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APPLICATION OF QUADRATIC OPTIMIZATION TO SUPERSONIC INLET CONTROL 

ABSTRACT 

Bruce Lehtinen* and John R. Zener" 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 

This paper describes the application of linear 
stochastic optimal control theory t o  the design of 
the control system for  the air  intake ( i n l e t )  of a 

3 supersonic air-breathing propulsion system. The 
10 controls must maintain a stable in le t  shock posi- 

t ion  i n  the presence of random airflow disturbances 
and prevent in le t  unstart .  
time invariant control systems are developed. One 
i s  designed to  minimize a nonquadratic index, the 
expected frequency of inlet unstart, and the other 
i s  designed t o  minimize the mean square value of 
inlet shock motion. The quadratic equivalence 
principle is  used t o  obtain the best l inear  con- 
t r o l l e r  that  minimizes the nonquadratic performance 
index. The two systems are compared on the basis 
of unstart prevention, control e f for t  requirements, 
and sensi t ivi ty  t o  parameter variations. 
concluded that  while controls designed t o  minimize 
unstarts are desirable i n  that  the index minimized 
is  a physically meaningful quantity, computation 
time required is longer than for  the minimum mean 
square shock position approach. I n  addition, the 
simpler minimum mean square shock position solution 
produced expected unstart frequency figures which 
were not significantly worse than those of the non- 
quadratic solution. 

Two different l inear  

It is  

I I ~ R O D U C T I O N  

The purpose of t h i s  paper is  t o  study two ap- 
proaches to  supersonic inlet control system design. 
Both approaches are  s i m i l a r  i n  that they use opti- 
mal control theory, however each uses a different 
performance criterion. 
provide a more rat ional  and unified approach t o  in- 
l e t  control design. 

A supersonic in le t  is that portion of a supersonic 
propulsion system which decelerates air from 
supersonic velocity (ahead of the a i rc raf t )  t o  
subsonic velocity (a t  the entrance to  the com- 
pressor). This deceleration is  needed because 
present compressors require air  a t  subsonic ve- 
loci ty .  
sonic propulsion system. 
an in le t  on a subsonic a i rc raf t .  This is  because 
the dynamic head i s  large a t  high supersonic Mach 

The overall goal i s  t o  

An i n l e t  i s  a c r i t i c a l  par t  of a super- 
T h i s  i s  not the case for  

*Aerospace Engineer. 

numbers and may comprise a large percentage of the 
overall engine compression. For subsonic propul- 
sion systems, however, almost all the compression 
i s  done by the en'gine's compressor. To aid the 
supersonic in le t  i n  operating a t  peak efficiency 
i n  the face of varying flight conditions, certain 
variable geometry features, and associated con- 
t rols ,  are required. 

A typical axisymrnetric supersonic in le t  is shown 
i n  Fig. 1 i n  a n o d  operating configuration. A i r  
a t  supersonic velocity enters the i n l e t  past a weak 
oblique shock wave. It i s  compressed supersonical- 
l y  past a minimum area point, or throat,  up t o  the 
terminal normal shock. Thereafter, the flow i s  
subsonic up t o  the compressor face station. 

A stable operating condition for  the inlet i s  one 
i n  which the throat Mach number i s  greater than 
one and the normal shock i s  downstream of the 
throat. This is the so-called s tar ted condition. 
An upstream or  downstream flow disturbance may, 
however, cause the throat Mach number t o  drop t o  
one, or  it may cause the normal shock t o  move 
ahead of the throat.  When ei ther  of these occur, 
the i n l e t  unstarts and enters an undesirable, un- 
stable operating region (called unstart)  . 
During an unstart  a shock wave sweeps out of the 
throat and a strong shock wave forms ahead of the 
in le t .  The resul t  i s  a large increase i n  drag and 
a large decrease in the pressure recovered a t  the 
compressor face. In  addition there may exis t  an 
oscil latory flow pattern within the in le t .  A i r -  
craf t  performance under these conditions i s  poor 
and often unacceptable. Thus, unstart  i s  very w- 
de sirable.  

