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ABSTRACT

A computerized analysis procedure, based on a control
theoretic model of the human pilot, 1s used to evaluate display
requlirements for longitudinal control in the landing approach.

The display analyzed employed a digitally generated, per-
spective runway image with a superimposed artificial horizon for
pltch indication. This display is being studied in an experimental
program at Ames Research Center. System performance measures are
obtained for the approach phase of a light aircraft and a DC-8;
predictions are made as to the effects of several display modifi-
cations. It 1is found that augmenting the basic display with glide
slope reference bars and a velocity aim point yields adequate per-
formance in calm alr. Under moderate turbulence, the augmented
display appears to be adequate for a DC-8 approach but not for a
light ailrcraft.

In order to adequately reflect the nature of the approach
task, the optimal-control model of the pllot was extended to
include time-varying effects and visual/indilfference thresholds.
Model results are compared with data obtained 1n Ames' experimental
program. The comparison affirms the validity of the pilot model
and demonstrates 1ts utility as a display evaluation tool.

i1



TABLE OF CONTENTS

Section P#ge
1. INTRODUCTION. . +v + v ¢ o o o o o s o o o o s o s o 1

2. THE PILOT-VEHICLE MODEL . . .« . ¢ « ¢ 4 & o o & « o 7

Vehicle Dynamics and Control Task . . . . . « « .+ & 7
Pllot Limitations . . . ¢« + ¢« ¢ ¢ ¢« ¢« ¢« 4 o o o o o 11
The Optimal Control Solution. . . . . . . . « . . . 15
Model Outputs for Display Evaluation. . . . . . . . 19

3. DISPLAY EVALUATION. . &+ & & v o o o o o o o o o« & o« 23
Vehicle Dynamics and Display Configuration. . . . . 23
Model Parameters. . « o« « o« « o o o o o« o« o« o« o« « o 28
Experimental and Predicted Results. . . . . . . . . 33

L, CONCLUDING REMARKS. . & ¢ ¢ ¢ ¢ o o o o o o o o o = 59

5. REFERENCES. ¢ ¢ ¢ ¢ ¢ o o o o s o o o o o o o o« o = 63
Appendix

A OPTIMIZATION WITH CONSTANT INPUT DISTURBANCES . . . 65

Problem Formulation . . . . . +« +« &« « ¢ « « « .« « . 65

Problem Solution. . . . +« v & v ¢ 4« +« « 4« + « « . . 66

Properties of Solution. . . . . . . . . . < .« . . . €9

B OPTIMIZATION WITH TIME-VARYING OBSERVATION NOISE. . 73
Problem Formulatlion . . « ¢« +« ¢ ¢ ¢ o« « o « o« o« « « 13
Problem Solution. .« « v « « « ¢ ¢ « 4+ « « & « « « o TH

C EFFECTS OF MEAN DISTURBANCES ON SYSTEM PERFORMANCE. 79
System ErPPor. . . « . v ¢ « o « o o + o « « + + « . . 80
State Estimate. . . + ¢« « ¢ v « ¢ « 4 4 4 e« . .« . 81
System State. . . . ¢« ¢ 4 4 4 e e e 4 e e e . . . . 82

D SYSTEM MODIFICATIONS FOR THRESHOLD CONSTRAINTS. . . 87

Statistical Linearization . . . . . +. +« ¢« « .+ . . . B8

o)

iii



Filgure

LIST OF ILLUSTRATIONS

Control Theoretic Model of Optimal Human Behavior.

Flight Path Geometry . . . . . . .

Augmented Plctorlal Dilsplay for Approach to Landing
Showling Glide-Path Reference Bars and Velocity Vector

Symbol X . & . ¢ 4 4 4 e e e e e e e e e

Predicted Performance: No Display Augmentation, No
Turbulence . . . ¢ ¢ ¢ v ¢ o o & o o o o« 4 . W .

Predicted Performance: Glide Path Reference Bars
Augmentation, No Turbulence. . . . . + « « « + o« .

Predicted Performance: Reference Bar and Velocity
Vector Augmentation, No Turbulence . . . . . . . .

Effects of Observation Nolse On System Performance
Mean Response With Different Display Gains . .

Predicted Performance: DC-8, Aim Point Display,
Turbulence . . . + « o o o s o o & s o o o "

Equivalent RMS as a Function of Actual RMS for
Threshold Nonlinearity . . . . « . . « .+ + . .

iv

. 16

26

35

37

by
50
54

56

92



LIST OF TABLES

Model and Measured Performance:

No Turbulence. . . « + ¢ &+ o

Model and Measured Performance:

Turbulence . . « o« o « s o o &

Model and Measured Performance:

No Turbulence. . ¢« « « « « o«

Model and Measured Performance:

Turbulence . . ¢ « « o« o o o

Model and Measured Performance:

Reference Bars,

Reference Bars,

Aim-Polnt,

Aim-Point,

Reference Bars,

No Turbulence, Degraded Resolution . . . . . . .

Predicted Performance:
Turbulence . « ¢« « « « o o «

DC-8 Dynamics, Aim Point,

46

b7

51

58



INTRODUCTION

The desire for a safe and reliable landing capability under
adverse weather conditlons has persisted throughout the growth of
aviation. If this desire 1s to become a reality, suitable displays
that faclilitate pilot performance must be developed. The funda-
mental questions that arise in the development of such displays
concern the information requirements of the pilot: What informa-
tion should be presented, how, and to what degree of accuracy?

In thls report, we apply a manned-vehlcle system model to obtain
answers to some of these questions with respect to a proposed
approach and landing display.

The display of 1nterest has as its basic element a digitally
generated, perspective runway image, to which is added a horizon
bar and alrplane symbol. This display could be presented on a
cathode ray tube, using information provided by an airborne micro-
wave recelver that senses the locatlon of markers positioned at
appropriate points on the airport terrain. It would have applica-
tion in a low-cost IFR approach system for small airports or as an
independently derlved, visual back up for automatic landing systems.

Wempe and Palmer [1,2] investigated such a pictorial display
in a series of simulator experiments conducted at Ames Research
Center (ARC). They found that the display was inadequate with
respect to judgement of glide slope errors and control of height.
On the other hand, the display had good pilot acceptance, and per-
formance was surprisingly immune to large variations in display
resolution and display update rate. It appeared that the defici-
encies in the basic pilctorlal display could be overcome through
the addition of appropriate guidance symbology. Consequently,



further experiments were 1lnitiated at ARC to examine this possi-
bility. At the same time, the work described herein was undertaken
to 1nvestigate analytically the potential improvements to the dis-
play and to provide a theoretlcal basis for Interpreting the re-
sults of the initlial and follow-on ARC experiments.

Our analytical study of the display 1is limited to its use
for longitudinal control in approach to landing. Controlling the
flight path, by elevator alone, of a 1light aircraft is the task
considered.+ The approach starts 10,000 ft. from the runway thresh-
0ld on a (nominal) 3° glide slope and terminates 1000 ft. from the
threshold (at an altitude of about 100 ft.). Power and trim are
assumed set to maintain the aircraft on the proper path in the
absence of disturbances or spurious pilot inputs. However, a con-
stant vertical draft, sustained for the first 5000 ft. of the ap-
proach, disturbs the aircraft from the desired path. In addition,
the aircraft is sometimes subjJected to random gusts. The cholces
for the vehicle, nominal flight path and disturbance inputs were
dictated largely by the aforemeritioned ARC experiments.

The central element in our analytic approach to display
evaluation 1s a model of the human pilot that describes hls sens-
ing, information processing and control behavior. Thils model has
been documented extensively elsewhere [3,4]. Here, we mention
some underlying aspects of the model to provide a point of depar-
ture and a proper perspective for this investigation.

+It was hoped that thls task would minimize the effects of vehicle
dynamics and differences 1n piloting technique on performance with
the display [1].



Our model for the human controller blends human response
theory within a modern control framework. Its underlylng postu-
late 1s that the well-trained human controller behaves optimally
subject to his inherent limitations and the control task. The
major consequence of this hypothesls is that the model contains
elements that optimally compensate for the human's limitations.
These compensating elements along with our methods of represent-
ing pilot limitations are the unique features of the model.

The descriptions of the compensating elements and, in some
instances, of the human limitations, have been Inspired by modern
control theory. In particular, we rely on state-variable methods
and models to provide insights for our approach as well as the
requlsite computational techniques.

In all prior applications of our model, the systems studied
were linear and time-invarlant. In addition, input disturbances
could be modelled as zero-mean, stationary Gausslan nolse processes.
For such situations, 1t 1s relevant and convenlent to consider the
frequency domain representation of the model. 1In thls context,
the model assumes a quaslilinear form; it can be used to predict
pilot describing functions and power density and remnant spectra.

We have found the model capable of predlicting these detailed meas-
ures of human performance with remarkable fidelity [Refs. 3,4].

In applying our model to approach to landing, we are,
however, confronted with an essentlally time-varylng problem.
This 1is primarily the result of the time-dependent relationship
between angular and linear vertical deviations from the glide
slope. For example, if the relative error 1n observing angular
deviations from the glide slope 1is constant, then better estimates
of altitude error become available as range decreases. As a result



the quality of the pilots information base ilmproves with time so
our model of the human cont?oller is no longer time-lnvariant. We
shall see later that the predictions afforded by this time-varying
model are qulte remarkable.f The relative ease in extending the
model to a time-varying slituation is not too surprising in light
of 1ts state variable (i.e., time domain) foundations; of course,
this was one reason for choosing such a modelling framework.

The experimental conditlons that were investigated and the
speclific display that was employed also necessitated some exten-
sions to the model. In the former case, the use of constant but
unknown updrafts was a departure from previous applications in
which all inputs were random. Here, too, modern control 1ldeas
provided the basis for the solution: the constant wind was consid-
ered a "state" to be estimated and was compensated for, in equilib-
rium, by an optimal, constant "trim" input. In the latter instance,
we felt 1t necessary to include threshold effects in the model to
account for experimental judgement data showing large thresholds
in the perception of displacements from the glide slope.

Once the necessary extensions to the model had been accom-
plished, it was a relatively straightforward matter to compute
closed-loop performance as a function of various aspects of the
display. By and large, our studles paralleled the experimental
effort. Thus, we examined the effects of adding guidance symbology,
and of changing display resolution, update rate and gain. Results
were obtained for both no-turbulence and turbulence conditions.
Finally, we computed expected performance with the display in a
DC-8 approach task.

TWe believe that they can be improved even further by a more

expliclt treatment of true variations in human control strategy
(see Chapter 3).



The organization of the report ls as follows. The theo-
retical basis for our display evaluation method is described in
Chapter 2. 1In Chapter 3, the detalls of applyling the method to
the problem outlined above are presented. Results of the display
analysis are discussed and compared with avallable expefimental
data. Concluding remarks are presented in Chapter 4. The mathe-
matical detalls involved in extending the model are given in the
appendices.






THE PILOT-VEHICLE MODEL

A thorough understanding of three fundamental aspects of a
manned-vehicle system 1s essential to achleving the ultimate goal
of effective display evaluation. The three baslc aspects are:
(1) the vehicle dynamics and control\task; (11i) the man-machine
1nteraction; and, (iii) the information content and presentation
quality of the display. Here we present the theoretical basis of
our method for evaluating aircraft displays for use during the
final approach to landing.

