
Final Report: TNT Equivalenc3
Study for Space Shuttle (EOS)

Volume I:1: Appendices (

Prepared by SYSTEMSPLANNING DIVISION

" ,, 00_-19_
[c_a _,.'.._. a'l _1
i -"_.e_,' : .en _-=1

71 SEP 3J_ u-a m._, _ ,," "--/__v. ,.. -,, _'g,t "xa|
_ "¢r_7 "",:0/'1, ,,a,

,'-, "' 4,@'

Prepared for OFFICE OF MANNED SPACE FLIGHT
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

W_,_hington, D. C.

@Contract No. NASW-2129

Systems Engineering Operations

THE AEROSPACE CORPORATION

N72-11787 (NASA-CH-123372) TNT EQUIVALENCY STUDY FOR
SPACE SHUTTLE (EOS). VOTU_E 3: APPENDICES

Final Report R.R. Wolfe (Aerospace Corp.)

Unclas 30 Sep. 1971 50 p CSCL 22B08048
GJ/31

.<u (NASA CROR I"MX OR AD NUMBER) (CATEGORY)

i

1972004138



Report No.
ATR-71(7233)-4, Vol III

r

FINAL REPORT: TNT EQUIVALENCY FOR SPACE SHUTTLE {EOS)

Volume III: Appendices

Prepared by

Systems Planning Division

71 SEP 30

Systems Engineering Operations
The Aerospace Corporation

E1 Segundo, California

Prepared for

Office of Manned Space Flight
National Aeronautics and Space Administration

Washington, D. C.

Contract No. NASW-2129

i

1972004138-002



Report No.
ATR-71(7233)-4, Vol III

FINAL REPORT: TNT EOUIVALENCY STUDY FOR SPACE SHUTTLE (EOS)

Volume HI: Appendices

Submitted by Approved by

B R._I_.____M an age rWolfe,/Study
Assistant General Manager
Systems Planning Division .,,._.

.}

©
-iii-

1972004138-003



P RE FAG E

This study was initiated as Subtask 1, TNT Equivalency Study to NASA Study

C-II, Advanced Missions Safety Studies. Other studies in this series are

_: Subtask Z, Safety Analysis of Parallel versus Series Propellant Loading of the

- Space Shuttle, Aerospace Report No. ATR-71(7233)-1 and Subtask 3, Orbiting

_: Propellant Depot Safety Study, Aerospace Report No. ATR-71(7233)-3.

This study w._s supported by NASA Headquarters and managed by the Advanced

_- Missions Office of the Office of Manned Space Flight. Mr. Herbert Schaefer,
_.

the Study Monitor, supported by Mr. Charles W. Childs of the NASA Safety

_ Office, provided guidance and counsel that significantly aided this effort.

Study results are presented in three volumes; these volumes are summarized

as follows:

) Volume I: Management Summary Report presents a brief, concise
review of the study content and summarizes the principal conclusions
and recon_mendations.

Volume II: Technical Discussion provides a discussion of the
available test date and the data analysis. Details of an analysis of
possible vehicle static failure modes and an assessment of their
explosive potentials are included. Design and procedural criteria
are suggested to minimize the occurrence of an explosive failure.

Volume III: Appendices contains supporting analyses and backup
mate rial.
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APPENDIX A

Tabulation of Pyro Test Data with

Yield in Percent TNT as Determined

by URS Systems Corp., Bellcomm Inc., and The Aerospace Corp.
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In this appendix, the following table headings are defined as:

L/D t - Tank Lengtl _/Diameter !

Do/D t _ Rupture Diaphragm Diameter/Tank Diameter !

D/W 1
/3

- Distance from Event/(Total Wt of Propellants) I/3

The legend below is a key for the Ignition Source column.

|
A Bottom tank did not release fluid until after impact of top tank

B Tank rupture ignition

C Cap ignition at tank rupture

D Cap ignition i

E Diaphragm rupture ignition
F Cap ignition at 100 psi internal pressure

(

O G Ignition caused by poor ventingH Fire on tank before ignition

I Squib ignition

: J Probable impact ignition

K Fire visible at top of tank i0-15 ms before ignition

L Ignition at impact

l_I Fire at top of tank

N Self-ignition - suspect diaphragm break

P Fire at top of tank after rupture, ignition at bottom of tank

Q Tank fell through stopper

R Fire on pad before ignition

S Tank broke apart at impact

T Self-ignition - ta.lk leaked

U Cap ignited after propellant on pad. Fire went out; detonation at
time given.

O
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APPENDIX B

Summary of Test Methods Employed by Investigators !
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_ B. i GENERAL

i_ The data produced by these tests are summarized and analyzed in Volume II. _

The purpose of this appendix is to present the configurations and pertinent !

parameters used in the test programs.

