AERONAUTICAL ENGINEERING

A SPECIAL BIBLIOGRAPHY
WITH INDEXES

Supplement 10

OCTOBER 1971

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PREVIOUS BIBLIOGRAPHIES IN THIS SERIES

<table>
<thead>
<tr>
<th>Document</th>
<th>Date</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SP-7037 (02)</td>
<td>February 1971</td>
<td>January 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (03)</td>
<td>March 1971</td>
<td>February 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (04)</td>
<td>April 1971</td>
<td>March 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (05)</td>
<td>May 1971</td>
<td>April 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (06)</td>
<td>June 1971</td>
<td>May 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (07)</td>
<td>July 1971</td>
<td>June 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (08)</td>
<td>August 1971</td>
<td>July 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (09)</td>
<td>September 1971</td>
<td>August 1971</td>
</tr>
</tbody>
</table>

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Tisco, Inc.

Use of funds for printing this publication approved by the Director of the Office of Management and Budget June 23, 1971.
AERONAUTICAL ENGINEERING

A Special Bibliography

Supplement 10

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in September 1971 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA)
INTRODUCTION

Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering.

This supplement to Aeronautical Engineering—A Special Bibliography (NASA SP-7037) lists 413 reports, journal articles, and other documents originally announced in September 1971 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). For previous bibliographies in this series, see inside of front cover.

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries in that order. The citations and abstracts are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the slight variation in citation appearances.

Three indexes—subject, personal author, and contract number—are included.

An annual cumulative index will be published.
AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A71-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service, American Institute of Aeronautics and Astronautics, Inc (AIAA), as follows. Paper copies are available at $5.00 per document up to a maximum of 20 pages. The charge for each additional page is 25 cents. Microfiche(1) are available at the rate of $1.00 per microfiche for documents identified by the # symbol following the accession number. A number of publications, because of their special characteristics, are available only for reference in the AIAA Technical Information Service Library. Minimum airmail postage to foreign countries is $1.00. Please refer to the accession number, e.g., A71-10613, when requesting publications.

STAR ENTRIES (N71-10000 Series)

A source from which a publication abstracted in this Section is available to the public is ordinarily given on the last line of the citation, e.g., Avail NTIS. The following are the most commonly indicated sources (full addresses of these organizations are listed at the end of this introduction).

Avail NTIS Sold by the National Technical Information Service at a standard price of $3.00 for hard copy (printed, facsimile, or reproduced from microcopy) of 300 pages or less. Documents in the 301 to 600 page range are sold for $6.00 in hard copy, and those in the 601 to 900 page range are sold at $9.00. Documents exceeding 900 pages are priced by NTIS on an individual basis. These prices apply retroactively to all documents in the NTIS collection, but in addition, documents of 300 pages or less that are over two years old (from date of announcement in Government Reports Announcements, or STAR for those items announced only in STAR) will have a surcharge of $3.00 added for a total price of $6.00. No additional surcharge will be added for documents over 300 pages.

Microfiche is available from NTIS at a standard price of 95 cents (regardless of age) for those documents identified by the # symbol following the accession number (e.g., N71-10411#) and having an NTIS availability shown in the citation.

Avail SOD (or GPO) Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The price is given following the availability line. An order received by NTIS for one of these documents will be filled at the SOD price if hard copy is requested. NTIS will also fill microfiche requests, at the standard 95 cent price, for those documents identified by a # symbol.

Avail NASA Scientific and Technical Information Office. Documents with this availability are usually news releases or informational brochures available without charge in paper copy.

Avail AEC Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of U.S. Atomic Energy Commission reports, usually in microfiche form, are listed in Nuclear Science Abstracts. Services available from the USAEC and its depositories are described in a booklet, Science Information Available from the Atomic Energy Commission (TID-4550), which may be obtained without charge from the USAEC Division of Technical Information.

Avail Univ Microfilms. Documents so indicated are dissertations selected from Dissertation Abstracts, and are sold by University Microfilms as xerographic copy (HC) at $10.00 each and microfilm at $4.00 each, regardless of the length of the manuscript. Handling and shipping charges are additional. All requests should cite the author and the Order Number as they appear in the citation.

(1) A microfiche is a transparent sheet of film, 105 x 148 mm in size, containing up to 72 pages of information reduced to micro images (not to exceed 20 1 reduction).
Avail HMSO Publications of Her Majesty’s Stationery Office are sold in the U S by British Information Services (BIS), New York City The U S price (including a service charge) is given, or a conversion table may be obtained from BIS
Avail National Lending Library, Boston Spa, England Sold by this organization at the price shown (If none is given, an inquiry should be addressed to NLL)
Avail ZLDI Sold by the Zentralstelle für Luftfahrt Dokumentation und Information, Munich, Federal Republic of Germany, at the price shown in deutschmarks (DM)
Avail Issuing Activity, or Corporate Author, or no indication of availability Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document
Avail U S Patent Office Sold by Commissioner of Patents, U S Patent Office, at the standard price of $ 50 each, postage free
Other availabilities If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line

GENERAL AVAILABILITY

All publications abstracted in this bibliography are available to the public through the sources as indicated in the STAR Entries and IAA Entries sections It is suggested that the bibliography user contact his own library or other local libraries prior to ordering any publication inasmuch as many of the documents have been widely distributed by the issuing agencies, especially NASA A listing of public collections of NASA documents is included on the inside back cover

SUBSCRIPTION AVAILABILITY

This publication is available on subscription from the National Technical Information Service (NTIS) The annual subscription rate for the monthly supplements, excluding the annual cumulative index, is $18.00 All questions relating to subscriptions should be referred to the NTIS
ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics
Technical Information Service
750 Third Ave
New York, N.Y 10017

British Information Service
845 Third Ave
New York, N Y 10022

Commissioner of Patents
U.S Patent Office
Washington, D C 20231

ESRO/ELDO Space Documentation Service
European Space Research Organization
114. av de Neuilly
92-Neuilly-sur-Seine, France

Her Majesty's Stationery Office
P O Box 569, S E 1
London, England

NASA Scientific and Technical Information Facility
P O Box 33
College Park, Maryland 20740

National Aeronautics and Space Administration
Scientific and Technical Information Office (KSI)
Washington, D C 20546

National Lending Library for Science and Technology
Boston Spa, Yorkshire, England

National Technical Information Service
Springfield, Virginia 22151

Superintendent of Documents
U S Government Printing Office
Washington, D C 20402

University Microfilms, Inc.
A Xerox Company
300 North Zeeb Road
Ann Arbor, Michigan 48106

University Microfilms, Inc
Tylers Green
London, England

U.S Atomic Energy Commission
Division of Technical Information
P O Box 62
Oak Ridge, Tennessee 37830

Zentralstelle für Luftfahrtdocumentation und -Information
8 München 86
Postfach 880
Federal Republic of Germany
TYPICAL CITATION AND ABSTRACT FROM STAR

NASA SPONSORED DOCUMENT
ACCESSION NUMBER N71-12035
TITLE DEVELOPMENT OF MAINSHAFT SEALS FOR ADVANCED AIR BREATHING PROPULSION SYSTEMS, PHASE 2 Final Report
AUTHORS V. P. Povnelli and A. H. McKibben
CONTRACT OR GRANT (Contract NAS3-7609)
REPORT NUMBER (NASA-CR-72737, PWA-3933) Available NTIS CSCL 21E
PUBLICATION DATE 23 Jun 1970
PAGE NUMBER 122 p refs
AVAILABLE ON MICROFICHE
CORPORATE SOURCE
PUBLICATION DATE
COSATI CODE
AVAILABILITY SOURCE

TYPICAL CITATION AND ABSTRACT FROM IAA

NASA SPONSORED DOCUMENT
ACCESSION NUMBER A71-10969
TITLE Sphere drag in near-free-molecule hypersonic flow
AUTHORS M. I. Kussoy, D. A. Stewart, and C. C. Horstman
AFFILIATION NASA, Ames Research Center, Moffett Field, Calif.
PAGE NUMBER 9 refs
AVAILABLE ON MICROFICHE
TITLE
AUTHORS' AFFILIATION
PUBLICATION DATE

TYPICAL CITATION AND ABSTRACT FROM IAA

NASA SPONSORED DOCUMENT
ACCESSION NUMBER A71-10969
TITLE Sphere drag in near-free-molecule hypersonic flow
AUTHORS M. I. Kussoy, D. A. Stewart, and C. C. Horstman
AFFILIATION NASA, Ames Research Center, Moffett Field, Calif.
PAGE NUMBER 9 refs
AVAILABLE ON MICROFICHE
TITLE
AUTHORS' AFFILIATION
PUBLICATION DATE

TYPICAL CITATION AND ABSTRACT FROM IAA
A Special Bibliography (Suppl. 10) OCTOBER 1971

IAA ENTRIES

Summary of various tests of theoretical resolution of the detachment. The purpose of these theoretical approaches is the prediction of characteristic magnitudes of the phenomenon of detachment in external aerodynamics such as the base pressure, the vortex column characterized by the form of the jet line, and the evolution of the velocity profile in the mixing zone. Following an outline of the basic hypotheses of the study, methods for the case of detachment on a wall undergoing a sharp disconnection and on a plate normal to the wind are developed. Basic theoretical results characterizing the pressure and velocity fields on the body and in the vortex zone are given. These results are compared with experimental results obtained on aerodynamic models.

N. Romanenko and V. G. Kalmykov (Moskovskii Institut Neftehimi-

micheskoi i Gazovoi Promyshlennosti, Moscow, USSR) Inzhenerno-

Fizicheskii Zhurnal, vol 20, Apr. 1971, p. 666-673 8 refs In Russian

Isothermal turbulent boundary layers with a positive pressure gradient are studied by means of axisymmetric and plane diffusers in an open-jet wind tunnel at Reynolds numbers between 48,600 and 202,000 at the diffuser inlets, using air as the working medium. It is shown that the distribution of viscous stresses in such layers can be approximated by a simple formula.

V P

A71-34213 # Acoustic emission of subsonic turbulent jets (Akusticheskoe izluchenie dozuvokhnykh turbulentykh strui) L M Viaz'menskii (Mekhanicheskii Institut, Leningrad, USSR) Inzhenerno-Fizicheskii Zhurnal, vol 20, Apr. 1971, p. 711-716 10 refs In Russian

A method, based on Lighthill's (1963) wave equation, is proposed for calculating the noise intensity of turbulent jets. Noise levels in the far-field are obtained for various Mach numbers at the nozzle-exit section. The method proposed is applicable also to near-field calculations.

V P

A71-34225 # Fan propulsion system influence on VTOL transport design. Aubrey M Bland (McDonnell Aircraft Co., St Louis, Mo.) American Institute of Aeronautics and Astronautics and Society of Automotive Engineers, Propulsion Joint Specialist Conference, 7th, Salt Lake City, Utah, June 14-18, 1971, AIAA Paper 71-744 8 p Members, $1.50, nonmembers, $2.00

Some key design considerations are given to obtain the best overall airframe/propulsion combinations for VTOL transport propulsion systems. The effects of such combinations are evaluated in terms of VTOL thrust requirements, propulsion cycle optimization, aircraft performance, and aircraft control in the VTOL mode. The VTOL thrust requirements are shown to be most affected when the propulsion system designs are to perform lift, control and cruise functions simultaneously. It is also demonstrated that such a multifunction propulsion system can be designed with a cruise thrust matching an optimum specific fuel consumption cycle. The effects of fan design, location and response on aircraft control characteristics are reviewed. The combined effects of advanced technology and the multifunction propulsion system are projected to a VTOL transport anticipated for operation in the mid-80s.

V Z.

The nature and extent of the requirements of the satellite mobile service are examined and the charges which might be levied are estimated. It is suggested that a frequency band at around 5000 MHz would be required.
MH should be selected for the satellite-ground station links and a spectrum between 1540 and 1660 MHz for the satellite moving-craft repeaters. In this case relatively high-grain antennas are required ranging from 10 dB for aircraft and from 13 to 15 dB for ships. The possibilities offered by modulation technique are examined. It is proposed that two generations of satellites should be envisaged in the Atlantic-Pacific system. The first generation operating between 1975 and 1980 would have a low communication capacity and would comprise at least three satellites in orbit, two over the Atlantic and one over the Pacific. For the second generation, which would be in service between 1980 and 1987, traffic capacity would be considerable, and there will probably be five satellites in orbit, two over the Atlantic, two over the Pacific and one over the Indian Ocean.

A method which is based on an integral momentum relation, and in which the velocity distribution is approximated by a trigonometric function is proposed. Using this method, the characteristics of the laminar boundary layer on a wing profile or body of revolution can be determined for any velocity distribution at the external boundary of the layer. The agreement with Hartree's (1937) exact solution and Schubauer's (1935) experimental data for the separation point is superior to other approximate methods.

A71-34446 Approximate methods of constructing stream lines in meridional plane of blade nozzle annular cascades of steam and gas turbines in subsonic and supersonic flows. K L Yadav (Government Engineering College, Jabalpur, India). Indian Journal of Technology, vol 9, Mar 1971, p 93-98. 5 refs. Two approximate methods of constructing stream lines in the meridional plane of blade nozzle annular cascades of steam and gas turbines involving the use of the coefficient of velocity and the coefficients of mass flow are described. The basic aerodynamic parameters used were taken from the static aerodynamic experimental data obtained in subsonic and supersonic flows through the annular cascades with constant Reynolds' number.

A71-34447 Assessment of the anti-wear property of fuels under point contact conditions. N Suresh, A D Tutela, and P K. Goel (Indian Institute of Petroleum, Dehra Dun, India). Indian Journal of Technology, vol 9, Mar 1971, p 110-115. The results of studies made under the point contact conditions obtainable in rigs like the 4-Ball m/c and the Ball and Cylinder m/c with the object of selecting suitable test parameters for assessing the wear protection (anti-wear) property of piston engine and aviation jet fuels are presented. It is concluded that the Ball and Cylinder test technique enables the assessment of the anti-wear properties of aviation jet fuels to a better degree of confidence than the 4-Ball test technique. The anti-wear property is not directly related to the viscosity, volatility or aromatic content of aviation jet fuels.

A71-34469 Concepts of fiber-resin composites. R L McCullough (Boeing Scientific Research Laboratories, Seattle, Wash.) New York, Marcel Dekker, Inc (Monographs and Textbooks in Material Science Volume 2), 1971 122 p. $8.50. The main significance of this book lies in its direct approach to the fundamentals of composite materials, with emphasis on strength properties. The properties of typical materials for composites are examined giving attention to fibers of glass, boron, and carbon, and to epoxy as matrix material. Elemental material candidates are Be, Mg, C, Si, Ti, N and O. Typical applications for composite materials include aircraft components such as compression panels, spoilers, fuselage stiffeners, and helicopter rotor blades. Composite properties are examined taking into consideration thermostatic properties and tensile strength. The characteristics of the interphase region are investigated.

The power supply systems of 50 foreign (primarily U.S. and British) subsonic gas-turbine driven passenger planes of all classes are described, systematized, and analyzed. The trends in the development of the power supply systems, and the influence of the aircraft characteristics and other aircraft systems on these trends noted. Particular attention is given to the power supply systems of large airliners, such as the Boeing 747, and of short-haul aircraft, such as the Douglas DC-10 and the Lockheed L-1011. The book is intended for scientists and engineers, as well as students.

Methods of analyzing and calculating automatic control system parameters are discussed for a linear formulation of the problem. It is shown how the apparatus of linear theory makes it possible to assess, in the preliminary design phase, the capabilities of a simple control system for a specific plant, to determine the means of automation of flight control processes, and to derive the design characteristics of the autopilot from such analyses. Typical modes of operation of aircraft autopilots are examined, and the functions required from an autopilot are discussed. Much attention is given to the role of the human pilot in automatic flight control. The book is intended for engineers dealing with aircraft automatic control system design.

It is shown that the interconnected shaft-driven low-speed lift-propulsion system based on a gimbal-propeller/rotors has potential for STOL aircraft with cruise speeds ranging from 250 to 500 knots. The same technology can be used to add VTOL aircraft to the short-haul system. The high propulsive efficiency at low speeds ensures minimum installed power and noise for any subsonic design cruise speed. The trend towards low disk-loading rotor systems and high aspect ratio wings requires careful attention to structural dynamics to ensure aeroelastic stability.

In an investigation, which takes into account theoretical models and empirical data, it was found that the effects produced by an airport are partly connected with its function as an enterprise and...
partly with its function as an element of the air traffic system. The
airport plays also an important part in the total national economy
and its growth. Therefore, it is possible to employ the airports
considered as an enterprise on the basis of investment decisions as an
instrument for controlling the level of economic activity within the
national economy. The airport is also a factor in determining the
location of enterprises which maintain connections with foreign
countries.

A71-34493

The room temperature fatigue behavior of nickel-base superalloy crystals at ultrasonic frequency. J. K. Tien and
R. P. Gamble (United Aircraft Materials Engineering and Research Laboratory, Middletown, Conn.) American Institute of Aeronautics

Using room-temperature tests on strain-rate insensitive nickel-base superalloy single crystals of Mar-M200, it is shown that the
deliberate effect of environment is suppressed when the fatigue frequency is increased to the ultrasonic range. It was found that
above a stress amplitude of 30,400 psi the fatigue lives of crystals ultrasonically fatigued in air increase with decreasing stress in a
manner which is functionally similar to that of crystals conventionally
fatigued in vacuum. These results indicate that the major effect of
increasing the fatigue frequency of the ultrasonic range is the suppression of the influence of oxygen in enhancing the rate of crack
propagation. Z.W.

A71-34498

Why maximum temperature? M. E. Naylor (General Motors Corp., Diesel Allison Div., Detroit, Mich.) and J. L.
Byers (U.S. Naval Air Systems Command, Washington, D.C.) Society of Automotive Engineers, National Air Transportation Meeting,
Atlanta, Ga., May 10-13, 1971, Paper 710461, 9 p., Members, $1.00, nonmembers, $1.50.

The definition of a maximum temperature engine (MTE) is
considered, and the particular characteristics that such an engine will
provide for propulsion systems of future aircraft are discussed. It is
shown that the MTE concept when properly employed to aircraft
applications which can utilize its specific capabilities holds the
promise of significant improvements in aircraft performance levels.
An overview of some of the potential benefits is given by a
comparison of one MTE with current development state-of-the-art
engines. G.R.

A71-34499

CAT II's role in low minimums. R. H.
Nolteimer (FAA, Flight Standards Service, Washington, D.C.) Society of Automotive Engineers, National Air Transportation Meeting,
Atlanta, Ga., May 10-13, 1971, Paper 710442, 3 p., Members, $1.00, nonmembers, $1.50.

The actual Category II experience has been limited primarily
because of problems associated with upgrading selected airports
for Category II operations. Some of the considerations that have been
taken into account in Category II operations are discussed. Improved
training in a number of areas can be accomplished by the use of
additional training films and/or improved visual simulation. Aspects
of an engine out missed approach are examined, and head-up displays
are considered. G.R.

A71-34523

In this paper we review several classes of models of Air Traffic
Control-related systems that have been presented over the years.
These models cover the complete spectrum of ATC activities surface
traffic movement, runway utilization, terminal areas, and enroute
traffic. Outstanding work in each area is summarized and criticized
The applied techniques range from the purely analytical to real
and fast time simulations. Topics for possible future work are also
identified on the basis of the present review. Finally, an extensive
annotated bibliography is included. (Author)

A71-34525

Factors and considerations affecting the design features of the
DC-10 aircraft during its development stage, starting in March 1966,
are reviewed. In particular, attention is paid to sizing, determination
of the optimum number of engines and optimum engine thrust, and
selection of the cruise, approach, and takeoff speeds. Characteristics
of both the medium-range DC-10 and the long-range DC-10-20 and
DC-10-30 versions, which incorporate numerous innovations, such as
spacious interiors, elimination of visible smoke, reduction of noise
levels, increased performance parameters, etc., are discussed in detail.
O.H.

A71-34556

Environmental effects on fatigue of structural materials for a supersonic transport. H. F. Hardrath (NASA, Langley
Research Center, Fatigue Branch, Hampton, Va.) In: Advanced
testing techniques; American Society for Testing and Materials,
Annual Meeting, 72nd, Symposium, Atlantic City, N.J., June 22-27,

Consideration of new design problems posed by SSTs which for
solution require information on the mechanical behavior of new
materials and on the effects of long exposure to elevated
temperatures during service. Experimental studies of titanium alloys
conducted at the NASA Langley Research Center are discussed. These
studies define fatigue behavior, effects of temperature, rates of
fatigue crack propagation, residual static strength, effect of aqueous
environment on residual strength, the effect of outdoor exposure at
elevated temperature, and behavior during simulated flights. F.R.L.

A71-34590

Gas turbine with a high velocity combustor. Boleslaw Szczepanski Archiwum Budowy Maszyn, vol. 18, no. 1, 1971, p. 3-20

Study of a gas turbine consisting of a pure-impulse compressor, an isothermal burner, and a pure-impulse turbine. The point of the
study is to demonstrate that the application of an isothermal burner
makes it possible to obtain (1) reduction of the maximum temperature of
the turbine cycle without affecting the overall efficiency and specific
work, or to (2) improve the overall efficiency and specific work
without reducing the maximum temperature of the cycle. The term
isothermal denotes that the temperature in the burner is kept as close
to a selected constant value as possible. Performance curves of a gas
turbine engine have been calculated for realistic process parameters
in order to determine the optimal compressor pressure ratios. T.M.

A71-34597

Influence of loading by linear radial forces on the stress state of a circular disk with a hyperboloidal profile. (Wpływ
obciążenia tarczy kolowej o profilu hiperboloidalnym innowymi
Polish.

Determination of the stress-strain distribution in a hyperboloidal-profile rotor disk loaded by linear radial forces. P.M.
originated by the action of radial blades mounted along the circumference. The analyzed model of the disk is applicable to the rotor disks of aircraft-engine compressors with two-stream flow of the working medium. The proposed computational procedure permits numerical determination of stresses in the most highly loaded regions of the disk circumference near blade mountings. An analysis of the effects of various forms of loading makes it possible to design blade shapes from the viewpoint of obtaining disk stresses which do not exceed permissible values. A comparison of the results of two numerical examples illustrates a significant influence exerted by the hyperbolic shape of the disk profile.

Topics include millimeter systems, LSI memories, active and passive filters, medical electronics, optoelectronic devices, and component manufacturing for the 70s. The optimizing selection of vacuum deposition equipment is discussed together with low-noise amplification problems at microwave frequencies, the integrated circuit overseas, the next generation of satellite systems, instrumentation for data acquisition and control systems, advances in commercial avionics, and instrumentation guidelines for the study and control of ecology and water pollution. Management control systems and management of the development of software systems, evaluation of proprietary software, minicomputers in process industries, and the impact of interactive computing systems on engineering problem-solving are considered. A permuted index is included.

Individual items are abstracted in this issue.

The ATC Advisory Committee to the Department of Transportation recommended that early increases in the capacity of the air transportation system be achieved by expanding existing urban airports, providing increased automation in the ATC system, implementing an improved landing system and upgrading the present data acquisition system. The functions of the improved system are discussed together with the interface between the ground automation and navigation systems and the associated equipment in the aircraft. Recommendations presented after an analysis of the collision situation are considered. It is pointed out that at the major high density airports of the 1980-1995 period the desired increase in capacity can only be achieved if an all-weather capability is provided.

Studies pertaining to all aspects of air traffic control (ATC) are to be conducted. These studies involve not only an interim upgrading step for the 1980s, but also a forward projection toward total automation of ATC procedures by the 1990s. Approaches concerned with the avoidance of collision are considered, and the problem of clear air turbulence and its solution are examined. Other topics discussed include area navigation, autopilots, airborne data acquisition, and the impact of new avionics advances on airline operations. Approaches for overcoming economic problems connected with the new developments are described.

Each vehicle in the system considered would be able to maintain a continuous and precise estimate of its position and velocity in three dimensional space on any chosen path. As a result of continuous, precise knowledge of position and velocity, the time at which the aircraft passes various way points could be controlled quite accurately. Components in a precision navigation system include a physical inertial platform and external radio data sources, the navigation computation, and the filter or mixing computations. A simulation program written in Fortran IV and a number of simulation test cases are discussed.

The system goals include aircraft weight reduction, improved protective function coordination, improved power quality, decreased onboard maintenance, presentation of processed data for more effective crew action, and increased reliability. The system contains two 1000-channel circuit breaker multiplex systems and 200 remote control circuit breakers with solid-state sensing. The circuit breakers include single-phase ac, three-phase ac, and dc circuit breakers, 200 switch indicator modules, two keyboard controls, one cathode ray tube display, one general purpose processor, one control console, two 40-channel parameter sensing and digitizers, and one data multiplex system.

The flow visualization and quantitative hot-wire measurements presented show that vortex shedding is associated with a turbulent air jet issuing at 90 degrees from a flat plate into a cross-wind. Results for circular slot jets are presented. Tests show that a splitter plate stops vortex shedding as in the solid body case. A possible method of reducing the lift loss associated with the jet-cross-wind interaction is suggested. The basis of the test results was that the experiments were conducted in the 9 ft subsonic wind tunnel at the Georgia Institute of Technology. Free-stream velocity for most of the tests was 50 ft/sec, corresponding to a Reynolds number of 26,000 per inch.

536
A difficulty is considered in the theory of inviscid incompressible flow past thin airfoils, in which an expansion for the complex potential or complex velocity is sought in powers of the thickness ratio. It is then found that such an expansion breaks down in the vicinity of the airfoil edges. At sharp edges, the method of matched asymptotic expansions fails to remedy this. This failure is explained, and in the case of incompressible flow past a symmetric airfoil at zero incidence, it is shown that by proper choice of the dependent variable an expansion may be obtained which is uniformly asymptotic. Finally, the case of a circular-arc airfoil is considered in greater detail.

M V E

Results of studies undertaken in France for the control of air traffic in regions where installations are impractical (oceans, polar regions). Air transportable models were developed within the center to verify the feasibility of telecommunications and surveillance geostationary satellites. The system comprises a single multiplex in the earth-aircraft sense, and two multiplexes in the inverse sense. The characteristics of these multiplexes, which make use of numerical techniques, are briefly described, followed by definition of the techniques adopted, with emphasis on the aircraft equipment. The results obtained in the course of laboratory experiments or from simulations show the validity of the solutions retained, in particular that of delta modulation for the numerical transmission of voice signals.

F R L

Description of the telecommunications system for air traffic control and navigation by the Dioscures satellites which is based on the establishment of band L links between commercial aircraft and two stationary satellites. Electronic scanning makes possible an independent orientation of two antenna beams, using a fixed apparatus of small size consisting of two antennas, the associated control box, and the computer unit which controls the orientation of the beams as a function of the aircraft position. The various subassemblies and the results obtained are described. A simulation test was carried out to verify the good operation of the electronic scanning system.

F R L

A71-34700 Automatic control of aircraft electrical system reduces wiring and improves reliability Manvel A Geyer (Westinghouse Electric Corp., Aerospace Electrical Div., Lima, Ohio) and Dwayne F Rife (Westinghouse Research and Development Center, Pittsburgh, Pa) Westinghouse Engineer, vol 31, July 1971, p 114-119

In the newly automatically controlled electrical system, both control wiring and power wiring are minimized. Control and indication signals are transmitted between the cockpit and a number of remote power controllers via remote input/output units and a multiplexed data bus. The distribution control center is a 'switch-board' for properly routing signals between control and indication devices. Limit switches and other mechanical relay devices are replaced by transducers that provide signals to the distribution control center, where the logic for sequencing and automatic control is continued. Switch-indicator modules provide one means of trip and load indication as well as manual command input.

ZW

A71-34792 Pressure changes as boundary layer effects in the tube wind tunnel (Druckänderungen als Grenzschichteffekte im Rohwindkanal). Eckart Piltz, Darmstadt, Technische Hochschule, Fakultät für Maschinenbau, Dr.-Ing Dissertation, 1971 97 p 17 refs In German

Measurements in a tube wind tunnel were conducted in order to verify the theoretical calculations (1957, 1958). It was also tried to find an approach for representing the pressure drop in a general way in a form making use of an effective resistance parameter. The possibility to simplify the theory by a systematic linearization involving the Mach number M sub 1 was also investigated. Satisfactory agreement between Becker's theory and the experimental results was obtained in the case of developed pipe flow. There were, however, certain systematic differences between theory and experimental results during the time interval of growing boundary layers. Various assumptions of the theory were, therefore, examined, and modified. It was possible to adapt the theory in such a way that a satisfactory agreement between theoretical and experimental values was obtained.

G R

A71-34850 The problem of protecting flight vehicles from icing (K voprosu o zashchite letatel'nykh apparatov ot obledeniya). A G Bodrik and V A Pavlov Vychislitel'naia i Prikladnaia Matematika, no 12, 1970, p 138-141 In Russian

Consideration of a one-dimensional Stefan problem concerning the melting of a layer of ice on the surface of a flight vehicle during the operation of a cyclic deicing system. The investigated problem (with boundary conditions of the third kind) is solved analytically by means of Sokolov's (1967) method of averaging functional corrections.

A B K

A71-34874 * Optimization of complex structures to satisfy flutter requirements. Carl S Rudisill (Clemson University, Clemson, South Carolina) and Kumar G Bhata AIAA Journal, vol 9, Aug 1971, p 1487-1491 7 refs Grant No NGR-41-001-027

Equations for finding the partial derivatives of the flutter velocity of an aircraft structure with respect to structural parameters are derived. A numerical procedure is developed for determining the values of the structural parameters such that a specified flutter velocity constraint is satisfied and the structural mass is a relative minimum. A search procedure is presented which utilizes two gradient search methods and a gradient projection method. The procedure is applied to the design of a box beam.

Author

A method is presented by which the eddy-viscosity and mixing-length concepts, that are being used in the current differential methods, can be modified to calculate incompressible turbulent boundary layers at low Reynolds numbers. A comparison of several calculated results using this modification shows good agreement with experiment.

O H

537
A71-34887

Investigations have been conducted in a hypersonic low-density wind tunnel to obtain an accurate knowledge of the absolute flow density. For this purpose, a method was employed which was based on time-of-flight measurements of nitrogen ions produced by a short pulsed high-energy electron beam. The results of the time-of-flight velocity measurements are given graphically and discussed O H.

A71-34889 # Vortex flow over a flat surface with suction. Kenichi Nanbu (Tohoku University, Sendai, Japan) AIAA Journal, vol 9, Aug 1971, p 1642, 1643 10 refs

Boundary-layer equations have been solved for steady incompressible flow with a potential vortex as the outer flow over an infinite flat surface under the boundary layer of distributed suction. It is shown that, without any speculation to the singularity on the vortex axis, a formal similarity solution can be obtained for suction parameter greater than a certain value O H.

A71-34890 # Shock and vibration isolation using a nonlinear elastic suspension. T E Shoup (Rutgers University, New Brunswick, N J) AIAA Journal, vol 9, Aug 1971, p 1643-1645 8 refs

Research supported by Rutgers University. Information is presented for use in the design of nonlinear "elastic" suspension springs with symmetrically hardening behavior which are promising as a shock and vibration isolation mount, particularly in the aerospace and transportation industries. Suspension dynamics of this suspension system is examined theoretically, the resulting frequency response, obtained numerically, is shown graphically and discussed O H.

A71-34895 # Shock standoff distances and Mach-disk diameters in underexpanded supersonic jets. W Davidor and S S Penner (California, University, La Jolla, Calif) AIAA Journal, vol 9, Aug 1971, p 1651-1653 9 refs Contract No AF 44(620)-68-C-0010

Experimental measurements were performed in a blow-down tunnel with mixtures of nitrogen dioxide and nitrogen tetroxide as working fluid. Shock standoff distances were determined photographically by using a movie camera. The previously published data on Mach-disk diameters have been replotted in a graph, together with experimental results for nitrogen and for the reacting system consisting of nitrogen dioxide and nitrogen tetroxide G R.

A71-34898 # Separation of a supersonic accelerated flow over notches. A F Charwat (California, University, Los Angeles, Calif) AIAA Journal, vol 9, Aug 1971, p 1656, 1657

Wind tunnel experiments have been conducted to determine the effect of a negative pressure gradient on supersonic flow over rectangular notches 0.5 and 1 in deep with variable lengths. The Mach number immediately ahead of separation was 1.81. Results are presented graphically, compared to those obtained theoretically, and found to be in good agreement O H.

The influence of the ground during the takeoff and landing phases of aircraft on the behavior of aircraft trailing vortices is examined. In particular, the observed departure of the vortices from the theoretical path by rising again after having descended close to the ground is experimentally tested to qualitatively determine the cause of this phenomenon. Results are given graphically and discussed O H.

Experimental results are presented for the stagnation point heat-transfer rate and the heat-transfer rate distribution over a hemisphere cylinder in hypersonic, rarefied flow. Comparison is made with the higher-order theories of Cheng (1961) and Davis (1970) for the stagnation point heat-transfer rate and the theory of Lees (1956) for the heat transfer rate distribution O H.

Derivation of a procedure for calculating the levels of oscillation damping by aerodynamic forces in turbine blades of aircraft engines. The procedure is based on a method proposed by the authors (1968) for calculating the parameters of an array of arbitrary profiles vibrating with arbitrary phase shifts in a plane incompressible fluid flow V Z.

Description of the installation and experimental program of the Comet 4 aircraft which is being fitted out as a flying laboratory at the RAE Farnborough, UK. One of the main tasks in this aircraft will be to investigate the techniques necessary for the integration of avionics systems. The navigation system lends itself more readily than most to integration and will be studied in the early experiments. Besides the investigation of the use of digital computers and digital techniques, the work will include research and development in computer controlled displays such as projected maps and cathode ray tube displays, and in digital data transmission both along conventional cables and along fiber optic links. The operation of the multifunction keyboard and cathode ray tube displays is described. M M.

A71-35097 Characteristics of satellite-to-aircraft links. Howard C Salwen (Signatronics, Inc., Lexington, Mass.) In Institute of Electrical and Electronics Engineers, Annual International Conference on Communications, 7th, Montreal, Canada, June 14-16, 1971, Proceedings Edited by H L Blacker New York, Institute of Electrical and Electronics Engineers, Inc (ICC Conference Record Volume 7), 1971, p 29-14 to 29-18 16 refs

The propagation characteristics of satellite-to-aircraft links are reviewed, and estimates of channel parameters are given. A general method for describing the multipath on such links is presented. The
A71-35106

A queueing theory approach to communication satellite network design. Herbert G Raymond (TRW Systems Group, Redondo Beach, Calif.) In Institute of Electrical and Electronics Engineers, Annual International Conference on Communications, 7th, Montreal, Canada, June 14-16, 1971, Proceedings. Edited by H L Blacker New York, Institute of Electrical and Electronics Engineers, Inc (ICC Conference Record Volume 7), 1971, p 42-26 to 42-31 6 refs

The increasing use of communication satellites has led to rising interest in networks that best exploit the unique capabilities of satellite repeaters. Utilizing the techniques of queuing theory the behavior of two useful satellite networks is analyzed. First a single multichannel node is used to model an Oceanic Air Traffic Control System. This model was employed not only to calculate the required satellite capacity, but also to determine its sensitivity to the traffic load variations. Next the model was extended to a multinode network representing a worldwide military broadcast communication system. The behavior of this network was then examined for varying traffic patterns. This parametric analysis identified key network design parameters and suggested several useful design guidelines.

A71-35115

The articles provide information on the growth of cracks in engineering structures and the residual strength of cracked structures for the purpose of predicting service lives of structures subjected to fatigue loading and to establish safe inspection intervals. Basic concepts in fatigue crack propagation, the effects of panel geometry, the influence of panel stiffeners, and the application of fracture mechanics and crack propagation to the design and testing of aircraft structures are dealt with. Ballistics damage characteristics and tolerance are also discussed.

A71-35153

Research sponsored by the Douglas Aircraft Independent Research and Development Program. The test program was conducted on 60 centrally cracked specimens varying in thickness from 0.05 to 0.75. In Analysis of the results showed that the two materials displayed substantially different characteristics. This is attributed to the fact that, owing to the low proportional limit of the T73 material, the net section stress was in the plastic range for most specimens, whereas for the T6 material the net section stress was always in the elastic range. It was noted that during slow crack growth, the crack grew faster in the center than at the surface of the material. A lumped parameter, redundant force analysis of three plates of varying thickness was made. The results show the development of plane strain conditions with increased thickness.

A71-35156 *

Rates of fatigue crack growth were measured in fatigue tests of stiffened panels constructed with bolted and integral stringers. The panels with bolted stringers were made from 2024-T3 aluminum alloy sheet with either aluminum alloy or steel stringers. The stringers were attached to the sheet with interference fit lock bolts. Stringer spacing and stiffness were varied systematically in the construction of the panels. The integrally stiffened panels were made from 7075-T6 aluminum alloy sheet extruded with outstanding stringers. The stress intensity factor, calculated by a previously developed method, is used to predict the crack growth rates for the stiffened panels. Fatigue tests were conducted on unstiffened panels to determine the relationship between the stress intensity factor and crack growth rate. In general, the stress intensity factor correctly predicts the crack growth rates in panels with bolted and integral stringers except when the cracks are long. In these cases, the measured rates are slightly higher than the predicted rates. Furthermore, the stress intensity factor factor correctly predicts the rates to be lower in the panels with stiffer and more closely spaced stringers and to be equal in panels with steel and with aluminum alloy stringers of equal stiffness. The bolted stringers reduced the crack growth rate significantly below that for an equally stressed unstiffened panel, whereas the integral stringers had no significant effect.

A71-35157

Fracture tests were conducted on precracked panels reinforced with various crack stoppers. Motion pictures and continuous graphical records of load and local strains were taken during the tests. The purpose of these tests was to study variables affecting residual strength of reinforced panels. Results show that, for 2024-T3 aluminum skin panels reinforced with riveted or bonded flat strips made of various alloys, the residual strength increases with the product of reinforcement area and reinforcement strength. Reinforcement stiffness, which is of primary importance for other choices of panel configurations, was found to be a significant variable for the panel configurations tested. A crack opening displacement model is proposed to illustrate the influence of the reinforcements, the skin fracture toughness, and the slow stable tear characteristics on the arrest of a stably propagating crack. The model helps to elucidate the interactions between skin variables and reinforcement variables.

A71-35159

Full scale fatigue tests were conducted on the F-100 wing. Service connected fatigue failure data were collected and compared with test results. Test lives to initiate fatigue cracks are compared with predicted lives using Miner's rule of linear cumulative damage.
and by a method accounting for plasticity at the crack origin. Calculated failure stresses using the principles of fracture mechanics are compared with laboratory test failure data. Crack growth data measured during testing are compared with values predicted from the relation \(\frac{da}{dn} \) vs \(\Delta K \). The range in the stress intensity factor is shown to be most accurate for predicting residual life. The methods and data are reviewed, and a bilinear semilog method is proposed for predicting residual life. The development of air traffic control systems and air transport automatic landing systems in the U.S. and Western Europe is summarized. Information display systems are described, as well as automated air traffic control systems and various electronic devices for controlling air traffic. The present state of development of automatic landing systems is reviewed. Automatic landing systems are used where the modulus is not so critical. An overall 60% weight reduction was obtained in this case.

The degree of damage tolerance used in the design of the DC-10 fuselage pressure shell is discussed with reasons for its selection. The results of 20 different configurations are included. A description of the development test program to verify the analytically predicted techniques and to substantiate the fail-safe strength of the fuselage shell is given together with the results for many of the tests.

The damage and residual strength of 7075-T6 aluminum panels exposed to caliber 0.50 AP M2 gunfire was found to vary with projectile velocity, impact angle, and target thickness. The strength of thin panels agreed closely with fracture theory because of their predominant cracklike flaws. The strength of thick panels was close to the material ultimate tensile strength because of the blunt flaw shapes. Damage and residual strength prediction models were developed from the test data for monolithic panels. Alternate design concepts consisting of laminated, planked, and spar cap stiffened panels were investigated.

The damage and residual strength of 7075-T6 aluminum panels exposed to caliber 0.50 AP M2 gunfire was found to vary with projectile velocity, impact angle, and target thickness. Maximum damage occurred at low velocities and high impact angles. The damage and residual strength of 7075-T6 aluminum panels exposed to caliber 0.50 AP M2 gunfire was found to vary with projectile velocity, impact angle, and target thickness. Maximum damage occurred at low velocities and high impact angles. The damage and residual strength of 7075-T6 aluminum panels exposed to caliber 0.50 AP M2 gunfire was found to vary with projectile velocity, impact angle, and target thickness. Maximum damage occurred at low velocities and high impact angles.

Use of the concept that long haul international air transport is more economic than any other type of airline operation as a basis for selecting aircraft. The use of the concept that long haul international air transport is more economic than any other type of airline operation has been demonstrated.

Short review of the main features and results of the recurrent experimental research efforts applied at the Building Research Station since 1954 to the investigation of outdoor sound propagation.
for the purpose of building design guidance in relation to aircraft and load traffic noise. Experiments have covered vertical and oblique sound propagation from aircraft in flight, nearly horizontal propagation from a small range of source heights, and performance assessment of noise barriers. Briefly outlined are also the local background to the experiments, some of the techniques employed, and a few of the ways in which findings have been applied. M. V. E.

A simple approximate relation is established between the convective flow at the critical point and the decrease in the radiation flux as a result of absorption in a cold boundary layer. In particular, it follows from this relation that when there is no flow in the boundary layer of surface destruction products, the total heat flow (radiative plus convective) is essentially independent of the optical properties of the gas in the boundary layer.

The changes in stagnation pressure produced by movement of rows, arrays, sheets, and vortices are derived. By applying Preston's result for a single row of moving vortices to continuous vortex sheets, the time mean stagnation pressure downstream of a row of blades with fluctuating circulation is derived. It is shown that if the blade circulation varies due to the potential flow fields of the neighboring blades then the time mean stagnation pressure change is independent of location.

For cantilever wafders at the design condition the attached shock wave in the plane of the leading edges may correspond to either a strong or a weak oblique shock wave when viewed normal to the edges. In cases when the design shock wave corresponds to the strong oblique shock, the off-design behavior of the wing is not completely understood. In this note some measured results are analyzed in an attempt to understand this off-design behavior.

The method of characteristics and an implicit finite-difference scheme are used to investigate the interaction between the internal flowfield and laminar boundary layer in ducts of circular cross section under conditions of high Mach number and low Reynolds number. In the displacement thickness, added on to the body to form a new 'effective body shape' which is used to recalculate the inviscid flowfield and laminar boundary layer in ducts of circular cross-section. B. H. Lee (National Aeronautical Establishment, Ottawa, Canada) Aeronautical Quarterly, vol 22, Aug 1971, p 233-256 14 refs.

M. V. E.

The natural frequencies and mode shapes of vibration of cantilever aerofoil cross-section blades of pre-twist angle in the range 0 to 90 deg are obtained. The beams are 152.4 mm long and the width/thickness ratio is such that they may be regarded as slender. Theoretical frequency ratios and mode shapes of vibration, neglecting shear and rotational inertia effects, are obtained for two sets of beams, one with clockwise pre-twist relative to the root cross-section and the other with anti-clockwise pre-twist. The effect of variation in the value of the center-of-flexure coordinates upon the natural frequency ratios and mode shapes of vibration is investigated. The theoretical results are compared to corresponding experimental results.

Derivation of a closed-form expression which gives an approximate solution to the lift generated on a two-dimensional thin airfoil in incompressible flow. The inaccuracy of the solution when compared with other published work is compensated by the simplicity of the final expression, particularly if the result is required for the calculation of the sound power radiated by an airfoil in a turbulent flow.

The interpretation of interferometric fringe patterns can be a complicated process, but, the single underlying relationship that governs the pattern is relatively simple. A few observations concerning this relationship lead to certain approaches that improve both the threshold and the resolution of the holographic method. One such approach is described in this paper, along with the results of interferometric measurements made to determine the stability of a precision gyro. The principle of interference is reviewed briefly, and the relevant characteristics of the holographic image are discussed.

Outline of lubrication techniques that may enable bearings to operate at more than twice their present speed and still have their inherent ability to carry heavy loads. Such bearings find application for helicopter transmissions, since there is a weight saving and the statistical reliability of two bearings is much greater than that of three bearings. By redirecting the lubricant flow through the bearing or by introducing a second source of lubricant directly to the critical contact area, tapered roller bearings can be run at speeds up to 20,000 fpm cone velocity. Test results on a CH-47 Boeing helicopter transmission are discussed.

A study is made of the strength of plates and shells of aircraft structure type under various types of loading. The calculation and...
A71-35312

design of optimal structures, and methods of calculating and analyzing the strength of shells of revolution made of composite materials are presented. Problems involving general and local loss of stability of multilayer structures are investigated, taking into account the filler rigidity.

- Individual items are abstracted in this issue

A71-35312

A procedure for mathematically processing structural fatigue data, using methods in probability theory, mathematical statistics, and correlation and regression analysis. The results obtained by this method for various panels are used to study the influence of technological and structural factors on the fatigue life of airframe panels. General relations for calculating the endurance of panels under cyclic loading are proposed.

V P.

A71-35313

Constrained torsion of an incompletely fastened spar box (Stesennoe kruchenie kessona pri nepolnoi zadele). G I Abramova. Moscow, Izdatel'stvo Mashinostroenie (Moskovskhn Avtionsonnkh Institut, Trudy, No 180), 1971, p. 193-197 In Russian

Consideration of the problem of constrained torsion of a spar box fastened along isolated parts of the contour. Vlasov's displacement variational method is employed in the calculations. It is shown that the tangential stress distribution does not follow beam theory. The tangential stress distributions along the wing span have maxima which can lead to the failure of the structure.

A B K.

A71-35334

USAFA-NASA-supported research

Description of the development and performance capability of a small radio-controlled aircraft as a versatile measurement platform. Along with the required radio control and meteorological sensing instrumentation, the system is used in field tests. It is shown that controlled soundings to 4000 ft are possible with the unaided eye. For flights above this altitude, simple optical aids have been developed and soundings to 10,000 ft have been made.

F R L.

A71-35336

Closed-die forgings for the aircraft industry. II. J A Carver. Special Steels Review, Spring 1971, p. 8-14

Carbon and low-alloy steels are forged at temperatures up to 1250 C. Forgings in vacuum remelted steels have greatly improved transverse ductility and microcleanness as compared with those from air-melted stock. Problems with maraging and precipitation hardening stainless steels are discussed, giving attention to the dependence of metallicurgical qualities of forgings on forging practice. Nickel alloys and superalloys are considered. The forging of titanium alloys is described, taking into account beta alloys, alpha alloys, and alpha-beta alloys. The forgeability and mechanical properties of titanium alloys are not influenced to any marked degree by variations in the metallic alloying elements, but they are affected by variations in interstitial elements such as oxygen, nitrogen and carbon.

G R.

A71-35371

Discussion of the limitations of techniques already commonly applied, and of the more promising points of application for new technology in navigation surveillance and traffic control. Some of the current trends in other fields, particularly aircraft design, are considered. Emphasis is placed on the efficient use of land at airports, in view of the strength of feelings aroused in the community by the questions of apportionment and exploitation of land resources. It is pointed out that, as compared with techniques of navigation surveillance and traffic control, changes in basic aircraft characteristics are potentially a much more powerful means of increasing land productivity and ameliorating problems of noise and vortices.

M M.

A71-35372

Discussion of criteria and problems incident on the provision of ATC from the standpoint of the user. Particular requirements are presented by the pupil pilot, ultra-light aircraft, gliders, clubs and small private aircraft, business aircraft and air taxi, military aircraft, the test pilot, and airline pilots. It is pointed out that a possible weakness in present ATC methods is that the controller may have to off-load some of his responsibilities onto the pilot. Perhaps in the distant future the high density ATC system will not only allocate aircraft headings, heights and speeds, but also continuously monitor lateral, vertical and longitudinal operation. Pilots would not then be obliged to maintain track, flight level and airspeed with great precision all the time, but only when it really was necessary to do so in the interests of safety.

M M.

A71-35373

Examination of means for improving the present ATC system by the use of area navigation. The following typical benefits are provided by area navigation: (1) dual or multitracks for omnidirectional traffic flow, (2) improved economical alignment of routes, (3) dual or multitracks to allow segregation of traffic according to speed or flight configuration, (4) tracks bypassing congested areas, (5) optimum location and size of holding patterns, and (6) procedures designed for STOL and helicopter operation. Potential suppliers are offering area navigation computer equipments of varying sophistication and ranging in price from about $2500 to over $150,000. It is concluded that there is a high degree of unanimity between pilots and controllers for early implementation of an area navigation system.

M M.

A71-35374

Brief survey of military and civil aircraft navigation, with emphasis on self-contained systems, and a brief reference to external

Review of the history of lawsuits arising from accidents related to wake turbulence, with assessment of the state of the law today. The issue in such litigation is whether the accident was the fault of the pilot of the crashed plane or the fault of the air traffic controller in not maintaining sufficient separation between the two aircraft. In general, recent cases seem to set a trend extending and broadening the government’s liability where the controller’s act is judged to be negligent.

F R L

Certain shapes of high speed aircraft, such as canard wings, make use of two-dimensional flowfields and in principle they can be propelled by purely external heat addition without any ducted flow. Suitable undersurfaces can be designed by an exact numerical method. Various examples of the method are given, and comparisons are made of propulsive efficiency, temperature distribution and other variables.

(Author)

Description of the principles and methods of radio remote control of various flight vehicles (missiles, spacecraft, and aircraft). Modern methods of analyzing and synthesizing closed control loops and compensating systems are explained, together with important requirements posed for radio equipment. Kinematic methods of missile guidance, self-guidance systems, radio-controlled spacecraft trajectory correction systems, methods of measuring parameters of motion, and aircraft radio-navigation and traffic-control systems are described. Command links, analog and digital telemetry and command systems, and feedback links are examined in terms of noise stability, data processing operations, and principal applications. T M

A71-35422 Calculation of the binary laminar boundary layer in the hypersonic stagnation point flow with temperature-dependent material parameters (Berechnung der laminaren Zweistoff-Grenzschiicht in der hypersonischen Staupunktstromung mit temperaturabhingigen Stoffbeiwerten) J Steinheuer (Braunschweig, Technische Universitat, Braunschweig, West Germany) Zeitschrift fuer angewandte Mathematik und Mechanik, vol 51, Mar 1971, p 209-223 18 refs In German Research supported by the Deutsche Forschungsgemeinschaft

An exact and an approximate method are presented for the calculation of a laminar binary-mixture boundary layer for the plane of axisymmetric stagnation point flow at hypersonic velocity with foreign gas injection. In the exact method the property parameters of the binary gas mixture, e.g. viscosity, thermal conductivity and binary diffusion coefficient as well as density and specific heat capacity must be known as functions of temperature and foreign gas concentration. The approximate method utilizes only the wall-values of these property parameters in conjunction with their mean gradients over the boundary layer thickness. The boundary layer equations form a system of three coupled ordinary differential equations for the stream function, the concentration, and the enthalpy. The exact method used to transform these equations into a system of integral equations which is solved by an iterative procedure. In the approximate method the boundary layer equations are reduced to their incompressible form. In addition, the asymptotic limit of strong injection is investigated. Numerical examples of calculation for the different methods are presented (Author)

Description of typical performance characteristics of jet engines equipped with an afterburner as a means of temporary thrust enhancement, and survey of the structural characteristics of some currently used afterburner designs. Problems of combustion, flame stabilization, and outlet-nozzle regulation are considered, together with operational cost aspects. T M

A71-35442 Wind and aircraft equipment (Wiatr a sprzęt lotniczy). Jozef Oso Technika Lotnicza i Astronautyczna, vol 26, June 1971, p 31-33 In Polish.

Case histories of damage sustained by aircraft due to wind acting on airport surfaces. The frequency of occurrence and directional statistics of high-velocity winds at Warsaw’s Okocie airport are analyzed, and recommendations are given for wind and hail protection during landing, parking, and maintenance operations. T M

Analysis of factors affecting the service life of gas-turbine engine components, on the basis of modern concepts concerning the summation of material defects under the action of physical and thermal static and variable loads. Formulas for evaluating the equivalent service life of materials and components are proposed. V P.

Discussion of fatigue and creep tests performed with two nickel-base turbine-engine alloys (EP108YD and EI961) at operational temperatures and durations from 100 to 10,000 hr. The laws governing the changes in the dispersion of heat-resistance characteristic are determined as a function of the temperature and service life. The laws obtained make it possible to increase the reliability of strength and performance estimates for turbine-engine materials. V P.

Development of a method of evaluating the service life of solid and hollow turbine guide vanes, which is based on calculating the heat transfer coefficients and the temperature and stress fields, and evaluating the heat resistance of the vanes. The possibility of increasing the service life of uncooled vanes by optimal selection of the cavity geometry is demonstrated. V. P. Kuznetsov.

Analysis of the fatigue characteristics (obtained in laboratory tests) of aircraft alloys and of their applicability to the evaluation of component endurance. It is shown that for samples of various dimensions and stress concentrations, there exists a common fatigue curve in relative coordinates. Using this curve, the fatigue characteristics of structural elements can be determined on the basis of test data. V. P. Kuznetsov.

Discussion of possibilities of shortening the test time required to increase the service life of aircraft engines. It is proposed to conduct an equivalent test along a program constructed on the basis of an analysis of factors which influence the service life of the individual units and components of an engine. Factors which affect the service life of engine components and lend themselves to quantitative evaluation include failure by fatigue, creep, stress relaxation, heat resistance, wear, and contact endurance. Special tests (not included in equivalent testing) should be conducted to determine the influence on service life of such factors as fuel and lubricant coking, erosion, and contamination of components, and random accidental damage (such as of blade edges). V. P. Kuznetsov.

A71-35467 Coherence criteria for supersonic compressor tests (Critères de cohérence pour essais de compresseurs supersoniques). Christian Capillon and Jean Reboux (ONERA, Châtillon-sous-Bagneux, Hauts-de-Seine, France) La Recherche Aéropatiale, May-June 1971, p. 139-149. In French.

Establishment of coherence criteria for measurements used in judging the effectiveness of tests carried out. This is necessary in order to determine various aerodynamic and thermodynamic magnitudes essential for the detailed understanding of complex processes arising in a compressor where the flow passes several times from the supersonic to the subsonic region. These criteria have been defined and perfected on an experimental freon compressor with low blade height and a cylindrical test section, accurately representing a mobile supersonic annular cascade. It appears that elementary compression processes can be achieved with such a compressor, which is also suitable for flow visualization, and is also an excellent model for investigation of a cylindrical section of a long blade supersonic compressor. F. R. L. Leclerc.