In  order t o  prevent unstart  and to  maintain the de- 
s i red operation of the in le t ,  two basic control 
modes are  required. The first, shown i n  Fig. 1, is  
a translating centerbody. A forward translation 
o f  the centerbody causes the throat area t o  in- 
crease. By varying the centerbody position, the 
throat area can be varied so that  the throat Mach 
number can be kept above one, even i f  the f ree  
stream Mach number decreases. The second manipu- 
la ted  variable i s  bypass door opening. Bypass 
doors are  controlled t o  dump excess air  i n  case a 

TM X-67905 



disturbance causes a pressure rise a t  the compres- 
sor face. By spi l l ing excess a i r ,  the pressure 
disturbance i s  prevented from pushing the normal 
shock forward ahead of the throat. 

F-rimary in l e t  disturbances can occur e i ther  up- 
stream o r  downstream of the in le t .  Upstream dis- 
turbances may resul t  from such things as shock 
waves from passing a i rc raf t  o r  atmospheric turbu- 
lence. Turbulence may consist of pressure, tem- 
perature or velocity (gusts) changes. Downstream 
disturbances may be due t o  changes in  engine a i r  
f l o w  demand which resul ts  from a p i lo t  induced 
thro t t le  change. Also aerodynamic noise may be 
generated by the compressor, o r  combustion noise 
may get fed back t o  the compressor face i n  duct 
burning fan type engines. The overall control de- 
sign goals are: (1) t o  keep the throat Mach nwn- 
ber and shock position as close as possible t o  
the i r  unstart limits. This maximizes efficiency. 
(2) t o  keep the deviations of throat Mach number 
and shock position small so as to  prevent unstart. 
(3) t o  design a control which produces desired re- 
sults while using a reasonable amount of control 
power. 

I1 PRESENT INLET CONTROL DESIGN TECHNIQUES 

Much of the work that has been done on in le t  con- 
t r o l  has been d v ted towards modelling and simu- 
la t ion.  W a l i t t f l y  developed a Helmholtz resonator 
model for  a mixed-compression inlet. 
derived a linearized, small  perturbation, high fre-  
quency model for  an axisymmetric inlet .  
developed a nonlinear, large perturbation, low fre-  
quency model. 
been used in  combination with t e s t  data t o  provide 
in le t  control models. 

Controls development includes work done by Chun and 
Burr(4) and Crosby, Neiner, and dole. (5) 
for  both of the aforementioned controls were ob- 
tained using frequency domain techniques. Barry(6) 
conducted a design study based on an expl ic i t  des- 
cription of i n l e t  disturbances. The disturbance he 
treated was atmospheric turbulence, described by 
experimentally determined power spectral densities 
and probability distributions. Barry's cr i ter ion 
for  evaluating in l e t  controls was the expected fre-  
quency of unstart. This criterion, borrowed from 
the f i e ld  of s t ructural  design, proved quite ap- 
plicable t o  in l e t  control and provided a meaningful 
cr i ter ion for  judging control effectiveness. 
Basically, it gives the designer a more rat ional  
basis (as opposed t o  frequency response methods) of 
judging in l e t  control systems, 

In  a previous work, (7) the authors extended Barry's 
work t o  the design of opt- in le t  controls which 
minimize the expected frequency of unstarts. This 
paper extends that work t o  a more r ea l i s t i c  case 
i n  which actuator dynamics and nonwhite disturb- 
ances are included, as well as a comparison of al- 
ternate performance indices. Using a linearized 
operating point model, the present study compares 
and contrasts controls resul t ing from the minimiza- 
tion of two performance indices. The first index 
i s  the mean square vdue  of shock position. The 
second i s  the expected frequency of in le t  unstarts 
(as  was used in  ref .  6 ) .  