B.Z A.D. LITTLE, INC., SPILL TESTS (Ref. B-I)

A. D. Little, Inc. conducted a series of LOz/LH z spill tests in 19_Z. All i

tests were conducted with an oxidizer-to-fuel ratio of 5 to 1. Nine tests in- t

volved a total propellant weight of 45 lb each, and three of ZZ5 lb each. i

As shown in Figure B-t, tanks containing the LO z and LH z were tipped toward !
each other spilling the propellants in partially impinging streams into a

shallow pit to achieve active mixing. Tank release was sequenced to ensure
that both tanks were exhausted simultaneously. An explosive charge in the

spill pit was used to initiate the explosion in all tests
!
!

O Overpressure was sensed by piezoelectric pressure transducers, and was !
recorded by photographing an oscillograph trace. Five gauges were positioned

along a single radial line from the explosion. Distances varied from 30 to

70 ft in the 45-1b tests, and from 60 to I Z0 ft in the ZZ5-1b tests.

Test results were reported in terms of pressure yield, calculated by averaging

the pressure yields determined individuaUy for each data point. The TNT

reference curve used in determining yield was developed experimentally by

A. D. Little, since their test program preceded the publication of the currently

accepted TNT curves prepared by Ballistic Research Labs. (BRL) (Ref. B-2).

B. 3 NASA SPILL AND TANK TESTS (Ref. B-3)

In 1964, NASA-MFSC conducted a series of LO2/LH 2 tests• Each of these

tests involved 200 lb of propellants, and an oxidizer-to-fuel ratio of 5 to I.

Six spill tests and seven tank tests were run.

O
B-!
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The description of the test method employed in the A. D. Little spill test is

! applicable also to the NASA spill test method (Figure B-I). In the tank tests,
¢

i the propellants were contained in tandem tanks, separated by an intertank
b_l.khead (Figure 13-2). The simulated failure modes included intert_rlk bulk-

head rupture and tank wail rupture. Bulkhead rupture was produced either

by overpressurization or by detonating a linear-shaped charge attached to the

structure. Tank wail rupture was accomplished by a linear-shaped charge.

It was intended to control ignition delay by utilizing either a squib (for flame

ignition) or a blasting cap (for shock ignition). However, in a11 tests ignition

was spontaneous at tank failure and was probably caused by the shock accom-

panying the tank failure.

Overpressure was sensed by piezoelectric pressure transducers and recorded 4

on magnetic tape. Six gauges were positioned along a rad._al line at distances

ranging from 25 to 2.50 ft. Three additional gauges were located in a radial

O line 45 deg away from the first line, and at distances of 25 to 65 ft from the

test article. Four gauges were spaced along a third radial line, 80 deg away _

from the first line, at distances of 25 to 100 ft.

4

For each series of tests a range of pressure and impulse yields was reported.

The ranges were determined by plotting the high and low TNT yield percentage

curves which envelop a11 of the data points. The BRL-TNT curves were used

as the reference basis. No tabulated test data we,-e reported.
#

B. 4 AEROJET-GENERAL CORP. CONTROLLED INTERFACE

TESTS (aef. B-4) _

In /965, AGC conducted a series of LO2/LH Z tests to evaluate the explosive

characteristics of these propellants. The propellants were combined using a

mixing technique that permitted controUed variation of the oxidtser_fuel

contact area and the weight of propellant. A fixed 5 to I oxidi,_er-to-fue!

ratio was used for all of these tests. The propellants were mixed by placing

oxidizer-filled glass dewars in a fuel-filled pan and shattering the dewars

B-3
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with an explosively gene,-ated shockwave (Figure B-3). Two tests were run 0

at each of three weights: I00, 150, and 27-5 lb. A constant 4 to I ratio of

contact area betweer, 'he oxidizer end f_ el (in ft 2) to total propellant weight
!

(in Ib) was maintained for all tests.

Overpressure was sensed by piezoelectric transducers and recorded on i

magnetic tape. Four g_uges were positio._ed along each of three radia. _ lines

spaced 120 deg apart. Gauge distances from the test _rticle varied from Z5 i

to 98 ft. i

Test result, were re,?orted in terms of pressure yi_.1.d, Yield was determined
|by superimposing the test data points on plot_ _,_ TNT percentage yields. T_ e

TNT reference curves were determined experimentally and were reported as

bei._g in good ,_greement with the BRL ,':urves. Tabulated test data were !

reported.

B. 5 URS SYSTEMS CORP. PROJECT PYRO TESTS (Ref. B-5 i)
Project Pyro, conducted in the 1965-19fl7 time period, had as its objective

the development of a reliable philosophy for predicting the credible damage

potent_._l which may be experienced from the accidental explosion of liquid • _.

propeilants. Two general failure modes were simulated. In the Confinerr, ent

by Missile mode (CBM) failure occurs iu the intertank bulkhead, and al_

propellant mixing occurs within the tanks. The ConfL,_ement by Ground Surface

(CBGS) condition simulated the case where the propellants spill from the tanks

and mix on the ground surface. Both vertical (CBGS-V) and horizontal

(CBGS-H) spill cases were simulated. A total of 78 tests were conducted and

raw data were reported; 28 were in the CBM mode, 39 were CBGS-V and t 1

were CBGS-H. The variations in test article parameters and configurations

for the three modes, as well as the general arrangements of the test setups,

are depicted in Figures B-4, B-5, and B-b. '

