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Abstract

The primary concern in this research is with communication theory problems in-
corporating quantum effects for optical-frequency applications. Under suitable con-
ditions, a unique quantum channel model corresponding to a given classical space-time
varying linear random channel is established. A procedure is described by which a
proper density-operator representation applicable to any receiver configuration can be
constructed directly from the channel output field. Some examples illustrating the
application of our methods .to the development of optical quantum channel representa-
tions are given.

Optimizations of communication system performance under different criteria are
considered. In particular, certain necessary and sufficient conditions on the optimal
detector in M-ary quantum signal detection are derived. Some examples are presented.
Parameter estimation and channel capacity are discussed briefly.
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Part I. Development of Communication System Models

A. GENERAL INTRODUCTION AND SUMMARY OF PART I

The familiar statistical communication theory stemming from the work of Shannon,
2 3

Kotelnikov, and Wiener is a general mathematical theory. For its application appro-

priate mathematical models need to be established for the physical sources and channels.

For frequencies around and below microwave the electromagnetic fields can be accu-

rately described by classical physics, and the statistical theory can be applied directly

to channels for such fields. An example is furnished by the study of microwave fading

dispersive communication systems.

At higher frequencies, however, quantum effects become important. Even an other-

wise deterministic signal at the output of the channel has to be replaced by a statistical

quantum description. Furthermore, a choice among various possible, but mutually

exclusive, measurements on these signals has to be made to extract the relevant infor-

mation. Therefore we have to develop communication system models in a proper

quantum-mechanical manner, and to consider the measurement optimization problem

that is superimposed upon the existing theories. Since measurement in quantum
5-9theory is of a totally different nature from classical measurement, special physical

consideration has to be given to the receiver implementation problem. The necessity

of investigating this class of quantum communication problems springs from recent

advances in quantum electronics, which indicate that efficient communications at infra-

red and optical frequencies will be feasible in the future. We shall refer to the usual

communication theory " for which quantum effects are neglected as classical com-

munication theory, in .contradistinction to quantum communication theory.

The necessity of considering quantized electromagnetic fields for communication

applications was suggested twenty years ago by Gabor in connection with the finiteness

of the channel capacity. It was then soon recognized that when the signal frequency

is high relative to the system temperature, proper quantum treatment has to be given

in communication analysis. Since the advent of optical masers there has been more

extensive consideration of quantum communication, beginning with the work of

Gordon. ' In the early studies " attention was concentrated primarily on the

performance of the system, in particular on the channel capacity, incorporating specific

receivers of measurement observables. Some generalized measurement schemes have
37-41also been considered. Development of general theories closer in spirit to clas-

42-44
sical communication theory was pioneered by Helstrom, who has formulated and

solved some basic problems in the quantum statistical theory of signal detection and

estimation. Further significant works of a similar nature are due to Jane W. S. Liu '
47 48 49and to Personick. ' A comprehensive review of these studies on optimal quantum

receivers is available. There are still many unsolved fundamental problems in a general

quantum communication theory, however, some of which will be treated in this report.



As for system modeling, we want to find a specific density operator channel repre-

sentation for a given communication situation. This problem has not been considered

in general before. The models that have been used pertain to representations of the

received fields and are obtained by detailed specific analysis in simple cases, or by

judicious choice from some standard density operator forms in more complicated situ-

ations. ' The quantum channel representation for a given classical linear filter

channel, for example, has not been given. Such relations between the input and output

signals are needed for formulating problems such as signal design for a given channel-

receiver structure. A prime objective of our study is to establish a general.procedure

for setting up such quantum channel representations, with emphasis upon unique or

canonical quantum correspondents of given classes of classical channels.

Our work is divided into two relatively independent parts on system modeling and

system optimization. In Part I we establish a procedure by which various density oper-

ator channel representations can be written from a given classical channel specification.

This is achieved by a quantum field description of the communication system parallel

to the classical description. The problems of transmitter and receiver modeling are

also considered. Some applications to optical frequency channels are given. In

Part II we have derived some necessary and sufficient conditions for general optimal
52 53

receiver specification in M-ary quantum detection. ' Estimation and channel-

capacity problems are also briefly treated. Some examples illustrating the major

results are given. The study reported here provides the most general existing frame-

work for quantum communication analysis.

1. 1 Summary of Part I

In Part I we are concerned with the task of establishing quantum-mechanical com-

munication system models for various communication situations. We shall develop

quantum channel representations for different transmission media, signaling schemes,

and receiver classes. These representations are clearly prerequisites of a detailed

system analysis. In particular, we want to find, under reasonable assumptions, a

canonical quantum channel model corresponding to a given classical specification. A

general procedure that yields the quantum channel characterization for a broad class

of systems through the classical characterization will be described. We shall give a

preliminary discussion on the purpose and nature of our theory.

1.2 Relation to Previous Work

The development of quantum communication system models has not been considered

in general before. In previous work on quantum communication the received fields have
42-49

been considered directly. The receiver is usually taken to be a lossless cavity

that captures the incoming field during the signaling interval. The desired quantum

measurement can then be made on the cavity field, which is represented in a modal

expansion in terms of orthonormal spatial-temporal mode functions. While such a



model of the received field can be useful, it is not sufficient for describing general com-

munication systems.

In the first place, a density operator representation for the cavity field modes may

not describe all possible receivers. Second, the connection of the cavity field with the

channel output field is unclear. The most important point, however, is that without

knowledge of the channel output field commutator there is no way to accurately determine

the cavity field density operator representation in general. Such a commutator, of

course, is closely related to the channel properties. Thus a more detailed consideration

is required to develop the receiver input density operator representations for the entire

communication system. Furthermore, general relationships between the input signals

and the output fields are needed for formulating problems such as signal design.