Willoh(2) 

~ a y s ( 3 )  

A l l  of the above approaches have 

Designs 

The following sections of the paper are outlined 
as follows: Section I11 discusses the particular, 
somewhat res t r ic ted,  optimal control problem con- 
sidered. The next section i s  an outline of l inear  
quadratic optimal control and estimation theory 
and the application of t h i s  theory t o  nonquadratic 
performance indexes. Section V describes the 
computer algorithms used followed by section V I  i n  
which s ta te  variable in l e t  models and disturbance 
descriptions are presented. The results of a con- 
t r o l  study comparing and contrasting controllers 
for  each index are  presented i n  section V I I .  

111 OPTIMAL INLET CONTROL 

The problem considered i s  not the complete in l e t  
control problem with two degrees of control free- 
dom but rather i s  restr ic ted t o  single-input, 
single-output control. Tnis case i s  shown in  
Fig. 2 where the single control input is  bypass 
door c m a n d  and the one measurable output i s  
throat ex i t  s t a t i c  pressure (Pte). This is  a 
pressure measured jus t  downstream of the normal 
shock. The control i s  designed t o  take care of 
downstream disturbances only. Disturbances are 
considered t o  be random with a Gaussian probability 
distribution. 

In  Fig. 2, the Gf  s represent transfer functions for  
the system dynamics, linearized about an operating 
point. G C O ~ R ~  is the optimal controller, de- 
signed t o  control ys (shock position). Bote that 
ys cannot be direct ly  measured. Instead, the 
pressure Pte is used. Pte has been found t o  be 
related t o  shock position through shock position 
dynamics G S ~ C K .  The additional transfer func- 
tions on Fig. 2 represent bypass door dynamics 
GBPD and noise coloring GCOLOR. Noise coloring 
accounts for  the fact  that  the random disturbance 
a t  the compressor face is  not i n  general white 
noise. Also shown in  the figure i s  measurement 
noise on the signal Pte. 
i s  assumed white. 

A design constraint selected a t  the outset was that 
the control should be l inear  and time invariant. 
This i s  desirable f i r s t  of a l l  for  simplicity. 
Secondly, l inear  time invariant control provides 
consistency t o  the analysis (Gaussian signals 
through l inear  systems remain Gaussian). 
most important, l inear  optimal control theory re- 
sul ts  can be used. 

The f i r s t  of the design approaches taken i s  t o  
minimize a quadratic performance index. This index 
can be written as 

This measurement noise 

Also, and 

where the o2 terms are mean square values and k 
i s  a constant weighting parameter. Minimizing Jq 
minimizes the weighted sum of mean square shock 
position and bypass door command. The problem of 
minimizing J for  a l inear  system i s  a c lassical  
l inear  quadrafic problem. 

For the second approach a nonquadratic performance 
index was chosen t o  be minimized. This was given 
as 
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Jnq = A + b:b 

where 

Lambda is the expected frequency of unstarts, u 
the shock position tolerance, and uZ1 s are mean 
square values. 
tion and was used by Barry.(6) 
quadratic nature of Jnq the standard l inear  quad- 
r a t i c  resu l t s  cannot be used directly. 
paper a desired l inear  time invariant control mini- 
mizing Jnq w a s  found using the quadratic equiva- 
lence p i ciple. 
Skeltontgp and applied t o  launch booster control 
system design. 
cussed in  more de ta i l  i n  section IV. Quadratic 
equivalence allows use of the same computer pro- 
grams which are used in  solving the problem of 
minimizing J The resu l t  obtained is  the best 
l inear  contro?‘which causes the expected frequency 
of unstarts t o  be a minimum for  a given amount of 
control e f for t .  

I V  OpTIIvL4L CONTROL THEORY 

The approaches t o  the inlet control design problem 
just described make use of the known results of the 
l inear  stochastic optimal control and estimation 
problem (Bryson and Ho, ref .  8). 
solution can be summarized as follows: 

i s  

This i s  a c lass ic  exceedance equa- 
Due t o  the non- 

In  t h i s  

This technique was developed by 

Use of the principle w i l l  be dis- 

The problem and 

Given a time invariant plant described by 

k = A x + B u + h  (3) 

with measurement vector 

z = & + v  ( 4) 

and output vector 

y = cx (5) 

x is  the s ta te  vector, u the control vector and 
w and v axe white Gaussian plant and measurement 
noise vectors. Plant and measurement noise cor- 
re la t ion matrices are  given by 