Overpressure sensing was accomplished with piezoelectric transducersj an_,

data were recorded on magnetic tape. Three radial lines of gauges were used, l

B-5 t_!
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inlet

• LH 2 in Alum]nurn Container

• LO 2 in 1 Liter Glass Dewars

• Oxidizer/Fuel Weight Ratio
5:1 {Constant)

• 0.25 ft 2 Contact Area per
Pound of Propellant (Constant)

• Dewars Shattered by Mild
Detonating Fuse Under the
Container Bottom

Total

No. of Propellant Container No. of Contact
Tests Wt. (lb) Size (in.) Dewars Area (ft 2)

2 100 12 X 24X 24 36 25. I

2 150 12x _, _ _) 52 36.8

2 225 12 × 44 x 44 81 56.2

E

Figure B-3. Aerojet-General Corporation Test Program

[

B-6
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spaced 1ZO dog apart. Five transducers were poeitioned along each line.

i Distances varied from Z3 to 67 ft for the ZOO and l, 000-1b tests, and from

38 to 600 ft for the 25,000 and 91,000-1b tests.

Test results were reported as terminal yield, which was apparently an

average of the pressure and positive phase impulse yields The BRL-TNT

pressure and impulse curves were used as a reference. Tabulated data for

each test were reported.

!

...() :
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• Tandem tanks with 5 mil aluminum foil
bottoms

LH z • Tanks dropped to within i-l/Z tank
, diameters of pad

f .1... • Tank bottoms ruptured simultaneouslyby star cutters

• Planned ignitionby linear charge

• LO 2 / LH 2 weight ratio 5:i
'} I , '_

_._ Z_ • Parameters varied:I(_ LO , - Total propellant wt. (ZOO, iO00, and
25,000 lb)

- L/D ratio (1.8 and 5.0" i)

Figure B-5. Project Pyro Test Program, Confined by Ground _,,
Surface-Vertical

B-9 :
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- " ,-- • Separate tanks with aluminum

L il ,o,,uo  om.
. _ • Tanks dropped separately - bottom

I _I tank stopped within 1- i/Z diameters

! of pad

• Tank bottoms ruptured by star
cutter s

• Propellants spill onto pad, forming
overlapping pools

LH Z
• Planned ignition by linear charge

• LO Z / LH Z weight ratio - 5:1

• All tests ZOO Ib total propellant "_
weight ..2

• LO Z tank impact velocity IZ fps
(all tests)

J_L " LHztankimpact vel°cities Z3fPSand78 fps--' ' • L/D ratio 1.8:1 (alltests)

1_] Lo_iV-.]
1

._==__.............. J ___._

Figure B-6. Project Pyro Test Program, Confined by

Ground Surface-Horizontal

S-_O
&
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C. I GENERAL

This appendix contains a brief synopsis of studies conducted at the University

of Florida under the direction of Dr. E. A. Farber.

The studies to be discussed are: the construction of a mathematical model

for predicting explosive yields of liquid propellants, a seven chart approach

for systematically applying the model, and the critical mass phenomena.

These studies are thoroughly documented in Refs. C-i through C-5.

C. Z MATHEMATICAL MODEL

The mathematical model begins with the assumption that the explosive yield

function is related to a mixing function where the yield function, y, is defined

- as a fraction of maximum theoretical yield, and the mixing function, x, is

defined as the fraction of propellants actuaUy mixed. By dealing with the

_' yield function and the mixing function in this way, a generalized expression can
i

<) be developed which is assumed to be applicable to all liquid propellants, i

Using test data produced by A. D. Little (Ref. C-6), Figure C-I was constructed i

and a least squares fit of the data points shown. Data points J1, JZ, J3, are

_ from tests made with a 1/ZSth scale Saturn V vehicle, while data points D and

- H were maximum values observed in smaller scale testing of a Saturn V

? configuration. In each case, the quantity of propellants mixed at the time of :

i: ignition was known so that the fraction of propellants mixed could be plotted

against the fraction of the theoretical yield that was observed. The plot of i

the data suggests a relationship between the fraction of theoretical yield

and the fraction of propellants mixed of the form y = C(x) d where O__x-_ i,

O _<y _< k, and k< 1. The yield function and the mixing function each are

presumed to be a random variable. 1

C-!
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0.8 (D, H)4AX

C:)
-'06

1.5i

>- y = 0.78x

Z
o_ 0.4

0.2 J3° Oz

0 ,
0 0.2 0.4 0.6 0.8 1.0

FRACTIONACTUALLYMIXED, x i

Figure C-1. Fractional Yield vs Fraction Mixed Liquid Propellants
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(
Moving forward with the assumption that the mathematical model does

i represent a generalized statement of explosive yield, a mathematical problem
was addressed to find a bi-variant probability density function where the

_ expected mean value of the yield for any given mixing function value is:
I

C dE(x, y) = X

i

: f yl

• _Y [oxdf(x,y)dy]

The following bi-variant function was selected for x and y.

d'r(a+ b+ _ xd)a=l b-l(x d 1f(x, y) - _-(a)_-(b)-r(c: xd-t(t - Y . y)C-

O The only restrictions on this equation are given as y > 0, x > 0, y < x d ,i_ , and

daD.

