lunar sur¥
face. A computer inversion using-tﬁe complete experimen-
tal spectrum is invoked in Section 4 to obtain the lunar
conductivity. This work has been reported in Sonett
et. al. (1971, a ana b). The major discovery in this
work is a prominent peak in the electrical conductivity
at a radius of 1500 kilometers. The lunar conductivity
vexhibits a precipitous fall off on -either side of 1500

kilometers.

A new version of the computer code used to
generate the data for Sonett et. al. 4(1969)'is described
in Section 5. The maﬁof change is the inclusion of the
time dependent electric fields for the joule heating.

The program with all of its subroutines has been checked
and is operational from an experimeﬁfal aspect. Because
6f the inherent complexity of the overall heating problem,
more short computer runs must be laid out and made in
order to determine an optimum mode of investigation‘for

this program.



2.0 Electromagnetic Induction in the Moon

2.1 Meéhanism

Electromagnetic induction 4in the Moon is depen-
dent upon the existence of a large class of discontinuities
and waves in the solar wind. The forcing function which
drives the induction is composed of the steady interplane-
tary magnetic field upon which is.superiﬁposed a hydromag-
netic radiation continuum due to (1) plasma waves arising
presumably in the solar atmosphere and subsequently
convected and propagated outwards, (2) waves due to local
instabilities in thé'solar wind, -and (3) discrete large |
amplitude events such as collision-free shock waves,

tangential discontinuities, and Alfven waves.

The formal statement of the electromagnetic
interaction problém rests upon division of the fields
into parts which correspond to toroidal and poloidal
magnetic fields. These are excited respectively by a)
the interplanetary electric field (as perceived in a
frame of reference comoving with the Moon) given by
E, =v x B. , where v is the velocity of the Moon rela-
tive to the solar wind and B the instantaneous inter-
plaﬁetary magnetic field, and b) the time rate of change

of the interplanetary field, B . The two modes corres-

pond respectively to transverse magnetic (TM) and transverse



eléctric (TE) excitation. Both modesvdisplay strong
frequency -dependence (f = w/2m where- w is the angular
_frequency in radian/sec). The ﬁagnitude of the TE
transfer function goes to unity as ffequency, f»+0,

and increases with incréasing, £f . The TE mode currents
which close wholly in the lunar interior, tend to be
concentrated where the waves damp substahtially.- With
increasing frequency, the poloidal magnetic field becomés
compressed into shells of decreasing thickness. The
exclusion of the field from the interior of thé moon,
coupled with the confinement of the field at the lunar
surface by the solar wind pressure on the sunlit side of
the moon‘produceS~a magnification of the reéultant

magnetic field at the lunar surface.

The TM mode attains peak value for £ =0 ; it
femains approximately constant with increaéing f 'until
a combination of core and lithospheric constituti?é param-
eters forces the currents to pass wholly through the crust
whereupon it aecreases with further increase of £
This mode is responsible for the steady state bow wave

phenomena.

Theoretical treatments of the lunar interaction

with the solar wind generally include the effect of éhe
solar wind dynamic pressure in confining the induced field-

lines (Blank and Sill, 1969; Schubert and Schwartz, 1969) .

: o



This is provided in the model by a field confining surface .
current layer in the solar wind just ahead of the lunar
surface. Preliminary examination of the lunar response
using the LSM data shows a strong amblification of inci-
dent tangential discontinuities whose free stream proper- .
ties are monitored by Explorer 35 (Sonett et. al.,l197l aandb).
The amplification 6ccurs'only for the vector coﬁponents
tangential to the surface; the normal component tends to"
follow the interplanetary value. Thus, the existence of

a thin cbnfining current layer appears verified for the
sunward side of the Moon. The very strong excitation
implies‘that the iines of force are confined within the
‘Moon to a crustal laYer having -an electrical conductivity

substantially less than that of the deeper layers.

2.2 Theory of the Induction for Harmonic Excitation

A complete treatment.of the electromagnetic
interaction would require appropriate matchinggxfthe
interior fields to those in the plasma surrounding the
Moon. A less complicated interaction model can be used

for the present day moon-solar wind electromagnetic induc-

tion problem because the flow field exterior to the sunligf;ﬁgig&rfﬁ

side of thé moon shows no marked perturbation from the
. presence -of the Moon aside from the diamagnetic cavity

(Colburn et. al., 1967; Ness et. al., 1967) . Based on



this lack of a scattéred field up stream in the plasma,
an analysis for the sunward hemisphere is'carried-ou£ for
an inhomoéeneous.Moon immersed within a perfectly con-
ducting space. The compressionéj.efféct of the solar wind
momentum flux isAtaken into account mathematically by
postulating an electrical current layer just above the

lunax surface.