} ( 6 )  
E(w(t)$(t + 7)) = Q ~ ( T )  

E(v(t)vT(t  + a)] = R~(T) 

The problem is  t o  minimize the quadratic perform- 
ance index 

J = E(1/2(xTQcx + 22Nu + uTPcu)) (7) 

Equations (3) t o  (7)  define the time invariant form 
of the l inear  stochastic optimal control and e s t i -  
mation problem. The solution i s  

u =  -K$ ( 8 )  

where the s ta te  estimate 2 is  generated by a 

Kalman f i l ter  whose d i f fe ren t ia l  equation i s  

4 = e + BU + I&(z - E?) 

X, = PG1(BTS + NT) 

(9  1 
Control gain matrix K, is 

(10 ) 

where S is the solution t o  the steady-state 
Riccati equation 

S(A - BP;W) + (A - BP;~NT)Ts - S(BP;~BT)S 

+ (Q, - NPG~NT) = o (11) 

$ = I.HTR-1 (12) 

Kalman fi l ter  gains axe given by 

where P i s  the covariance of the estimation error 
and i s  the solution t o  

T 1  AP + PA’ - P(H R- H)P + WT = 0 (13) 

I f  the error  i n  the estimate i s  defined as 

e G 2 - x  (14) 

then the covariance matrices of x, 2, and e can 
be related by 

X = E(xxT) = E((2 - e ) ( a  - e)T)  = ? + P (15) 

As shown i n  Bryson, the covariance of 9, 2, i s  
given by the solution t o  the following Lyapunov 
equation 

(A - BK&? + ?(A - BQ)T + P(HTR-~H)P = o (16) 
By adding Eqs. (13) and (16), a similar Lyapunov 
equation, 

(A - BKc)X + X(A - B&)T + (Bq)P  + P(B&)T 

+ mDT = 0 (17) 

is obtained, which can be solved for  the state 
covariance matrix X. Control gains Q and 
Kalman f i l t e r  gains K, define the optimal con- 
t ro l le r .  The s ta te  covariance matrix X contains 
mean square s t a t e  information, which i s  needed for  
overall system evaluation. 

Inlet Problem - Quadratic Performance Index 

Turning now t o  the par t icular  case of interest ,  the 
in le t  problem, the f llowing scalar quantities are 
defined: u = ub, w = ww, and y = ys. For the 
quadratic problem, it i s  desired that  Jq(eq. (1)) 
be minimized. It i s  a simple matter to  write Jq 
in  form of the general quadratic index of Eq. (7 ) .  
Since 

A 8 n 

u2 = E ( 6 )  = E(xT(CTC)x) 
Y s  

and 
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mZb = E I ~ ) ,  se t t ing  
-l 

(188) 
Qc = CTC 

N = O  

Pc = k 

allows the quadratic inlet problem t o  be solved 
using the solution given by Eqs. (8) to  (17). 

Inlet Eroblem - Nonquadratic Performance Index 

Whereas the quadratic case of minimizing shock 
position can be solved i n  a s t ra ight  forward 
manner, minimizing 
additional considerations. In t h i s  paper the quad- 
r a t i c  equivalence principle w i l l  be used t o  convert 
the nonquadratic problem into an equivalent quad- 
r a t i c  one. For a discussion of quadratic equiva- 
lence, the reader i s  referred t o  Ref. 9. 

The necessary condition for  existence of a s ta-  
tionary point of Jnq i s  that  6(Jnq) = 0. Thus 
Eq. (2) beccrmes 

Jnq (eq. (2)) requires some 

Expanding Eq. (19) i n  terms of cr2 a2 and o2 
one obtains Ys’ 3s’ Ub’ 

where parameters W l  and W2 are given by 

The quadratic equivalence principle s ta tes  that two 
performance indices (one quadratic, one nonquad- 
ra t ic )  are  equivalent i f  the i r  f i r s t  variations are  
equal. 
t r o l  designed via  quadratic equivalence is  the best 
l inear  control that minimizes the nonquadratic per- 
formance index. 