Our theory gives a general quantum description of communication systems including

the channel, the transmitter, and the receiver. We shall develop a procedure by which

a proper density operator representation can be constructed from the channel output

field directly for any receiver configuration. The communication system will be

described quantum-mechanically in away that parallels the usual approach in classical

communication theory. The complete quantum description of the channel output field

will be given in terms of the signal and channel characterizations. While certain

assumptions are made in our development, only given classical information will be used

to supply the corresponding quantum information needed for a complete description of

the communication system.

1. 3 Nature of Our Theory

We restrict ourselves to communication systems that are described classically by

randomly space-time-variant linear channels. We need to develop a quantum descrip-

tion for such systems, and for this purpose some explicit physical consideration is

required. We frequently invoke the explicit physical nature of the signals as electro-

magnetic fields, and regard the "channel" as the medium for field transmission. We

also make the important assumption that the field propagation is described by linear

equations.

A description of communication systems from the viewpoint of classical random

field propagation is discussed first. To develop the corresponding quantum theory, we

need to establish certain concepts and results in quantum random processes. A

development of linear quantum field propagation can then be given. When a classical
54-59channel is specified as a generally random space-time-variant linear filter we

shall regard its impulse response as the Green's function of a stochastic differential

equation ~ describing signal transmission. Our theory then gives a quantum descrip-

tion of such a situation, and can therefore be viewed alternatively as a procedure for

quantization of linear stochastic systems. Having obtained a quantum specification of

the channel output field, we shall establish the procedure by which density operator

representations can be constructed for realistic receiver configurations.



A most important purpose of our analysis is to give, under certain assumptions, the
unique quantum system specification from the usual given classical specification. That
assumptions are necessary in general should be apparent if we recall that quantum

classical correspondences are frequently many to one. The utility of such a unique

quantum classical correspondence is that we do not then need to analyze each communi-
cation situation anew, and can directly obtain the quantum characterization from the
classical one without further reference to how the classical characterization was

obtained. Such an approach is convenient and yields useful quantum models comparable
to the classical ones. It can be applied without detailed knowledge of quantum theory.
We shall give further discussions of these points when appropriate.

1.4 Background

While the specific theory presented here appears to be novel, it has significant roots
in both classical random processes and quantum statistics.

Our system characterizations, for the most, part, are given by state-variable dif-
ferential equation descriptions as the laws governing field transmission. This mathe-
matical treatment of classical stochastic systems is well known in the lumped-parameter
case, ~ and can be extended immediately to distributive systems. Similar treatment
of quantum stochastic systems leans heavily on the works of Lax. ~ In Section C we
give a self-contained development of quantum random processes which is essential for
our later treatment. To establish the quantum classical correspondence, we also need
some generalized fluctuation dissipation theorems that will be discussed in the main
text and in Appendix C.

We shall employ noncovariant quantum fields throughout our treatment which are
74 75discussed in many places (see, for example, Louisell and Heitler ). A brief descrip-

tion of the mathematical framework of quantum theory is given in Appendix A.

1. 5 Outline of Part I

In Section B we discuss classical communication from the viewpoint of random-field
propagation. The system characterization is given in the relatively unusual differential

equation form, which is suitable for transition to quantum theory. The concept of a
random Green's function of a stochastic differential equation is introduced. The rela-
tionship of our description to a more common one is discussed. It should be noted that
many features of this classical description are retained in the quantum domain.

In Section C we give a systematic treatment of quantum probabilities and quantum
stochastic processes. The important notion of a Gaussian quantum process that is fun-
damental to much of our later discussions is introduced. New consideration is-also

given to the problem of summing independent quantum observables, and to the possibility
of Karhunen-Loeve expansion for quantum processes. This material may be useful in
treatments of other quantum statistical problems.

In Section D we develop the theory of linear quantum field propagation paralleling



the classical development of Section B, A general characterization for Gaussian quan-

tum field is given. The necessity of introducing quantum noise in extending the classical

treatment to the quantum area is explicitly shown. The general problem of quantum

classical channel correspondence is formulated and discussed. Under Markovian or

stationary situations the resulting quantum system characterization is related to the

classical one through the fluctuation-dissipation theorems, which specify the channel

output field commutator.

In Section E a canonical quantum channel representation applying to any transmitter-

receiver configuration is given. Possible methods for obtaining other representations

are also discussed. The different resulting representations are considered and com-

pared from several viewpoints. Emphasis is placed on the flexibility of our procedure

for achieving convenient models. Generalization of the results to stochastic channels

is discussed and detailed. Stochastic signals are considered. The entire communica-

tion system is then treated in a unified manner with a combined representation.

In Section F we discuss the quantum system models of some typical optical channels.

The representations of radiative loss and dissipative channels are contrasted and simple

treatments for the atmospheric and scattering channels are given. An optical trans-

mission line is also considered from a basic physical description.

In Section G a detailed summary of .the results of Part I is given. Suggestions are

made for further work on some outstanding unsolved problems.



B. CLASSICAL RANDOM FIELD PROPAGATION

AND COMMUNICATION SYSTEMS

We begin our development by considering the theory of classical random field propa-

gation and the description of communication systems from this viewpoint. The most

important point is that our quantum analysis will be carried out in a framework exactly

analogous to the treatment considered here. Our quantum classical channel correspon-

dence will also be established through the following differential equation representations.

Furthermore, many features of our present classical description will be preserved in

the quantum treatment.

The introduction of a physical field description for communication systems is not
C f ^ C 1 * 7 Q Q O Q O Q A

new. In classical analysis of optical channels ' ' ~ and of reverberations, '

the distributive character of the signals is also considered. Our approach is quite dif-

ferent from these works, however.

We shall now start consideration of the channel, by which we mean the medium for

signal transmission. No modulation and coding will be discussed; instead we consider

the channel outputs and inputs directly. The information- carrying signals are space -

time dependent electromagnetic radiation fields that travel from a certain space-time

region through the medium to a distant region. The channel should therefore be char-

acterized in terms of the equations that govern electromagnetic field propagation.

