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INTRODUCTION

Why should we be interested in nuclear energy? What can nuclear

fuel as an energy source do for us? First of all, we are interested

in nuclear fuel because it is a compact source of energy. It pro-

duces one to two million times as much energy per pound as fossil

fuel. Secondly, it is an abundant source of energy. There are large

reserves of nuclear energy sources in the Earth's crust. There is

30,000 times as much energy available from fissionable atoms as from

fossil sources. Thirdly, nuclear fuel basically costs less per unit

of energy than fossil fuel. Table I shows that one million BTUs of

marine fuel costs 0.39 dollars and aviation fuel costs 0,62 dollars.

The basic cost of nuclear fuel is only O.l6 dollars for a million BTUs.

It costs less than 1/2 as much as marine fuel and about 1/M- as much

as aviation fuel.

There are disadvantages that tend to offset the advantages of

nuclear fuel. The cost of capital equipment that is used to release

nuclear energy is high. The high cost is in part a result of social

and political pressures that demand extreme safety precautions far
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beyond that required for any other means of producing energy. Another

is the necessity for shielding. The latter has the greatest impact

for mobile applications where the heavy shield must be carried by

the vehicle.

COMMERCIAL ELECTRIC POWER AND SHIP APPLICATIONS

In the case of commercial electric power production and marine

propulsion, the advantages have outweighed the disadvantages. Table

II shows the number of operational stationary and shipboard nuclear

powerplants in operation in the world today. The stationary power--

plants are for electric power generating stations. The mobile power-

plants are chiefly for submarines. There are 111 nuclear stationary

powerplants and about 184- nuclear submarine propulsion systems in

operation today. There are also a few nuclear surface ships in

operation. Of the total of 301 reactors, more than half are used for

submarines. In the 1976-1980 period the numbers will increase con-

siderably. There will be about 256 stationary powerplants and more

than 24-3 submarine and ship nuclear powerplants. Thus there will be

more than 500 nuclear powerplants in operation by 1980. Thus, nuclear

energy is playing an expanding role in commercial electric power and

marine propulsion.

A comment about nuclear ships. The NS Savannah shown in figure 1

was the first commercial nuclear powered ship. It demonstrated with-

out "doubt the feasibility of nuclear power for ships. It travelled

1/2 million miles in eight years and it opened up 4-5 separate world-

wide ports to commercial nuclear ships. Some question the economics
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of nuclear shipping because the economic performance of the NS

Savannah was inferior to fossil powered cargo ships., This should

not be surprising. The Savannah was designed as a showpiece to

demonstrate the peaceful use of the atom. It is a very beautiful

ship, containing luxurious passenger staterooms and crew quarters.

To demonstrate that it could also be used to haul cargo, cargo holds

were built into the ship. But it is neither an efficient cargo ship

nor a passenger carrier. In addition it is too small for nuclear-

power to be attractive. It was, therefore, not surprising that this

ship was not economically competitive with fossil ships. It did,

however, show that nuclear energy could be used to propel a ship and

that it would be accepted in almost every major seaport.

What is the potential for nuclear ships? The Department of

Transportation two years ago forecast worldwide trade through the

year 2010 (ref. 1). The result is shown in figure 2. By 1990 world-

wide ocean trade will be three times as much as today. The capacity

of today's maritime fleet will be tripled to handle this increase.

It would be foolish to assume that the world would merely duplicate

the ships we have now to increase the fleet capacity. Obviously, new

technology will be used by each of the world's nations to gain a

better competitive position in supplying the necessary shipping

capacity. Accordingly, the U.S. Maritime Administration is now

executing a program which provides for the establishment of a large

U.S. commercial fleet by upgrading our shipyards and standardizing

our ships to reduce construction costs. Its aim is to reduce subsidies



required by the industry but still make it attractive enough so

that 300 ships will be built in the next 10 years in U.S0 shipyards.

There is a definite intent that the U.S. capture a share of the

benefits of the expanded world trade.