Vehicle Dynamics and Control Task

The control task that we conslder 1s the piloted approach
to landing phase of aircraft flight. In particular, we focus on
the portion of the flight from glide-slope insertion to the
minimum decision height. As dlscussed earlier, we analyze the
longitudinal control task only, l.e., keeping the alrcraft on a
nominal glide slope while maintaining proper sink rate in the
presence of external disturbances. For these tasks only an ele-
vator is available wlth whiech to control the aircraft. Power and
trim are set at values that provide a nominal sink rate in the
absence of external disturbances.

The vehicle's longlitudinal equations of motion (linearized
about the nominal glide-path) are given by

u = Xu u + Xw W -g280

w = Zu u + Zw w o+ Uo q + Zd § - Zw wg

. s (1)
q = Mu u + Mw w + MQ q + MG - Mw wg

h = -w - 8

h w u sin a_ + U + D(t)
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In Eq.(1), wg represents random wind turbulence, which we assume
1s a first-order process. Thus

wg(t) =w wg(t) + E(t) (2)

g

where £(t) is white-noise with autocovariance
E{€(t)E(0)} = E -6 (t-0) (3)

D(t) represents deterministic upwinds. In our analysis, we assume
that D(t) is a constantt D, whose value 1s unknown a priorli to the
pilot. o, is the nominal glide-path angle and Uo is the nominal
steady-state forward velocity, thus ho = —Uo sin ao is the_nominal
sink rate. Equations (1)-(2) may be written more compactly in the
state-variable form

x(t) = A& x(t) + bg 8(t) + by E(t) + by D(t) (4)
where
x = (wy, u, w, g, 6, h)
‘-mgo 0 0 0 07 [0 ) [17] [0
0 X, X, 0-¢g O 0 0 0
a=]-z 2,2 U 0 0f;ps=]2s};0e=[0];py=]O
M, M, M MO0 Mg 0 0
0 0 0 1 0 O 0 0 0
0 -a_ -1 0 U_O 0 0 1
i o ° ] ] [ ]
(5)
.l.

Other representations of D(t) are possible, e.g., winds that
decrease linearly with altitude.



The pilot's control task 1s to fly the aircraft from some
initial range Ro (altitude h° = Ro tan ao) to an altitude of 100!
while minimizing angular deviations from the nominal glide path
traJectoryT These angular deviatlons are glven by

alt) = 57.3 h(t) . (6)
R(t)

Thus, we assume that the control task is adequately reflec-~
ted in the choice of a "commanded" control Gc(t) that minimizes
the guadratic cost criterion (Td = time to reach 1000 ft. from the
threshold):

T

d .

J(8,) = E f% f [(ma 0)? + (mg a)? + (mg 60)2J at,  (7)
0

The first term in Eq.(7) is a constant welghting on glide-path
errors, the second term is a weighting on pitch rate. It should
be noted, for example, that plilots generally do not make rapid
pitch motions, a fact which we express mathematically by incorpor-~
ating a (subjective) weighting on qT*

The welghting on “commanded" control rate, éc, is central to
our analytic technique. This term may represent an objective or
a subjective weighting on a pllot's rate of control. Alternatively,
this term could be used to account indirectly for the physiological

fAt altitudes below 100' the nature of the control problem is 4dif-

ferent. From 100' to touchdown (the landing phase) the pilot
flares the alrcraft, and no longer follows the glide path.

++In our earlier studies of VTOL hovering tasks [3-4] a pitch-rate
weighting was also included in the performance functional.

10



limitatlions on the rate at which a human can effect control action.
We shall have more to say on thils point shortly.

Thus, the cost functional welghtings m, s mq and m@c are
model parameters that quantify the human's control desires and

habits, as well as the requirements of the control task.

It 1s assumed that the human generates the control Gc(t)
on the basis of information obtained from viewing a display. (We
do not consider kinesthetic cues.) The displayed variables
y(t) = [yl(t),...,yr(t)] may be presented either explicitly (e.g.,
via meter or indicator) or implicitly (e.g., pictorially). It is
assumed that the components of y(t) are linear combinations of
system states. Thus

y(£) = C(E)x(t) + cg(£)8(t) + e (£ID(t) (8)

where C(t) can be time-varying to model situations 1n which (gains
on) displayed quantities vary with time. The elements of the matrix
C(t) are determined by a display analysis in cases of implicit
presentation.

Pilot Limitations

Any reasonable mathematical model of the pllot-vehicle sys-
tem must include within 1ts framework the various psycho-physical
limitations inherent in the pilot. In this section we discuss the
limitations that are incorporated withln our analysis.

Time Delay.— The various internal time-delays assoclated
with visual, central processing and neuro-motor pathways are com-
bined and conveniently represented by a lumped eaquivalent percep-
tual time-delay, T.

11



Neuro-Motor Dynamics.— We do not include "neuro-motor"

dynamics directly among the inherent limitatlions of the human.
Recall, however, that we have included 1n the cost functlonal
(7) a term that depends on control rate. It can be shown [5]
that the inclusion of this term results in a first-order lag,
(th+1)-l, being introduced in the feedback controller. Thus,
the control rate welighting ms o could be used to account for the
lag often attributed to the neuro-motor system.

Remnant.— We assume that the various sources of inherent
human randomness are manifested as errors 1n observing displayed
outputs and in executing intended control movements. Thus, ob-
servation nolse, v _, and motor noise, Gm’ are our lumped represen-
tations of "remnant". These noises represent the combined effects
of random perturbatlions 1n human response characteristies, time
variations 1n response parameters, and random errors 1ln observing
displayed outputs and in generatling control inputs.

Thus, the "pilot" is assumed to perceilve
= - + -
yp(£) = y(t-1) + v (t-1) (9)
a delayed, nolsy replica of the dlsplayed gquantities. A single
noise vyi(t) is associated with each output yi(t). Based on

studies of controller remnant [ 6 ], the nolses vyi(t) are assumed
to be 1ndependent white-nolse processes with autocovariances

E{vyi(t)vyi(o)} = Vyi(t)-é(t-o) , i=1,2,...,r
or (10)

E{v (£)ys (o)} = ¥, (£)"8(t-0)

12



Furthermore, for foveal viewing conditions, each autocovariance
has been found to scale linearly with the variance of 1lts asso-
cilated output [6]. Thus, at any time t,

1.

- ° 2 = L) 2 . =
Vi (t) = 0, E{yi(t)} py -+ 02, () 5 1=1,2,...,r

(11)
A numerical determination of the observation nolse ratios pi will
depend, among other things, on the relevant features (e.g., quality,
type and form) of the display panel.

The motor noise, Gm(t), which represents random errors in
executing the intended control movements, or the fact that the
pllot does not have perfect knowledge of the system input,ld, 1s
added to Gc(t). Thus,

S(t) = 5c(t) + 68 (t) (12)

5m(t) is assumed to be a (wide-band) first-order random process

generated by

5 8 =
Ty §p(8) + 0 () = v (¢t) (13)
where Ty is the "motor" lag introduced by the control rate weight-
ing. vm(t) 1s white-noise with autocovariance value Vm’ or noise-

ratio O

*Equation (11) assumes a zero reference 1s availlable. Otherwise,
the observation noise scales wilith the distance of yi(t) from the
nearest scale reference.

13



Threshold Effects.— There are various nonlinear threshold
effects assocliated with human information processing. For example,
i1f the magnitude of a signal 1is below a certain level, a pilot may
not be able to detect changes in it (visual threshold) or may
choose not to react to such changes (indifference threshold). We

therefore assoclate with each displayed variable yi(t) a visual
and/or indifference threshold level, ay . As with the observation
noise ratio Oi, values of ay willl be determined by analyzling the
gliven display vis a vis the pillot's inherent limitations.

Thus, each perceived output ypi(t) is modified according
to

ypi(t) =, (y,(t-1))+ vyi(t—T) ; i=1,2,...,r (14)

where the threshold nonlinearity fi(-) is given by

X-a, X > a
i !
fi(x) = 0 -ay <x < oay (15)
x+a, -a, > X

and is shown in Fig. D1.

In Appendix D we use methods of statistical linearization
to include the thresholds within our optimization framework. We
show that the effect of the threshold is to simply replace the
variance 051 in Eq.(11) with a "modified" variance

A2 _ 2 | =2
where fi is a (nonlinear) function of a; and the (mean and) vari-
ance of Yq- (See Eq. D12)

14



The Optimal Control Solution

Our basic assumption in the analysis of pilot-vehicle sys-
tems 1s that the well-trained, well-motivated pilot behaves in an
optimal manner, subject to his 1nherent limitations. Within a
control-theoretic framework, therefore, the pilot's control char-
acteristics are determined by the solution of an optimal linear
regulator problem with time-delay and observation noise. Optimi-
zation problems of this type have been solved by Kleinman [7].
The extensions of the results of [7] to include time-varying ob-
servations and deterministic forcing functions are treated in

Appendices B and C.

Figure 1 shows the overall structure of the resulting opti-
mal closed-loop system. The feedback portion that pertains spec-
1fically to the pilot is shown within the dashed line. The mini-
mizing control is generated by a linear, albeit time-varying,
feedback law. Thus, pllot equalization is modelled by the cascade
combination of a Kalman fllter, a least mean-squared predictor and
a set of time-varying gains. However, there is an analytic draw-
back to this solution. It 1s that the feedback gains 2* must be
precomputed and their entire time history stored for later on line
computation.+ This awkwardness 1s common to optimal linear regu-
lators and arises here for two reasons: (1) the time interval
[O,Td] is finite, and (2) the cost functional weights a(t) which
is related to the system state h(t) via the transformation

a(y) = 201 30(e) (17)

+The gains over the 1interval [O,Td]'must be computed in backward

time, i.e., starting at t=T;. See Athans and Falb [81.

15
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Methods for computing "suboptimal" constant or piecewise-
constant galins that are more amenable to analytic studies have
been developed by Kleinman [ 9 ]. Unfortunately, time did not
permit our implementation of these techniques. Instead, we com-
puted a single set of constant feedback gains for use over the
entire interval [O,Td]. We first let T4
assumption since Td 1s generally much greater than system time

+» in Eq.(7), a reasonable

constants. Second, we replaced the term

n
w 3
iR

. (57.3n)°2

3
=]
1

s

in J(Gc) with

2
(57.3m_)
a h2

mh h = —R-2

(18)

where R is an "average" range. We chose R = R,/2. The effect of
this replacement is obvious: Over the flrst half of the run the
actual penalty on a(t) will be higher than desired, while over the
second half the penalty will be smaller than desired. We shall
see these effects 1n later numerical predictions.

With the above modifications, the cost functional (7) be-
comes

T

T
3(8y) = 1m 3 EQ [[imy 0)2 + (my )2 + (my, 5,)71at
0

(19)

17



The "commanded" control Gc that minimizes this expression, condi-
tioned on the perceived information xp(') in Eq.(9), is given by
the linear time-invariant feedback law

Ty 8 (6) + 8 _(t) = -2% X(t) - 2% D(¢) (20)

Thus, adding Eq.(13) for Gm(t) we obtain for the control input §,

T, S(8) + §(t)

2% x(t) - 2% D(e) + v_(¢)

ne>

§r(t) + v _(¢t) (21)
as shown in Fig. 1.

The time-constant 7, and the optimal gains 2% and 26 are
determined via the equations in Appendix A and Ref.[4]. They
depend only on the vehlcle dynamics and the cost functional welght-~

ings. The control rate weighting m é 1s in 1:1 correspondence
c

with ANt the smaller m é , the smaller Ty This affords a conven-

ient way of adjusting thto a predetermined value.