2

Mathematical relations were defined which permitted estimating the values of

parameters a, b, c and d using experimental explosion dam. It was determined

that three of these four controlling parameters are constants: b = 4. O, c = I. l,

d = 1.5. Parameter a is variable and it was demonstrated that it varies with

the propellant weight and is thus a scaling function applicable to the model.

When the controUing parameters of the probability distribution have been

estimated, it is possible to determine the probability distribution for the yield
function, the probability distribution for the mixing function, the combined

yield-mixing probability distribution, and confidence limits for the yield

function, and the mixing function can be assigned. The typical shape of the

ma_hematica! model represented by a statistical surface is illustrated in

Figure C-2 and is likened to a shark fin.

C-3
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Figure C-2. Statistical Surface of Explosive Yield Model _
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The relationships of the scaling factor, parameter a, to propellant wei_,ht

and to explosive yield are shown in Figure C-3. The smaller the value of

parameter a, the higher the yield, and, based on existing data points, higher

propellant weights are associated with smaller values of parameter a. It

must be emphasized that these two relationships have been developed using

experimeiltal explosion and accidental missile failure data in order to estimate

the value of parameter a. The "oodel is so completely flexible that ot_,er values

of parameter a could derive from different experimental or missile fail:Ire data.

D;.fferent values of a could substantiaUy change predicted yields. The greater

• the size of the data bank, the greater the confidence that may be associated

with yield predictions from this rnathematical model.

A plot of explosive yield as a fraction of the potential yield vers_,_ prop_llant

weight is shown in Figure C-4; also the 95_/0 prcbability limit is indicated.

_; Superimposed are data plottecl from Project Pyro and from a numbe- _f actual

missile failures shown in Table C-I, where the explosive yield has usually been _'

(_i_ estimated on the basis of analysis of resulting damdge. It can be said that

the available data fit we]1 within the prediction limits presented. It is also

evident that the fit is obtained because these dat_ were used to determine the

con_rolling parameters of the _rediction equation. Again, the lack of data

points above approximately Z50, 000 Ib of propellants gives rise to some doubt

as to the propriety of extrapolating to propellant weights in the millions of i
,_

pound_ range. {i

C. 3 S_'¢EN CHART APPROACH

A s_ternatic procedure for the analytical prediction of the yield from liquid

propellants was also developed. The procedure is smrm_arized in seven charts

(Refs. C-i, C-4, and G-5). This method has the potential to produce more

information concerning explosions a_d their yield, but it also requires

considerably more input InfG_mation and knowle}.ge about the liquid propellants

and the mechanisms contributing to the explosion. The input information is

not presently .Lvailable in many cases and therefore was assumed in developing

the theory.

0

C-5
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Figure C-3. Relationships of Scaling Parameter a to Propellant Weight
and to Explosive Yield
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Figure C-4. Estimated Explosive Yield vs Propellant Weight,
Liquid Pro_ellants
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In the Seven Chart Approach, the complex question of explosion yield "_
L_

prediction was divided into three parts which were examined separately and

independently and then combined to give the desired results. These parts are i!
discussed in the following paragraphs.

C. 3. I The Yield Potential :

The yield potential is defined as the maximum theoretical explosive yield which
{

can be produced at any time t if the propellants present are mixed in the most

favorable manner. This function can be calculated for any given propellants

and selected oxidizer-to-fuel ratio as a function of time using chemical

kinetics, heat transfer theory, knowledge of the failure mode and the original

configuration of the propellant containers. °

C. 3.2 Mixing Function

The mixing function is defined as the fraction of the propellants which is actually :

mixed at any time t. It is only this mixed portion of the propellants which /J

takes part in an explosive yield. The fraction can be defined in terms of

volume modified by factors which define the degree of mixing which has taken

place, or in terms of contact area between the propellants and/or other like ii

considerations. The mixing function is controlled by the type of propellants, _

the container size and configuration, and the failure mode. The mixing function

always increases from zero at the time of failure to a maximum and then ._

decreases again if ignition does not occur. The mixing function multiplied by

the yield function gives the expected yield as a function of time for the

propellants, configuration, and failure mode under consideration.

C. 3.3 Ignition Time

The ignition time determines what the predicted explosive yield will be since

itdefines the specific point on the expected yield versus time curves generated.

Early ignition results in low yields as does very late ignition. Somewhere

between, optimum conditions occur which will produce the maximum explosive

yield prediction for the conditions being considered. In the case of the actual

V

C-9 i
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vehicle failures which involve large quantities of propellants, there is the

possibility of having early ignition, since many ignition sources would exist,

e.g., electrostatic charges, failures of electrical systems, failure of

structural members, hot engine parts, etc., which would result in low

explos ive yields.