In 1990 it will take 2500 ships of M-0,000 horsepower or greater

(ref. 2) to service the volume of cargo forecast. The Maritime

Administration also estimates that by 1980 nuclear ships of M-0,000

horsepower or greater should be economically competitive or superior

to fossil powered ships. This is to be compared to the current

situation where horsepowers greater than 100,000 are needed to make

nuclear ships attractive. Accordingly, nuclear propulsion can be

expected to capture an increasingly larger share of the ship propul-

sion market. If nuclear propulsion penetrates the new ship market

only to the extent of 10 percent, 250 nuclear ships will be constructed

by 1990. This conclusion is strongly underlined by Japan's recently

announced maritime building program which calls for 280 nuclear ships

to be built by 1990.

In the area of nuclear submarines, there are applications other

than military that may prove feasible. There have been proposals made

by the industry for cargo submarines to haul oil from the Alaskan North

Slope beneath the Arctic ice. Estimates have shown that this should

be cheaper than transporting oil by pipe line. Before the rather dis-

appointing experience with the icebreaking tanker, the Manhattan, it

was thought that submarines would be competitive with the ice breaker.

After the experience with the Manhattan, it now appears that the nuclear

powered submarine could do the job better.
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It is interesting to contemplate the use of nuclear submarines

for carrying cargo. Submarines are more efficient than surface

ships. Because they travel under the surface they do not produce

the waves that surface ships do. The drag for submarines is there-

fore less than for a comparable size surface ship. It, therefore,

takes less power to propel a submarine, or, for the same power, sub-

marines would travel at higher speeds. Submarines, however, are more

expensive to build. The increase in productivity would tend to off-

set the higher capital cost. This could result in lower freight

rates at higher speeds (ref. 3)„ In addition, submarine operation

would be unaffected by weather and sea states.

Air-Cushion Vehicle Application

Air-cushion vehicles, as exemplified by the SRN-4- English Channel

ferry (fig. 3) are vehicles that float on a cushion of air trapped

beneath them. Blowers maintain the air cushion by making up for the

air that leaks from the periphery of the vehicle (see fig. 4-). The

cushion of air provides a relatively frictionless contact with the

surface. Propulsion and directional control are provided by conven-

tional aircraft thrustors like ducted fans, prop jets, or propellers.

The air-cushion vehicle has been called the fourth basic technique for

transportation that has been discovered since the beginning of civiliza-

tion (ref. 4-) , The wheel for land movement and the boat for water move-

ment are first and second; flight in the atmosphere is third.
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Air-cushion vehicles have the flexibility of operation that no

other vehicles have (ref. 4-). They can travel over land, water, ice,

marshes, rapids, mud, shallow water, fields and many other kinds of

terrain which are difficult or impossible to navigate in any other

way. They are at present less efficient than aircraft because it

takes additional power to maintain the cushion of air beneath the

vehicle. Typically the lift drag ratio is about 2/3 that of high

speed subsonic aircraft. This means that they require more fuel to

operate over a given distance.

For transoceanic ranges, the larger amount of fuel required for

air-cushion vehicles tends to offset the advantages of the lower

capital cost and higher payload fraction that is typical of air-

cushion vehicles. In this case the cost of delivering payload may

not be much less than achievable with future very large cargo air-

craft (see ref. 3 and 5). Nuclear powerplants can change this picture,

however. The nuclear powerplant has a virtually unlimited supply of

energy and consequently can operate unrefueled for distances of the

order of one or two million miles and the operating cost per ton

mile is independent of range. The basic cost of nuclear energy is

lower than the fossil fuel cost.

Figure 5 shows the results of an economic analysis of air-cushion

vehicles (ref. 6). The figure of merit is total operating cost in

cents per ton mile which is plotted as a function of range. Four to

six thousand miles is typical of the range required for transoceanic
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vehicles. The nuclear air-cushion vehicle is shown to be consider-

ably lower in cost to operate than chemical vehicles. The operating

cost is independent of range.

An artistTs concept of a commercial cargo carrying air-cushion

vehicle that is designed for transoceanic commerce is shown in

figure 6. It is a 5000 ton freighter M-50 feet long and about 250

feet wide. It utilizes flexible skirts to trap the air cushion

beneath the vehicle. The flexible skirt minimizes the leakage of

air from underneath as the vehicle traverses waves. The flexible

skirts also serve to smooth the ride of the vehicle over the waves.