In general, the channel introduces irreversible random transformations on the

signals. Channel distortion and noise will be included in the dynamical equations

as random driving forces or random coefficients. Our channel is thus generally a

space-time dependent stochastic system. Such a characterization can be used to. define

the transition probability in the conventional description, as we shall see eventually.

Throughout we assume, for simplicity, that depolarization effects of the transmission

medium can be neglected. Furthermore, we consider only one polarization component

so that we have a scalar rather than a vector field problem.

2. 1 Partial Differential Equation Representation of Channels

Our communication channel is specified by the equations of electromagnetic field

transmission through a given medium. To give a general description, let us con-

sider a fundamental scalar field variable ijj(r~, t) which can be complex and from which

the electric and magnetic fields are obtained by linear operations. The precise nature

of i|j(r,t) does not need to be specified yet. Let the dynamical equation describing

the channel be of the form

, t ) , ( I )

where 2£ is a random space-time varying partial differential operator with respect

to t and the components of r, E( r , t ) is the deterministic excitation, and^"(r,t) is



a random-noise driving field with zero average

We use the vector r to denote collectively the chosen space coordinates, and t is the

time coordinate.

When iMr. t ) is complex we also need to consider the equation

( r , t ) , ( 2 )

where S£ is the adjoint of the operator 3? , The star notation means that the complex

conjugate of the quantity is to be taken. The noise source &~(r , t) is generally assumed

to be a Gaussian random field.

In general, 3? can be a nonlinear random operator. We shall always make the

important assumption that 3? is a linear operator. We first consider the case wherein

3? is nonrandom but possibly space-time varying. Stochastic properties of t£ will be

introduced later. The channel therefore becomes a spatial-temporal linear filter. All
8 S

relevant quantities are also allowed to be generalized functions including generalized
o / . *

random processes, and suitable restrictions are assumed to insure the validity of the

operations.

Let the domain of our * \> ( r , t ) be the set of square integrable functions,

/y \\i (r, t) 4 < ( r , t ) drdt < °o,

for integration over the space -time region V of interest. Every such function can be
87

expanded in the product form

i M F , t ) = 2 *,.(?) (3 (t) (3)
k k K

= S \A (F>yn
(t)- (4)

k,n kn k n

In order to insure that the distributive system can be conveniently separated into

an infinite set of lumped parameter systems, or that the method of separation of vari-

ables can be applied, we let

& = & l + & 2 , ( 5 )

where <£ is an ordinary differential operator with respect to t, and <g is one with

respect to the components of r. Both 3? and If are presumed "to possess a complete

set of orthonormal eigenfunctions in their respective domain with appropriate boundary
87conditions and definition of inner product. Equation 5 is then equivalent to the condition

that & possesses eigenfunctions separable in space and time arguments; that is,



The assumption (5) simplifies analysis without being at the same time a severe restric-

tion. In fact, in electromagnetic theory, wave equations that mix space and time are

rarely encountered, if at all.

2. 1. 1 General Case

With the decomposition (5) we can generally expand ijj(r,.t) in the form (3) with <|>k(?)

being the normalized eigenfunctions of & for the boundary condition of interest.

/v 4,*(r) <|>k,(r) W 2(r) dr = 6kk, (9)

£ 4>k(?) «£(?') W 2 ( r ' ) = 6(?-?'). (10)
K

The spatial region under consideration is denoted by V_. Here 6, , , is the Kronecker

delta, and 6(r-r") is the Dirac delta function. The inner product between two eigen-
o 7 on

functions is defined in general with respect to a possible weight function W_(r) . '

The weight functions are usually required when the solution of the differential equa-

tion attenuates. In our case they will occur if there is spatial dissipation in the prop-

agation. Such spatial dissipation will arise when *£' involves odd spatial derivatives

•in the wave equation of the electric or the magnetic field — a situation that is unlikely

to occur for electromagnetic field transmission obeying Maxwell's equations. In partic-

ular, if the loss arises from a conductivity that is only frequency-dependent, odd-

time rather than space derivatives appear in the wave equation. Therefore we assume

for convenience throughout our treatment that N

W 2 ( ? ) = 1. (11)

A more general discussion relaxing condition (11) is given in Appendix D.

Since ^"(r,t) is taken to be Gaussian, it is completely specified by the covariances

<jn?,t).T(r't')> = C (?t;? 'f) ' • (12)
•^ &

<JMF, t).r(?'t')> = C ,. (?t;r't '). (13)
F "&~

Assuming that every sample function of ^"(r,t) is square-integrable, we can



90generally expand

J r(?,t)= Z 4> ( F ) f (t) (14)
k k k - .

for a set of nonrandom functions {4>, (r)} defined by (8)-(10) and another set of Gaussian
K

stochastic processes {f, (t)}. In general, the {f, (t)} are mutually dependent with sta-
K. K.

tistics specified through (12)-( 13). If we also write

E(?, t ) = Z ek(t) ^(F), (15)
K

Eq. 1 is reduced to the following set of ordinary differential equations

( \ k +^ ' 1 )P k ( t )= e k ( t ) + f k ( t ) . (16)

These { p ( t ) } define our field ^(r , t ) completely and will be referred to as the time-

dependent spatial mode amplitudes or simply amplitudes.

We shall assume in general that the noise source is diagonal in <J>, (r). That is,
K.

k

and

C ' (r t ;r ' t ' ) = :
y F . 1

This assumption is discussed briefly in Appendix D. It holds when the noise source is

spatially white, that is, 6-correlated in space. Under (17 ) and (18), the {f ,( t )} becomes

statistically independent with

< f k ( t ) > = 0 . (19)

< f k ( t ) f k , ( t ' ) ) = 6kk,Ck ( t . f ) (20)

Note that when (20) - (22) are k-independent the noise field ^"(r,t) will be spa-

tially white. We shall refer to the system (16) with statistics (19)-(21) as our

"general case," although still more general situations are also discussed in Appen-

dix D.