In the above equations, i(t) and 6(t) are, respectively, the
model's best estimates of the system state x(t) and the value of
the constant updraft. These estimates are generated from xp(-) by
the Kalman filter and optimal predictor. The Kalman filter ylelds
a best estimate i(t-r), D(t-1) of the delayed system variables by
optimally filtering yp('), thus compensating for the observation
noise yy(t).T The predictor compensates optimally for the inherent

+The Kalman filter is time-varylng since the observation noises in
Eq.(9) depend on the signal levels of the displayed outputs as
given in Eq.(11).
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delay T by operating on the fllter output to generate the estimates
i(t) and D(t). The equations that describe these linear dynamic
feedback elements are obtained from the results of Appendices B
and C by defining an "augmented" state vector X(t) = [x(t),6(t),
D(t)] and combining Egs.(4) and (21) into a single equation for
x(t).

Note that the feedback system generates a best estimate of
D(t). The estimation, and the compensating control input that
gets generated, results 1n a closed-loop transient. This time-
varylng adaptability of the model to nonrandom inputs is an im-
portant extension to our earlier results (Ref.h4).

Model Outputs for Display Evaluation

The structure of Fig. 1, coupled with the eguations in
Appendices A - D completely determine the optimal closed-locop
system. In order to use the optimal control model in a predictive
manner as a systems analysis tool, we require the prespecification
of various input parameters relating to the vehicle configuration,
the task descriptlon and the pilots limitations. These inputs are,
in summary,

1. The Vehicle Description: the equations of motion and
the characteristics of the external disturbances.

2. The Task Description: the cost functional welpghtings;
both objective and subjective.

3. The Display Parameters: which gquantities are displayed
and to what degree of accuracy.

4, The Pilot Limitations: observational time delay T,
motor lag N’ motor noise ratio P An observation
noise ratio Py and a threshold ay assocliated with each

displayed guantity. and a, are functions of the

P
i
particular display vis da vis human factors considerations.

19



Once the model inputs are specified we may obtaln predictions of
such useful output guantities as:

1. The mean tlime history of any state, output or the
control. This represents the flight path one would
expect to find by averaging the results of many runs,

2. The variance at any time t of any state, output or
control about its computed mean value., This vari-
ability arlses from the system's random inputs,
i.e., gust disturbances,and "remnant".

3: The mean and variance at any time t of the model's
estimate of the system state x(t). Thus we are
able to predict what the pilot thinks the system 1s
doing as well as what the system 1s actually doing.
These predictions are essentlial to analyzing the
decision-making role of the pilot.

4, The model's estimate of the deterministic updraft-
D(t). A time history of D(t) will show how rapidly

the pilot model can recognize the updraft and com-
pensate accordingly.

5. The probability distribution of any system variable
at time t. These distributions are necessary for
predicting probability of a successful landing,
go-around, etc.

In addition to the above dynamic measures of system response,
we may also obtalin various static measures. For example, we could
consider a tracking task performed at some flxed distance from the
runway. In this case, predictions can be made of pilot describing

functions as well as varlous power density spectra.

q:'I'hus., the mean trajectory can be associated with the system's

response to the deterministic input D(t).

+fRecall that these quantities have little meaning in the time-
varying case.

20



A computer program, PIMAL (Pilot Model for Approach to
Landing) has been written for generating the above predictions.
Inputs to the program are the system quantitles A, by, C; the

cost functlonal weightings m, and mq; the human response param-

o

eters T, Om, the observatlon nolse ratlos pi and the thresh-

T b
old limitsNai. The. computer program is highly interactive and
very easy to use. Any one, or several model input parameters can
be changed slimultaneously. This enables rapld on-~line predictions
of the effects of changes in the vehicle, the display or even the

human.

Havling established the means for system performance predic-
tions, PIMAL can be used in a systematic fashion to analyze an in-
formation display and to study the effects of changes in display
format. Changes in the nature of the dlsplay are reflected as
changes in various program lnputs. Adding or removing displayed
quantities will change the output transformation in Eq.(8).
Changes 1n display resolution, gain, scale markings, etc will re-

quire changes in Oi and/or a Changes 1in display update rate may

5
be modelled by changing the equivalent perceptual time-delay T.

In this manner it becomes relatively straightforward to
investigate the effects of display modifications on closed-loop
system performance. These predictions, coupled with a sensitivity
analyslis about a nominal display conditlion, provide an analytic
method for evaluating alircraft displays within the context of a
plloted approach to landing task. 1In the next section the model
is used to analyze the plctorlal display developed at NASA-ARC
for approach to landing. The model predictions are compared with
results of simulator experiments performed at Ames and described
in Ref.[1,2].
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DISPLAY EVALUATION -

In this chapter we apply the analytic techniques we have
developed to the pllot-vehicle-display system studied by Palmer
and Wempe [1,2]. We describe the task and the display and use the
model to predlct measured performance data across a varlety of
display configurations. The results we obtaln demonstrate the
value of our control-theoretic approach for display evaluation.

Vehicle Dynamics and Display Configuration

The dynamies of a Navion, a low-wing four passenger light
alrcraft ,were simulated in the experiments. The longltudinal
equations of motion are given by Eq.(1l); numerical values for the
stabllity derivatives are:

- -1 =
Xu = -.045 sec Mu =0
X, = .036 sec” 1 M, = -2.86 deg/ft-sec
Z = -.3697 sec™t M = -2.077 sec™t
u e]
_ -1 -2
2. = =2,024 sec M, = -11.19 sec
w é
Zg = -.491 ft-sec_z/deg U, = 176./57.3 = 3.06 ft—sec-l/deg

The nominal flight path was a 3° glide slope that intersected
the runway at a point 1000' beyond the threshold. At the begin-
ning of each simulated flight the alrcraft was positioned level on
the glideslope, 10,000' from the threshold. Thus,

R
O

11,000 ft. 00 = 3° = ,05234 rad

Bo

576 ft. ﬁo = 9.2 ft/sec = 552 ft/min
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On each of the flights, a constant vertical draft was applied to

the aircraft and sustained for the first 5000' of the approach.

The value of the draft was selected randomly from the set D = {-3.0,
-1.5, +1.5, +3.0}. After 5000' the vertical drafts were eliminated.*
The pertinent flight path geometry 1s depleted in Filg. 2.

On one half of the flights moderate turbulence was simulated,.
The random wind turbulence wg had a break frequency of wg = 0.5 rad
and an RMS level o = 3.0 ft/sec. '

The display configuration 1s described in detall 1in Refs.
[1]-[2]. Here we indicate only the salient features of the dis-
play pertinent to aircraft longitudlinal control during the approach
phaseTf We consider that portion of the flight from 10,000 ft. to
1000 ft. from the runway threshold. Thus, termination of the ap-
proach occurs at an altitude of about 100 ft.

Figure 3 shows the basic display presentation. A runway
image, horizon bar and aircraft reference symbol provided a per-
spective view of the real world. The display was generated on a
cathode ray tube by a 946 line TV system. The displayed field of
view was 40° by 40° in the real world with a display gain of 1/2
at the pilot's eye. The nominal runway Iimage quality was .05°
resolution; the image was updated every 0.1 sec.

+In the experiments the wind drafts were reduced exponentially to

Zzero. In our analytic study, however, we assume that the winds
are suddenly terminated at 5000 ft. The effects of the "fade-out"
difference are not very important since the experimental time con-
stants were small. However, our predicted h will experience a
step (rather than an exponential) change at 5000 ft.

++Disp1ay configurations pertinent to touchdown are not considered

herein.
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In addition to the above elements, the display also contained
glide slope reference bars which were depressed 3° below the horizon.
These bars "augment" the visual cue that says if the glide slope
intersection point on the runway is 3° below the true horizon, the
alrcraft is on a 3o glide slope [ 2 ]. The angular separation of
the reference bars was ZBao, i.e., 2 nominal teao degrees about
the glide slope intersection marking. In the experiments B=.1.

In some of the experimental configurations a velocity vector
symbol (the X in Fig. 3) was added to the display. The "X" shows
the ground point towards which the alrcraft's veloclty is directed
at any instant. Vertically it provides flight path angle informa-
tion. Thus, the deviation of the X from the glide-slope 1intersec-
tion point is an indication of sink rate deviations h(t) or a(t).

In summary therefore, the display provlides the pilot with
observations of glide slope angular deviations a(t) as well as of
a(t). In addition, the pilot also perceives pitch 6(t) and pitch
rate q(t)+from the artificlial horizon and aircraft symbol. We
assume that the pilot can obtain range information, R(t), from the
horizontal visual angle subtended by the width of the runway at
the glide slope intersection point. This angle is given by

; k. = display gain (22)

. 150
R d

e, = kd
where 150' 1s the runway width. Finally, 1n cases where the
velocity vector symbol X 1s displayed, we assume that the pilot
obtains explicit h(t) information (as opposed to the implicit a(t)

information obtalned from the glide slope indicator).

*We assume that 1f a quantity 1s explicitly presented, the pilot
also obtains, implicitly, the rate of change of that quantity [6].
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Model Parameters

In order to apply the optimal control model to analyze the
approach to landing task, we must determine numerical values for
the display matrix C(t) in Eq.(8). In addition, values are needed
for the various human response/display parameters T, TN’ Dm, Di,
ay s i=1,2,...,r discussed in the preceding chapter. We shall see
that parameter values are qulte easily chosen a priori by combining
human response results wlth the considerations of the control task

and display.

We first relate perception of glide slope deviations a(t)
to perception of heilght deviations h(t). This is convenlent be-
cause it allows us to treat h(t) as a "displayed output" in our
analyses.Jr The pilot observes @(t) with the aid of the displayed
glide slope reference bars. Thus, the observation nolse va(t) has
autocovariance
a2

E{va(t)va(o)} = pafa

E{[Bag-]a(t)|1°} = 8(t-0) (23)
where f 1is the equivalent gain of the threshold (15) associated
with observations of a(t), (see Appendix D). Note that Bao—la(t)l

is the separation between @(t) and the nearest reference bar.

In addition to a(t), the pilot perceives directly range R(t)

with observation noise vR(t) where

E{VR(t)vR(o)} = pg E{[R(t)]z} « §(t-0) = pch(t)»é(t—o) ()

H

Since h(t) 1s a state variable, the output matrix C(t) will be
constant. However, the observation noise matrix V(t) will be time-
varying. Alternatively, if we wished to treat a(t) as the dis-
played variable, V(t) would be constant while C(t) would be time-
varying. 'The two approaches are equivalent since C(t)V‘ (t)c(t)
is what appears in the equations that define the model and o and

h are related by h=aR. However, it 1s more convenient to work
with a constant C.
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The observation noise vh(t) associlated with perception of
h{(t) = R(t)a(t) is obtained from

v, (t) = alt)vg(t) + R(t)v_(t) (25)

Combining Eqs.(23)-(25) we see that vh(t) has autocovarlance

V() = p T2« E([BH_(t) - |n(£)]1%} + o E{n®())

(26)
where H_(t) = R(t)a, is the altitude of a 3° glide slope at dis-
tance R(t).

The quantity a(t) is perceived from observations of a(t).
The observation nolse v&(t) has autocovariance

E{vs (t)vy (o)} = p3T3° E{a®(£)} + 8(t-0). 27)

However, values of Ug(t) = E{&2(t)} for thls task are extremely
small since a = (ﬁ—Uou)/R. For example, if h=1 ft/sec at R=5000"
then & = .01°/sec which is less than human visual thresholds on
rate perception. Therefore, we assume that no useful aor h) in-
formation is obtained from the glide slope indicator.