The goals of the Gulfstream II acoustics program were low noise levels in the cabin, compliance with Port of New York Authority (PONYA) airport noise criteria, FAA takeoff and landing noise certification, and qualification of structure against sonic fatigue. Noise levels as low or lower than those in airline and business aircraft were obtained using an improved sidewall treatment, four-pane cabin windows, airconditioning silencers and isolation mountings for major vibration sources such as the engines, APUs, and inverter. PONYA criteria were met and FAA noise certification obtained using thrust cutback during take-off, the airplane has enough thrust to maintain a favorable climb rate even with the required thrust cutback. Structures exposed to high noise levels during normal and reverse thrust operations were tested to assure lifetime resistance to sonic fatigue. (Author)

Prior to the advent of large-scale commercial STOL service, some challenging navigation and guidance problems must be solved. Proposed terminal area operations may require that these aircraft be capable of accurately flying complex flight paths, and in some situations, maintaining a time of arrival envelope at way-points along these paths (4-D guidance capability). This paper discusses problems that arise in performing 4-D guidance and presents the results of an initial investigation of two of the candidate 4-D guidance schemes that have been suggested. The investigation was primarily concerned with evaluating basic concepts and assumed a single aircraft environment and the availability of perfect information to both the pilot and the controller. Other techniques are being investigated by the FAA that may hold more promise when actual operational constraints are imposed on the problem. Preliminary simulation results are presented and future work on the 4-D guidance of STOLs is outlined. The results obtained for STOLs are applicable also to the 4-D guidance of any RNAV equipped aircraft. (Author)

TIFS is a newly developed, variable stability C-131 aircraft with the unique capability to vary its flying qualities in all six degrees of freedom. It also surpasses the utility of past variable stability aircraft through the realism possible in its separate, new evaluation cockpit. The capabilities and features of this in-flight simulator considerably broaden the ability of the designer to deal with difficult tradeoffs in flying qualities problems. This paper describes the aircraft and its potential as a design tool. Physical characteristics as determined in flight and examples of simulation planning are given. Flight test records of model-following performance are included. (Author)

Cockpit armor improves combat effectiveness for given mission objectives. The tradeoff is not armor weight vs aircraft performance, but combat effectiveness vs attrition. A cockpit concept exploiting integral armor as the structural system is developed, and terminal ballistic kinematics for a rapidly moving aircraft target are examined experimentally. A significant weight saving is shown to result from exploiting the resultant kinematics, mold line tumbling plates, and integral structural armor. An armor design criteria is developed and demonstrated in full-scale experiments under threats representative of close air support operations. Mission tailored integral armor is shown to enhance combat effectiveness. (Author)

Through the medium of the L-1011 laboratory test program, selected design features of the airplane are reviewed. The full-flying stabilizer, the direct lift control and the autoland systems are examined in the context of the design background and the developmental test programs employed. The early flight performance in automatic landing is illustrated to demonstrate the merits of comprehensive ground testing in complex system development. (Author)

Discussion of a test program for variable geometry external fuel tank prototypes to evaluate their performance as components of operational aircraft by static structural tests, wind tunnel tests, and flight tests on a F-111 aircraft. The elimination of the need for different capacity tanks for one aircraft and a greater range for more fuel are noted as the advantages of the variable geometry tank designs over present drop fuel tanks. Details are given on an integral variable geometry fuel tank concept that will use the existing aircraft structure, thus minimizing the requirement for unique components. Also considered is a strike fighter concept with an integral variable geometry tank mounted at the intersection of the fuselage and top of the high wing. The attractiveness and the formidable technical challenges of the development of integral variable geometry fuel tankage are indicated.
A71-35682
Utilization and development prospects of satellites for the civil aviation and merchant marine (Perspectives d'utilisation et de development des satellites pour l'aviation civile et la marine marchande) Bertrand Manueli (Centre National d'Etudes Spatiales, Paris, France) Navigatian (Paris), vol 18, July 1971, p. 299-315 5 refs In French
The nature and magnitude are assessed of aircraft and seacraft location and communication needs of civil aviation and merchant marine management that a satellite system could meet effectively, and a preliminary definition is attempted of the essential characteristics that such a satellite system should possess. An evaluation of the global number of high-grade communication channels the civil aviation and merchant marine is likely to need is followed by a review of the implications of aircraft and seacraft antenna characteristics and of present modulation techniques for optimum communication channel frequencies between satellites and seacraft and aircraft, as well as between satellites and ground stations. The operational utilization prospects of an Atlantic-Pacific three-satellite system is then discussed, along with the technical and economic potentials of a first satellite generation

M V E

A71-35604 Study of the stability of a gyroscope compass (K issledovaniu ustoichivosti girogornikompasam) S P Sosnitskii Akademia Nauk SSSR, Izvestia, Mekhanika Tverdogo Tela, May-June 1971, p. 6-28 5 refs In Russian
The stability of a gyrocompass is analyzed, taking into account the vertical inertia component of its translational motion. This component is shown to exert an appreciable effect on the oscillations of the sensitive element of the system. Relations are obtained to calculate the stability characteristics of a gyrocompass during circulations and arbitrary periodic maneuvers of the ship

V Z

A71-35608 The problem of errors of a gyro device mounted on a mobile platform (K voprosu o pogrestnostiakh giroskopicheskogo pribora, ustanovlennogo na podvizhnoi platforme) V F Kulakov and Iu V Osetinskii Akademia Nauk SSSR, Izvestia, Mekhanika Tverdogo Tela, May-June 1971, p. 61, 62 In Russian
The effect of the rotation axis of a two-degree-of-freedom gyro device mounted on a dynamic platform is discussed. It is shown that an insignificant rotor asymmetry with respect to the rotation axis can cause appreciable errors in the measurements of angular velocities and rotation angles

V Z

Propulsion systems as they exist today and some trends that are anticipated for aircraft that might be flying in the 1980s are presented The number one trend for commercial engines is to quiet aircraft while the first nuclear propelled aircraft most likely will fly at subsonic speeds

A71-35629 Flow behind the boundary layer separation point in supersonic flow (Techenie za tozhko otryva pogranichnogo sloia v sverkhzvukovom potoke) V la Neiland Akademia Nauk SSSR, Izvestia, Mekhanika Zhidkosti i Gazi, May-June 1971, p. 19-25 8 refs In Russian
Theoretical study of the flow structure behind the separation point of a laminar boundary layer in supersonic flow Analytical and numerical solutions are obtained for simple seminfinite separation regions beginning at the leading edge or on a smooth surface. The pressure plateau in a finite-length separation region is calculated on the basis of an asymptotic theory. The behavior of the solution is analyzed in the region of free interaction and during transition into the reversed flow region. The results obtained made it possible to calculate (in the first approximation) the pressure in the plateau region and to formulate a mathematical basis for this effect. Relatively simple solutions are simultaneously obtained for semi-infinite separation regions

T M

A71-35630 Calculation of the interaction of a supersonic jet with a turbulent near wake behind a step (Raschet uzuomestviia sverkhzvukovoi strui s turbulentnym blizhnim sledom za ustupom) L V Gogish and L V El'nikova Akademia Nauk SSSR, Izvestia, Mekhanika Zhidkosti i Gazi, May-June 1971, p. 26-32 In Russian
Investigation of plane and axisymmetric flow behind the but face of a body placed in a supersonic jet flow. The interaction of the supersonic jet and the turbulent wake is described by a system of eight first-order differential equations, two of these equations pertain to a single-parameter wake, while the remaining ones describe the flow in a quasi-one-dimensional inviscid jet. Flow in the near wake corresponds to a singular solution of the equations, which passes through a saddle singular point (the neck of the wake). Initial conditions for the interaction flow are determined from integral conditions for the joining of this flow with the mixing flow in the isotropic base region. The calculations are in satisfactory agreement with experimental data obtained by measuring pressures along the wake and at the butt face for a plane Mach-2.3 jet

T M

A71-35631 Calculation of the interaction of a turbulent boundary layer with a supersonic outer flow behind a step (Raschet vzamoshestviia turbulentsnogo pogranichnogo sloia s vneshnim sverkhzvukovym potokom za ustupom) A N Antonov Akademia Nauk SSSR, Izvestia, Mekhanika Zhidkosti i Gazi, May-June 1971, p. 33-40 15 refs In Russian
The proposed integral method of calculating the turbulent flow behind plane and axisymmetric bases makes it possible to determine the pressure distribution, the displacement thickness, the momentum thickness, and the friction in the region of interaction between a boundary layer and an ideal outer flow. The characteristics of an incompressible, turbulent, equilibrium boundary layer are used to calculate the flow behind the base, the flow parameters of a compressible boundary layer are related to those for an incompressible layer by the Cowles-Crocco transformation. Results are compared with experimental data

T M

A71-35632 Three-dimensional boundary layer on a segment body at supersonic velocities (O prrostanstvennom pogranichnom sloe na segmentnom tepli sverkhzvukovych skorostakh) G N Andrei and Iu D Shevelev Akademia Nauk SSSR, Izvestia, Mekhanika Zhidkosti i Gazi, May-June 1971, p. 41-48 6 refs In Russian

546
The finite difference method is used to calculate the three-dimensional boundary layer arising on sphere-segment surfaces placed in supersonic flow. The strong local change in the profile curvature near the edge of the spherical surface of a body formed by the sector of a sphere makes it necessary to separate three different regions of gas flow. These regions include the flow on the spherical surface, flow near the edge of this surface, and flow along the inverted cone behind this surface. A curvilinear difference grid is constructed on the surface of the body. The difference equations approximating the initial system of differential equations are set up for the case of arbitrary nonequidistant nodes of the grid. Numerical results are given for the drag and heat flux to the body at given wall temperatures, unity Prandtl number, linear dependence of viscosity on temperature, and angles of attack between 15 and 30 degrees.

The boundary layer equations are given for injection of a hydrogen, nitrogen, and carbon dioxide gas mixture from the surface. The equations of boundary layer equations for intense blowing (Ob avtomodel'nykh chislennykh i asimptoticheskikh resheniiakh uravnenn pogranichnogo sloia pn bol'shikh vduvakh) E A Gershbein (Moskovskn Gosudarstvennyi Universitet, Moscow, USSR) Akademua Nauk SSSK, Investiia, Mekhanika Zhidkosti i Gaza, May-June 1971, p 49-52 6 refs In Russian

Analysis of self-similar solutions of equations for a laminar, incompressible, isothermal boundary layer at large rates of injection. Asymptotic velocity profiles and boundary layer thicknesses are given for different negative pressure gradients. Numerical solutions of the boundary layer equations are given for injection of a hydrogen, nitrogen, and carbon dioxide gas mixture from the surface. The asymptotic solution is compared with the numerical results and its range of validity is delineated.

Investigation of the nonequilibrium condensation in supersonic jets and nozzles (Issledovanie neravновесной конденсации в сверхзвуковых соплах и насадках) L M Davydov Akademua Nauk SSSR, Izvestia, Mekhanika Zhidkosti i Gaza, May-June 1971, p 66-73 7 refs In Russian

The method of characteristics is used to calculate gas flows with allowance for equilibrium and nonequilibrium condensation processes. The proposed recurrent relationships for calculating condensation kinetics along the streamline substantially simplify the computational scheme and reduce the time required for calculation. The method is used to study the influence of the nonequilibrium of the condensation process on the flow of gas in supersonic nozzles and jets issuing into vacuum. A proposed approximate method for calculating nonequilibrium condensation is based on integration of one-dimensional equations along a streamline, using the flux density distribution along this streamline.

Contribution to the theory of transonic flows (K teorii dvumernykh okolozvukovykh techenii) N G Bol'man Akademua Nauk SSSR, Izvestia, Mekhanika Zhidkosti i Gaza, May-June 1971, p 178, 179 5 refs In Russian

The Navier-Stokes equations describing two-dimensional steady transonic flows of a viscous gas are reduced to a system of quasi-linear equations which in turn lead to a linear equation. The conditions for the uniqueness of solutions to boundary value problems for the linear equation are established for flows past bodies of revolution and for two-dimensional bodies. A variety of boundary conditions for which the uniqueness of the solution can be proved by the method proposed are examined.

Calculation of the supersonic flow past V-shaped wings by the method of establishment (Raschet sverkhzvukovogo obektania V-obraznykh krylev metodom ustanovlennia). V I Lapygin Akademua Nauk SSSR, Izvestia, Mekhanika

Experimental and theoretical aeroelastic analysis of the Fokker F.28 T-tail, using a flutter model and flight flutter tests. Control surface flutter and the effects of lateral gust loading were also investigated. A T-tail aircraft generally involves aerodynamic and dynamic problems due to the fact that the top-mounted stabilizer causes very low fin resonance frequencies, and involves a large mass coupling between fin bending and fin torsion, as well as an aerodynamic coupling due to interference effects. For the F.28 this already unfavorable situation was even more complicated by the low fuselage resonance frequencies as a consequence of the rear-mounted engines. It was found that aerodynamic interference is of prime importance for the calculation of lateral gust design loads and largely influences flutter behavior.

A review of recent findings on the structure of a vortex wake and its interactions with following aircraft is given. The review is based on reports received at the September 1970 Aircraft Wake Turbulence Symposium sponsored by the Air Force Office of Scientific Research and the Boeing Scientific Research Laboratories. Formation and disintegration processes are discussed including recently discovered instability mechanisms. Interactions between a wake and a following aircraft are shown to depend primarily on the circulation of the wake and the span of the following aircraft. Various methods suggested for reducing wake hazards are discussed. Finally areas for further research are suggested.

A trailing vortex model and its effect on a penetrating aircraft. Neal L Funston (USAF, Aeronautical Systems
Analysis of experimental measurements of take-off and landing. Nicholas R Rotta and Theodore R Goodman

The high strength of the trailing vortex system produced by the new jumbo jet aircraft has renewed interest in the study of the vortex phenomenon and its effect on proximate aircraft operations. In this present study, the trailing vortex system produced by an aircraft in flight and penetration of the system by a second aircraft are modeled mathematically. The effect of turbulent mixing on the persistence of the intact trailing vortices is modeled by modifying the similar solution for a decaying laminar vortex. The correction is made by introducing an effective turbulent viscosity which is determined empirically. The vortex induced velocity is superimposed on the free stream velocity of a penetrating aircraft to determine a total velocity vector and angle of attack. Separation times and distances required for safe operation in traffic pattern conditions are predicted using a gust load formula and maximum incremental load factors. Calculations were performed for several generator/penetrator aircraft combinations.

This paper presents an analysis of data obtained by the Federal Aviation Administration related to the characteristics of trailing vortex systems generated by large jet aircraft. Difficulty was experienced in analyzing the data because of the comparatively large spacing of sensors, but some significant information and conclusions can be derived from the analysis. It was found that the velocity field around a vortex produced by a large jet aircraft is defined by a logarithmic variation of circulation with radius. For a lift coefficient of unity, the core diameter was found to be approximately 5% of the midspan chord while the maximum tangential velocity at the edge of the core was about 70% of the aircraft velocity. Both the diameter and core appear to change in proportion to the lift coefficient. Expressions are developed for predicting the velocity field produced by the trailing vortices from large aircraft. These should be used with caution, however, until additional and more precise data are obtained.

Omega navigation being implemented by the U.S. Navy has application to general aviation operations. Flight experiments with a Beechcraft Bonanza have shown some of the capabilities provided by this system. These experiments also showed some of the deficiencies, all of which are believed surmountable with application of some creative engineering. A proposed solution for overcoming one deficiency, diurnal course shift, is presented in this paper together with experimental data indicating that the approach is a viable one. Pros and cons of Omega as applied to general aviation aircraft navigation are also presented.

This paper discusses the functions of power conditioning for application to a high-voltage dc electric power system. Sample load profiles of an SST-type aircraft are presented, and the power conditioning needs are outlined. Present and projected power levels of power conditioners for different high-voltage dc distribution systems are discussed. The characteristics of thyristor switches are reviewed, and the technology status of thyristor power conditioners is discussed. Two classes of thyristor power amplifiers are identified for application to the flight vehicle.

A71-35771

If the presently used three-phase ac transmission system on aircraft were replaced by a higher voltage dc system, a ground return, significant gains could be achieved in the weight of wiring, number of wires, and total losses. A comparison of weight advantages and anticipated disadvantages with a 345-V dc system leads to the recommendation of 230 V as a standard value for a dc system. A qualitative comparison is made between projected 230-V dc generation equipment and the presently available constant-frequency three-phase ac equipment. Little weight savings or efficiency gains are anticipated, but the simplicity of the dc system would lessen present problems in paralleling and maintenance. A comparison of utilization equipment for the two generation systems also shows little reduction in weight. Appreciable development work is anticipated before realizing utilization equipment to operate at the higher dc voltage. Although considerable weight reduction in the weight of transmission system wiring is possible, the adoption of the high voltage dc system will not be readily accepted until proven generating and utilization equipment is available.

A71-35772

A conceptual real-time reconnaissance cockpit display system (RTRCDS) for airborne sensor systems is presented whose elements provide night combat sensor imagery in the cockpit of reconnaissance aircraft and on the ground at command posts. Loral studies of techniques using dark trace storage tubes for the real-time high resolution display of line scan sensor data and MTF analysis of performance are described. Uses of the real-time display as a navigation aid, for Bomb Damage Assessment and for target detection, as well as display modes to meet human factor requirements for operator efficiency are discussed. Flight test results are assessed for reconnaissance effectiveness and are extrapolated for future improvement.

A71-35775

A71-35778

Executive control of an advanced multicomputer system requires a considerable amount of high-speed computations. A special purpose hardware unit designed specifically to accomplish these computations can enhance system operation. Such a hardware unit, utilizing an associative memory, is defined. A definition of the AADC base-line system is presented along with the fundamental requirements of the executive. The operational philosophy and justification for the consideration of a special purpose hardware executive is given. A functional description of the proposed executive is shown with a list of all required functions. One function is described in detail. The complexity required and the estimated computational speeds obtainable, with the proposed hardware executive, are presented and compared to equivalent software executives. Significant increases in speed with no penalty in cost or reliability can be realized through the utilization of a special purpose hardware executive control containing an associative memory.

A71-35780

‘Best’ power system design effectively combines reliability, simplicity, low cost, weight, and size. The F-111 system meets this criteria. Complete redundancy is provided in the primary ac power and in the 28 volt dc power system. Conventional brushless, oil-cooled, 60 KVA generators supply two load buses which normally are isolated but are connected together in event of generator failure. DC power is supplied from paralleled load buses supplied by two 150 ampere converters. The buses can be isolated in emergencies. Emergency power is supplied by a 10 KVA constant speed generator. The primary generators are synchronized to eliminate beat frequencies. Solid state control and protection circuits provide automatic protection against out of tolerance voltage and frequency. The pilot is provided manual control of generator contactors. System status is presented by warning lights and a bus condition indicator. The system has proven to be reliable, easily maintained, and has probably a lower weight to power available ratio of any aircraft power system to date.

A71-35781

Integrated drive generator offers significant advantages for aircraft electrical power systems. J K Taulbee
A71-35782

The Remote Power Controller (RPC) is the static counterpart of the electromechanical protective circuit breaker RPCs are essential to the realization of a truly static Automatically Controlled Electrical System for aircraft and spacecraft applications. The RPC provides the load control needed to execute the commands of the distribution computer as well as the protection needed to protect the system wiring and the RPC itself against overloads and faults. Therefore, the development of the RPC is of substantial importance. The RPC performance requirements place large demands on the power semiconductor devices and circuit configurations. These demands are advancing the state of the art in the static switch field. This paper deals with the problem area related to the development of ac and dc RPCs capable of withstanding adverse aircraft environments. The development has resulted in circuits with performance characteristics superior to previous technology without sacrificing the three most important parameters size, weight and cost.

(Author)

A71-35783

Research supported by Texas Instruments, Inc.

Some aspects of the application of a random access signalling system to an aircraft control system are discussed. A model of the radio environment is described and the model parameters related to the control system requirements. The model shows that, for simple time-frequency matrix signals, the number of system accesses is optimized when individual signals are transmitted with a redundancy of 7 to 19, with maximum randomness in the signal. This optimum corresponds to a total system data rate of 0.025 bits per second per cycle of system spectrum allocation. The implications of the principle of random access signalling for the control system are discussed. The allocation of system capacity to individual terminals, the utilization of the individual terminal allocation for maximum flexibility, some technology implications of signal design parameter choice, and how the principle offers potential for control system improvements, including compatibility with existing systems.

(Author)

A71-35789

New York, Institute of Electrical and Electronics Engineers, Inc., 1971, p 271-274.

The V-O-R indicator consists of a custom designed large scale MOS integrated circuit (IC) and several commercially available IC's to process the V-O-R measurement digitally and to present the pilot with a numeric hands-off presentation of his V-O-R radial. Since the phase of the V-O-R measurement is made difficult with digital techniques, no null indicators or resolvers are required, and all scale reading errors are eliminated. Accuracy, size, weight, and cost are all comparable to, or better than, the standard design.

M M

A71-35799

Description of a mesh method for obtaining supercritical flow equations when the shock wave is at the trailing edge. Essential in this method is the introduction of a transonic flow function into exact inviscid flow equations, a procedure facilitating an appropriate representation of two-dimensional and axisymmetric flows and, thus, the solution of transonic flow problems. Flow patterns with a normal shock wave or an oblique shock at the trailing edge can be treated by this method. Sample results are given for a circular arc airfoil at zero incidence.

V Z

A71-35811

Description of methods that can be used to evaluate proposed systems. The proposal chosen as an example considers potential cost savings by using onboard weight and balance equipment in conjunction with a fully mechanized cargo pallet transfer system. The loading system is evaluated through a wide range of parameters by means of stochastic processes in computer-based simulation models. The modeling techniques described may have application to current operational analyses. These could be evaluations of comparative loadability characteristics of different aircraft, or studies of the effect of loadability due to changes in balance restrictions for a particular aircraft. Potential applications of balance analyses of this type should also be considered as part of overall studies of complete cargo handling systems.

(Author)

A71-35812

This paper presents the administrative techniques of a cost/weight tradeoff program for a modern jet transport airplane. It introduces the concept and philosophy of using a defined cost/weight value as part of basic design criteria and discusses the full scope of a program to assure its overall application to vehicle design. The role of Management and Weight Engineering in Weight Reduction Programs is discussed in detail. Particular emphasis is placed on the concept of generating and maintaining a large number of weight saving ideas from which Management can select the type and amount of weight reduction that appears desirable for meeting weight guarantees and the competition. Procedures for converting weight saving ideas into actual hardware weight reductions are presented in outline form. Problems associated with assuring weight optimization of subcontract and vendor products are also discussed in detail.

(Author)

Study of the sources and magnitudes of errors in Boeing 747 static aircraft weight values obtained by means of the on-board aircraft weighing system (OBAWS) and by manual calculations yielding manifest values Sixty-two sets of data, collected from forty-eight aircraft, have been analyzed Comparisons of OBAWS and manifest values for fifty-one sets of data, taken from thirty-six of the forty-eight aircraft, indicate that the distribution of discrepancies between OBAWS and manifest values has a standard deviation of plus or minus 0.07% of full scale, or plus or minus 7,597 pounds Formal tests made on the 747-100 aircraft indicate that OBAWS can be expected to meet targeted accuracy requirements under normal operating conditions

M V E

Discussion of the implementation of an idea to permit the weighing of an aircraft, utilizing load cells, while it remains on jacks during an overhaul at maintenance operation Fixtures are threaded onto the screw extension of the standard aircraft tripod jack and become a part of the jack When it is time to weigh the aircraft the small jacks and load cells inserted at weight fixtures, the aircraft is raised slightly, approximately 1/32 inch, transferring the weight to the load cells, and the weight readings are taken

G R

A rapid method is described for sizing boron-epoxy laminates for purposes of preliminary design A comparison is made of the weights of a wing box design, fabricated, and tested On this basis, a nonoptimum factor of 1.6 is derived This compares quite favorably with the nonoptimum factors of approximately 1.5 for aluminum and titanium wings

M V E

The STAN/MASS system is presently installed on a USAF C-7A aircraft and an airline 727B The MASS system provides the means of essentially eliminating landing gear strut friction without taxing the aircraft The basic concept of Integral Weight and Balance Systems (IWBS) is discussed together with their basic design requirement and their ultimate future The various factors examined could be of help in the decision of an airline whether to select an IWBS

G R

Some basic V/STOL propulsion systems are compared with the vectored thrust concept, and special design considerations of V/STOL aircraft with respect to weight and balance, typified by the vectored thrust design are examined The special character of these design considerations is determined by the pronounced effect of small changes in the weight and center of the gravity-lift-thrust relationship on the performance The competitive nature of the vectored thrust V/STOL with a conventional takeoff and landing aircraft with short field capability is considered V/STOL vectored thrust aircraft are competitive in the Close Air Support role The lower the takeoff and landing distance becomes, the greater is the competitiveness of the V/STOL vectored thrust aircraft

G R

Discussion of the various applications of composites on present and future aircraft designs intended to operate in the Mach 2 to Mach 4.5 range Parametric comparisons for near-term and future aircraft are presented These parameters illustrate weight and performance results with respect to various applications of composites as compared with all-metal aircraft structural concepts and designs All-metal aircraft for the future, which are on an equal basis with composite aircraft, are considered Major emphasis is oriented toward the advantages of future aircraft concepts designed with composites in their initial or preliminary design stages

F R L

Study of the weight reduction potential of advanced composite materials in aerospace structures No other material combines such high strength and stiffness with ease of fabrication Use of boron/epoxy on the F-4 rudder saved 16.2 lb of structure and 6.3 lb of balance weights for a 35% saving Most of the hardware development programs achieved weight savings of about 30%, which is in agreement with most of the analytical studies It is considered that maximum weight savings from composites will occur in uniaxially loaded struts and/or trusses and in stiffness-critical components A weight estimation technique is proposed which first estimates the structural weight as though it were aluminum and then modifies the estimate through several factors, accounting for the different mechanical properties and construction techniques, to arrive at a composite material structural weight

F R L

Description of the equipment, principle of operation, calibration data and techniques, accuracy, errors, and repeatability of the model WCG-91-2-10K mass and CG determining system The system is the largest device ever built which uses a mechanical beam balance for measuring mass and a separate and distinct system composed mainly of two electronic load cells for measuring CG moment The device measures mass within an accuracy of 0.032% of applied load or a range as wide as 500 through 10,000 lb The CG of the load can be measured by this new fixture to within 0.013 in (longitudinal) and 0.005 in (lateral and vertical) The fixture is versatile, in that it will accept rocket motors in both the horizontal and vertical positions and any other object not exceeding the gross weight and dimensional limitations of the system

M M
A71-35825

This paper describes the design, analysis, and testing of a full-scale section of F-111 aft fuselage constructed from a variety of advanced composite materials. This work represents the first application of advanced composites to complex fuselage structure. Maximum utilization of composites was maintained in both the shell structure and substructure. A wide variety of advanced composites and their applications were evaluated in a design and fabrication effort. A 160-inch full static test component was designed, fabricated, and tested to destruction. Fourteen subassemblies of frames and panels were fabricated and assembled into a 920-pound component utilizing 460 pounds of advanced composite materials. Static test of the part included loading in bending with simultaneous application of internal pressure. Analytical predictions were obtained with finite element simulation of the primary structure. Deflection gauge and strain gauge data showed excellent agreement with analytically predicted results. Weight savings of up to 29 percent were obtained on various elements of the structure. An overall weight savings of 18 percent with respect to equivalent metallic structure was realized.

(Author)

A71-35826

This paper develops a method for estimating the weight of articulated main rotor blades. The results of the method should be suitable for use in preliminary design and weight evaluation, particularly in the case where parametric design studies are performed to study weight and performance tradeoff trends. An approximate expression for blade running weight in terms of performance and geometric parameters is presented. A method of estimating antinode weights required to achieve a specified first-mode flapwise natural frequency is included so that total blade weight may be obtained. A computer program for making a more comprehensive (but still approximate) estimate of blade weight, blade section structural proportions, and section properties useful for subsequent detailed analyses is presented. These results should be useful for establishing initial values of blade properties to use in comprehensive dynamic and structural programs necessary for final substantiation. The program is brief enough to be a practical one for use in parametric studies. The method presented is limited to articulated, shaft-driven main rotor blades having performance capabilities within current conventional helicopter limitations.

(Author)

A71-35827

Description of the features, installation, and maintenance problems, as well as requirements and testing of a strut pressure system and an axle strain gage installed in the DeHavilland C-7A. All the systems had difficulty compensating for slope. After the hydraulic pump was modified, the strut pressure system met most of the requirements. Without some modification to reduce strut friction error, it exceeded limits. The axle strain gage system output was limited by shutting off the load away from the axle. It was very sensitive to weight changes and external forces, yet appeared to shift over a period time. A need exists for weight and balance systems but it is suggested that these be carefully matched to the aircraft. It is pointed out that reliability should receive more emphasis now placed on accuracy.

M M

A71-35899

Evaluation of remotely piloted vehicles (RPV), the development of which has made possible a high degree of "pilot" participation in areas where he functions best. The RPV concept is being considered for missions such as air superiority and weapons delivery, conducted in severely hostile environments. In these applications the goals is to maintain the advantages of manned flight through use of new sensors, data links, computers, and displays. Systems without the disadvantages, such as life support systems, physical limitations, flight safety considerations, and loss of life.

F.R.L.

A71-35904

An air-cooled turbine blade was designed for the first stage turbine of a fan-jet at a turbine inlet temperature of 1150°C. The rotor blade was cooled by means of a number of straight holes. The nozzle vane was cooled by air impinging perpendicularly on the cooling surfaces. Two-dimensional cascade tests were carried out to obtain the heat transfer data, cooling efficiency, and the temperature distribution within the blade sections. It is concluded that the temperature distribution of the nozzle vane must be improved although the mean vane temperature reached the intended value.

G R

A71-35923

The evolution of formation flight technology is briefly reviewed, and the major characteristics are discussed of three specific station-keeping concepts developed since 1963. Results of detailed simulation studies of the dynamic station keeping geometry are presented in the form of fundamental formation flight stability criteria. Various approaches to further systems refinement are evaluated in terms of their assets and liabilities. The extension of present-day technology to development of formation flight systems for short range aircraft such as helicopters and V/STOL transports is considered.

M.V.E.

A71-35924

Review of the procedures adopted within BEA in formulating and negotiating the second of the two complementary three-year agreements, the first in 1964/1965 and the second in 1968/1969. These procedures reflect current thinking concerning productivity agreements in industry which, it is felt, should be negotiated on a plant basis, and not on an industry-wide one, with the active participation of the staff in order that the deal gain acceptance and fulfill its promise. The development and negotiation of the 1969 agreement are described for each of the various categories of tradesmen and for the maintenance workers and storekeepers.

M V E

A71-35925

A semiempirical relationship is derived for the structural weight of wings, applicable to a wide range of subsonic aircraft. The method is based on a generalized expression for the material required to resist the root bending moment due to wing lift in a specified flight condition. Appropriate factors make the result applicable to cantilever and braced wings, for passenger and general aviation aircraft.
and for freighters. An assessment of the accuracy, based on actual wing weights of 46 aircraft, indicates that a standard deviation of 9.64 per cent is achieved. The weight formula presented allows for the effects of variations in the main wing dimensions and operational limits of the airplane and is therefore suited to parametric design studies.

The L-1011 Tristar incorporates many design features which enhance its acceptability into the world's airport system and optimize ground handling operations. The aircraft is designed to carry from 250 to 400 passengers. Favorable economics of the aircraft permit it to be used on either short or long segments and to operate in and out of medium size airports as well as major hubs. The L-1011 is comparable in size to most of the larger aircraft in operation. It is considerably smaller in all respects than the Boeing 747. The general layout of the aircraft is discussed together with the power plant, and aspects of passenger, cargo and baggage handling, fueling, and galley servicing.

France and Switzerland began the construction of provisional runways and buildings of the airport in 1946, on French territory near the Basle frontier. Since 1953 the Basle-Mulhouse airport is operated as a binational facility. Under the intergovernmental convention, the Swiss must be able to use the airport as if it were a Swiss airport, and the French as if it were a French one. The traffic structure of the airport is examined, and an account of the new buildings is given. Questions of future development are discussed giving attention to a lengthening of the runway.

An intensive survey of 20 possible sites for a second international airport was carried out in 1965. In July 1966 the government finally designated the new airport site at Sanriku, by the city of Narita. Problems connected with the distance of the airport from the city center of Tokyo will be solved by the development of faster transportation. The runway system will comprise two parallel runways 13,100 ft and 8200 ft long, and a 10,500-ft crosswind runway intersecting the main runway. Each runway will have two parallel taxiways in order to permit high-speed handling of aircraft on the ground. Air navigation aids such as ILS, VOR-DME, NDB, ASR/SSR, lighting and other visual aids will be installed. Aspects of passenger and aircraft handling are discussed, and questions of ATC, access to the airport and freight handling are considered.

It was necessary, in the interests of flight safety, to create separate traffic zones in which the various aircraft covered by a common control system could operate. This led to the establishment of controlled and uncontrolled airspace. It is pointed out that because of air traffic growth rates very careful planning of effective procedures and systems will be needed if the air traffic volume of the coming decades is to be handled with at least the present degree of safety. Plans for taking steps to cope with the increased air traffic are discussed. A systems analysis which is initially based on the structure of the airspace is considered, and possible means of increasing capacity are examined giving particular attention to Western Europe and the Atlantic area. Requirements for an ILS successor are discussed together with the advantages of area navigation.

It is pointed out that analytical methods of design have been restricted to the effects of single wheels. It is doubtful whether existing methods are now acceptable in connection with the designing of pavements for multiwheel aircraft. To meet the need for a more realistic method of assessing the stress distribution below the wheel arrangements of these aircraft, Shell has developed a computer program named BISTRO. Probably the most widely accepted method of pavement design is based on the CBR (California Bearing Ratio) of the soil. However, this approach does not take into account the effect on stress distribution within the structure of using construction materials other than unbound aggregates. A more fundamental method to overcome these shortcomings is discussed, giving attention to a three-layer system.

Review of the design and operation of the heater and Mach 6 nozzle of the S4MA wind tunnel, and description of the modifications the heater and nozzle underwent in their adaptation for testing a supersonic combustion chamber of a hydrogen burning ramjet engine. These modifications are shown to include the replacement of the aerodynamic nozzle by the combustion chamber to be tested. The chamber is supplied through a duct in such a manner that velocity, temperature, and pressure conditions at the engine inlet are the same as those in operation in a ramjet flying at Mach 6 at 30 km altitude.

Experimental study of the transonic buffeting environment of a cone-cylinder-cone missile-type body in the Mach number range between about 0.7 to about 1.1. The experiments were conducted in the S2MA transonic wind tunnel at ONERA to determine the distribution of static and fluctuating pressures on the walls of two perfectly rigid and fixed models of different scale. Spectral analysis of the data and visualization of the near flow field by shadowgraphs were performed. High intensity fluctuating pressures were found at the rear of the models, mainly at high subsonic Mach number (about 0.9). This is due to the separation of the flow and the instability of the shock wave position. RMS levels of the order of 0 dB and an
increase of the low frequency content were then obtained. The effects of model scale, angle of attack, dynamic pressure, and Reynolds number were studied. Generalized nondimensional spectra make it possible to put confidence in the results of these studies for full-scale missiles.

F. R. L.

Study of a double-flux engine nacelle at high subsonic Mach numbers and high Reynolds numbers. using separate models for the intake and the afterbody. The afterbody test shows that the conditions of variable jets do not react significantly on the upstream flow around the nacelle intake except in the immediate vicinity of the exhaust. This justifies the large-scale study of the air intake with a model supported downstream by a cylindrical tube replacing the jet. Similarly, mass-flow rate variations of the intake do not react on the flow around the afterbody. This allows study of the afterbody mounted on a sting located upstream.

F. R. L.

The drag coefficient for a family of axially symmetric ellipses of fineness ratio 4, 5, and 8 was measured for Reynolds numbers up to 1,000,000. The drag data reported were obtained by suspending ellipsoidal models in a subsonic wind tunnel by means of a magnetic balance and suspension system. The wind tunnel interference effects were determined by cross plotting the measured drag coefficient, at constant Reynolds number, against model size. All the models had a similar smooth finish.

G. R.

Description of a holographic system which provides an image perspective variable over a wide field of view. The image is two-dimensional and can be used as the input in optical systems corrected for only one plane. The method used for hologram manipulation is very effective in achieving maximum hologram efficiency in that it uses a fixed relation of reference wave inclination and shape to the hologram surface. The use of narrow-beam reconstruction facilitates the matching of the reference wavefront and permits the application of either a collimated laser beam with an "unrolled" hologram or a cylindrical-section beam with constant parameters.

A71-36118 Interaction between an underexpanded jet and an oncoming rated supersonic jet (Vzaimodeistvie nedorasshirennoi strui so vstrechnoi sverkhzvukovoi raschetnoi struei). O. S. Zelenkov

In Gasdynamics and heat transfer Number 2 (Gazodnaminika i teploobmen Number 2). Edited by I. P. Ginzburg Leningrad, Izdatel'stvo Leningradskogo Universiteta (Leningradskii Gosudarstvennyi Universitet, Uchenye Zapiski, No. 357, Seria Matematicheskikh Nauk, No. 46), 1970, p. 81-91 In Russian.

Photographic study of colliding underexpanded and normally expanded supersonic jets in a two-wind-tunnel assembly with a static working pressure equal to the atmospheric pressure. Axisymmetrical conical nozzles with a small aperture half-angle are used for obtaining underexpanded jets. Expressions are given for the Mach number on underexpanded jet axes in front of central shock waves and for positions of the shock waves. It is shown that in the general case the contact surface represents a portion of a spherical surface whose curvature is a function of the ratio between the maximum underexpanded jet diameter and the rated jet diameter.

V. Z.

A71-36122 Acoustic emission of a supersonic jet toward the nozzle exit section for various rates of active to passive pressure (Akusticheskie izluchenie sverkhzvukovoi strui u storuonu sreza sopla pri razlichnykh rezhimakh nerschetnosti). V. D. Belenkov In Gasdynamics and heat transfer. Number 2 (Gazodnaminika i teploobmen Number 2). Edited by I. P. Ginzburg, Leningrad, Izdatel'stvo Leningradskogo Universiteta (Leningradskii Gosudarstvennyi Universitet, Uchenye Zapiski, No. 357, Seria Matematicheskikh Nauk, No. 46), 1970, p. 119-124 In Russian.

Pressure pulsations at points close to the nozzle exit section were studied in an open-jet wind tunnel, at a Mach number of 2 at the nozzle. The nozzle diameter was 16 mm, and the ratio of active to passive pressure varied between 0.9 and 6.2. The pressure pulsations at the points investigated are caused by sound radiation of the jet. This radiation has the nature of a discrete tone, whose source is localized at the initial portion of the jet. The frequency of the discrete tone is plotted for various conditions at the nozzle exit section. Diagrams showing the level of the pressure pulsations as a function of the ratio of active to passive pressure are presented.

V. P.

The asymmetric distribution of the incidences or vertical velocities corresponds to that of a forced asymmetrical curved delta wing according to a linear function or asymmetrical deflection. Considering a slender fictitious wing equivalent to a real wing from the aerodynamic standpoint, the pressures distribution and aerodynamic characteristics of the wing are determined.

M. M.

Review of the processes by which the current high level of air transport safety has been achieved, the best assurance for continued safety being the determination of aviation personnel that nothing will be left undone. Better knowledge of weather formation has been of major importance. Developments in instrumentation, radio aids, aircraft structures, and powerplants are outlined. An appendix discusses aircraft icing, the problems of the piston engine, fire hazards, metal fatigue, and training.

F. R. L.
The flow of a laminar, incompressible jet along a parabola in the absence of an external stream is analyzed using the techniques of second-order boundary-layer theory. The first-order solution is the Glauert wall-jet solution. Second-order corrections to the jet due to the effects of curvature and displacement are obtained numerically after the external flow is corrected to account for the displacement effect. The shear stress at the wall is calculated and it appears that for values of the Reynolds number at which the governing equations are valid the jet does not separate from the parabola.

G. R.

Three fundamental ways for improving the resolution of the shock position are examined, taking into account an increase of the order of the differencing scheme, an increase in the number of node points in the differencing mesh, and an adjustment of some parameter, or even the mesh itself. The methods considered are all outgrowths of Runge-Kutta techniques To illustrate the power of shock-capturing methods over a wide range of applications, the results for four sets of computations are included.

A new method is presented for numerically solving the transonic potential equation using a mixed finite difference system. Solutions are presented for flows past a flat plate at angles of attack of 0, 45, and 90 deg with Reynolds numbers of 30, 50, and 200. The cross section of the plate is elliptic, and the flow is assumed to be two-dimensional and time-dependent. Potential flow is selected as the initial condition. Asymptotic steady-state solutions have been obtained for the symmetric configurations with 0 and 90 deg angles of attack, whereas the 45 deg inclined plate always caused vortex shedding, even for Re as low as 30. The development of a Karman vortex street for Re = 200 and an angle of attack of 45 deg is presented in detail.

A procedure is described for calculating the dynamic parameters of a supersonic flow incident on a conical body at large angles of attack. A solution is obtained for the flowfield with the exception of a region above the body. It is shown that the entropy distribution around a circular cone undergoes changes when the angle of flow incidence is increased so that the entropy layers vanish when the incidence angles are very large. It is further shown that the strength of the arising conical shock wave depends on the cone geometry.

A method is applied to the problem of creating new airfields and modifying existing ones to handle bigger and heavier aircraft which may be expected to be in service by 1985. It is shown that present design techniques do not permit an aircraft/pavement economic tradeoff, nor do they explicitly consider all the functional requirements of the user. Lifetime management of the pavement can be planned and controlled with the aid of current modeling technology. The systems approach holds the key to an integrated plan for design, construction, operation, and maintenance of airfield pavements.

The relative merits of aircraft designed for field lengths from a few to 3000 ft are assessed with respect to direct operating cost, indirect operating cost, and V/STOL port amortization combined into a total ticket cost for profitable operation. A daily traffic flow of roughly 500 passengers arriving at a suburban terminal and 12,000 passengers arriving at a city terminal is considered. It is shown that ticket cost will not be greatly influenced by the number or length of runways or vehicle type for suburban operations alone, and that the number and length of runways has a considerable impact on ticket cost for close to city center operations, there being a distinct advantage for aircraft with less than 1000 ft takeoff and landing distance. V P

A71-36348 * # STOL passenger demand in underdeveloped areas. Jason C Yu (Virginia Polytechnic Institute and State University, Blacksburg, Va.) _ASCE, Transportation Engineering Journal_, vol 97, Aug 1971, p 475-490 13 refs Grant No NGR-49-001-012

The possibility of implementing an air transportation system that would boost the economy of underdeveloped areas (where ground transportation facilities are too costly owing to the rugged terrain) is considered. A travel demand model is employed to predict the passenger market potential of a preliminary STOL system. The results indicate that passenger service demand for a STOL system will be limited. However, greater demand will obviously come through lower system operating costs and improved terminal accessibility. V P

Equipment and techniques are discussed, using which a 10,000 ft long 150 ft wide runway and a parallel taxiway were removed and replaced in just 40 calendar days. The old runways consisted of a 9-in concrete pavement over a 6-in stone subbase. The new runway consists of a 16 to 20 in concrete pavement over a 6-in compacted aggregate subbase and 6 in of cement stabilized subgrade soil. The new system includes a longitudinal and herringbone underdrain system. V P

Description of a multispectral scanner which is being developed for a NASA C-130 earth-resources survey aircraft. The scanner will be capable of simultaneously viewing 24 wavelength bands in the range between 0.34 and 13 micrometers, it will have a spatial resolution of 2 mrad and an active scan of 80 deg. The spectral bands are formed by detector arrays in the focal plane of two grating spectrometers. All bands are radiometrically calibrated using field-filling sources that are viewed during the inactive part of the scan cycle. The scanner has been installed and test flown during the latter part of 1970, and will be delivered to NASA in the summer of 1971. M.M.

The fundamentals of designing a hypersonic aircraft which at Mach numbers between 10 and 16 can serve as a space shuttle and at lower Mach numbers as a transport aircraft are examined. The direct method of designing such an aircraft is shown to depend on the accuracy of the determination of the aerodynamic coefficients of a given hypersonic configuration and on the capability of obtaining an exact solution to the Navier-Stokes partial differential equations by a numerical difference technique for high Reynolds numbers (in order to determine the pressure and shear-stress distributions), neither of which is possible at this point. The determination of the aerodynamic behavior of a wavefinder by the indirect method in the case of viscous flow is examined, using the Caret-wing as an example. Three-component measurements performed with six different wings in a hypersonic wind tunnel are compared, and the pressure distributions and flow fields are examined. The temperature problem of a hypersonic aircraft is analyzed. V P

Review of the functions, design, and makeup of a maintenance control system (MCS) based on a modular development plan. MCS is a management information system that incorporates all the control functions of maintenance into an integrated operation. MCS encompasses 12 major functional subsystems supporting scheduling, forecasting, performance evaluation, modifications, and improvement functions at all levels of maintenance management from the production foreman to the vice-president. The objective of MCS is to develop a cost-effective system which links the functional entities of maintenance into a unified management control system and makes use of common data in its operation. V E

Discussion of techniques for the dissipation of fog consisting of liquid drops, either in a supercooled or in a 'warm' state. Operational programs conducted by U S commercial and military agencies in the dissipation of supercooled fog are shown to involve airborne
A71-36464

Thermal ground testing of Concorde and Versas or improvement in French test methods and facilities. G. L. Leroy, N. G. Guyon (Société Nationale Industrielle Aérospatiale, Paris, France), M. Perron (CEAT, France), and E. L. Loiseau (ONERA, Châtillon-les-Bagneux, Hauts-de-Seine, France). In Technology today and tomorrow, Canaveral Council of Technical Societies, Space Congress, 8th, Cocoa Beach, Fla., April 19-23, 1971, Proceedings Volume 1.

Review of the two ground test programs of the Concorde and Versas. Emphasis is placed on the facility implementations due respectively to the static and fatigue testing of the Concorde in the heat environment and to the dynamic testing of Versas in high-level and transient-temperature conditions. Problems presented by the necessity that the ground testing facilities include most of the simulation requirements together in order to approximate in-flight behavior are discussed, together with future needs in the fields of cryogenics, acoustics, and automation.

A71-36479

Analysis of the level of redundancy of line replaceable units (LRUs) required for the Space Shuttle avionics system. A total cost to the program of each added LRU is calculated and the configuration that results in the lowest program cost is selected. The analysis includes costs of developing and procuring hardware, and the annual maintenance expense. Improvement in reliability is quantified in terms of the reduced costs due to fewer lost vehicles and fewer missions where the payload cannot be delivered. The analysis allows a choice of high-reliability or low-reliability procurement policies for each LRU. The results show that triply redundant booster equipment and triply redundant orbiter equipment are most cost effective, except for one additional inertial platform and central computer in the orbiter.

A71-36480

Attention is given to the major areas which must be considered during preliminary design as fault detection and isolation, redundancy, maintainability, and comprehensive maintenance program. The space shuttle must have as a design goal inclusion of on-board self-test equipment in all systems and components if maintenance cost and down time are to be minimized. System reliability through redundancy with a lower order of reliability can result in a lower acquisition and maintenance cost.
A71-36498 Noise due to interaction of inlet turbulence with isolated stators and rotors. R. Mani (Massachusetts, University, Amherst, Mass.). Journal of Sound and Vibration, vol. 17, July 22, 1971, p. 251-260 6 refs. NSF Grant No-GK-5215
Analytical study of the problem of sound generation due to free stream turbulence incident on a rotor or stator row. A linearized analysis is carried out with the blade rows being modeled as a cascade of flat plates. Only the dipole effect is considered. Expressions are obtained for the intensity spectrum of noise radiated upstream and downstream. The turbulence is assumed to be homogeneous, isotropic and stationary (weak), and characterized by a longitudinal velocity correlation function of type \(\exp(-r/L) \). The sound spectrum is found to depend on the intensity of turbulent kinetic energy incident on the row, axial flow Mach number, wheel tip Mach number, row solidity, and most importantly on the ratio of the length scale \(L \) of the turbulence to the transverse spacing \(D \) between the blades. The spectra for rotors are sharply peaked at the blade-passage frequency and its higher harmonics so long as \(L/D \) exceeds about 0.5. Below these values of \(L/D \) the spectra start broadening noticeably. Also for rotors, the sound power levels themselves increase with decreasing \(L/D \). The spectra for stators simply exhibit the dominant turbulent frequency. Noise levels for scattering by a rotor are higher than for those by a stator. (Author)

Study of the accuracy with which the ground terminal can know at any moment the location of an aircraft by means of radio signals emitted by the terminal and retransmitted by the aircraft via two geostationary satellites. The basic technique considered is that of "tone ranging." The location of the aircraft is determined from two distance measurements and one altitude measurement. After a description of the measurement and navigation errors, a parametric study is made of the tracking accuracy with the aid of the Kalman filter technique. (A. B. K.)

Description of experiments in simulating a satellite-to-aircraft radio link using Dioscures equipment in aircraft-to-aircraft and aircraft-to-balloon tests. Results from both types of tests are presented involving an evaluation of the operation of an electronic scanning antenna, measurements of the intelligibility of the audio links, measurements of the rate of data transmission, an evaluation of distance measurement accuracy, and an evaluation of signal variations due to multiple-pass phenomena. (A. B. K.)

Description of the ESRO part of a joint air traffic control communication experiment for future L-band satellite use. The satellite-to-aircraft geometry was approximated by the use of stratospheric balloons to carry the signal repeater to an altitude of 38 km. The results of tests of some of the candidate analog communication systems which have been proposed for an L-band satellite ATC system for oceanic control are cited, including tests on techniques of voice transmission, data transmission, and distance measurement. (A. B. K.)

Description of experiments in simulating a satellite-to-aircraft radio link using Dioscures equipment in aircraft-to-aircraft and aircraft-to-balloon tests. Results from both types of tests are presented involving an evaluation of the operation of an electronic scanning antenna, measurements of the intelligibility of the audio links, measurements of the rate of data transmission, an evaluation of distance measurement accuracy, and an evaluation of signal variations due to multiple-pass phenomena. (A. B. K.)

A71-36513 Synchronizations of a time multiplex for air traffic control (Les synchronisations d'un multiplex temporel pour la gestion du trafic aérien). G. David and M. Duquenne (Télécom-
A71-36514

A meter wave aircraft antenna for communica-

Colloquium co-sponsored by the Federation Nationale des Industries Electroniques and the Centre National d’Etudes Spatiales Paris, Comite d’Organisation du Colloque de Paris, 1971, p. 196-205. In French

Description of the primary synchronization and the scanning field reconnaissance in the onboard equipment of the Dicosures system The use of these two synchronizations for the realization of the telemetry function is demonstrated The problem of optimal detection of data received in the base band, involving the reconstruction of the primary clock (frequency of 90 kHz), is considered, as well as the problem of bit recognition by means of a pseudorandom code - the scanning field code.

A. B. K

A71-36513

The optics of some airborne navigational instruments are described, with emphasis on the design of the high aperture, wide angle lenses required for these devices. Most of the instruments considered are of the moving map projection type mounted in the aircraft instrument panel and thus used in a head down rather than head up mode by the pilot. Additionally, some special features of an optical system for accurate projection of a marker representing aircraft position and direction onto a standard navigator’s paper map are outlined.

T. M.

A71-36553

Consideration of the problem of designing a meter wave antenna to serve as an air-to-ground link from the Concorde to ground stations via satellite. After a brief formulation of the problem, the reasons for adopting a port-starboard radiation mode switching are outlined. It is recommended that an H-shaped slot antenna be used (instead of a classical half-wave antenna) which is the equivalent of a dipole with a capacitive roof. Synthesis radiation patterns of the proposed antenna are presented. The operation of the antenna is discussed, and its probable efficiency is determined.

A. B. K.

A71-36565

Description of a practical and cost-effective trajectory plotting system for gunnery range instrumentation. The system, which is accurate, easy to operate and maintain, and allows a simple analysis of recorded data, uses three measurements to define a single point or the trajectory relative to a straight line between the gun and the target; these are range and two coordinate measurements. The system is designed to acquire this information and also to give velocity information. For some projectiles, velocities can approach 1500 m/sec. The principle of this projectile plotting system can be applied to recording the path of an aircraft coming in to land under the control of automatic landing equipment.

M. M.

A71-36566

The majority of the Electric Discharge Machining (E.D.M.) applications involve small wires for air cooling holes, special slotted for expansion joints that produce final assembly dimensions of finished assemblies, and contours for through and blind pocket configurations. Automatic and modified standard E.D.M. production applications are evaluated in detail. It is found that the best results are obtained from automated closed cycle equipment by controlling the parameters of the E.D.M. process. Various factors which must be considered for every repetitive operation are listed together with the production aids to be used.

G. R.
The potential gains in travel time from any point to another evolve from such a systems study for both short- and long-haul. The Air Force is continually looking for new or improved processes that can make aerospace configurations more economically and that can make them more reliable and with higher mechanical properties. Diffusion bonding is one of these processes. All of the problems have not been solved and even when they are, the process will not be a manufacturer’s panacea. However, diffusion bonding will have many applications in the manufacture of aerospace parts, particularly those made of titanium. Recognizing this potential the Air Force has spent considerable time and money to help make diffusion bonding a usable manufacturing method.

The growth of air travel for three typical travel markets during the last two decades is examined. It is pointed out that a large mass market exists for general short-haul travel. The potential of service by air not only for airport access but for all travel in the zone served by the long and medium-haul air terminal is examined. A quantitative assessment of the total transport concept is attempted, analyzing the market to be served, the economic factors which will eventually determine the viability of an air system, the environmental factors of noise and pollution, and the important factors of safety, convenience, and dispatch reliability. New vehicle concepts evolve from such a systems study for both short- and long-haul travel. The potential gains in travel time from any point to another on the globe are examined.

The aircraft as an autopilot problem is considered, and questions of the choice of autopilot are examined, taking into account the PB 20 and the 2000 series autopilot. The G-ASYD Cat 2 program is discussed, together with the 2100 and 2200 series (Cat 2) autopilots. Various difficulties during the development work are reported. Initial failures were followed by a great instrumentation breakthrough during the latter part of 1969. Co-Co, a unique Computer Compatible system, became operational. This system involves a digital representation of the airborne flight test data, produced on tape which can then be transferred directly to ground computers. After changes to the azimuth the autopilot was flown in 1970 and performed very well.

The philosophy evolved for ensuring high standards and quality levels in the design, development, production, inspection, and product support of a civil aircraft is discussed. Quality responsibilities and control systems of all sections were collected and written down in a single production and quality manual. This made it possible to reveal areas where minor changes were necessary to ensure proper operation of quality control and coordination of all quality functions.

An automatic titration apparatus was used for determining the pH values of turbine oils. The preliminary tests with pure substances showed the influence of solvents and their mixtures on the titration curve and inflection point. Tetraethyl ammonium hydroxide was used as the titrating agent. Optimum results were obtained with chlorobenzene/dimethylsulfoxide and toluene/dimethylsulfoxide at the ratio 3:1. The relationship between the acid number and the size of sample was studied for various aircraft oils. Good repeatability and satisfactory accuracy of results were obtained.

Improvements in the technological processes of preparing nickel- and tungsten-base jet-engine alloys achieved during the past few years are examined. Particular attention is given to such factors as isothermic closed-die forging of blades and disks, investment casting, combined closed-die forging and rolling of blades, new melting processes, and the use of powder metallurgy, diffusion welding, and so forth. The advantages which accrue from electric arc vacuum melting and improvements in electrode technology are noted. A comparison of aircraft-engine heat-resistant alloy specifications over the last 15 years is given in tabular form.

After appreciating the methodical change of theoretical considerations and experimental investigations, with which Otto Lilienthal tried to approach the solution of the problem of the free flight of man, three topics are discussed, to the treatment of which flight dynamics can be useful: the problem of flight noise, the decrease of the influence of gusts on aircraft, and the problem of dynamic stability of parachute-load systems. A reduction of noise annoyance on the ground, particularly after the take-off of V/STOL aircraft, may be obtained by the determination of noise optimal flight profiles. For gust decrease, the method of 'tuned lift control', the lift due to automatic control attacking in the neutral point of the aircraft, proves to be the most advantageous. The analytical treatment of the greatly nonlinear problem of dynamic stability of parachute-load systems succeeds well by employing the theory of describing function, as comparison with results obtained by numerical integration shows.

A71-36754 Experimental study of the near wake of a slender cone at angle of attack and at freestream Mach number of 7 (Etude experimentale du sillage proche d'un cône d'attaque en incidence à freestream Mach number equals 7). Jacques Marcillat (Aix-Marseille, Université, Marseille, Centre de Documentation de l'Armement, Paris, France) L'Aeronautique et l'Astronautique, no 29, 1971, p 49-58, 24 refs In French Research supported by the Office National d'Etudes et de Recherches Aérospatiales

Wind tunnel study of the streamline configuration of the near wake in the symmetry plane of a cone of revolution of nonzero angle of attack in supersonic flow at a freestream Mach number of 7. Experimental distribution determinations of static pressure, stagnation temperature, and stagnation pressure made it possible to establish with accuracy and completeness the configuration of the near wake of a 9-deg cone set at angles of attack ranging from 0 to 15 deg, for a freestream Reynolds number of 110,000 per cm. Through integration of the mass flow rate, it has been possible to obtain the streamline pattern in the symmetry plane.

Experiments give qualitative and quantitative results concerning the base flow and the wake of wedges located with incidence in rarefied hypersonic flows. Mach number values are 4, 8 and 20 corresponding to free stream Reynolds numbers between 320 and 2200 per cm, flow conditions are simulating flights of rockets in rarefied atmosphere at altitudes more than 50 km. Pressure and density measurements allow the determination of rarefaction and incidence effects on the geometrical and aerodynamic characteristics of the wake flow pattern.