In order t o  use the quadratic equivalence principle 
in  the case under discussion, the variation of the 
quadratic performance index, J (eq. (7)),  i s  set  
equal t o  zero, giving: 

This leads t o  the conclusion that  the con- 

6(E{xTQCx)) + 26(E{xTNu]) + S(E(uTPcu)) = 0 (22) 

T o  determine the conditions under which 
6(Jnq), it is necessary t o  expand Eq. (20) i n  
terms of expected values. 
cmb, uBs 

6(J)  = 

Since 9, = CAx + CBub + 
can be written as  

= E[$$s) = E(CAx + CBUb f CDww)T (CAX 
OY 

+ CBUb + CDW,)) (23) 

But C.D must equal zero else  white noise ww 
would feed through t o  output ys such tha t  a2 
would be in f in i t e  (making minimization of Jn2 
meaningless). This i s  equivalent t o  saying that 
the t ransfer  function relat ing ww t o  ys must 
h2ye mQre poles than zeros. Expanding (23), using 

from Eq. (18), then substituting for  u : ~  and 
i n  Eq. (20) and collecting terms, results i n  

Now compare Eq. (24), term by term, t o  Eq. (22). 
Solving the quadratic problem with 

\ 

Q~ = ATCTCA + wlcTc 
T T  N = A C C B  

pC = BTCTCB + w2 , J 
gives the desired l inear  controller (Kalman f i l t e r  
plus s ta te  estimate feedback) with one additional 
stipulation: A t  the optimum, Eqs. (21) must be 
sat isf ied.  Since parameters W l  and W2 are 
functions of mean square quantities which are in 
turn functions of the optimal control, an i tera-  
t ive  procedure is  dictated. That is, select trial 
values of W l  and W2 and solve the quadratic 
problem using weighting matrices calculated using 
Eqs. (25). Then using the quadratic solution ( i n  
particular, X, calculated from eq. (17)) ,  new 
values of W1 and W2 can be calculated. I f  
these calculated values d i f fe r  from the trial val- 
ues, a new trial pair  i s  selected and the quad- 
r a t i c  problem resolved. Particular i t e ra t ive  tech- 
niques are discussed in  Ref. 9 .  For the resul ts  t o  
be presented i n  th i s  paper, however, simply re- 
running the quadratic problem for  a set  of (Wl,W2) 
pairs  proved adequate. 

One additional computation is  required t o  calcu- 
l a t e  a2 and o2 from X, the s ta te  covariance 
matrix %ich i s  o%put from the quadratic problem. 
Since ys i s  a scalar it can be easi ly  shown that 

u2 = CXCT 
YS 

and 

o? = E(+ +T) = CAXATCT - 2CA(X - P)I$BTCT 
s s  ys 

+ CBQ(X - P)$BTCT (27) 

Also,  the required mean square control e f for t  can 
be expressed as 

o2 = KJX - P ) e  
ub 
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This completes the formulation of the quadratic an2 
nonquadratic i n l e t  problems. 
discusses the computer algorithms used. 

V COMPUTATION 

The f i r s t  step i n  the computation procedure was t o  
solve the estimation problem, yielding a se t  of 
Kalman f i l t e r  gains &. This step i s  common t o  
both the quadratic and nonquadratic problems, as 
both use the same Kalman f i l t e r  t o  generate the re- 
quired s t a t e  estimates. 