Pitch and pitch rate are also displayed outputs. The
thresholds associated with these guantitles were neglected in the

analysis as they were deemed insignificant for the display used.
Thus ,

E{vy(£)vg(a)} = pg ogct) < 5(t-0) (28)
_ 200y o &t
E{vy (£)v (o)} = py 02(t) + 8(t=0) (29)
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Finally, in cases where the alm point symbol is displayed,we
assume that the pilot obtalns explicit sink rate information h(t)
as discussed earlier. The observation noise vﬁ(t) has autocovari-
ance

.2
E{Vﬁ(t)Vﬁ(G)} = o}, E{h“(t)} - 8(t-0) , (30)
where we assume a zero threshold on h(t) perception.

The perceived outputs Xp(t) may be written, combining the
preceding equaticns, in vector form

t) = t- + v _(t-
Xp( ) = y(t-1) —y( T)
= C x(t-1) + ¢, D+ !y(t-T) (31)
where y(t) = collh,h,8,q], v, = col[vh,vﬁ,ve,vq] and
0O O c 0 0 1 0
c=10-a,-1 0 U, 0}, ey~ 1
0 0O 0 1 0o 0
0 0 0 0

The autocovariances of the observation nolses are given by Egs.
(26)-(31). The covariance of vy, is assumed infinite when the
aim point is not displayed.

The equivalent perceptual time-delay 1 in Eq.(31) also

includes the display update rate of 0.1 sec. When this is added
to a nominal human delay of .2 sec, we obtain 1=.3 sec.
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The various observation noise ratios Da,pﬁ,pe,pq,pR in
Egs.{(26)-(31) were set equal to .0lwm (i.e., -20 dB white noise
power density level). This value has been found appropriate to
foveal viewing of good resolution displays [ 6 J. The noise ratios
being set equal is a reflection of the fact that an integrated
display was used so that visual scanning did not appear to be
necessary.

The visual/indifference threshold, ays assoclated with
glide path deviations a(t) was taken to be .1l degree. Several
reasons prompted this choice: (a) The vertical resolution of
the display was .050. With a display galn kd = 1/2 the resolution
on o would be .1°, (b) A typical value for the human threshold on
position quantities is .05o of visual arc (see Appendix D). Since
kg = 1/2, we again find aa=.l°, (¢) Pilots performing an approach
to landing task generally will not try to control a{t) any more
precisely than to within i.lo of the desired glide slope (i.e.,
keeping within the center dots on an ILS indlcator). This trans-
lates to keeping the glide path dots within the middle third of

the glide-path reference box (Fig.3).

The cost functional J(éc) for this task 1s given by Ea.(19).

The weighting m_ is related to the constant welighting m, on glide

h
path deviations according to

57s3ma
mh =—%———= .01 ma (32)

For this task we chose relative welghtings ma/mq = 0.5.

In cases where there are several (nonintegrated) displays, methods

for including scanning or attentional constraints within th
) e optil
control framework are developed in Refs. [4,10]. ptimal
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Thus, we balanced a glide path error of 1° with a pitch rate cor-
rection of .5°/sec. A pitch rate of .5°/sec results in a 3 ft/sec
change in sink rate after 2 seconds. These numbers seemed reason-
able for the given vehicle and control taskT Therefore,

m = .005, my = 1.0, m&c = .14 (33)

The welighting mi on control rate was adjusted to yield a time
¢

constant N = .1 sec in the feedback loop. This value is typilcal
for the neuromotor time constant and has been found to be appro-

priate to the model across a wide range of tracking tasks [ 4 J.

The final model parameter that must be specified 1s the
motor noise covariance V_ (or motor noise ratio pm). The motor
noise vm(t) is added to 6'(t) in Eq.(21). Thus we assume, with
analogy to the observation nolse, that

Vv
m

o E([6'(£)]°) (34)

Typical values for om have been found to be .003m™ - 017, i.e.,
-20 to -25 dB white noise power density level [ 3,4 ]. 1In the
computer program that was developed we did not include a means
for speclfying om directly. Instead, values of Vm were chosen
and the resulting nolse ratios were then checked for reasonable-
ness. Typically, values of pm = 22 dB resulted.

+One would expect that any reasonable choice of ma/mq should

suffice. Thils 1s indeed correct, as sensitivity studles using
the model have shown. The trade-offs between glide-slope error
and control effort do vary somewhat among pilots. The ratio we
chose was intended to be representative.
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Experimental and Predicted Results

Having prespecified all of the input parameters we now

apply the model to analyze the approach to landing task. In par-
ticular, we use the computer program PIMAL described in the preced-
‘Ing chapter to predict the (statistical) time histories of pertin-
ent system variables across different display conflgurations.
Comparison is made with the experimental results of Palmer and
Wempe. Thelr data consisted, for each simulated flight, of the
integrated mean and RMS of B,q,ﬁ,a,ﬁ. For a particular quantity
x(t) the mean and RMS that were measured were

N
X = % :E: x(ti) , N = number of samples (35a)
i=1
N
RMS = [+ sz(ti) (35b)
i=1

The various measurements were then averaged over several identical

runs for reliability.+

Measurements of mean and RMS were made over both range

intervals

oy
]

(10,000'-5000")
(36)

o)
|

(5,000'-1000")

TIn usling the equations of Appendix C to predict these experimental

results we implicitly assume an ergodic property, namely, that the
(ensemble) average of the time integrals is equal to the time inte-
gral of the (ensemble) average.
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In addition, altitude was recorded at distances from the threshold
of 5000' and 1000°'.

For simplicity in the analysis, we consider only the case
of updrafts of +3 ft/sec, 1l.e., D = 3. We shall be concerned with
the effects of turbulence, display modifications, display gain, up-

date interval and resolution upon overall closed-loop performance.

Runway Pictorial Display.— The original display that was
first considered by Wempe and Palmer (1 ] contained only a runway
image and an artificial horizon. There were neither glide slope
reference bars nor an aim point. We analyze this original display
to place in perspective the various dlsplay features that were
subsequently added. We study the no turbulence case only.

In our analysis the threshold associated with perception
of a(t) was taken as 0.50. This value was chosen on the basis
of experimental height Judgment+ data obtained with the given
display [ 1]. (Note that this implies that the visual/indifference
threshold is a function of display format.) In addition, since

there were no reference bars we set B=1 in Eq.(26). All other

model input parameters were at their nominal, a priori, values,

The model's prediction of aircraft altitude vs. distance
from the threshold is shown in Fig. 4. We show the mean response
and the variability (+lc) that arises from pilot induced random-
ness (remnant). It is clear from these results that pillots using
this display would be unable to control the aircraft to within
1.30 of the nominal glide slope. The reason i1s simply that the
display provided 1lnadequate helght information. As a result, the
model's estimate of the updraft was 1in error by 50% at 5000°'.

.f.

Judgments made from above glide-slope. Experiments showed that
pilots were unable to estimate their position from the glide slope
to better than +.5° using only the runway pictorial image as a cue.
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The alrcraft drifted off the glide path by as much as .8 degrees,
even though the threshold on o was .5!

The predicted results 1lndicate, that at a distance of 5000'
from the runway threshold, the aircraft altitude 1s 397 + 11 ft.
If no compensating corrections had been made, the aircraft would
have been at h=399 ft. At 1000' from the threshold, predicted
altitude is h=119 + 21 ft (i.e., average error = 1lU4 + 21 ft).
These results agree quite well with experimental data [ 1 ], which
also demonstrated the display's inadequate presentation of height
information.

Addition of Glide Slope Reference Bars.—

No Turbulence-- Based primarily on the experimental results, it
was decided to modify the above display to include glide slope
reference markings at a=i.3° [ 2]. This yields improved a(t)
information. The resultant display 1s as descrilibed in the pre-
ceding sections and served as a basis for the second experimental
program performed at Ames Research Center.

In order to judge the effectiveness of the display modifi-
cation, the model was used to predict system performance for the
same conditions (i.e., updraft = +3 ft/sec, no turbulence) analyzed
above. The model parameters are Invariant except for the visual/
indifference threshold on a(t) which is .1° and the reference ratio
B which is .1l. These correspond to the particular display config-
uration used.

The predicted histories of glide slope error, h(t), pitch,
6(t), and sink rate, h(t), are shown in Fig. 5. With this display,
the pilot model was capable of controlling average glide slope
errors to within 1.20. However, note that the aircraft travels
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some 1500' before pillot correction is initiated. This "dead-zone"
arises from the initial lack of a(t) information (while a(t) is
less than its .1° threshold) coupled with the lack of h(t) infor-
mation. When the updraft is removed, the decent rate quickly
increases and the alrcraft i1s seen to undershoot the desired glilde
path. Changes in aircraft pltch are made smoothly, as a result

of the cost functional weighting on q(t). We thus see the model
"trim out” the effects of the constant wind by adding a compensat-
ing offset in pitch. When the wind 1s terminated the trim is
reduced (slowly) to zero.

Ensemble averages at various points along the state trajec-
tories were not obtained in experiment. Instead, as mentioned
earlier, measurements were obtalned of the time-averaged mean and
RMS as in Eq.(35). A comparison of this data with model predic-
tions is shown in Table lT The numbers in parenthesis are the 1-
sigma experimental varliability. As can be seen, predicted and
measured results are in remarkable agreement over both intervals.
The fact that the RMS results agree so well is evidence of the
validity of our model of the human's limitations. Since there 1is
no turbulence,the system's only randomness arises from the pilot
himself. The excellent agreement of mean performance is evidence
of the model's ability to predict the time-varying adaptability
of the pllot to the presence of the deterministic updraft.

There is only one set of numbers for which model predictions
are not within one S.D. of the data. This occurs for mean and RMS

a over R2.

+The experimental data 1s the average over display conditions 1

and 2 described in Ref.[ 2 ]. These conditions differed only
slightly for the approach phase and we do not make a distinction
between them in our analysis.
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TABLE 1

MODEL AND MEASURED PERFORMANCE:+ REFERENCE BARS, NO TURBULENCE

Mean (10-5000') RMS

Mean (5-1000') RMS

Model | Measured | Model | Measured Model | Measured | Model | Measured
q(deg/sec)| -.07 | -.06(.01)| .31 .29(.09) .08 |.06(.03) | .31 .35(.14)
8(degrees) |~1.05| -1.0(.10)} 1.36| 1.24(.18)|| -.731-.89(.2) .96 1 1.13(.25)
§,(degrees)| .21 .21(.03) .32 .29(.03) .49 1 .50(.03) .53 | .52(.0k)
~h(ft/min) | 531. | 531(19) | S47. | 5u42(24) 602. |621(37) | 612. | 633(35)
a(degrees)| .15[.13(.03) | .17 .18C.om) [ -.22|.on¢.05) [ .20 .12(.06)
Hp(feet)| 325 330  |o=9 | o=8 98 107 | o=8 | o=T
?E;asured data 1s the average of 11 runs.




The discrepancy is understandable if we recall our discussion on
the average weighting on h(t) in the cost functional (19). With
a fixed welghting ma on glide slope error a(t), the equivalent
welghting on altitude deviations is given by

57.3 m,
S T €3

and increases inversely with range. Thus, as R(t) decreases m.
must lincrease, a fact which 1is not incorporated into the model

since we have chosen a constant m, appropriate to R = R = 11,000/2.

The relationship between m and distance from threshold 1s glven
in the table below for ma/mq = 0.5.