The skirts are approximately 30 feet high so that waves of about this

height can be navigated without contact with the hard structure. If

it is desired to have a capability for traversing higher waves, the

skirts could be made higher. This particular vehicle is designed to

operate at 100 knots and carry a load of cargo which is more than half

the gross weight of the vehicle. It can carry 125 roll-on roll-off

type (trailer truck) cargo trailers. In the mixed cargo shown, the

vehicle carries 50 trailers and about 200 or 300 low density containers.

The cushion is provided by fans located below the louvered inlets

on the upper deck. This type of inlet and the fact that the fans are

submerged within the vehicle makes the vehicle quiet in operation.

The fan and the nuclear reactor are located in the center. The fans

are driven by either gas turbines or steam turbines that obtain energy

from the nuclear reactor. The fans provide the flow of air required
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to maintain the cushion. The thrust for propulsion is provided by

a very high bypass ratio engines (ratios of 25 or 30). Because this

is a low speed vehicle (relative to aircraft) high bypass ratios are

required for good propulsive efficiency. The inlets are louvered and

the engines are buried in the vehicle to minimize any noise problem.

An important feature about this vehicle is that it has the

potential for relieving urban congestion by causing a better popula-

tion distribution through its use. This comes about as follows:

The air-cushion vehicle has the capability of flying over sand bars,

mud flats, surf, and shallow water. It does not require a natural

deep water harbor. It, therefore, can make a port near coastal

regions which are inaccessible by other modes of transoceanic trans-

portation. Examples are the southern coast of the U.S. and the Gulf

coast. Large land areas in these locations are wasteland because

they are inaccessible and nonuseable. A vehicle like this can travel

over the reefs, shallow water, marshes, lakes and rivers inland to

an area of terrain that is firm enough to build a large parking lot

type of facility as shown in figure 7. This ACV port is accessible

to railroads and our interstate highway systems. The air-cushion

vehicle could operate like a ferry boat between ports such as the one

described. It -would transport roll-on roll-off trailers from one port

to another (see figure 8). They would be hauled off by tractors and

driven away on our interstate highway system or on piggyback railroad

cars. The ACV port would be a trade center that would allow rapid

access and movement of cargo to any place in the world.
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The real estate around these new ACV trade centers would be

cheap. Industry would be attracted to the ACV terminal area. The

cost of shipping would be reduced since the distance and delays in

hauling cargo through congested urban areas which exist around

today's ports would be avoided. Industry would attract people.

People would attract supporting service industries such as food,

clothing, housing, entertainment, recreational industries. A city

will, therefore, develop around this ACV port just as they developed

around the deep water ports of the world in the past. The possibility

of developing attractive ideal cities opens up because they could be

well planned from their birth. Thus, the unique capability of the

air-oushioh vehicle to travel over normally submarginal or impassable

terrain can be used to provide new transportation centers to attract

the future growth of population to areas that are now sparsely popu-

lated.

NUCLEAR AIRCRAFT

There is probably no potential transportation system that creates

a greater general negative response than nuclear aircraft. The Atomic

Energy Commission and the Air Force undertook the task of developing

a nuclear powered bomber and after a ten year effort costing one billion

dollars the ANP (Aircraft Nuclear Propulsion) project was cancelled in

1961 (see ref. 6). Probably the main reason for failure was the

ambitiousness of the goals that were set out for the program. It was

desired to have a nuclear powered aircraft with a chemically powered



10

supersonic dash capability, all in an aircraft with a gross weight

limited to about 500,000 pounds. This limitation in gross weight

did not allow sufficient shielding to reduce radiation dose levels

to acceptable limits. Only in a very confined shielded crew com=

partment was the dose level tolerable. Even when the reactor was

shut down, normal aircraft maintenance could not be accomplished

easily because of the high radiation levels in and around the air-

craft.