We now proceed to investigate the properties of (16)-(21). . We treat stochastic



integrals, etc. , in the mean-square sense. . No attention is paid to strict formal rigor.

Careful treatments can be found elsewhere. ' '
87 8Q

Let h, ( t , T ) be the Green's function of X +
K. xC

= 6(t-r) (22 )

with the initial conditions

3Ph(t,T)
= o,

t=T.

p = 0 , 1 , . . .,n-2 (23)

n-lat

when X, + .£?' has the form
K. 1

X + & ' = a (t) -^ + a (t)k 1 o n i

(24)

(25)

We will assume for simplicity throughout our work that a (t) = 1. We set

h k ( t , r ) = 0, t < T. (26)

95This Green's function h, ( t , r ) is also the zero-state impulse response of the differential

system described by (16). The zero-state response (3, (t) for an input e, (t),
K. K.

can therefore be written

P k ( t ) = l \ h k ( t ( T ) e k ( T ) d T ,

where e, (t) is started from t = t , and the initial state,
K O :

' -^Ti Pk(t)
dt

( 2 7 )

is taken to vanish. When (27) is not zero we can include them in the differential equa-
R7 *

tion (16) as sources by the so-called extended definition of (X, + 2£ ) p, (t) for non-
K. 1 iC

homogeneous initial conditions. In general, for the form (25) we should enter as sources

10



on the right-hand side of (16)

= Jr=l h'=
(28)

We have used superscripts to denote derivatives with respect to the argument of the func-

tion. Thus (28) involves higher derivatives of the delta function.

The output P k( t ) of (16) for arbitrary initial conditions can therefore be written down

with h, ( t , r ) alone.

n n
P k ( t ) = 2 Z

r=l n'=l dr
T = t

h k ( t , r ) ek(r) dr + /M hk( t ,T) f k (T ) dr. (29)

With (19)-(21) , the P, (t) are also independent Gaussian processes if the initial distribu-

tion for (27 ) is also jointly Gaussian and independent for different k. In general, the

statistics of ( 2 7 ) are .assumed to be independent of those of {f, (t)}.

In many cases, however, it is reasonable to assume that the initial state (27) arises

from the noise sources f, (T) before the signal is applied at t . Thus if we split the
K. O

usually non-white additive noise into two parts

V*^ f oo M t . T j f . (T) dT
Iv ^̂  i\ K.

(30)

h k ( t ,T) f k (T) dT + /j^ h k ( t ,T) f k (T) dT, (31)

we can make the replacement

n n

I I
r=l n '=l

(-I) '
r

dr = 1 h k ( t , T ) f k ( T ) dr.

T = t

(32)

In this case the first term on the right of (29) can be taken to be zero. We then just need

to consider

Pk(t) = Jt h k ( t ( T ) ek(r) dT + nk(t)
o

(33)

without further reference to initial conditions.

It is clear, that the output statistics for Pk(t) are now fully defined through h, ( t , r ) ,

11



and the statistics of fk( t) are given by (19)-(21). We can also form an arbitrary set of

linear functionals of {p,(t)} which will be jointly Gaussian with statistics determined

accordingly.

It is important to point out that the noise source ^"(r,t) or f i _ ( t ) in our differential

equation description is a thermal noise associated with the filter system. It is possible

to have other independent noise added to ^(r , t ) or Pk(t). Noises from different sources

can clearly be treated together in a straightforward way.

2. 1. 2 Markov Case

With a particular choice of *\>(r , t ) it may be possible under some approximations

to have

, t « ) = ZK*(t)6(t- t ' ) (34)

C „ ( t , t ' ) = 2K^(t) 6(t-f) (35)
2F & *

for the corresponding noise source ^"(r,t). In this case the {f^(t)} become inde-

pendent white noises so that each Pk(t) is a component of a vector Markov process.

This Markov vector process is formed by Pk(t) and its higher derivatives.

With the same approximation that leads to (34) and (35) one frequently also finds

that 2?. only involves first time derivatives. Thus Pk(t) becomes a Markov process

by itself. For simplicity of presentation, we shall mainly consider this case instead

of the vector Markov one. In Appendix B the vector Markov case is treated. As

we only look at the variables {p, (t)}and their complex conjugates, the vector Markov
K.

case leads to results that are also similar to those obtained in the strict Markov case.

This point is made explicit in Appendix B.

We therefore consider the first-order differential equation for each k.

(Xk+^JP^tH e k ( t ) + f k ( t ) (36)

< f k ( t ) > = 0 (37)

< f k ( t ) f k , ( t ' ) > = 6 k k , 2Kj ( t )6 ( t - f ) (38)

< f k ( t ) f k , ( t ' ) > = 6k k ,2K2(t)6(t-t ') . " . (39)

k kThe functions K (t) and K9( t) are commonly called diffusion coefficients. In such
1 L* ^^^~^^~ -

a representation the Pk(t) are frequently complex so that we use the following

vector and matrix notations when convenient.

12



p k ( t ) = l

- I - 1
~* * o

and write

( \ k+^ 1 )P k ( t )= e k ( t ) + fk(t). (40)

For this complex Pk(t) case it is more appropriate to consider {Pk(t), Pk(t)}as a jointly

Markov process. To distinguish from the vector Markov case discussed above, we shall

not refer to p, (t) as a Markov vector process.
*— iC

We shall now give a brief quantitative development that will be used in .our later

work. Further details may be found, for example, in the work of several authors.