The nonquadratic problem was handled by solving the 
equivalent quadratic problem for  a number of trial 
( W 1 , W z )  pairs. 
problem Kc was used with the previously de- 
termined to  compute the mea re values of the 
s ta te  vector. From this ,  u ~ ~ ~ ~ ~ ,  and u i b  were 
calculated. For a range of k 's ,  Jnq, A, Wl, and 
W2 were then calculated. All these data were 
scanned off-line t o  determine optimum points. 
was done by f i r s t  finding points of minimum 
for  each value of k. A s  a check, an alternate 
method was  used. 
stant k where the assumed W l  was sufficiently 
close t o  the calculated Wl and the assumed W2 
was close t o  the calculated W2. The accuracy with 
which the W 1  and W2 equations (eqs. (21)) were 
sat isf ied was a function of the number of t r ia l  
pairs (W1,Wz). 
accurately required more pairs. The quadratic 
problem was solved l ike  the nonquadratic problem 
except only one control problem solution was re- 
quired (for  a given value of 

The two major subroutines used were One for  the 
steady-state Riccati equation and one for  the 
s teaw-state  covariance matrix (Lyapunov) equa- 
t ion.  The steady-state Riccati equation subroutine 
used the negative exponential method. (10) 
state  covariance matrix equation (eq. ( 1 7 ) )  was 
solved by transforming it  into a s e t  of n(n f 1 /2 
l inear  equations. The solution method chosen(llj 
was onl: one of a number of possible a l ternate  
methods fo r  solving the Lyapunov-equation. 

V I  TRANSFER FUNCTIONS AND STATE VARIABLE MODEL 

Table I shows the various transfer functions re- 
quired t o  describe the i n l e t  as shown i n  Fig. 2. 
%%ET and GSHOCK transfer functions were 
obtained by curve f i t t i n g  unpublished NASA data. 
The data were taken i n  wind tunnel t e s t s  on the 
NASA 40/60 axisymmetric in le t .  Data for  GBPD 
appear i n  Ref. 12 .  Note that %&ET and GSHOCK 
contain dead times. These dead times were ap- 
proximated by Pade approximations i n  order to  ob- 
ta in  a f i n i t e  s ta te  representation. The last  i t e m  
i n  the table, GCOLOR, represents the available 
knowledge concerning the compressor face disturb- 
ance. For example, if the disturbance were gener- 
ated a t  the upstream end, G C O L ~ R  would serve t o  
model the spectrum of atmospheric turbulence. 
However, f o r  the downstream disturbance, the pole 
zero locations sham were chosen so that the color- 
ed disturbance i s  r ich  at low frequkncy (approxi- 
mating a step change in  engine speed), moderate a t  
mid-frequencies (approximating combustion noise), 
and then cut off at  high frequency. The disturb- 

The next section 

The solution t o  each quadratic 

This 
Jnq 

This was t o  find points for  con- 

That is, finding the optimum more 

k) . 

The 

ance spectrum of the output of th i s  coloring c i r -  
cuit  i s  arbi t rary but believed t o  be typical  of 
that  existing at an engine compressor face. 

Table I1 contains the necessary matrices which are 
used in the s ta te  variable description. These 
matrices were obtained using the transfer functions 
of table I. It can be seen i n  the A matrix that  
the f i r s t  two s ta tes  represent shock motion and the 
next four states represent inlet dynamics. The 
next two s ta tes  are the noise coloring and the last  
two the bypass door dynamics, 
ment noise psd (r) was chosen from experience t o  
approximate the level  of noise on the throat ex i t  
s t a t i c  throat signal (Pte) found in wind tunnel 
tes t s .  The psd of the white noise signal which 
drives the coloring c i rcu i t  (9) is a l s o  arbi t rary 
but was chosen so  that the rms value of wd i s  
reasonable (0.168 kg/sec) compared t o  a nominal in- 
l e t  through f l o w  of 16.8 kg/sec. 

V I 1  RESULTS 

As a basis for  comparing both types of control, 
(mean time between unstarts' was chosen as most 
representative of overall  system performance. 
Since, in  the performance index, the control vari- 
able was also weighted, resul ts  are shown with 

In Fig 3, !y i s  plotted as a function of am with a 
(shock position tolerance) as the parameter. The 
sol id  curves are for  the quadratic case, and the 
dotted curves are for  the nonquadratic. Both de- 
signs use identical  Kalman f i l t e r s .  The study used 
only one Kalman f i l t e r ,  since only one Q/R ra t io  
was considered. 