The low gross weight limit did not permit the incorporation of

any means for preventing the release of radiation fission products

in the event of a major aircraft accident. It also did not allow

the design of reactors that had long life between refuelings. The

reactor had to be so compact that it could contain only enough

fissionable fuel for about 100 hours of full power operation. The

refueling operation was found to be a relatively costly operation

that requires large complex shielded facilities.

Some have also ascribed poor management and shifting goals as

strong contributors to the failure to develop a successful nuclear

aircraft (see ref. 6). The primary cause, however, was the limitations

and problems brought about by the restriction of the gross weight to

500,000 pounds. Except for the containment of fission products in

the event of a major aircraft accident (which could not receive

serious attention in the ANP program because of the weight limit),

there was no basic technical reason why a nuclear propulsion system

could not be successful.
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Since the end of the ANP program, practical large aircraft • ••

have made their debut. Both the Boeing 74-7 and Lockheed C-5A

(fig. 9 and 10) have a gross weight of about 3/4- of a million pounds.

Growth versions of these aircraft will approach one million pounds. .

Aircraft are now on the drawing boards with gross weights of one to

two million pounds. Projections of the size aircraft required to

economically handle the large air traffic growth we are undergoing

indicates the need for larger and larger aircraft. This is especially

true for the air cargo industry which is now just beginning to emerge

from its earliest embryonic stages.

Assuming that the airborne nuclear reactor safety problems can

be solved, such large aircraft make nuclear power extremely attractive.

The reason for this is that the weight of a completely shielded

nuclear aircraft powerplant increases only as the square root of

its power level. For example, the weight of a nuclear powerplant

for a 500,000 pound aircraft is about 1/2 of the aircraft gross

weight; then for a 2,000,000 pound aircraft the powerplant weighs

only 1/4- of the aircraft gross weight. In this case, assuming that

the aircraft structure weight is about 1/4- of the gross weight, the

payload weight would be 1/2 of the gross weight. Contrasted to a

fossil fueled aircraft which must carry fuel in proportion to the

distance travelled, the payload weight fraction would be independent

of the distance travelled. The nuclear fuel consumed would be less

than 1/2 pound for a 10 hour flight. .'
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The major stumbling block to the acceptance of nuclear power

for aircraft is the prevention of the escape of fission products in

the event of a major aircraft accident. It goes without saying that

if the 'safety questions were solved, and if nuclear aircraft can be

shown to be cost effective in a total transportation system, nuclear

aircraft would be developed and used. In the case of military applica-

tions, the ability to fly without need for fuel that is prepositioned

at remote bases or supplied by airborne tankers is obviously a tre-

mendous advantage that has no competition.

The safety question is receiving the most attention in the new

look at aircraft nuclear propulsion that NASA and the Air Force under-

took starting in about 1965 (ref. 7, 5, and 8). Also receiving

attention is the potential for compact airborne nuclear reactors

that can be operated for 10,000 hours between refuelings. In all

these studies the struggle to achieve a light weight system that is

low in cost, safe and practical is prominent. The goals are lofty

and difficult to achieve, yet significant progress has been made in

areas which were considered hopeless only five years ago.

The most spectacular achievement has been in the area of demon-

strating the potential feasibility of containment of fission products

during impacts of a reactor containment system on reinforced concrete

at speeds up to about 700 mph. Models of proposed containment systems

and reactors (see fig. 11) have been accelerated to high speeds on

the Holloman Air Force Base rocket sled test facility (fig. 12). The
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models were then impacted on a reinforced concrete block (see fig. 13) .

They are then checked for leaks after the test (fig. 14-) . Even though

these tests are on idealized models, they have shown that it is not

inconceivable that a crash proof system can be developed for contain-

ing fission products in a major full flight speed aircraft accident.

The impact program is now continuing with the addition of more and

more realism. The next impact, for example, will be on a surface with

a boulder about 1/4- the size of the containment vessel.

Studies have shown that methods that have been conceived for

preventing the release of fission products in the event of a reactor

melt down are possible. The first actual melt down of a small reactor

model with a containment system such as shown in figure 15, is now

ready for test in NASA's Plum Brook Reactor Test Facility.