C. 3.4 Conclusions

It is obvious that the calculation of the yield potential is a complex exercise.

Similarly, arriving at the mixing function is equally as difficult. Laboratory

experiments have been conducted which were aimed at verifying necessary

assumptions. Pellets have been vibration-mixed, wax casts have been made

of the mixing process, high speed photographic records have been made of the

mixing process, and high sensitivity thermocouple grid records during the

mixing period (up to destruct by the explosion) have been analyzed. It is
i

suggested by Dr. Farber that when experimental explosion results are not

available or feasible to obtain, the Seven Chart Approach will provide a i

prediction technique which takes into account the kinds of propellants, vehicle D i"

configuration, and failure mode. While the experiments tend to support the _

theory, not enough data are available yet from use of the actual propellants in i

simulated scale configuration or in sufficiently large quantities to be conclusive.

C. 4 CRITICAL MASS PHENOMENA

The Seven Chart Approach indicates that the explosive yield is a function of

the ignition time, which is that period from the start of mixing until ignition i

occurs. Dr. Farber and his associates were impressed that early ignition _

occurred frequently with large liquid propellant quantities. Although many l

sources of ignition are available during a vehicle failure, they considered !the possibility that the mixing processes themselves produced ignition as the

result of electrostatic charges generated and discharged across vapor bubbles.
f

Laboratory tests have been conducted confirming in fact that an electrical field _

is generated during the mixing process. Calculations have indicated that a ;

critical mass of about 2300 lb of LO2/LH 2 would produce a sufficiently strong 2

C-tO
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charge capable of sparking, thereby causing ignition to occur. These

_ calculations presumed that the mixing was due primarily to boiling of the

_;_7 propellants. If the propellants were brought together more violently, more

_ propellants could be mixed before the voltage build-up occurred. Similarly,

i if the propellants were mixed more gently, greater quantities could be mixed.

_i It is expected that additional work on the theory of critical mass will beforthcoming in the near future.
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D. I GENERAL

The current configuration of the space shuttle in fully loaded condition on the

pad contains approximately 4 million lb of LH z and LO z propellants. Of these,

Z. 9 million Ib of LO Z and 0.5 million Ib of LH z are stored in two tanks aboard

_he booster. The orbiter has two LO z tanks with a capacity of 0. Z5 million Ib _.
%

each and a single LH 2 tank with 0. I million Ib capacity. •
f

The current criteria specify that the TNT equivalence for LO2-LH 2 propellant

combinations is 6De/0. Based on this equivalency, the facilities siting for the

space shuttle would have to be based on a total yield equivalent to 2.4 million

Ib of TNT. i

Studies for other vehicles have indicated that the probability of a failure i

occurring, such as tank rupture, which could result in the explusion of }

propellants such as LH z and LO 2, is very low. For instance data from an

analysis for the Titan HIM vehicle indicated that the probability of a tank !

_ rupture during the time period from T-30 to T-0 minutes was approximately i

0.4 × 10 "6. A specific failure mode and effects analysis has not been made i

for the space shuttle vehicle; however, it is generally considered that the

probability of a tank rupture while on the pad would also be very low.

In spite of the anticipated low probability of a situation occurring which could

result in an explosion on the pad, there is th,_ question of the magnitude of the

explosion if such an event occurs. This appendix presents a statistical

development of the yield of exploding propellants for a multi-tank vehicle

configuration such as is used on the space shuttle.

In that analysis, a probability density function for the yield of an explosion was

first developed. The properties of that probability density function were then I

used to • stablish a probability density function considering the fact that variou_ |

comb;nations of tanks of the space shuttle (hence, different quantities of

propellants) may be involved in the explosion, The composite probability
i
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3
density function then was used as the basis for probability statements

relativeto the fieldof the space shuttlepropellants.

D. 2 APPROACH

In the event of an explosion, the yield, y, may vary from zero to some

maximum value, Yn" Many factors obviously affectthe yield of the explosion,

including the mixing of the propellants. However, adequate information was

not available in this study from which to base the development of a p_obability

density function _f_ryield. Therefore, several assumed probabilitydensity

functions were evaluated in this analysis to show the sensitivityof the results

to this input. The various density functions used are discussed in subsequent

sections of this appendix.

A basic requirement for each of the probabilitydensity functions evaluated was

that thc following _natbernaticalcondition be satisfied:

( :F(z)dz = i

where f(z) is the probability density function whose value must be equal to or !

greater than zero for all admissible values of z and z = 7/y n.

Using the assumed distributions on yield, a composite probability density
function was then developed as discussed below.

The STS vehicle contains five tanks for which there are 3! possible combinations

which may be involved in an explosion. To establish the probability density

function for the complete system of tanks, the following ground rules were used:

a. When the ruptured tank(s) is an O 2 tai_k, it was assurn_l that
an explosion will not occur but that a flre may result.
Subsequent explosions of the other propellants aboard tl"_
vehicle as a restt],t of the fire will be low order and will not
be c nsidered.