In the present development, we follow closely Helstrom, but also derive some other

results of importance to us. For our situation of interest it is more convenient to adopt

the Langevin-Stratonovich ' ' or Ito ' viewpoints rather than the Fokker -Planck -

Kolmogorov ' ' one. They are fully equivalent, in our case, however.
95We define the state transition matrix, h, ( t , r ) of Eq. 40, by

) = 0 , t > T (41)

under the initial condition

h k ( T , r ) = I . (42)
***J\. r**

Here

13



and, for simplicity, we have taken the coefficient of d/dt in %' to be unity. This transi-

tion matrix h u ( t ,T) is then

|

hk(t ,T) 0

I , (43)
* I

0 \(t,^

where, for t > T, h, ( t , r ) is the same as the zero-state impulse response of (36).

We define the additive noise vector

n, (t) = /* h, ( t , r ) f, (T) dr (44)\ r rf°i l r * ' f l r * 1 * '—K — °o ~K -K

), (45)

where the signals e, (t) are again assumed to be turned on at t = t. We can write as

a particular case of (29)

P k ( t ) = £k(t. t
0)Pk(t0) + /J h k ( t , T ) e k ( T ) d T + n'k(t,to). (46)

The conditional variance

is therefore

T

where T denotes the transpose of a matrix

If we further define the covariance

ik(t,t') = < [P k ( t ) - / J y t ,T)e k (T)dT][p k ( f ) - / J h^t'Tje^rJdT]11), (49)

we have

;') <b, (t ' . t1). t > t1

14



:, t) - hk(t, t' ) < t> k ( t ' , t ' ) hj^t, t '), t > t ' . (51)

It is also convenient to set

< f k ( t ) f £ ( t ' ) > = 2Dk(t) 6(t-t') (52)

with

P k ( t ) = [ , 1 (53)

K^(t) K^*(t)

so that

5,k( t , t ' )= '2 /* h j f t . - r ) D (T) h-^t.-r) dr, t > t1. (54)

We next assume that the system is stable. That is,

lira h (t, t') =0. (55)
t' —-oo ~

From (47) and (55) we therefore have

= 2 • f -oo tk ( t ' T ) Pk ( T ) i ik ( t ' T ) d T - (56)

As discussed in the general case, we see from (56) that in this Markov case the vari-

ance <k (t ,t ) arises from the random force f, (t) for a given D, (t). The initial sta-
^K. O O ~"1£ t+*K.

tistics of (3, (t) can therefore be specified as a Gaussian distribution with zero mean and— Jtc
variance

, r) Dk(r) h ( t 0 , T ) dr. (57)

Now it can be readily shown from Eqs. 51, 52, 45, and 57 that

< 5 8 >

Together with (50) this justifies the representation

h k ( t , T ) e k ( T ) d T + lyt) (59)
o
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without further reference to the .initial condition p, (t ).
— iC O

In any case, it is most important to observe that the statistics of the process Pk(t)

are completely specified by h k( t , r ) and pk(t), or equivalently by hk(t,-r) and Jk(t,t). By

differentiating (56), we arrive at

^*k(t,t) = 2Dk(t)- Ak(t) $k(t , t)- £k(t,t) Aj(t) (60)

if we write

97Equation 60 is a special case of the well-studied matrix Ricatti equation. We call (50)

and (60) the fluctuation-dissipation theorems for the process

From our viewpoint, the substance of a fluctuation-dissipation theorem is to relate

one- and two-time statistics of a process in a simple, convenient, but nontrival way.

Such a relation can intuitively be seen to exist for a Markov process (or a component

of a Markov process obeying a different equation with white driving noise). If A, (t) or

h, ( t , r ) is interpreted as dissipative, we understand why the theorem connects dissipa-
*^«&

tion to the fluctuation. Thus given the impulse response h,( t , T), we only need

to know the one-time <l>k(t, t) or D, (t) to give the two-time covariance ck ( t , r ) and

!b-iit
!b-i(t' ))• When the system is time -invariant, in that

A, (t) f A, independent of time
** K «•"* *&• - '

with a stationary driving force

D, (t) = D, independent of time,
~ K ~ K-

we see from (56) that 4>, ( t , t ) is independent of t and the process p, (t) becomes also sta-
~K — K

tionary. The statistics in this equation is even specified by just h, (t— r) and a con-

stant pk or Ak.
Under our Gaussian assumption the fluctuation-dissipation theorems allow us to

specify the complete process by the mean response h, ( t , r ) and the one-time behavior

4>, ( t , t ) . In our later treatment of quantum-classical system correspondence, the one-

time classical behavior will be connected with the quantum behavior system from

thermal-noise representations. With fluctuation-dissipation theorems of this nature we

shall then have also established a complete correspondence.

Although we can write down the transition probability

which defines completely the Markov processes, such explicit equations and other

16



details are omitted here because they can be obtained straightforwardly in case we need

them.

State -variable Markov process representations have been used for communication
98-103application before. " In contrast to previous cases, we use Markov processes

strictly for channel representations. Furthermore, we attach physical interpreta-

tions to these representations as the equations derived from basic laws of physics that

govern field transmission.

2. 1. 3 Stationary Case

It may occasionally be unsatisfactory to use a Markov approximation like the one

discussed above. In this case the force fk( t) cannot be taken to be white at all. In gen-

eral, there will then be no fluctuation-dissipation theorems for an arbitrary Gaussian

process. For the particular case of a stationary system, however, such theorems

do exist ~ ' and will be described below.

Let the equation for p . ( t ) be

( X k + > 1 ) P k ( t ) = f k ( t ) , ( 62 )

with

<yt )> = 0 (63)

<f k ( t ) fk(t ' )> = 6kk,Ck(t-t«). (64)

Here we have taken Pi.(t) to be real, since it is more appropriate to consider directly

the electric and magnetic fields in such situations. The driving noise source fiJt) is
Jx

stationary, and.jSf is assumed to be time -invariant. We can then write (62)in the Fourier

representation

w) Pk(co) = fk(co), (65)

where

A(co) = /^ eia)t A(t) dt . . . (66)

for a -process A(t). We also define

<A( w )B*(w)> = /^ dt e- i a> t<A(0)B*(t)> (67)

for any two processes A(t) and B(t).