Distance from Threspold my
10000 - 9000 .0030
9000 - 8000 .0034
8000 - 7000 .0038
7000 - 6000 0oLy
6000 - 5000 .0052
5000 - 4000 .0064
4000 - 3000 .0082
3000 - 2000 .011
2000 - 1000 .019

It can be seen that the value m, = .005 that we have chosen
1s not a good approximation over the entire range, and 1s rela-
tively poorer for smaller R(t). The obvious way around this dif-
ficulty 1s to solve the optimizatlon problem wlth a plecewlse con-
stant or a time-varying My s thereby obtalning feedback gains that
change as R(t) decreases. The result of this modification would
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be to decrease RMS and mean glide path deviations as range decreases.
For example, if over R2 we were to choose a constant value of

m = .01 (corresponding to 2500') we would expect RMS a(t) to be
approximately .1 deg as contrasted with .2 deg found earlier and

.12 deg found experimentally.f

It therefore appears that the inclusion of plecewise constant
gains within the pilot model would further enhance the rellability
of the resulting predictions by representing more accurately the
truly time-varying nature of the approach task.

Effecte of Turbulence-- In order to evaluate the performance of
the pilot-vehicle-display system under moderate turbulence condi-
tions, we added random gusts wg to the vehlcle as in Eq.(1).

The mean and variance of pertinent system quantities, at various
distances from the threshold, were computed in the same manner as
before. The resulting mean trajectories were virtually identical
to those of Flg. 5, while the variance was somewhat larger because
of the turbulence. For thls reason the trajectories were not
plotted.

A comparison of measured and predicted mean and RMS per-
formance is given in Table 2T+ Once agaln the agreement 1s excel-
lent over both intervals, with the possible exception of RMS oa(t)
over 5-1000'. The predicted mean quantities are virtually lden-
tical to those in Table 1l; indeed measured means do not differ
significantly from the no-turbulence results. Measured and predicted

+Mean glide-path errors over R2 are influenced to some extent by

the fact that the pilot knows the updraft is to terminate at 5000°
and can anticipate his control action accordingly. On the other
hand, the model is nonanticipative and must wait until the updraft
is removed to begin corrective action.

*+The measured data is somewhat efratic due to the highly variable

nature of the experimental turbllence waveform.
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TABLE 2
MODEL AND MEASURED PERFORMANCE:+ REFERENCE BARS. TURBULENCE

Mean (10-5000') RMS Mean (5-1000') RMS

Model | Measured |Model | Measured Model | Measured |Model | Measured

q(deg/sec)| -.07 | -.05(.04) .81 |1.1(.12) .08 | .10(.07) .81 11.25(.18)
6 (degrees) |~-1.05 | -.98(.38)| 1.69 |1.40(.36)|[ -.71 |-.54(.57)| 1.44 |1.29(.28)
8, (degrees) 21| .20(.08) W38 | .u2(.07) L48 | .40(.18) 58 | .59(.14)
~h(ft/min)| 529. | 527.(30) | 557. |578.(30) 600. |629.(59) | 624, | 668.(63)
a(degrees)| .14 | .17(.12)| .19 | .20(.12)| =-.09 | .02(.12)| 37| .20(.07)

wg(ft/sec) 0.0 .06(1.16)] 3.0 3.12(.32) 0.0 .96(.84) 3.0 3.0(.78)

HT(feet) 326. 330 0=20 0=13 100. 104 o=20 o=13

*ﬁ;asured data is the average of 13 runs.




RMS quantlitles show increases over the no turbulence case. Notable
are the increases in q over both intervals Rl and R2 and the 80%
increase in RMS o (both measured and predicted) over interval R2.
Standard deviations in the altitudes at 5000' and 1000' also show
large increases over the no turbulence case. Note that RMS con-
trol over R2 shows only a small increase attributable to turbulence.
These results again demonstrate that mean response is assoclated
wlth deterministic signals, whereas response variability is asso-
clated with pllot remnant and external randomness.

We see that the addition of the reference bars is a signif-
lcant improvement to the display and to the resulting system per-
formance. However, performance at the 100' MDH, although improved,
is still somewhat gquestionable. A window requirement at 100' is
that the aircraft be within the i.3° glide slope limits (i.e.,
within 12 ft of the glide slope) with probability .95. Thus, the
standard deviation in H__;,qo Mmust be less than 6 ft.+ Table 1
indicates 0=8' with no turbulence. If the model were modified to
include plecewise constant gains as discussed, we would predict
o=l' which is satisfactory. However, under turbulent conditions
the model predicts 0=20', and even if the gains were modified it
is unlikely that the predicted o would be less than 10'. We
therefore conclude that the display 1s lnadequate withzregard to
window performance at the MDH (under moderate turbulence).

Addition of Velocity Vector Symbol

No Turbulence-- In an attempt to provide the pillot with sink rate
information that could be useful for control purposes, a velocity

.i-

The 20 point on a Gaussian distribution includes 95% of the area.
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vector symbol was added to the dlsplay as discussed earlier.
Ve model this situation by including n(t) as a perceived output
with -20 dB observation noise. No other model parameters change.

The predicted trajectories of h(t), 6(t) and h(t) are shown
in Fig. 6. The results are much the same as those in Fig. 5;
with the notable difference that over Rl the pilot responds much
more qulickly to the updraft. This 1s because the step displace-
ment in h is observed, allowing the value of the updraft to be
rapidly estimated. As a result, mean glide path deviations over
R, are reduced. Note also that deviations of E{h(t)} from the
nominal -550 ft/min are reduced by adding the aim point.

Predicted response over R2 is virtually the same as that
without the aim point since the pilot knows for sure that the
updraft 1s terminated at 5000'. The aim point would be helpful
1f the pilot did not know this fact.

Measured and predicted means and RMS are given in Table 3.
The agreement 1s excellent considering that measured data is the
average of only 6 runs. Measured data shows the predicted im-
provement in o over the 10-5000' range. Measured quantities over
the second interval are not significantly different from those
wlthout the aim point (Table 1). This substantiates our claim
that the alm point makes little difference to the longitudinal
control task in the absence of constant winds and turbulence.

Predicted standard deviations in h(t) at the 5000 and 1000'
ranges are virtually the same as with no aim point. This indicates
that the (no turbulence) probability distributions at the MDH
remain unchanged. Note that measured sigmas show a 50% decrease,
but this 1is a dubious result; only 6 runs were averaged and «
measurements do not seem to indicate decreases in glide path
variance.
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MODEL AND MEASURED PERFORMANCE:

TABLE 3

T AIM-POINT, NO TURBULENCE

q(deg/sec)
8(degrees)
6e(degrees)
-h(ft/min)
a(degrees)

HT(feet)

Mean (10-5000') RMS

Mean (5-1000') RMS

Meodel
-.06
-1.22
.29
548,
.06
317

Measured
-.06(.02)
-1.11(.1)
.26(.03)
539(9)
.08(.03)
326

Model
.30
1.34
.37
555.
.08

g=8

Measured
A70.17)

1.25(.07)
.36(.04)
547(9)
.09(.03)

o=}

Model
.07
-.57
46
577 .
-.14
99

Measured
.08(.03)
~.83(.10)
LA46(.00)
615(16)
.06(.06)
106

Model
.30
.80
.50

585.
.20

o=8

Measured
.53(.32)

1.03(.13)
.53(.0k)
624(15)
.10(.05)

0:1.5

.i.

Measured data is the average of 6 runs.
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MODEL AND MEASURED PERFORMANCE:

TABLE 4
1-

AIM-POINT, TURBULENCE

q(deg/sec)
0(degrees)
Ge(degrees)
~h(ft/min)
~a(degrees)

wg(ft/sec)

HT(feet)

Mean (10-5000') RMS

Mean (5-1000') RMS.

Model
-.0¢6
-1.22
.29
549.
.06

317

Measured

-.03(.03)

-1.32(.4)
.31(.08)
553(36)
.06(.08)
-.3(1.2)

322

Model
.79
1.68
L2
564.
.10

3.0

Measured
1.09(.08)
1.61(.35)
.45(.06)
568(33)
.11(.05)
3.12(.32)

=15

Model
.07
-.56
U6
576.
-.14

0.0

99

Measured

.09(.08)

~.41(.63)
.bo(.21)
592(52)
.07(.11)
LT7(.87)

109

Model
.80
1.34
.56
595.
.29
3.0

g=15

Measured |
1.35(.28) |
1.25(.3)

.59(.16)
- 609(49)

.14(.08)
3.57(.48)

o=5

TMeasured data is the average of 6 runs.



Effects of Turbulence-- Measured and predicted quantitles obtained
with simulated turbulence conditions are shown in Table 4. As
expected, mean response shows little change from that of the no
turbulence aimepoint conditions above. However, the model predicts
that with moderate turbulence the addition of the aim polnt results
in 20-30% reductions in the standard deviation of h at 5000 and
1000' and in RMS o over R2.-r Measured RMS o shows an improvement

of 30% over the no aim-polnt case; measured window data 1s unre-
liable, being the average of only 6 runs.

We therefore conclude that the aim point does improve height
performance at 100 ft., however the lmprovement 1s not sufficient.
The model predicts the S.D. in thOO to be 15'. Even if the model's
feedback galns were adjusted as a function of range, 1t 1is unllkely
that ¢ would be less than =7 ft. This 1is still greater than the 95%
requirement of o=6. In the conclusions we indicate some dilsplay
modifications that may tighten helight performance at the window.

Sensitivity Studies.— 1In order to gain a deeper under-

standing of the inter-relationship between the display and pilot
behavior, we use the model to examlne the effects on system per-
formance of changes in some basic display parameters. We consider
the no aim-point configuration in the absence of turbulence. The
results for the nominal case are 'shown in Fig. 5 and Table 1.

Display Update Interval-- Delays in updating the TV image are
included within the model's equivalent perceptual time-delay T.
Therefore, to investigate the sensitivity of system performance
to the update interval, we varied t from .3 to .6 sec (correspond-
ing to update times of .1 to .4 sec). We found that model predic-
tions were virtually Insensitive to time-delay variations over

Recall that in the no turbulence case these quantities were not
affected by adding the alm point.

.i.
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this range. This agrees with the experimental results of Wempe
and Palmer [ 1] concerning update interval sensitivity.

The insensltivity of the system to update time 1s comfort-
ing. It means that the display and its accompaning software do '
not place high demands on real time computation.

Display Resolution-- We model degradation in display resolution
as increases 1n observation noise. Accordingly, we simultaneously
varied the observation noise ratios from -20 4B to -8 dB, a factor
of 16, and computed the resulting system performance.

Figure 7 shows the mean and standard deviation of several
performance measures as a function of observation noise.
(RMS2 = mean2 + SD2.) Noteworthy 1s that system performance 1s
not very sensitive to observation noise over the range -20 to -14 dB.
Sensitivity increases somewhat as observatlon noise is increased

further.

Experimental results have also shown an insensitivity
of performance to degradation in runway image resolution [1,2]. In
the experiments of Ref.[ 2], measurements were made under simulated
flights with 0.4° resolution, i.e., a degradation by a factor of 8.
If we equate a factor of 8 in resolution with a factor of 8 in
observation noise, then predictions with -11 dB noise on a should
compare with the measured dataT Table 5 shows thlis comparison.
The agreement 1is excellent with both model and measured data show-
ing the same trends from the nominal -20 dB case 1in Table 1.