The feasibility of aircraft reactors fuel elements that can

operate for 10,000 hours is in the process of being demonstrated.

The first three fuel elements which have been tested in NASA's Plum

Brook Reactor have achieved the equivalent of about 8000 hours of air-

craft operation before a failure occurred. A second set of fuel

elements have now achieved 8000 hours of equivalent aircraft operation

and the test is still in progress. Based on analysis of previous

tests, it is expected that the second set of pins will exceed the

10,000 hour goal before failure occurs.

The low level effort that is currently being carried out by NASA

appears to justify the consideration of a more intensive technology



effort at this time. The goal of the more intensive technology

.effort should be to prove conclusively the feasibility of practical,

safe, economical nuclear aircraft. Aircraft that will not allow the

escape of fission products even in the worst conceivable accidents.

This intensive technology program is a necessary requirement before

the development of nuclear aircraft for military or commercial

application can be undertaken, justified, or publicly accepted.

NUCLEAR ROCKETS

The use of nuclear energy for rockets has resulted in the attain-

ment of specific impulses about twice that of the best chemical

rockets. The NERVA reactor (see fig. 16) has demonstrated a specific

impulse of 825 seconds for more than one hour of operation. The

NERVA propulsion system that is now ready for final development if a

go ahead is obtained should permit manned M-50 day round trips to Mars

with less than half the initial gross weight in Earth orbit compared

to the best chemical systems.

The gas-core nuclear rocket engine, which has had a long history

of research on the basic problems, has recently been shown to have a

potential for producing specific impulses greater than 5000 seconds

(see ref. 9). No reason has yet been found that says a gas-core

reactor is not feasible. We are just now beginning to approach the

problem of proving that it is feasible. If it does prove feasible,

it will make it possible for astronauts to explore Mars and return

safely to Earth in a total of 60 days (see ref. 10). The mission
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profile would be very similar to the Apollo Moon exploration

mission profile.

The gas-core reactor is a whole new reactor concept (see fig.

16) „ The fissioning fuel is in the form of a gaseous uranium plasma

operating at many tens of thousands of degrees of temperature.

Energy is removed from the plasma via gaseous thermal radiation.

In the case of a rocket propulsion gas-core reactor, the radiated

energy is absorbed by hydrogen that is rendered opaque to the radia-

tion by the addition of seed particles like smoke.

The gas-core reactor has other potential applications (see ref.

11 and 12). It may be used for stationary electric power production

by using the hot gases generated to drive gas turbines and/or making

steam to drive a steam turbine. The gases can be so hot that they

are ionized so that they can be used in an MHD generator to produce

electrical energy. Because of the low parasitic neutron absorption

that is characteristic of gas-core reactors, they may find application

as breeder reactors. In this case, fertile materials may flow through

moderator regions or through the gaseous core itself, in addition to

being located in blankets around the reflector.

Because of the molecular or atomic population inversions made

possible by the processes that occur in a fissioning plasma, it is

conceivable that new lasers powered directly by fissioning atoms may

be possible. Examination of these possibilities has just begun.
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CONCLUDING REMARKS

Nuclear energy offers mankind many options in propulsion and

power that cannot be achieved in other ways. It makes possible a

more abundant and cheaper source of electrical energy; a faster more

efficient waterborne or underwater shipping system; a 100 knot air-

cushion vehicle transportation system that can generate new port

cities and transportation centers to better distribute our growing

population; an airplane that has essentially no duration or dis-

tance limit and has potential for low cost very high speed cargo

transportation; finally it can make possible a 60-day round trip to

Mars.

What other technology has so much to offer?
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TABLE I

FOSSIL AND NUCLEAR FUEL COST

Unit Cost . $/106 btu

Marine fuel $2,50/bbl 0,39

Aviation fuel $0.08/gal ,62

Nuclear fuel 12 $/gm .16

TABLE II

WORLDWIDE OPERATIONAL NUCLEAR POWERPLANTS

1971 1976,4980

Stationary 111 , 256

Submarine • 184- 228+

Ship 6 15+

Totals 301 500+
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