If we now take Pk(t) to be the electric -field amplitude for the k mode and assume

17



that the fields are in thermal equilibrium with an environment at temperature T, we

have

2k T I
<f*(co)fkM> = <\Mf>)> - -f-^k(«) (68)

2k T
(69)

Here kR is Boltzmann's constant, and ^,(^) is the imaginary part of 3?, (

Thus the correlation of fk( t ) is determined completely by X, + % ' and the system tem-

perature T. The interpretation of Eqs. 68 and 69 as a fluctuation-dissipation theo-

rem is obvious.

The utility of such a theorem for our research has already been discussed. In

our later quantum treatment we shall further elaborate on the nature of Eqs. 68 and

69 and its application to our problem.

Fluctuation-dissipation theorems for fields in all of our cases can be obtained

by combining the results for mode amplitudes in a series expansion. They will be dis-

cussed in Section I-D.
93Other classes of random processes, for example, martingales, also admit two-

time statistical characterization by one-time informations. It is more appropriate,

however, to consider the problem from a physical Hamiltonian point of view. Such con-

sideration will be touched upon in discussing quantum development and in Appendix C.

It should again be emphasized, before we leave the differential equation characteri-

zation, that our driving noise source is always the thermal noise associated with the

system. Other noise is presumably additive to the fields <\>(r , t ) .

2. 2 Nondifferential Filter Channels

It is possible that in a given specification of a channel in terms of a space -time filter

the system cannot be interpreted as a differential one. We use the terminology "nondif-

ferential filter" to indicate for certainty that a corresponding differential equation does
95not exist, in contrast to some previous usage. Although realization theories of linear

1 08dynamical systems do exist, they do not seem to be directly applicable to our situa-

tions. The difficulty is that we do not know, strictly speaking, the order of the differ-

ential equation representing our system. In many cases a nondifferential system whose

impulse response is a reasonably well-behaved function can be approximated arbitrarily
95closely, in the sense of zero-state equivalence, by a differential system of sufficiently
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high order. Clearly, there exist filters that do not admit of a differential representa-

tion. A case of frequent occurrence is the multiplicative situation

h ( t , T ) = A(t) 6(t-T)

or

G(rt;r ' -r) = A(rt) 6(t--r) 6(r-r').

The noise is then usually specified by an additive component N(r", t),

)=/ G(rt ;r ' t ' ) E( r ' , t ' ) dr'dt' + N( r , t ) . (70)

with excitation E(r ' , t ' ) . In this case it is more appropriate to consider the channel input

and output as related by

<Krt) = A(rt) / G f ( r t ; r« t« ) E(r ' . t ' ) dF'dt'.

That is, the input field after propagation over a space-time filter described by G f(r t ; r ' t ' )

is multiplied at the output by A(r, t). The question then becomes whether

G(rt; r 't ') = A( r , t ) G,(?t;..r't')1 ^ - -

can be interpreted as a Green's function of a partial differential equation, if we suppose

that Gf(rt; r't1) can be. Further consideration of this will be given later.

2. 3 System Normal and Noise Normal Modes

It is now convenient to introduce the concept of system normal modes and noise nor-

mal modes. We refer to the eigenfunctions ^(r) of J§?2 as the system space-normal

modes and eigenfunctions y (t) of %?„ as the system time-normal modes. The product

(k(?) Y (t) are the space -time normal modes. These system normal modes can be con-
rC II

trasted with the noise normal modes < W ( r ) and y' (t). Here the Gaussian noise sourceK. n
is expanded as

icn '

= 2 ^(F)f^(t) ,

where f are statistically independent random variables, and f. (t) are independent ran-
kn k <)0 ,

dom processes. Equations 71 and 72 are Karhunen-Loeve type expansions for a

Gaussian random field with square-integrable sample functions. This system and noise
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normal mode terminology would occasionally be abbreviated as "system" and "noise"

modes.

The statistical dynamical problem is completely diagonalized if the system normal

modes coincide with the noise normal modes. When they differ the use of system normal

modes implies that the noise components for them are not independent, and the use of

noise modes implies that these modes are coupled. In case S£~ is dissipative, a white

driving noise field ^"(r,t) expanded in the system normal modes,

^"(r , t )= Z <},k(?) fk(t),
K. >-

would give rise to statistically dependent fk(t). If we use noise modes <MJ?), we would

obtain a linear system of coupled differential equations for {Pk(t)} with independent

driving processes {fMt)}. A particular choice of simplicity can be based on individual

problems and individual questions. Our assumption, Eq. 11, permits our system and

noise normal modes to be the same even when ^"(r , t) is white.
ft 7 RQ

The Green's function for the partial differential equation " Eq. 1 with the condi-

tion Eq. 5, the boundary conditions of <f>i.(?), and vanishing initial conditions can be

written in general

G(r t ; r ' t ' j = Z ^p^- ^ (?)•<(.*(?') W2(F') yn(t) y*(t') W^t'), (73)
nk n k

where

- 2 ( t ) = v y ( t ) (74)

/v y * ( t ) y n , ( t ) W 1 ( t ) d y = 6^, (75)

( v ) = 6( t~ t ' )- (76)

In this case W, is the time interval of the problem, and W.( t ) is generally not unity. The

additive noise field

F ( r , t ) = / G(rt;r ' t ') J^r', t ') dr'dt (77)

corresponding to a white driving noise source ^~(rT , t ' ) then also possesses normal modes

different from <(v(?) and y (t) in general.

The discussion on system and noise normal modes that we have just given carries

over straightforwardly in the quantum treatment.
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2. 4 Stochastic Channels

In a nondifferential filter characterization of channels, the filter can be taken

as a random process. For example, in the equation

X ( t ) = / h ( t , T ) e ( T ) dr + n(t) (78)

we can specify the two-dimensional process h( t ,T) , and independently the noise process

;he subjec
54,55,4

4 109n(t). Such channels have been the subject of much study, ' and many different useful

characterizations are available."