+This 1s a reasonable hypothesis. However, a detaliled analysis

of the display would require measuring observation noise as a
function of resolution.
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MODEL AND MEASURED PERFORMANCE:

+

TABLE 5

REFERENCE BARS NO TURBULENCE, DEGRADED RESOLﬂTION

Mean (10-5000') RMS

Mean (5-1000') RMS

1%

Model | Measured |Model | Measured |[|Model | Measured |Model | Measured
q(deg/sec)| =.07 | -.05(.02) .32} .34(.08) .08 | .07(.04) 31| .40(.12)
6(degrees)| -.97 {-.86(.21)| 1.33| 1.08(.24) | -.81 |-1.05(.2)| 1.04| 1.23(.18)
§,(degrees) .19 | .18(.06)| .31 .27(.07) .49 | . 48(.03) .53 .51(.05)
~h(ft/min)| 519. | 505.(35) | 537. 516.(34) 617. | 655.(38) | 628. | 666.(35)
a(degrees) .18 .17(.06) .20 .18(.07) -.08 |.11(.13) .22 | .18(.09)
Hp(feet)| 331 340 =13 o=14 99 105 0=9 o0=6
+Measured data 1s the average of 17 runs.




The results show that with increased observation noise it
takes longer for the model to estimate the value of the updraft
and less compensation is made over the 10-5000' range. The result
1s a lowering in mean pitch and sink rate over Rl, accompanied by
an increase in mean glide path error and height error at 5000'.
Over the interval R2 pltch and sink rate increase slightly (to
compensate for their decreases over Rl) and aircraft height at
1000' winds up virtually unchanged.

The system's slight sensitivity to observation noise is a
desirable property. Apart from the obvious interpretation with
respect to degrading the display, this insensitivity can be inter-
preted in terms of pilot workload and attentional demand [10].

It says that the workload demand of the task is small and that the
pllot should be able to perform additional tasks (if necessary).
Thus, lateral control and the inclusion of a throttle should pre-
sent no difficulty to the pllot. This confirms the well-known
fact that a NAVION is easy to fly.

Display Gain-- We assume that a change in display gailn will cause
an inversely proportional change in the visual thresholds on dis-
played quantities. Thus, in the present situation, gain changes
will change the glide slope threshold a,- (For purposes of analy-
sis we assume that this threshold is in fact visual.)

There may be other effects associated wlth gain variations.
For example, the cost functional weighting m, may be influenced
by the display gain when the gain i1s relatively small. This effect
is mentioned in Appendix D, however little 1s known of the cause

+In cases where approach performance 1s sensitlive to observation

noise, care must be exercised in relegating additional tasks to
the pllot for fear|of overload. Furthermore, it is possible to
show a correspondence between observation noise sensitivity and
pllot rating. f

i
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and effect relationship as regards the pilot. For this reason,
we neglect any such phenomena and simply assume that m, is inde-
pendent of display gain.

Figure 8 shows the mean trajectories of glide slope devia—.
tions, pltch and sink rate for an increase and a decrease in dis-
play gain by a factor of 2. Thus, a, = .05° and .2° respectively.
The standard deviations about the mean are not shown as they were
affected 1little by gain changes. The results offer no surprises.
The larger the threshold, the longer is the walt before the pilot
begins corrective action. The result is that larger corrections
must be made over a shorter perlod of time to return the aircraft
to the glide slope. It is clear that with no aim point, a higher
display gain would be desirable.

Display galin varlations were also studled for the aim-
point condition. It was found that system performance was highly
insenslitive to display gain. This is simply because the updraft
can be determined almost immediately from h(t) information, before
the aircraft has actually drifted very far off the glide slope.

DC-8 Dynamics.— Experiments using the display with vel-

ocity vector symbol included were also performed with simulated
DC-8 dynamics. In order to demonstrate further the versatility
and ease of use of the analysls technique, we apply the model 1n
a straightforward manner to predict closed-loop behavior under
conditions of: (i) no turbulence, UE=0’ (11) moderate turbulence,
°g=3'0 and (iiil) severe turbulence, og=6.0.
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The stability derivatives pertinent to the DC-8 are

= -1 =

Xu -.283 sec Mu =0

X, = .136 sec™1 M, = -.264 deg/ft-sec
- -1 - -1

Zu = -,283 sec Mq = - ,594 sec
- -1 _ -2

Zw -.75 sec MG = -.923 sec

229/57.3 = 4.0 ft-sec”t/deg

N
|

5 = -.1618 ft-sec‘z/deg U,
The glide slope conditions that we consider are identical to those
for the NAVION. The only difference is the nominal sink rate which
now becomes -11.99 ft/sec.

The application of the model 1s stralghtforward: We assume
that the various parameters that quantify the pilot's limitatlons

and the display characteristics are invariant to changes in vehicle

dynamics.+ We alsc assume that the cost functional welghtilngs m,
and mq remaln unchanged. Thils latter assumption is not necessarily
true. However, for the given task we felt that the relative
weightings used for the NAVION (i.e., ma/m = ,5) were also reason-

o}
able for the DC-8. Thus, our initial choice was

m = .005, m

h =1, miy = ,017

)

9 c

which resulted in ™ < .1 sec.
Figure 9 shows the trajectories (mean and SD) of glide-path

errors, pitch and sink rate corresponding to og = 3,0 ft/sec.
The trajectories are similar to those in Fig. 6. Note, also

+Display gain was reduced by 2, so that we take aa=.2.
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that the predicted glide-path varlability is very much the same.
Figure 6 corresponds to og=0 while Fig. 8 has og=3.0, yet the
standard deviations of h(t) about its mean are approximately equal.
This implies that the display should be satisfactory for a DC-8
under moderate turbulence. (A DC-8 simply doesn't "bounce around"
much in this case.)

Table 6 gives averaged RMS performance over the intervals
Rl and R2
is unaffected by the gusts. The results clearly show the increase

for the different turbulence levels. Mean performance

in RMS wlith lincreasing cg. For 0g=6.0, the standard deviation in
h(t) at 1000' is 14.5 ft. This spread is unsatisfactory with
regard to window requirements. Even if the control galins were
adjusted with range, 1t is highly unlikely that the predicted SD
would be less than 7 ft.
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PREDICTED PERFORMANCE:

TABLE 6

DC-8 DYNAMICS, AIM POINT, TURBULENCE

RMS (10-5000')

RMS (5000-1000"')

Mean Mean

og=0 og=3 og=6 og=0 og=3 cg=6
q (deg/sec)|-.07 .09 .20 .36 44? .07 .10 21 .37
@ (degrees)|(-1.0 [1.08| 1.14{ 1.29 -.58 .69 .80 1.06
Ge(degrees) L1 A7 69 1.12 U9 .53 JTU| 1.17
-h (ft/min)| 709 | 714{ 719| 737 ‘ 761 7661 TT3| 794
a (degrees)| .07 .07 .08 .11 -.13 .16 .20 29
Hp(feet) 319 [o=2 {0=T7.5 98 o=2 |[0=7.5 [o=14.5

o=14.5 “




CONCLUDING REMARKS

A computerized pilot-vehicle-display systems model has been
applied to the evaluation of a pictorial display for approach to
landing. This display 1s under lnvestigation at Ames Research
Center 1in connection with potential independent, landing monitor
display systems. The analysis focused on determining the effects
of display changes on closed-loop performance. The results of
adding two types of guidance symbology and of changlng display
resolution, update interval and galn were predicted.

On the basls of the predicted results, we can conclude that
the basic pictorial display with augmented glide slope reference
bars and alm point symbology, provides for adequate longitudinal
approach performance in calm air. The "pilot" can control the air-
craft to within the glide slope tolerances in the presence of
vertical updrafts. The updrafts are quickly estimated by the model
and are "trimmed out" accordingly.

Under moderate turbulence, the display appears to be ade-~
quate for a DC-8 approach but not for a light aircraft. Standard
deviations in height at the decision window exceed the desir&d
95% tolerance.

Are there methods for improving the display still further?
This question 1s nontrivial but it may be answered in part by using
the model to investigate the effects of additional information
(e.g., velocity information), using a "quickened" display, and
other modificatlions. On the basis of our analysis, however, 1t
appears that a doubling of display gain coupled with a reduction
in the width of the glide slope reference bars (i.e., to 1.150)
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should improve height performance. The reason is that the cost
functional welghting on glide path errors should increase and as
a result the RMS errors should decrease (although pilot workload
may increase!)

There are other factors that point to improved performance
with the dlsplay in a real alrcraft. Use of a throttle control
should help to reduce glide path variability. The lack of throttle
control 1s, to some extent, unrealistic and may account for some
of the observed variability. In addition, the use of a trim wheel
should reduce RMS errors. Pillot induced motor noise scales with
the control input. 1If the control has a mean or trim component,
use of a trim tab frees the pllot from holding a constant control
and thereby reduces pilot remnant. The result 1s a lowerlng of
system varlability.

Of prime lmportance in the analytlical display evaluation
procedure was an optimal-control model for the human pilot. This
model allowed us to calculate Qérious aspects of closed-loop per-
formance as a function of changes in the display. The basic pilot-
model was developed prior to this investigation. However, in the
course of this effort the model was broadened to include time-
varying sensing and information processing characteristics, response
to deterministic inputs and visual/indifference thresholds.

A secondary objective of this effort was to evaluate the
extended version of the model that we had developed. Accordingly,
predictions were compared wlth data obtained in the Ames experi-
ments. The comparisons revealed a remarkable agreement between
model and measured data across all measurement dimensions. Mean
and RMS scores demonstrate the model's abillity to predict both
the time-varying adaptablility of a "pilot" as well as the effects
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of "his" randomness. It 1is noteworthy that predictions were ob-
tained with model parameter values equal to those that have been
measured 1n lndependent, baslc manual control experiments.

Some further extenslons to the model suggest themselves.
The most lmportant of these appear to be the addition of time-~
varying gains and the continuation of the flight path through
flare and rollout. The adaptabillity and valldity of the model's
structure as demonstrated by the results of thils effort give us
confldence that these lmprovements can be accomplished.
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APPENDIX A
OPTIMIZATION WITH CONSTANT INPUT DISTURBANCES

In this section we lnvestigate the optimal control of linear
systems that are subject to constant external disturbances. Such
is the case in aircraft approach when a constant updraft or cross-
wind 1s present.

Problem Formulation
The system belng considered is defined by the state equations
x(t) = A x(t) + B u(t) +y w_ + w(t) (A-1)

where x(t) and u(t) are the vehicle's state and control input,
respectively. LA represents a known, constant, disturbanceT w(t)
models external, random dlsturbances and is assumed to be white-
nolse,

The control objective is to choose u(t) that minimizes the
cost functional
(L 1 1
J(u) = 1lim ElT J[E'(t)g x(t) + u'(t)R g(t)]dt’ (a-2)
Tao0
0

+In actuality, w, is the best estimate of the constant disturbance.