The most significant point in  Fig. 3 i s  that  
i s  very sensitive t o  a. The value of A - l  in- 
creases with both a and u . For each case, 
each value of u correspoas t o  a unique set  of 
control gains (a, independent of a. 
parent i n  Fig. 3 that both cases are quite s i m i l a r  
in  the i r  a b i l i t y  t o  prevent unstarts for  a given 
value of control effor t .  The two curves for  the 
noquadratic case show that t h i s  control i s  only 
s l ight ly  be t te r  than quadratic control. The basic 
difference between the two cases i s  that i n  the 
nonquadratic case a$, i s  weighted i n  addition t o  

For each value of a, A-1 i s  bounded, for  both 
large and small1 values of is%. The system be- 
comes open loop as 0% goes t o  zero. The open 
loop values of A - l  
because they are  so small (for example, the open 
loop value of A-1 i s  1.5xl.O-* hours for  a = 
3.44 cm). As  u goes t o  infinity,  for  each 
value of a, A-l%doesn't go t o  inf in i ty  (as it 
would were there no measurement noise), but instead 
reaches a l i m i t .  The l imiting values of A - 1  
could not be conveniently computed, so are not 
shown on Fig. 3. The best  that  the control can do 
for  large x (not 
x, i t s e l f )  t o  zero. 

Of the many physical constraints present i n  the in- 
l e t  control problem, the constraint on awb i s  
most important. This i s  because the value of 
uwb dictates  the capacity of the bypass doors. 

The value of measure- 

(by-pass door flow) as a parameter. 

A-1 

It i s  ap- 

02 Ys '  

could not be shown on Fig. 3 

uwb i s  to  drive the estimate of 
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This, i n  turn, determines the size of the bypass 
door actuator. A pract ical  question is, how large 
can u be without incurring saturation on the 
bypassToors7 

Once the actuator i s  selected, the other con- 
s t ra in ts  must be considered. For the actuator used 
i n  these designs (described i n  ref. 1 2 )  there exis t  
hard limits on bypass door velocity and acceler- 
ation. Thus, as an additional check, rms bypass 
door acceleration, position, and velocity were 
calculated. In determining how large various cs 
values can be without incurring saturation, the 
following rule-of-thumb was used: 
u 
question. 
30 l i m i t  i s  quite small, it i s  then unlikely that 
saturation w i l l  occur. For the quadratic case the 
use of the limits i s  i l lus t ra ted  as  follows, using 
l i m i t  data from Ref. 12. 

make the three 
value l e s s  than or equal t o  the limit value i n  

Since the probability of' exceeding the 

Three c r i t i c a l  values of aW are shown on Fig. 3. 
Point C i s  the value of rms 8ypass door flow a t  
which the rms bypass door position i s  equal t o  one 
th i rd  of i ts  maximum ( f a  open) d u e .  
other constraints existed, feasible optimal con- 
t ro l l e r s  would be all those producing rms bypass 
door f l o w  ra tes  l e s s  than or equal t o  5.6 kg/sec 
(point C ) .  However, when velocity and accelera- 
tion constraints on the bypass doors are  consider- 
ed, the only feasible controllers are those which 
have r m s  bypass door flow ra tes  l e s s  than or equal 
t o  0.091 kg/sec (point A). Point A indicates the 
value of 
for which the r m  bypass door acceleration is  
equal t o  one-third of i t s  hard l imit  (maximum) 
value. 
between points A and C, thus it is not the deter- 
mining factor  i n  controller selection. 
general approach t o  the actuator saturation problem 
would have been t o  weigh, i n  the performance index, 
i n  addition t o  bypass door input, bypass door f l o w  
ra te  and ra te  of change of flow ra te  (both of which 
are  s ta te  variables). This, however, was not done 
i n  t h i s  study. 