Previous discussion of the electromagneﬁic
response of the Moon to solar wind forcing functions.have
‘been limited to models of concentrig, cOnSﬁant electrical
conductiviﬁy sphérical shells (Blahk and Sill, 1969,
Schwartz and Schubert l969,>Schubert and Schwartz, 1969,
8i1l1l andBlank, 1970). <Also, the analyses of Blank and
Sill (1969).and Sill and,Blankv(l970) are valid only for
low frequencies.. Their work'cofresponds to the retention
of only the first term in the épherical harmonic expansion
of the forcing field. Electromagneﬁic waves of frequency
high enough to be confined to the near-sufface fegién pf
constant temperature gradient réquire for their cgmplete
description higher order terms in a spherical harmonic
expansion. The theory presented in this section is appli-
cable.to a Moon whose.eiectrical coﬁductivity, g,
varies with radial'positioﬁ in an arbitrary manner. 1In
addition, higher order terms in a spherical harmonic |

expansion of the fields are retained throughout the



theoretical developmént,*

We consider the interaction of a solar wind

forcing field of the form

H=9H exp{i(Z;fZ - wt>} Q)
E=2% WVH eXP{i(?‘)\Lz - wt)} . o (2)

with a radially inhomogeneous Moon. The cartesian
*coordiﬁate'sfstem (x, y;“z) with unit vectors ‘g, Q, 2,

is fixed relative to the Moon and has its origin at thé

- Moon's center. The Moon moves with speed V. in the
negative z-direction. The quantities Hd “and A = v/f
are the amplitude and wavelength, réspectively, 6f the
~magnetic field oscillation and the circular freqﬁency w
is 27v/N . The amplitude of the electric field" |
oécillation is uvHo ' where M 1is the permeability of)-‘
the solar wind. We follow the formalism of-Wyétt (1962)

who considered the scattering of electromagnetic plane

waves from inhomogeneous spherically symmetric objects

*The following theoretical development, as applied to the
Moon problem, was first presented by Schubert and Schwartz
(1970) . This work was then incorporated into the LSM
report (Sonett et. al., 1971 a,b)-..

-7-



in connection with the problem of determining the nuclear
scattering cross-sections. His work appears to have been

based on earlier work of Lahiri and Price (1939)7

2.2.1 Formal Solution for o(x)

fhe solutions of Maxwell's equaﬁiohs can be
represented as the superposition of-ﬁwo linearly indepen-
dent fields, the transverse electric (ET, g?) and the
transverse magnetic (Ee,.ge) . It can be shown that these
two -sets of fields are completely determined from two

potentials, o® and of which satisfy the equations

v2aR 4 k2Q™ = 0 (3
dk. -
2 e L 1 29 e 2. e _ -
0 - g ae ar @00+ Kt =0 ()
where
k% = o?pe + iow L (5)
k) = iwe - o | -(§)



aﬁd "M and ¢ are the magnetic pefmeability and elec-
tricai permittivity of the Moon. Although some possibility
exists that local effects afe significant in increasing

the value of u over the free space.value, there is.
presently no evidence for’this.f An upper bound for the
global permeability of 1.8 Mo is given by Behannon (1968).
In_ﬁhe following discussion the values assumed for the
globél permeability and permittivity of the Moon are the
free space values of these quantitieé. Possible departures

of the permittivity from the free space value are insigni-

ficant in the subsequent application of this theory.

First, consider the transverse magnetic (TM)
or superscript e = mode, characterized by the vanishing
- of the radial component of the magnetié field. The first
step in obtaining the potential for this mode is to write

out Maxwell's equations using (5) and (6):
VXE = k.H (7)

VXH = -k ,E (8)



where . ko = 1M - - (9)

k% = -k, k, | (10)

It can easily be seen that the radial component of (7) is

satisfied exactly if

© =T sin 8 oY | (11)

1 3u° ~ S
Eg =T o6 f - (12)

where r, 6, ¢ are the spherical .coordinate triplet and
u® is a scalar potential. If (11) and (1l2) are next
inserted into the 6 and o components of (8)' the

resultant equations are

e
D e - g A0
5 (M) = *1 S | (13)

-10-



-k e '
of el _ 1 13U '
Br(rHG T sin8 3¢ - (14)
By defining a potential o by
e_1 3 e ‘
v® = 5 (20) - ()

-l

it can be seen that (13) and (14) are satisfied exactly

if

H?a =T silne 'Q—Qg | ' (16)
HZ = %9—; - (17)
';nserting (15) into {(11) and (12) gives
g€ = ;l. 3° (x0®) | | (18)
- 78 klr ar§9 : :

-11-~



e ".1.  82

_ e
© k;r sin® 3rde (xQ™) : (19)

E

Finally, one must obtain an equation relating

e

© to 0% and a partial differential equation for Q

r

E
From the radial component of (8) together with (16) and

(17) one obtains

2e 1 3 |2 aa®
= -V —_ e 3
r a- + r2 or ( ar

(20)

From either of the two transverse components of (8)

together with (16) and (18) or (17) and (18) one obtains

9 d _ .
8¢'Or 36 E =0 (21)
where
k,ES 3k 2
_ _1r 2. e 1 l 3 e 1l o e
£ =—F— - ka + k,r or ar(rQ ) - 7 arZ(rQ ) (22)

-12-



If separation of variables is assumed, then the only
solution for (21) is £ = 0 . With this result,
equation (20), and after some algebraic manipulation‘one

obtains

32 1 % 5 2

2 k,r dr ar +k (ra

1
E_ =% (23)

1l | orx

and the determining partial differential equation for

Qe :

+ k)" - — —= 9 (r0®) = d . AA(24)

It should be noted that the vanishing of the divergence

of D(= eE) has not been invoked in order to obtain this

set of solutiong ﬁ;ﬁpié“réstrictioh was erroneously
-required ithyaEtfs paper. In fact, the divergence
equation is used to. obtain the charge distribution which

is not zero in the TM mode when the conductivity is a

function of position.

The complete solution of Maxwell's equation

within the sphere requires a second set of solutions,

-13-




































































































































































































