This estimate 1s generated by a Kalman filter, or by a Luenberger
"observer". This point 1is relatively unimportant 1n the present
context since all states will require estimation and Eq.(A-1) will
define the estimator. For a further study of linear systems sub-
ject to constant external disturbances, see Ref.[11].
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Problem Solution

In order to solve the above problem we define an additional

state x (t) = L Thus

n+l

X (t) = 0,

and the equation (A-1) may be written
x(t) = A x(t) + B u(t) + w(t) (A-3)

where X = col(x,x ,;), W = col(w,0) and

It
1]
IO:I>
T
o 1=
|t
]
o} |

The x-related term in the cost functional J(u) thus becomes

x'(£)Q x(t) = X'(£)Q X(t)

where

ot
"
oo

otljo

_+

Let us now consider a fixed value of T. The minimization of
J(u) subject to the dynamic constraint (A-3) is therefore a well-
defined linear optimal regulator problem. The optimal control 1s

given by
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u(t) = - RIB'R(t) X(t) = - L*(t) X(t) (A-b)

where K(t) 1s the solution of the Riccati equation

3 - KB RIBRE), t < T

|
==

~~~
<t
N

]
=
~~
d
S’
x>
+
-]
=
~~
ct
S~
+

K(T) = 0 (A-5)

If we now write

[ =
]
——beea

and substitute into Eq. (A-4), u(t) may be written

1 1

u(t) = = B 'B'Ky5(t) x(t) = R B'ky,(t)wy

- Ly(t) x(t) - Ly(t)wg

From Eq. (A-5), the partitions K,; and k;, satisfy
L _ —1 .
- Ell(t) = KA + A'K); + Q- K;9B R TB'K,55
(A-6)
K11(T) =

|O
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._]:( = K 1

=12 =11+ + (A—E E _B_'.Ell)'k]_g; ElZ(T) = 9_ (A"7)

Note that 511 is independent of 512; both 511 and 512

independent of k22. Thus Ll are the optimal feedback galns in

are
the absence of constant disturbances.

We now let T + o to determine the "steady-state" feedback
gains. It is well-known [8 ] that as T + o 1in Eq. (A-6) the
solution 511(t) approaches X which is the unique positive-
definite solution of the algebralc equation

1

0=KA+A'K+Q-KEBER  B'K (A-8)

In addition, the "closed-loop" matrix

ol
n
=
i
jos]
@
=

has eigenvalues with negative real parts. Using this fact, 1t can
be shown that

K., = 1im k.. (t) = - (&
RS =

yix y (A-9)

Thus, the control that minimizes J(u) 1is

u(t)

"
|
|
|
=i
[
~~
ct
Nt
+
|

(A-10)

I
[
£
b=
1k
~~
ot
!
I
o
£
o
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Properties of Solution

The optimal control (A-10) consists of two parts. As already
noted, the first part represents the optimal control in the absence
of W The second term is a constant u, that scales with LIS
and assures correct system adaptation to the external disturbance.
It is instructive to 1lnvestigate the mean response, i.e.,

E{x(t)} = X, and the corresponding mean control input

u=-Lx-Lw, =~ L;x+ u, (A-11)

We can show the following:
Lemma: 1) is such that the system (A-1l) is in equilibrium,
.e., x = 0.

u
1

2) u, is such that u = - L;x + u  minimizes

J@ - 7aE+ TRE (a-12)
Proof: 1) From Eq. (A-1)
x=AX+Bu  +yuw,
but since A 1s a stable matrix, X+ 0 as t + o. Thus
-1
x=-A (B U * x wo)
2) To show the optimality of u_, substitute u

O,
into J(u) to obtain

69



]
!
[AY)
1]
(4
~~
B
1%]
+
o

Since x depends on u, , we substitute to obtain
J(u) = u'Ru_ - 2y'w (Irl)'f w_ - 2u'B'(K—l)'K w
= —0— —0 +~ -0 =X ¥ —0— "= S LY
Differentiating with respect to u, gives
3 J N
55 =0=2Ru -2B(E )'Kyw,
—o
or
-1,
= ' ' -
u, = R "B'(A )'K y w (A-13)

which 1s the desired result. Thus the system chooses a constant

inputfto adjust the system states 1n an optimal way to offset the

effects of W QED

In the above analysis, W, was assumed known. However,
the optimal feedback galns &1 and 22 were found to be lndepen-

dent of the wvalue of LA Thus the control law (A-10) will be

optimal for any W When LIS is unknown, we'simply replace

w, by 1ts best estimate w_(t). Since w, = 0, the estimate Qo(t) i

independent of Go(o) for 0 <t , and is used in the feedback loop

fi.e., a "trim condition".
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A

in lieu of w_.. The estimate w_ can be generated from x(t)

o )
by an "observer" that has arbitrary dynamics [12]. In fact, the

estimate @ can be made to approach Ww arbitrarily fast, i.e.,

0 (o]
wo(t) > W,
Furthermore, 1f X915 X5, «:o X, are available to the feedback

system, then W, can be estimated arbitrarily fast with a first
order system [12].
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APPENDIX B
OPTIMIZATION WITH TIME-VARYING OBSERVATION NOISE

One of the facets of the alircraft approach problem 1s that
the observatlion nolses assoclated with altitude related quantities
decrease monotonically with absolute altitude (or distance from
touchdown). This non-stationarity requires a slight modification
of our earller results dealing with optimlzation in the presence
of time-delay and (stationary) observation noise [7 ]. In this
section we present the new results.

Problem Formulation

The vehlicle 1s assumed to be described by the state-output
equations

x(t) = A x(t) + B u(t) + w(t) (B-1)

y(t) = Cc(t) x(t-1) + v(t-1) ; T> O (B-2)
A and B are constant, but C may be time-varying, thereby reflecting
outputs that vary with time. The driving noise w(t) and the
observation noise v(t) are non-stationary, independent, white
Gaussian noises with autocovariance matrices

E{w(t) w'(o)} = W(t) 6(t-0) (B-3)

E{v(t) v'(a)} = V(t) &(t-0) (B-4)

We assume that x(t=0) is random with mean and variance
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E{x(0)} = 0 (B-5)
E{x(0) x'(0)} = X

Our objective 1s to determine the nonanticipative control
input that minimizes the cost functional

T
J(w) = lm g E{f

[x'(t)Q x(t) + u'(¢)R y_(t)]dt}
T+co
0

conditioned on the noisy, delayed information (B-2). In addition
we desire a closed-form expresslon for the state covarlance

E{x(t) x'(t)} = X(t)

Problem Solution

It 1s easy to apply the techniques developed in [ 7 ]
(which apply to the stationary case) to the present problem. The
optimal control is given by

-1

u(t) = -R"1 B'K x(t) = - L* x(¢) (B-6)

where X 1is determined from the matrix Riccatl Equation

0= !

1=l

A+aE+aQ-

==l

BR ~B'X (B-T7)
ans where i(t) is the least-mean-square estimate of the system
state x(t). g(t) is generated by a cascade combination of a
Kalman filter and a linear predictor. The Kalman fillter generates
a least-mean-square estimate of the delayed state x(t-1) accord-
ing to
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A x(t-1) + L(t-1)C' (t-1)V 1 (t-1) [y (t)-C(t-T)x(t-1)]

;(t—r) =
+ B u(t-1) (B-8)
x(0) = E{x(0)} = 0
where the estimation error covariance matrix I(h) = E{e(h)e'(h)}
satisfles
£(h) = A £(h) + E(h)A' + W(h) - §(h)g'(h)z’l(h)g(h)§(h) (B-9)
£(0) = X_

The predictor generates the best estimate x(t) of the current

state from p(t) = i(t—r) by
x(t) = £(t) + AT [p(t) - E(t-1)] (B-10)
(B-11)

£(t) = A E(t) + B u(t)

A useful equation associated with x(t) can be found by differen-
The result 1s

tiating (B-10) and substituting (B-11) and (B-8).

A x(t) + B u(t) + AT [y(e) - c(t-1) p(£)] € 2t
(B-12)
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However, the term y(t) - C(t-t) p(t) can be represented by a

white-noise W(t-1) with autocovariance given by
E{R()W' ()} = Z(a)C'(a)V (a)C(a)E(a)8(a-B) (B-13)

In order to find a closed-form expression for X(t) we note that

x(t) may be written
x(t) = x(t) + e (t) + e (t)

where gl(t—r) is the error associated with estimating x(t-t), i.e.,

e, (t-1) = x(t-1) - x(t-1), and e,(t-1) satisfies

&, (t-1) = (A-z C'V*

Cle, (t-1) - Eg'z—l!(t—T) + w(t-1) (B-14)

where £ = I(t-t), etec.

e,(t) 1s the error assoclated with predicting x(t) from

x(t-1); 1t 1is given by

t+T . T .
e,(t) =f eé(t”"’)v_v(c—r)do = / 2% w(t-£)ag (B-15)
t 0

Finally, x(t) 1is given by Eq., (B-12).
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~ . »
Since x(t), e,(t) and e,(t) are all independent of one

another by virtue of Gaussianness and the properties of least-mean-

square estimation, we obtain for t 2 t,
E(x(t)x' (£)} = E{x(£)x'(£)} + Efe;(t)el(t)} + Efe,(t)ey(t)}
Since E{e,(t)ej(t)} = Z(t) and
T 1]
Ele,(t)ep()} = [ o2 p(e-p)cv e n(s-g) o' %ag
T 1
= feBar ez - &+ ue-0)1 A Bag

_ o d [taE A'E CAE g
- dgaf E(t-£) ef dg+0f w(t-£) eA'Eac

= 2T z(t-1) 2" 1(t) (B-16)
We obtain

T
E{x(t)x' (8)) = eATe(e-1)ed' T + [ eAfu(t-greh  Eag
0

A(t T) A'(t-1)

+ X(T)e

t -
+feA(t ~E)eATy (r_ryryle f(e-t)el TeR (-E)ge
N (B-17)
as our final result.
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APPENDIX C
EFFECTS OF MEAN DISTURBANCES ON SYSTEM PERFORMANCE

In this section we investigate the estimation and control
processes that are assocliated with initial disturbances present in
the optimal closed-loop system. For simplicity we consider the
no-delay (1=0) case and derive closed-form expressions for the
mean and covariance of pertinent system varlables.

The equations that govern the motion of the optimal closed-
loop system are

x(t) = Ax(t) - B L x(t) + w(t) (c-1)
x(t) = K x(t) + Z()C'VTIC e(t) + v(t)] (c-2)
e(t) = (A -z c'vicle(t) - £ ¢V lvie) + w(t)  (C-3)

where e(t) = x(t) - x(t) 1is the estimation error, and A = A - B L.

We assume that the initial disturbance x(0) 1is random with

zero-mean and covariance

E{x(0) x'(0)} = g o' (c-4)
Under this condition, the matrix I(t) 1s precomputed according
to

= (AL C'VTIO)Z + Z(A-Z C'VTIO) 4 2 o'V

e

cr+¥

(c-5)

1
(!)M
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where I 1s the value of E{e(t)e'(t)} at t =07, prior to
the application of the initial disturbance x(0). go would be 0
1f the system was inltlally at rest.

We wish to examlne the effects of a specific initlal condi-
tion x(0) = kg, drawn from the distribution of x(0). Thus, the
initial conditions for Egs. (C~1)-(C-3) are

e(0) = ko
x(0) = ko (Cc-6)
x(0) = 0

and we seek expressions for the resultant system means and covarlan-

ces.

System Error

Taking expectation of both sides of Eq. (C-3) gives

e(t) = (A-L C'V "C)e(t) e(0) = ko (c-7)
Thus, the mean error is

e(t) = ke(t,0)0 (c-8)
where ¢ 1s the transition matrix associated with (A-Z g'y‘lg),