Controls are a lso compared on a closed loop fre-  
quency response basis. 
frequency responses for shock-position-to- 
compressor face flow disturbance. Note again the 
similarity between quadratic and nonquadratic de- 
signs. The fac t  that the colored noise wa had an 
appreciable amplitude i n  the mid frequency range 
caused the closed loop t o  stay under the open loop 
un t i l  about 70 Hz. Zero frequency disturbances are 
attenuated by about two orders of magnitude. 
ferring t o  Fig. 3, for the levels  of control e f for t  
selected, it can be seen that  s m a l l  changes i n  the 
frequency response magnitude (f ig .  4) correspond t o  
large changes i n  A-1. This again demonstrates the 
diff icul ty  in  using A alone as the performance 
cr i ter ion - it i s  very sensitive t o  small changes 
in  controller parameters. 

I n  addition t o  closed loop analyses, the Kalman 
filter-plus-control gain combinations were examined 
as conventional controllers. Figure 5 shows the 
open loop frequency response o f  bypass door com- 
mand voltage to a change i n  throat ex i t  s t a t i c  
pressure ( t ransfer  function G C O ~ R O L  i n  f ig .  2).  

If no 

urn (and corresponding optimal controller) 

Note that  the velocity l imit  (point B) l i e s  

A more 

Figure 4 shows closed loop 

Re- 

This corresponds t o  the feedback compensator of 
c lass ical  control design. Again, quadratic de- 
signs are  seen t o  be very similar t o  nonquadratic 
designs ( fo r  the same value of rms bypass flow). It 
should be noted here that the in le t  i s  uncontrolla- 
ble, but that the uncontrollability creates no 
problem with any of the computer algorithms. In  
particular, it can be seen i n  table I that the 500 
rad/sec pole i n  GSHOCK is uncontrollable, as are 
the two noise coloring poles. 
the uncontrp;llability .- creates no problems. 

The controller represented i n  Fig. 5 is  tenth 
order. 
more complex than desired, simplification techni- 
ques were investigated. One method of simplifica- 
tion would be t o  curve f i t  the data on Fig. 5 with 
a model of desired order. 
simplification would be t o  apply a general simpli- 
f icat ion technique (for example, as shown i n  
ref .  13) t o  the controller. For t h i s  problem, it 
turned out that  basic simplifications could be 
made jus t  by examining the controller root locus. 
Two pole zero cancellations and one near cancella- 
t ion can be seen on Fig. 6. Figure 6 was plotted 
as  a root locus of  the controllers for the quad- 
r a t i c  case. 
of (A - B q  - K,H) and zeros of &(SI - (A - B q  - 
the ten poles and nine zeros shown, three cancel- 
la t ions occur. In  particular, the two thousand 
rad/sec noise coloring pole is  almost cancelled 
in  addition t o  the 000 rad/sec and 500 rad/sec 
shock position poles which are exactly cancelled. 
Thus, the controller can be implemented as a 6th/ 
7th order system. I t ' s  possible, of course, that  
further simplifications could be made and resul ts  
of the simplifications evaluated by recomputing Jq. 

V I 1 1  CONCLUSIONS 

It was found that  through the use of the quadratic 
equivalence principle, a control was designed which 
minimized a physically meaningful performance index. 
The control system resulting is the best l inear  
control which minimizes the nonquadratic index. 
The par t icular  nonquadratic index used was quite 
sensitive t o  shock position tolerance. It was 
found that using a quadratic index (minimizing 
shock position deviation) gave resul ts  very simi- 
lar t o  the nonquadratic resul ts .  Since the quad- 
r a t i c  approach requires only one computation of the 
Riccati equation for each controller, while the 
nonquadratic requires several, the  simpler quad- 
r a t i c  approach may s t i l l  be more at t ract ive.  
the example in  th i s  study was a single-input, 
single-output case, the methods could be extended 
t o  the more r ea l i s t i c  inlet problem, including 
atmospheric turbulence disturbance, centerbody 
actuation for  throat Mach number control, and com- 
pressor face o r  other additional pressure measure- 
ment s . 
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Figure 4. - Closed loop frequency responses, quadratic and nonquadrafic 
cases, shock posit ion to compressor face flow disturbance. 
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Figure 5. - Contro l ler  frequency responses, quadratic, and non-  
quadratic cases, bypass door command voltage to th roa t  exit 
static pressure. 
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