The specifications of the AMSA program aimed at the equipment - from 1978 - of the USAF with a new strategic bomber capable of penetrating into the defenses of any potential enemy having been recalled, the reasons which have motivated the choice of North American Rockwell for the airframe and of General Electric for the engine building are indicated. A brief description of the aircraft submitted by NAR - the B-1 - is given together with some details on its characteristics, performance, electronic equipment, armament and on the program progression.

Discussion of the use of computers when solving equations of motion of gas turbine engines by means of different numerical methods. Solutions are given for the equations of motion of single- and dual-shaft engines. The operational characteristics of the engine are analyzed, and the corresponding differential equations are used as a basis for choosing the suitable numerical method. One-step and four-step methods considered include Euler's method, the fourth-order Runge-Kutta method, the fifth-order Runge-Kutta method (Merson's modification), the Adams method, the Bashforth method, and an implicit method. The optimization of step length is based on a criterion for minimum deviation from an assessed exact solution.

A71-36810 Processing of information concerning license norms on the Minsk 22 computer by the MINSK-ARDIS system (Zpracování informací o licenčních normách na samoczném počítači Minsk 22 systémem MINSK-ARDIS). Hynek Cislí Zpravoda VZLU, vol 2, no 86, 1971, p 33-46 In Czech

Description of indexing procedures, storage techniques, and data recovery operations in a central computerized system of collecting information about license norms and standards in the aircraft industry. The system is based on the Minsk 22 computer with the MINSK-ARDIS program. Information provided by the system includes the date when a particular specification standard was issued, its contents, storage designation, reference to other relevant standards, differences with superseded standards, and differences with comparable foreign standards.

A71-36918 The new IATA conditions of carriage for passengers and baggage (Die neuen IATA-Beforderungsbedingungen für Fluggäste und Gepäck). Alfred Rudolf Zeitschrift fur Luftrecht

The new Finnish law of 1964 is the result of a long cooperation between Finland, Sweden, Norway, and Denmark. The law is based on the agreements reached in Chicago regarding the international civil aviation. An aircraft in the Finnish airspace is subject to the Finnish law and to the regulations based on it. Regulations discussed are related to the operational state of the aircraft, qualifications and authority of aircraft personnel, construction and operation of airports, and the occurrence of special incidents.

The Warsaw Convention as amended at The Hague in 1955 has been changed at an international conference at Guatemala in accordance with the Protocol of Mar. 8, 1971. The regulations in their new form are presented. There are five chapters dealing with the subject of the convention, documents such as the ticket and fare, meals, and liability, and airport authorities to provide information.

The regulations of the law presented are contained in two sections. The first section is concerned with the objective and the applicability of the law, the area which is to be protected, financial questions concerning protective measures in the construction of houses, and obligations of airport authorities to provide information to the government. The second section discusses changes in the air traffic law.

Although a great deal of attention has been given to the role of water vapor from supersonic transport (SST) exhaust in the stratosphere, oxides of nitrogen from SST exhaust pose a much greater threat to the ozone shield than does an increase in water. The projected increase in stratospheric oxides of nitrogen could reduce the ozone shield by about a factor of 2, thus permitting the harsh radiation below 300 nanometers to permeate the lower atmosphere.

The generation of impulsive sound, commonly called blade slap, due to blade-vortex interaction for helicopter rotors is discussed. The unsteady lift on the blades is calculated using linear unsteady aerodynamic theory for an oblique gust model of the blade-vortex interaction. A theoretical model for the radiated sound due to the transient lift fluctuations is presented. Expressions for the directivity, frequency spectrum, transient signal, and total power of the acoustic signal are derived. Typical results are presented and discussed. Calculations of the transient signal are presented in comparison with recent experimental results. The agreement is very good.

The glossary presented provides definitions of the most common terms of commercial air traffic taking into consideration words in German as used in the German Democratic Republic and expressions of international usage in English. The English equivalent term is frequently supplied together with a German expression. A list of commonly used abbreviations of German terms is also provided.

Description of the highly sophisticated 747 simulator which incorporates a six-degree-of-motion system to provide a high degree of realism. A major component is the Malfunction Insertion and Display Unit (MIDU), a large screen on which 48 slides can be projected. MIDU makes it possible simultaneously to train engineers and pilots, using different sets of data. The simulator can be "initially" to any of hundreds of possible places, in flight or on the ground. The Variable Anamorphic Motion Picture (VAMP) system, soon to be installed, is described.

Description of the BOAC digital computer type simulator, the computer system of which has a capacity of 56 K words with 16 bits to a word. Four degrees of movement are provided. Full simulation of all systems is obtained with the exception of an actual picture on the weather radar screens. The simulator is used for pilot and flight engineer conversion training, pilot and flight engineer check flights, and training of maintenance engineers in system checks and engine ground running procedures.

A71-36993 Computer-based twin-radar air traffic control system (Eine Anlage zur rechnergestützten Lufttraumbeobachtung mit Hilfe von zwei Radargeräten). Eberhard Hanle (Forschungs-
An experimental study of computer-based multiradar aircraft tracking is conducted with the aid of a twin radar air traffic control system in operation. Its crucial components are described: digital plot extractors for primary radar responses using sliding-window detectors, and transmitters feeding the radar data to a computer. The overall operation of the system is discussed.

M.V.E

Testing aircraft parts by NDT methods.
Kingston G. Wolf (U.S. Navy, Metals Div., Jacksonville, Fla.) Metal Progress, vol 100, Aug 1971, p 57, 58

The installations described include an ultrasonic system for finding defects in valves and a fluorescent particle system for detecting cracks in a variety of aircraft parts. The first installation consists of an ultrasonic pulse unit, plus a special fixture and transducer assembly. The transducer is sensitive enough to find breaks as small as 0.005 in. wide, 0.006 in. deep, and 3/8 in. long. A valve is inspected in less than a minute. The fluorescent particle system consists of a series of processing stations connected by a heavy-duty roller conveyor. Items tested for surface defects include all nonferrous engine cases, landing gears, and ground-handling equipment.

Z.W.
STAR ENTRIES

N71-29215# Tyco Labs., Inc., Pomona, Calif. General Nucleonics Div.
Donald W. Blincow Feb 1971 138 p refs (Contract AT(04-3)-B05) (SAN-B05-1) Avail NTIS

The development of a nucleonic instrumentation system for continuous on-board indication of helicopter lift capability and the testing of a prototype system in a realistic environment are described. The system uses X-ray backscatter from a Kr-85 source and a temperature sensor to measure ambient air density and temperature outside the vehicle and computes gross lift capability. Combining the lift capability output with helicopter start gross weight and present fuel quantity provides the pilot with a real-time readout of his lift margin at maximum rotor speed before he commits the vehicle to take off or other critical maneuver.

N71-29221# Lockheed Missiles and Space Co., Sunnyvale, Calif.
UNSTEADY AIRFOIL STALL AND STALL FLUTTER

The unsteady airfoil stall characteristics are described analytically using static experimental data as an input. It is found that the dynamic overshoot of static stall does not in itself generate any time lag above the Karman-Sears wake lag. It is the post stall aerodynamic forces that create an additional time lag, which is dominant at high frequencies. The analytic theory is found to predict dynamic loops and measured negative damping as long as the frequency is not very large. In the latter case, a graphical method for modulation of the separation induced phase lag gives improved agreement with experimental data. The effects of compressibility and shock-induced boundary layer separation are included in the analysis, and it is shown that the experimentally determined stall flutter boundaries of a space shuttle wing can be predicted using only static data as an input.

N71-29256# Civil Aeronautics Board, Washington, D. C.
REMARKS PREPARED FOR DELIVERY BY THE HONORABLE SECOR D. BROWNE, CHAIRMAN, CIVIL AERONAUTICS BOARD, BEFORE THE AVIATION DAY LUNCHEON, SEATTLE CHAMBER OF COMMERCE
Avail Issuing Activity

Air carriers' problems and areas where the Civil Aeronautics Board and the carriers can take corrective steps are discussed. Capacity, fare increases, the expense which would result from retrofitting if required for protecting the environment, the necessity to improve controls for preventing hijacking, and uncoordinated access transportation are considered, and areas in which the carriers might cut costs are indicated. The problems of local airline service and subsidy, and of supplemental air carriers are described. The impact of the carriers' financial health on the aircraft industry and the need to have a strong R and D program for advanced aircraft such as the SST and short-haul aircraft are also covered.

N71-29286# Southampton Univ. (England) Transportation Research Group
INTER-CITY VTOL STUDIES (UK) BUSINESS TRAFFIC AND POTENTIAL SITES. VOLUME 1: BUSINESS TRAFFIC Final Report

The surveys and analyses which were made of business travel from establishments in eight urban areas in the United Kingdom are presented. The studies were undertaken to determine the economic feasibility of establishing a vertical takeoff and landing air services operation. The basic trip characteristics of business travelers and the relationships of trip generation and distribution are discussed.

N71-29306# National Aviation Facilities Experimental Center, Atlantic City, N. J.

To evaluate the concept of a simple head-up display (HUD) as an aid to uninstrument-rated pilots encountering reduced flight visibility conditions, two versions of such a display were flown by six pilots. The subject pilots were pretested to insure that they could not perform standard maneuvers when outside visual reference and panel attitude instruments were obscured leaving only the altimeter, airspeed indicator, gyroscopic direction indicator, gyroscopic rate-of-turn/slip-skid indicator and clock. Given either of the HUD instruments and a partial panel of basic instruments, plus a brief indoctrination in the use of the HUD, the pilots showed marked improvement in preservation of aircraft control. The opinions of expert observers suggest that, with a few hours of additional training, inexperienced pilots would be able to employ a simple HUD with a further improvement of aircraft safety when penetrating adverse weather.

Author
SYNOPSIS ON UNSTEADY AERODYNAMICS FOR AEROELASTIC ANALYSES OF INTERFERING SURFACES, PART 1

(AGARD-CP-80-71) Avail NTIS

CONTENT

1 SOME CONSIDERATIONS RELATIVE TO THE PREDICTION OF UNSTEADY AIR LOADS ON INTERFERING SURFACES

H Ashley (Stanford Univ.) 22 p refs

2 CALCULATION METHODS FOR UNSTEADY AIRFORCES OF TANDEM SURFACES AND T-TAILS IN SUBSONIC FLOW

D E Davis (Royal Aircraft Estab., Farnborough, England) 26 p refs

3 REPRESENTATION OF A WING IN THE LIFTING LINE, AND FORMULATION AND SOLUTION OF THE INTERACTION CALCULATIONS OF TWO WINGS IN TANDEM

R Dat and Y Akamatsu (Office Natl. D'Etudes et de Recherches Aerospatiales, Paris, France) 17 p refs

4 A SUPersonic BOX COLLOCATION METHOD FOR THE CALCULATION OF UNSTEADY AIRFORCES OF TANDEM SURFACES

D L Woodcock and E J York (Royal Aircraft Estab., Farnborough, England) 26 p refs

N71-29934#/ Stanford Univ., Calif

SOME CONSIDERATIONS RELATIVE TO THE PREDICTION OF UNSTEADY AIR LOADS ON INTERFERING SURFACES

H Ashley In AGARD Symp on Unsteady Aerodynamics for Aeronautical Analyses of Interfering Surfaces. Part 1 Apr 1971 22 p refs

Aval NTIS

Author

LOADING SINGULARITIES inherent in linearized potential theory are classified as local, in the sense that both the nature and magnitude of the singularity are determined by boundary conditions in the inner field, or global, in the sense that the entire boundary value problem must be solved to determine their details Available results are reviewed relative to discontinuities in surface slope, planform shape, dihedral angle, etc., and suggestions are offered for combining them into numerical solution schemes With respect to the analysis of interfering lifting surfaces, selected recent activity in the United States on continuous solution of various subsonic and supersonic cases is described Regarding the area-element or box approach to the latter, it is recommended that an element in the form of a trapezium, similar to that employed by Woodward for steady flow, will also improve the behavior of predicted loads for oscillatory motion of interacting surfaces Formulas for certain of the required influence coefficients are developed Some nonlinear effects are examined which are felt to have greater significance for interference problems than for isolated lifting wings The phenomena include the normal displacement and self-deformation of wakes which induce loads on aft surfaces, the local influences of profile thickness, and displacement due to boundary layer growth

Author

N71-29936# Royal Aircraft Establishment, Farnborough (England)

CALCULATION METHODS FOR UNSTEADY AIRFORCES OF TANDEM SURFACES AND T-TAILS IN SUBSONIC FLOW

D E Davis In AGARD Symp on Unsteady Aerodynamics for Aeronautical Analyses of Interfering Surfaces. Part 1 Apr 1971 22 p refs

Aval NTIS

The basis of numerical methods, using continuous distributions of loading, for evaluating oscillatory generalised airforce coefficients

Author
for interfering and intersecting surfaces inclined everywhere at small angles to a subsonic mainstream flow is described. Particular application to tandem surfaces and T-tails is discussed briefly.

...
A series of wind tunnel tests were performed in view of analyzing the influence of several parameters on the aerodynamic interference between two lifting surfaces in tandem. The aim was to determine the magnitude of the coupling terms in order to provide a theoretical explanation of the flutter instabilities occurring on variable sweep airplanes. The tests were limited to two types of motion: pure translation and pure pitching oscillation of one wing. The model consisted of two rectangular or swept wings whose relative position could be adjusted continuously in the horizontal as well as in the vertical direction. Some comparisons between theory and experiment are given.

Author

N71-29341

Astrom, A; Horning, J D; Mykytow, W J; Olsen, J J; Pollock, S J

AGARD Symp on Unsteady Aerodynamics for Aeroelastic Analyses of Interfering Surfaces, Part 2 Apr 1971 24 p refs

Author

Data from an aerelastic and flutter analysis are presented. The data include lateral gust loading, aircraft designs, and mission analysis. The results indicate that mass balancing of the rudder and aileron may be deleted. Testing time for high speed flutter may be reduced, and the risks of extensive modifications to the design may be reduced. The tests also achieved the certification of the aircraft.

Author

N71-29345

Messerschmitt-Boelkow-Blohm G mb H, Munich (West Germany)

SOME RECENT INVESTIGATIONS ON FLUTTER IN SUBSONIC FLOW, CAUSED BY INTERFERENCE AERODYNAMIC FORCES BETWEEN WING AND TAIL OF A VARIABLE GEOMETRY AIRCRAFT

W Sendel and O Sensburg in AGARD Symp on Unsteady Aerodynamics for Aeroelastic Analyses of Interfering Surfaces, Part 2 Apr 1971 10 p refs

A method for routine flutter calculations utilizing interference aerodynamic forces between wing and tail is presented. The elastomechanic system of the aircraft is described by branch modes and the airforces for these branch modes are produced by superimposing air forces for arbitrary polynomials. The air forces are calculated for a distinct vertical offset between wing and tail with the exact kernel functions. A large variety of stiffness parameter variations was performed such as wing stiffness, fuselage stiffness and tailplane connection stiffness in order to get a better understanding of the flutter phenomenon involved and to find a cure for solving the problem. Some of the results are compared with results from wind tunnel model tests to establish the validity of the analytical method used.

Author

N71-29346

National Aero- and Astronautical Research Inst., Amsterdam (Netherlands)

UNSTEADY AERODYNAMICS FOR WINGS WITH CONTROL SURFACES

H Tijdeman and R J Zwaan in AGARD Symp on Unsteady Aerodynamics for Aeroelastic Analyses of Interfering Surfaces, Part 2 Apr 1971 15 p refs

A kernel function method to calculate pressure distributions over wings with harmonically oscillating control surfaces in subsonic flow is briefly discussed. Comparisons of calculated and measured pressure distributions are given for different planforms, Mach numbers, and oscillating modes. The method is compared with the potential flow. The results are presented for the case of a swept wing and a tailplane. The analysis is illustrated by the analysis of a swept wing and tailplane configuration. The method is also compared with the potential flow method. The results are presented for the case of a swept wing and tailplane configuration. The method is also compared with the potential flow method. The results are presented for the case of a swept wing and tailplane configuration.
numbers and reduced frequencies. An analysis is given of pressure distributions measured at high subsonic and transonic Mach numbers.

N71-29347 Office National d'Etudes et de Recherches Aérospatiales Paris (France)

APPLICATION OF LIFTING SURFACE THEORY TO WINGS PROVIDED WITH CONTROL SURFACES [APPLICATION DE LA THEORIE DE LA SURFACE PORTANTE A DES AILES MUNIES DE GOUVERNES]

Avail NTIS

A method for solving the problem of control surfaces in subsonic unsteady flow is considered. It is based on the explicitation of the logarithmic singularity of the pressure field and on an analysis of the usual matrix solution of the integral equation. This method, whose application to a rectangular wing has already been described, is extended here to an arbitrary planform. The comparison of experimental and theoretical results obtained for the rectangular wing is also shown.

N71-29348 British Aircraft Corp., Warton (England)

UNSTEADY AIRFORCES FOR WINGS WITH CONTROL SURFACES. PART 1: LOADING FUNCTIONS

An attempt was made, through the use of matched asymptotic expansion techniques, to define methods for finding the inner singular pressure loading functions associated with a wide variety of interaction effects on wings with unbalanced control surfaces. The work is basic in that it facilitates the construction of adequate loading forms which are necessary before attempting to obtain convergent lifting surface theory solutions. It extends the practical scope of Landahl's work and gives, as a result, sound reasons for modifying the loading recipes.

N71-29349 British Aircraft Corp., Warton (England)

UNSTEADY AIRFORCES FOR WINGS WITH CONTROL SURFACES. PART 2: CALCULATION METHODS

Using the local loading solutions, a numerical method is described which accurately evaluates the associated discontinuous downwash distribution, \(w(2) \), for steady flow. \(W(2) \) is then regularised through the specified boundary conditions to give \(w(1) \), which can then be used to gain converged solutions for the residual loading. Full loading solutions are found for rectangular wing with control surface configurations in incompressible flow, and the results compared with other methods. The form of \(w(1) \) is calculated on a simple swept wing with control surface configuration, and is found to become irregular near the hinge line corners. Modifications to the originally chosen special loading form are suggested which should lead to convergent loading solutions for swept wings.

N71-29350 Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Goettingen (West Germany)

PRESSURE MEASUREMENTS ON AN HARMONICALLY OSCILLATING SWEEP WING WITH TWO CONTROL SURFACES IN INCOMPRESSIBLE FLOW

The results of an experimental study of the pressure singularities occurring along the control surface edges of a harmonically oscillating swept wing control surface system in incompressible flow are presented and discussed. The two control surfaces ranged along the whole span of the wing and could be excited so that alternatively the inner or the outer flap or even both were oscillating with different phases and amplitudes relative to each other and relative to the wing.

N71-29361 Royal Aircraft Establishment, Farnborough (England)

NOMOGRAMS FOR THE CALCULATION OF MULTIPATH EFFECTS ON VHF AND UHF AIRCRAFT RADIO LINKS

G May. May 1970 28 p refs. (RAE-TR-70097) Copyright Avail NTIS

Expressions are derived for the difference in transmission times and the frequency of fading due to the multipath propagation of signals between two aircraft. Nomograms are presented both for the general and the simplified cases. The latter occur when approximations can be made because the sum of the heights of the two aircraft is much less than the distance between them.

N71-29374 Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany) Inst fuer Luftsaugende Antriebe

INTRODUCTION TO THE PHYSICAL FUNDAMENTALS OF COMPRESSOR NOISE [EINFUEHRUNG IN DIE PHYSIKALISCHEN GRUNDLAGEN DES LAERS VON AXIALVERDICHTERN]

A survey of a large number of reports on noise generated by fans and compressors is presented. A comprehensive review is given of the fundamentals of compressor aerodynamics and the origins of compressor noise. Possibilities for reducing compressor noise are discussed.

N71-29378 Aeronautical Research Inst of Sweden, Stockholm

FFA STRUCTURAL RESEARCH AND TEST FACILITIES

1970 64 p (FFA-MEMO-61) Avail NTIS

Main activities of test facilities on structural engineering at FFA, Sweden, are described as well as the test equipment. Other facilities serving the FFA Structures Department are reviewed.

N71-29395 Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Stuttgart (West Germany) Abteilung Aerodynamik

RESULTS OF THE THEORY OF ROTOR FLOW ACCORDING TO MILLER AND SCULLY [ERGEBNISSE DER THEORIE DER ROTORDURCHSTROEMUNG NACH MILLER UND SCULLY]

Author

569
STABILIZATION OF AIRCRAFT IN THE PRESENCE OF GUST

STUDIES RELATED TO THE OPTIMAL CONTROL AND STABILIZATION OF AIRCRAFT IN THE PRESENCE OF GUST LOAD DISTURBANCES

PRESSURE MEASUREMENTS ON AN HARMONICALLY OSCILLATING SWEEP WING WITH TWO CONTROL SURFACES IN INCOMPRESSIBLE FLOW

THE CALCULATION OF THE DIVERGENCE FACTOR CHARACTERISTIC OF EARTH REFLECTED SIGNALS ON AIR-TO-AIR RADIO LINKS

MATHEMATICAL MODEL OF EXTERNAL DISTURBANCES ACTING ON AN AIRCRAFT DURING AN ILS APPROACH AND LANDING

THEORY OF JET ENGINES

CHARACTERISTIC OF EARTH REFLECTED SIGNALS ON AIR-TO-AIR RADIO LINKS
The method of transfer matrices allows a relatively clear and simple solution of the problems of rotor blade vibrations, especially by use of digital computers. The uncoupled flapwise, chordwise, and torsional vibrations are dealt with. For the flapwise bending vibration, the interharmonic coupling effects owing to aerodynamic damping are taken into account. A built-in cone angle for hingeless rotors is considered for flapwise vibrations. The transfer matrix method is compared with other theoretical methods and experimental results.

N71-29551# Electromagnetic Compatibility Analysis Center, Annapolis, Md
THIRD-ORDER-TWO SIGNAL INTERMODULATION PRODUCTS FOR 242 FREQUENCIES BETWEEN 225–400 MHz
(Contract F19628-70-C-0291)
(ECAC-PR-70-018) Avail NTIS
A series of reports are presented which are designed as handbooks to be used in FAA frequency assignment processes. Their sole purpose is to identify third-order-two signal intermodulation products and their contributing frequency pairs. These matrices include all third-order-two signal intermodulation products within the 118–136 MHz and 225–400 MHz band produced by mixtures of all possible pairs of selected channels. These products are of the form 2F1 - F2 and 2F2 - F1. Author

N71-29552# Electromagnetic Compatibility Analysis Center, Annapolis, Md
THIRD ORDER-TWO SIGNAL INTERMODULATION PRODUCTS, 118–136 MHz: 50 KHZ CHANNEL SPACING INDEXED BY INTERMODULATION PRODUCT
(Contract F19628-70-C-0291)
(ECAC-PR-70-016) Avail NTIS
For abstract see N71-29551

N71-29553# Department of Trade and Industry, London (England) Telecommunications Engineering Headquarters
MOVEMENT OF EMERGENCY VEHICLES IN REDUCED VISIBILITY CONDITIONS REPORT ON ASMI/TRANSPONDER TRIALS AT HEATHROW AIRPORT, SEPTEMBER 1970
A R Hilber and A P Fuggle 1970 28 p Its Tels R3A Note 2/70, Issue 1
Avail NTIS
The ASMI/Transponder tests for moving emergency service vehicles on airfields during poor visibility conditions are evaluated. The transponder was tested on a Nubian fire tender. Signals from the ASMI were used to interrogate the transponder at Q band, and by transmission of the ASMI ppi picture to the vehicle via the microwave link. It is concluded that the simplest and cheapest arrangement is the provision of transponders on selected vehicles, and requires continuous guidance information to the vehicle by ATC Transponder cover from all areas of the airfield could be provided.

N71-29554# Electromagnetic Compatibility Analysis Center, Annapolis, Md Federal Aviation Agency, Washington, D C
THIRD ORDER TWO SIGNAL INTERMODULATION PRODUCTS, 118–136 MHZ: 50 KHZ CHANNEL SPACING INDEXED BY CONTRIBUTING FREQUENCIES
(Contract F19628-70-C-0291)
(EAC-PR-70-015) Avail NTIS
For abstract see N71-29551

N71-29555# Environmental Science Services Administration, Boulder, Colo
MODULATION CHARACTERISTICS CRITICAL TO FREQUENCY PLANNING FOR THE AERONAUTICAL SERVICES
R W Hubbard, D V Glen, and W J Hartman Apr 1970 191 p refs
(Contract FA-67-WAI-134)
(ESSA-TM-ERL-ITS-232) Avail NTIS
The fundamental characteristics of basic analog and digital modulation processes used in the Air Traffic Control (ATC) communication system are summarized. These characteristics have been condensed into a format in which they may be readily applied to the spectrum planning phases of ATC system design. Single channel modes of transmission are principally considered for voice and data signals, but many of the aspects considered are also useful in describing the baseband signal structure for multichannel systems in which multiplex transmission modes are used. The purpose is to provide a basic set of signal descriptors and characteristics at several stages in a total ATC communication circuit. The tabulated characteristics may be applied systematically to help determine the initial channel spacing, allocation, and power requirements for a particular system in a given frequency band.

N71-29556# Air Force Systems Command, Wright-Patterson AFB, Ohio Foreign Technology Div
USING A HELICOPTER FOR DUSTING FOREST SOURCES OF TICK-BORNE ENCEPHALITIS
V A Nabokov et al 20 Feb 1970 7 p refs Transl into ENGLISH from Med Parazitol i Parazitarn Bolezi (Moscow), v 33, no 1, 1964 p 64–68
(AD-703998, FTD-HT-23-644-69) Avail NTIS
The MU 1HX helicopter was tested for spray dusting with a 10 percent DDT dust in tick-borne encephalitis foci. During the period of spraying the flight speed of the craft was kept within limits of 30 to 35 km per hour. The improved precipitation of the chemical poison permitted it to reduce its consumption rate down to 20 kg per hectare, as compared with that (50 kg per hectare) accepted for the plane AH 2. The treatment remained highly effective. In addition to considerable savings of the poisonous material the reduction of consumption rates brought with it a substantial improvement of the present economic indices. This warrants recommending the new mode of the treatment for a wide scale field application in the foci of tick-borne encephalitis.

N71-29557# Air Force Systems Command, Wright-Patterson AFB, Ohio Foreign Technology Div
HYDRAULICS AND ITS APPLICATIONS ON AIRCRAFT
(AD-701974, FTD-HT-23-242-69) Avail NTIS
HC $6.00/MF $9.95
The application of hydraulic systems to the operation of aircraft is discussed. Subjects presented are: (1) fundamentals of hydrostatics, (2) fundamental equations of hydraulics, (3) relative and nonsteady motion of fluid in pipes, (4) hydraulic drives and hydraulic transmissions, (5) design of hydraulic equipment for aircraft use, and (6) characteristics of centrifugal pumps. Published by General Electric Co., Philadelphia, Pa.

ANALYTICAL METHODS FOR PROJECTED CONSTRUCTION OF WINGS

I. S. Golubev, 28 Dec 1970, 313 p, refs. Transl. into English from Ver Deut Ing Z (West Germany), v. 112, 1 Apr 1970 p 423 (AD-722303, FTD-HC-23-592-70) Avail NTIS HC $6.00/MF $0.95 CSCL 1/3

This book contains an investigation of two interrelated problems: finding optimal material distribution in the wing structure and selecting the structural-technological solutions. The optimal law of material distribution is found by the methods of nonlinear programming. On the basis of replacing a variable function by a set of discrete parameters, the calculational relations (critical functions, conditions, restrictions) corresponding to the numerical and analytical methods of solving the design problem and various calculational schemes for the wing are obtained. First, the simplest cases are presented - single load system, absence of heating, isotropic structure, etc. On the basis of these cases, general relations are derived permitting consideration of the effect of aerodynamic heating, the load spectrum, and pliability of the wing fastening. The transition from the calculational scheme to the structural scheme and selection of the optimal structural-technological version of the wing are carried out on the basis of analyzing the additional weight, sources of which are the stability of the structural elements, reliability, technological factors and operating conditions. Published by General Electric Co., Philadelphia, Pa.
using the lift line model to provide optimal boundary conditions for the circulation distribution around the hub, showed that the theory is not sufficient to describe all hydrodynamic processes around a propeller.

The problem of a wing flying in very close proximity to a solid boundary, the so-called ram wing, is reviewed and a new control scheme is proposed. The simulation showed that the bank angle control scheme behaved very well, and its overall performance was near that predicted. Relatively minor modifications can incorporate this control scheme into existing analog computers on board the aircraft.

The report identifies the public airports in Lane County, Oregon. The only commercial airport in the county, Mahlon Sweet Field, is examined as a regional and local airport facility. Projections of passenger and aircraft operations have been made at five year intervals through 1990. The development of the airport and the subsequent impact on land use is examined. The six general aviation airports in Lane County are also examined. Pilot, aircraft, and population distribution and land use are discussed prior to making recommendations for these airports.

The report proceeds to supply a data bank on airport activity during the past ten years, including commercial, general and military air movements. The study also recognized any significant trends which may have transpired in the past five years. The study then provides an examination into the relationships between airports and comprehensive planning. Land use planning and transportation planning processes are interpreted according to their relevance in achieving a harmonious and effective airport-neighboring environs relationship.

The present approach guidance scheme is one of controlling the aircrafts velocity vector. However, this scheme has two major disadvantages: its dificult flying task for the pilot and, when the aircraft arrives tangent to the circular path, a violent maneuver is usually required to achieve the proper bank angle to stay on the desired circular path. An improved method for controlling the side firing AC-130 and AC-119 into circular attack geometry eliminates these disadvantages. Furthermore, with this improved system the bank angle rates never exceed 3 or 4 degrees per second. This control scheme was simulated on the analog computer and the results are presented graphically. The initial test flight showed that the bank angle control scheme behaved very well, and its overall performance was near that predicted. Relatively minor modifications can incorporate this control scheme into existing analog computers on board the aircraft.
ternal/external lighting systems for U.S. Army aircraft is shown to be in close agreement with experimental results obtained elsewhere. The comparison of the present data with both theory and experimental results obtained elsewhere is presented and shown to be in close agreement.

SUSPENSION AND BALANCE SYSTEM

The analysis considers a two-dimensional wing-fan system which consists of an airfoil with flap, fans, which have a distributed suction at their inlet and a jet at their exit, and a jet sheet leaving the flap trailing edge. The solution provides the incompressible flow potential for any value of fan or engine mass flow coefficient, the thrust coefficient for the propulsion system exhaust, and the wing and flap angle of attack. Flow fields, pressure distributions, and lift coefficients for a particular, externally blown flap, high-lift configuration are presented.

INTERNAL/EXTERNAL LIGHTING Final Report

N71-29775

James A. Albers and Merle C. Potter Washington, Jul 1971 35 p refs
(NASA-TN-D-6394, E-6132) Avail. NTIS CSCL 01C

Aerodynamic forces and moments on three low-aspect-ratio wing planforms were obtained using a magnetic suspension and balance system. Comparison of the present data with both theory and experimental results obtained elsewhere is presented and shown to be in close agreement.

INTERNAL/EXTERNAL LIGHTING Final Report

N71-29776

(NASA-CR-1796, TR-168) Avail. NTIS CSCL 01A

Aerodynamic forces and moments on three low-aspect-ratio wing planforms were obtained using a magnetic suspension and balance system. Comparison of the present data with both theory and experimental results obtained elsewhere is presented and shown to be in close agreement.

NOISE EXPOSURE FORECAST CONTOURS FOR EXPECTED 1985 AND 1990 OPERATIONS AT SEVEN US AIRPORTS

N71-29777

Jan 1971 93 p refs
(AD-722365, BBN-2076) Avail. NTIS CSCL 20/1

The report summarizes a study of the probable impact of future supersonic transport (SST) aircraft operations on the noise environment around seven airports in the United States. The noise environment is depicted in terms of Noise Exposure Forecast (NEF) contours of NEF 30 and 40 values for projected 1985 and 1990 operations at the following seven airports: Anchorage International Airport (ANC), Logan International Airport, Boston (BOS); Honolulu International Airport (HNL), John F. Kennedy International Airport New York (JFK), Los Angeles International Airport (LAX), Seattle-Tacoma International Airport (SEA), San Francisco International Airport (SFO). Sets of noise contours are given for each airport for the two projections.

RELIABILITY Final Report

N71-29796

Army Test and Evaluation Command, Aberdeen Proving Ground, Md
10 Mar 1971 18 p
(AD-727221, MTP-7-3-508) Avail. NTIS CSCL 14/4

The procedure defines methodology for evaluating the reliability of aircraft and related subsystems and allied equipment.

INTERNAL/EXTERNAL LIGHTING Final Report

N71-29797

Army Test and Evaluation Command, Aberdeen Proving Ground, Md
12 Mar 1971 9 p refs
(AD-723034, MTP-7-3-527) Avail. NTIS CSCL 1/3

Procedures are described for determining the functional suitability of internal/external lighting systems for U.S. Army aircraft.

DUAL MODE SYMMETRICAL HIGH FREQUENCY ANTENNA FOR AIRBORNE USE

N71-29895

December 1971 42 p refs
(AD-722736, ECOM-3404) Avail. NTIS CSCL 9/5

A compact, self-contained symmetrical antenna (experimental) for airborne use at high frequencies has been developed and tested. Provisions for tuning are integrated with the radiating elements. A four-port hybrid is incorporated enabling the antenna to function in two independent modes for both transmission and reception. When symmetrically installed on a helicopter and operated in the antiphase mode, excitation of the aircraft is minimal, and a dipole pattern which is predominantly horizontally polarized obtains. When operated in the inphase mode, the resulting pattern is omnidirectional and the polarization predominantly vertical. Radiation patterns are highly predictable and the rotor effect minimal. At frequencies in the lower HF range, the noval antenna has somewhat greater gain than the much larger conventional wire antenna.

NOL HYPERVELOCITY WIND TUNNEL REPORT NO. 3. THEORETICAL ANALYSIS OF THE BOUNDARY LAYER IN THE NOZZLE

N71-29896

Neal Tetervm 26 Feb 1971 45 p refs
(AD-722348, NOLT-71-17) Avail. NTIS CSCL 14/2

The equations used to calculate the boundary layer properties for use in the design of the Mach 10, 15, and 20 axisymmetric nozzles of the hypervelocity wind tunnel at NOL are derived. One equation is the integral moment-of-momentum differential equation for the boundary layer velocity profile shape parameter, the form of the equation is valid for a real gas. This equation is used with an axisymmetric integral momentum equation that is valid for thick as well as for thin boundary layers to calculate the total thickness and the displacement effect of the boundary layer.

NOL HYPERVELOCITY WIND TUNNEL REPORT NO. 1. AERODYNAMIC DESIGN

N71-29907

E. Leroy Harris and Walter J. Glowacki 26 Feb 1971 64 p refs

574
The NOL hypervelocity wind tunnel will provide a high Reynolds number turbulent flow simulation in the Mach number range 10 to 20. This facility, much needed for large-scale testing of hypersonic vehicles, is under construction and will be operational late in 1972. Supply pressures up to 40,000 psi will be maintained constant for 1 to 4 seconds during which stable, condensation-free flow conditions will prevail. Very high Reynolds numbers are obtained by operating with nitrogen at temperatures just sufficient to avoid test section condensation. The facility, which operates in a blowdown mode, has separate legs for the three design Mach numbers 10, 15, and 20. Each leg is fitted with its own storage heater, diaphragm assembly, contoured nozzle, and diffuser. The three legs share a common gas storage supply, test cell and model support system, and vacuum sphere. The report highlights the more significant considerations leading to the aerodynamic design of the facility and includes discussions of the need for the facility, the initial requirements imposed on its design, and brief descriptions of the layout and operation of the facility.

Author (GRA)

AIRCRAFT ACCIDENT REPORT MISSISSIPPI VALLEY AIRWAYS, INCORPORATED DEHAVILLAND DHC-6, N956SM, LA CROSSE, WISCONSIN, 9 NOVEMBER 1970
5 May 1971 13 p

A Mississippi Valley Airways, Inc., DeHavilland DHC-6, N956SM, crashed at La Crosse, Wisconsin, on November 9, 1970, at approximately 1608 central standard time while executing a nonprecision instrument approach in instrument flight conditions. The aircraft struck trees approximately 4,000 feet from the threshold of runway 13 on approach centerline. The aircraft was destroyed by impact. The captain, first officer, and three of the four passengers sustained serious injuries. There was no post-crash fire. The National Transportation Safety Board determined that the probable cause of this accident was that for unknown reasons, the captain failed to maintain altitude at minimum descent altitude and allowed the aircraft to descend below the height of trees while executing a nonprecision instrument approach in instrument flight conditions.

Author

AIRCRAFT ACCIDENT REPORT OVERSEAS NATIONAL AIRWAYS, INCORPORATED, DOUGLAS DC-9, N935F, OPERATING AS ANTILLIAANSE LUCHTVAAART MAATSCHAPPIJ FLIGHT 980 NEAR SAINT CROIX, VIRGIN ISLANDS, 2 MAY 1970
31 Mar 1970 33 p

Overseas National Airways Flight 980 (ALM), was ditched near St. Croix. Forty passengers, including 35 passengers and five crewmembers survived. Twenty-three persons, including two infants and the stewardess, did not survive. The aircraft sank in 5,000 feet of water and was not recovered. The flight departed Kennedy International Airport, N.Y., nonstop for St. Maarten, Netherlands Antilles. After an ADF and three circling approaches in poor weather, during which a landing could not be made, the flight departed for St. Croix. Enroute to St. Croix in a low-fuel state, the aircraft was descended to the water in anticipation of a ditching. When fuel exhaustion was reached, the engines flamed out and the aircraft was ditched.

Author

AIRCRAFT ACCIDENT REPORT MISSISSIPPI VALLEY AIRWAYS, INCORPORATED DEHAVILLAND DHC-6, N956SM, LA CROSSE, WISCONSIN, 9 NOVEMBER 1970
5 May 1971 13 p

A Mississippi Valley Airways, Inc., DeHavilland DHC-6, N956SM, crashed at La Crosse, Wisconsin, on November 9, 1970, at approximately 1608 central standard time while executing a nonprecision instrument approach in instrument flight conditions. The aircraft struck trees approximately 4,000 feet from the threshold of runway 13 on approach centerline. The aircraft was destroyed by impact. The captain, first officer, and three of the four passengers sustained serious injuries. There was no post-crash fire. The National Transportation Safety Board determined that the probable cause of this accident was that for unknown reasons, the captain failed to maintain altitude at minimum descent altitude and allowed the aircraft to descend below the height of trees while executing a nonprecision instrument approach in instrument flight conditions.

Author

AIRCRAFT ACCIDENT REPORT OVERSEAS NATIONAL AIRWAYS, INCORPORATED, DOUGLAS DC-9, N935F, OPERATING AS ANTILLIAANSE LUCHTVAAART MAATSCHAPPIJ FLIGHT 980 NEAR SAINT CROIX, VIRGIN ISLANDS, 2 MAY 1970
31 Mar 1970 33 p

Overseas National Airways Flight 980 (ALM), was ditched near St. Croix. Forty passengers, including 35 passengers and five crewmembers survived. Twenty-three persons, including two infants and the stewardess, did not survive. The aircraft sank in 5,000 feet of water and was not recovered. The flight departed Kennedy International Airport, N.Y., nonstop for St. Maarten, Netherlands Antilles. After an ADF and three circling approaches in poor weather, during which a landing could not be made, the flight departed for St. Croix. Enroute to St. Croix in a low-fuel state, the aircraft was descended to the water in anticipation of a ditching. When fuel exhaustion was reached, the engines flamed out and the aircraft was ditched.

Author

AIRCRAFT Accident REPORT MISSISSIPPI VALLEY AIRWAYS, INCORPORATED DEHAVILLAND DHC-6, N956SM, LA CROSSE, WISCONSIN, 9 NOVEMBER 1970
5 May 1971 13 p

A Mississippi Valley Airways, Inc., DeHavilland DHC-6, N956SM, crashed at La Crosse, Wisconsin, on November 9, 1970, at approximately 1608 central standard time while executing a nonprecision instrument approach in instrument flight conditions. The aircraft struck trees approximately 4,000 feet from the threshold of runway 13 on approach centerline. The aircraft was destroyed by impact. The captain, first officer, and three of the four passengers sustained serious injuries. There was no post-crash fire. The National Transportation Safety Board determined that the probable cause of this accident was that for unknown reasons, the captain failed to maintain altitude at minimum descent altitude and allowed the aircraft to descend below the height of trees while executing a nonprecision instrument approach in instrument flight conditions.

Author

AIRCRAFT ACCIDENT REPORT OVERSEAS NATIONAL AIRWAYS, INCORPORATED, DOUGLAS DC-9, N935F, OPERATING AS ANTILLIAANSE LUCHTVAAART MAATSCHAPPIJ FLIGHT 980 NEAR SAINT CROIX, VIRGIN ISLANDS, 2 MAY 1970
31 Mar 1970 33 p

Overseas National Airways Flight 980 (ALM), was ditched near St. Croix. Forty passengers, including 35 passengers and five crewmembers survived. Twenty-three persons, including two infants and the stewardess, did not survive. The aircraft sank in 5,000 feet of water and was not recovered. The flight departed Kennedy International Airport, N.Y., nonstop for St. Maarten, Netherlands Antilles. After an ADF and three circling approaches in poor weather, during which a landing could not be made, the flight departed for St. Croix. Enroute to St. Croix in a low-fuel state, the aircraft was descended to the water in anticipation of a ditching. When fuel exhaustion was reached, the engines flamed out and the aircraft was ditched.

Author

AIRCRAFT Accident REPORT MISSISSIPPI VALLEY AIRWAYS, INCORPORATED DEHAVILLAND DHC-6, N956SM, LA CROSSE, WISCONSIN, 9 NOVEMBER 1970
5 May 1971 13 p

A Mississippi Valley Airways, Inc., DeHavilland DHC-6, N956SM, crashed at La Crosse, Wisconsin, on November 9, 1970, at approximately 1608 central standard time while executing a nonprecision instrument approach in instrument flight conditions. The aircraft struck trees approximately 4,000 feet from the threshold of runway 13 on approach centerline. The aircraft was destroyed by impact. The captain, first officer, and three of the four passengers sustained serious injuries. There was no post-crash fire. The National Transportation Safety Board determined that the probable cause of this accident was that for unknown reasons, the captain failed to maintain altitude at minimum descent altitude and allowed the aircraft to descend below the height of trees while executing a nonprecision instrument approach in instrument flight conditions.

Author

AIRCRAFT ACCIDENT REPORT OVERSEAS NATIONAL AIRWAYS, INCORPORATED, DOUGLAS DC-9, N935F, OPERATING AS ANTILLIAANSE LUCHTVAAART MAATSCHAPPIJ FLIGHT 980 NEAR SAINT CROIX, VIRGIN ISLANDS, 2 MAY 1970
31 Mar 1970 33 p

Overseas National Airways Flight 980 (ALM), was ditched near St. Croix. Forty passengers, including 35 passengers and five crewmembers survived. Twenty-three persons, including two infants and the stewardess, did not survive. The aircraft sank in 5,000 feet of water and was not recovered. The flight departed Kennedy International Airport, N.Y., nonstop for St. Maarten, Netherlands Antilles. After an ADF and three circling approaches in poor weather, during which a landing could not be made, the flight departed for St. Croix. Enroute to St. Croix in a low-fuel state, the aircraft was descended to the water in anticipation of a ditching. When fuel exhaustion was reached, the engines flamed out and the aircraft was ditched.

Author
Parametric studies have been conducted in order to determine the influence of vortex model variations on the downwash calculations of a given helicopter rotor. Additionally, a method to calculate the lift distribution of a fixed wing located in the rotor wake is presented, neglecting fuselage disturbance. Interactions of rotor and wing are shown. As a basis for wing aerodynamics, the lifting line theory is employed. A rigid rotor wake model with helical vortex lines is used. Calculation of induction is accomplished by finite and straight vortex segments and/or by semi-infinite and straight vortex lines.

Author (ESRO)

N71-30055#
National Aeronautics and Space Administration
Lewis Research Center, Cleveland Ohio

LEWIS 9-BY 15-FOOT V/STOL WIND TUNNEL
Joseph A. Yussak, James H. Dietrich, and Nestro Clough
Washington Jul 1971 48 p refs
(NASA-TM-X-2306 E-6055) Avail NTIS CSCL14B

The V/STOL wind tunnel was built in the return leg of the 8 by 6 foot supersonic wind tunnel. The test section has a velocity range of 134 to 782 meters per second. The features of the wind tunnel are described, and the results of the initial calibrations are presented in sufficient detail to guide prospective users in designing experiments. The methods used to design the tunnel inlet section, the test section wall slot geometry, and the diffuser section are also described.

Author

N71-30072#
National Aeronautics and Space Administration
Lewis Research Center, Cleveland Ohio

OPTIMAL CONTROL OF SUPERSONIC INLETS TO MINIMIZE UNSTARTS
Bruce Lehtinen, John R. Zeller and Lucille C. Geyser
Washington Jul 1971 29 p refs
(NASA-TN-D-6408 E-6253) Avail NTIS CSCL12E

A method for designing supersonic inlet controls based on a desire to minimize inlet unstart is described. The design problem is formulated as one in linear stochastic optimal control and estimation. However, the performance index chosen (to be minimized) is the expected frequency of unstarts. Since this index is nonquadratic, the principle of quadratic equivalence is applied, so that the control consists of linear state variable feedback. Estimates of unmeasurable and/or noisy states required for control are then generated using a Kalman filter. Results show the sensitivity of unstart frequency to nominal normal shock position, control.

Author

N71-30117#
National Aeronautics and Space Administration
Lewis Research Center, Cleveland Ohio

PRELIMINARY INVESTIGATION OF GASEOUS EMISSIONS FROM JET ENGINE AFTERBURNERS
Larry A. Diehl
Washington Jul 1971 18 p refs
(NASA-TM-X-2323 E-6256) Avail NTIS CSCL20M

Gaseous emissions from jet engine afterburners were measured over a range of fuel-air ratios. The two configurations used were a full-size turbofan engine with an afterburner and a 51-cm diameter research afterburner. Nitric oxide emission did not increase with afterburning. The maximum nitric oxide concentration measured with afterburning was 34 g/kg of fuel burned while the maximum measured carbon monoxide emission was 1300 g/kg of fuel burned. Applicable quantities of unburned hydrocarbons resulted from operation at high fuel-air ratios. Nitric oxide concentrations were less than theoretical equilibrium values by as much as two orders of magnitude. Concentrations of unburned products were always greater than equilibrium values.

Author (GRA)

N71-30128#
Wetenschappelijk en Technisch Documentatie- en Informatiecentrum voor de krijgsmacht, The Hague (Netherlands)

BIRD HAZARDS TO AIRCRAFT: A LITERATURE SURVEY
VOLUME 2: OCTOBER 1967-JANUARY 1971
H. Crop and G. A. J. Kerstens, comps
Jan 1971 16 p refs
(TDCK-56961) Avail NTIS

The literature survey covers the period October 1967 to January 1971, and contains 22 abstracts.

Author

N71-30164#
Committee on Commerce (U.S. Senate)

WATERFRONT AND AIRPORT COMMISSION COMPACT ACT OF 1970
(Rept-91-1262) Avail US Capitol Senate Document Room

Hearings are presented on legislation which would extend the authority of the Waterfront Commission of New York Harbor to airports in the New York metropolitan area to reduce air cargo theft. The proposed bill provides the Commission with authority to license airfreightmen and airfreightman supervisor and to declare an area in an airport as an airfreight security area. Arguments advanced by the opponents and rejoinders by proponents are summarized.

Author

N71-30173#
Systems Technology, Inc., Hawthorne, Calif

INVESTIGATION OF MEASURING SYSTEM REQUIREMENTS FOR INSTRUMENT LOW VISIBILITY APPROACH
Dunstan Graham, Warren F. Clement, and Lee Gregor Hoffmann
Wright-Patterson AFB, Ohio AFFDL Feb 1971 220 p refs
(Contract F33615-69-C-1904)

A practical method of determining system requirements for instrument low visibility approach is presented. The method is made to depend on system analysis of the airplane, its control system, and the guidance system, as well as on atmospheric turbulence inputs and radio guidance system fluctuation noise requirements. The system are set in terms of a low value of the accident exposure multiplier which is related to the probability of a missed approach in the assumed environment. The application of the method is demonstrated in connection with two examples of manual-flight director approach in the A-7D attack airplane, and automatically coupled approach with an advanced windproof flight control system in the DC-8 transport aircraft. The results, including particularly the implied requirements on scan rate for a scanning beam instrument low visibility approach system, demonstrate the interconnections between scanning rate, flight control, and overall system performance.

Author

N71-30174#
Center for Naval Analyses, Arlington, Va

NAVAL AIRSPACE USAGE: A SURVEY OF NAVY AND MARINE CORPS FLIGHT ACTIVITY
Lawrence E. Brumbach
Feb 1971 132 p refs Its Res Contrib 160
(Contract N00014-68-A-0091)

A comprehensive data base is presented with detailed information on the manner in which airspace is used by Navy and Marine Corps operational squadrons. It is based on a nationwide
survey conducted in February and March, 1970. The conduct of
the survey is described, and examples of the application of
selected data are given. With emphasis on the interaction between
operational flight training and the National Airspace System,
statistical data is assembled on the use of airways, the Positive
Control Area, Warning Areas, Restricted Areas, and related aspects
of Naval flight activity. This research contribution is one of several
documents produced in support of Project Blue Air — An Analysis
of Naval Airspace Usage: A complete list of these documents is
given in the project report, INS Study No 34. Author (GRA)

N71-30241*# Clemson Univ., S. C
MINIMUM VARIANCE ESTIMATES OF SIGNAL
DERIVATIVES: A PROBLEM IN INSTRUMENT LANDING
SYSTEMS
J. C. Martin Dec 1970 17 p refs
(Grant NGR-41-001-024)
(NASA-CR-111928) Avail. NTIS CSCL01E
As in the case for the rate of descent of an aircraft, frequently
the derivative of a state cannot be observed with sufficient accuracy.
The state itself can however, but, as with the radar altimeter, the
signal is too noisy for differentiation. The approach presented uses
the form of the Kalman filter as an observer for the derivatives of
the observed signals or states. The gain matrix for the filter is
derived to minimize the variance of the estimate of the derivative
of the state, instead of the state itself. The derived gain matrix and
the covariance of the (derivative) estimation error are related to
those of the Kalman filter through the system's dynamics. A
quantitative evaluation of this method's improvement over taking the
derivative of the optimum filter of the state and/or augmenting the
state vector, is included. The improvement over the former is shown
to increase linearly with the covariance of the state's estimation
error. Over augmenting the state vector, the improvement uses the
lower order, observable states more directly through the system's
dynamics. Author

N71-30253*# Army Test and Evaluation Command, Aberdeen
Proving Ground, Md
AIRBORNE TRANSPONDERS, (IFF AND/OR AIR TRAFFIC
CONTROL) Final Report
19 Mar 1971 19 p refs
(AD-723028, MTP-6-3-126) Avail. NTIS CSCL17/2
The test procedure describes tests for evaluating
airborne transponders operated in conjunction with air traffic
control facilities. Tests are conducted by aircraft equipped with the
airborne transponder and designated auxiliary equipment, directed
and controlled by an air traffic control facility suitably equipped
with compatible interrogating equipment and auxiliary equipment
Author (GRA)

N71-30258*# Army Test and Evaluation Command, Aberdeen
Proving Ground, Md
GROUND SUPPORT SERVICE EQUIPMENT (AVIATION)
Final Report
12 Mar 1971 54 p refs
(AD-723036, MTP-7-2-055) Avail. NTIS CSCL1/5
The procedure describes test methodology and testing
techniques necessary to determine the technical performance and
safety characteristics of ground support service avigation equipment
and associated accessories. Author (GRA)

N71-30263*# Scientific Translation Service, Santa Barbara, Calif
SURVEY OF THE EXPERIMENTAL CAPABILITIES OF THE
ONERA HYDRODYNAMIC TUNNEL, WHICH OFFERS FLOW
VISUALIZATION [APERCU SUR LES POSSIBILITES
EXPERIMENTALES DU TUNNEL HYDRODYNAMIQUE A
VISUALISATION DE L'ONERA]
into ENGLISH of French report ONERA-NT-48
(Contract NASw-2035)
(NASA-TT-F-13727, ONERA-NT-48) Avail. NTIS CSCL14B
After a review of the conditions in which the ONERA
hydodynamic water-wind tunnel is used, a discussion of its
experimental capabilities is presented with several examples of
recent research. Author

N71-30264*# Imperial Coll. of Science and Technology, London
(England)
THE FLOW IN S-SHAPED DUCTS
P. Bansi and P. Bradshaw Apr 1971 27 p refs
(IC-71-10) Avail. NTIS
Measurements are presented of total pressure, static pressure,
surface shear stress, and yaw angle in the flow through several
S-shaped ducts, each with a thin turbulent boundary layer at entry.
The results show that the region of low total pressure in the exit
plenum, found by previous workers, is due to a vortex-stretching
mechanism which may also appear in other flows. Author

N71-30278*# Remtech, Inc., Birmingham, Ala
A STUDY OF TURBULENCE MEASUREMENTS USING
1971
C. E. Fuller 27 May 1971 75 p refs
(Contract NAS8-25896)
(NASA-CR-119804, RTR-002-1) Avail. NTIS CSCL20D
The object of the wing tip vortex test is to demonstrate
the extent with which the Laser Doppler Velocimeter system can
be used for the measurement of gas velocities with high spatial
and temporal resolution. This test was planned to provide three
dimensional mean velocity data of the vortex pattern shed from a
wing tip at an angle of attack. These measurements are being
conducted at the MSFC 7 × 7 inch wind tunnel facility. The test
plan and procedure as well as the measurements that were made
are included. In addition, data on several measurements of the
system's operating parameters which are important to these tests
are also given. E M C.

N71-30282*# National Aeronautics and Space Administration
Langley Research Center, Langley Station, Va
LOW SPEED WIND TUNNEL INVESTIGATION OF A
SEMISPAN STOL JET TRANSPORT WING—WITH
DEFLected THRust AND BLOWING BOUNDARY LAYER
CONTROL
Robert L. Henderson Washington Jul 1971 87 p refs
(NASA-TN-D-6256, L-7543) Avail. NTIS CSCL01A
An investigation of the static longitudinal aerodynamic
characteristics of a semispan swept wing with an aspect ratio of
3.92 and having deflected thrust and blowing boundary-layer control
was performed mainly in a low-speed tunnel with a 3.7-m
(12-ft) octagonal test section at the Langley Research Center.
Thrust was provided by two pod-mounted ducted fans equipped
with 60 degree exhaust deflection vanes, and boundary-layer control
was provided by air blowing through a slot over a full-span plain
trailing-edge flap. Author
A general optimization problem giving a standard linear expression of control is applied to complex, actual systems such as aircraft flying in turbulence. The first part is devoted to the axiomatic definition of physical linear systems from a functional point of view. With the help of optimal control theory, which gives a closed form expression in special cases, the problem is solved. An expansion of the solution is deduced. The analysis of gust response properties of a structure in flight yields the formulation and the solution for the optimal gust response control of an aircraft. By applying this method it is possible to design gust response control devices whose properties and qualities are discussed from a technical point of view.

Author (ESRO)
the fan burner is flame stabilization at low inlet temperatures. Flame stabilizing devices, with various configurations, have been tested at atmospheric inlet conditions. It was found that V-gutter flame holders, with injection of small amounts of fuels into the flame holder wake, bring about broadening of the combustible zone of air/fuel ratio.

N71-30361# Joint Publications Research Service, Washington D.C.
HOLOGRAPHY AND ITS APPLICATION IN AVIATION AND COSMONAUTICS

V Frolov and Yu Soluyanov 22 Jun 1971 8 p

The principles of holography are briefly outlined and possible applications of light beams in three dimensional imagery for aviation and space flight are discussed. Considered are: aerial holographic photography, saturation air space mapping for flight control, terrain relief mapping, holographic indicators for blind landing systems, holographic flow visualization methods, and holographic detection of camouflaged objects.