In the case of differential equation representation, we are considering a stochastic

differential equation

( j?1+:Sf2) iM?,t) = E(F,t) + «^"(F>t) (79)

whose 3?. and Jzf? are now linear random operators. The study of such an operator is

a relatively difficult subject, and very few analytical results are available. " Var-

ious approximations usually have to be made.
-I

2. 4. 1 Random Green's Function •

For our purpose, it is convenient to introduce, parallel to the nonrandom case, the

concept of a random Green's function. By this we mean that under the deterministic

boundary condition prescribed previously, the solution ^(r.t) of (79) can be written

• K r , t ) = / v /^ Gk(?t;r 't«)[E(r«t')+^"(F',t ')] dF'dt' (80)

for a four-dimensional random field

GR(Ft;F't«) (81)

which we call the random or stochastic Green's function of (79). Thus GR(rt; r ' t ' ) is

the inverse of the random operator &. Note that the term stochastic Green's func-

tion has been used before with a totally different meaning.

The crux of the statistical problem is then of course the determination of properties

of GR(rt; rnt')from (79) under various mathematically specified conditions. Such a task

appears to be quite difficult for even a simple equation (79). It is not clear that such

an approach to Eq. 79 is the most fruitful one in general. Our discussion of a communi-

cation system would be greatly simplified, however, to a level comparable to the non-

differential case, if we had such a random Green's function that might be obtained

from various approximations. We shall see immediately that Gj,(rt; r't1) is at least

a powerful theoretical tool in our communication system analysis.
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Similar to the deterministic case, we have the problem of realizing an integral st6-

chastic channel representation by a stochastic partial differential equation or random

Green's function. The difficulty here is more severe; the deterministic case and further

approximations will usually be required.

2. 4. 2 Stochastic Normal Modes

We now assume that a stochastic Green's function of the kind discussed above has

been given which specifies the channel output in the absence of other noises for a fixed

input signal. To avoid part of the difficulty in connection with stochastic differential

equations mentioned above, we can regard as given a random field (81) which is the sto-

chastic Green's function of a certain random differential equation. We are not able to

tell whether this can indeed happen for a given GR(rt; r't"). For our interest this dif-

ficulty should not be too serious.

We can formally expand the random Green's function of (81) in the form

GR(?t ;? ' t ' )= S 4>k(?) < ( > ( ? ' ) h k ( t , t ' ) (82)
it

for a set of orthonormal functions 4v.(r) and a set of random processes h, ( t , f ) . The

expansion (82) is equivalent to the assertion that the possibly random <g possesses

orthonormal eigenfunctions <tv.(r) with random eigenvalues. If If- is nonrandom, (82)

is clearly valid. The process tv(t,t ') can be expanded as before:

Wn^^') < 8 3 >

for functions y (t) obeying Eqs. 75 and 76 and random variables {g }. The set {z (t)}

is another sequence of orthonormal functions. The stochastic Green's function can then

be written in a spectral representation

GR(?t;?'t') = Z g^nzm(t) y n ( t ' )< f> k ( ? )4> k ( r ' ) W^t'). (84)

In general GT ,(rt;r ' t l) can therefore be conveniently specified by the joint distribution
_ r k K

Let us define the mean and covariance of h (t.t1) by

h k ( t , r )= hk(t , r) (85)

[
-1 , .

h*(t ,T)-h*( t ,T) [ k ( r , s ) - h ( r , s ) ] = C * (tr;rs) (86)
J h h
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r.sJ-iyr.s)^ cJjh(tr;Ts), (87)

although higher correlations may also exist in general. We have used the bar to indicate

stochastic channel averaging, in distinction to the angular bracket notation for noise

averaging. It is frequently possible to set

k I*"1-
C A A ( t r ; r s ) = dV( t r ; T s )= 0. (88)

h h' ™

In such a case the expansion (84) can be taken as a Karhunen-Loeve expansion with

uncorrelated {g } for different {m,n}. This possibility is evident if z (t) y (t1 ) is an

eigenfunction of th'e'integral equation

/ C* <t r ; T s ) z m (T)y n (s) drds = «^nzm(t) yn(r). (89)
h h

kIf (86) is nonvanishing, it is generally not possible for \gm /to be uncorrelated. That

is, it is not possible for

m * m'- n * n'

to hold together, since we are effectively trying to diagonalize two different processes
14simultaneously. If h , ( t , t ' ) is real, such an expansion would always be possible. We

K
shall refer to such z (t) and y (t) as the stochastic normal modes, to distinguish from

the previous nonrandom system normal modes.

When h, ( t , - r ) or G R ( r t ; r ' t ' ) is Gaussian, Eqs. 86 and 87 become a complete specifi-

cation of the random Green's function. Furthermore, when (88) holds, {g } becomes

independently Gaussian random variables with mean

k
gmn

and variances

k* k kg g = afamn mn mn

k k .g g =0.&mn mn

The representation (80) is then in the convenient diversity form
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)S 2 g^ d> (?) zm(t) / y n ( t ' )4>*(r ' )dr 'd t ' [E(r't ')+^"(r', f)] (90)
kmn

so that the normal modes z (t), y (t) , and 4>. (r) truly occupy a central role. It cann.1 n K.
be straightforwardly shown in this case that the two noise fields

Z g k ._ .<b,_(r) z . _ ( t ) /* .. /„ y..(t') *,.(r') dr'dt'

and

kmn 2

V

are independent. Note that the stochastic channel also filters the noise source field

We call a diversity representation of the form (90) with independent {g } a canoni-

cal diversity representation, since it diagonalizes the problem for any signal excita-

tion. If available, it is more useful than diversity representations based on specific
4

signal sets as channel representations, for it relates the input and output directly.