$(t,0) = (a-z c'vic)e(t,0) ; #(0,0) = I (C-9)

80



Subtracting Egqs. (C-7) and (C-3) next gives

d(e-8) = (AL 'V IO (e-®) - C'Vhu(e) + wlt)
E{(e-8)(e-8)'}lyog = Lo

Therefore,

E{[e(t)-8(t)I[e(t)-8(t)]'} = #(t,0)Z 2" (t,0)

which can be shown to be
covle(t)] = Z(t) - #(t,0)0 o'9'(t,0) (c-10)
and which is independent of k.
State Estimate
We turn next to the estimate equation (C-2) to derive ex-

pressions for the mean and covariance of x(t). The mean X is
obtalned by taking expectations, thus

It _—?g(t) = A 3:(_ + I C'V C e(t) (c-11)
since x(0) = 0 we have
2(t) = ke f E(t-0)g ¢y o(1,0)0dr (c-12)
& x.y
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To findﬁthe coxariance of x we define, for convenience,
p(t) = x(t) - x(t). Subtracting Eq. (C-11l) from (C-2) gives for

p(t),
plt) = & p(t) + £ C'V i[c(e-8) + v(t)] (c-13)

It is possible to also show that the bracketed term has the pro-
perty

E{[C(e-e) + v(t)][C(e-€) + v(1)1'} = V&(t-1)
(C-14)

ct

- C #(¢,0)g o'#(x,0)C'

Thus, using Eq. (C-13) we can show that
E{p(t)p'(t)} = covlx(t)]
TeaA Ty t_- - —_
= oAty oA t-n/'eé(t Dy crvlc Zeé'(t-r)dr—x Y’
~0 0 === 2= L
where X  1s the varlance of x prior to t = 0.

System State

The mean of x(t) 1is simply the sum of Egs. (C-8) and
(c-12),

t =
x(t) = k[e(t,0) +f e2t=Tg ciy~le o(1,0)atl0 (C-16)
0

Alternatively, from Eq. (C-1) x(t) 1is also given by
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— t — .
(t) = k[eB + [TeE(®-Tp 1 9(r,0)at10 (C-16a)
0

Lastly, to obtain an expression for the covariance of x(t), it is
easlest to work from the relation

cov[x(t)] = cov[i(tf] + covle(t)] - M(t)-M'(t)

where . -
M(t) = E{x(t)e'(t)} - x(t)e (t)

Expressions for the first two terms have already been derived.
M(t) can be found by transposing and premultiplying Eq. (C-3) by
2(t) and postmultiplying Eq. (C-2) by e'(t). Summing and taking
expectations gives

d

4 E{x(t)e' ()} = EE{x(t)e' (£)} + E{x(t)e'(£)}'(a- C'V Tc)"
+ & CcVic(Ele e')-1)
Thus, using Egs. (C-8 ), (C-12) gives
E{x(t)e' ()} - x(t)&"' (t)
i foteA(t'”ze'z‘lg #(1,0)g 9'8'(1,0)+8' (t,1)d7
= - Y0'#'(t,0) (C-17)

TNoting that E{v(t)e'(t)} = -3 ¢ L(t) , E{X(&)v'(©)} = S z'¢
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Therefore

t
cov[x(t)] = E(t) + e I t . Jg A(t- T) z Yﬁlg zek A (t- T)

- [y+9(t,0)0][y+e(t,0)0]" (C-18)

Modifications for Non-Zero Time Delay

When the time-delay 1t 1s non-zero, the equations that
govern optimal closed-loop behavior are

x(t) = A x(t) - B L x,(t) + w(t)

xy(6) = K x,(8) + eATE(6-0)C VT HC ey (t-1) + y(t-1)]
e,(t-1) = (A-Z Q'K—lg)gl(t-r) -z Q’X_lg(t—T) + w(t-1)
%, (6-1) = A % (£=1) = B L xy(t-1) + & C'V" 1[0 (t-1)+y(t=1)]

where e,(t-1) = x(t-7t) - x,(t-1) 1s the estimation error at
t-t and 22 is the best estimate of x(t) conditioned on
El(t—r). The total error is the estimation error plus prediction:

error 92. Thus

e () + e, (t) = x(t) - x,(t) = e(t)

Using the above equations and following the same procedures
as in the earlier, no-delay, case, we can show for t > 1

' t ,
covie(t)] = e-A-T_z_(t_-;)eﬁ T i./ eAEW(t-g_)e-A- EdE
- e— ¢(t 1,0)g g'g'(t_r,o)eﬂ'T
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e(t) = k-e2%o(t-7,0)0" (C-20)

~ e ~ iy t g '] t
ch[£2(t)] eé(t-T)zTef‘.(t—T) + ./; eﬂ(t"g)eétg gvy—_lg E:.. A 1-' A (t- E)dg

- YoX,' (C-21)

x
where

t —_
v, = S Bty oyl a(e-rageo

and finally

covlx(t)] = eATr(t-r)eh'T 4 R(E-T)y A'(t-T) (c-23)
+./:te§(t‘5)e515 g'y'ngeﬁ'TeE(t‘g)dg
- [ +e— ¢(t -T 0)01[y2+e— ¢(t-1,0)0]"
x(t) = kly, + eh ¢(t -1,0)0] (C-24)
or
X(t) = k[eA(E-TIAT 4 theE(t‘g)g LeBTo(£-1,0)dEJ0  (C-24a)
T

Note E_e—l(t) = eg—TE(t-T)
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APPENDIX D
SYSTEM MODIFICATIONS FOR THRESHOLD CONSTRAINTS

In this appendix we derlve a representation for threshold
constraints that may be placed on displayed output variables.
These constraints may arise from visual thresholds, i1.e., a
signal must move a flxed distance before motion 1s perceived by
the human, or may arlise from indifference thresholds, 1.e., a
human may not respond to a slgnal when 1t 1s sufficlently close
to its nominal position.+ In our analysis we do not distinguish
between these effects.

We postulate that if y(t) = c'x(t) is displayed, the human
percelves the scalar signal

yp(t) = f(y(t)) + Vy(t) (D-1)

where vy(t) is the observation nolse assoclated with y(t) and f(y)
represents the nonlinear threshold element, viz

y-a y>a
f(y) =¢ 0O —a<y<a (D-2)
y+a y<-a

This element is shown in Fig. D1l.

The signal y(t) is assumed to be a Gaussian random variable
wlth mean m and standard deviation g, both of which may depend on
t. The probability density of y(t) is therefore

TSuch thresholds have been considered before in the classical

manual control literature [13]. However, they are usually
ignored because of their relative unimportance in compensatory
tracking tasks with "good" displays and relatively large signal
variances.
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2 2 )
L ~(y-m7/20 (D-3)

Statistical Linearization

In our linearized analysis € the man-machine interface, we
cannot include a nonlinearity of the form (Eq.D-2) directly, but
must replace it by an equivalent. gain %(y), as is common practice
[14]. Since y(t) 1s assumed Gaussian, the Random-Input-Describing
Function (RIDF) or statistical linearization finds pertinent ap-
plication [14-15]. The RIDF is the linearized representation
that minimizes the difference

a(t) = £(y(£)) - f(y) - y(t)
in a mean~squared statistical sense. Thus,

fly) = arg.min E{d°} (D-14)
It can be shown that

-1

o© (-]

f‘(y) =f y f(y)p(y)dyf y2p(y)dy (D-5)

- 00 00

The RIDF may now be computed for the threshold (Eq.D-2).
Substituting into Eq.(D-5) gives

~ I 2,, 2
(0%+m?)  F(y) = jr(y2+ay)e (y-m)2/20° gy +J{(y —ay)e” -(y-m)“/20° _dy
—o0 o 2‘" ov2n



Substituting w
£(y)

where

v (m)

(y-m)/o/2, a = (a+m)/gv/2 yields

[y(m) + v(-m)] + (oZ+m>)~ 1

-a
2
l: (20°w2+2/2 mow+m+acw/Z+am)e” " dw
nJ
-3 -a
2 2 = 2
g—o—_‘/‘wze"w dw + -(M/we—w dw
v/ YT
—c0 —oo

Making use of the relations

-b

-—00

gives

2
[ we W dw
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But,

2
g—-/.e—" dw = l-erf(b) = erfec(b)

So that we finally obtaln

atm
fy) = % (02+m2+am)-erfc(§3§) - omJg e (0/5)
o '

a-m
2 2 a-m - 2 2 -1
+ (0°+m“-am)-erfc(——) + OHNF-e (o/§> - (0%+m
(o/?) T )

(D-6)
as the linearized representation of the threshold element.

When y(t) is a zero-mean process, the above expression
simplifies considerably to

Fly) = erfc(—i—) (D-7)
ov?2

Thus, in our subsequent analysis it 1s assumed that the human

perceives

yp(t) f(y)y(t) + vy(t)

= c'me) + v (t) 5 e=f¢ (D-8)
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Furthermore, since only the quantity §jv;1§ appears in the mathe-
matical analysis, where V& is the power density of the white ob-
servation noise v(t), it 1s possible to assume that the human
percelves

yi(e) = y(8) + v () () . (D-9)

The representations (Eq.D-8) and (Eq.D-9) are mathematically
equivalent. Equation (D-9) 1s simpler to work with, however.

Foveal Viewing Conditions (m=0)

Under foveal viewing conditions, it has been found that the
observation noise covariance V_ scales with the variance of y,

y
viz

V =p .0 (D-10)

where Py is the "observation noise ratio”" [6 ]. With the incor-
poration of threshold constraints one now associates with y(t)
the noise_v&(t) = vy(t)~f-l(y) as in Eq.(D-9). Thus, the obser-
vation noilse covariance V& is given by

2 =2
V! = c_.f
v = Py (y)
~2
= p o
py y
where
~1
o = c[erfc(—§~> = "equivalent" rms (D-11)
V2
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Thus, the observation noise associated with y(t) scales with ¢
and not with o. Figure D1 shows 6/a as a function of o/a. For
g>>a we find o~0 as expected. For o<a,8 is very large since no
useful information can be obtained from y(t) in this region.

It is interesting to compare the above results with those of

Levison [16]. Levison assumes a model for 35 of the form

which is linear in 02. If one fits a line to the linear part of
6/a in Fig. D1, the line would intersect the ¢ axis at about
& = 1.5a. Thus,

2

2
Og ~ 2.3 a

A typical value for the visual (or indifference) threshold on
position quantities is a = .05 degrees (3 min) of visual arc.
Hence

di ~ 5.8 x 1073 deg;2

which agrees very well with the value of 02 = 5.1 x 10_3deg2
as found by Levison.

Furthermore for o<a, 3 is very sensitive to small changes

in 0. This 1s reflected in experimental results which showed
high variability in data taken in "small signal" tracking tasks.[16]
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Strategy Variations

There is an additional aspect of system behavior that can
arise from threshold effects. Let us assume that the nominal
cost functional to be minimized is

J(u) = E{q§y2 + g ﬁz} (D-12)

and that y is a displayed variable. Since y 1s actually displayed,
it is reasonable to expect that y in the cost functional (D-12)
should in fact be the perceived y, namely yp. Thus, one would
argue that the human is attempting to minimize

J'(u) = E{ 2y2 4 g ﬁ2}

- qup
2 2 2
= a,0 + g o0,
1 yp u2
= |q., erfef[—2 ° o2 + g 0% (D-13)
1 y u
o. V2
y

Consequently, for small signals one might expect control strategies
that differ somewhat from those obtalned when signal rms is much
greater than threshold.* For smaller oy relatively more importance
is placed on cg as the effective weighting on G; decreases (for
fixed g).

+Note that as oy>>a, erfe=1.
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Results of this nature have been found in experiment.
Levison [16] conducted a series of identical k/s tracking tasks,
but each having different display gains. As the display gain
was decreased, the human controller gain was also found to de-
crease. When threshold effects are neglected, theory fails to
predict this trend. However, further research is needed in this
area to understand the inter-relation between display gain and
controller strategy.
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