N71-30489# Massachusetts Univ., Amherst Dept of Mechanical and Aerospace Engineering

THE CALCULATION OF THE PRESSURE DISTRIBUTION ON A CASCADE OF THICK AIRFOILS BY MEANS OF FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND

E Martensen Washington NASA Jul 1971 59 p

Two independent linear integral equations of the second kind with continuous kernels are derived for the exact potential theory for the velocity distribution on a cascade of thick airfoils. It is shown that the corresponding homogeneous integral equations possess one and only one nontrivial solution, so that one knows the general results on the basis of the Fredholm theorems. In the limiting case of infinite separation between airfoils the equations reduce to the familiar expressions for single airfoils. In the light of the periodicity properties which are present, one may develop a numerical calculation technique based on the solution from a system of linear equations. By selecting an adequately large number of unknowns, the desired accuracy is obtained. Examples are shown correlating the theory with an exact known solution and with measurements.

N71-30507# National Aeronautics and Space Administration, Washington, D.C.

JOINT DOT-NASA CIVIL AVIATION RESEARCH AND DEVELOPMENT POLICY STUDY: SUPPORTING PAPERS

Mar 1971 248 p refs Prepared in cooperation with Dept of Transportation

N71-30530# National Aeronautics and Space Administration

EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF SUBSONIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF SLENDER SHARP EDGE 74 DEG SWEPT WINGS

Edwin E Davenport and Jarrett K Huffman Washington Jul 1971 48 p

Slender sharp-edge wings having leading-edge sweep angles of 74 deg were studied at Mach numbers from 0.2 to 0.8. The wings had arrow, delta, and diamond planforms and were tested at angles of attack from -4 deg to 30 deg and angles of sideslip from -8 deg to 8 deg. The study consisted of wind-tunnel tests in the Langley high-speed 7-by-10-foot tunnel.

N71-30565# Techtran Corp., Glen Burnie, Md

DETERMINATION OF THE AERODYNAMIC CHARACTERISTICS OF AN ELASTIC SWEPT WING IN SUBSONIC FLOW [Opredelelenie aerodinamicheskikh karakteristik uprugogo strelovidenogorya v dovzvukovom potok]

The aerodynamic forces are calculated and the equations derived for an elastic wing of an aircraft in steady subsonic flow with a given overload, weight, and dynamic head. The calculations are made by a method, which is not only more accurate than the lifting line and lifting zone theories, and the sequential approximation method, but also provides for determination of the pressure centers for arbitrary wing deformations in addition to the lift. It is also more convenient than the sequential approximation in that it obviates the necessity of computing the deformation-produced forces at each stage of the calculation, as well as the need to apply special measures to improve the convergence of the sequential approximation process.

N71-30689 General Electric Co., Cincinnati, Ohio

INVESTIGATION OF A HIGHLY LOADED MULTISTAGE FAN DRIVEN TURBINE

D C Evans Washington NASA Jul 1971 34 p
The results of a vector diagram study are presented. The effect of flowpath configuration, stage leaving swirl, work gradients, nonconstant work, stage energy split, and streamline slope and curvature were investigated. Based on these studies a particular type of vector diagram calculation was selected for the turbine design.}

Author

A flat plate cut from sheet metal was subjected to loads on a test machine, thus simulating in-flight stress on wing root structural members. The load program and the actual testing are described.

Author

A turbulent boundary layer over a flat plate was studied. The effect of flowpath configuration, stage leaving swirl, work gradients, nonconstant work, stage energy split, and streamline slope and curvature were investigated. Based on these studies a particular type of vector diagram calculation was selected for the turbine design.}

Author

A turbulence response investigation was conducted with the XB-70 airplane. A flight program was completed, and recorded on a VGH recorder. 6,2 percent of the total flight distance at supersonic speeds above an altitude of 12,192 meters (40,000 feet) were compared with the natural frequencies of the human body and the structural acceleration response to turbulence. The turbulence intensities measured were very low in comparison with the natural frequencies of the human body in the vertical and lateral directions.

Author

A hypersonic gun tunnel has been used to study the growth of a turbulent boundary layer over a flat plate and compression corner models. Measurements include pressure and heat transfer rate distributions and pitot pressure profiles across the boundary layer. The results, which extend the existing range of data, are used to test some current theoretical predictions.

Author

A turbulence response investigation was conducted with the XB-70 airplane. A flight program was completed, and recorded on a VGH recorder. 6,2 percent of the total flight distance at supersonic speeds above an altitude of 12,192 meters (40,000 feet) were compared with the natural frequencies of the human body and the structural acceleration response to turbulence. The turbulence intensities measured were very low in comparison with the natural frequencies of the human body in the vertical and lateral directions.

Author

An investigation was conducted to determine the aerodynamic and deployment characteristics of a twinekeel all-flexible parawing rigged with several variations of a multistage canopy and suspension-line reefing systems. Each variation consisted of four stages of suspension-line reefing with or without some form of canopy reefing during the first stage. A theoretical analysis was made initially to determine design values for the resultant-force coefficient and the lift-drag ratio which would prevent the peak deployment load from exceeding a 3g design limit during each stage of the deployment sequence. Experimental aerodynamic data were obtained from wind-tunnel tests of 9.29 sq m (100 sq ft) wings with various amounts of canopy and suspension-line reefing. Several reefing systems were then selected which had experimental values for the resultant-force coefficient and the lift-drag ratio as close as possible to the design values for each stage. Several 37.16 sq m (400 sq ft) wings were rigged with the selected reefing systems and flight-tested to determine their deployment characteristics. The results of the wind-tunnel and flight tests are presented, and detailed descriptions of the canopy and suspension-line reefing techniques, the wind-tunnel tests, and the method used to calculate the theoretical time-history of the deployment load are included as appendixes.
Factors Affecting Ditching of New Transport Airplanes

Lloyd J. Fisher, In its NASA Aircraft Safety and Operating Probl., Vol 1 1971 p 1–10

Avail NTIS HC$80/00/MF$095 CSCL01B

Investigations of aircraft ditchings using dynamic models of the C-5 aircraft are discussed. The behavior of the model with wheels up or down, and the fuselage damage during ditching are discussed. The major factors affecting ditching are considered to be bottom damage, landing attitude, flap setting, gear position, wave heading, floor strength, and wing location. It is concluded that ditching safety can be increased by designing suitable floor structures and by wing location.

Study of Protection of Passengers in Aircraft Crash Fires

Avail NTIS HC$60/00/MF$095 CSCL01B

A method for surrounding the passenger compartment with a fire-retardant shell was studied to protect the occupants long enough for a fire to burn out or for fire fighting equipment to extinguish the fire. A lightweight foam plastic called polystyrene plasma foam, and an intumescent paint which expands to many times its original thickness was tested using an aircraft fuselage in a jet-fuel fire. The tests showed that in the protected portion of the cabin, the air temperature changed very little for the first six minutes, when the heat penetrated, the temperature rose to 150°C in 12 minutes. It is concluded that problems such as protecting the fuselage against rupture, and providing protection for windows must be solved before this type system can be used for passenger protection.

Improvement of Fire Safety in Aircraft

Matthew I. Radnofsky, In its NASA Aircraft Safety and Operating Probl., Vol 1 1971 p 33–47

Avail NTIS HC$60/00/MF$095 CSCL01B

Nonflammable and fire-resistant materials used within spacecraft were evaluated for applicability to commercial aircraft refurbishment. Durability and aesthetic qualities of fibrous, cellulosic, elastomeric, and composite materials were considered for commercial aircraft items including curtains, upholstery, carpets, decorative panels, cabinets, paper products, oxygen lines, and straps. Two T-39 and one NASA Gulfstream aircraft refurbishment programs applying the technological advances are outlined.

Continuous Wave Doppler System for Aircraft Collision Hazard Warning

Avail NTIS HC$60/00/MF$095 CSCL01B

A low-cost pilot warning indicator (PWI) suitable for use in commercial and general aviation is being developed for warning pilots of an impending midair collision hazard. General studies were conducted to compare alarm performance of various ideal systems having different warning criteria. From the studies, it was determined that the required measurements were relative range, closing velocity, and attitude differences. The PWI consists of a transceiver and display unit onboard the protected aircraft and a linear transponder on the intruding aircraft. It is concluded that the system has the capability of handling a large number of aircraft without saturation.

Lightning Induced Voltages in Aircraft Electrical Circuits

Avail NTIS HC$60/00/MF$095 CSCL01B

A study was conducted to determine the magnitude of induced voltages and their relation to the characteristics of the lightning discharge and to the physical and electrical characteristic of the aircraft and its electrical systems. The investigation was performed with a wing of an F-89 airplane and a simulated lightning facility. The induced voltages measured for some circuits and simulated lightning characteristics were of sufficient magnitude to adversely affect sensitive avionics.

Status of Engine Rotor Burst Protection Program for Aircraft

Avail NTIS HC$60/00/MF$095 CSCL01B

The status of the experimental research program to develop criteria for the design of devices to protect aircraft from rotor fragments is presented. Test rotors were intentionally failed and generated fragments which impacted containment/deflection devices. High-speed photographs recorded the complex interactions for subsequent analysis. Test results indicate that the capability of a ring to contain rotor fragments depends upon the number of fragments as well as the mechanical properties of the structural material. Both metals and nonmetals show good potential. It was demonstrated that partial rings can deflect fragments away from areas to be protected. A computer program was developed which predicts the ring deformation if the forces applied by the fragments are known. Another program uses measured ring deflections to calculate the applied forces. These forces are subsequently used to calculate ring deflections. Predicted and measured ring profiles are in reasonable agreement for single-rotor-blade impacts of freely supported rings.

Clear-Air-Turbulence Detection Using Lasers

Edwin A. Weaver, In its NASA Aircraft Safety and Operating Probl., Vol 1 1971 p 89–100 refs.

Avail NTIS HC$60/00/MF$095 CSCL20E

The feasibility of detecting clear-air turbulence (CAT) was investigated using a CO2 laser Doppler system. The detection of aerosols in regions of CAT by a ground based ruby laser, the laser Doppler principle, and the airborne CO2 laser Doppler system are discussed. It is concluded that CAT detection and measurement appear feasible with a CO2 pulsed laser Doppler system.
The effects of runway contaminants and pavement surface properties on runway slipperiness are discussed. Results show that contaminants such as water, slush, snow, ice, dust, oil, and rubber deposits on conventional pavement surfaces can produce intolerable levels of runway slipperiness in terms of safe aircraft operation. When wet, conventional surfaces vary considerably in slipperiness due to pavement surface macrotexture and microtexture. A more consistent safe level of slipperiness appears achievable with new surface treatment techniques such as runway grooving and porous asphalt overlays.

N71-30788*# National Aeronautics and Space Administration
Langley Research Center, Langley Station, Va
EFFECTS OF AIRPLANE OPERATIONS ON TIRE WEAR
John L McCarty and Upshur T. Joyner
Avail NTIS HC$6 00/ MF$0 95 CSCL01B

Tire wear studies were undertaken to explore chevron cutting damage resulting from airplane touchdown on grooved runways and to examine the wear attributed to airplane braking operations. Preliminary results show chevron cutting occurs at the point on the tire which initially contacts the surface and the damage is the result of the scrubbing action of the tire as it skids over the grooves prior to any rotation. The cutting is shown to occur only in large tires requiring a large force to induce rotation. Results also indicate that the cutting is essentially independent of grooving patterns on runways but strongly dependent upon the nature of the surface finish. It was shown that the tread pattern and/or rubber composition also affect the extent of cutting. Tire measurements made during braking indicate the economic advantage of an airplane brake control system capable of limiting the wheel slip ratio. It was suggested that tire wear is unaffected by runway grooving.

Author

N71-30770*# National Aeronautics and Space Administration
Langley Research Center, Langley Station, Va
FLIGHT EVALUATION OF A DISPLAY FOR STEEP APPROACH
R Earl Dunham, Jr., Jack J Hatfield, Henry C Elkins, and Richard H Sawyer
In its NASA Aircraft Safety and Operating Probl., Vol. 1, 1971, p. 177–187
Avail NTIS HC$6 00/ MF$0 95 CSCL01E

Results from an investigation of a display concept designed to alleviate the problems of inadequate guidance and display information for making steep approaches are given. The 6 degree/3 degree two segment glide slope and commercial military, research, and Lear jet aircraft were used in the investigations.

Conclusions
are given To use powered lift it is necessary that airworthiness

Avail NTIS HCS600/MFS095 CSCL01B

AIRCRAFT SAFETY CONSIDERATIONS AND POWERED-LIFT STOL

Ames Research Center, Moffett Field, Calif

SOME ASPECTS OF THE AERODYNAMICS OF STOL PORTS

Avail NTIS HC$6.00/MF$0.95 CSCL01E

Some aspects of elevated-STOL-port aerodynamics are considered Two problems of concern are crosswinds and building-induced flow fields The steady crosswind velocity profile in the landing region, flow separation, vortex shedding, or other unsteady flow phenomena which may contribute significantly to the hazards of landing an STOL craft are discussed A possible approach to the solution of the crosswind and building-induced-flow-field problems through modifications to the elevated-STOL-port building is presented Some quantitative measurements of dynamic pressure
were made, but most of the observations were qualitative flow visualizations - smoke and tuft. The effect of fence structure and geometry on changes in crosswind velocity profiles was investigated.

Author

N71-30777*# National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif

SIMULATION STUDIES FOR DEVELOPMENT OF CERTIFICATION CRITERIA APPLICABLE TO SST TAKEOFF
Avail NTIS HCS$6.00/MF$0.95 CSCL01B
A variety of airplane configurations were utilized in the test program. Nearly 2000 take-offs and 800 landings were made. Engine failure take-off testing of high-induced-drag SST designs confirmed the need for more stringent take-off-speed requirements. However, these tests demonstrated that proposed requirements intended to provide the additional protection, were overconservative and economically penalizing. New minimum requirements were defined and agreed upon during joint testing by British, French, and U.S. airworthiness authorities. During surprise refused take-offs, the sequence of application of deceleration devices (throttles, brakes, and spoilers) was found to differ from that commonly assumed in the certification process of determining the accelerate-stop distance and has the effect of increasing the stopping distance. The effects of this difference could be amplified for SST airplanes.

Author

N71-30778*# National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif

DEVELOPMENT OF TURBULENCE AND WIND SHEAR MODELS FOR SIMULATOR APPLICATION
Avail NTIS HCS$6.00/MF$0.95 CSCL14B
Information on continuing studies aimed at producing realistic models of turbulence and wind shears for handling qualities studies is presented. An evaluation of analytical models of turbulence which have non-Gaussian gust distributions, a statistical analysis of wind shear, and a brief evaluation of the effects of wind shear on aircraft operations are included.

Author

N71-30778*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

RADIATION SAFETY IN HIGH-ALTITUDE AIRPLANE TRAFFIC
Trutz Foelsche In its NASA Aircraft Safety and Operating Probl., Vol 1 1971 p 307 – 321 refs
Avail NTIS HCS$6.00/MF$0.95 CSCL01B
A brief survey of results up to 1970 of an experimental and theoretical study of biologically important radiation components and dose equivalents due to galactic and solar cosmic rays in the high atmosphere, especially at supersonic transport (SST) altitudes, is presented. The dose equivalent rate for the flight personnel flying 500 hours per year at cruise altitudes of 18.2 to 19.6 km (60,000 to 65,000 ft) in high magnetic latitudes turned out to be about 0.75 to 10 rem/yr averaged over the solar cycle. This rate is about 15 to 20 percent of the maximum permissible dose (MPD) rate for radiation workers (5 rem/yr), as established by the International Commission on Radiological Protection (ICRP) for peacetime operations. The suggested evasion measure of descending to lower altitudes is therefore sufficient to avoid overexposure of passengers in such rare cases. Proposed systems of inflight radiation warning and monitoring are briefly discussed.

Author

N71-30780*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

PRELIMINARY STUDY OF AIRPLANE-AUTOPilot RESPONSE TO ATMOSPHERIC TURBULENCE
Waldo I Oehman In its NASA Aircraft Safety and Operating Probl. Vol 1 1971 p 323 – 334
Avail NTIS HCS$6.00/MF$0.95 CSCL01B
A preliminary study was made to determine how the response of a particular airplane to atmospheric turbulence would be affected by automatic controls operating in altitude-hold and attitude-hold modes. The calculations show that excursions of the response variables from their equilibrium values may be reduced by these relatively simple controls. The calculations also show that excursions in the augmented airplane altitude and normal acceleration, caused by response to atmospheric turbulence, may lead to buffetting and passenger discomfort. In order to obtain the most desirable response, the control systems should be more complex than those considered.

Author

N71-30781*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

PRELIMINARY STUDY OF EFFECT OF VIBRATION ON AIRCRAFT RIDE QUALITY
Avail NTIS HCS$6.00/MF$0.95 CSCL01B
Difficulty in developing aircraft ride criteria and/or acceptable vibration levels and problems in measuring and recording the relatively low-level vibration environment associated with passenger vehicles in the low-frequency (0 to 30 Hz) regime are considered. The portable, self-contained measuring/recording system used for this low-frequency range is described. In addition, examples of real-time data, peak accelerations, and statistical vibration results are given. The results of controlling the environmental input to a helicopter pilot are shown.

Author

N71-30782*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

PROGRESS REPORT ON THE NASA V-G/VGH GENERAL AVIATION PROGRAM
Joseph W Jewel, Jr In its NASA Aircraft Safety and Operating Probl., Vol 1 1971 p 347 – 350 refs
Avail NTIS HCS$6.00/MF$0.95 CSCL01B
An analysis is presented of 79,000 hours of data obtained from NASA V-G and VGH flight recorders installed on 134 general aviation aircraft engaged in eight types of operations. Information is presented on typical mission characteristics, on airspeed practices, on gust accelerations and derived gust velocities encountered, on maneuver-acceleration experience, and on the initial positive loading-impact accelerations. Comparisons are also made of the actual gust and maneuver loads experienced with the design gust and maneuver loads.

Author

N71-30783*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

SOME FACTORS THAT AFFECT THE INSPECTION OF AIRCRAFT FOR FATIGUE DAMAGE

Author
On the basis of fatigue crack growth and residual strength, a relationship between inspection interval and length of the smallest crack that must be detected to prevent failure within the inspection interval was determined. The effect of inspection of material, structural configuration, and aircraft load spectra was investigated. The results show that the efficient use of high-strength materials requires frequent inspection for very small cracks, that the use of stiffeners can result in a tolerance for long cracks and less frequent inspections, and that aircraft with fighter-type usage must be inspected much more frequently than aircraft with transport-type usage.

TRENDS IN NOISE CONTROL FOR AIRCRAFT GAS-TURBINE POWER PLANTS

An attempt was made to identify the main sources of noise in various types of gas-turbine power plants and to indicate the state-of-the-art in noise reduction. Useful trends in design and operation are summarized for such noise sources as jet exhausts, fans, high-lift devices, and unducted rotors. A significant result is that lower noise levels generally are associated with lower velocities and lower pressure ratios.

EVALUATION OF MEASURES OF AIRCRAFT NOISE

Philip M Edge, Jr, Randall M Chambers, and Harvey H Hubbard *In its NASA Aircraft Safety and Operating Probl*, Vol 1 1971 p 429–437 refs

The development of measurement units to properly represent human responses to aircraft noise is reported. Accurate units for use in the systematic design of quieter aircraft to meet noise specifications and in various aspects of aircraft noise certification are discussed. Units which are simple in concept and easy to use in connection with the prediction of community annoyance and complaint patterns, land use planning near airports, and airport traffic monitoring and control are included. The nature of the airport noise problem in communities near airports and the significant factors in noise-induced responses are indicated. The psychophysiological characteristics of people which are significant in their responses to noise are summarized as well as the physical characteristics of the aircraft noise stimuli. The nature of the airport traffic, including the use of preferential runways, the mix of aircraft types, and flight scheduling, and community environment considerations, including background noise levels, economic factors, and types of community activities are covered.

STATUS OF STUDIES IN SONIC BOOM

Results are presented from experiments which update the existing information relative to supersonic operations and broaden the flight regimes to include operations at hypersonic speeds and low supersonic speeds. The significant factors which affect the sonic boom include airplane design, which involves weight, size, and volume and lift distributions, airplane operations, which involve altitude, Mach number, and flight path, and the atmospheric conditions, which affect pressure, temperature, and wind gradients and turbulence. Discussions of the effects of each of these factors as they relate to the three operating regimes are presented.

FUTURE AIR TRAFFIC: A STUDY OF THE TERMINAL AREA

Richard E Schmotzer, Albert N Andry, Michael G Harris, and Gerald F Reid, eds 1970 373 p refs

The processes involved in the systems design of terminal area air traffic control systems through the year 2000 are outlined. The demand and terminal area performance characteristics of aircraft were determined by looking at today's demand and types of aircraft and extrapolating the data to the year 2000. Air traffic control methods, takeoff and landing criteria, and air collision avoidance procedures and hardware were formulated to minimize, safely and economically, terminal area operation time for the year 2000. A simulation model was developed for terminal area operation for the present day system and for the future. The model permitted tradeoff studies such as new runways versus new airports or straight-in approaches versus curved approaches.

EFFECTS OF NOSE BLUNTNESS ON THE STATIC AERODYNAMIC CHARACTERISTICS OF A CRUCIFORM-WING MISSILE AT MACH NUMBERS 1.50 TO 2.86

Philip M Edge, Jr, Randall M Chambers, and Harvey H Hubbard *In its NASA Aircraft Safety and Operating Probl*, Vol 1 1971 p 429–437 refs

The processes involved in the systems design of terminal area air traffic control systems through the year 2000 are outlined. The demand and terminal area performance characteristics of aircraft were determined by looking at today's demand and types of aircraft and extrapolating the data to the year 2000. Air traffic control methods, takeoff and landing criteria, and air collision avoidance procedures and hardware were formulated to minimize, safely and economically, terminal area operation time for the year 2000. A simulation model was developed for terminal area operation for the present day system and for the future. The model permitted tradeoff studies such as new runways versus new airports or straight-in approaches versus curved approaches.
(NASA-TM-X-2289, L-7729) Avail NTIS CSDL 01A
Three nose shapes (an ogive nose, a nose of intermediate bluntness, and a hemispherical nose) were tested at Mach numbers from 1.50 to 2.86. The model had delta wings with a leading edge sweep angle of 72 deg. The results are summarized in the form of various pertinent aerodynamic parameters as a function of Mach number. Although no detailed analysis of the results is made, a summary of results is useful in demonstrating the importance of variations in nose bluntness and should be useful in providing a source of systematic experimental data for future correlation with analytical techniques. A brief correlation was made between the theoretical and experimental values of axial-force coefficient at zero angle of attack only, and the agreement was reasonably good. Author

PRELIMINARY INVESTIGATION OF DIFFUSER WALL BLEED TO CONTROL COMBUSTOR INLET AIRFLOW DISTRIBUTION
Albert J. Juhasz and James D. Holdeman Washington Jul 1971 18 p refs
(NASA-TN-D-6435, E-8278) Avail NTIS CSDL 21E
Velocity profile control tests were conducted with a short annular diffuser equipped with wall bleed capability. The diffuser area ratio was 4, and the length to inlet height ratio was 1.5. Results show that the diffuser radial exit velocity profile may be shifted towards either the inner or outer diffuser wall by, respectively, bleeding off a small fraction of the total flow through the inner or outer wall. Based on these results, application of the diffuser bleed technique to a gas turbine combustor should be considered. The advantages of such a combustor could be shorter length, reduced idle exhaust emissions, and improved altitude reheat capability. Author

A PRELIMINARY ANALYSIS OF SOME OBSERVATIONS OF WIND SHEAR IN THE LOWEST 100 FEET OF THE ATMOSPHERE FOR APPLICATION TO THE PROBLEM OF THE CONTROL OF AIRCRAFT ON APPROACH
Charles F. Roberts in its Vertical Wind Shear in the Lower Layers of the Atmosphere 1969 p 203–218 refs
Copyright Avail Issuing Activity
Measurements of wind shear in the lowest few hundred feet of the atmosphere are provided and analyzed as to their possible significance for aircraft approach. Wind shear values ranging between 3 and 6 knots per hundred feet appear to be characteristic of the lowest one hundred feet of the atmosphere under widely varying stability conditions. Extreme values of up to 10 knots per hundred feet were observed on one or two occasions. The expected upper limit of wind shear developed under some rather restrictive assumptions shows general agreement with observed values. Author (ESRO)

STUDIES AND TESTS OF A PLANE WHICH ABSORBS STRONG WIND GUSTS [ETUDES ET ESSAIS D’UN AVION ABSORBEUR DE RAFALES]
(NASA-TT-F-13754) Avail NTIS CSDL 01A
The problem of wind gust absorption by aircraft structures is discussed. Topics presented include: structure of atmospheric wind gusts, effects of wind gusts on the classic plane, general characteristics of the wind gust absorber, construction, and test flights of the prototype H-100. Author

LIFTING SURFACE THEORY FOR AN AIRPLANE WING WITH A JET FLAP [TRAGELAEGHENTHIEORIE FUER TRAGELUERGEMIT STRAHLKLAPPEN]
A Das Jul 1971 88 p refs Transl into ENGLISH from German report DFL-093 (Contract NASW-2037)
(NASA-TT-F-13714, DFL-093) Avail NTIS CSDL 01A
A method for the calculation of the lift distribution for wings of finite span with jet flaps is given. The method is applicable for incompressible flow and is an extension of the lifting surface theory. It can also be applied to wings of arbitrary planform (e.g., swept wings and delta wings) with arbitrary distribution of jet momentum along the span. The jet flap characteristics of the two-dimensional airfoil theory are included. In order to obtain an essential simplification of the problem, the two-dimensional vorticity distribution along the wing chord is approximated in such a way that the section-lift coefficient and the section-moment coefficient of the airfoil are the same as in the exact solution. The calculation of the lift distribution is carried out in the usual way in the lifting surface theory. The chordwise vortex distribution is determined at several spanwise sections both on the wing and in the jet sheet from which the lift and moment distribution along the wing span is obtained. Some numerical examples were calculated for a straight rectangular wing and a swept wing. The theoretical and experimental results are in very good agreement. Author

INVESTIGATION OF GUIDE-SLOPE INFORMATION RATE REQUIREMENTS FOR A LOW-VISIBILITY AIRCRAFT LANDING
Meyer D. Zuckerman (M.S. Thesis) Mar 1971 85 prefs (AD-722655, GE/EE/71-7) Avail NTIS CSDL 17/7
The glide-slope information rate requirements for a low-visibility Landing approach is studied. The analysis uses a Kalman filter-optimal control combination to simulate the control system of a DC-8. Both noisy and noise free measurements are considered. The results consist of a measure of the probability of missing an approach, as a function of the sample rate of the scanning beam landing guidance. Results indicate a knee at 8 samples per second, with rapid changes in performance in the region from 2-8 samples per second. The position of the knee appears to be insensitive to changes in either deterministic winds or airspeed constraints. Author (GRA)

INTO THE SEVENTIES A FUTURE PLAN FOR BRITAIN’S AEROSPACE INDUSTRY
7 Feb 1969 16 p Avail NTIS
An economic appraisal is made of the recent achievements, and it is shown that it is highly important for the national economy that Government-industry cooperation continue and be strengthened. Positive proposals for the future development of the industry are stated with respect to civil aircraft, military aircraft, aircraft engines, guided weapons, aerospace equipment, and space technology. Author.
The problems of squalls at Mach 1 [Das Boenproblem bei der Machzahl 1]

Avail. NTIS

The stresses to which an aircraft is subjected in the transonic range are calculated, the basic problem is the extent to which linear equations are valid for the range of low frequencies. In case of low time accelerations the results approach those of the stationary nonlinear theory. In order to solve this problem an attempt is made to find an approximate solution of the nonlinear potential equation for the disturbed flow in the transonic range.

Author

Effective perceived noise level evaluated for explosive emergency exit system for use on civil transport aircraft

B D Adcock and J B Ollerhead May 1970 117 p refs

Author

Inlet noise suppressor performance with a turbojet engine as the noise source

Author

Effective perceived noise level evaluated for STOL and other aircraft sounds

Wyle Labs., Inc., Rockville, Md Research Staff

Author

Effective perceived noise level evaluated for the complete set included a wide range of turbofan, turbojet, piston engine and turboprop powered aircraft in a variety of categories. The results were analyzed to test the ability of the Effective Perceived Noise Level (EPNL) and other scales to predict the subjective responses. Because the sample of aircraft sounds was unusually large in number, variety, dynamic range and duration, the test was considered to be severe. The main conclusion of the test is that the EPNL procedure performs as well for the STOL sounds as it does for the CTOL (conventional take-off and landing aircraft) sounds and may thus be used with equal confidence for rating the sounds of aircraft in both classes. When the sounds were divided into propulsion system categories it was found that EPNL in common with other scales, performed most consistently for jets, piston engine and turboprops, in that order. In general, the integrated duration correction proved superior to an approximate correction based on a 10 dB-down duration. Analysis of the results showed that the average magnitude of the tone-correction was more than 3 db and that corrections were automatically applied in practically all cases. In the case of propeller aircraft sound it is apparent that low frequency harmonics invoke tone corrections, whereas the subjective results suggest they are not required. It is recommended that the automated procedures for tone identification need some revision but that in the meantime, EPNL may be improved by ignoring tones identified at frequencies less than about 500 Hz.

Author

Note on the development of pulse jets without flap valves [Note sur le developpement des pulso-reacteurs sans clapets]

Avail. NTIS

The development and the methods used from the invention of pulse jets without flap valves (1944) up to the development of the most recent high speed machines are discussed. The basic principles of the Escopette, the Ecrevisse, machines streamlined for the propulsion of drones, the static pulse jet group and finally the machine without shock waves, capable of functioning at speeds approaching the speed of sound are described.
A COMPARISON BETWEEN PLANAR AND NONPLANAR
FREE-FLIGHT DATA

P Jaffe In its JPL Quart Tech Rev, Vol 1, No 2 Jul 1971 p 1–8 refs
Copyright Avail NTIS CSCL01A

Results from a program designed to explore the difference
between the planar and nonplanar dynamic stability coefficient,
using a bi-planar wind tunnel, free flight system, are presented. Two
widely different configurations, a blunt 60-deg half-angle cone and
a sharp 10-deg half-angle cone were tested. The overall accuracy
of the data was extremely high and firmly demonstrates the
capability of the technique. Although no dramatic difference in the
coefficients was apparent from the data, which was limited in
number, they do suggest that there is a favorable increase in the
coefficient as the motion becomes more nonplanar.

AERODYNAMIC OF VEHICLES IN TUBES

D W Kurtz In its JPL Quart Tech Rev, Vol 1, No 2 Jul 1971 p 9–16
Copyright Avail NTIS CSCL01A

A 21.5 m long, 5.3 cm diameter, vertically oriented aluminum tube
utilizing gravity to propel test models is described. This tube
is used to test and determine aerodynamic characteristics of
models under conditions of high blockage. Some initial results on
the drag and pressure signature of a traveling model are presented.

LUBRICATION, FRICTION, AND WEAR IN AIRCRAFT

Robert L Johnson and Lawrence P Ludwig [1971] 72 p refs
(NASA-TM-X-67872) Avail NTIS CSCL11H

Some anticipated and present friction and wear problems
in aircraft are discussed and potential approaches for mitigation of
these problems are outlined. The status of atomistic and continuum
methods for defining surfaces and modes of failure is described.
Wear processes are explored in terms of physical and chemical
considerations and basic types of wear mechanics are characterized.
Solid and liquid lubricant systems is generalized. Lubrication by
boundary, elastohydrodynamic, and fluid films are conceptually
described. Lubrication systems are discussed in regard to future
applications. Attention is given to particular problems of specific
mechanical components (i.e., bearings, seals, gears, fasteners, etc.)
Some approaches are suggested for the study of component wear
due to fretting, erosion, scuffing, pitting, and other forms of
damage.

A DESIGN SUMMAR OF STALL CHARACTERISTICS OF
STRAIGHT WING AIRCRAFT

M A McVeigh and E Kisielowski Washington NASA Jun 1971 223 p refs
(Contract NAS1-8389)
A method of wing design using lifting line theory was computerized and used to study the parameters which affect wing stall characteristics. The results of the study and the computer program are described. The effects of airfoil section variations, Reynolds number, aspect ratio, wing twist and taper ratio are presented in design chart form.

Author

N71-31183# California Univ., Berkeley Div of Aeronautical Sciences

THE EFFECT OF SECOND ORDER ELASTIC TERMS IN SUPERSONIC PANEL FLUTTER OF FINITE CYLINDRICAL SHELLS

James C S Meng, Lien S Yao, and M Holt Dec 1970 28 p

(Grant AF-AFOSR-0268-67) (AD-722447, AS-70-9, AFOSR-71-0943TR) Avail NTIS CSCL 20/4

An analysis for the flutter boundary of a finite isotropic cylindrical shell under no static stress in a supersonic free stream is carried out at Mach numbers from 3-10. The effect of second order terms in the elastic equilibrium equation, which was not considered by Li (1967), is examined in detail. The aerodynamic load is computed following the same approximation used by Li (1967), and the elastic displacement of the shell is resolved into a linear combination of sine functions to satisfy the clamped boundary condition at one end and simply supported conditions at the other end. This homogeneous system is solved by Galerkin's method. Then the resultant matrix is transformed into a convenient form, having the same characteristic equation, and expressed in triangular form by means of QR-transformations. The required eigenvalues are the diagonal elements of the transformed matrix. The flutter boundary is defined as the curve where the imaginary part of the eigenvalue becomes negative. It is found that the effect of the second order terms is small.

Author (GRA)

N71-31191# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

THE NASA QUIET ENGINE

(NASA-TM-X-67884) Avail NTIS CSCL 21E

The NASA Quiet Engine Program to incorporate all available noise reduction technology into a propulsion system suitable for subsonic civil transport aircraft is discussed. Full-scale experimental hardware is being built and tested primarily for noise performance. The program is in process and component tests to date indicate that it is possible to achieve or exceed noise reduction objectives of 15-20 perceived noise decibels below the levels of 707/DC-8 long-range transport aircraft.

Author

N71-31204 Illinois Inst. of Tech., Chicago

FLOW-FIELD AND PERFORMANCE STUDY OF AN AUGMENTED RAM-WING VEHICLE CONCEPT

Imants Reba (Ph D Thesis) 1970 243 p

Avail Univ Microfilms Order No 70-17255

An experimental investigation of a vehicular concept with potential for high speed ground transportation of the future is described. The investigation consists of two parts (1) a study of flows in the gap between the model underside and the ground at static conditions and (2a) wind-tunnel study to evaluate concept potential under dynamic conditions. The flow field studies, composed of flow visualization experiments and static and total pressure measurements, yielded information about the effects of underside contour, ground height, slit size and orientation on flow field behavior and static pressure recovery. Wind tunnel studies were conducted in the presence of a moving ground plane and at free-stream velocities of 805 and 111 feet per second. Integration of static pressures over the model surface yielded vertical and horizontal force components which in the presence of blowing were corrected for jet reaction. The augmented Ram-Wind Vehicle potential was evaluated using lift-to-drag ratio and specific speed parameters.

Dissert Abstr

N71-31207# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

A TIME-DEPENDENT METHOD FOR CALCULATING SUPERSONIC ANGLE-OF-ATTACK FLOW ABOUT AXISYMMETRIC BLUNT BODIES WITH SHARP SHOULDERS AND SMOOTH NONAXISYMMETRIC BLUNT BODIES

A time-dependent numerical method for calculating supersonic flow about blunt bodies at large angles of attack is presented. The axisymmetric bodies with sharp shoulders which are treated were constructed with a generator composed of segments of constant curvature. The nonaxisymmetric bodies have continuous slope and curvature. All flow fields are inviscid and adiabatic and have one plane of symmetry. A modification to the method of characteristics is introduced for use at the shock wave. A two-step finite-difference method of second-order accuracy is used at the body surface and in the region between the shock and body. A new finite-difference technique is introduced for use at sharp sonic shoulders. Comparisons of the results of the method with experimental results and the results of other methods are made for the flow of equilibrium air past the Apollo command module at the trim angle of attack and for perfect gas flow past a spherical cap and a spherically blunted cone at angle of attack both the cap and the blunted cone were terminated with sharp shoulders. Results are also presented for perfect gas flow past a prolate spheroid with its major axis normal to the flow.

Author

N71-31211# Illinois Univ., Urbana

A STUDY OF THE LOCAL PRESSURE FIELD IN TURBULENT SHEAR FLOW AND ITS RELATION TO AERODYNAMIC NOISE GENERATION

James C S Meng, Lien S Yao, and M Holt Dec 1970 28 p

(Grant NCR-14-005-149) (NASA-CR-119359, SR-2) Avail NTIS CSCL 20D

Continuing research is reported in an investigation of the fluctuating static pressure field comprised of a pseudosound pressure field, responsible for generating sound, and true acoustic pressure field. The experimental and analytical findings are concerned with (1) Eulerian properties of the mean static pressure field, (2) Lagrangian frame turbulence measurements, and (3) analytical Lagrangian frame turbulent structure.

Author

D.L.G

N71-31213# Air Force Systems Command, Wright-Patterson AFB, Ohio, Foreign Technology Div

CALCULATION OF THE BOUNDARIES OF THE REGION OF STABLE EQUILIBRIUM OF A ROTOR IN PRESSURIZED GAS BEARINGS

R Z Aliyev et al 29 Jan 1971 16 p Translated into English from Tr Mekhan i Protsessy Upr Vychislitel'naya Mat (USSR), no 307, 1969 p 115–122

589
N71-31242

(AD-722828, FTD-HT-23-818-70) Avail NTIS CSCL 13/9

A study is reported of the stability of the equilibrium state of a rotor in a pressurized gas bearing. The equations for the perturbed motion of the rotor are considered together with the Reynolds equations for the pressures in the lubricant layer. The conditions of equilibrium stability are established by the small perturbation method in a linear approximation. A numerical method of solving the basic equations is outlined, and the results of certain computer calculations are presented.

Author (GRA)

N71-31262

(NTSB-AAR-71-11) Avail

A method for predicting the performance of the total pilot-vehicle system has been developed for the lateral dynamics of Class 4 airplanes. This method, which is based on pilot model theory and multilooop analysis, predicts tracking errors for command tracking tasks and also for attitude hold tracking tasks in turbulence. The predictions are in terms of root mean square data for use as aerodynamic inputs to theoretical spin studies. Control-effectiveness tests were made for each control individually and for a full left pro-spin combination of controls. The results are presented without detailed analysis, but are analyzed in terms of factors which would affect their applicability for use in spin theory. Several data characteristics are indicated that are deemed to be of significance with regard to their intended use in theoretical spin studies.

Author

N71-31288

(AD-722855, NOR-70-139, AFFDL-TR-70-143) Avail NTIS CSCL 5/10

A method for predicting the performance of the total pilot-vehicle system has been developed for the lateral dynamics of Class 4 airplanes. This method, which is based on pilot model theory and multiloop analysis, predicts tracking errors for command tracking tasks and also for attitude hold tracking tasks in turbulence. The predictions are in terms of root mean square data for use as aerodynamic inputs to theoretical spin studies. Control-effectiveness tests were made for each control individually and for a full left pro-spin combination of controls. The results are presented without detailed analysis, but are analyzed in terms of factors which would affect their applicability for use in spin theory. Several data characteristics are indicated that are deemed to be of significance with regard to their intended use in theoretical spin studies.

Author (GRA)

N71-31307

(NTSB-AAR-71-11) Avail

Research needs are studied for providing a hybrid inertial barometric altimetry system to meet vertical separation requirements of 1000 and 2000 feet for Mach 0.5 transports cruising in altitude hold at 80,000 feet. The static pressure error of the barometric subsystem must be reduced an order of magnitude from present errors for subsonic jet aircraft systems. An off-the-shelf inertial subsystem having a 3 sigma accuracy of 0.002 g's should be satisfactory, provided the lag of the barometric system is 10 seconds or less. The height deviations from a flight level due to turbulence, atmospheric temperature variations, and variations in isotropic surface height are estimated to be negligible for a hybrid altimeter system. The deviations near the phugoid frequency are essentially eliminated by the system. Flight tests are recommended to verify that all the important factors have been accounted for adequately.

Author

N71-31330

(NTSB-AAR-71-11) Avail

An investigation was conducted to obtain a set of static-force-test data for use as aerodynamic inputs to theoretical spin studies. Control-effectiveness tests were made for each control individually and for a full left pro-spin combination of controls. The results are presented without detailed analysis, but are analyzed in terms of factors which would affect their applicability for use in spin theory. Several data characteristics are indicated that are deemed to be of significance with regard to their intended use in theoretical spin studies.

Author
January 4, 1971 is reported. The accident investigation board determined that the cause of the accident was the pilot's failure to compensate for wind drift with atmospheric conditions as a mitigating circumstance.

N71-31347# Naval Postgraduate School, Monterey, Calif.
AIRCRAFT DATA ACQUISITION SYSTEM FOR ACADEMIC FLIGHT EVALUATION
(AD-722583) Avail NTIS CSCL 14/2

Various methods for investigating the stability and control characteristics of the US2A were considered in obtaining a system that would provide a proper degree of data accuracy, data availability and system reliability yet still be instructional and functional. To this end, a photo-panel system with its various input systems was designed and incorporated into the Aeronautics Departments US2A, BUNO 136533 Installatio... and component check-out of this photo-panel system was achieved.

Author (GRA)

N71-31351# Texas A&M Univ., College Station
AN INVESTIGATION OF THE RELATIONSHIPS BETWEEN MOUNTAIN-WAVE CONDITIONS AND CLEAR AIR TURBULENCE ENCOUNTERED BY THE XB-70 AIRPLANE IN THE STRATOSPHERE
(Grant NGR-44-001-081)
(NASA-CR-1878, H-879) Avail NTIS CSCL 04A

The data from 36 XB-70 flights conducted over the mountainous regions of the western United States together with rawinsonde data were used to investigate relationships between conditions favorable for mountain waves and clear air turbulence. Profiles for the Sorer parameter and the gradient Richardson number were evaluated from an eight-level model. The Sorer parameter and the gradient Richardson number profiles were computed from the rawinsonde data on those days when the XB-70 flew, and these results compared to the model profiles and related to the reported turbulence. Ascent rate profiles of rawinsonde balloons were analyzed from which the presence of mountain or lee waves was inferred. From the results of this investigation, objective methods were developed for forecasting the occurrence or nonoccurrence of turbulence in the stratosphere due to mountain waves.

Author

N71-31376# Cornell Aeronautical Lab., Inc., Buffalo, N Y
FIRE FIGHTER'S EXPOSURE STUDY Final Report, Jul. – Nov. 1970
Kenneth W Graves Dec 1970 88 p refs
(Contract F33615-70-C-1715)
(AD-722774, CAL-HM-2972-Z-1, AGFSRS-71-2) Avail NTIS CSCL 13/12

Experimental fires from pools of burning aircraft fuels were instrumented with heat meters to determine heat flux distributions for application to the design of protective clothing for firefighting personnel. The spectral distribution of infrared radiation emitted by fires was also measured. Conditions affecting the fires and the resulting heat effects that were studied were wind velocity, fuel pool area, time of burning, orientation around the fire relative to wind direction, distance from the fire, and an extraneous object in a fire. A means by which evaluation of reflective clothing can be made is described.

Author (GRA)

N71-31400# Naval Postgraduate School, Monterey, Calif
EVALUATION OF AN ELECTRONIC WIND-TUNNEL BALANCE
Steven Russell Briggs (M S Thesis) Mar 1971 61 p refs
(AD-722571) Avail NTIS CSCL 14/2

A three-component electronic wind-tunnel balance installed in a 3 by 5 foot subsonic tunnel was evaluated for system problem areas. The nonlinear output of the reluctance gage transducers was analyzed and linearized using diode function-generating circuitry. A static calibration was conducted to confirm the linearity of the circuits. Evaluation of the balance system under operating conditions pointed out other areas for future investigation.

Author (GRA)

N71-31403# Committee on Commerce (U S Senate)
AIR POLLUTION CREATED BY AIRCRAFT JET ENGINE EMISSIONS
Avail Comm on Com and Subcomm on Air and Water Pollution CSCL 138

Statements on the development of engines and devices for the control of air pollution from jet aircraft engine emissions are presented. Research allocations for the reduction of smoke emissions are discussed as well as emission standards and the relocation of airports.

J M

N71-31455# Scientific Translation Service, Santa Barbara, Calif
REQUIREMENTS OF ENGINE DYNAMICS IMPLIED BY THE THRUST MODULATION CONTROL FOR VTOL AIRCRAFT (ANFORDERUNGEN AN DIE TRIEBWERKSDYNAMIK BEI VTOL-FLUGZEUGEN)
(Contract NASw-2035)
(NASA-TT-F-13755) Avail NTIS CSCL 21E

In the design of V/STOL high performance aircraft, the choice of the engines and the control systems plays an important role for gliding and transition flight. For the control system and the choice of engine for thrust modulation control, there are three dynamic criteria: stabilization for small disturbances, stabilization for engine failure, and control behavior.

Author

N71-31456# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
USE OF AN AIR-ASSIST FUEL NOZZLE TO REDUCE EXHAUST EMISSIONS FROM A GAS TURBINE COMBUSTOR AT SIMULATED IDLE CONDITIONS
Daniel Breihl and Leonidas Papathekos Washington 1971 21 p refs
(NASA-TN-D-6404, E-6247) Avail NTIS CSCL 21E

Tests were performed at typical engine idle conditions on a single J-57 combustor liner installed in a 30-cm-(12-in.-) diameter pipe to evaluate design modifications for reducing exhaust emissions. Using an air-assist fuel nozzle, the combustion efficiency was increased from 90.3 to 96.5 percent and the total hydrocarbon and carbon monoxide exhaust emissions were reduced from 263 to 33 and from 51 to 40 g/kg of fuel burned, respectively. A corresponding increase in nitric oxide emissions from 0.8 to 1.5 g/kg of fuel burned was observed. Calculations performed for a complete landing-takeoff cycle of a typical engine indicated that the
use of an air-assist nozzle during idle could decrease the total quantity of hydrocarbon and carbon monoxide emission by 69 and 20 percent, respectively, while nitric oxide would increase by 14 percent. The required secondary nozzle airflow amounts to less than 0.5 percent of the total engine airflow at idle. Author

Transit Access Feasibility Study for Oakland

Airport Connector Systems found a small vehicle service to be the most attractive as far as service, flexibility, and cost. "A critique of topics discussed at the AGARD meeting on aerodynamic interference is presented. Discussions evaluated include wing-body and wing-body-tail interference, airframe-propulsion interactions, and airframes-stores interference. The major advance is considered to be the treatment of a lifting wing-body combination in which a sheet of trailing vorticity from a wing was coupled with the finite element method. It is recommended that a calibration model of a wing-body combination be chosen for checking various computation schemes, and some high Reynolds number wind tunnel tests be conducted to provide details of the junction pressure distributions and the three-dimensional boundary layers and wakes."

Transit Access Feasibility Study for Oakland

To respond to the need to increase speed, reliability and conveniences of surface transportation link of air flight trip, this study developed plans for improved transit services in the study area. Examined the feasibility of those plans, and recommended means of implementing and funding. The effort was to connect the airport to the rapid transit system. The choice of extending BART (the rapid transit system) to the airport or installing a separate connector system was considered. The Oakland Airport Connector System was selected as more advantageous because of lower cost and more frequent service. A comparison of the various Oakland Airport Connector Systems found a small vehicle service to be the most attractive as far as service, flexibility, and cost. Author (GRA)

Experiments were run with Jet A fuel to determine the heat transfer characteristics and coking problems associated with the operation of supersonic turbine aircraft extended by using more heat sink of the fuel for cooling. Selection of the fuel used was based on coker tests of fuels from several sources. Heat transfer to the fuel was studied and correlations were developed for both laminar and turbulent flow of the fuel. Considerable free convection in laminar flow enhanced the heat transfer and stabilized the flow at Reynolds numbers up to 15,000. Tests showed that the tube temperature was the most important variable in determining deposition rate. Coke deposits were found to have two effects on heat transfer, a beneficial effect by acting as a turbulence promoter to increase the convective heat transfer coefficient and a detrimental effect by increasing the resistance to heat transfer. Pressure oscillations in the test section were audible at certain turbulent flow conditions when the exit fuel was near its pseudocritical temperature. Amplitudes ranged up to 350 psi and primary frequencies varied from 1000 to 5000 Hz.

The exhaust emissions of light, piston engine aircraft and the phenomena of natural afterburning of the exhaust gases on contact with the ambient air were investigated. The exhaust emissions of representative aircraft were measured as they were flown in a normal manner. At the same time, the extent of afterburning was measured by sampling the exhaust plume downstream of the exhaust stack and comparing the plume composition, corrected for dilution, to the composition of the stack gases. The exhaust emissions from nine light aircraft were determined using a 9-mode take-off-cruise-landing (TCL) cycle developed for this study. Exhaust component concentrations and fuel consumption rates were measured for each mode during ten test
The pollutant concentrations were converted to emission rates per pound of fuel, per minute, per mode, per TCL cycle, and per landing-takeoff (LTO) cycle.
SUBJECT INDEX

AERONAUTICAL ENGINEERING / A Special Bibliography (Suppl. 10) OCTOBER 1971

Typical Subject Index Listing

<table>
<thead>
<tr>
<th>ACCIDENT PREVENTION</th>
<th>SUBJECT HEADING</th>
<th>REPORT NUMBER</th>
<th>NASA ACCESSION NUMBER</th>
</tr>
</thead>
</table>

The subject heading is a key to the subject content of the document. The Notation of Content (NOC) rather than the title of the document, is used to provide a more exact description of the subject matter. The report number helps to indicate the type of document used e.g. NASA report translation. NASA contractor report. The accession number is located beneath and to the right of the Notation of Content e.g. N71-11466. Under any one subject heading, the accession numbers are arranged in sequence with the IAIA accession numbers appearing first.