, D-2
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b. In order to have an explosion involving all the propellants

of two or more tanks (one or more of which must contain
LHZ), the ruptures of the individual tanks have to occur
essentially simultaneously to result in a high order explosion
rather than a fire.

c. A rupture of a tank induced by impact of debris resulting from
the rupture or explosion of another tank would result in fire or
subsequent lower order explosions than tho_c associated with
the initial rupture and therefore need not be considered

The above assumptions result in a widely varying range of quantities of propel-

lant which may be involved in the explosion. The various combinations of _.anks

are shown in Table D-I together with the amount of propellant in each tank and

the total prope|lants that would be involved in each case.

" Since there are five tanks in the booster and orbiter, the probability that each

of the possible combinations of tanks shown in Table D-I will be involved in the

| e_ent must be considered in establishing a probability density function for the

complete system of five tanks. Using the above ground rules and the assump-

) tion that the tanks are equally likely to fail, the conditional probability that a

specific tank will be involved at the time of the rupture is 0. Z. The probability

that any two specific tanks would be involved was as._umed to be (0.2)(0.2) = ";

i '0.04, etc. Probability values so obtained were then used with the data in

| Table D-i and the nreviously discussed distribution functions to establish the

composite probability density function for the complete system. _-

Th_ equation for the composite probability density function is

_' _'[ Pn Fn (y) ]

_Pn
n

whe re

l_n = the probability that tank combinatior u (as defined in Table D-i)
is involved in the initial explosion.

f-_ Fn(Y ) = the density function for tank combination n.

D-3
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D-1. Propellant Tank Combin-tions and Capacities (lb X 10 6 )

Total

Propellants
Tank Contributing

Combination, Booster Orbiter Total to Explosion, W
n n

O H O O H O/H

I 2.9 2.9 0.0

Z 0.5 0.5 0.5

3 O.25 O.25 O.0

4 O.25 O.25 O. 0

5 0.1 0.1 0.1

6 2.9 0.5 3.4 3.4

7 2.9 0.25 3. 15 0.0

8 2.9 0.25 3. 15 0.0

9 2.9 0. I 3.0 3.0

10 0. 5 0.25 0.75 0.75

11 0. 5 0.25 0.75 0. 75

12 0. 5 0. 1 0. 60 0. 60 -_

13 O. 25 O. 25 O. 50 O. 0

14 O.25 O. I O. 35 O. 35 '

15 0.25 0. 1 0. 35 0. 35 :

16 Z.9 0.5 0.25 3. 65 3. 65 b'

J7 2.9 O. 5 O.25 3.65 3.65 i

18 2.9 0.5 0. 1 3.50 3.50 |

19 2.9 O.25 O.25 3.40 O.0

20 2.9 O. 25 O. 1 3. Z5 3. Z5

Z 1 Z. 9 O. 25 O. I 3.25 3. Z5

22 O. 5 O. 25 O. Z5 1.0 1. 0

23 O. 5 O.25 O. I O. 85 O. 85

24 O. 5 O. 25 O. 1 O. 85 O. 85

25 O. Z5 9.25 O. I O. 6.0 O. bO

26 2.9 0.5 0._.5 0.25 3.90 3.90

27 2.9 0.5 0.25 3.75 3.75

28 2.9 0.5 0.25 0. 1 3.75 3.75

29 Z. 9 0. Z5 0.25 0, I 3.50 3.50

30 O. 5 O. 25 O. 25 O. 1 1. 10 1. 10

31 2.9 0.5 0.25 0.25 0. I 4.0 4.0

D-4
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D. 3 RESULTS 3

D. 3. 1 Model 1

As indicated previously, several probability density function models were _

_. evaluated in this study. For Model 1, the following criteria were used as the

basis for selection of an appropriate density function:

a. The value of 60_0 TNT equivalency was assumed to be the
mean value, _, of the probability density function. It was
also assumed that all yields in the neighborhood of 60% !
are highly likely on a relative basis. :_

b. All values of F(z) in the vicinity of zero yield and the {
maxirnum value are re:atively lov_ in comparison with the i
value of F(z) ".n the vicinity of the mode.

c. It was assumed that the maximum value, y , would be based _
_ on a TNT equivalency of 100_/o. That is, th_ explosive effects i

would never exceed that for a similar amount of TNT.
function _

I Using the above conditions as criteria, a Beta was selected which

has the general equation: _,

1whe re

z = normalized form of the random variable (yield) {

= Y/Yn "!The Beta function describes a family of curves which is dependent upon a

_ choice of _ and _. For this _nalysis, the desired characteristics of the |

distribution, for the case where the maximum yield is 100% euuivalency, were

obtained using a value of _ = 5. U_ing this value and the relationship for the

mean

_+I

|

*See Ref. B-I for a detailed discussion of the Beta function.