A

A-6 AIRCRAFT

Statistical analysis of gyrocompass node of A-6A inertial navigation system [EM-511] N71-30315

ACIDITY

Aircraft turbine oil acid number potentiometric determination, discussing automatic titration procedure and apparatus and solvents influence on titration curve and inflection point N71-36680

ACOUSTIC IMPEDANCE

Inlet noise suppressors having perforated plate over honeycomb wall construction evaluated over range of passage heights and engine speeds using turbojet engine as noise source [NASA-TN-D-6395] N71-31096

ACOUSTIC MEASUREMENTS

Helicopter rotor noise due to blade-vortex interaction, using linear gust model N71-36934

Development of noise measurement units for aircraft and aircraft noise reduction and psychoacoustic studies N71-30786

ACOUSTIC SIMULATION

Optimal digital controller based on linear approximation of acoustical test facility, for determining effects of supersonic rocket engine noise on vehicle surface [NASA-CR-115073] N71-30741

AERIAL PHOTOGRAPHY

Holographic imagery for aviation and space flight [JPHS-53420] N71-30361

AERIAL RECORDING

Real time reconnaissance cockpit display system for airborne sensor systems, providing sight combat imagery N71-35772

AERODYNAMIC BALANCE

STAN/HASS system aircraft weight and balance determination, discussing basic concepts, design requirements and applications [SAME PAPER 896] A71-35816

Strut pressure and axle strain gage system testing for balance and weighing onboard De Havilland C-7A aircraft [SAME PAPER 889] N71-35827

AERODYNAMIC BRAKES

Moving long cylindrical model for aerobraking tests at high speed in drop wise facility N71-31109

Criteria and recommended practices for design, selection, analysis, and testing of deployable aerodynamic deceleration systems [NASA-SP-8066] N71-31303

AERODYNAMIC CHARACTERISTICS

Hypersonic aircraft design usable as transport or space shuttle, determining aerodynamic behavior in viscous flow N71-36431

Flight dynamics for aircraft noise reduction, gust effects decrease and dynamic stability of parachute load systems N71-36752

Wind tunnel investigation of aerodynamic interference between two lifting surfaces in tandem N71-29343

Computed aided design of wing structures and application of optimal law of material distribution [AD-722303] N71-29657

Aerodynamic characteristics of thin, highly cambered airfoils in incompressible flow N71-29893

Design and characteristics of supersonic inlet controls for minimizing inlet unstarts N71-30072

Wind tunnel investigation of static longitudinal aerodynamic characteristics of semi-span swept wing for STOL jet transport with deflected thruster and boundary layer control [NASA-TN-D-6256] N71-30282

Application of Fredholm integral equations of second kind for determining pressure distribution on cascade of thick airfoils [NASA-TN-F-702] N71-30480

Experimental and analytical study of subsonic longitudinal and lateral aerodynamic characteristics of slender sharp edge 74 deg swept wings [NASA-TN-D-6346] N71-30530

Aerodynamic and deployment characteristics of twin keel all-flexible parawing rigged with several variations of multistage canopy and suspension line reeling system [NASA-TN-D-6306] N71-30748

Aerodynamic characteristics, rocket nozzles, spacecraft propulsion, antenna design, and internal combustion engines [NASA-CR-119315] N71-31106

Aerodynamic characteristics of vehicle models in aluminum tube N71-31108

Static force tests of model of twin jet fighter aircraft at various angles of attack and sideslip angles to obtain data for theoretical spin studies [NASA-TN-D-6425] N71-31330

AERODYNAMIC COEFFICIENTS

Numerical analysis of aerodynamic loads and coefficients for tandem and T tail surfaces harmonically oscillating in subsonic flow N71-29335

AERODYNAMIC CONFIGURATIONS

Symposium on unsteady aerodynamic forces, loads, and configurations for aeroelastic analysis of interfering surfaces [AARD-CP-80-71-PF-2] N71-29338

Computer program used for design criteria of stall characteristics of straight wing aircraft [NASA-CR-1646] N71-31154

AERODYNAMIC DRAG

Sting-free aerodynamic drag measurement on ellipsoidal cylinders in subsonic wind tunnel at transition Reynolds numbers N71-29335
AERODYNAMIC FORCES

AERODYNAMIC FORCES

Aerodynamic drag of many bodies of revolution in supersonic flow [NLR-PR-71-039] N71-30325

AERODYNAMIC FORCES

Engine turbine blades aerodynamic vibration damping calculation procedure A71-35023

Symposium on unsteady aerodynamic forces, loads, and configurations for aeroelastic analysis of interfering surfaces [AGARD-CP-80-71-PT-2] N71-29339

Computer program for calculating airfoils coefficients of wing-horizon tail and fin-horizontal tail oscillating in subsonic flow N71-29336

Method for calculating flutter using interference aerodynamic forces between wings and tail N71-29345

Aerodynamic characteristics of elastic swept wings of aircraft in subsonic flow with given weight, overload, and dynamic head [NASA-TP-13717] N71-30656

AERODYNAMIC LOADS

Numerical analysis of aerodynamic loads on wing and tail surfaces with oscillations in unsteady supersonic and subsonic flow including interference lift [AGARD-CP-80-71-PT-1] N71-29333

Aerodynamic load predicting for control surfaces in unsteady supersonic and subsonic flow N71-29334

Numerical analysis of aerodynamic loads and coefficients for tangent and T tail surfaces harmonically oscillating in subsonic flow N71-29335

Wing interference lift line lattice simulation and application to aerodynamic loads on tangential wings in unsteady flow N71-29336

Box collocation method for calculating aerodynamic loads on tangent delta wings with oscillations in supersonic flow N71-29337

Symposium on unsteady aerodynamic forces, loads, and configurations for aeroelastic analysis of interfering surfaces [AGARD-CP-80-71-PT-2] N71-29338

Kinematics of subsonic unsteady airloads on multiple lifting surfaces N71-29339

Parametric turbine vector diagram calculation for design of highly loaded multistage fan driven turbine [NASA-CR-1862] N71-30669

AERODYNAMIC NOISE

Subsonic turbulent jet acoustic emission, calculating noise intensity in far field for various Mach numbers A71-36213

Noise generation due to inlet free stream turbulence incident on isolated stators and rotors, using flat plate cascade blade row model N71-36498

Relation of Eulerian and Lagrangian structure of pseudosound pressure and velocity fields in turbulent shear flow to aerodynamic noise generation [NASA-CR-19356] N71-31211

AERODYNAMIC STALLING

Unsteady airfoil stall characteristics using static data input for predicting stall flutter boundaries of space shuttle wing [NASA-CP-111906] N71-29221

AERODYNAMICS

Critical of topics discussed at AGARD meeting on aerodynamic interference [AGARD-AR-34-71] N71-31059

AEROSTRUCTURAL

Experimental and theoretical aeroelastic analysis of Fokker F-28 T tail, using flutter model and flight flutter tests A71-35649

Symposium on unsteady aerodynamic forces, loads, and configurations for aeroelastic analysis of interfering surfaces [AGARD-CP-80-71-PT-2] N71-29338

Aerelastic and flutter analysis for T tail of Fokker F-28 A71-35649

AEROSPACE ENGINEERING

Aircraft structure elasticity effects on control lever deflection and control forces N71-31065

AEROSPACE ENGINEERING

Test facilities on structural engineering at FFA, Sweden [FFA-606-61] N71-29378

Problems of wind gust absorption by aircraft structures, and flight tests of prototype B-100 [NASI-TP-13758] N71-30848

Critique of topics discussed at AGARD meeting on aerodynamic interference N71-31459

AEROSPACE ENGINEERING

Diffusion bonding as economical fabrication process for aerospace applications involving Ti alloys, emphasizing mechanical properties and structural reliability improvement N71-36661

AEROSPACE INDUSTRY

Economic appraisal of British aerospace industry and plans for future development N71-30940

AEROSPACE SYSTEMS

Aerospace electronics - IEEE Conference, Dayton, Ohio, May 1971 A71-35752

AEROTHERMODYNAMICS

Transonic wind tunnel testing of air intake and afterbody of double flux engine nacelle at high subsonic Mach numbers and high Reynolds numbers [ONERA-TP-943] A71-36021

AEROTHERMODYNAMICS

Performance characteristics of jet engines equipped with afterburners, discussing combustion, flame stabilization, outlet nozzle regulation and operational cost A71-35439

Gaseous fission measurements from jet engine afterburners over range of fuel-air ratios [NASA-PR-71-2015] A71-30117

Afterburning flame stabilization in turbofan engines [NASI-TP-13657] A71-30350

Exhaust emission from reciprocating aircraft engines, and afterburning of exhaust gases on contact with ambient air - air pollution study [PB-197627] N71-31569

AIR BREATHING ENGINES

Design and development of air breathing engine systems for space shuttle vehicle N71-29607

AIR CARGO

Air assures loading system consisting of onboard weight and balance elements and fully mechanized cargo pallet transfer, use of computerized simulation model for parametric evaluation [SHE-PAPER-900] A71-35811

AIR COOLING

Fan jet first stage turbine blade air cooling, describing design, heat transfer data, efficiency and temperature distribution A71-35904

AIR intakes

Transonic wind tunnel testing of air intake and afterbody of double flux engine nacelle at high subsonic Mach numbers and high Reynolds numbers [ONERA-TP-943] A71-36021

Normal shock control systems for supersonic mixed compression intake using feedback loops [NASA-PB-6-382] N71-29745

AIR NAVIGATION

Navigation and communication satellites development for civil aviation and shipping, examining technical, organizational, operational and cost problems A71-30240

AIR NAVIGATION

Navigation system improvement, presenting data acquisition upgrading and ground automation-aircraft navigation systems interface A71-36614

AIR NAVIGATION

Precision area navigation system, considering position and velocity continuous measurement in three dimensional space, system components and simulation program A71-30616

A-2
AIB Traffic

Discusses communication satellite system for air traffic control and navigation, discussing aircraft antennas beam electronic scanning by computerized control
A71-36801

Air navigation, surveillance and traffic control technology effects on land and airspace uses at airports
A71-35371

ATC system safety problems from user standpoint, considering requirements by pupil, test and airline pilots and light, private, business, taxi and military aircraft
A71-35371

ATC system improvement by air navigation, discussing benefits in services, safety and cost effectiveness
A71-35372

Military and civil aircraft navigation systems development, emphasizing self contained airborne equipment
A71-35373

Airborne communications with AM/ARC-154 transceiver in single radio, discussing extended frequency coverage, multisite operation, navigation and input/output provisions
A71-35374

Omega navigation application to general aviation aircraft, presenting diurnal course shift to overcome deficiencies
A71-35767

Air traffic and navigation control systems with application to Western Europe and Atlantic area, noting requirements for ILS successor
A71-35998

Satellite based position fixing data by ranging techniques, discussing application to navigation and ATC
A71-36493

AIB Piracy

Senate hearings on Federal anti-skyjacking program
A71-31511

AIB Pollution

Control equipment and engine development for air pollution control from jet aircraft engine emissions
A71-31403

Exhaust emission from reciprocating aircraft engines, and afterburning of exhaust gases on contact with ambient air - air pollution study
A71-31569

AIB Traffic

Finnish air traffic law based on international civil aviation convention, discussing regulations relative to aircraft, personnel and airports
A71-36919

Warm air traffic convection agreements as amended at The Hague and Guatemala, presenting air transport regulations in present form
A71-36920

Trends in air transportation and airline industry operations from 1970 to 1980
A71-35112

AIB Traffic Control

ATC system models, covering surface movement, runway utilization, terminal areas and enroute traffic
A71-34523

ATC system improvement, presenting data acquisition upgrading and ground automation-aircraft navigation systems interface
A71-34614

ATC avionics equipment, discussing inertial area navigation, autopilots, airborne data acquisition, altitude reporting, collision avoidance, CAT, satellite communications, etc
A71-34615

Time division multiplexing system for ATC, discussing surveillance geostationary satellite feasibility, delta modulation for data transmission and aircraft equipment
A71-34680

Discusses communication satellite system for air traffic control and navigation, discussing aircraft antennas beam electronic scanning by computerized control
A71-34681

Queueing theory approach to communication satellite network design, applying to ocean air traffic control and worldwide military broadcast systems
A71-35106

Soviet book on air transportation covering ATC, automatic landing and information display systems
A71-35194

Air navigation, surveillance and traffic control technology effects on land and airspace uses at airports
A71-35371

ATC system safety problems from user standpoint, considering requirements by pupil, test and airline pilots and light, private, business, taxi and military aircraft
A71-35372

ATC system improvement by area navigation, discussing benefits in services, safety and cost effectiveness
A71-35373

Air traffic control and navigation, discussing benefits in services, safety, and cost effectiveness
A71-35373

Aircraft accident litigation related to wake turbulence concerning pilot or air traffic controller faults
A71-35387

Soviet book on radio control of various flight vehicles covering closed loop synthesis, missile guidance, spacecraft trajectory correction and air traffic control
A71-35403

Air navigation and traffic control systems with application to Western Europe and Atlantic area, noting requirements for ILS successor
A71-35998

Satellite based position fixing data by ranging techniques, discussing application to navigation and ATC
A71-36493

ESRO part of Joint ATC communication experiment for L band satellite use, giving voice and data transmission and distance measurement techniques tests results
A71-36510

Bit and scanning field synchronizations of time multipler for air traffic control
A71-36513

Computer-based aircraft tracking with aid of twin radar air traffic control system, discussing components and operation
A71-36993

Analysis of aircraft accidents and establishment of rational, quantitative air traffic safety control goals
A71-29309

Third order two signal intermodulation products for 242 frequencies between 225 and 600 MHz as used in FAA frequency assignment processes
A71-29551

Third order signal intermodulation products for 360 frequencies between 118 and 136 MHz when 50 KHz channel spacing is used as in FAA frequency assignment processes
A71-29552

Third order signal intermodulation products within 118-136 MHz band with 50 KHz spacing
A71-29554

Fundamental characteristics of analog and digital modulation used in ATC communication system
A71-29555

Evaluation of airborne transponders used for air traffic control facilities
A71-30253

Holographic imagery for aviation and space flight
A71-30361

Systems analysis approach to airport planning and predicting terminal facility and aircraft demands in year 2000 for air traffic control systems
A71-30800

AIB Transportation

Soviet book on air transportation covering ATC, automatic landing and information display systems
A71-35194

Aircraft for international long haul transportation, discussing criteria for selection based on environmental, operational, budgetary and policy considerations
A71-35194
AIRCRAFT COMMUNICATIONS

Satellite-to-aircraft links propagation characteristics, considering specular reflected signals, diffuse scattering and scattering function

AIRCRAFT CONSIDERATIONS

Hardware executive control with associative memory for avionic digital computer systems, comparing computation speed, cost and reliability with software method

AIRCRAFT ACCIDENTS

Investigation of Mississippi Valley Airways De Havilland DHC-6, N95658 crash at LaCrosse, Wisconsin Nov. 9, 1970

AIRCRAFT ACCIDENTS

Aircraft accident litigation related to wake turbulence concerning pilot or aircraft controller faults

AIRCRAFT ANTENNAS

Dioscures communication satellite system for air traffic control and navigation, discussing aircraft antenna beam electronic scanning by computerized control

AIRCRAFT ANTENNAS

Airborne display and electric management systems, discussing weight reduction, protective function coordination, power quality, onboard maintenance, data processing and reliability

AIRCRAFT ANTENNAS

Satellite-to-aircraft radio link simulation, evaluating electronic scanning antenna operation, intelligibility, data transmission rate and distance measurement accuracy

AIRCRAFT ANTENNAS

Frequency memory application to earth-satellite-aircraft OBF communications, repeater apparatus and multiple access transmission of half tone images in worldwide satellite communication

AIRCRAFT ANTENNAS

Nomograms for computing multipath effects on VHF and OBF aircraft radio communication

AIRCRAFT ANTENNAS

Experimental and theoretical aerelastic analysis
AIRCRAFT CONTROL

Soviet book on aircraft automatic control systems
covering linear theory, design, autopilot, anaer
machine performance, operation modes, etc
[AD-722773]
A71-35473

Lockheed L-1011 development, discussing flying
stabilizer design, direct lift control and
autoland system
[AAIA PAPER 71-780]
A71-35532

Random access signaling system application to
aircraft control, discussing signal redundancy
requirement for access capability optimization
based on radio environment model
[AD-722230]
A71-35783

System analysis of aircraft, aircraft guidance
and control systems, and atmospheric turbulence
for low visibility instrument landing system
requirements
[AD-722230]
A71-35925

Evaluating analytical models of turbulence having
non-Gaussian gusts distributions and effects of
wind shear on aircraft operations
NT71-30778

Lower atmosphere wind shear determined for
aircraft control from observations in
different American sites
NT71-30837

AIRCRAFT DESIGN

VTOL transport optimal airframe/propulsion systems
design, discussing thrust requirements, performance,
control, cruise functions, fuel consumption and fan characteristics
[AAIA PAPER 71-749]
A71-34225

DC-10 wide body tri-jet aircraft design and
development, considering sizing, number of
engines and thrust optimization and selection of
airframe, approach and stall speeds
[AAIA PAPER 71-780]
A71-34525

Computerized automatic control of aircraft
electrical system using remote power controllers
and multiplexed data bus for wiring reduction
and reliability improvement
A71-34700

DC-10 fuselage pressure shell fail-safe design,
presenting analysis methods for residual
strength prediction of damaged stiffened panels
A71-35760

Total in-flight simulator /TIPS/ in variable
stability C-131 aircraft, describing potential
as design tool
[AAIA PAPER 71-794]
A71-35529

Auxiliary cockpit for attack aircraft combat
effectiveness, including mold line tumbling
plates, terminal ballistic kinematics and
integral structural armor
[AAIA PAPER 71-778]
A71-35530

L-1011 flight test program, describing aircraft
design and performance
[AAIA PAPER 71-789]
A71-35531

Lockheed L-1011 development, discussing flying
stabilizer design, direct lift control and
autoland system
[AAIA PAPER 71-782]
A71-35532

Aircraft electric power system design with
reliability, simplicity, low cost, weight and
size, discussing automatic circuit protection
and energy power
A71-35780

V/STOL aircraft with vectored thrust propulsion
systems, noting weight and center of
gravity-lift-thrust relationship changes effect
on performance
[SAE PAPER 894]
A71-35817

Composite materials effect on supersonic aircraft
weight, design and performance
[SAE PAPER 868]
A71-35818

Design, analysis and testing of F-111 complex
fuselage full scale section of composite
materials, noting weight savings
[SAE PAPER 869]
A71-35825

Wing group weight prediction for subsonic aircraft
design, taking into account root bending moment
due to lift
A71-35925

Lockheed L-1011 passenger jumbo jet layout, ground
handling and servicing
A71-35925

AIRCRAFT ENGINES

Hybrid V/STOL jet lift aircraft design, examining
using area-lift engine bypass ratios relationship
[AAIA PAPER 71-767]
A71-36273

Hypersonic aircraft design usable as transport or
space shuttle, determining aerodynamic behavior
in viscous flow
A71-36431

Strategic bomber B-1A program, discussing airframe
and engine contractors, design, characteristics
performance, electronic equipment and armament
A71-36757

Computational design of wing structures and
application of optimal law of material
distribution
[AD-72230]
A71-36831

Applications of supercritical airfoils to
transport aircraft design
A71-36709

Aircraft design, flight characteristics, and
atmospheric effects on sonic boom during
supersonic and hypersonic flight
A71-36978

Critique of topics discussed at AGARD meeting on
aerodynamic interference
[AIR-AB-34-71]
A71-31059
Inlet noise suppressors having perforated plate over honeycomb wall construction evaluated over range of passage heights and engine speeds using turbojet engine as noise source [NASA-TN-D-6395] A71-31096

AIRCRAFT PARTS
Aircraft parts testing by NDT methods, considering ultrasonic system for valve defects and fluorescent particle system for crack detection

AIRCRAFT PERFORMANCE
Maximum temperature engine concept, definition and application to future aircraft propulsion system performance [SWE PAPER 710461] A71-34908
L-1011 flight test program, describing aircraft design and performance [AIAA PAPER 71-789] A71-35531
V/STOL aircraft with vectored thrust propulsion systems, noting weight and center of gravity-lift-thrust relationship changes effect on performance [SWE PAPER 894] A71-35817

Composite materials effect on supersonic aircraft weight, design and performance [SWE PAPER 888] A71-35818

Flight simulation evaluation of aircraft instrument departure procedure [AIAA-P-5-600-2] A71-29635
Runway and taxiway profile and airplane response measurements to determine runway roughness A71-30766

Applications of supercritical airfoils to transport aircraft design A71-30769

Analysis of 75,000 hours data obtained from NASA V-G/WH flight recorders installed on 734 general aircraft engaged in eight types of operations A71-30782

Prediction method for performance of total pilot-vehicle system in turbulence with application to tracking tasks [AD-722855] A71-31288

AIRCRAFT PRODUCTION
Aircraft jet engine application of electric discharge machining for repetitive continuous production, considering automated closed cycle equipment [SWE PAPER BE-71-143] A71-36658

AIRCRAFT RELIABILITY
Computerized automatic control of aircraft electrical system using remote power controllers and multiplexed data bus for wiring reduction and reliability improvement [SWE PAPER BE-71-143] A71-36658

British civil aircraft airworthiness requirements, discussing aircraft industry management philosophy ensuring quality standards in design, development, production, inspection and product support A71-36673

AIRCRAFT SAFETY
Civil aircraft arresting on runway overshoots, describing safe deceleration method by use of soft ground arresters A71-35210

ATC system safety problems from user standpoint, considering requirements for pilot and airline pilots and light, private, business, taxi and military aircraft A71-35327

ATC system improvement by area navigation, discussing benefits in services, safety and cost effectiveness A71-35373

Air transportation safety review covering weather knowledge, aircraft structures, instrumentation, radio aids and power plants A71-36175

Development and application of heads up aircraft instrument display for improvement in aircraft safety during adverse weather [AIAA-RA-71-9] A71-29305

AIRCRAFT STRUCTURES
Aircraft structural parameters optimization satisfying flutter velocity constraint and minimum mass, applying to box beam design A71-34874

Aircraft structures damage tolerance - AIAA Conference, Philadelphia, June 1970 A71-35151

Thickness effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins A71-35153

Damage tolerant aircraft structures material toughness and residual strength, presenting fracture test results on precracked panels reinforced with crack stoppers A71-35157

Wing structural elements ballistic damage tolerance and residual fracture strength characteristics, discussing projectile velocity, impact angle and target thickness effects A71-35161

Soviet papers on thin walled aircraft structures strength and stability covering bending theory, circular cylindrical shells, thermal stresses of rectangular plates, etc A71-35301

Aircraft structural panels under cyclic static loads, examining fatigue life with probability theory, statistics and regression analysis A71-35312

Light alloys fatigue characteristics for aircraft components endurance evaluation A71-35456

Weight reduction potential of composite materials in aerospace structures, proposing weight estimation technique [SWE PAPER 887] A71-35819

Composite structures development, discussing wing, fuselage, aeropropulsion and missile development, weight savings of hardware and fighter empenange applications [AIAA PAPER 71-367] A71-36275

Computer aided design of wing structures and application of optimal law of material reinforcement, high strength materials, and aircraft usage effects [AD-722303] A71-39657

Analysis of aircraft accidents and establishment of rational, quantitative air traffic safety control goals [FAA-RD-71-36] A71-29309

Conference on NASA research in aircraft safety and operating problems [NASA-SP-270] A71-30756

Ditching behavior of dynamic C-5A model A71-30757

Magnitude of induced voltages and their relation to characteristics of lightning discharge and electrical properties of aircraft electrical systems A71-30761

Safety characteristics for powered lift of comersial STOL aircraft A71-30773

AIRCRAFT STABILITY
Total in-flight simulator /TIFS/ in variable stability C-131 aircraft, describing potential and design tool [AIAA PAPER 71-794] A71-35529

STAB/MASS system aircraft weight and balance determination, discussing basic concepts, design requirements and applications [SWE PAPER 896] A71-35816

Dynamic positioning stationkeeping and stability criteria for formation flight systems extended to helicopter and V/STOL transports A71-35923

High speed aircraft maneuver stability determination by constant angular pitching/rotation velocity, angle of attack and flight speed, using Lippmann method A71-36176

Engine dynamics requirements implied by thrust modulation control for VTOL aircraft [NASA-TT-F-13755] A71-31455

AIRCRAFT SAFETY
Civil aircraft arresting on runway overshoots, describing safe deacceleration method by use of soft ground arresters A71-35210

ATC system safety problems from user standpoint, considering requirements for pilot and airline pilots and light, private, business, taxi and military aircraft A71-35327

ATC system improvement by area navigation, discussing benefits in services, safety and cost effectiveness A71-35373

Air transportation safety review covering weather knowledge, aircraft structures, instrumentation, radio aids and power plants A71-36175

Development and application of heads up aircraft instrument display for improvement in aircraft safety during adverse weather [AIAA-RA-71-9] A71-29305

AIRCRAFT STRUCTURES
Aircraft structural parameters optimization satisfying flutter velocity constraint and minimum mass, applying to box beam design A71-34874

Aircraft structures damage tolerance - AIAA Conference, Philadelphia, June 1970 A71-35151

Thickness effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins A71-35153

Damage tolerant aircraft structures material toughness and residual strength, presenting fracture test results on precracked panels reinforced with crack stoppers A71-35157

Wing structural elements ballistic damage tolerance and residual fracture strength characteristics, discussing projectile velocity, impact angle and target thickness effects A71-35161

Soviet papers on thin walled aircraft structures strength and stability covering bending theory, circular cylindrical shells, thermal stresses of rectangular plates, etc A71-35301

Aircraft structural panels under cyclic static loads, examining fatigue life with probability theory, statistics and regression analysis A71-35312

Light alloys fatigue characteristics for aircraft components endurance evaluation A71-35456

Weight reduction potential of composite materials in aerospace structures, proposing weight estimation technique [SWE PAPER 887] A71-35819

Composite structures development, discussing wing, fuselage, aeropropulsion and missile development, weight savings of hardware and fighter empenange applications [AIAA PAPER 71-367] A71-36275

Computer aided design of wing structures and application of optimal law of material reinforcement, high strength materials, and aircraft usage effects [AD-722303] A71-39657

Analysis of aircraft accidents and establishment of rational, quantitative air traffic safety control goals [FAA-RD-71-36] A71-29309

Conference on NASA research in aircraft safety and operating problems [NASA-SP-270] A71-30756

Ditching behavior of dynamic C-5A model A71-30757

Magnitude of induced voltages and their relation to characteristics of lightning discharge and electrical properties of aircraft electrical systems A71-30761

Safety characteristics for powered lift of comersial STOL aircraft A71-30773

AIRCRAFT STABILITY
Total in-flight simulator /TIFS/ in variable stability C-131 aircraft, describing potential and design tool [AIAA PAPER 71-794] A71-35529
ABGOLAR VELOCITT

AHGLE OF ATTACK

AHALOG TO DIGITAL COHVEBTS

ALGOHITHBS

AIRPORTS

ALL-IEATHEB AIB BAVIGATIOS

ALDHIIOB ALLOTS

ALOHIRUB

ALTIBETEBS

ALLOTS

Hind pressure and cross flow velocity profiles for Systems analysis approach to airport planning and large scale BOS 1C digital TOE navigation

Extension of New York Waterfront Commission to airport operations and establishment of security measures to combat air cargo theft [BEEPT-91-1262] N71-3016A

Wind pressure and cross flow velocity profiles for short takeoff aircraft building roof airports N71-30776

Analysis of transit access to Oakland International Airport, Oakland, California, and recommendations for improved service [PB-197837] N71-31463

Optimal digital controller based on linear approximation of acoustical test facility, for determining effects of supersonic rocket engine noise on vehicle surface [NASA-CR-115073] N71-30741

Category II operations at various airports, considering all-weather landing requirements of airborne equipment, maintenance standards, pilot training, etc. [SAE PAPER 710462] A71-34899

Light alloys fatigue characteristics for aircraft components endurance evaluation A71-35456

Study of concept of inertially aided barometric altimeter system to meet vertical separation requirements of 1000 and 2000 feet for Mach 3.5 aircraft in altitude hold at 80,000 feet [NASA-CH-1770] N71-31307

Preliminary study of airplane-autopilot response to atmospheric turbulence while operating in altitude-hold and altitude-hold modes N71-30780

Aerodynamic characteristics of vehicle models in aluminum tube N71-31108

Thickness effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins A71-35153

Fatigue crack propagation in Al alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship A71-35156

Large scale MOS IC digital VOR navigation converter, comparing accuracy, size, weight and cost with standard design A71-35789

High speed aircraft maneuvers stability determination by constant angular pitching/rotation velocity, angle of attack and flight speed, using Liapunov method A71-36176

Dynamic parameters of supersonic flow incident on conical bodies at large angles of attack, considering flow field and entropy distribution A71-36328

High speed aircraft maneuvers stability determination by constant angular pitching/rotation velocity, angle of attack and flight speed, using Liapunov method A71-36176

Angular Flow

Velocity profile control tests of diffuser wall bleed to control combustor inlet airflow distribution [NASA-TP-D-6435] N71-30817

Antenna Design

Compact, self contained, symmetrical antenna for airborne use at high frequencies with capability to function in two independent modes for both transmission and reception [AD-722736] N71-29895

Aerodynamic characteristics, rocket nozzles, spacecraft propulsion, antenna design, and internal combustion engines [NASA-CR-119315] N71-31106

Antenna Radiation Patterns

Meter wave aircraft slot antenna for Concorde air to ground communication via satellite, presenting synthetic radiation patterns A71-36514

Approach Control

Approach guidance system for side-firing tactical aircraft [AD-722412] N71-29700

Vertical situation display concept for alleviating problems of inadequate guidance and display information for making steep approaches N71-30770

Terminal area studies with EC-142, IV-5, Do-31, and P 1127 aircraft to develop powered lift control techniques for instrument approach N71-30774

Aeromedical Analysis of body's response to gravitational and non-gravitational forces during exposure to space flight, to determine effects of space flight on the human body A71-35521

AERIAL FORCES

AERIAL FORCES

Aerofoil cockpit for attack aircraft combat effectiveness, including hard line tumbling plates, terminal ballistic kinematics and integral structural armor [AIAA PAPER 71-778] A71-35530

AERIAL FORCES

Civil aircraft arresting on runway overshoots, describing safe deceleration method by use of soft ground arresters A71-35210

ARRESTING GEAR

Space shuttle vehicles landing with emergency arrestment aids, describing tailhook/cable, net and leading gear/cable engagement methods A71-36688

AERIAL FORCES

Experimental and analytical study of subsonic longitudinal and lateral aerodynamic characteristics of slender sharp edge 74 deg swept wings [NASA-TP-D-6344] N71-30530

ASPHALT

Asphalt pavement design for heavy multiwheel aircraft, using BISTRO computer program A71-36000

ASTRONAUTICS

Space shuttle avionics system redundancy, calculating costs for individual line replaceable units A71-36497

ASTRONAUTICS

Self similar numerical and asymptotic solutions of laminar multicompont isothermal boundary layer equations for large blowing rates A71-35633

Asymptotic techniques to define pressure loading effects on wings with unbalanced control surfaces A71-29348

ATMOSPHERIC COMPOSITION

Stratospheric ozone reduction through catalytic action of nitrogen oxides from SST exhaust, discussing degrading effect on atmospheric radiation shield A71-36922

ATMOSPHERIC TURBULENCE

Systems analysis of aircraft, aircraft guidance and control systems, and atmospheric turbulence for low visibility instrument landing system requirements A71-36922
ATTACK AIRCRAFT

[AD-722773] Evaluating effects of high altitude turbulence encounters on XB-70 airplane
[NASA-TN-D-6457] Flight tests to determine handling qualities of general aviation aircraft during ILS approaches in turbulent air
[AD-722771] Evaluating analytical models of turbulence having non-Gaussian gusts distributions and effects of wind shear on aircraft operations

Preliminary study of airplane-autopilot response to atmospheric turbulence while operating in altitude-hold and attitude-hold modes

[AD-722785] Attack Aircraft
Armored cockpit for attack aircraft combat effectiveness, including solid line tumbling plates, terminal ballistic kinematics and integral structural armor

ATTITUDE CONTROL

Preliminary study of airplane-autopilot response to atmospheric turbulence while operating in altitude-hold and attitude-hold modes

Augmentation

Augmented ram wing vehicle performance and flow field for high speed ground transportation

AUTOMATIC CONTROL

Computerized automatic control of aircraft electrical system using remote power controllers and multiplexed data bus for wiring reduction and reliability improvement

Avionic and missile computer control systems, describing universal function unit design and digital processing requirements

Remote power controller as static circuit protection device for aircraft and spacecraft automatically controlled electrical wiring system, discussing performance improvements

AUTOMATIC FLIGHT CONTROL

Soviet book on aircraft automatic control systems covering linear theory, design, autopilot, man machine performance, operation modes, etc

Preliminary study of airplane-autopilot response to atmospheric turbulence while operating in altitude-hold and attitude-hold modes

AUTOMATIC LANDING CONTROL

Soviet book on air transport transportation covering ATC, automatic landing and information display systems

Lockheed L-1011 development, discussing flying stabilizer design, direct lift control and autoaid system

Cost effective high speed projectile trajectory plotting system for gunnery range instrumentation, applying to aircraft path recording during automatic landing control

AUTOMATIC PICTURE TRANSMISSION

Frequency memories application to earth-satellite-aircraft UHF communications, repeater apparatus and multiple access transmission of half tone images in worldwide satellite communication

SUBJECT INDEX

AUTOMATIC PILOTS

Soviet book on aircraft automatic control systems covering linear theory, design, autopilot, man machine performance, operation modes, etc

ATC avionics equipment, discussing inertial area navigation, autopilots, airborne data acquisition, altitude reporting, collision avoidance, CAT, satellite communications, etc

BAC 111 autopilot development, discussing computer compatible system for digital representation of airborne flight test data and direct transmission to ground-based computers

Preliminary study of airplane-autopilot response to atmospheric turbulence while operating in altitude-hold and attitude-hold modes

AVIONICS

ATC avionics equipment, discussing inertial area navigation, autopilots, airborne data acquisition, altitude reporting, collision avoidance, CAT, satellite communications, etc

Space shuttle avionics system redundancy, calculating costs for individual line replaceable units

Test methods and testing techniques for determining technical performance and safety characteristics of ground support service aviation equipment

Magnitude of induced voltages and their relation to characteristics of lightning discharge and electrical properties of aircraft electrical systems

AXIAL FLOW TURBINES

Siren wall in turbine axial stage due to nonuniform pressure fields behind blade cascades

AXIEMETRIC FLOW

Binary laminar boundary layer in supersonic axisymmetric stagnation point flow with temperature dependent material properties, presenting exact and approximate calculation methods

Supersonic jet interaction with turbulent wake, calculating plane and axisymmetric flow behind body butt face

B-70 AIRCRAFT

Evaluating effects of high altitude turbulence encounters on EB-70 airplane
[NASA-TN-D-6457] XB-70 aircraft for investigating and predicting clear air turbulence in stratosphere caused by mountain waves
[NASA-CR-18778] Bac 111 Aircraft
Bac 111 autopilot development, discussing computer compatible system for digital representation of airborne flight test data and direct transmission to ground-based computers

BALANCING

Subsonic static characteristics of slender wing configurations using magnetic suspension and balance system

BASE FLOW

Inclined wedges in rarefied supersonic flow conditions, investigating base and wake patterns

A-10
geometrical and aerodynamic characteristics
A71-36756

BEACHES
Design of computer assisted information system to provide seacoast data for military purposes
[AD-721497] H71-29660

BIBLIOGRAPHIES
Annotated bibliography on bird aircraft hazards and accidents from Oct. 1967 to Jan. 1971
[TDAK-56961] H71-30128

BINARY MIXTURES
Binary laminar boundary layer in hypersonic axisymmetric stagnation point flow with temperature dependent material properties, presenting exact and approximate calculation methods
A71-35422

BIRDS
Annotated bibliography on bird aircraft hazards and accidents from Oct. 1967 to Jan. 1971
[TDAK-56961] H71-30128

BLIND LANDING
Holographic display for blind landing system with variable target perspective over wide field of view, using collimated or cylindrical laser beam
A71-36513

BLOWDOWN WIND TUNNELS
Support systems and operational design of nitrogen hypervelocity blowdown wind tunnel
[AD-722345] H71-29907

BLOWING
Self similar numerical and asymptotic solutions of laminar multicomponent isothermal boundary layer equations for large blowing rates
A71-35633

BLUFF BODIES
Hypersonic and supersonic angle of attack flow about axisymmetric and axisymmetric blunt bodies based on time dependent finite difference theory and method of characteristics
[NASA-TH-5-6283] H71-31207

BODIES OF REVOLUTION
Laminar boundary layer on wing profiles and bodies of revolution, calculating flow characteristics based on integral momentum relation
A71-34828

Aerodynamic drag of many bodies of revolution in supersonic flow
[DLR-PE-71-06] H71-30325

BODY-WING AND TAIL CONFIGURATIONS
Supersonic flow field computation for wing-body combinations by shock-capturing difference techniques, discussing improved based on Hunge-Kutta method
A71-36303

Procedures for calculating normal wash in nonlinear configurations and interference between wings and bodies
A71-29340

Subsonic static characteristics of slender wing configurations using magnetic suspension and balance system
[NASA-CH-1796] H71-29775

BOEING 747 AIRCRAFT
Statistical analysis of error sources and magnitudes in Boeing 747 weight values obtained by onboard aircraft weighing system and by manual calculations
[SAWE PAPER 891] A71-35813

Link 747 simulator with six degrees of motion system for engineers and pilot training
A71-36970

Boeing 747 digital computer type flight simulator with four degrees of movement for engineer and pilot training
A71-36971

BOMBER AIRCRAFT
Strategic bomber B-1A program, discussing airframe and engine contractors, design, characteristics performance, electronic equipment and armament
A71-36757

BOBCON
Boron-epoxy composite wing box beam design, describing preliminary weight estimation from layouts

BUFFETING
Cone-cylinder-cose missile type body in transonic buffeting environment determining static and fluctuating wall pressure distribution
A71-35106

BOUNDARY LAYER CONTROL
Plane laminar incompressible jet flow along paraboloids with no external stream, using second order boundary layer theory
[SAWE PAPER 71-APR-88] A71-36268

Unsteady airflow stall characteristics using static data input for predicting stall flutter boundaries of space shuttle wing
[NASA-CH-11906] H71-39221

Velocity profile control tests of diffuser wall bleed to control combustion inlet airflow distribution
[NA.A-TR-6-6435] H71-30817

BOUNDARY LAYER FLOW
German monograph on pressure changes as boundary layer effect in tube wind tunnels covering test equipment and experimental design, Becker theory, pipe flow, etc
A71-34792

BOUNDARY LAYER SEPARATION
Negative pressure gradient effect on separation of supersonic flow over notches, comparing theory with wind tunnel determination
A71-38898

Flow distribution behind laminar boundary layer separation point in supersonic flow, calculating pressure and temperature distributions
A71-35629

Computer program used for design criteria of stall characteristics of straight wing aircraft
[NASA-CH-1646] H71-31154

BOUNDARY LAYER TRANSITION
Influence of artificially induced turbulence upon boundary layer transition in supersonic flows
[AD-723322] H71-35886

BOUNDARY LAYERS
Convective flow at stagnation point relation to radiation flux decrease as result of absorption in cold boundary layer
A71-35259

Finite difference method application to three dimensional boundary layer calculation on sphere- segment surfaces in supersonic flow
A71-35632

BOUNDARY VALUE PROBLEMS
Two dimensional steady viscous gas transonic flow Navier-Stokes equations, establishing uniqueness of solutions to boundary value problems
A71-35686

Numerical analysis of aerodynamic loads on wing and tail surfaces with oscillations in unsteady supersonic and subsonic flow including interference lift
[AGED-CP-80-71-PT-1] A71-29333

Aerodynamic load predicting for control surfaces in unsteady supersonic and subsonic flow
A71-29334

Numerical analysis of aerodynamic loads and coefficients for tandem and T tail surfaces harmonically oscillating in subsonic flow
A71-29335

Wing interference lift line lattice simulation and application to aerodynamic loads on tandem wings in unsteady flow
A71-29336

BOX BEAMS
Aircraft structural parameters optimization satisfying flutter velocity constraint and minimum mass, applying to box beam design
A71-38874

Constrained torsion of spar box fastened along isolated parts of wing span, noting structural failure due to tangential stress distribution
A71-35313

Boron-epoxy composite wing box beam design, describing preliminary weight estimation from layouts
[SAWE PAPER 891] A71-35815

BROADCASTING
Queueing theory approach to communication satellite network design, applying to ocean air traffic control and worldwide military broadcast systems
A71-35106

BUFFETING
Cone-cylinder-cose missile type body in transonic buffeting environment determining static and fluctuating wall pressure distribution
A71-35106
C-130 AIRCRAFT

MULTISPECTRAL SCANNER AND DATA SYSTEM WITH 24-C-130 AIRCRAFT

CHANNELS FOR NASA C-130 EARTH RESOURCES SURVEY

AIRCRAFT

C-131-AIRPLANE

TOTAL IN-FLIGHT SIMULATOR/TIPS/ IN VARIABLE

STABILITY C-131 AIRCRAFT, DESCRIBING POTENTIAL

DESIGN TOOL

C-5 AIRCRAFT

DITCHING BEHAVIOR OF DYNAMIC C-5A MODEL

CALCULUS OF VARIATIONS

MINIMUM VARIANCE ESTIMATES OF SIGNAL DERIVATIVES

WITH APPLICATION TO CASE OF AIRCRAFT DESCENT

RATE IN ASCENT LANDING SYSTEMS

CANTILEVER BEAMS

PRESTRESSED CANTILEVER AIRFLOO CROSS SECTION

TURBINE AND COMPRESSOR BLADES VIBRATION NATURAL

FREQUENCIES AND MODE SHAPES

CARBON DIOXIDE LASERS

DETECTING CLEAR AIR TURBULENCE USING CO2 LASER

DOPPLER SYSTEM

CARBON FIBERS

HIGH MODULUS GRAPHITE COMPOSITES APPLICATION FOR

STRUCTURAL WEIGHT REDUCTION AND STIFFNESS

REQUIREMENT WITHOUT STRENGTH LOSS

CARBON MONOXIDE

REDUCTIONS IN SMOKE LEVEL AND CARBON MONOXIDE

EMISSIONS RESULTING FROM AIR-ANSEAT FUEL NOZZLES

IN JET AIRCRAFT EXHAUST POLLUTANT TESTS

CARBON STEELS

CLOSED DIE FORGINGS OF VACUUM REMELTED CARBON AND

LOW ALLOY STEELS TO IMPROVE TRANSVERSE DUCTILITY

AND MICROCLEANNESS FOR AIRCRAFT INDUSTRY

CATC WINGS

DESIGN SHOCK WAVE CORRESPONDENCE TO STRONG OBCLINE

SHOCK, DISCUSSING OFF-DESIGN BEHAVIOR OF CATC WING

SUPERSONIC AIRCRAFT PROPULSION BY EXTERNAL HEAT

ADDITION, DISCUSSING NUMERICAL METHOD FOR

SUITE CARPET WING DESIGN

CASCADE FLOW

STREAM LINES CONSTRUCTION IN MERIDIONAL PLANE OF

BLADE NOZLLE CASCADIES OF STEAM AND GAS TURBINES IN SUBSONIC AND SUPERSONIC FLOW

SIREN WALL IN TURBINE AXIAL STAGE DUE TO

NONUNIFORM PRESSURE FIELDS BEHIND BLADE CASCADES

CASE HISTORIES

CASE HISTORIES OF AIRCRAFT DAMAGE DUE TO WIND

ACTING ON AIRPORT SURFACES, DISCUSSING WIND AND

STORM PROTECTION

CATALYTIC ACTIVITY

STRATOSPHERIC OZONE REDUCTION THROUGH CATALYTIC

ACTION OF NITROGEN OXIDES FROM SST EXHAUST,

DISCUSSING DEGRADING EFFECT ON ATMOSPHERIC

RADIATION SHIELD

CELLULOSIC

UTILIZATION OF AEROSPACE NONFLAMMABLE CELLULOSIC

ELASTOMERIC, FIBROUS, AND COMPOSITE MATERIALS IN

COMMERCIAL AIRCRAFT REFURBISHMENT

SUBJECT INDEX

CENTER OF GRAVITY

V/STOL AIRCRAFT WITH VECTOR THRUST PROPULSION

SYSTEMS, NOTING WEIGHT AND CENTER OF

GRAVITY-THRUST RELATIONSHIPS AND EFFECT

ON PERFORMANCE

[NASA PAPER 859]

A71-35817

C55 MASS AND CENTER OF GRAVITY DETERMINATION SYSTEM

MODEL, DESCRIBING EQUIPMENT, OPERATION

PRINCIPLE, CALIBRATION DATA AND TECHNIQUES

ACCURACY AND ERRORS

[NASA PAPER 879]

A71-35824

CERTIFICATION

FRENCH FLIGHT TEST CENTER ROLE IN DEVELOPMENT AND

CERTIFICATION OF CONCORDE AIRCRAFT, CONSIDERING

COOPERATION WITH INDUSTRY

[NASA PAPER 71-784]

A71-35526

CH-47 HELICOPTER

TAPERED BUDDER BEARING LUBRICATION, CONSIDERING

APPLICATION TO CH-47 BOEING HELICOPTER

TRANSMISSION

A71-35300

CIRCUIT PROTECTION

AIRCRAFT ELECTRIC POWER SYSTEM DESIGN WITH

RELIABILITY, SIMPLICITY, LOW COST, WEIGHT AND

SIZE, DISCUSSING AUTOMATIC CIRCUIT PROTECTION

AND ENERGY POWER

A71-35780

CIVIL AVIATION

NAVIGATION AND COMMUNICATION SATELLITES

DEVELOPMENT FOR CIVIL AVIATION AND SHIPPING,

EXAMINING TECHNICAL, ORGANIZATIONAL, OPERATIONAL

AND COST PROBLEMS

A71-34240

CIVIL AIRCRAFT ARRESTING ON RUNWAY OVERSHOTS,

DESIGNING SAFE DECELERATION METHOD BY USE OF

SOFT GROUND ARRESTERS

A71-35210

CIVIL AVIATION AND MERCHANT MARINE SATELLITES,

CONSIDERING AIRCRAFT AND SURFACE VESSEL ANTENNA

CHARACTERISTICS AND MODULATION TECHNIQUES FOR

OPTIMUM COMMUNICATION CHANNEL FREQUENCIES

A71-35582

AIR TRANSPORTATION SAFETY REVIEW COVERING WEATHER

KNOWLEDGE, AIRCRAFT STRUCTURES, INSTRUMENTATION,

RADIO AIDS AND POWER PLANTS

A71-36175

CIVIL AIRCRAFT MARKET ANALYSIS, EXAMINING

REPLACEMENT CYCLE AND USED AIRCRAFT MARKET BASED

ON AIRCRAFT HISTORIES

A71-36176

CIVIL AVIATION AND MERCHANT MARINE SATELLITES,

CONSIDERING AIRCRAFT AND SURFACE VESSEL ANTENNA

CHARACTERISTICS AND MODULATION TECHNIQUES FOR

OPTIMUM COMMUNICATION CHANNEL FREQUENCIES

A71-35582

AIR TRANSPORTATION SAFETY REVIEW COVERING WEATHER

KNOWLEDGE, AIRCRAFT STRUCTURES, INSTRUMENTATION,

RADIO AIDS AND POWER PLANTS

A71-36175

CIVIL AIRCRAFT MARKET ANALYSIS, EXAMINING

REPLACEMENT CYCLE AND USED AIRCRAFT MARKET BASED

ON AIRCRAFT HISTORIES

A71-36176

German glossary of commercial air traffic with

English equivalents

A71-36962

AIRLINE OPERATIONS, COSTS, EFFECTS ON AIRCRAFT

INDUSTRY, AND COOPERATION WITH CAB

A71-29256

REVIEW OF POLICIES AFFECTING CIVIL AVIATION,

PROBLEMS CONFRONTING IT, AND POTENTIAL FOR

FUTURE CONTRIBUTIONS TO NATIONAL BENEFITS

[NASA-SP-265]

A71-35056

CIVIL AVIATION RESEARCH AND DEVELOPMENT PROJECTS

NOTING CHARACTERISTICS AND GROWTH TO DATE,

CURRENT PROBLEMS, FUTURE REQUIREMENTS, POTENTIAL

SOLUTIONS, AND RECOMMENDATIONS

[NASA-SP-266]

A71-35057

ANALYSIS OF 79,000 HOURS DATA OBTAINED FROM NASA

V-22/V4750 FLIGHT RECORDERS INSTALLED ON 73 AIR

GENERAL AIRCRAFT ENGAGED IN EIGHT TYPES OF

OPERATIONS

A71-35782

PERFORMANCE TESTS ON LIQUID EXPLOSIVE EMERGENCY

EXIT FOR CIVIL AIRCRAFT

[FAA-80-71-33]

A71-31064
CLEAR AIR TURBULENCE
ATC avionics equipment, discussing inertial area
navigation, autopilots, airborne data
acquisition, altitude reporting, collision
avoidance, CAT, satellite communications, etc
A71-34615
Detecting clear air turbulence using CO2 laser
Doppler system
A71-30763
XB-70 aircraft for investigating and predatory
clear air turbulence in stratosphere caused by
mountain wave
[NASA-CS-1876] A71-31351
CLIMBING FLIGHT
Flight simulator evaluation of aircraft instrument
departure procedure
[FAA-FS-600-2] A71-29635
CLOSED CYCLES
Airframe jet engine application of electric
discharge machining for repetitive continuous
production, considering automated closed cycle
equipment
[SSEE PAPER 88-71-143] A71-36558
COASTS
Design of computer assisted information system to
provide seacoast data for military purposes
[AD-722427] A71-29660
COCKPITS
Armored cockpit for attack aircraft combat
effectiveness, including solid line tiling
plates, terminal ballistic kinematics and
integral structural armor
[AIAA PAPER 71-778] A71-35530
COKE
Heat sink capabilities of Jet-A fuel - heat
transfer and conking studies
[NASA-CS-72951] A71-31482
COLLISION AVOIDANCE
Low-cost pilot indicator for midair collision
avoidance
A71-30760
COLLOCATION
Box collocation method for calculating aerodynamic
loads on tandem delta wings with oscillations in
supersonic flow
A71-29337
COMBAT
Armored cockpit for attack aircraft combat
effectiveness, including solid line tiling
plates, terminal ballistic kinematics and
integral structural armor
[AIAA PAPER 71-778] A71-35530
Real time reconnaissance cockpit display system
for airborne sensor systems, providing night
combat imagery
A71-35772
CONJUGATION CHAMBER
Gas turbine with high velocity combustor, pure
impulse compressor and turbine and isothermal
burner
A71-36560
Velocity profile control tests of diffuser wall
bleed to control combustor inlet airflow
distribution
Use of air-assist fuel nozzle to reduce exhaust
emissions from gas turbine combustor at
simulated idle conditions - J-57 engine
COMET & AIRCRAFT
Cotst & installation and experimental program,
investigating avionics systems integration
techniques
A71-35070
COMMERCIAL AIRCRAFT
Utilization of aerospace nonflammable cellulose
elastomeric, fibrous, and composite materials in
commercial aircraft refurbishment
A71-30759
Senate hearings on Federal anti-skyjacking program
A71-31511
Trends in air transportation and airline industry
operations from 1970 to 1980
A71-31512
COMMUNICATION SATELLITES
Navigating and communication satellites
development for civil aviation and shipping,
examining technical, organizational, operational
and cost problems
A71-35285
A-13

COMPRESSIBLE FLUIDS
Time division multiplexing system for ATS,
discussing surveillance geostationary satellite
feasibility, delta modulation for data
transmission and aircraft equipment
A71-34680
Dissociated communication satellite system for air
traffic control and navigation, discussing
aircraft antenna beam electronic scanning by
computerized control
A71-34681
Satellite-to-aircraft links propagation
characteristics, considering specular reflected
signals, diffuse scattering and scattering
function
A71-35097
Queueing theory approach to communication
satellite network design, applying to ocean air
traffic control and worldwide military broadcast
systems
A71-35106
Civil aviation and merchant marine satellites,
considering aircraft and surface vessel antenna
characteristic and modulation techniques for
optimum communication channel frequencies
A71-35582
Radio tracking of aircraft by two geostationary
satellites, discussing measurement, navigation
and position errors
A71-36508
ESRO part of joint ATC communication experiment
for L band satellite use, giving voice and data
transmission and distance measurement techniques
tests results
A71-36510
Frequency synthesisers application to earth-satellite-
aircraft UHF communications, repeater apparatus
and multiple access transmission of half tone
images in worldwide satellite communication
A71-36553

COMPONENT RELIABILITY
Gas turbine engine materials and components
equivalent service life estimation
A71-35452
Integrated drive generator for aircraft electrical
power systems, improving weight, life and
reliability
A71-35781
Fabrication by boundary, elastohydrodynamic, and
fluid films, wear due to fretting, erosion,
scuffing, and pitting, and friction in aircraft
[NASA-TN-F-67872] A71-31114
Evaluating three component electronic wind tunnel
balance installed in 3.5 by 5.0 ft subsonic
tunnel
[AD-722571] A71-31400

COMPOSITE MATERIALS
High modulus graphite composites application for
structural weight reduction and stiffness
requirement without strength loss
A71-35202
Composite materials effect on supersonic aircraft
weight, design and performance
[AIAA PAPER 888] A71-35818
Weight reduction potential of composite materials
in aerospace structures, proposing weight
estimation technique
[AIAA PAPER 887] A71-35819
Design, analysis and testing of F-111 complex
fuselage full scale section of composite
materials, noting weight savings
[AIAA PAPER 889] A71-35825
Utilization of aerospace nonflammable cellulose
elastomeric, fibrous, and composite materials in
commercial aircraft refurbishment
A71-30759

COMPOSITE STRUCTURES
Composite structures development, discussing wing,
fuselage, aero propulsion and missile
development, weight savings of hardware and
fighter armament applications
[AIAA PAPER 71-367] A71-36275

COMPRESSION FLOW
Gust loading on two dimensional thin airfoil in
compressible flow, deriving closed-form lift
expression
A71-35285

DIRICHLET PROBLEM IN HODOGRAPH PLANE OF
DIELECTRICAL MATERIAL

SUBLIGIANT CAPACITIES OF THE IONIC FLUIDS
COMPRESSION TESTS

compressible fluid flow from aircraft, helicopter blades or turbine blade airfoils

A71-35470

Aircraft engine compressors with two streams of working medium

A71-34597

Multiple tone generation by axial flow transonic compressors, considering shock waves production and propagation associated with supersonic elements of blading

A71-36947

Aircraft and missile computer control systems, describing universal function unit design and digital processing requirements

A71-35775

Hardware executive control with associative memory for avionic digital computer system, comparing computation speed, cost and reliability with software method

A71-35778

Computer Programs

Analytical weight determination of articulated shaft drives helicopter main rotor blades, presenting computer program

A71-35826

Computer program for evaluating supersonic flow over wing-tail, wings with folded tips, T tails, and cruciform tail surfaces

A71-29341

Computer program for calculating airforce coefficients of wing-horizontal tail and fin-horizontal tail oscillating in subsonic flow

A71-29342

Computer program used for design criteria of straight wing aircraft

A71-31154

Computer Techniques

Computerized automatic control of aircraft electrical system using remote power controllers and multiplexed data bus for wiring reduction and reliability improvement

A71-38700

Computerized solutions of gas turbine engine motion equations, considering Euler, fourth order and fifth order Banga-Kutta, Adams, Bashforth and implicit methods

A71-36809

Aircraft industry license norms and standards, describing indexing procedures, storage techniques and data recovery operations with computer

A71-36810

Computer-based aircraft tracking with aid of twin radar air traffic control system, discussing components and operation

A71-36993

Computerized design

Computerized propeller design considered flow field distortion by hub

A71-29690

Computerized simulation

Precision area navigation system, considering position and velocity continuous measurement in three dimensional space, system components and simulation program

A71-38616

Aircraft loading system consisting of onboard weight and balance equipment and fully mechanized cargo pallet transfer, using computerized simulation model for parametric evaluation

A71-35811

CONCORDE AIRCRAFT

French flight test center role in development and certification of Concorde aircraft, considering cooperation with industry

[AGARD-CP-80-4-71-494] H71-29707

CONSTRUCTION MATEIRALS

Light alloys fatigue characteristics for aircraft components endurance evaluation

A71-35456

CONTAMINANTS

Effects of runway contaminants and pavement surface properties on runway slipperiness

A71-30767

Reductions in smoke level and carbon monoxide emissions resulting from air-assist fuel nozzles in jet aircraft exhaust plume tests

A71-30784

CONTRACT NEGOTIATION

Negotiations of SE/BOAC productivity agreements in aircraft industry

A71-35924

CONTROL EQUIPMENT

Aircraft structure elasticity effects on control lever deflection and control forces

A71-31065

Control equipment and engine development for air pollution control from jet aircraft engine emissions

A71-31403

CONTROL SIMULATION

Analysis of glide-slope information requirements for low visibility aircraft landing approach using Kalman filter-optimal control combination to simulate DC-8 control system

A71-35752

Aircraft structures damage tolerance - ASME Conference, Philadelphia, June 1970

A71-36010

Aerospace electronics - IEEE Conference, Dayton, Ohio, May 1971

A71-35752

Fluid dynamics numerical methods - Conference, University of California at Berkeley, September 1970

A71-36301

Symposium on unsteady aerodynamic forces, loads, and configurations for aeroelastic analysis of interfering surfaces

A71-29338

Conference on NASA research in aircraft safety and operating problems

A71-30756

Senate hearings on Federal anti-skyjacking program

A71-31403

CONICAL BODIES

Cone-cylinder-cone missile type body in transonic buffeting environment determining static and fluctuating wall pressure distribution

A71-36200

Dynamic parameters of supersonic flow incident on conical bodies at large angles of attack, considering flow field and entropy distribution

A71-36328

CONICAL FLOW

Dynamic parameters of supersonic flow incident on conical bodies at large angles of attack, considering flow field and entropy distribution

A71-36328

CONTAMINANTS

Effects of runway contaminants and pavement surface properties on runway slipperiness

A71-30767

CONTRACT NEGOTIATION

Negotiations of SE/BOAC productivity agreements in aircraft industry

A71-35924

CONTROL EQUIPMENT

Aircraft structure elasticity effects on control lever deflection and control forces

A71-31065

Control equipment and engine development for air pollution control from jet aircraft engine emissions

A71-31403

CONTROL SIMULATION

Analysis of glide-slope information requirements for low visibility aircraft landing approach using Kalman filter-optimal control combination to simulate DC-8 control system

A71-35752

SUBJECT INDEX

[AD-722655]

CONTROL STABILITY

- Aircraft structure elasticity effects on control deformation and control forces

CONTROL SURFACES

- Calculation of pressure distributions over wings with harmonic oscillating control surfaces using kernel function method
- Application of lifting surface theory to wings with control surfaces in unsteady subsonic flow
- Asymptotic expansion techniques to define pressure loading effects on wings with unbalanced control surfaces

CONTROL UNITS (COMPUTERS)

- Hardware executive control with associative memory for avionic digital computer system, comparing computation speed, cost and reliability with software method

COOLABILITY

- Flight tests to determine handling qualities of general aviation aircraft during ILS approaches in turbulent air

CONVECTIVE FLOW

- Convective flow at stagnation point relation to radiation flow decrease as result of absorption in cold boundary layer

CONVECTIVE HEAT TRANSFER

- Laminar convective heat transfer rates on hemisphere cylinder in rarefied hypersonic flow, comparing experimental results with Cheng, Davis and Hes theories

COOLING

- Heat sink capabilities of Jet-A fuel - heat transfer and cooling studies

COOLING SYSTEMS

- Fan jet first stage turbine blade air cooling, describing design, heat transfer data, efficiency and temperature distribution

COSMIC RAYS

- Experimental and theoretical study of biologically important radiation components and dose equivalents due to galactic and solar rays at SST in high atmosphere - summary

COST ANALYSIS

- Operating costs and runway lengths for SST in city and suburban short haul air transportation
- Space shuttle Ariane V system redundancy, calculating costs for individual line replaceable units

COST EFFECTIVENESS

- ATC system improvement by area navigation, discussing benefits in services, safety and cost effectiveness
- Investigation of adverse effects of producing QR-50 helicopters prior to completion of development and flight tests

COST REDUCTION

- Aircraft electric power system design with reliability, simplicity, low cost, weight and size, discussing automatic circuit protection and energy power
- Administrative techniques of cost/weight tradeoff program for jet transport airplane
- Space shuttle design concerning fault detection and isolation, redundancy and maintenance for cost and downtime minimization by application of airline methods

COSTS

- Airline operations, costs, effects on aircraft industry, and cooperation with CAB

CRACK INITIATION

- Fatigue crack initiation and growth and residual strength of P-100 wing, comparing service failure data with full scale fatigue test results

CRACK PROPAGATION

- Thickness effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins
- Fatigue crack propagation in Al alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship
- Fatigue crack initiation and growth and residual strength of P-100 wing, comparing service failure data with full scale fatigue test results
- Helicopter rotor blades fall-safe design, presenting criteria for fatigue loaded structures residual strength and life based on crack propagation rate methods
- Fatigue crack length relationship with aircraft inspection intervals and structural reinforcement, high strength materials, and aircraft usage effects

CRACKING (FRACTURING)

- Aircraft parts testing by NDT methods, considering ultrasonic system for valve defects and fluorescent particle system for crack detection

CHECK PROPERTIES

- Gas turbine engine steels and Ni alloys heat resistance, examining fatigue life and creep properties at various temperatures and test durations

CRITERIA

- Simulation studies for development of certification criteria applicable to SST takeoff and engine failure
- Criteria and recommended practices for design, selection, analysis, and testing of deployable aerodynamic deceleration systems

CROSS FLOW

- Flow visualization and hot-wire measurements, showing vortex shedding association with turbulent air jet issuing from flat plate into cross wind
- Wind pressure and cross flow velocity profiles for short takeoff aircraft building roof airports

CRUCIFORM WINGS

- Effects of nose bluntness on static aerodynamic characteristics of cruciform wing missile at Mach 1.50 to 2.86

CYCLIC LOADS

- Aircraft structural panels under cyclic static loads, examining fatigue life with probability theory, statistics and regression analysis

CYLINDRICAL SHELLS

- Cone-cylinder-cone missile type body in transonic buffeting environment determining static and fluctuating wall pressure distribution
- Moving long cylindrical model for aerobraking tests at high speed in drop wire facility
- Supersonic panel flutter and aerodynamic load stress analysis of finite cylindrical shells based on Galerkin method and aeroelastic equilibrium equations

CONGRESSIONAL HEARINGS

- Congressional hearings on chartered airline travel
DECELERATION

DATA ACQUISITION

ATC system improvement, presenting data acquisition upgrading and ground automation - aircraft navigation systems interface [AD-722447] N71-31183

ATC avionics equipment, discussing inertial area navigation, autopilots, airborne data acquisition, altitude reporting, collision avoidance, CAT, satellite communications, etc [AD-722447] N71-34614

Data acquisition system for US-2A aircraft training flight evaluations [AD-722583] N71-31347

DATA LINKS

Satellite-to-aircraft links propagation characteristics, considering specular reflected signals, diffuse scattering and scattering function [AD-722447] N71-35097

Satellite to aircraft radio link simulation, evaluating electronic scanning antenna operation, intelligibility, data transmission rate and distance measurement accuracy [AD-722447] N71-35611

DATA MANAGEMENT

Airborne display and electric management system, discussing weight reduction, protective function coordination, power quality, onboard maintenance, data processing and reliability [AD-722447] N71-34617

DATA PROCESSING EQUIPMENT

Avionic and missile computer control systems, describing universal function unit design and digital processing requirements [AD-722447] N71-35775

DATA RETRIEVAL

Airborne display and electric management system, discussing weight reduction, protective function coordination, power quality, onboard maintenance, data processing and reliability [AD-722447] N71-34617

DATA TRANSMISSION

Time division multiplexing system for ATS, discussing surveillance geostationary satellite feasibility, delta modulation for data transmission and aircraft equipment [AD-722447] N71-34680

SSB part of joint ATC communication experiment for L band satellite use, giving voice and data transmission and distance measurement techniques [AD-722447] N71-36510

DC 10 AIRCRAFT

DC-10 wide body tri-jet aircraft design and development, considering sizing, number of engines and thrust optimization and selection of cruise, approach and stall speeds [AIAA PAPER 71-780] N71-34525

DC-10 fuselage pressure shell fail-safe design, presenting analysis methods for residual strength prediction of damaged stiffened panels [AIAA PAPER 71-780] N71-35160

DC 3 AIRCRAFT

DC-8 AIRCRAFT

Analysis of glide-slope information requirements for low visibility aircraft landing approach using Kalman filter-optimal control combination to simulate DC-8 control system [AD-722655] N71-30807

DE HAVILLAND AIRCRAFT

Investigation of Mississippi Valley Airways De Havilland DHC-6, N9565M crash at Lacrosse, Wisconsin Nov. 9, 1970 [NTSB-AAR-71-10] N71-29914

DECELERATION

Civil aircraft arresting on runway overshoots, describing safe deceleration method by use of soft ground arresters [AD-722655] N71-35210

Criteria and recommended practices for design, selection, analysis, and testing of deployable DEGREES OF FREEDOM

Motor asymmetry effect on errors of two degrees of freedom gyro mounted on dynamic platform [AD-722655] N71-31303

Link 747 simulator with six degrees of motion for system engineers and pilot training [AD-722655] N71-35608

Boeing 767 digital computer type flight simulator with four degrees of movement for engineer and pilot training [AD-722655] N71-36970

DEICING

Aircraft ice protection problems, considering one dimensional Stefan method for cyclic deicing system [AD-722655] N71-34850

DELTA MODULATION

Time division multiplexing system for ATS, discussing surveillance geostationary satellite feasibility, delta modulation for data transmission and aircraft equipment [AD-722655] N71-34680

DELTA WINGS

Two vortex model for downwash variations in supersonic flow past thin delta wing with separation at leading edges [AD-722655] N71-34110

Pressures, velocities and aerodynamic characteristics of supersonic flow around slender delta wings with forced asymmetry and separation at leading edges [AD-722655] N71-36134

Supersonic flow past thin delta wings with finite velocities at leading edges, noting wing deformation to avoid corner vortices appearance [AD-722655] N71-36181

V shaped conical wing in supersonic and hypersonic flow with shock attached to leading edge, investigating complex wave system with time dependent and analytical methods [AD-722655] N71-36339

Box collocation method for calculating aerodynamic loads on tandem delta wings with oscillations in supersonic flow [AD-722655] N71-29337

DEPLOYMENT

Aerodynamic and deployment characteristics of twin keel all-flexible parawing rigged with several variations of multistage canopy and suspension line reefing system [NASP-71-245] N71-36661

DICHROISM

Using helicopter for spray dusting forests with line reefing system for engineers and pilot training [AD-703999] N71-29557

DICTIONARIES

German glossary of commercial air traffic with english equivalents [AD-722655] N71-36962

DIFFRACTION PATTERNS

Holographic interferometry fringe patterns interpretation for small displacements measurement, considering precision gyro stability [AD-722655] N71-35286

DIFFUSION WELDING

Diffusion bonding as economical fabrication process for aerospace applications involving Ti alloys, emphasizing mechanical properties and structural reliability improvement [SPE PAPER 801] N71-35827

DIGITAL COMPUTERS

Hardware executive control with associative memory for avionic digital computer system, comparing computation speed, cost and reliability with software method [AD-722655] N71-35778

ANNEALING
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>ECONOMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne nucleonic equipment design for indicating helicopter lift capability using X-ray backscatter from Kr-85, temperature sensor, and digital computer [SAN-A9-005-1]</td>
<td>N71-29215</td>
</tr>
<tr>
<td>DIGITAL SIMULATION</td>
<td></td>
</tr>
<tr>
<td>Boeing 707 digital computer type flight simulator with four degrees of movement for engineer and pilot training</td>
<td>A71-36971</td>
</tr>
<tr>
<td>DIGITAL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Avionic and missile computer control systems, describing universal function unit design and digital processing requirements</td>
<td>A71-35775</td>
</tr>
<tr>
<td>DIRECTIONAL CONTROL</td>
<td></td>
</tr>
<tr>
<td>Systems analysis of direction control, rotary wing vibratory loads, lift sharing, and fuselage vibration and damping during helicopter maneuvers</td>
<td>N71-30775</td>
</tr>
<tr>
<td>DIRECTIONAL PROBLEMS</td>
<td></td>
</tr>
<tr>
<td>Dirichlet problem in hodograph plane of compressible fluid flow from aircraft, helicopter blades or turbine blade airfoils</td>
<td>N71-35470</td>
</tr>
<tr>
<td>DISPLACEMENT MEASUREMENT</td>
<td></td>
</tr>
<tr>
<td>Holographic interferometry fringe patterns interpretation for small displacements measurement, considering precision gyro stability</td>
<td>A71-35286</td>
</tr>
<tr>
<td>DISPLAY DEVICES</td>
<td></td>
</tr>
<tr>
<td>Airborne display and electric management system, discussing weight reduction, protective function coordination, power quality, onboard maintenance, data processing and reliability</td>
<td>A71-36617</td>
</tr>
<tr>
<td>DOPPLER RADAR</td>
<td></td>
</tr>
<tr>
<td>Detecting clear air turbulence using CO2 laser Doppler system</td>
<td>N71-30763</td>
</tr>
<tr>
<td>DOWNWASH</td>
<td></td>
</tr>
<tr>
<td>Two vortex model for downwash variations in supersonic flow past this delta wing with separation at leading edges</td>
<td>A71-34190</td>
</tr>
<tr>
<td>Numerical method for evaluating discontinuous downwash distribution for steady flow over swept and rectangular wings</td>
<td>N71-29349</td>
</tr>
<tr>
<td>Survey on different methods for lifting rotor downwash analysis [DLR-MITT-70-23]</td>
<td>N71-29395</td>
</tr>
<tr>
<td>Mathematical model for induced velocity distribution of lifting rotor in horizontal flight [DLR-MITT-70-22]</td>
<td>N71-30309</td>
</tr>
<tr>
<td>Rotary wing downwash influence on fixed wing flow using magnetic induction vortex model [AFOSR-70-62]</td>
<td>N71-30040</td>
</tr>
<tr>
<td>DRAG MEASUREMENT</td>
<td></td>
</tr>
<tr>
<td>Sting-free aerodynamic drag measurement on ellipsoidal cylinders in subsonic wind tunnel at transition Reynolds numbers</td>
<td>A71-36037</td>
</tr>
<tr>
<td>Procedures for calculating normal wash in nonplanar configurations and interference between wings and bodies</td>
<td>N71-29340</td>
</tr>
<tr>
<td>DRAINAGE</td>
<td></td>
</tr>
<tr>
<td>Atlanta airport instant runway construction using concrete pavement, compacted subbase and longitudinal/herringbone underdrain</td>
<td>A71-36309</td>
</tr>
<tr>
<td>DUCTED FLOW</td>
<td></td>
</tr>
<tr>
<td>Hypersonic viscous-inviscid internal flow field interaction with laminar boundary layer in circular ducts, using method of characteristics and implicit finite difference scheme</td>
<td>A71-35281</td>
</tr>
<tr>
<td>Total pressure, static pressure, surface shear stress, and yaw angle measurements of S curved ducted flow [IC-71-10]</td>
<td>N71-30264</td>
</tr>
<tr>
<td>DYNAMIC RESPONSE</td>
<td></td>
</tr>
<tr>
<td>Aircraft random heave-pitch response to taxiing on rough runways, analyzing dynamic loads and fatigue damage by power spectral techniques</td>
<td>A71-36675</td>
</tr>
<tr>
<td>Application of linear control of systems with random inputs to gust response control of aircraft guidance in atmospheric turbulence [NASA-P-131]</td>
<td>A71-30324</td>
</tr>
<tr>
<td>DYNAMIC STABILITY</td>
<td></td>
</tr>
<tr>
<td>Dynamic positioning station keeping and stability criteria for formation flight systems extended to helicopter and VTOL transports</td>
<td>A71-35923</td>
</tr>
<tr>
<td>Planar and nonplanar dynamic stability coefficient using biplanar wind tunnel, free flight system</td>
<td>N71-31107</td>
</tr>
<tr>
<td>DYNAMIC STRUCTURAL ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>Evaluating effects of high altitude turbulence encounters on EB-70 airplane [NASA-TM-D-6457]</td>
<td>N71-30718</td>
</tr>
<tr>
<td>DYNAMIC TESTING</td>
<td></td>
</tr>
<tr>
<td>Ditching behavior of dynamic C-5A model [NASA-CR-119804]</td>
<td>N71-30278</td>
</tr>
</tbody>
</table>

EASTSIDE RESOURCES SURVEY AIRCRAFT

Multispectral scanner and data system with 2a channels for NASA C-130 earth resources survey aircraft | A71-36361 |

ECONOMIC ANALYSIS

Civil aircraft market analysis, examining replacement cycle and used aircraft market based on aircraft histories | A71-36676 |

ECONOMY

German monograph on airport role in national economy and growth and location determination for enterprises maintaining connections with foreign countries | A71-36121 |
EDDY VISCOSITY
Incompressable turbulent boundary layers at low Reynolds numbers, using eddy viscosity and mixing length concepts for computation
A71-34882

EFFECTIVENESS
Influence of lateral motion on effectiveness of flight simulators in training, air transport pilots
A71-34884

ELASTIC SYSTEMS
Nonlinear elastic suspension springs with symmetrically hardened behavior for shock and vibration isolation of aerospace instruments and controls
N71-30772

ELASTOMERS
Utilization of aerospace nonflammable cellulosic elastomeric, fibrous, and composite materials in commercial aircraft refurbishment
N71-30759

ELECTRIC GENERATORS
Integrated drive generator for aircraft electrical power systems, improving weight, life and reliability
A71-35781

ELECTRIC POWER
Thyristor power conditioning application to high voltage DC electric power system, presenting SST aircraft sample load profiles
A71-35770

ELECTRIC POWER TRANSMISSION
High voltage DC electric power transmission systems with ground return, reducing aircraft wiring weight and energy dissipation
A71-35771

ELECTRICAL PROPERTIES
Magnitude of induced voltages and their relation to characteristics of lightning discharge and electrical properties of aircraft electrical systems
N71-30761

ELECTRON BEAMS
Velocity determination in hypersonic low density wind tunnel based on high energy electron beam produced nitrogen ions time of flight
A71-34887

ELECTRONIC CONTROL
Discusses communication satellite system for air traffic control and navigation, discussing aircraft antenna beam electronic scanning by computerized control
A71-34881

ELECTRONIC EQUIPMENT TESTS
Aircraft onboard equipment tests in air navigation aid satellite project, estimating tracking random errors
A71-36509

ELECTRONICS
Aerospace electronics - IEEE Conference, Dayton, Ohio, May 1971
A71-35752

ELLIPSE CYLINDERS
Sting-free aerodynamic drag measurement on ellipsoidal cylinders in subsonic wind tunnel at transition Reynolds numbers
A71-36037

ENERGY LIFE SUSTAINING SYSTEMS
Performance tests on liquid explosive emergency exit for civil aircraft
[FAA-PR-71-33] N71-31064

EN ROUTE
Using helicopter for spray dusting forests with DDT for tick borne encephalitis
[AD-703995] N71-29557

ENERGY DISSIPATION
High voltage DC electric power transmission systems with ground return, reducing aircraft wiring weight and energy dissipation
A71-35771

ENGINE COOLANTS
Fan jet first stage turbine blade air cooling, describing design, heat transfer data, efficiency and temperature distribution
A71-35904

ENGINE DESIGN
VTOL transport optimal airframe/propulsion systems design, discussing thrust requirements, performance, control, cruise functions, fuel consumption and fan characteristics
[AIAA PAPER 71-764] A71-34225

Maximum temperature engine concept, definition and application to future aircraft propulsion system performance
[SAE PAPER 71046] A71-34598

Propulsion systems trends for 1980s, discussing environmental noise levels, stoichiometric gas turbine engines for military aircraft, high bypass ratio engines for V/STOL aircraft, etc
A71-36273

Hybrid V/STOL jet lift aircraft design, examining wing area-lift engine bypass ratios relation [AD-722263] N71-29500

Design operating process of turbojet, turboprop, and turbofan aircraft engines
[AD-722293] N71-29505

Design, development, and characteristics of pulsejet engines without flap valves
N71-31102

Engine dynamics requirements implied by thrust modulation control for VTOL aircraft
[NASA-TP-P-13755] N71-31455

ENGINE INLET
Design and characteristics of supersonic inlet controls for minimizing inlet unstarts
[NASA-TP-D-64008] A71-30072

Velocity profile control tests of diffuser wall bleed to control combustor inlet airflow distribution
[NASA-TP-D-6435] N71-30817

ENGINE NOISE
Experimental research at Building Research Station on outdoor sound propagation for building design in relation to aircraft and road traffic noise
A71-35237

Siren wall 15 turbine axial stage due to nonsynchronous pressure fields behind blade cascades
A71-36180

Application of noise reduction technology to design of propulsion system for subsonic civil transport aircraft

ENGINE PARTS
Gas turbine engine materials and components equivalent service life estimation
A71-35452

Aircraft gas turbine engine components equivalent testing by shortening testing time required to increase service life
A71-35460

ENGINE TESTS
Aircraft gas turbine engine components equivalent testing by shortening testing time required to increase service life
A71-35460

Heater and nozzle design of OHEBA/SA4A hypersonic wind tunnel for supersonic combustion ramjet tests
[NASA-TP-P-924] A71-36017

ENTRAINMENT
Turbulent vakes flow entrainment mechanism, investigating turbulence spreading near interface between laminar and turbulent regions
A71-34599

ENVIRONMENT MODELS
Random access signaling system application to aircraft control, discussing signal redundancy requirement for access capability optimization based on radio environment model
A71-35783

ENVIRONMENTAL TESTS
Environmental effects on SST structural materials
fatigue, discussing Ti alloys studies involving temperature effects, crack propagation and residual strength A71-34556

EPOXY BINES
Monograph on fiber-resin composites covering glass, boron and carbon fibers and epoxy matrix materials tensile and thermelastic properties A71-34659

Boron-epoxy composite wing box beam design, describing preliminary weight estimation from layouts [SAE PAPER 891] A71-35815

EQUILIBRIUM EQUATIONS
Cooperated solutions of gas turbine engine motion equations, considering Euler, fourth ordet and fifth order Runge-Kutta, Adams, Bashforth and implicit methods A71-36809

Integral equations of motion and momentum for hypervelocity wind tunnel nozzle design [AD-722386] A71-29906

EQUILIBRIUM FLOW
Supersonic panel flutter and aerodynamic load stress analysis of finite cylindrical shells based on Galerkin method and aerelastic equilibrium equations [AD-722447] A71-31183

ERROR ANALYSIS
Stability of equilibrium state of rotor in pressurized gas bearing [AD-722828] A71-31213

Statistical analysis of error sources and magnitudes in Boeing 747 weight values obtained by onboard aircraft weighing system and by manual calculations [SAE PAPER 897] A71-35813

Radio tracking of aircraft by two geostationary satellites, discussing measurement, navigation and position errors A71-36508

EULER-LAGRANGE EQUATION
Relation of Eulerian and Lagrangian structure of pseudosound pressure and velocity fields in turbulent shear flow to aerodynamic noise generation [NASA CR-119359] A71-31211

EUROPEAN SPACE PROGRAMS
E5BO part of joint ATC communication experimenter for L band satellite use, giving voice and data transmission and duration measurement techniques test results A71-36510

Geological exploration, development of ultrasonic flow detector, review of scientific developments, and tactical aircraft in Eastern Europe [JFB-53428] A71-30033

EVALUATION
Evaluating three component electronic wind tunnel balance installed in 3.5 by 5.0 ft subsonic tunnel [AD-722571] A71-31400

EXHAUST GASES
Stratospheric ozone reduction through catalytic action of nitrogen oxides from SST exhaust, discussing degrading effect on atmospheric radiation shield A71-36922

Reductions in smoke level and carbon monoxide emissions resulting from air-assist fuel nozzles in jet aircraft exhaust pollutant tests A71-3078a

Use of air-assist fuel nozzle to reduce exhaust emissions from gas turbine combustor at simulated idle conditions - J-57 engine [NASA TR R-6408] A71-31056

Exhaust emission from reciprocating aircraft engines, and afterburning of exhaust gases on contact with ambient air - air pollution study [PE-197627] A71-31569

EXTERNAL STORES
Performance evaluation of variable geometry external fuel tanks prototypes by static structural test, wind tunnel tests and flight tests on F-111 aircraft [AIAA PAPER 71-763] A71-35533
FLIGHT CHABACTBBISTICS

FLIGHT ALTITUDE

PLATBESS

FLAPS (COHTBO1 SOBFACES)

FLAHE STABILITY

FIXED RIHGS

FLAHE HOLDEBS

FIBES

FIBS

FIBITB DIPPEBEHCE THEOBY

Planar and nonplanar dynamic stability coefficient

Two dimensional laminar incompressible fluid flow

High speed aircraft maneuvers stability determination by constant angular

pitching/rotation velocity, angle of attack and flight speed, using Liapunov method

FLIGHT PATHS

STOL aircraft guidance capability with onboard digital computer, maintaining time of arrival envelope at way points along complex flight paths

Omega navigation application to general aviation aircraft, presenting diurnal course shift to overcome deficiencies

Approach guidance system for side-firing tactical aircraft

Statistical analysis of Navy and Marine aircraft activity and airspace usage in Feb. and Mar. 1970 as part of National Airspace Utilization System

FLIGHT RECORDERs

Analysis of 79,000 hours data obtained from NASA W-5/GGH flight recorders installed on 734 general aircraft engaged in eight types of operations

FLIGHT SAFETY

ATC system safety problems from user standpoint, considering requirements by pupil, test and airline pilots and light, private, business, taxi and military aircraft

FLIGHT SIMULATION

Simulation studies for development of certification criteria applicable to SST takeoff and engine failure

FLIGHT SIMULATIONs

Total in-flight simulator /TIFS/ in variable stability C-131 aircraft, describing potential as design tool

Link 747 simulator with six degrees of motion system for engineers and pilot training

Boeing 747 digital computer type flight simulator with four degrees of movement for engineer and pilot training

Influence of lateral motion on effectiveness of flight simulators in training air transport pilots

FLIGHT TESTS

French flight test center role in development and certification of Concorde aircraft, considering cooperation with industry
FLUOROSCOPY
Aircraft parts testing by EDT methods, considering ultrasonic system for valve defects and fluorescent particle system for crack detection

FLUTTER ANALYSIS
Lift flutter analysis
- Aircraft structural parameters optimization
 - Satisfying flutter velocity constraint and minimal mass, applying to box beam design
 - [A71-10944]
- Experimental and theoretical aeroelastic analysis of Fokker F-28 Y tail, using flutter model and flight flutter tests
 - [A71-10945]
- Aeroelastic and flutter analysis for Y tail of Fokker F-28
 - [A71-10956]
- Method for calculating flutter using interference aerodynamic forces between wing and tail
 - [A71-10957]
- Supersonic panel flutter and aerodynamic load stress analysis of finite cylindrical shells based on Galerkin method and aeroelastic equilibrium equations
 - [A71-10958]

FLYING PLATFORMS
Radio controlled small aircraft as measurement platform for meteorological sensors, discussing development and performance from field tests

FOAMS
Polyisocyanurate foam and intumescent paint for thermal protection of aircraft passengers in ground accident fires

FOG
Fog dissipation programs by commercial and military agencies

FORCE DISTRIBUTION
Lift force distribution calculation technique for wings with jet flaps including rectangular and swept wing examples

FORESTS
Using helicopter for spray dusting forests with DDT for tick borne encephalitis

FORGING
Closed die forgings of vacuum remelted carbon and low alloy steels to improve transverse ductility and microcleaness for aircraft industry

FORMATIONS
Dynamic positioning stationkeeping and stability criteria for formation flight systems extended to helicopter and V/STOL transports

FRACTURE STRENGTH
Thickness effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins

FATIGUE
Damage tolerant aircraft structures material toughness and residual strength, presenting fracture test results on precracked panels reinforced with crack stoppers

FATIGUE CRACK INITIATION AND GROWTH
Fatigue crack initiation and growth and residual strength of F-100 wing, comparing service failure data with full scale fatigue test results

FREE FLIGHT
DC-10 fuselage pressure shell fail-safe design, presenting analysis methods for residual strength prediction of damaged stiffened panels

FUSELAGE
DC-10 fuselage pressure shell fail-safe design, presenting analysis methods for residual strength prediction of damaged stiffened panels

FUSIBLES
Using characteristics application to supersonic jet and nozzle gas flow with allowance for equilibrium and nonequilibrium condensation

GAS BEARINGS
Stability of equilibrium state of rotor in pressurized gas bearing

GAS FLOW
Method of characteristics application to supersonic jet and nozzle gas flow with allowance for equilibrium and nonequilibrium condensation

Wing tip vortex test demonstrating use of Laser Doppler Velociometer system for measuring gas
velocities with high spatial and temporal resolution
[NASA-CR-119804] $\#1-30278$

GAS JETS
Shock standoff distance and Mach disk diameter measurements in underexpanded sonic jets, using nitrogen dioxide-tetroxide working fluid
[AD-723371] $\#1-30292$

Jet penetration into Mach 2 air streams using sweptback injectors at angle of attack
[NASA-TR-K-2319] $\#1-29920$

GAS TURBINE ENGINES
Soviet book on subsonic gas turbine passenger planes power supply systems covering Boeing 747, short haul aircraft, DC-10, L-1011, etc
[AD-722072] $\#1-30138$

Gas turbine with high velocity combustor, pure impulse compressor and turbine and isothermal burner
[$\#1-35490$

Gas turbine engine materials and components equivalent service life estimation
[$\#1-35452$

Gas turbine engine steels and Hi alloys heat resistance, examining fatigue life and creep properties at various temperatures and test durations
[$\#1-35453$

Gas turbine engine nozzle guide vanes under pulsed thermal operation, discussing service life evaluation and increase
[$\#1-35455$

Aircraft gas turbine engine components equivalent testing by shortening testing time required to increase service life
[$\#1-35460$

Three micron absolute main oil filter for aircraft gas turbine lubrication system, discussing indicator system and bench and engine tests
[$\#1-35480$

Propulsion systems trends for 1980s, discussing environmental noise levels, stoichiometric gas turbine engines for military aircraft, high bypass ratio engines for V/STOL aircraft, etc
[$\#1-35625$

Computerized solutions of gas turbine engines motion equations, considering Euler, fourth order and fifth order Bunge-Tutta, Adams, Bashforth and implicit methods
[$\#1-36809$

Jet aircraft noise sources and reduction from gas turbine engines including jet exhausts, fans, lift devices, and unducted rotors
[$\#1-30785$

GAS TURBINES
Stream lines construction in meridional plane of blade nozzle annular cascades of steam and gas turbines in subsonic and supersonic flow
[$\#1-34446$

GASEOUS DIFFUSION
Gaseous fission measurements from jet engine afterburners over range of fuel-air ratio
[NASA-TR-X-23233] $\#1-30117$

GENERAL AVIATION AIRCRAFT
Omegas navigation application to general aviation aircraft, presenting diurnal course shift to overcome deficiencies
[$\#1-35767$

GEODES
Geological exploration, development of ultrasonic flow detector, review of scientific developments, and tactical aircraft in Eastern Europe
[JBPS-39428] $\#1-30033$

GLIDE PATHS
Analysis of glide-slope information requirements for low visibility aircraft landing approach using Kalman filter-optimal control combination to simulate DC-8 control system
[AD-722655] $\#1-30887$

GOVERNMENT/INDUSTRY RELATIONS
French flight test center role in development and certification of Concorde aircraft, considering cooperation with industry
[AIAG PAPER 71-780] $\#1-35526$

GRAPHITE
High modulus graphite composites application for structural weight reduction and stiffness requirement without strength loss
[$\#1-35526$

SUBJECT INDEX

GYROSCOPIC STABILITY

GREAT BRITAIN
Economic appraisal of British aerospace industry and plans for future development
[$\#1-30940$

GROOVING
Chevron cutting and effects of braking on wear of aircraft tires
[$\#1-30768$

GROUND EFFECT
Flow field induced by aircraft trailing vortices near ground during takeoff and landing, noting experimental departure from theory
[$\#1-34900$

Trailing wake hazards of large transports in takeoff and landing, examining configuration stability of vortex pair in ground effect
[$\#1-35757$

GROUND EFFECT MACHINES
Use of aerodynamic lift for application to high speed ground transportation by two dimensional airfoils
[PB-197242] $\#1-29762$

Augmented ram wing vehicle performance and flow field for high speed ground transportation
[$\#1-31204$

GROUND HANDLING
Lockheed L-1011 passenger jumbo jet layout, ground handling and servicing
[$\#1-35995$

Narita site Tokyo international airport discussing transportation, runways, ground handling, navigation aids, lighting, etc
[$\#1-35997$

GROUND SUPPORT EQUIPMENT
Test methods and testing techniques for determining technical performance and safety characteristics of ground support service aviation equipment
[$\#1-30258$

GROUND TESTS
Thermal ground testing of Concorde and Veras, considering static and fatigue testing in heat environment
[$\#1-36646$

GUIDE VANES
Gas turbine engine nozzle guide vanes under pulsed thermal operation, discussing service life evaluation and increase
[$\#1-35455$

GUST ALLEVITATORS
Problems of wind gust absorption by aircraft structures, and flight tests of prototype N-100
[NASA-TP-P-137515] $\#1-30848$

GUST LOADS
Gust loading on two dimensional thin airfoil in compressible flow, deriving closed-form lift expression
[$\#1-35265$

Flight dynamics for aircraft noise reduction, gust effects decrease and dynamic stability of parachute load systems
[$\#1-36752$

Theory of controllability for parabolic and second order hyperbolic systems and for hereditary differential systems applied to stabilization of high speed aircraft in gust load disturbances
[AD-7220072] $\#1-29430$

GYROCOMPASSES
Gyrocompass stability during circulations and arbitrary periodic maneuvers, taking into account translational motion vertical inertia component
[$\#1-35604$

Statistical analysis of gyrocompass mode of A-6A inertial navigation system
[BB-511] $\#1-30315$

GYROSCOPIC STABILITY
Holographic interferometry fringe patterns interpretation for small displacements measurement, considering precision gyro stability
[$\#1-35286$

Gyrocompass stability during circulations and arbitrary periodic maneuvers, taking into account translational motion vertical inertia component
[$\#1-35604$
Using helicopter for spray dusting forests with airborne nucleonics equipment design for systems analysis of directional control, rotary helicopter rotor noise due to blade-vortex interaction, computational speed, cost and reliability with software method.

Helicopter executive control with associative memory for avionic digital computer systems, comparing computer program against experimental results with Cheng, Davis and Lees theories.

Helicopter rotor blades fail-safe design, presenting criteria for fatigue loaded structures residual strength and life based on crack propagation rate methods.

Analytical weight determination of articulated shaft driven helicopter main rotor blades, considering precision gyro stability.

Compact, self contained, symmetrical antenna for airborne use at high frequencies with capability to function in two independent modes for both transmission and reception.

Numerical analysis of aerodynamic loads and coefficients for tandem and T tail surfaces harmonically oscillating in subsonic flow.

Calculation of pressure distributions over wings with harmonic oscillating control surfaces using kernel function method.

Helicopter rotor noise due to blade-vortex interaction, using linear gust model.

Computer programs for calculating airforce coefficients of wing-horizontal tail and fin-horizontal tail oscillating in subsonic flow.

Holographic interferometry fringe patterns interpretation for small displacements, considering precision gyro stability.

Holographic display for blind landing system with variable image perspective over wide field of view, using collimated or cylindrical laser beam. Computerized propeller design considered flow field distortion by hub.

Comparison test to evaluate perceived noise level for STOL and other aircraft sounds, determining aerodynamic behavior of hydrodynamic wind-water tunnel including flow visualization.

Characteristics of hydraulic systems and application to aircraft systems.

Characteristics of hydraulic systems and application to aircraft systems.

Helicopter rotor performance, testing with linear gust model.

Helicopter lift capability using LS ray backscatter from K-85, temperature sensor, and digital computer.

Using helicopter for spray dusting forests with DDT for tick borne encephalitis. Systems analysis of directional control, rotary wing vibratory loads, lift sharing, and fuselage vibration and damping during helicopter maneuvers.

Laminar convective heat transfer rates on hemispherical surfaces in rarefied hypersonic flow, comparing experimental results with Cheng, Davis and Lees theories.
HYPERSONIC BOUNDARY LAYER
Binary laminar boundary layer in hypersonic axisymmetric stagnation point flow with temperature dependent material properties, presenting exact and approximate calculation methods

HYPERSONIC FLIGHT
Aircraft design, flight characteristics, and atmospheric effects on sonic boom during supersonic and hypersonic flight

HYPERSONIC FLOW
Laminar convective heat transfer rates on hemisphere cylinder in rarefied hypersonic flow, comparing experimental results with Cheng, Davis and Lees theories

Hypersonic viscous-inviscid internal flow field interaction with laminar boundary layer in circular ducts, using method of characteristics and implicit finite difference scheme

V shaped conical wing in supersonic and hypersonic flow with shock attached to leading edge, investigating coupled wave system with time dependent and analytical methods

Near wake streamline configuration in symmetry plane of slender cone in hypersonic flow at free stream Mach number 7

HYPERSONIC GLIDERS
Terminal area studies with XC-142, XV-5, Do-31, Bathematical perturbation models of aircraft ILS as design tool

HYPERSONIC WAKES
Inclined wedges in rarefied hypersonic flow conditions, investigating baseline and wake pattern geometrical and aerodynamic characteristics

HYPERSONIC VELOCITY PROJECTILES
Cost effective high speed projectile trajectory plotting system for gunnery range instrumentation, applying to aircraft path recording during automatic landing control

HYPERSONIC WIND TUNNELS
Velocity determination in hypersonic low density wind tunnel based on high energy electron beam produced nitrogen long time of flight

Heater and nozzle design of ONERA/SNRH hypersonic wind tunnel for supersonic combustion ramjet tests

Integral equations of motion and momenta for hypervelocity wind tunnel nozzle design

Support systems and operational design of nitrogen hypervelocity blowdown wind tunnel

Turbulent boundary layer over flat plate and compression corner models studied in hypersonic gun tunnel

ICE PREVENTION
Aircraft ice protection problems, considering one dimensional Stefan method for cyclic deicing system

IMAGING TECHNIQUES
Real time reconnaissance cockpit display system for airborne sensor systems, providing night combat imagery

IMPACT DAMAGE
Wing structural elements ballistic damage tolerance and residual strength characteristics, discussing projectile velocity, impact angle and target thickness effects

IN-FLIGHT MONITORING
Total in-flight simulator /TIPS/ in variable stability C-131 aircraft, describing potential as design tool

INCOMPRESSIBLE FLOW
Detachment prediction in turbulent incompressible plane flows on thick bodies applied to wall with disconnections and flat plate normal to wind

Viscous stresses distribution in isothermal incompressible turbulent boundary layer with positive pressure gradient by diffusers in open jet wind tunnel

Inviscid incompressible flow past thin circular arc airfoil at zero incidence, expanding for complex potential or velocity in powers of thickness ratio

Incompressible turbulent boundary layers at low Reynolds numbers, using eddy viscosity and mixing length concepts for computation

Steady incompressible flow with potential vortex over flat surface under suction

Plane laminar incompressible jet flow along parabola with no external stream, using second order boundary layer theory

Two dimensional laminar incompressible fluid flow past flat plate at various angles of attack, studying vortex shedding characteristics

Unsteady pressure measurements on harmonically oscillating swept wing with two control surfaces in incompressible flow

Pressure measurements of harmonically oscillating sweepback wing with two flaps in incompressible flow

INDEXES (DOCUMENTATION)
Aircraft industry license norms and standards, describing indexing procedures, storage techniques and data recovery operations with computer

INDEMNITY
- Airport study for Vigo County, Indiana with data bank of airport activity for past 10 years

INERTIAL NAVIGATION
ATC avionics equipment, discussing inertial area navigation, autopilots, airborne data acquisition, altitude reporting, collision avoidance, CAT, satellite communications, etc

Statistical analysis of gyrocompass mode of A-6A inertial navigation system

INLET FLOW
Noise generation due to inlet free stream turbulence incident on isolated stator and rotors, using flat plate cascade blade row model

Design and characteristics of supersonic inlet controls for simulating inlet unstarts

Velocity profile control tests of diffuser wall bleed to control combustor inlet airflow distribution

INLET NOZZLES
Flight test investigation of effects of variable geometry play nozzles installed on F-106B aircraft

INSPECTION
Fatigue crack length relationship with aircraft inspection intervals and structural reinforcement, high strength materials, and aircraft usage effects

INSTRUMENT APPROACH
Mathematical perturbation models of aircraft ILS approach and landing

Terminal area studies with EC-142, IV-5, Do-31, and P 1127 aircraft to develop powered lift control techniques for instrument approach
INSTRUMENT ERRORS

INSTRUMENT ERRORS

Bass and center of gravity determining system model, describing equipment, operation principle, calibration data and techniques [SAME PAPER 879] A71-35824

Statistical analysis of gyrocompass node of A-6A inertial navigation system [RM-511] A71-30315

INSTRUMENT FLIGHT RULES

INSTRUMENT LANDING SYSTEMS

Air navigation and traffic control systems with application to Western Europe and Atlantic area, noting requirements for ILS successor A71-35990

Holographic display for blind landing system with variable image perspective over wide field of view, using collimated or cylindrical laser beam A71-36061

Mathematical perturbation models of aircraft ILS approach and landing [YTH-159] A71-29496

Systems analysis of aircraft, aircraft guidance and control systems, and atmospheric turbulence for low visibility instrument landing system requirements (AD-722773] A71-30173

Minimum variance estimates of signal derivatives with application to case of aircraft descent rate in instrument landing systems [Nasa-Cr-11928] A71-30241

Flight tests to determine handling qualities of general aviation aircraft during ILS approaches in turbulent air A71-30771

Analysis of glide-slope information requirements for low visibility aircraft landing approach using Kalman filter-optimal control combination to simulate DC-8 control system (AD-722655] A71-30887

INTEGRAL EQUATIONS

Integral equations of motion and moments for hypervelocity wind tunnel nozzle design [AD-722346] A71-29906

INTERFACE STABILITY

Turbulent wakes flow entrainment mechanism; investigating turbulence spreading near interface between laminar and turbulent regions A71-38999

INTERFERENCE LIFT

Numerical analysis of aerodynamic loads on wing and tail surfaces with oscillations in unsteady supersonic and subsonic flow including interference lift [EPA/CD-CP-80-71-PY-1] A71-29333

Wing interference lift line lattice simulation and application to aerodynamic loads on tandem wings in unsteady flow A71-29336

INTERFEROGRAPH

Holographic interferometry fringe patterns interpretation for small displacements measurement, considering precision gyro stability A71-35266

INTERFERENCE

Third order-two signal intermodulation products for 242 frequencies between 225 and 400 MHz as used in FAA frequency assignment processes [EPA-PR-70-018] A71-29551

Third order-two signal intermodulation products for 360 frequencies between 118 and 136 MHz when 50 MHz channel spacing is used as in FAA frequency assignment processes [EPA-PR-70-016] A71-29552

Third order-two signal intermodulation products within 118-136 MHz band with 50 MHz spacing [EPA-PR-70-015] A71-29554

INTERNAL COMBUSTION ENGINES

Aerodynamic characteristics, rocket nozzles, spacecraft propulsion, antenna design, and internal combustion engines [AD-722365] A71-29777

INTENSITY INDEX

INSTRUMENT ERRORS

- W71-30774

- A71-35608

- A71-35824

- [SAME PAPER 879]

- FM-511

- A71-30315

INSTRUMENT FLIGHT RULES

- W71-29635

INSTRUMENT LANDING SYSTEMS

- A71-35990

- A71-36061

- A71-36061

- A71-30173

- A71-30241

- A71-30771

- A71-30887

INTEGRAL EQUATIONS

- A71-29906

INTERFACE STABILITY

- A71-38999

INTERFERENCE LIFT

- A71-29333

- A71-29336

INTERFEROGRAPH

- A71-35266

INTERFERENCE

- A71-29551

- A71-29552

- A71-29554

INTERNAL COMBUSTION ENGINES

- A71-29777

SUBJECT INDEX

- [Nasa-Cr-119315]

- A71-31106

- A71-36918

- A71-36919

- A71-36920

- A71-30777

- A71-35281

- A71-35097

- A71-31456

- A71-35814

- A71-35754

- A71-37084

- A71-36919

INTERNATIONAL COOPERATION

- New ICAO procedures and bagage international air transport conditions, discussing passenger/cargo legal relationships, with emphasis on differences between new and old regulations A71-36918

- Finnish air traffic law based on international civil aviation convention, discussing regulations relative to aircraft, personnel and airports A71-36919

- Warning air traffic convection agreements as amended at The Hague and Guatemala, presenting air transport regulations in present form A71-36920

- Simulation studies for development of certification criteria applicable to SST takeoff and engine failure A71-30777

INWISCD FLOW

- Inviscid incompressible flow past thin circular arc airfoil at zero incidence, expanding for complex potential or velocity in powers of thickness ratio A71-38674

- Hypersonic viscous-inviscid internal flow field interaction with laminar boundary layer in circular ducts, using method of characteristics and implicit finite difference scheme A71-35281

IONOSPHERIC PROPAGATION

- Satellite-to-aircraft links propagation characteristics, considering specular reflected signals, diffuse scattering and scattering function A71-35097

ISOTHERMAL LAYERS

- Viscous stresses distribution in isothermal incompressible turbulent boundary layer with positive pressure gradient by diffusers in open jet wind tunnel A71-38209

- Self similar numerical and asymptotic solutions of laminar multicomponent isothermal boundary layer equations for large blowing rates A71-35633

J-57 ENGINE

- Use of air-assist fuel nozzle to reduce exhaust emissions from gas turbine combustor at simulated idle conditions - J-57 engine [Nasa-PS-6-6408] A71-31456

JETS (LIFTS)

- Aircraft weighing in place during maintenance operation, describing load cell equipped jacks design for time saving weight determination [SAME PAPER 898] A71-35814

JET AIRCRAFT

- Jumbo jet trailing vortex mathematical model for studying effect on penetrating aircraft A71-35754

- Large jet transport aircraft trailing vortices, studying velocity fields, core diameters and logarithmic variations of circulation A71-35755

- Administrative techniques of cost/weight tradeoff program for jet transport airplane [SAME PAPER 899] A71-35812

- Determination of relationship between viability of in-flight jet exhaust to SAA smoke number [FAA-HA-71-21] A71-29307

- Theory of controllability for parabolic and second order hyperbolic systems and for hereditary differential systems applied to stabilization of high speed aircraft in gust load disturbances [AD-722072] A71-29430

- Reductions in smoke level and carbon monoxide emissions resulting from air-assist fuel nozzles in jet aircraft exhaust pollutant tests A71-30784

JET AIRCRAFT NOISE

- Probable impact of future supersonic transport aircraft operations on noise environment around seven airports in US [AD-722365] A71-29777
Jet aircraft noise sources and reduction from gas turbine engine including jet exhausts, fans, lift devices, and unducted rotors A71-30785

JET ENGINES FUELS
Antiwear property assessment of piston engine and aviation jet fuel under point contact conditions, recommending ball and cylinder test technique A71-30447

JET ENGINES
Performance characteristics of jet engines equipped with afterburner, discussing combustion, flame stabilization, outlet nozzle regulation and operational cost A71-35439

Aircraft jet engine application of electric discharge machining for repetitive continuous production, considering automated closed cycle equipment [AIAA PAPER RA-71-143] A71-36658

Determination of relationship between visibility of in-flight jet exhaust to SAE smoke number [AIAA PAPER RA-71-24] A71-29307

Control equipment and engine development for air pollution control from jet aircraft engine emissions A71-31403

JET EXHAUST
Determination of relationship between visibility of in-flight jet exhaust to SAE smoke number [AIAA PAPER RA-71-24] A71-29307

Control equipment and engine development for air pollution control from jet aircraft engine emissions A71-31403

JET FLAPS
Lift force distribution calculation technique for wings with jet flaps including rectangular and swept wing examples [NASA-TR-P-13719] A71-30852

JET FLOW
Plane laminar incompressible jet flow along parabola with no external stream, using second order boundary layer theory [ASME PAPER 71-APM-88] A71-36268

JET INJECTION
Supersonic jet interaction with turbulent wake, calculating plane and axisymmetric flow behind body butt face A71-35630

JET LIFT
Hybrid V/STOL jet lift aircraft design, examining wing area-lift engine bypass ratio relation [AIAA PAPER 71-767] A71-36273

K
KALMAN-SCHNEIDER FILTERING
Minimum variance estimates of signal derivatives with application to case of aircraft descent rate in instrument landing systems [NASA-CR-111928] A71-30241

KEELS
Aerodynamic and deployment characteristics of twin keel all-flexible parawing rigged with several variations of multistage canopy and suspension line reeling system [NASA-TP-6-6309] A71-30708

KERNEL FUNCTION
Method for calculating flutter using interference aerodynamic forces between wing and tail A71-29305

Calculation of pressure distributions over wings with harmonic oscillating control surfaces using kernel function method A71-29306

KINEMATICS
Kinematics of subsonic unsteady airloads on multiple lifting surfaces A71-29339

L
L-1011 AIRCRAFT
L-1011 flight test program, describing aircraft design and performance [AIAA PAPER 71-789] A71-35531

Lockheed L-1011 development, discussing flying stabilizer design, direct lift control and autoland system [AIAA PAPER 71-782] A71-35532

Lockheed L-1011 passenger jumbo jet layout, ground handling and servicing A71-35995

LINEAR BOUNDARY LAYER
Laminar boundary layer on wing profiles and bodies of revolution, calculating flow characteristics based on integral momentum relation A71-34824

Hypersonic viscous-inviscid internal flow field interaction with laminar boundary layer in circular ducts, using method of characteristics and implicit finite difference scheme A71-35281

Flow distribution behind laminar boundary layer separation point in supersonic flow, calculating plateau region pressure A71-35629

Self similar numerical and asymptotic solutions of laminar multicomponent isothermal boundary layer equations for large blowing rates A71-35633

LINEAR FLOW
Stream lines construction in meridional plane of blade nozzle annular cascades of steam and gas turbines in subsonic and supersonic flow A71-34486

Plane laminar incompressible jet flow along parabola with no external stream, using second order boundary layer theory [ASME PAPER 71-APM-88] A71-36268

Two dimensional laminar incompressible fluid flow past flat plate at various angles of attack, studying vortex shedding characteristics A71-36311

Near wake streamline configuration in symmetry plane of slender cone in supersonic flow at free stream Mach number 7 A71-36754

LAND USE
Air navigation, surveillance and traffic control technology effects on land and airspace uses at airports A71-35371

LANDING SITES
Determination of effectiveness of chevron type markings to indicate potentially deceptive, nonload-bearing paved areas before runway threshold [AIAA PAPER 71-27] A71-29306

LARGE SCALE INTEGRATION
Large scale EOS IC digital VOR navigation converter, comparing accuracy, size, weight and cost with standard design A71-35789

LASERS
Vortex laser Doppler velocimeter system for aircraft wake turbulence velocity profile mapping, describing optical arrangements, back and forward scattering modes and prototype design A71-35756

Wing tip vortex test demonstrating use of Laser Doppler Velocimeter system for measuring gas velocities with high spatial and temporal resolution [NASA-CR-119806] A71-30278

LATTICE (MATHEMATICS)
Kinematics of subsonic unsteady airloads on multiple lifting surfaces A71-29339

LEGAL (JURISPRUDENCE)
Finnish air traffic law based on international civil aviation convention, discussing regulations relative to aircraft, personnel and airports A71-36919

German aircraft noise protection law of 30 March 1971, discussing objectives and applicability A71-36921

LEADING EDGES
Supersonic flow past V-shaped wings with leading edges, applying method of establishment to space variable for pressure distribution
LEGAL LIABILITY

A71-35647

Pressures, velocities and aerodynamic characteristics of supersonic flow around slender delta wings with forced asymmetry and separation at leading edges

A71-36130

Supersonic flow past thin delta wings with finite velocities at leading edges, noting wing deformation to avoid cornet vortices appearance

V shaped conical wing in supersonic and hypersonic flow with shock attached to leading edge, investigating complex wave system with time dependent and analytical methods

A71-36339

LEGAL LIABILITY

Aircraft accident litigation related to wake turbulence concerning pilot or air traffic controller faults

New IATA passenger and baggage international air transport conditions, discussing passenger/cargo carrier legal relationships, with emphasis on differences between new and old regulations

A71-36918

LENSES DESIGN

High aperture wide angle lens design for compact electro-optical systems of airborne moving map projection navigational instruments

A71-36605

LIFT

Gust loading on two dimensional thin airfoil in compressible flow, deriving closed-form lift expression

Rotor blade stability, calculating unsteady local lift and effects of blade profile camber and steady angle of attack

Wing group weight prediction for subsonic aircraft design, taking into account root bending moments due to lift

Slender wing lift in supersonic flow, analyzing suction force on leading edge and viscosity and nonlinear effects

A71-36677

One of aerodynamic lift for application to high speed ground transportation by two dimensional airfoils

A71-29762

Terminal area studies with XC-142, YS-5, DO-11, and P 1127 aircraft to develop powered lift control techniques for instrument approach

A71-30774

Lift force distribution calculation technique for wings with jet flaps including rectangular and swept wing examples

A71-30852

LIFT DEVICES

Kinematics of supersonic unsteady airloads on multiple lifting surfaces

A71-29339

Wind tunnel investigation of aerodynamic interference between two lifting surfaces in tandem

A71-29343

Application of lifting surface theory to wing with control surfaces in unsteady subsonic flow

A71-29347

Safety characteristics for powered lift of comersial STOL aircraft

A71-30773

LIFTING DEVICES

Survey on different methods for lifting rotor downwash analysis

A71-29395

Mathematical model for induced velocity distribution of lifting rotor in horizontal flight

A71-30039

LIGHT AIRCRAFT

Effect of wing-tip vortex wakes generated by large jet transport aircraft on smaller airplanes

A71-30764

Flight tests for evaluating effect of wing-tip vortex wake generated by large jet transports on smaller aircraft

A71-30765

Flight tests to determine handling qualities of general aviation aircraft during ILS approaches in turbulent air

A71-30771

Analysis of 79,000 hours data obtained from NASA V-G/WGE flight recorders installed on 734 general aircraft engaged in eight types of operations

A71-30782

LIGHT BEAMS

Holographic display for blind landing system with variable image perspective over wide field of view, using collimated or cylindrical laser beam

A71-36061

LIGHTNING

Magnitude of induced voltages and their relation to characteristics of lightning discharge and electrical properties of aircraft electrical systems

A71-30761

LINEAR SYSTEMS

Application of linear control of systems with random inputs to gust response control of aircraft guidance in atmospheric turbulence

A71-30324

LIQUID-VAPOR EQUILIBRIUM

Method of characteristics application to supersonic jet and nozzle gas flow with allowance for equilibriums and nonequilibrium condensation

A71-35636

LOAD DISTRIBUTION (FORCES)

Linear radial loads effect on stress and strain of hypoboloidal rotor disk applied to aircraft engine compressors with two stream flow of working medium

A71-34597

Thyrister power conditioning application to high voltage DC electric power system, presenting SST aircraft sample load profiles

A71-35770

LOADING OPERATIONS

Aircraft loading system consisting of onboard weight and balance equipment and fully mechanized cargo pallet transfer, using computerized simulation model for parametric evaluation

[SAWY PAPER 900]

LOW VISIBILITY

Testing ASI/Transponder for moving emergency service vehicles on airfields during poor visibility conditions

A71-29553

Systems analysis of aircraft, aircraft guidance and control systems, and atmospheric turbulence for low visibility instrument landing system requirements

[AD-722773]

A71-30173

Analysis of glide-slope information requirements for low visibility aircraft landing approach using Kalman filter-optimal control combination to simulate DC-8 control system

[AD-722655]

A71-30087

LOWER ATMOSPHERE

Lower atmosphere wind shear determined for aircraft approach control from observations in different American sites

A71-30037

LUBRICATING OILS

Three micron absolute main oil filter for aircraft gas turbine lubrication system, discussing indicator system and bench and engine tests

A71-35680

Aircraft turbine oils acid number potentiometric determination, discussing automatic titration procedure and apparatus and solvents influence on titration curve and inflection point

A71-36680

LUBRICATION

Tapered roller bearing lubrication, considering application to CH-47 Boeing helicopter transmission

A71-35300

Lubrication by boundary, elastohydrodynamic, and fluid films, wear due to fretting, erosion, scuffing, and pitting, and friction in aircraft

[NASA-TN-X-67872]

A71-31131

A71-31597

A71-35285

A71-35300

A71-36134

A71-36736

A71-36181

A71-36339

A71-36547

A71-36918

A71-36605

A71-35647

A71-36130

A71-36339

A71-36605

A71-36677

A71-29762

A71-30774

A71-30852

A71-29339

A71-29343

A71-29347

A71-30773

A71-29395

A71-30039

A71-30764

A71-30765

A71-30771

A71-30782

A71-30761

A71-35636

A71-34597

A71-35770

A71-30087

A71-30037

A71-35680

A71-35300

A71-36680

A71-31131

A71-31597

A71-35285

A71-35300

A71-36134

A71-36736

A71-36181

A71-36339

A71-36547

A71-36130

A71-36339

A71-36605

A71-36677

A71-29762

A71-30774

A71-30852

A71-29339

A71-29343

A71-29347

A71-30773

A71-29395

A71-30039

A71-30764

A71-30765

A71-30771

A71-30782

A71-30761

A71-35636

A71-34597

A71-35770

A71-30087

A71-30037

A71-35680

A71-35300

A71-36680

A71-31131
LUBRICATION SYSTEMS
Three micron absolute main oil filter for aircraft gas turbine lubrication system, discussing indicator systems and bench and engine tests.

MACH CONES
Shock standoff distance and Mach disk diameter measurements in underexpanded supersonic jets, using nitrogen dioxide-tetroxide working fluid.

MAGNETIC SUSPENSION
Subsonic static characteristics of slender wing configurations using magnetic suspension and balance system.

MANUFACTURING
Semifinished product production technology influence on heat resistant alloys mechanical properties, considering forging, rolling, casting, melting, diffusion welding and powder metallurgy.

MACH BODY PROBLEM
Aerodynamic drag of many bodies of revolution in supersonic flow.

MAP WATCHING GUIDANCE
High aperture wide angle lens design for compact electro-optical systems of airborne moving map projection navigational instruments.

MARKET RESEARCH
Passenger travel demand model for STOL transportation in underdeveloped areas.

MASS BALANCE
Aircraft loading system consisting of onboard weight and balance equipment and fully mechanized cargo pallet transfer, using computerized simulation model for parametric evaluation.

MATERIALS SCIENCE
Gas turbine engines materials and components equivalent service life estimation.

MATHEMATICAL MODELS
Two vortex models for downwash variations in supersonic flow past thin delta wing with separation at leading edges.

ATC system models, covering surface movement, runway utilization, terminal areas and enroute traffic.

B-36B CONVETIONAL VERTICOVERSE SYSTEMS
Stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship.

AERODYNAMIC PROPERTIES
Diffusion boading as economical fabrication process for aerospace applications involving Ti alloys, emphasizing mechanical properties and structural reliability improvement.

RIMEFROCKS (MATHEMATICAL)
Wing interference lift line lattice simulation and application to aerodynamic loads on tandem wings in unsteady flow.

COMPETITION OF uncoupled vibrations of rotary wings using transfer matrix method.

MECHANICAL PROPERTIES
Tapered roller bearing lubrication, considering application to CR-47 Boeing helicopter transmission.

METAL FATIGUE
Room temperature ultrasonic frequency fatigue behavior of Nb-base superalloy single crystals.

METAL SHEETS
Thickens effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins.

METAL OXIDE SEMICONDUCTORS
Large scale MOS IC digital I/OB navigation converter, comparing accuracy, size, weight and cost with standard design.

METAL SHEETS
Thickness effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins.

METROLOGICAL INSTRUMENTS
Radio controlled small aircraft as measurement platform for meteorological sensors, discussing development and performance from field tests.

METHOD OF CHARACTERISTICS
Method of characteristics application to supersonic jet and nozzle gas flow with allowance for equilibrium and nonequilibrium condensation.

MICROWAVE EQUIPMENT
Millimeter system, devices and guides - Conference, Los Angeles, August 1970, Volume 1у.

MILITARY AIRCRAFT
Functional suitability of internal/external lighting systems for military aircraft.

Survey on different methods for lifting rotor downwash analysis.

Mathematical perturbation models of aircraft TLS approach and landing.

Mathematical model for induced velocity distribution of lifting rotor in horizontal flight.

Computation of uncoupled vibrations of rotary wings using transfer matrix method.

Tapered roller bearing lubrication, considering application to CR-47 Boeing helicopter transmission.

Status of research program to develop criteria for designing aircraft protective devices from rotor fragments.

Environmental effects on SSP structural materials fatigue, discussing Ti alloys studies involving temperature effects, crack propagation and residual strength.

Light alloys fatigue characteristics for aircraft components endurance evaluation.

Fatigue crack propagation in Al alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship.

Large scale MOS IC digital I/OB navigation converter, comparing accuracy, size, weight and cost with standard design.

Thickens effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins.

Fatigue crack propagation in Al alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship.

Radio controlled small aircraft as measurement platform for meteorological sensors, discussing development and performance from field tests.

Method of characteristics application to supersonic jet and nozzle gas flow with allowance for equilibrium and nonequilibrium condensation.

Military aircraft lighting systems for military aircraft.

Survey on different methods for lifting rotor downwash analysis.

Mathematical perturbation models of aircraft TLS approach and landing.

Mathematical model for induced velocity distribution of lifting rotor in horizontal flight.

Computation of uncoupled vibrations of rotary wings using transfer matrix method.

Tapered roller bearing lubrication, considering application to CR-47 Boeing helicopter transmission.

Status of research program to develop criteria for designing aircraft protective devices from rotor fragments.

Environmental effects on SSP structural materials fatigue, discussing Ti alloys studies involving temperature effects, crack propagation and residual strength.

Light alloys fatigue characteristics for aircraft components endurance evaluation.

Fatigue crack propagation in Al alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship.

Large scale MOS IC digital I/OB navigation converter, comparing accuracy, size, weight and cost with standard design.

Thickens effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins.

Fatigue crack propagation in Al alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship.

Radio controlled small aircraft as measurement platform for meteorological sensors, discussing development and performance from field tests.