'x
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the value of _ = 3 was determined. The equation for the distribution function

is then

F(z)= 504 z5(l - z)3

A plot of this equation is shown in Figure D-1. This curve indicates that the

most likely equivalency (modal value) is 0. 625, whereas the mean value was

0.60. It also shows that there is relatively low probability of equivalencies

less t,._n 0.2. This density function in terms of yield is given by the equation

=-- i _ ..Z..-
F(y) Yn Yn

The results of the analysis using the density function shown in Figure D-1

are presented in Figure D-Z. The unusual shape of this composite density

function at low values of yield results from the basic shape of the probability _9 }
density function for an individual explosion which was assumed and the low

values of yield which result from many combinations of the tanks• This figure i

shows that the most likely value of yield is less than 0. I x i06 Ib while the
6 ,

expected Field is 0.56 x i0 lb. It is also interesting to note that the 95%
6

cumulative probability occurs at Z. 3 X I0 lb. In Figure D-3, the probability
i

of exceeding a given specific yield is plotted.

D 3 Z Model 2• . _
4

In Figr_re D-4, the second model considered is shown. In this case the mean i

value of the distribution of 60% was retained but the maximum value was iincreased tc 150% TNT equivalency to acknowledge the possibility of higher

yi_'!.ds than were possible with Model 1.

The composite probability density function and the cumulative probability are

plotted in Figures D-5 and D-6. They show that the expected value remains _

J

,j
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Figure D-4. Probability Density Function - Model 2
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approximately the same as for Model i while the 95% cumulative value has

increased slightly due to the fact that higher yields are possible using this

model.

D. 3.3 Model 3

In Figure D-7, the probability density function is shown for Model 3. In this

model, the mean value of the distribution was as sumed to be 20% compared

to 60% in the previous analyses. The other general characteristics of the

distribution are similar to those in the preceding case.

In Figures D-8 and D-9, the results of the analysis for this model are
L

presented. They show that both the expected value and the 95% cumulative

value are reduce(] substantially frorv the previous models considered.

D. 3.4 Model 4

Available experimental data were also used to develop a density function. In

_'_ Figure D-10, a histogram is presented of TNT equivalencies based on the
, URS terminal yield data tabulated in Appendix A. The mean value of

the TNT _quivalencies for these data is 20.4%. It sh_ul¢i be noted

that these dc, ta show that there is a large concentration of very Io_ yields. :

: This contr_.dicts one of the criteria specified for the clensity function for the

: previous _ases; that is, that values of F(z) in the vicinity of zero yield

:i are relatively 1_w in comparison with values at higher yields. A probability

°_ density function was then developed based on these data for use in the analysis.

;J It should be n_ted that no effort was made in this portion of the study to verify _,

that these test data actually represent a good statistical sarn_'e for application

'_ to this type of analysAs. For instance, the experimental _ata were obtained

primarily from tests with _'ery small quantifies of propellants and the tests I
I

, were run under conditions which will not exist in the actual vehicle. For this

reason, the reader is cautioned against placing any special significance to the

results using this model,

D-J3
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The Beta function was also used to define the density function for this model.

In this case the equation is

F(z) = 6.5 (I - z)5"5

I

The density function defined by this equation has a mean value of 2-0% as was i

noted for the experimental data. The density function is plotted in Figure D-i 1.

The correlation between the assumed density function and the experimental

'_ data is shown in Figure D-IZ. In this figure, the horizontal scale is in 90TNT

{ equivalency with a maximum value of 150% as was used in Figure D-10 fort
the experimental data. It should be noted that the F(z) _alues for the assumed

density function are modified in t['_is figure so that the erea under the curve

; remains unity.

In Figures D-13 and D-14, the results of theanalysis using the distribution

model shown in Figure D-I 1 are presented. The results of the analysis show

that the mean value of yield would be 0. 19 × 106 Ib, the 95% value would be

0.94 x i06 ib and 0.90 x 106 Ib for Model 3 for which the probabilitydensity :I'_

functionwas assumed without benefitof the test data. However, the mean

values of the density functions in both models were the same; i..e., ZOO.

, The experimental data summarized in Figure D-i0 have a mean value of TNT1

---] equivalency of approximately Z0% and a maximum value of approximately 100%.

i However, other test data and theoretical studies indicate that even higher

equivalencies may occur. Values as high as 30090are considered possible by

some sources.

As previously discussed, a maximum value of the TNT equivalency of I00%

was first assumed (Model i). Subsequent calculations (Models 2, 3, 4) were

based on a maximum value of 150°/0. The sensitivity of the Beta distribution

fuaction, which was developed based on the experimental data (Model 4), is

now summarized for changes in the assumed maximum value of yield. One of

the features of the Beta function is that it has, in each case, an upper limit

(i. e., it does not admit to values exceeding this limit). The other general

characteristics of the Beta distribution function shown in Figure D-i i were

?_ retained, including the mean value o_ 20_. 'G
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In Figure D-15, the density function for Model 4 from Figure D-i 1 (based on _

i50% maximum TNT equivalency) is shown together with the function for the

caees where the maximum v_lue of the disLribution is increased to 300% and i

i infinity. As indicated, there is no discernible difference between the 300_/0
case and the infinity case and only minor differences between these cases and

the one for a 150°_0 limit. The insignificance of the differences in the data i

presented in Figure D-15 is further illustrated by comparing the yield/

propellant weight values for certain cumulative values of probability shown

below:

Yield/Propellant Weight Value for

Maximum Yield Indic.ated Cumulative Probability i
80% 90% 95% ,_

1, 5 × Propellant Weight 0. 329 0.448 0. 554

2.0 × Propellant Weight 0. 328 0.451 0. 566 i

2.5 × PropeUant Weight O. 327 O. 454 O. 574 _,

O 3.0 X Propellant Weight 0. 0. 455 0.
325 578

oo O. 322 O. 461 O. 599 !

The above data indicate that the yield/propellant weight value corresponding to I

a 95_o cumulative probability changes approxir,,atety 4% when the maximum i

value (yn) is doubled and increases approximately 8_o for the infinite upper !

yield case. Thus it is concluded that when the mean value of _he density i

function is established, the effect of the assumption of larger maximum values

of yield will be negligible when a Beta function with the general characteristics i
shown in Figure D-i I is used.

D. 3.5 Model 5

In previous sections, a Beta function was used to define the probability Llu_t

a specific yield would result in event of an explosion. A basic characteristic

of this function as used in the preceding analyses is that the probability of

occurrence goes to zero at the maximum yield value.

D-23
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The question can be asked as to the effect of a distribution which would assume

some finite probability that the maximum value will be attained. To evaluate

this effect, a uniform distribu*.ion of the probability as a function of yield

, (Figure D-16) was assumed together with a maximum value of 150_/0 TNT

_. equivalency. Under this assumption, thert, is the same probability (for a

!. given _z value) that tho yield in event of an e._cplosion will be zero, maximum,

or some value in between. Thit_ distribution is considered very unrealist'c

when one considers the more or less optimum conciitions relative to mixing i

etc. that must exist to obtain high yields. It is therefore considered as an

extreme limit on the range of probability distributions that might be considered.

In Figure D-i7 the composite probability density function is shown L_.sed on this i

_i assumed distribution on yield .t _ _xp!osion and the probability o: various

_ amounts of propellar.t being invGl-¢ed in the explosion, The expected • alue for

this distribution occurs at yield of 0.67 x ig 6 Ib wi_h a 95e/0 cumulative

probability occurring at approximately 3.5 x 106 lb.

In Figure D-18, the cumulative probability of theyi_.Id exceeding specific values _

i_ presented as a fu_-_¢tlon of yeild. This figure show_ that the probability of

exceeding a yield of I rnillion Ib un_ver this model is iS°/0. As would be expected 1

_cause of the characL_.ristics of the distribution _sumed, this value is higher {
th,m that _or the other _ssumed mod_Is.

It shoutd be noted that with the unifo_-r._ prob_b;lity model there is approximately

: one chance in five of exceeding a yield of 0.8 y, 106 Ib (20_0 of the 4 million Ib

. of propeUa_ts). This value is similar to that for Models i and _ in which a Beta

function was used which specifies sero probability that a zero yield or a

_i maximum 7ield will result. The above comparison shows that the most signifi-

; cant difference it, in the probability of attaining high yields. This results from

•_ the /act that the uniform distribution achnowledges a significant probability that
W

_i maximum yields will occur. It should dec be kept in mind in reviewing the

above results that the uniform distribution model is presented for comparative

purposes as a li-niting case.

i
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D. 4 SUMMARY
5

In Table D-2, the results of the analysis are summarized. It shows that for any .

of the density functions assumed there is a relatively lo,v probability (conditional)

of attaining yields approaching those corresponding to 60% TNT equivalency

_ based on all the propellants aboard the space shuttle. The total probabilities of

attaining the indicated yields would be many orders of magnitude less.

:: It is interesting to note that the lowest probabilities are obtained using Models 3

and 4. Model 3 was based on a Beta function which had zero probability of

' attaining zero yield or maximum yield and had a mean value of 2070. Model 4

_: was based on the experimental data which showed a high probability of attaining

t low yields.

The highest probabilities are generally associated with the uniform distribution.

It is emphasized that this is not considered to be a realistic model since it

assumes that there is the zame probability of attaining any yield including zero !

O ,,

i'

and the maximum value, j

Table D-2. Comparison of Probability Models Investigated

Probability of Exceeding i

Model 0.8 x l0 6 lb 2.4 x 10 b lb 4.0 x l0 6 lb I

1 Ymax = 10070; _ = 6070 0. 19 0.04 0

_ Z Ymax = i50%; _" = 6070 0. 19 0.06 <0.01
/

_ 3 Ymax = 150%; 7 = 20% 0.06 <0.01 <0.0!

4 (Exp. Data; Ymax = 150%) 0.06 <0.01 <0.0!

_ 5 (Uniform Distribution 0. 19 0.09 0.03

:_ Ymax
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