Method of characteristics application to supersonic jet and nozzle gas flow with allowance for equilibrium and nonequilibrium condensation.

Military aircraft lighting systems for military aircraft.

Survey on different methods for lifting rotor downwash analysis.

Mathematical perturbation models of aircraft TLS approach and landing.

Mathematical model for induced velocity distribution of lifting rotor in horizontal flight.

Computation of uncoupled vibrations of rotary wings using transfer matrix method.

Tapered roller bearing lubrication, considering application to CR-47 Boeing helicopter transmission.

Status of research program to develop criteria for designing aircraft protective devices from rotor fragments.

Environmental effects on SSP structural materials fatigue, discussing Ti alloys studies involving temperature effects, crack propagation and residual strength.

Light alloys fatigue characteristics for aircraft components endurance evaluation.

Fatigue crack propagation in Al alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship.

Large scale MOS IC digital I/OB navigation converter, comparing accuracy, size, weight and cost with standard design.

Thickens effect on fracture toughness and crack propagation of Al alloy sheets used for aircraft skins.

Fatigue crack propagation in Al alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship.

Radio controlled small aircraft as measurement platform for meteorological sensors, discussing development and performance from field tests.
MISSILE CONFIGURATIONS

development, emphasizing self contained airborne equipment

A71-35374

MISSILE CONFIGURATIONS

Cone-cylinder-cone missile type body in transonic buffeting environment determining static and fluctuating wall pressure distribution [ONERA-TP-942] A71-36020

MISSILE CONTROL

Soviet book on radio control of various flight vehicles covering closed loop synthesis, missile guidance, spacecraft trajectory correction and air traffic control

A71-35403

Avionic and missile computer control systems, describing universal function unit design and digital processing requirements

A71-35775

MISSILE STRUCTURES

Composite structures development, discussing wing, fuselage, aeropropulsion and missile development, weight savings of hardware and fighter espionage applications

A71-36275

Effects of nose bluntness on static aerodynamic characteristics of cruciform wing missile at Mach 1.50 to 2.86 [NASA-TR-X-2299] A71-30813

MISSING LENGTH FLOW THEORY

Incompressible turbulent boundary layers at low Reynolds numbers, using eddy viscosity and mixing length concepts for computation

A71-34884

MODELS

Inlet noise suppressors having perforated plate over honeycomb wall construction evaluated over range of passage heights and engine speeds using turbojet engine as noise source [NASA-TP-6-6395] A71-31096

MODULES OF ELASTICITY

High modulus graphite composites application for structural weight reduction and stiffness requirement without strength loss

A71-35202

MOMENTUM

Integral equations of motion and momentum for hypervelocity wind tunnel nozzle design [AD-722346] A71-29906

MOTION

Influence of lateral motion on effectiveness of flight simulators in training air transport pilots

A71-30772

MULTICHANNEL COMMUNICATION

Frequency memories application to earth-satellite-aircraft UHF communications, repeater apparatus and multiple access transmission of half tone images in worldwide satellite communication

A71-36553

MULTIPATH TRANSMISSION

Monogram for computing multipath effects on VHF and UHF aircraft radio communication [BAR-TR-70097] A71-29361

Calculation of divergence factor of earth surface reflected signals on aircraft radio communication, and multipath transmission between two aircraft [BAR-TR-70210] A71-29438

MULTISPECTRAL XRAY SCANNERS

Multispectral scanner and data system with 2a channels for NASA C-130 earth resources survey aircraft

A71-36361

N

NACELLES

Transonic wind tunnel testing of air intake and afterbody of double flux engine nacelle at high subsonic Mach numbers and high Reynolds numbers

A71-36021

NASA PROGRAMS

Conference on NASA research in aircraft safety and operating problems [NASA-SP-270] A71-30756

Analysis of 79,000 hours data obtained from NASA V-G/VCN flight recorders installed on 734 general aircraft engaged in eight types of operations

A71-30782

Application of noise reduction technology to design of propulsion system for supersonic civil transport aircraft [NASA-TR-X-67841] A71-31191

NATIONAL AIRSPACE UTILIZATION SYSTEM

German monograph on airport role in national economy and growth and location determination for enterprises maintaining connections with foreign countries

A71-34842

NAVIER-STOKES EQUATION

Two dimensional steady viscous gas transonic flow Navier-Stokes equations, establishing uniqueness of solutions to boundary value problems

A71-35646

NAVIGATION AIDS

Precision area navigation system, considering position and velocity continuous measurement in three dimensional space, system components and simulation program

A71-36416

Military and civil aircraft navigation systems development, emphasizing self contained airborne equipment

A71-35374

Maritime and air traffic navigation systems development, emphasizingvester airborne equipment

A71-35997

Aircraft onboard equipment tests in air navigation aid satellite project, estimating tracking random errors

A71-36509

NAVIGATION INSTRUMENTS

ATC system improvement, presenting data acquisition upgrading and ground automation-aircraft navigation systems interface

A71-36414

Large scale NOS I digital VOR navigation converter, comparing accuracy, size, weight and cost with standard design

A71-35789

High aperture wide angle lens design for compact electro-optical systems of airborne moving map projection navigational instruments

A71-36605

NAVIGATION SATELLITES

Navigation and communication satellite development for civil aviation and shipping, examining technical, organizational, operational and cost problems

A71-35240

Civil aviation and merchant marine satellites, considering aircraft and surface vessel antenna characteristics and modulation techniques for optimum communication channel frequencies

A71-35562

NEW YORK

Extension of New York Waterfront Commission to area airports and establishment of security measures to combat air cargo theft [REPT-91-1262] A71-30164

NICKEL ALLOYS

Room temperature ultrasonic frequency fatigue behavior of Ni-base superalloy single crystals

A71-34943

Gas turbine engine steels and Ni alloys heat resistance, examining fatigue life and creep properties at various temperatures and test durations

A71-35453

NITROGEN

Support systems and operational design of nitrogen hypervelocity blowdown wind tunnel [AD-722345] A71-29907

NITROGEN BOMBS

Velocity determination in hypersonic low density wind tunnel based on high energy electron beam produced nitrogen ions time of flight

A71-34887

NITROGEN OXIDES

Stratospheric ozone reduction through catalytic action of nitrogen oxides from SST exhaust,
subject index

- NOISE (SOUND)
 - Fundamentals of turbocompressor and turbofan noise and noise reduction possibilities [DLR-FB-70-74]
 - Form and causes of noise due to fluid flow [NASA-CP-9285]

- NOISE INTENSITY
 - Subsonic turbulent jets acoustic emission, calculating noise intensity in far field for various Mach numbers
 - Propulsion systems trends for 1980s, discussing environmental noise levels, stoichiometric gas turbine engines for military aircraft, high bypass ratio engines for V/STOL aircraft, etc
 - Comparison test to evaluate perceived noise level for STOL and other aircraft sounds

- NOISE PROPAGATION
 - Experimental research at Building Research Station on outdoor sound propagation for building design in relation to aircraft and road traffic noise

- NOISE REDUCTION
 - Gulfstream 2 acoustics program for cabin noise level reduction, compliance with FAA takeoff and landing noise certification and structure qualification against sonic fatigue [AIAA PAPER 71-783]
 - Flight dynamics for aircraft noise reduction, gust effects decrease and dynamic stability of parachute load systems
 - Fundamentals of turbocompressor and turbofan noise and noise reduction possibilities [DLR-FB-70-74]
 - Jet aircraft noise sources and reduction from gas turbine engines including jet exhausts, fans, lift devices, and unducted rotors
 - Development of noise measurement units for airport and aircraft noise reduction and psychoacoustic studies
 - Inlet noise suppressors having perforated plate over honeycomb wall construction evaluated over range of passage heights and engine speeds using turbojet engine as noise source [NASA-TD-6395]
 - Application of noise reduction technology to design of propulsion system for subsonic civil transport aircraft [NASA-TD-7-67888]

- OPTIMIZATION
 - Healer and nozzle design of OREMA/504A hypersonic wind tunnel for supersonic combustion ramjet tests [OREMA-TF-928]

- NUMERICAL ANALYSIS
 - Self similar numerical and asymptotic solutions of laminar incompressible isothermal boundary layer equations for large blowing rates
 - Fluid dynamics numerical methods - Conference, University of California at Berkeley, September 1970
 - Small disturbance transonic flows potential equations numerical solutions, using mixed finite difference theory
 - Numerical analysis of aerodynamic loads on wing and tail surfaces with oscillations in unsteady supersonic and subsonic flow including interference lift
 - Numerical method for evaluating discontinuous downwash distribution for steady flow over swept and rectangular wings

- OBOLIQUE SHOCK WAVES
 - Design shock wave correspondance to strong oblique shock, discussing off design behavior of caret wing
 - Mesh method for supercritical transonic flow calculation with normal or oblique shock wave at trailing edge

- OMEGA NAVIGATION SYSTEM
 - Omega navigation application to general aviation aircraft, presenting diurnal course shift to overcome deficiencies

- ONBOARD EQUIPMENT
 - Aircraft loading system consisting of onboard weight and balance equipment and fully mechanized cargo pallet transfer, using computerized simulation model for parametric evaluation [SAFE PAPER 901]
 - Static pressure and axle strain gage systems testing for balance and weighing onboard De Havilland C-7A aircraft [SAFE PAPER 901]

- OPERATING TEMPERATURE
 - Gas turbine engine nozzle guide vane under pulsed thermal operation, discussing service life evaluation and increase

- OPTICAL MEASUREMENT
 - Vortex laser Doppler velocimeter system for aircraft wake turbulence velocity profile mapping, describing optical arrangements, back and forward scattering modes and prototype design

- OPTIMIZATION
 - Aircraft structural parameters optimization satisfying flutter velocity constraint and minimum mass, applying to box beam design
 - Random access signaling system application to aircraft control, discussing signal redundancy requirement for access capability optimization based on radio environment model
PEBPOBBABCE
PASSBHGBBS
PATEBEITS
PABAIBGS
OZOHE
PASSEHGES AIBCBAPT
PAHELS
PAIBTS
PABBl FLOTTBB
OEESOS
OBBSOH
Asphalt pavement design for heavy multiwheel Systems analysis approach to airport planning and Systems approach to airfield pavement for future Developing aircraft ride criteria and/or Experimental and theoretical study of biologically Polyisocyanurate foam and intumescent paint for Passenger travel demand model for STOL transportation in underdeveloped areas Peoples Experimental and theoretical study of biologically important radiation components and dose equivalents due to galactic and solar rays at SST in high atmosphere - summary Developing aircraft ride criteria and/or acceptable vibration levels and problems in measuring and recording low level vibration environment Asphalt pavement design for heavy multiwheel aircraft, using BISTHO computer program Systems approach to airfield pavement for future aircraft, integrating design, construction, operation and maintenance Effects of runway contaminants and pavement surface properties on runway slipperiness Augmented ram wing vehicle performance and flow field for high speed ground transportation Systems analysis approach to airport planning and predicting terminal facility and aircraft demands in year 2000 for air traffic control systems Prediction method for performance of total pilot-vehicle system in turbulence with application to tracking tasks
and position errors

POSITION INDICATORS

- Precision area navigation system, considering position and velocity continuous measurement in three dimensional space. System components and simulation program

- Dynamic positioning stationkeeping and stability criteria for formation flight systems extended to helicopter and V/STOL transports

- Steady incompressible flow with potential vortex over flat surface under suction

- Small disturbance transonic flows potential equations numerical solutions, using mixed finite difference theory

- Subcritical nonlinear potential flows over two dimensional subsonic airfoils by multistrip method of integral relations

- Potential flow solution for STOL wing propulsion system presenting flow fields, pressure distribution, and lift coefficient for externally blown flap, high-lift configuration

- Aircraft turbine oils acid number potentiometric determination, discussing automatic titration procedure and apparatus and solvents influence on titration curve and inflection point

POWER CONDITIONING

- Thyristor power conditioning application to high voltage DC electric power system, presenting SST aircraft sample load profiles

POWER EFFICIENCY

- Safety characteristics for powered lift of commercial STOL aircraft

POWER SUPPLIES

- Soviet book on subsonic gas turbine passenger planes power supply systems covering Boeing 747, short haul aircraft, DC-10, L-1011, etc

POWER TRANSMISSION

- Tapered roller bearing lubrication, considering application to CH-47 Boeing helicopter transmission

PREDICTIONS

- Probable impact of future supersonic transport aircraft operations on noise environment around seven airports in US ([AIAA-72-2365])

PRESSURE DISTRIBUTION

- Stagnation pressure changes in unsteady flow downstream of turbomachine blades with fluctuating circulation related to vortex sheets

- Flow distribution behind laminar boundary layer separation point in supersonic flow, calculating plates region pressure

- Turbulent boundary layer interaction with supersonic outer flow behind step, calculating pressure distribution, momentum thickness and friction

- Supersonic flow past V-shaped wings with leading edges, applying method of establishment to space variable for pressure distribution

- Siren wall in turbine axial stage due to nonuniform pressure fields behind blade cascades

- Calculation of pressure distributions over wings with harmonic oscillating control surfaces using kernel function method

- Asymptotic expansion techniques to define pressure loading effects on wings with unbalanced control surfaces

PROJECT MANAGEMENT

- Pressure measurements of harmonically oscillating sweptback wing with two flaps in incompressible flow ([DLR-FB-70-87])

- Potential flow solution for STOL wing propulsion system presenting flow fields, pressure distribution, and lift coefficient for externally blown flap, high-lift configuration ([NASA-TD-D-6394])

- Total pressure, static pressure, surface heat stress, and yaw angle measurements of S curved ducted flow ([FIC-TI-10])

- Application of Fredholm integral equations of second kind for determining pressure distribution on cascade of thick airfoils ([NASA-TF-P-702])

- Approximative solution of nonlinear potential equation for small disturbance in transonic range and pressure distribution on aircraft ([NASA-CH-119359])

PRESSURE GRADIENTS

- Viscous stresses distribution in isothermal incompressible turbulent boundary layer with positive pressure gradient by diffusers in open jet wind tunnel

PRESSURE MEASUREMENTS

- Unsteady pressure measurements on harmonically oscillating swept wing with two control surfaces in incompressible flow

- Pressure measurements of harmonically oscillating sweptback wing with two flaps in incompressible flow ([DLR-FB-70-87])

- Acoustic radiation of supersonic jet toward nozzle exit section, plotting pressure pulsations vs active/passive pressure ratio

PRESSURE REDUCTION

- Velocity profile control tests of diffuser wall bleed to control combustor inlet airflow distribution ([NASA-TD-D-6435])

PROBLEM SOLVING

- Asymptotic expansion techniques to define pressure loading effects on wings with unbalanced control surfaces

PRODUCT DEVELOPMENT

- DC-10 wide body tri-jet aircraft design and development, considering mixing, number of engines and thrust optimization and selection of cruise, approach and stall speeds ([AIAA PAPER 71-780])

PROJECT ENGINEERING

- Aircraft jet engine application of electric discharge machining for repetitive continuous production, considering automated closed cycle equipment ([SPE PAPER 67-143])

PRODUCTIVITY

- Negotiations of ERA/BOAC productivity agreements in aircraft industry

PROJECT MANAGEMENT

- Administrative techniques of cost/weight tradeoff
PROJECTORS
High aperture wide angle lens design for compact electro-optical systems of airborne moving map projection navigational instruments

PROPELLERS BLADES
Dirichlet problem in holograph plane of compressible fluid flow from aircraft, helicopter blades or turbine blade airfoils

PROPELLERS
Low disk-loading proprotor application to propeller and fanjet STOL and fanjet VTOL short haul aircraft

PROPSOLIOH SYSTEMS
VTOL transport optimal airframe/propulsion systems design, discussing thrust requirements, performance, control, cruise functions, fuel consumption and fan characteristics

CAD-72274 H71-31376

PSYCHOACOUSTICS
Propulsion systems trends for 1980s, discussing environmental noise levels, stoichimetric gas turbine engines for military aircraft, high bypass ratio engines for V/STOL aircraft, etc

CHASA-TH-X-2295 H71-30283

Radiation field distortion by holographic plane of compressible fluid flow from "aircraft,

Pulsion system configurations

V/STOL aircraft with vectored thrust propulsion systems, noting weight and center of gravity-lift-thrust relationship changes effect on performance

SUBJECT INDEX

A71-29553

RADAR NAVIGATION
Testing ASH/transponder for moving emergency service vehicles on airfields during poor visibility conditions

PROJECTORS

A71-35812

A71-36605

A71-35470

A71-36252

A71-31102

A71-35817

A71-31102

A71-30301

A71-35106

A71-35783

A71-36508

A71-36509

A71-36675

A71-30324

A71-36993

A71-35259

A71-37588

A71-35403

A71-35758

A71-30779

A71-36902

A71-35418

A71-35398

A71-34225

A71-34498

A71-34481

A71-35334

A71-35470

A71-35439

A71-29690

A71-29774

A71-32083

A71-31043

A71-35106

A71-35817

A71-31102

A71-30301

A71-35783

A71-36493

A71-30779

A71-30283

A71-35403

A71-35398

A71-34225

A71-34498

A71-34481

A71-35334

A71-35470

A71-35439

A71-29774

A71-30283

A71-29774

A71-32083

A71-31043

A71-35817

A71-31102

A71-30301

A71-35783

A71-36493

A71-30779

A71-30283

A71-35403

A71-35398

A71-34225

A71-34498

A71-34481

A71-35334

A71-35470

A71-35439
Inclined wedges in rarefied hypersonic flow conditions, investigating base and wake pattern geometrical and aerodynamic characteristics

BEELIPE CMPPRBE
Real time reconnaissance cockpit display system for airborne sensor systems, providing night combat imagery

RECORDING INSTRUMENTS
Developing aircraft side criteria and/or acceptable vibration levels and problems in measuring and recording low level vibration environment

RECTANGULAR WINGS
Numerical method for evaluating discontinuities downwash distribution for steady flow over swept and rectangular wings

Lift force distribution calculation technique for wings with jet flaps including rectangular and swept wing examples

REDUNDANT RECORDING
Random access signaling system application to aircraft control, discussing signal redundancy requirement for access capability optimization based on radio environment model

REDUNDANT COMPONENTS
Space shuttle avionics system redundancy, calculating costs for individual line replaceable units

Space shuttle design concerning fault detection and isolation, redundancy and maintenance for cost and downtime minimization by application of airline methods

REGULATIONS
Aircraft industry license acronyms and standards, describing indexing procedures, storage techniques and data recovery operations with computer

New IATA passenger and baggage international air transport conditions, discussing passenger/carryer legal relationships, with emphasis on differences between new and old regulations

Finnish air traffic law based on international civil aviation convention, discussing regulations relative to aircraft, personnel and airports

Warsaw air traffic convention agreements as amended at The Hague and Guatemala, presenting air transport regulations in present form

Extension of New York Waterfront Commission to area airports and establishment of security measures to combat air cargo theft

REINFORCED PLASTICS
Monograph on fiber-resin composites covering glass, boron and carbon fibers and epoxy matrix materials tensile and thermoelastic properties

Boros-epoxy composite wing box beam design, describing preliminary weight estimation from layouts

Fatigue crack propagation in all alloy panels stiffened with bolted and integral stringers, determining stress intensity factor/crack growth rate relationship

Damage tolerant aircraft structures material toughness and residual strength, presenting fracture test results on precracked panels reinforced with crack stoppers

REINFORCEMENT (STRUCTURES)
Fatigue crack length relationship with aircraft inspection intervals and structural reinforcement, high strength materials, and aircraft usage effects

REINFORCING FIBERS
Monograph on fiber-resin composites covering glass, boron and carbon fibers and epoxy matrix materials tensile and thermoelastic properties

RELIABILITY ENGINEERING
Methods for determining reliability of aircraft equipment

REMO CONTROL
Remote power controller as static circuit protection device for aircraft and spacecraft automatically controlled electrical wiring system, discussing performance improvement

RESEARCH AND DEVELOPMENT
Civil aviation research and development projects noting characteristics and growth to date, current problems, future requirements, potential solutions, and recommendations

RESEARCH PROJECTS
Geological exploration, development of ultrasonic flow detector, review of scientific developments, and tactical aircraft in Eastern Europe

Review of policies affecting civil aviation, problems confronting it, and potential for future contributions to national benefits

Civil aviation research and development projects noting characteristics and growth to date, current problems, future requirements, potential solutions, and recommendations

RESISTANT FREQUENCIES
Pretwisted cantilever airfoil cross section turbine and compressor blades vibration natural frequencies and mode shapes

REYNOSE NUMBER
Incompressible turbulent boundary layers at low Reynolds numbers, using eddy viscosity and mixing length concepts for computation

Transonic wind tunnel testing of air intake and afterbody of double flux engine nacelle at high subsonic Mach numbers and high Reynolds numbers

Sting-free aerodynamic drag measurement on ellipsoidal cylinders in subsonic wind tunnel at transition Reynolds numbers

Design and characteristics of quasi-steady devices for simulation of high Reynolds number flows

ROCKET ENGINE DESIGN
Design and development of air breathing engine system for space shuttle vehicle

ROCKET ENGINE NOISE
Optimal digital controller based on linear approximation of acoustic test facility, for determining effects of supersonic rocket engine noise on vehicle surface

Aerodynamic characteristics, rocket nozzles, spacecraft propulsion, antenna design, and internal combustion engines

ROLLE BEAILIN
Tapered roller bearing lubrication, considering application to CH-47 Boeing helicopter transmission

ROOFTOP
Wind pressure and cross flow velocity profiles for short takeoff aircraft building roof airports

ROOM TEMPERATURE
Room temperature ultrasonic frequency fatigue

A-35
behavior of Ni-base superalloy single crystals A71-34935

ROARY OTOSCOPES

ROARY WINGS

Helicopter rotor blades fail-safe design, presenting criteria for fatigue loaded structures residual strength and life based on crack propagation rate methods A71-35163

Dischitler problems in helipad of compressible fluid flow from aircraft, helicopter blades or turbine blade airfoils A71-35470

Analytical weight determination of articulated shaft driven helicopter main rotor blades, presenting computer program [SAW PAPER 69-2] A71-35826

Helicopter rotor noise due to blade-vortex interaction, using linear gust model A71-36934

Computations of uncoupled vibrations of rotary wings using transfer matrix method [DLR-FB-70-63] A71-29543

Rotary wing downwash influence on fixed wing flow using magnetic induction vortex model [DLR-FB-70-62] A71-30040

ROARY BLADES

Noise generation due to inert free stream turbulence incident on isolated stators and rotors, using flat plate cascade blade row model A71-36498

ROARY BLADES (TURBOMACHINERY)

Roto blade stability, calculating unsteady local lift and effects of blade profile camber and steady angle of attack A71-35468

Status of research program to develop criteria for designing aircraft protective devices from rotor fragments A71-30762

ROARY LIFT

Airborne nucleonic equipment design for indicating helicopter lift capability using X-ray backscatter from KR-85, temperature sensor, and digital computer [SAN-805-1] A71-29215

ROARYCRAFT AIRCRAFT

Low disk-loading proprotor application to propeller and fanjet STOL and fanjet VTOL short haul aircraft [AIAA PAPER 71-781] A71-34881

ROARY

Stability of equilibrium state of rotor in pressurized gas bearing [AD-722828] A71-31213

ROARY (COMPUTERS)

Hardware executive control with associative memory for avionic digital computer system, comparing computation speed, cost and reliability with software method A71-35778

ROARY-KUTTA METHOD

Supersonic flow field computation for wing-body combinations by shock-capturing finite difference techniques, discussing improvement based on Rung-e-Kutta method A71-36303

Computerized solutions of gas turbine engine motion equations, considering Euler, fourth order and fifth order Rung-e-Kutta, Adams, Bantforth and implicit methods A71-36609

RUNWAY ALIGNMENT

RUNWAY CONDITIONS

Civil aircraft arresting on runway overshoots, describing safe deceleration method by use of soft ground arresting equipment A71-35210

Systems approach to airfield pavement for future aircraft, integrating design, construction, operation and maintenance A71-36346

S

S CURVES

Total pressure, static pressure, surface shear stress, and yaw angle measurements of S curved ducted flow [IC-71-10] A71-30264

SAFETY

Test methods and testing techniques for determining technical performance and safety characteristics of ground support service aviation equipment [AD-723036] A71-30258

SAFETY DEVICES

Air transportation safety review covering weather knowledge, aircraft structures, instrumentation, radio aids and power plants A71-36175

SATELLITE COMMUNICATIONS SHIPS

Civil aviation and merchant marine satellites, considering aircraft and surface vessel antenna characteristics and modulation techniques for optimum communication channel frequencies A71-35582

SATELLITE NETWORKS

Queueing theory approach to communication satellite network design, applying to ocean air traffic control and worldwide military broadcast systems A71-35106

SATELLITE OBSERVATION

Satellite based position fixing data by ranging techniques, discussing application to navigation and ATC A71-36493

SATELLITE TRANSMISSION

Aircraft onboard equipment tests in air navigation aid satellite project, estimating tracking random errors A71-36509

ESO part of joint ATC communication experiment for L band satellite use, giving voice and data transmission and distance measurement techniques tests results A71-36510

Satellite to aircraft radio link simulation, evaluating electronic scanning antenna operation, intelligibility, data transmission rate and distance measurement accuracy A71-36511

Meter wave aircraft slot antenna for Concorde air to ground communication via satellite, presenting synthetic radiation patterns A71-36514
Subject Index

Scalable Models
Aerodynamic characteristics of vehicle models in aluminum tube N71-31108

Scattering Functions
Satellite-to-aircraft links propagation characteristics, considering specular reflected signals, diffuse scattering and scattering function A71-35097

Separated Flow
Two vortices model for downwash variations in supersonic flow past thin delta wing with separation at leading edges A71-38190
Negative pressure gradient effect on separation of supersonic flow over notches, comparing theory with wind tunnel determination A71-34898
Pressures, velocities and aerodynamic characteristics of supersonic flow around slender delta wings with forced asymmetry and separation at leading edges A71-36134

Service Life
Gas turbine engine materials and components equivalent service life estimation A71-35452
Gas turbine nozzle guide vane under pulsed thermal operation, discussing service life evaluation and increase A71-35455
Aircraft gas turbine engine components equivalent testing by shortening testing time required to increase service life A71-35460
Integrated drive generator for aircraft electrical power systems, improving weight, life and reliability A71-35781

Shaped Charges
Performance tests on liquid explosive emergency exit for civil aircraft [FAA-RD-71-31] N71-31064

Shear Flow
Relation of Eulerian and Lagrangian structure of pseudosound pressure and velocity fields in turbulent shear flow to aerodynamic noise generation [NASA-CH-19359] N71-31211

Shear Stress
Total pressure, static pressure, surface shear stress, and yaw angle measurements of S curved ducted flow [IC-71-10] N71-30264

Shock Absorbers
Nonlinear elastic suspension springs with systematically hardened behavior for shock and vibration isolation of aerospace instruments and controls A71-34890

Shock Layers
Shock standoff distance and Mach disk diameter measurements in underexpanded sonic jets, using nitrogen dioxide-tetroxide working fluid A71-34895

Shock Tubes
German monograph on pressure changes as boundary layer effect in tube wind tunnels covering test equipment and experimental design, Becker theory, pipe flow, etc A71-34792
Turbulent boundary layer over flat plate and compression corner models studied in hypersonic gun tunnel [IC-71/11] N71-30747

Shock Wave Generators
Multiple tone generation by axial flow transonic compressors, considering shock wave production and propagation associated with supersonic elements of blading A71-36497

Shock Wave Interaction
V shaped conical wing in supersonic and hypersonic flow with shock attached to leading edge, investigating complex wave systems with time dependent and analytical methods A71-36339

Shock Wave Interaction between supersonic airfoils, slender bodies, and thin wings and plane shock wave [VTH-158] N71-30432

Shock Wave Profiles
Design shock wave correspondence to strong oblique shock, discussing off design behavior of caret wing A71-35280

Shock Wave Propagation
Multiple tone generation by axial flow transonic compressors, considering shock wave production and propagation associated with supersonic elements of blading A71-36497

Short Haul Aircraft
Low disk-loading proprotor application to fan and fanjet VTOL and jet VTOL short haul aircraft [AIAA Paper 71-781] N71-34801
Operating costs and runway lengths for VTOL in city and suburban short haul air transportation A71-36347
Future air transportation concepts, discussing short haul travel market, economic, environmental, safety, convenience and reliability aspects A71-36671

Short Takeoff Aircraft
Low disk-loading proprotor application to fan and fanjet VTOL and jet VTOL short haul aircraft [AIAA Paper 71-781] N71-34801
STOL aircraft guidance capability with onboard digital computer, maintaining time of arrival envelope at way points along complex flight paths - [AIAA Paper 71-770] N71-35528
Passenger travel demand model for STOL transportation in underdeveloped areas N71-36340
Potential flow solution for STOL wing propulsion system presenting flow fields, pressure distribution, and lift coefficient for externally blown flap, high-lift configuration [NASA-TR-D-6394] N71-29774
Wind tunnel investigation of static longitudinal aerodynamic characteristics of semispan swept wing for STOL jet transport with deflected thrust and boundary layer control [NASA-TR-D-6256] N71-30282
Safety characteristics for powered lift of commercial STOL aircraft N71-30773
Comparison test to evaluate perceived noise level for STOL and other aircraft sounds [RE-70-9] N71-31075

Signal Reflection
Calculation of divergence factor of earth surface reflected signals on aircraft radio communication, and multipath transmission between two aircraft [EAE-TR-70210] N71-29438

Signal Transmission
Random access signaling system application to aircraft control, discussing signal redundancy requirement for access capability optimization based on radio environment model A71-35783

Single Crystals
Room temperature ultrasonic frequency fatigue behavior of Ni-base superalloy single crystals A71-34943

Slender Bodies
Shock wave interaction between supersonic airfoils, slender bodies, and thin wings and plane shock wave [VTH-158] N71-30321

Slender Cones
Near wake streamline configuration in symmetry plane of slender cone in hypersonic flow at freestream Mach number 7 A71-36754

Slender Wings
Pressures, velocities and aerodynamic characteristics of supersonic flow around slender delta wings with forced asymmetry and separation at leading edges A71-36134
SLIDING

Slender wing lift in supersonic flow, analyzing suction force on leading edge and viscosity and nonlinear effects

[NASA CR-1796] A71-36677

SUBJECT INDEX

and isolation, redundancy and maintenance for cost and downtime minimization by application of airline methods
A71-36480

SPACECRAFT LANDING

Space shuttle vehicles landing with emergency arrestment aids, describing tailhook/cable, net and landing gear/cable engagement methods
A71-36488

SPACECRAFT POSITION INDICATORS

Satellite based position fixing data by ranging techniques, discussing application to navigation and ATC
A71-36493

Aircraft design, flight characteristics, and internal combustion engines

[NASA CR-119315] A71-31106

SPACECRAFT RELIABILITY

Space shuttle design concerning fault detection and isolation, redundancy and maintenance for cost and downtime minimization by application of airline methods
A71-36480

SPACECRAFT STRUCTURES

Composite structures development, discussing wing, fuselage, aeropropulsion and missile development, weight savings of hardware and fighter weapon applications

[AIAA PAPER 71-367] A71-36275

SPACECRAFT TRAJECTORIES

Satellite book on radio control of various flight vehicles covering closed loop synthesis, missile guidance, spacecraft trajectory correction and air traffic control
A71-35063

SPARK MACHINING

Aircraft jet engine application of electric discharge machining for repetitive continuous production, considering automated closed cycle equipment

[SME PAPER NB-71-163] A71-36658

SPHERICAL REFLECTION

Satellite-to-aircraft links propagation characteristics, considering specular reflected signals, diffuse scattering and scattering function
A71-35097

SPHERES

Finite difference method application to three dimensional boundary layer calculation on sphere-segment surfaces in supersonic flow
A71-35632

SPRING (ELASTIC)

Nonlinear elastic suspension springs with symmetrically hardened behavior for shock and vibration isolation of aerospace instruments and controls
A71-36890

SQUALLS

Approximate solution of nonlinear potential equation for squall disturbance in transonic range and pressure distribution on aircraft
A71-31061

STABILITY TESTS

Stability of equilibrium state of rotor in pressurized gas bearing

[AD-722828] A71-31213

STABILIZATION

Theory of controllability for parabolic and second order hyperbolic systems and for hereditary differential systems applied to stabilization of high speed aircraft in gust load disturbances

[AD-722072] A71-29300

STEADY FLOW

Binary laser boundary layer in hypersonic axisymmetric stagnation point flow with temperature dependent material properties, presenting exact and approximate calculation methods
A71-36488

STATION POINT

Convective flow at stagnation point relation to radiation flux decrease as result of absorption in cold boundary layer
A71-35253

STATION PRESSURE

Stagnation pressure changes in unsteady flow
A71-35259
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>downstream of turbine blades with fluctuating circulation related to vortex sheets</td>
</tr>
<tr>
<td>standards</td>
</tr>
<tr>
<td>static aerodynamic characteristics</td>
</tr>
<tr>
<td>static loads</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>static pressure</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>static tests</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>static testing</td>
</tr>
<tr>
<td>statistical analysis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>static blade</td>
</tr>
<tr>
<td>steady flow</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>steam turbines</td>
</tr>
<tr>
<td>steels</td>
</tr>
<tr>
<td>structural stability</td>
</tr>
<tr>
<td>sternberg-law</td>
</tr>
<tr>
<td>stiffness</td>
</tr>
<tr>
<td>strain gages</td>
</tr>
<tr>
<td>stratosphere</td>
</tr>
<tr>
<td>stress analysis</td>
</tr>
<tr>
<td>stress concentration</td>
</tr>
<tr>
<td>stress-strain diagrams</td>
</tr>
<tr>
<td>structural design</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>structural engineering</td>
</tr>
<tr>
<td>structural failure</td>
</tr>
<tr>
<td>structural members</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>structural reliability</td>
</tr>
<tr>
<td>structural stability</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| | (ST)
ROTOR BLADE STABILITY, calculating unsteady local lift and effects of blade profile casing and steady angle of attack

A71-35968

STRUCTURAL VIBRATION
Systems analysis of directional control, rotary wing vibratory loads, lift sharing, and fuselage vibration and damping during helicopter maneuvers

NT7-30775

STRUCTURAL WEIGHT
Aircraft structural parameters optimization satisfying flutter velocity constraint and minimum mass, applying to box beam design

A71-39870

High modulus graphite composite applications for structural weight reduction and stiffness requirement without strength loss

A71-35202

High voltage DC electric power transmission systems with ground return, reducing aircraft wiring weight and energy dissipation

A71-35771

Integrated drive generator for aircraft electrical power systems, improving weight, life and reliability

A71-35781

Administrative techniques of cost/weight tradeoff program for jet transport airplane

[S4E PAPER 899]

A71-35812

Statistical analysis of error sources and calculated magnitudes in Boeing 747 weight values obtained on board aircraft weighting system and by manual calculations

[S4E PAPER 899]

A71-35813

Composite materials effect on supersonic aircraft weights, design and performance

[S4E PAPER 888]

A71-35818

Weight reduction potential of composite materials in aerospace structures, proposing weight estimation technique

[S4E PAPER 887]

A71-35819

Design, analysis and testing of F-111 complex fuselage/airframe section of composite materials, noting weight savings

[S4E PAPER 889]

A71-35825

Composite structures development, discussing wing, fuselage, aeropropulsion and missile development, weight savings of hardware and fighter equipment applications

[S4E PAPER 887]

A71-36275

SUBCRITICAL FLOW
Subcritical nonlinear potential flows over two dimensional subsonic airfoils by multistrip method of integral relations

A71-36330

SUBSONIC AIRCRAFT
Soviet aircraft on subsonic gas turbine passenger planes passenger supply systems covering Boeing 747, short haul aircraft, DC-10, L-1011, etc

A71-38972

Wing group weight prediction for subsonic aircraft design, taking into account root bending moments due to lift

A71-35925

SUBSONIC FLOW
Subsonic turbulent jets acoustic emission, calculating noise intensity in far field for various Mach numbers

A71-34213

Stream lines construction in meridional plane of blade nozzle annular cascades of steam and gas turbines in subsonic and supersonic flow

A71-34046

Subcritical nonlinear potential flows over two dimensional subsonic airfoils by multistrip method of integral relations

A71-36330

Numerical analysis of aerodynamic loads on wing and tail surfaces with oscillations in unsteady supersonic and subsonic flow including interference lift

[ASABE-CP-80-71-PP-1]

A71-29333

Aerodynamic load predicting for control surfaces in unsteady supersonic and subsonic flow

A71-29332

Numerical analysis of aerodynamic loads and coefficients for tandem and T tail surfaces harmonically oscillating in subsonic flow

A71-29334

A71-35467

A71-35398

SUBSONIC AIRFOILS
Computer programs for evaluating subsonic flow over wing-tail, wings with folded tips, T tails, and cruciform tail surfaces

N71-29345

Computer programs for calculating airloads and coefficients of wing-horizontal tail and fin-horizontal tail oscillating in subsonic flow

N71-29342

Application of lifting surface theory to wing with control surfaces in unsteady subsonic flow

N71-29347

Aerodynamic characteristics of elastic swept wing of aircraft in subsonic flow with given weight, overload, and dynamic head

[NASA-TP-13717]

N71-30656

SUBSONIC SPEED
Transonic wind tunnel testing of air intake and afterbody of double flux engine nacelle at high subsonic Mach numbers and high Reynolds numbers

[ONEBA-TR-943]

A71-36021

Subsonic static characteristics of slender wing configurations using magnetic suspension and balance system

[NASA-CH-1756]

N71-29975

Evaluating three component electronic wind tunnel balance installed in 3.5 by 5.0 ft subsonic tunnel

[AD-722571]

N71-31600

SUPERCRITICAL FLOW
Mesh method for supercritical transonic flow calculation with normal or oblique shock wave at trailing edge

A71-35799

SUPERCRITICAL WINGS
Applications of supercritical airfoils to transport aircraft designs

A71-30765

SUPERSONIC AIRCRAFT
Thyrister power conditioning application to high voltage DC electric power system, presenting SST airframe sample load profiles

A71-35770

Composite materials effect on supersonic aircraft weight, design and performance

[S4E PAPER 888]

A71-35818

Weight, design and performance

A71-35818

V71-36757

Experimental and theoretical study of biologically important radiation components and dose equivalents due to galactic and solar rays at 250 in high altitude atmosphere - summary

V71-30779

Study of concept of inertially aided barometric altimeter system to meet vertical separation requirements of 1000 and 2000 feet for Mach 3.5 aircraft in altitude hold at 80,000 feet

[NASA-CH-1770]

N71-31307

Heat sink capabilities of Jet-A fuel - heat transfer and cooling studies

[NASA-CR-7951]

N71-31482

SUPERSONIC AIRFOILS
Shock wave interaction between supersonic airfoils, slender bodies, and thin wings and plane shock wave

[V71-158]

N71-30321

SUPERSONIC COMBUSTION RAMJET ENGINES
Heater and nozzle design of ONERA/SAE supersonic wind tunnel for supersonic combustion ramjet tests

[ONEBA-TR-924]

A71-36017

SUPERSONIC COMPRESSORS
Supersonic cylindrical freon compressor with low blade height for elementary compression and flow visualization aerodynamic and thermodynamic test results

A71-35467

SUPERSONIC FLIGHT
Supersonic aircraft propulsion by external heat addition, discussing numerical method for suitable Cessna wing design

A71-35398
Aircraft design, flight characteristics, and
atmospheric effects on sonic boom during
supersonic and hypersonic flight

SUPersonic flow
Two vortex model for downwash variations in
supersonic flow past thin delta wing with
separation at leading edges

Streamlines construction in meridional plane of
blade nozzles annular cascades of steam and gas
turbines in subsonic and supersonic flow

Negative pressure gradient effect on separation of
supersonic flow over notches, comparing theory
with wind tunnel determination

Flow distribution behind laminar boundary layer
separation point in supersonic flow, calculating
plateau region pressure

Turbulent boundary layer interaction with
supersonic flow flow behind step, calculating
pressure distribution, momentum thickness and
friction

Finite difference method application to three
dimensional boundary layer calculation on
sphere-segment surfaces in supersonic flow

Supersonic flow past V-shaped wings with leading
dges, applying method of elimination to space
variable for pressure distribution

Pressures, velocities and aerodynamic
characteristics of supersonic flow around
slender delta wings with forced asymmetry and
separation at leading edges

Supersonic flow past thin delta wings with finite
velocities at leading edges, noting wing
defomation to avoid corot vortices appearance

Supersonic flow field computation for wing-body
combinations by shock-capturing finite
difference techniques, discussing improvement
based on Hunge-Kutta method

Dynamic parameters of supersonic flow incident on
cylindrical bodies at large angles of attack,
considering flow field and entropy distribution

V-shaped conical wing in supersonic and hypersonic
flow with shock attached to leading edge,
investigating complex wave system with time
dependent and analytical methods

Slender wing lift in supersonic flow, analyzing
suction force on leading edge and viscosity and
nonlinear effects

Numerical analysis of aerodynamic loads on wing
and wall surfaces with oscillations in unsteady
supersonic and subsonic flow including
interference lift

[AGARD-CP-80-77-Pt-1] U71-29333

Aerodynamic load predicting for control surfaces
in unsteady supersonic and subsonic flow

Box collocation method for calculating aerodynamic
loads on tandem delta wings with oscillations in
supersonic flow

[DLR-PB-71-04] U71-29337

Aerodynamic drag of many bodies of revolution in
supersonic flow

[DLR-PB-62-0283] U71-31586

Influence of artificially induced turbulence upon
boundary layer transition in supersonic flows

[AD-722385] U71-31586

SUPersonic flutter
Supersonic panel flutter and aerodynamic load
stress analysis of finite cylindrical shells
based on Galerkin method and aeroelastic
equilibrium equations

SUPersonic Helipad
Design and characteristics of supersonic inlet
controls for minimizing inlet unstarts

[NASA-TR-D-64008] U71-30072

SUPersonic jet flow
Supersonic jet interaction with turbulent wake,
calculating plane and axisymmetric flow behind
body butt face

Method of characteristics application to
supersonic jet and nozzle gas flow with
allowance for equilibrium and nonequilibrium
condensation

Photographic study of colliding underexpanded and
normally expanded supersonic jets in two-wind-
tunnel assembly with atmospheric static working
pressure

Acoustic radiation of supersonic jet toward nozzle
exit section, plotting pressure pulsations vs
active/passive pressure ratio

SUPersonic nozzle
Method of characteristics application to
supersonic jet and nozzle gas flow with
allowance for equilibrium and nonequilibrium
condensation

SUPersonic speed
Effects of nose bluntness on static aerodynamic
characteristics of cruciform wing missile at
Mach 1.50 to 2.86

[NASA-TR-I-2289] U71-30813

SUPersonic transport
Environmental effects on SST structural materials
fatigue, discussing Ti alloys studies involving
temperature effects, crack propagation and
residual strength

Stratospheric ozone reduction through catalytic
action of nitrogen oxides from SST exhaust,
discussing degrading effect on atmospheric
radiation shied

Probable impact of future supersonic transport
aircraft operations on noise environment around
seven airports in US

[AD-722365] U71-29777

Simulation studies for development of
certification criteria applicable to SST takeoff
and engine failure

SUPersonic wind tunnels
Negative pressure gradient effect on separation of
supersonic flow flow over notches, comparing theory
with wind tunnel determination

Photographic study of colliding underexpanded and
normally expanded supersonic jets in two-wind-
tunnel assembly with atmospheric static working
pressure

Lewis 9 by 15 foot V/STOL wind tunnel in return
leg of supersonic wind tunnel

[NASA-TR-I-2305] U71-30055

Support systems
Support systems and operational design of nitrogen
hypervelocity blowdown wind tunnel

[AAD-722385] U71-29907

Surface navigation
Navigation and communication satellites
development for civil aviation and shipping,
examining technical, organizational, operational
and cost problems

Civil aviation and merchant marine satellites,
considering aircraft and surface vessel antenna
characteristics and modulation techniques for
optimum communication channel frequencies

Surface properties
Effects of runway contaminants and pavement
surface properties on runway slipperiness

SUPer surface roughness
Runway and taxiway profile and airplane response
measurements to determine runway roughness

[A-41]
STRENGTH EFFECTIVENESS

SUSPENSIONS
Nonlinear elastic suspension springs with symmetrical hardening behavior for shock and vibration isolation of aerospace instruments and controls

SWEDEN
Test facilities on structural engineering at FFA, Sweden

SWEPT WINGS
Numerical method for evaluating discontinuities downwash distribution for steady flow over swept and rectangular wings

Sweptback Tail Surfaces
Jet penetration into Mach 2 airstream using sweptback inlets at angle of attack

Sweptback Wings
Pressure measurements of harmonically oscillating sweptback wing with two flaps in incompressible flow

Synchrohatch Satellites
Time division multiplexing system for ATS, discussing surveillance geostationary satellite feasibility, delta modulation for data transmission and aircraft equipment

Radio tracking of aircraft by two geostationary satellites, discussing measurement, navigation and position errors

SYSTEM EFFECTIVENESS
Airframe electric power system design with reliability, simplicity, low cost, weight and size, discussing automatic circuit protection and energy power

SYSTEMS ANALYSIS
Systems approach to airfield pavement for future aircraft, integrating design, construction, operation and maintenance

Systems analysis of aircraft, aircraft guidance and control systems, and atmospheric turbulence for low visibility instrument landing system requirements

Systems analysis of directional control, rotary wing vibratory loads, lift sharing, and fuselage vibration and damping during helicopter maneuvers

Systems analysis approach to airport planning and predicting terminal facility and aircraft demands in year 2000 for air traffic control

SUBJECT INDEX

T AIL SURFACES
Experimental and theoretical aerelastic analysis of Fokker F-28 T tail, using flutter model and flight flutter tests

Numerical analysis of aerodynamic loads and coefficients for tandem and T tail surfaces harmonically oscillating in subsonic flow

Aeroelastic and flutter analysis for T tail of Fokker F.28

TAIL ASSEMBLIES
Composite structures development, discussing wing, fuselage, aero propulsion and missile development, weight savings of hardware and fighter empennage applications

Aerodynamic forces between wing and tail

TAKEOFF
Simulation studies for development of certification criteria applicable to SST takeoff and engine failure

TAKEOFF RUNS
Trailing wake hazards of large transports in takeoff and landing, examining configuration stability of vortex pair in ground effect

TANDER WING AIRCRAFT
Wing interference lift line lattice simulation and application to aerodynamic loads on tandem wings in unsteady flow

Box collocation method for calculating aerodynamic loads on tandem delta wings with oscillations in supersonic flow

Wind tunnel investigation of aerodynamic interference between two lifting surfaces in tandem

TAKEOFF

Aircraft random heave-pitch response to takeoff on rough runways, analyzing dynamic loads and fatigue damage by power spectral techniques

Runway and taxiway profile and airplane response measurements to determine runway roughness

TECHNOLOGICAL FORECASTING
Future air transportation concepts, discussing short haul travel market, economic, environmental, safety, convenience and reliability aspects

A-42
TECHNOLOGY UTILIZATION
Semifinished product production technology influence on heat resistant alloys mechanical properties, considering forging, rolling, casting, welding, diffusion welding and powder metallurgy

TEMPERATURE EFFECTS
Maximum temperature engine concept, definition and application to future aircraft propulsion system performance
[SAE PAPER 710461] A71-36671

TEMPERATURE SENSORS
Airborne acoustics equipment design for indicating helicopter lift capability using X ray backscatter from Kt-85, temperature sensor, and digital computer
[SAM-B85-1] A71-36725

TENSILE STRENGTH
Monograph on fiber-resin composites covering glass, boron and carbon fibers and epoxy matrix materials tensile and thermoelastic properties
A71-36988

THERMAL BALLISTICS
Ring structural elements ballistic damage tolerance and residual fracture strength characteristics, discussing projectile velocity, impact angle and target thickness effects
A71-35161

Armed cockpit for attack aircraft combat effectiveness, including roll line tunabling plates, terminal ballistic kinematics and integral structural armor
[AIAA PAPER 71-778] A71-35530

THERMAL FACILITIES
RTC system models, covering surface movement, runway utilization, terminal areas and enroute traffic
A71-34523

Biannual Basle-Hulhouse airport, discussing traffic structure, buildings and runway development
A71-35996

Harita site Tokyo international airport, discussing transportation, runways, ground handling, navigation aids, lighting, etc
A71-35997

Analysis of physical and economic factors pertaining to effective operation of vertical takeoff and landing aircraft short range commercial transportation - Vol. 1

Identification and analysis of potential sites for vertical takeoff and landing aircraft facilities in Great Britain - Vol. 2

Terminal area planning with IC-142, KY-5, Do-31, and V 1127 aircraft to develop powered lift control techniques for instrumnet approach
A71-30774

THERMOLOGY
German glossary of commercial air traffic with english equivalents
A71-36962

THERMAL ANALYSIS
Design of computer assisted information system to provide air forecast data for military purposes
[AD-722827] A71-29660

TEST EQUIPMENT
Strip pressure and axle strain gage systems testing for balance and weighing onboard Do Havilland C-7A aircraft
[SAX PAPER 881] A71-35287

TEST FACILITIES
Test facilities on structural engineering at FFA, Sweden
[FFA-9810-61] A71-29378

Optimal digital controller based on linear approximation of statistical test facility, for determining effects of supersonic rocket engine noise on vehicle surface
[AIAA-CE-11581] A71-30761

Design and characteristics of quasi-steady devices for simulation of high Reynolds number flows
[AIAA-CE-10183] A71-31262

TESTING TIME
Aircraft gas turbine engine components equivalent testing by shortening testing time required to increase service life
A71-35460

THERMAL ENVIRONMENTS
Thermal ground testing of Concorde and Veras, considering static and fatigue testing in heat environment
A71-36460

THERMAL PROTECTION
Polyisocyanurate foam and intumescent paint for thermal protection of aircraft passengers in ground accident fires
A71-30758

THERMAL RESISTANCE
Gas turbine engine steels and Hi alloys heat resistance, examining fatigue life and creep properties at various temperatures and test durations
A71-35453

THERMAL STRESSES
Gas turbine engine nozzle guide vanes under pulsed thermal operation, discussing service life evaluation and increase
A71-35455

THERMOELASTICITY
Monograph on fiber-resin composites covering glass, boron and carbon fibers and epoxy matrix materials tensile and thermoelastic properties
A71-36970

THICKNESS
Inviscid incompressible flow past thin circular arc airfoil at zero incidence, expanding for complex potential or velocity in powers of thickness ratio
A71-34674

THICKNESS RATIO
Inviscid incompressible flow past thin circular arc airfoil at zero incidence, expanding for complex potential or velocity in powers of thickness ratio
A71-34674

THERMIAL AIRFOILS
Thermal airfoil at zero incidence, expanding for compressible flow, deriving closed-form lift expression
A71-35285

Aerodynamic characteristics of thin, highly cambered airfoils in incompressible flow
[AIAA-CE-1767] A71-29893

Experimental and analytical study of subsonic longitudinal and lateral aerodynamic characteristics of slender sharp edge 74 deg swept wings
[AIAA-TR-D-6348] A71-30530

THROUGH SCREWS
Soviet papers on thin walled aircraft structures strength and stability covering bending theory, circular cylindrical shells, thermal stresses of rectangular plates, etc
A71-35301

THRU MENGS
Supersonic flow past thin delta wings with finite velocities at leading edges, noting wing deformation to avoid corner vortices appearance
A71-36481

Shock wave interaction between supersonic airfoils, slender bodies, and thin wings and plane shock wave
[VTR-158] A71-30321

THREE DIMENSIONAL FLOW
Finite difference method application to three dimensional boundary layer calculation on sphere segment surfaces in supersonic flow
A71-35632

THRUST CONTROL
Engine dynamics requirements implied by thrust modulation control for VTOL aircraft

THRUST VECTOR CONTROL
VTOL aircraft with vectored thrust propulsion systems, noting weight and center of gravity-lift thrust relationship changes effect on performance
[SAX PAPER 898] A71-35817

THERMISTORS
Thermostat power conditioning application to high
voltage DC electric power system, presenting SST
aircraft sample load profiles A71-35770

TIE DEPENDENCE
Velocity determination in hypersonic low density
wind tunnel based on high energy electron beam
produced nitrogen ions time of flight A71-34887

TIME DIVISION MULTIPLEXING
Time division multiplexing system for ATS,
discussing surveillance geostationary satellite
feasibility, delta modulation for data
transmission and aircraft equipment A71-34680

Bit and scanning field synchronizations of time
multiplex for air traffic control A71-36513

TITANIUM ALLOYS
Environmental effects on SST structural materials
fatigue, discussing Ti alloys studies involving
temperature effects, crack propagation and
residual strength A71-34556

Diffusion bonding as economical fabrication
process for aerospace applications involving Ti
alloys, emphasizing mechanical properties and
structural reliability improvement [SEE PAPER AD-71-285] A71-36661

TITRATION
Aircraft turbine oils acid number potentiometric
determination, discussing automatic titration
procedure and apparatus and solvents influence
on titration curve and inflection point A71-36680

TORQUINAL STRESS
Constrained torsion of spar box fastened along
isolated parts of wing spar, noting structural
failure due to tangential stress distribution A71-35313

TOUGHNESS
Damage tolerant aircraft structural materials
properties and residual strength, presenting
fracture test results on precracked panels
reinforced with crack stoppers A71-35157

TRACKING (POSITION)
Prediction method for performance of total
pilot-vehicle system in turbulence with
application to tracking tasks [AD-722851] A71-31288

TRADEOFFS
Administrative techniques of cost/weight tradeoff
program for jet transport airplane [SAE PAPER 899] A71-35812

TRAINING DEVICES
Data acquisition system for 05-2a aircraft
training flight evaluations [AD-722350] A71-31397

TRAJECTORY ANALYSIS
Cost effective high speed projectile trajectory
plotting system for gun range instrumentation, applying to aircraft path
recording during automatic landing control A71-36613

TRAJECTORY CONTROL
Soviet book on radio control of various flight
vehicles covering closed loop synthesis, missile
guidance, spacecraft trajectory correction and
air traffic control A71-35403

TRANSFER FUNCTIONS
Computation of uncoupled vibrations of rotary
wings using transfer matrix method
[DLR-PB-70-63] A71-29543

TRANSLATIONAL MOTION
Gyrocompass stability during circulations and
arbitrary periodic maneuvers, taking into
account translational motion vertical inertia
component A71-35604

TRANSMITTER RECEIVERS
Airborne communications with AM/FM-150
transceiver in single radio, discussing extended
frequency coverage, multimode operation,
navigation and input/output provisions A71-35758

TRANSVERSE COMPRESSORS
Multiple tone generation by axial flow transonic
compressors, considering shock waves production
and propagation associated with supersonic
elements of blading A71-36497

TRANSITIVE FLIGHT
Cone-cylinder-cone missile type body in transonic
baffling environment determining static and
fluctuating wall pressure distribution [ONERA-TP-942] A71-36020

TRANSITIVE FLOW
Two dimensional steady viscous gas transonic flow
Navier-Stokes equations, establishing uniqueness of
solutions to boundary value problems A71-35646

Mesh method for supercritical transonic flow
calculation with normal or oblique shock wave at
trailing edge A71-35799

Small disturbance transonic flow potential
equations numerical solutions, using mixed
finite difference theory A71-36325

Design and characteristics of quasi-steady devices
for simulation of high Reynolds number flows

TRANSITIVE SPEED
Jet penetration into Mach 2 airstream using
sweepback injectors at angle of attack

TRANSITIVE WIND TUNNELS
Transonic wind tunnel testing of air intake and
afterbody of double flux engine nacelle at high
subsonic Mach numbers and high Reynolds numbers
[ONERA-TP-943] A71-36021

TRANSITORS
Testing ASR/transponder for moving emergency
service vehicles on airfields during poor
visibility conditions A71-29553

Evaluation of airborne transponders used for air
traffic control facilities [AD-723028] A71-30523

TRANSPORT AIRCRAFT
STOL transport optimal airplane propulsion system
design, discussing thrust requirements,
performance, control, cruise functions, fuel
consumption and fan characteristics
[IAEA PAPER 71-744] A71-34225

Aircraft for international long haul
transportation, discussing criteria for
selection based on environmental, operational,
budgetary and policy considerations
A71-35208

Gulfstream 2 acoustics program for cabin noise
level reduction, compliance with FAA takeoff and
landing noise certification and structure
qualification against sonic fatigue
[IAEA PAPER 71-703] A71-35527

Large jet transport aircraft trailing vortices,
studying velocity fields, core diameters and
logarithmic variations of circulation
A71-35755

Trailing wake hazards of large transports in
takeoff and landing, examining configuration
stability of vortex pair in ground effect
A71-35757

Administrative techniques of cost/weight tradeoff
program for jet transport airplane
[SAE PAPER 899] A71-35812

Hyperersonic aircraft design usable as transport or
space shuttle, determining aerodynamic behavior in
viscous flow A71-36431

Analysis of physical and economic factors
pertaining to effective operation of vertical
takeoff and landing aircraft short range
commercial transportation - Vol. 1
[AE-326/021-VOL-1] A71-29825

Identification and analysis of potential sites for
vertical takeoff and landing aircraft facilities
in Great Britain - Vol. 2

Wind tunnel investigation of static longitudinal
aerodynamic characteristics of semispan swept
wing for STOL jet transport with deflected
thrust and boundary layer control
[NASA-TD-8-6256] A71-30762

Effect of wing-tip vortex wakes generated by large
jet transport aircraft on smaller airplanes
[NASA-TD-8-6256] A71-30764

SUBJECT INDEX

TIE DEPENDENCE
Velocity determination in hypersonic low density
wind tunnel based on high energy electron beam
produced nitrogen ions time of flight

TIME DIVISION MULTIPLEXING
Time division multiplexing system for ATS,
discussing surveillance geostationary satellite
feasibility, delta modulation for data
transmission and aircraft equipment

Bit and scanning field synchronizations of time
multiplex for air traffic control

TITANIUM ALLOYS
Environmental effects on SST structural materials
fatigue, discussing Ti alloys studies involving
temperature effects, crack propagation and
residual strength

Diffusion bonding as economical fabrication
process for aerospace applications involving Ti
alloys, emphasizing mechanical properties and
structural reliability improvement

TITRATION
Aircraft turbine oils acid number potentiometric
determination, discussing automatic titration
procedure and apparatus and solvents influence
on titration curve and inflection point

TORQUINAL STRESS
Constrained torsion of spar box fastened along
isolated parts of wing spar, noting structural
failure due to tangential stress distribution

TOUGHNESS
Damage tolerant aircraft structural materials
properties and residual strength, presenting
fracture test results on precracked panels
reinforced with crack stoppers

TRACKING (POSITION)
Prediction method for performance of total
pilot-vehicle system in turbulence with
application to tracking tasks

TRADEOFFS
Administrative techniques of cost/weight tradeoff
program for jet transport airplane

TRAINING DEVICES
Data acquisition system for 05-2a aircraft
training flight evaluations

TRAJECTORY ANALYSIS
Cost effective high speed projectile trajectory
plotting system for gun range instrumentation, applying to aircraft path
recording during automatic landing control

TRAJECTORY CONTROL
Soviet book on radio control of various flight
vehicles covering closed loop synthesis, missile
guidance, spacecraft trajectory correction and
air traffic control

TRANSFER FUNCTIONS
Computation of uncoupled vibrations of rotary
wings using transfer matrix method

TRANSLATIONAL MOTION
Gyrocompass stability during circulations and
arbitrary periodic maneuvers, taking into
account translational motion vertical inertia
component

TRANSITTER RECEIVERS
Airborne communications with AM/FM-150
transceiver in single radio, discussing extended
frequency coverage, multimode operation,
navigation and input/output provisions

TRANSITIVE COMPRESSORS
Multiple tone generation by axial flow transonic
compressors, considering shock waves production
and propagation associated with supersonic
elements of blading

TRANSITIVE FLIGHT
Cone-cylinder-cone missile type body in transonic
baffling environment determining static and
fluctuating wall pressure distribution

TRANSITIVE FLOW
Two dimensional steady viscous gas transonic flow
Navier-Stokes equations, establishing uniqueness of
solutions to boundary value problems

Mesh method for supercritical transonic flow
calculation with normal or oblique shock wave at
trailing edge

Small disturbance transonic flow potential
equations numerical solutions, using mixed
finite difference theory

Design and characteristics of quasi-steady devices
for simulation of high Reynolds number flows

TRANSITIVE SPEED
Jet penetration into Mach 2 airstream using
sweepback injectors at angle of attack

TRANSITIVE WIND TUNNELS
Transonic wind tunnel testing of air intake and
afterbody of double flux engine nacelle at high
subsonic Mach numbers and high Reynolds numbers

TRANSITORS
Testing ASR/transponder for moving emergency
service vehicles on airfields during poor
visibility conditions

Evaluation of airborne transponders used for air
traffic control facilities

TRANSPORT AIRCRAFT
STOL transport optimal airplane propulsion system
design, discussing thrust requirements,
performance, control, cruise functions, fuel
consumption and fan characteristics

Gulfstream 2 acoustics program for cabin noise
level reduction, compliance with FAA takeoff and
landing noise certification and structure
qualification against sonic fatigue

Large jet transport aircraft trailing vortices,
studying velocity fields, core diameters and
logarithmic variations of circulation

Trailing wake hazards of large transports in
takeoff and landing, examining configuration
stability of vortex pair in ground effect

Administrative techniques of cost/weight tradeoff
program for jet transport airplane

Hyperersonic aircraft design usable as transport or
space shuttle, determining aerodynamic behavior in
viscous flow

Analysis of physical and economic factors
pertaining to effective operation of vertical
takeoff and landing aircraft short range
commercial transportation - Vol. 1

Identification and analysis of potential sites for
vertical takeoff and landing aircraft facilities
in Great Britain - Vol. 2

Wind tunnel investigation of static longitudinal
aerodynamic characteristics of semispan swept
wing for STOL jet transport with deflected
thrust and boundary layer control

Effect of wing-tip vortex wakes generated by large
jet transport aircraft on smaller airplanes
Flight tests for evaluating effect of wing-tip vortex wake generated by large jet transports on smaller aircraft

Applications of supercritical airfoils to transport aircraft designs

Developing aircraft ride criteria and/or acceptable vibration levels and problems in measuring and recording low level vibration environment

Fatigue crack length relationship with aircraft inspection intervals and structural reinforcement, high strength materials, and aircraft usage effects

Transportation
Use of aerodynamic lift for application to high speed ground transportation by two dimensional airfoils

Analysis of transit access to Oakland International Airport, Oakland, California, and recommendations for improved service

Turbine Blades
Engine turbine blades aerodynamic vibration dampling calculation procedure

Pretwisted cantilever airfoil cross section turbine and compressor blades vibration natural frequencies and mode shapes

Dirichlet problem in hodograph plane of compressible fluid flow from aircraft, helicopter blades or turbine blade airfoils

Fan jet first stage turbine blade air cooling, describing design, heat transfer data, efficiency and temperature distribution

Siren wall in turbine axial stage due to nonuniform pressure fields behind blade cascades

Turbine Wheels
Linear radial loads effect on stress and strain of hyperboloidal rotor disk applied to aircraft engine compressors with two stream flow of working medium

Turbines
Parametric turbine vector diagram calculation for design of highly loaded multistage fan driven turbine

Turbocompressors
Gas turbine with high velocity combustor, pure impulse compressor and turbine and isothermal burner

Multiple tone generation by axial flow transonic compressors, considering shock waves production and propagation associated with supersonic elements of blading

Fundamentals of turbocompressor and turbofan noise and noise reduction possibilities

Turboprop Engines
Fan jet first stage turbine blade air cooling, describing design, heat transfer data, efficiency and temperature distribution

Design operating process of turbojet, turboprop, and turbofan aircraft engines

Gaseous fission measurements from jet engine afterburners over range of fuel-air ratios

Afterburning flame stabilization in turbofan engines

Fundamentals of turbocompressor and turbofan noise

Turbulent wakes
Gaseous fission measurements from jet engine afterburners over range of fuel-air ratios

Afterburning flame stabilization in turbofan engines

Parametric turbine vector diagram calculation for design of highly loaded multistage fan driven turbine

Fundamentals of turbocompressor and turbofan noise
Turning Flight

Approach guidance system for side-firing tactical aircraft

[AD-722412] 871-29708

Two Dimensional Flow

Detachment prediction in turbulent incompressible plane flows on thick bodies applied to wall with

[AGARD-CP-80-71-PT-2] A71-34189
disconnections and flat plate normal to wind.

Supersonic jet interaction with turbulent wake, calculating plane and axisymmetric flow behind body butt face.

[AGARD-CP-80-71-PT-1] A71-35630

Two dimensional steady viscous gas transonic flow

[AGARD-CP-80-71-PT-1] A71-35646

V/STOL aircraft

V/STOL aircraft with vectored thrust propulsion systems, noting weight and center of gravity-lift-thrust relationship changes effect on performance.

[AGARD-CP-80-71-PT-1] A71-35817

Hybrid V/STOL jet lift aircraft design, examining wing area-lift engine bypass ratio relation.

[AGARD-CP-80-71-PT-1] A71-36273

Operating costs and runway lengths for V/STOL in city and suburban short haul air transportation

[AGARD-CP-80-71-PT-1] A71-36347

Loews 9 by 15 foot V/STOL wind tunnel is return leg of supersonic wind tunnel

[AGARD-CP-80-71-PT-1] A71-30055

Terminal area studies with XC-142, XV-5, Do-31, and P-1127 aircraft to develop powered lift control techniques for instrument approach leg.

[AGARD-CP-80-71-PT-1] A71-30774

Engine dynamics requirements implied by thrust modulation control for VTOL aircraft

[AGARD-CP-80-71-PT-1] A71-31455

Vacuum Melting

Closed die forgings of vacuum remelted carbon and low alloy steels to improve transverse ductility and microcrackness for aircraft industry

[AGARD-CP-80-71-PT-1] A71-35336

Valves

Aircraft parts testing by WDT methods, considering ultrasonic system for valve defects and fluorescent particle system for crack detection

[AGARD-CP-80-71-PT-1] A71-37056

Uncoupled Modes

Computation of uncoupled vibrations of rotary wings using transfer matrix method

[AGARD-CP-80-71-PT-1] A71-29583

Two Dimensional Steady Viscous Gas Transonic Flow

Havner-Stokes equations, establishing uniqueness of solutions to boundary value problems

[AGARD-CP-80-71-PT-1] A71-35646

United States of America

Probable impact of future supersonic transport aircraft operations on noise environment around seven airports in US

[AGARD-CP-80-71-PT-1] A71-29777

Lower atmosphere wind shear determined for aircraft approach control from observations in different American sites

[AGARD-CP-80-71-PT-1] A71-30837

Units of Measurement

Development of noise measurement units for airport and aircraft noise reduction and psychoacoustic studies

[AGARD-CP-80-71-PT-1] A71-30786

Unsteady Flow

Stagnation pressure changes in unsteady flow downstream of turbineblade with fluctuating circulation related to vortex sheets

[AGARD-CP-80-71-PT-1] A71-35279

Numerical analysis of aerodynamic loads on wing and tail surfaces with oscillations in unsteady supersonic and subsonic flow including interference lift.

[AGARD-CP-80-71-PT-1] A71-29333

Aerodynamic load predicting for control surfaces in unsteady supersonic and subsonic flow

[AGARD-CP-80-71-PT-1] A71-29334

Wing interference lift line lattice simulation and application to aerodynamic loads on tandem wings in unsteady flow

[AGARD-CP-80-71-PT-1] A71-29336

Symposium on unsteady aerodynamic forces, loads, and configurations for aeroelastic analysis of interfering surfaces

[AGARD-CP-80-71-PT-1] A71-29338

Kinematics of unsteady airfoils on multiple lifting surfaces

[AGARD-CP-80-71-PT-1] A71-29339

Unsteady pressure measurements on harmonically oscillating swept wing with two control surfaces in incompressible flow

[AGARD-CP-80-71-PT-1] A71-29350

Ultrasonic Tests

Aircraft parts testing by WDT methods, considering ultrasonic system for valve defects and fluorescent particle system for crack detection

[AGARD-CP-80-71-PT-1] A71-37056

Ultrasonics

Boo temperature ultrasonic frequency fatigue behavior of Ni-base superalloy single crystals

[AGARD-CP-80-71-PT-1] A71-34939

Vacuum Melting

Closed die forgings of vacuum remelted carbon and low alloy steels to improve transverse ductility and microcrackness for aircraft industry

[AGARD-CP-80-71-PT-1] A71-35336

Variable Geometry Structures

Performance evaluation of variable geometry external fuel tank prototypes by static structural tests, wind tunnel tests and flight tests on P-1171 aircraft

[AGARD-CP-80-71-PT-1] A71-35533

Velocity Distribution

Large jet transport aircraft trailing vortices, studying velocity fields, core diameters and logarithmic variations of circulation

[AGARD-CP-80-71-PT-1] A71-35755

Velocity Measurement

Precision area navigation system, considering position and velocity continuous measurement in three dimensional space, system components and simulation program

[AGARD-CP-80-71-PT-1] A71-36516

Velocity determination in hypersonic low density wind tunnel based on high energy electron beam produced nitrogen ions time of flight

[AGARD-CP-80-71-PT-1] A71-38887

Vortex laser Doppler velocimeter system for aircraft wake turbulence velocity profile mapping, describing optical arrangements, back and forward scattering modes and prototype design

[AGARD-CP-80-71-PT-1] A71-35756

Vertical Flight

Vertical situation display concept for alleviating problems of inadequate guidance and display information for making steep approaches

[AGARD-CP-80-71-PT-1] A71-30770

Vertical Takeoff Aircraft

VTOL transport optimal airframe/propulsion systems design, discussing thrust requirements, performance, control, cruise functions, fuel consumption and fan characteristics

[AGARD-CP-80-71-PT-1] A71-36225

Low disk-loading proprotor application to propeller and fanjet STOL and fanjet VTOL short haul aircraft

[AGARD-CP-80-71-PT-1] A71-34801

Analysis of physical and economic factors pertaining to effective operation of vertical takeoff and landing aircraft short range commercial transportation - Vol. 1

[AGARD-CP-80-71-PT-1] A71-34801
Identification and analysis of potential sites for large scale 80S 1C digital navigation with standard design

Nonlinear elastic suspension springs with symmetrical hardening behavior for shock and vibration isolation of aerospace instruments and controls

Developing aircraft ride criteria and/or acceptable vibration levels and problems in measuring and recording low level vibration environment

Numerical analysis of directional control, rotary wing vibratory loads, lift sharing, and fuselage vibration and damping during helicopter maneuvers

Flight tests and simulation for determining effects of peripheral viewing looses on pilot performance during commercial aircraft landing

Viscous stresses distribution in isothermally incompressible turbulent boundary layer with positive pressure gradient by diffusers in open jet wind tunnel

Hyperbolic visco-inviscid internal flow field interaction with laminar boundary layer in circular ducts, using method of characteristics and implicit finite difference scheme

Hyperbolic aircraft design usable as transport or space shuttle, determining aerodynamic behavior in viscous flow

Holographic display for blind landing system with variable image perspective over wide field of view, using collimated or cylindrical laser beam

ESRO part of joint AEC communication experiment for L band satellite use, giving voice and data transmission and distance measurements tests results

Flow visualization and hot-wire measurements, showing vortex shedding association with turbulent air jet issuing from flat plate into cross wind

Jet penetration into Mach 2 airstream using sweepback injectors at angle of attack

Stagnation pressure changes in unsteady flow downstream of turbomachinery blades with fluctuating circulation related to vortex sheets

Two vortex model for downwash variations in supersonic flow past thin delta wing with separation at leading edges

Steady incompressible flow with potential vortex over flat surface under suction

Flow field induced by aircraft trailing vortices near ground during takeoff and landing, noting experimental departure from theory

Aircraft vortex wake turbulence including formation, disintegration, hazard reduction, instability and interactions with following vehicles

Jumbo jet trailing vortex mathematical model for studying effect on penetrating aircraft

Large jet transport aircraft trailing vortices, studying velocity fields, core diameters and logarithmic variations of circulation

Vortex laser Doppler velocimeter system for aircraft wake turbulence velocity profile mapping, describing optical arrangements, back and forward scattering modes and prototype design

Trailing wake hazards of large transports in takeoff and landing, examining configuration stability of vortex pair in ground effect

Two dimensional laminar incompressible fluid flow past flat plate at various angles of attack, studying vortex shedding characteristics

Helicopter rotor noise due to blade-vortex interaction, using linear gust model

Rotary wing downwash influence on fixed wing flow using magnetic induction vortex model

Wing tip vortex test demonstrating use of laser Doppler Velocimeter system for measuring gas velocities with high spatial and temporal resolution

Detachment prediction in turbulent incompressible plane flows on thick bodies applied to wall with disconnections and flat plate normal to wind

Cone-cylinder-cone missile type body in transonic buffetting environment determining static and fluctuating wall pressure distribution

Low-cost pilot indicator for midair collision avoidance

XB-70 aircraft for investigating and predicting clear air turbulence in stratosphere caused by mountain waves

Remotely piloted vehicles development and limitations, considering air superiority, weapons delivery, sensors and survivability

Chevron cutting and effects of braking on wear of aircraft tires

Lubrication by boundary, elastically hydrodynamic, and fluid films, wear due to fretting, erosion, scuffing, and pitting, and friction in aircraft

Antiwear property assessment of piston engine and aviation jet fuels under point contact conditions, recommending ball and cylinder test technique
WEATHER MODIFICATION

WEATHER MODIFICATION

A71-34447

WEATHER MODIFICATION

A71-36050

WEATHER MODIFICATION

A71-36756

WEIGHT ANALYSIS

Airborne display and electric management system, discussing weight reduction, protective function coordination, power quality, onboard maintenance, data processing and reliability

A71-36417

Aircraft loading system consisting of onboard weight and balance equipment and fully mechanized cargo pallet transfer, using computerized simulation model for parametric evaluation

[SAWE PAPER 909] A71-35811

Statistical analysis of error sources and magnitudes in Boeing 747 weight values obtained by onboard aircraft weighing system and by manual calculations

[SAWE PAPER 897] A71-35813

Boron-epoxy composite wing box beam design, describing preliminary weight estimation from layouts

[SAWE PAPER 891] A71-35815

Weight reduction potential of composite materials in aerospace structures, proposing weight estimation technique

[SAWE PAPER 887] A71-35819

Strut pressure and axle strain gage systems testing for balance and weighing onboard De Havilland C-7A aircraft

[SAWE PAPER 881] A71-35827

Wing group weight prediction for subsonic aircraft design, taking into account root bending moments due to lift

A71-35925

WEIGHT INDICATORS

Evaluating three component electronic wind tunnel balance installed in 3.5 by 5.0 ft subsonic tunnel

[AD-722571] A71-31400

WEIGHT MEASUREMENT

Aircraft weighing in place during maintenance operations, describing load cell equipped jacks design for time saving weight determination

[SAWE PAPER 899] A71-35814

STAB/BASS system aircraft weight and balance determination, discussing basic concepts, design requirements and applications

[SAWE PAPER 896] A71-35816

Mass and center of gravity determining system model, describing equipment, operation principle, calibration data and techniques accuracy and errors

[SAWE PAPER 879] A71-35820

Analytical weight determination of articulated shaft driven helicopter main rotor blades, presenting computer program

[SAWE PAPER 893] A71-35826

A71-36605

A71-35285

A71-35442

A71-30776

A71-30776

A71-30776

A71-30778

A71-30837

A71-31400

A71-32906

A71-32943

A71-30055

A71-31204

A71-30675

A71-29333

A71-29337

A71-35161

A71-35647

A71-29343

Subject Index

WIND SHEAR

Evaluating analytical models of turbulence having non-Gaussian gust distributions and effects of wind shear on aircraft operations

A71-30778

Lower atmosphere wind shear determined for aircraft approach control from observations in different American sites

A71-30837

WIND TUNNEL APPARATUS

Evaluating three component electronic wind tunnel balance installed in 3.5 by 5.0 ft subsonic tunnel

[AD-722571] A71-31400

WIND TUNNEL MODELS

Turbulent boundary layer over flat plate and compression corner models studied in hypersonic gas tunnel

[IC/71/11] A71-30747

WIND TUNNEL NOISES

Noiser and nozzle design of OHEBA/S4HA hypersonic wind tunnel for supersonic combustion ramjet tests

[OFFHA-TP-921] A71-36017

Integral equations of motion and momenta for hypervelocity wind tunnel nozzle design

[AD-722346] A71-29906

WIND TUNNEL STABILITY TESTS

Wind tunnel investigation of aerodynamic interference between two lifting surfaces in tandem

A71-34792

WING FLAP

Augmented ram wing vehicle performance and flow field for high speed ground transportation

A71-31204

WING LOADING

Bolt sensitivity of flat plates used as structural members in aircraft wings tested on load testing machine

[78-89] A71-30675

WING OSCILLATIONS

Numerical analysis of aerodynamic loads on wing and tail surfaces with oscillations in unsteady supersonic and subsonic flow including interference lift

[AGABD-CP-80-71-PT-1] A71-29333

Box collocation method for calculating aerodynamic loads on tandem delta wings with oscillations in supersonic flow

A71-29337

WING PANELS

Wing structural elements ballistic damage tolerance and residual fracture strength characteristics, discussing projectile velocity, impact angle and target thickness effects

A71-35161

Boron-epoxy composite wing box beam design, describing preliminary weight estimation from layouts

[SAWE PAPER 891] A71-35815

WING PROFILES

Laminar boundary layer on wing profiles and bodies of revolution, calculating flow characteristics based on integral momentum relation

A71-34240

Supersonic flow past V-shaped wings with leading edges, applying method of establishment to space variable for pressure distribution

A71-35647

V shaped conical wing in supersonic and hypersonic flow with shock attached to leading edge, investigating complex wave system with time dependent and analytical methods

A71-36339

Computer program used for design criteria of stall characteristics of straight wing aircraft

[NASA-CH-1646] A71-31154
SUBJECT INDEX

WING ROOTS
- Wing group weight prediction for subsonic aircraft design, taking into account root bending moments due to lift
 \(A71-35925 \)

WING SPAN
- Constrained torsion of spar box fastened along isolated parts of wing span, noting structural failure due to tangential stress distribution
 \(A71-35313 \)
- Hybrid V/STOL jet lift aircraft design, examining wing area-lift engine bypass ratios relation
 \([AIAA PAPER 71-767] \)
 \(A71-36273 \)

WING TIPS
- Wing tip vortex test demonstrating use of Laser Doppler Velocimeter system for measuring gas velocities with high spatial and temporal resolution
 \([NASA-CH-119804] \)
 \(N71-30278 \)

WING-FUSELAGE STORIES
- Procedures for calculating normal wash in nonplanar configurations and interference between wings and bodies
 \(N71-29340 \)

WINGS
- Fatigue crack initiation and growth and residual strength of F-100 wing, comparing service failure data with full scale fatigue test results
 \(A71-35159 \)
- Computer programs for evaluating subsonic flow over wing-tail, wings with folded tips, T tails, and cruciform tail surfaces
 \(N71-29345 \)
- Method for calculating flutter using interference aerodynamic forces between wing and tail
 \(N71-29346 \)
- Calculation of pressure distributions over wings with harmonic oscillating control surfaces using kernel function method
 \(N71-29347 \)
- Application of lifting surface theory to wing with control surfaces in unsteady subsonic flow
 \(N71-29348 \)
- Asymptotic expansion techniques to define pressure loading effects on wings with unbalanced control surfaces
 \(N71-29349 \)
- Computed aided design of wing structures and application of optimal law of material distribution
 \([AD-722303] \)
 \(N71-29657 \)

WIRING
- Computerized automatic control of aircraft electrical system using remote power controllers and multiplexed data bus for wiring reduction and reliability improvement
 \(A71-34700 \)
- High voltage DC electric power transmission systems with ground return, reducing aircraft wiring weight and energy dissipation
 \(A71-35771 \)
- Remote power controller as static circuit protection device for aircraft and spacecraft automatically controlled electrical wiring system, discussing performance improvement
 \(A71-35782 \)

WISCONSIN
- Investigation of Mississippi Valley Airways De Havilland DHC-6, N9565M crash at LaCrosse, Wisconsin Nov. 9, 1970
 \([NTSB-AAR-71-10] \)
 \(N71-29914 \)

X

X-RAY APPARATUS
- Airborne nucleonics equipment design for indicating helicopter lift capability using X-ray backscatter from Kr-85, temperature sensor, and digital computer
 \([SAE-805-1] \)
 \(N71-29215 \)

Y

YAW
- Total pressure, static pressure, surface shear stress, and yaw angle measurements of S curved ducted flow
 \([IC-71-10] \)
 \(N71-30264 \)
Typical Personal Author Index Listing

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Report Number</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBERTS, P. N.</td>
<td>Constrained torsion of an incompletely fastened spar box</td>
<td>A71-15313</td>
<td></td>
</tr>
<tr>
<td>ACKER, L. W.</td>
<td>Inlet noise suppressor performance with a turbojet engine as the noise source</td>
<td>[NASA-Th-6395]</td>
<td>N71-31096</td>
</tr>
<tr>
<td>ACDOCK, B. D.</td>
<td>Effective perceived noise level evaluated for STOL and other aircraft sounds. Final report</td>
<td>[VAR-70-5]</td>
<td>N71-31075</td>
</tr>
<tr>
<td>AKAMATSU, T.</td>
<td>Representation of a wing in the lifting line, application of the interaction calculations of two wings in tandem</td>
<td>A71-29336</td>
<td></td>
</tr>
<tr>
<td>ALBRECHT, J.</td>
<td>Potential flow solution for a STOL wing propulsion system</td>
<td>[NASA-Th-6394]</td>
<td>N71-29774</td>
</tr>
<tr>
<td>ALIBERT, B.</td>
<td>Calculation of the boundaries of the region of stable equilibrium of a rotor in pressurized gas bearings</td>
<td>[AD-722808]</td>
<td>N71-31213</td>
</tr>
<tr>
<td>ALLEGER, J.</td>
<td>Waves of inclined wedges in rarefied hypersonic flows</td>
<td>A71-36756</td>
<td></td>
</tr>
<tr>
<td>ALLAN, P. C.</td>
<td>Effect of thickness on the fracture toughness of 7075 aluminum in the T6 and T73 conditions</td>
<td>A71-35153</td>
<td></td>
</tr>
<tr>
<td>ALCONA, C.</td>
<td>A meter wave aircraft antenna for communication between Concorde and a satellite</td>
<td>A71-36514</td>
<td></td>
</tr>
<tr>
<td>ANDERSON, W. A.</td>
<td>Age of the RPV</td>
<td>A71-35899</td>
<td></td>
</tr>
<tr>
<td>ANDREWS, G. H.</td>
<td>Three-dimensional boundary layer on a segmented body at supersonic velocities</td>
<td>A71-35632</td>
<td></td>
</tr>
<tr>
<td>ANDREWS, W. H.</td>
<td>Aircraft response to the wing trailing vortices generated by large jet transports</td>
<td>N71-30765</td>
<td></td>
</tr>
<tr>
<td>ANGLIS, R. L.</td>
<td>Static force tests of a model of a twin-jet fighter airplane for angles of attack from minus 10 deg to 110 deg and sideslip angles from minus 40 deg to 40 deg</td>
<td>[NASA-Th-D-6425]</td>
<td>N71-31330</td>
</tr>
<tr>
<td>ANUSOVA, A. A.</td>
<td>Calculation of the interaction of a turbulent boundary layer with a supersonic outer flow behind a step</td>
<td>A71-35631</td>
<td></td>
</tr>
<tr>
<td>ARSTON, B. D.</td>
<td>Flight trials to discover whether peripheral vision is needed for landing</td>
<td>[NASA-TR-70205]</td>
<td>N71-29497</td>
</tr>
<tr>
<td>ARWOT, E.</td>
<td>Terms of commercial air traffic</td>
<td>A71-36962</td>
<td></td>
</tr>
<tr>
<td>ABDOLI, A. B.</td>
<td>Dual mode symmetrical high frequency antennas for airborne use</td>
<td>[AD-722736]</td>
<td>N71-29895</td>
</tr>
<tr>
<td>ASSELY, H.</td>
<td>Some considerations relative to the prediction of unsteady air loads on interfering surfaces</td>
<td>N71-29334</td>
<td></td>
</tr>
<tr>
<td>AYERS, D.</td>
<td>The new Finnish air traffic law</td>
<td>A71-36919</td>
<td></td>
</tr>
<tr>
<td>AYERS, R. G.</td>
<td>Application of advanced aerodynamics to future transport aircraft</td>
<td>N71-30769</td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Report Number</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADE, E.</td>
<td>Soft-ground arresting of civil aircraft</td>
<td>A71-35210</td>
<td></td>
</tr>
<tr>
<td>BAKER, D. E.</td>
<td>Power controllers for automatically controlled electrical systems</td>
<td>A71-35782</td>
<td></td>
</tr>
<tr>
<td>BARGOD, P.</td>
<td>The flow in 5 shaped ducts</td>
<td>[IC-71-10]</td>
<td>N71-30264</td>
</tr>
<tr>
<td>BARENBERG, H. R.</td>
<td>Handling qualities of light aircraft with advanced control systems and displays</td>
<td>N71-30771</td>
<td></td>
</tr>
<tr>
<td>BARNESWELL, R. W.</td>
<td>A time-dependent method for calculating supersonic angle-of-attack flow about axisymmetric blunt bodies with sharp shoulders and smooth nonsymmetric blunt bodies</td>
<td>[NASA-Th-D-6283]</td>
<td>N71-31207</td>
</tr>
</tbody>
</table>
PERSONAL AUTHOR INDEX

Chambers, R. M. Evaluation of measures of aircraft noise N71-30786
Charrat, A. P. Separation of a supersonic accelerated flow over notches A71-34898
Cherebin, A. Preliminary experiments in the air navigation aid satellite project A71-36509
Chestry, D. Trends in noise control for aircraft gas-turbine power plants N71-30785
Chibite, P. T. Status of engine rotor burst protection program for aircraft N71-30762
Chinuley, R. S. Aircraft automatic control systems - Methods of analysis and design A71-34473
Chou, J. A meter wave aircraft antenna for communication between Concorde and a satellite A71-36514
Cisar, E. Processing of information concerning license norms on the Flank 22 computer by the RENO-ABDIS system A71-36810
Clevenson, S. A. Preliminary study of effect of vibration on aircraft ride quality N71-30781
Coleman, G. T. Turbulent boundary layer studies in a hypersonic gas tunnel [FC/71/11] A71-30747
Collins, W. E2 fuel system investigation A71-29607
Cooper, R. B. The development of a three-sicron absolute main oil filter for the T53 gas turbine A71-35488
Corbin, R. F. Tapered roller bearings take off A71-35300
Cortes, G. Terms of commercial air traffic A71-36962
Cooke, R. H. An continuous wave Doppler system for aircraft collision hazard warning N71-30760
Coulter, R. J. Determining loadability through system simulation [SWEA PAPER 900] A71-35811
Covert, E. Subsonic static characteristics of slender wing configurations using a magnetic suspension and balance system [NASA-CR-1796] A71-29775
Covert, E. R. Sting-free drag measurements on ellipsoidal cylinders at transition Reynolds numbers A71-36037
Croston, H. J. Experimental and analytical investigation of fast normal shock position controls for a Mach 2.5
PERSONAL AUTHOR INDEX

F

FAYTH, L. E.
Heat sink capability of jet A fuel - Heat transfer and coking studies
[NASA-CR-72951] N71-31482

FATKOLI, R. B.
Influence of semifinished products protection technology on the mechanical properties of heat-resistant alloys
N71-36725

FEHR, C. E.
Inlet noise suppressor performance with a turbojet engine as the noise source
[NASA-TN-D-6395] N71-31096

FICHL, G. H.
Development of turbulence and wind shear models for simulator application
N71-30778

FILIDEN, A. H.
Learning to live with the OBABS

FISH, B. H.
[NASA-CR-119004] N71-30278

FISCHER, B. H.
A trailing vortex model and its effect on a penetrating aircraft
N71-35754

FOREHILL, A.
The room temperature fatigue behavior of nickel-base superalloy crystals at ultrasonic frequency
N71-34943

FOREHILL, B. J.
Analysis of experimental measurements of trailing vortex systems of large jet transport aircraft
N71-35755

FOREST, J. E.
Automatic control of aircraft electrical system reduces wiring and improves reliability
N71-34700

FOSTER, C. J.
Optical control of supersonic inlets to minimize unstarts
[NASA-TN-D-6408] N71-30072

FOSTER, D. H.
Statistical analysis of the fatigue characteristics of light alloys in order to facilitate a probability estimation of the strength of aircraft construction parts
N71-35456

FRANCIS, D. G.
New developments and applications of the subsonic doublet-lattice method for nonplanar configurations
N71-29340

FROHLO, V.
A precision area navigation system
[NASA-TN-D-6408] N71-34616

GILLIAM, G.
Subsonic static characteristics of slender wing configurations using a magnetic suspension and balance system
[NASA-CR-17986] N71-29775

GLATF, G.
Real-time display system for increased reconnaissance effectiveness
N71-35772

GLASS, D. V.
Modulation characteristics critical to frequency planning for the aeronautical services

GLOWACKI, W. J.
Aeroelastic design

H

HAYTH, A. L.

HEASTON, J. L.
A precision area navigation system

HEATH, A. L.

HEATON, J. L.

HENDERSON, W.

HERMANS, R. D.

HERZBERG, R.

HERSH, J. B.

HICKS, B. H.

HINDS, L. J.

HINDE, D. H.

HINDE, J. B.

HINDE, R. H.

HINTON, R. H.
GOEL, P. K.

AIAA PAPER 71-783

[AD-722365]

GOEL, P. K.

Assessment of the anti-wear property of fuels under point contact conditions

A71-34447

GOGETH, L. V.

Calculation of the interaction of a supersonic jet with a turbulent near wake behind a step

A71-35630

GOLDBRY, I. S.

Analytical methods for projected construction of wings

[AD-722303]

GONOR, A. L.

The conical wing in hypersonic flow

A71-36339

GOODMAN, T. E.

The vortex wake hazard of large transports in take-off and landing

A71-35757

GOSS, R. P.

Acoustics program for the Grumman Gulfstream II

AIAA PAPER 71-783

GRAEBN, D.

[AD-722773]

GRAEBN, T. J.

V/STOL airplanes with vectored thrust propulsion systems

SAE PAPER 894

GRAEBN, R.

A statistical analysis of the A-6A inertial navigation system

[ER-511]

GRAEBN, R. W.

Fire fighter's exposure study Final report, Jul. - Nov. 1970

[AD-722774]

GRAEBN, R. D.

Initiation and growth of fatigue cracks in and residual strength of the F-100 wing

A71-35159

GREGORY, R.

Increasing responsibility for skilled men

A71-35924

GROEBN, J.

Progress in reducing exhaust pollutants from jet aircraft

A71-30784

GROEBN, J. F.

Jet noise suppressor performance with a turbojet engine as the noise source

[NASA-TD-6395]

GRUBFLD, K. J.

Some aspects of the aerodynamics of STOL ports

A71-30776

GUISTE, M. A.

The art of selecting aircraft

A71-35208

HACHENF, L. S.

Radio control

A71-35403

HACKER, P. T.

Lightning induced voltages in aircraft electrical circuits

A71-30761

HAGE, R. E.

The evolution of the DC-10 wide-body tri-jet and its impact on air transportation

AIAA PAPER 71-780

HALL, A. M.

Status of research on runway roughness

A71-30766

HARKEL, P.

Some new results of flight dynamics. I

A71-36752

HARKEN, W.

Focus ASR - Problems and benefits

A71-36673

HARDRETF, R. P.

Environmental effects on fatigue of structural materials for a supersonic transport

A71-36993

HARRIS, A. L.

NOL hypervelocity wind tunnel. Report no. 1 - Aerodynamic design

[AD-722365]

HARRIS, R. G.

Future air traffic - A study of the terminal area

[NASA-CS-119267]

HARTMAN, W. J.

Guidance characteristics critical to frequency planning for the aeronautical services [ESSA-TK-ERI-IT-232]

A71-29555

HARVEY, J. K.

Flowfield produced by trailing vortices in the vicinity of the ground

A71-34900

HATFIELD, J. J.

Flight evaluation of a display for steep approach

A71-30770

HAYDEN, D.

Multiple tone generation by transonic compressors

A71-36497

HAWKINS, B. J.

The STAH/HASS system of determining aircraft weight and balance

SAE PAPER 896

HEDGREN, R. C.

Evaluation of IFR departure procedures, Albuquerque, N. Mex., runway 08 Final report

[NASA-CS-72951]

HENDERSON, R. L.

Heat sink capability of jet A fuel - Heat transfer and coking studies

[NASA-CS-72951]

HENDERSON, R. L.

Low speed wind tunnel investigation of a semispan STOL jet transport wing with deflected thrust and blowing boundary layer control

[NASA-TD-6256]

HENRY, J. C.

An approach guidance system for side-firing tactical aircraft

[AD-722412]

HERZEN, R.

Jet penetration into Mach 2 airstream using sweptback injectors at angle of attack

[NASA-TK-2319]

HESSE, R. D.

Vortex shedding from a turbulent jet in a cross-wind

A71-34659

HINWIT, B. L.

Unsteady airfoils for wings with control surfaces. Part 1 - Loading functions

A71-29348

Unsteady airfoils for wings with control surfaces. Part 2 - Calculation methods

A71-29349

HIBO, H.

Detachment in turbulent incompressible plane flows on thick bodies

A71-34189

HILL, R. L.

A small, radio-controlled aircraft as a platform for meteorological sensors

A71-35334

HOLLAND, A. R.

Movement of emergency vehicles in reduced visibility conditions. Report on ASRL/Transponder trials at Heathrow Airport, September 1970

A71-29553
HIBBS, T.
Air-cooling of a turbine blade
A71-35904

HIRSCH, R.
Studies and tests of a plane which absorbs strong wind gusts
[NASA-TP-F-13754] W71-30848

HODGES, J.
The design and test of an integrally armored cockpit
[AIAA PAPER 71-778] A71-35530

HOPKINS, L. G.
Investigation of measuring system requirements for instrument low visibility approach
[AD-722773] W71-30173

HOLDEN, J. D.
Preliminary investigation of diffuser wall bleed to control combustor inlet airflow distribution

HOLT, J.
A71-36301

HOLWACH, C. A.
Safety considerations for powered-lift STOL aircraft
A71-30773

HOLVORSON, P. A.
Operational aspects of V/STOL instrument approaches
A71-30774

HOLWICK, J. H.
Stagnation pressure changes in unsteady flow
A71-35279

HORNE, B. B.
Runway slipperiness
W71-30767

HUBBARD, H. H.
Trends in noise control for aircraft gas-turbine power plants
W71-30765

HUBBARD, R. W.
Modulation characteristics critical to frequency planning for the aeronautical services

HUMBREBERG, H.-B.
The significance of an airport for the economy of its environment
A71-34482

HUFFMAN, J. E.
Experimental and analytical investigation of subsonic longitudinal and lateral aerodynamic characteristics of slender sharp-edge 74 deg swept wings

HUDGENS, P. A.
Status of research on runway roughness
W71-30766

HYNEK, R. J.
4-D guidance of STOL aircraft
[AIAA PAPER 71-770] A71-35528

INCOCRE, T. P.
An investigation of the relationships between mountain-wave conditions and clear air turbulence encountered by the YD-70 airplane in the stratosphere

IWAS, R. C.
Safety considerations for powered-lift STOL aircraft
W71-30773

INSLENITRAH, H.
Dual mode symmetrical high frequency antennas for airborne use
[AD-722236] W71-29895

IVES, D. C.
Subcritical flows over two dimensional airfoils by a multistrip method of integral relations
A71-30656

JADA, T.
Hakata - Tokyo's new airport
A71-35997

JADE, H.
The significance of an airport for the economy of its environment
A71-34482

JAPF, P.
A comparison between planar and nonplanar free-flight data
W71-31107

JAGLON, J. J., JR.
Development and test of the explosive exit concept for civil transport aircraft
[FPA-AD-71-33] W71-31064

JARKH, F.
Potential determination of acid numbers in aircraft turbine oils
A71-36680

JARVIS, C. H.
Handling qualities of light aircraft with advanced control systems and displays
W71-30771

JENKINS, J. L., JR.
Analysis of some helicopter operating problems
W71-30775

JENSEN, J. E.
The ballistic damage characteristics and damage tolerance of wing structural elements
A71-35161

JENKES, J. W., JR.
Progress report on the NASA V-G/VGH general aviation program
W71-30782

JOHNSON, H. A.
The odyssey of diffusion bonding
[MSR PAPER AD-71-245] A71-36661

JOHNSON, H. L.
Lubrication, friction, and wear in aircraft

JOHNSON, H.
Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust
W71-36922

JONES, B. G.
A study of the local pressure field in turbulent shear flow and its relation to aerodynamic noise generation

JONES, R. H.
How the courts look at wake turbulence
A71-35387

JOYNER, U. T.
Effects of airplane operations on tire wear
W71-30768

JUDD, M.
Sting-free drag measurements on ellipsoidal cylinders at transition Reynolds numbers
A71-36037

JOHNSON, D. J.
Preliminary investigation of diffuser wall bleed to control combustor inlet airflow distribution

KALNAK, Z. F.
New developments and applications of the subsonic doublet-lattice method for nonplanar configurations
W71-29340

KALNYKOV, V. G.
Distribution of viscous stresses in an incompressible turbulent boundary layer
A71-34209

KARRMA, A.
Vertical and short takeoffs and landings of hybrid jet-lift airplanes
[AIAA PAPER 71-767] A71-36273

KASNOY, A. E.
Determination of the aerodynamic characteristics of an elastic swept wing in subsonic flow
[NASA-TP-F-13717] W71-30656

B-7
Thermal ground testing of Concorde and Veras or The computation of supersonic flow fields about testing of two integral weight and balance systems handling qualities of light aircraft with advanced laminar flows past a flat plate at various angles lubrication, friction, and wear in aircraft

Mechanisms of entrainment in turbulent wakes The development of a three-micron absolute main oil filter for the T53 gas turbine

A digital V-O-B navigation converter

Status of studies in sonic boom Concepts of fiber-resin composites

The application of Omega navigation to general aviation

Development in airborne navigation systems

Vortex shedding from a turbulent jet in a cross-wind

Subcritical flows over two dimensional airfoils by a multistrip method of integral relations

The effect of second order elastic terms in supersonic panel flutter of finite cylindrical shells

A small, radio-controlled aircraft as a platform for meteorological sensors

Aircraft automatic control systems - Methods of analysis and design

Section data for thin, highly cambered airfoils in incompressible flow

The development of a three-micron absolute main oil filter for the T53 gas turbine
Experimental and analytical investigation of fast
normal shock position controls for a Mach 2.5
RAPOSA, F. L.
Application of power conditioning to high-voltage dc electric power systems for flight vehicles
A71-35770

RAYMOND, R. A.
A queueing theory approach to communication satellite net work design
A71-35106

REDA, L.
Flow-field and performance study of an augmented ram-wing vehicle concept
A71-31204

REBOUX, J.
Coherence criteria for supersonic compressor tests
A71-35467

REDING, J. P.
Unsteady airfoil stall and stall flutter

REDK, D. L.
Design and weight aspects of advanced composites in complex fuselage structures
[SAGE REPORT 898] A71-35825

REICH, P. G.
Influence on land and airspace demands of control techniques in current use
A71-35371

REID, G. P.
Future air traffic - A study of the terminal area

REHBAKER, J.
Concorde and C.E.N. - Cooperation between firms and government offices or establishment in the flight test program - Certification flights
[AIAA PAPER 71-784] A71-35526

REYNOLDS, P. A.
The total in-flight simulator /TIFS/ - A new aircraft design tool
[AIAA PAPER 71-794] A71-35529

RICHTER, W. J.
Crack propagation in helicopter rotor blades
A71-35163

RICHARDS, R. R.
Evaluation of IFP departure procedures, Albuquerque, N. Mex., runway 08 Final report
[FAA-75-600-2] W71-29635

RICHARDS, R. W.
Atlanta's instant runway
A71-35349

RICHARDSO, R. H.
[FR-197242] W71-29762

RIGG, R.
Some experimental investigations on the multiple-body problem in supersonic flow
[DLR-PR-71-04] A71-30325

RINKE, H. D.
New navigation and traffic control systems
A71-35990

RIPPL, D. F.
Automatic control of aircraft electrical system reduces wiring and improves reliability
A71-34700

RIVLIN, E. P.
Computing method of estimating the strength of the jet vane of gas turbine installations under pulsed thermal conditions
A71-35455

ROBBY, A. L.
[AD-722427] W71-29660

ROBERTS, C. F.
A preliminary analysis of some observations of wind shear in the lowest 100 feet of the atmosphere for application to the problem of the control of aircraft on approach
A71-30837

ROBERTS, L. J.
The development of the BAC One-Eleven autopilot
A71-36672

ROBINSON, G. H.
Aircraft response to the wing trailing vortices generated by large jet transports
A71-30765

ROBINSON, W. F.
Area navigation
A71-36677

S

SABABOTY, R. I.
Investigation of aircraft structural panels under repeated static loads
A71-35312

SALMOS, E. P.
[AD-722855] W71-31286

SALMON, E. C.
Characteristics of satellite-to-aircraft links
A71-35097

SANDREI, R. B.
Flight investigation of installation effects on a plug nozzle installed on an underwing nacelle
[NASA CR-1229] W71-30283

SANDREI, R. W.
Application of the low disc-loading proprotor to a series of aircraft for the short-haul market
[NASA CR-1281] A71-38881

SAROLOVICH, G. S.
On estimating the aerodynamic damping of the vibrations in turbine vanes
A71-35023

SAYERS, R. B.
Flight evaluation of a display for steep approach
A71-30770

SCHREIB, R.
Subsonic unsteady airloads on multiple lifting surfaces
A71-29339

SCHREINER, G. W.
The administration of a cost/weight tradeoff program
[SAGE REPORT 899] A71-35812

SCHROERER, R. E.
Future air traffic - A study of the terminal area

SCHROEDER, H. B.
A review of the propagation work at BBS
A71-35237

SCHROEDER, H. B.
Studies of the lift problem for slender wings in supersonic flows
A71-36677

B-12
SCHOUTEN, J.
Individual flight program tests of notched cantilever beams for preliminary design of wing attachment of VPW 614
77-30675

SCHULZ, B.
Lockheed L-1011 - A new jumbo jet
A71-35995

SCHURING, J.
Mathematical model of external disturbances acting on an aircraft during an ILS approach and landing
[NASA-TP-195] N71-29496

SCOGGINS, J.
An investigation of the relationships between mountain-wave conditions and clear air turbulence encountered by the XB-70 airplane in the stratosphere
[NASA-CR-1878] N71-31357

SCHULZEN, W.
Some recent investigations on flutter in subsonic flow, caused by interference aerodynamic forces between wing and tail of a variable geometry aircraft
N71-29345

SCHUBNAG, G.
Some recent investigations on flutter in subsonic flow, caused by interference aerodynamic forces between wing and tail of a variable geometry aircraft
N71-29345

SCHUGGRIN, A. S.
Statistical analysis of the fatigue characteristics of light alloys in order to facilitate a probability estimation of the strength of aircraft construction parts
A71-35956

SHAPIRO, H. A.
Measurement of very small displacements using holographic interferometry
A71-35286

SHELBY, A. F.
A uniformly asymptotic solution for incompressible flow past thin sharp-edged aerofoils at zero incidence
A71-34674

SHERRY, J. D.
Three-dimensional boundary layer on a segmented body at supersonic velocities
A71-35632

SHENG, T. E.
Shock and vibration isolation using a nonlinear elastic suspension
A71-34890

SIDOROV, A. A.
On estimating the aerodynamic damping of the vibrations in turbine vanes
A71-35023

SIEGEL, L.
Laboratory development of selected systems in the Lockheed L-1011 Tristar
[AIAA PAPER 71-702] A71-35532

SMITH, C. E.
[FAA-MA-71-9] N71-29305

SMITH, C. B.
Safety in air transportation over the years /Eight Wings Club 'Sight' Lecture/
A71-36175

SNYDER, C. T.
Simulation studies for development of certification criteria applicable to SST takeoff
N71-30777

SNYDER, W. J.
Analysis of some helicopter operating problems
N71-30775

PRELIMINARY STUDY OF EFFECT OF VIBRATION ON AIRCRAFT RIDE QUALITY
N71-30781

SOLNADOW, V.
Holography and its application in aviation and cosmonautics
[SPPS-53420] N71-30361

Sonerglock, C. H.
A digital V-O-R navigation converter
A71-35789

Sosnitskii, S. P.
Study of the stability of a gyrohorizoncompass
A71-35604

Sotilm, C.
Using the ONERA/SNCA supersonic wind tunnel for supersonic combustion ramjet tests
[ONERA-TP-924] A71-36017

SPEAR nan, N. L.
Effects on some bluntness on the static aerodynamic characteristics of a cruciform wing missile at Mach numbers 1.50 to 2.86
N71-30813

SPER, T. K.
Formation flight technology
A71-35923

SPENCER, B. W.
[NASA-CR-119359] N71-31211

SQUIR, L. C.
Experimental results for waveriders in certain off-design conditions
A71-35280

STAATS, R. B.
Adverse effects of producing drone anti-submarine helicopters before completion of development and tests Department of the Navy, E-160877 - Report to Congress
N71-30301

STACCU, ST.
Comparative applications of a 'theoretical model' concerning the supersonic flow past a delta wing with flow separation at the leading edges
A71-34190

STEELE, J.
Calculation of the binary laminar boundary layer in the hypersonic stagnation point flow with temperature-dependent material parameters
A71-35422

STEFKOV, T.
Subsonic static characteristics of slender wing configurations using a magnetic suspension and balance system
[NASA-CR-1796] N71-29775

STEFFKOV, R. W.
Statistical analysis of the fatigue characteristics of light alloys in order to facilitate a probability estimation of the strength of aircraft construction parts
A71-35456

STEVenson, L. B.
A-10 guidance of STOL aircraft
[AIAA PAPER 71-770] A71-35528

STOCKMAN, J.
Study of visible exhaust smoke from aircraft jet engines Final report
[FAA-MA-71-28] A71-29307

STOLLEBERG, J.
Turbulent boundary layer studies in a hypersonic gun tunnel
[IC/71/141] N71-30747

SULZER, R. L.
[FAA-MA-71-19] N71-29305

Simulation study of chevron markings for areas adjacent to runway thresholds Interim report
B-13
Pressure measurements on an harmonically oscillating swept wing with two control surfaces in incompressible flow

S内的incorporating the anti-carry property of fuels under point contact conditions

Structural applications of high modulus graphite composites

Development of the fail-safe design features of the DC-10

Afterburners of modern jet engines

Gas turbine with a high velocity combustor
application of airline methods

WILSON, B. J.
An assessment of high-voltage dc electrical power in aircraft electrical systems

WILSON, C. L.
MSDS - An experimental 24-channel multispectral scanner system

WILSON, R. J.
Evaluation of effects of high-altitude turbulence encounters on the XB-70 airplane [NASA-TN-D-6457]

WILSON, T.
Dual mode symmetrical high frequency antenna for airborne use [AD-722736]

WOLF, K. G.
Testing aircraft parts by HDT methods

WOODCOCK, D. L.
A supersonic box collocation method for the calculation of unsteady airforces of tandem surfaces

WOODHEAD, B. W.
Airfield pavement systems

WOODMAN, J. F.
L-1011 flight test program [AIAA PAPER 71-789]

WORTHAN, R. H.
Airfield pavement systems

Y

YADAQ, K. L.
Approximate methods of constructing stream lines in meridional plane of blade nozzle annular cascades of steam and gas turbines in subsonic and supersonic flows

TAO, L. S.
The effect of second order elastic terms in supersonic panel flutter of finite cylindrical shells [AD-722447]

YFF, J.
T-tail aeroelastic analysis for Fokker F.28

YORK, R. J.
A supersonic box collocation method for the calculation of unsteady airforces of tandem surfaces

YU, J. C.
STOL passenger demand in underdeveloped areas

YUSKA, J. A.
Lewis 9- by 15-foot V/STOL wind tunnel [NASA-TN-X-2305]

Z

ZEITELIEFF, R. M.
MSDS - An experimental 24-channel multispectral scanner system

ZELSKOV, O. S.
Interaction between an underexpanded jet and an oncoming rated supersonic jet

ZELLER, J. B.
Optimal control of supersonic inlets to minimize unstarts [NASA-TN-D-6408]

ZIOLKOISKI, J.
Influence of loading by linear radial forces on the stress state of a circular disk with a hyperboloidal profile

ZLOCHVSKII, T. S.
Passenger plane power supply systems

ZUCKERMAN, B. D.
Investigation of glide-slope information rate requirements for a low-visibility aircraft landing [NASA-TN-X-2305]
Typical Contract Number Index Listing

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP 04/606/—14942</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>AP 33/615/—67-C-1157</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>AP 33/615/—67-C-1301</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>AP 33/615/—69-C-1494</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>AP 33/615/—71-C-1110</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>AP 44/620/—68-C-0010</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>AP 44/620/—70-C-0106</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>CPA-22—69-129</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>DA-31—124-AR/D/-471</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>DARCOA-68-0006</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>DOT-C-085-65</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>DOT-PAD69WA-2208</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>DOT-PAD70WA-2161</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>F19628-70-C-0271</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>F19628-70-C-0291</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>F19628-70-C-0291</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>F33615—69-C-1266</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>F33615—69-C-1904</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>F33615—70-C-1156</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>F33615—70-C-1715</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>PA—67—WA-1731</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>PA—67—N81—134</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>N00014—68-A-0091</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>N00014—70-C-0099</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>N00014—70-C-0215</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>RG6269—70-C-0314</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>NAS1—8389</td>
<td>AT 31-35529</td>
</tr>
<tr>
<td>NAS1—8423</td>
<td>AT 31-35529</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the IAA accession numbers appearing first. The accession number denotes the number by which the citation is identified in either the IAA or STAR section.
AERONAUTICAL ENGINEERING
A Special Bibliography (Supplement 10)

This special bibliography lists 413 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1971. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.
PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA deposits its technical documents and bibliographic tools in eleven Federal Regional Technical Report Centers located in the organizations listed below. Each center is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA documents for retention.

CALIFORNIA
University of California, Berkeley

COLORADO
University of Colorado, Boulder

DISTRICT OF COLUMBIA
Library of Congress

GEORGIA
Georgia Institute of Technology, Atlanta

ILLINOIS
The John Crerar Library, Chicago

MASSACHUSETTS
Massachusetts Institute of Technology, Cambridge

MISSOURI
Linda Hall Library, Kansas City

NEW YORK
Columbia University, New York

PENNSYLVANIA
Carnegie Library of Pittsburgh

TEXAS
Southern Methodist University, Dallas

WASHINGTON
University of Washington, Seattle

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries.

CALIFORNIA
Los Angeles Public Library
San Diego Public Library

COLORADO
Denver Public Library

CONNECTICUT
Hartford Public Library

DELAWARE
Wilmington Institute Free Library, Wilmington

MARYLAND
Enoch Pratt Free Library, Baltimore

MASSACHUSETTS
Boston Public Library

MICHIGAN
Detroit Public Library

MINNESOTA
Minneapolis Public Library
James Jerome Hill Reference Library, St Paul

MISSOURI
Kansas City Public Library
St Louis Public Library

NEW JERSEY
Trenton Public Library

NEW YORK
Brooklyn Public Library
Buffalo and Erie County Public Library
Rochester Public Library
New York Public Library

OHIO
Akron Public Library
Cincinnati Public Library
Cleveland Public Library
Dayton Public Library
Toledo Public Library

OKLAHOMA
Oklahoma County Libraries, Oklahoma City

TENNESSEE
Cossitt-Goodwin Libraries, Memphis

TEXAS
Dallas Public Library
Fort Worth Public Library

WASHINGTON
Seattle Public Library

WISCONSIN
Milwaukee Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 750 Third Avenue, New York, New York, 10017.

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the National Lending Library for Science and Technology, Boston Spa, Yorkshire, England. By virtue of arrangements other than with NASA, the National Lending Library also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols "#" and "*", from ESRO/ELDO Space Documentation Service, European Space Research Organization, 114, av de Neuilly, 92-Neuilly-sur-Seine, France.
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546