In this Gaussian case we shall frequently not need the explicit construction (84) for

many applications. Instead a direct characterization of its mean and covariance suffices.

We mention again that our random Green's function would generally be regarded to

be specified by (84) with joint distribution on {g }.

2. 5 Stochastic Signals

Stochastic signals are easily treated in the nondifferential case (69) with either a non-

random or a stochastic channel. We need only specify the signal process completely,

which is always assumed to be independent of the channel and the noise statistics. For

example, we can choose to expand

E(r t) = S e, <t>, (r) y (t)
kn • k n

in a Karhunen-Loeve expansion when possible, and then specify the joint statistics of

{e, }. Other specifications are also possible.

In the case of differential equation representation, E ( r , t ) can again be specified in '

whatever form is convenient. Since it is an independent input excitation field, no special

difficulties in its characterization arise as in the stochastic channel case. Furthermore,

neither the noise source nor the additive noise field are influenced by the stochastic

nature of E(r, t).
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2. 6 Relation to Ordinary Filter Description

Usually a communication system is characterized in the black-box form of Fig. 1

for an additive Gaussian noise n(t) and a randomly time-variant linear filter h, ( t , r ) .
K.

s ( t )
h(t ,r)

n(t)

Fig. 1. Randomly time-variant linear filter channel.

This description suppresses the physical aspects of the system. In particular, the

space coordinates cannot yet be identified.

A nondifferential distributive description like the one discussed in section 2. 2 can

be represented in the form of Fig. 2, wherein G-R(r t ; r ' t l) can also be random.

E( r , t )

GR(rt;FT)

N ( F , t ) .

Fig. 2. Randomly time-variant nondifferential linear
distributive channel.

This case can still be considered a special case of the following differential system

representation if GR ( r t ; r ' t ' ) can be interpreted as the stochastic Green's function

of a random differential equation. In this case we have Fig. 3.

E (F,t) '

GR ( r t ; r ' f )
J

N ( F , t )

Fig. 3. Randomly time-variant differential linear
distributive channel.
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In the previous discussions we have only treated the output i|>(r,t). A specified addi-

tive noise field N ( r , t ) can evidently be introduced with a combined representation

4 J ' ( ? , t ) = /*„ /y GR(Ft ;F«t ' ) [E(F ' , t ' )+.^"(F ' , t ' ) ] dF'dt' + N(F.t) . (91)

The initial conditions have been suppressed as explained previously.

It is simple to give the representation of Fig. 1,

P ( t ) = / h ( t , T ) s (T)dr + n(t), (92)

from the distributive representation (91) when we know that

P ( t ) = Jy i | ; ' (F, t)u(F) dF. (93)
u

Such a relation is indeed what usually occurs, say, when we look at a coherence area

on the received plane of an optical channel. If in this case the signal s(t) is generated

by a point source at r = 0

E ( ? , t ) = 6 ( t ) 6 ( F ) ,

we have

h ( t , T ) = /^ /v G(Ft;F' t ' )u(F) dF'dt'
u

n(t) = /*«, /v /v
 dtdFdF' G(Ft;F«t ' ) u(F) ̂ "(F'.f) + /„ u ( r ) N ( F , t ) dr.

2 u u

It is obvious that it is not generally possible to obtain (91) from the representation

(92) even if we know that P( t ) is obtained through ^(r , t ) with a given u(r) , as in (93).

This should not bother us, since only the representation (91) is a complete specification

of the situation under consideration. We shall always regard the classical specification

to be given only if each function or process on the right side of (91) is specified. We

require such complete specification even when we are ultimately interested only in (92) .

This is because physical aspects need to be explicitly invoked in the quantum treatment;

for example, the nature of the variable P(t) is involved.

When a complete specification is given in the form (91) it is clear that we can form

still more general communication systems than the one shown in Fig. 1. If we let

ak= / 4 '(F,t ' ) e k ( r , t ' )d rd t«

for ordinary functions {£, (r,t)}, we can determine the joint distribution of {a, , 07} in
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a straightforward fashion. When

e k ( r , t ' ) = u(?) 6(t-t') (94)

we would recover the system (92) , in that a = |3(t). In general, a choice of {a, } reflects
K

to a certain extent the physical receiver structure or configuration.

2. 7 Conclusion

We have developed the theory of classical random field propagation in a particular

form convenient for translation to quantum treatment. A description of classical com-

munication systems from this framework has also been given. The novel feature in our

discussion is that the differential equation channel characterization is quite physical,

in that it describes the field transmission in the system of interest and is related rather

intimately to a fundamental Hamiltonian treatment. These points will be discussed fur-

ther in the quantum case.

Another apparently new concept that we have introduced is the notion of a random

Green's function which is particularly important when we use a differential equation phys-

ical description. When available, it provides complete information on the solutions of

a stochastic differential equation. It should be worthwhile to investigate such functions

further because they would have applications in many other areas.

Finally, we would like to mention that the description of communication systems by

differential equations, together with appropriate physical interpretations, .should provide

a useful approach to general communication analysis.
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C. QUANTUM RANDOM PROCESSES

We shall now develop an operational theory of quantum random processes to a degree

sufficient for our future purposes. We shall use the fundamental results established

here to obtain quantum-channel representations. Rigorous mathematical discussions of
91-94ordinary stochastic processes may be found in many places. General mathematical

formulations of quantum dynamical theory,, with due regard to the statistical nature
5 8 111-122peculiar to quantum mechanics, also exist in a variety of forms. ' ' The most

common form is briefly reviewed in Appendix A. There does not exist, to the author's

knowledge, any systematic and convenient mathematical theory of random processes

applicable to situations in quantum physics, although there are fragmentary works both

of a mathematical ' and of a calculational nature. ~ In addition, some proba-

bilistic notions and techniques related to quantum statistical dynamical problems have
, , , , . . , 69-73,118-120 T ., - ... .. . ,. ,, , . ,, . , ,been used by physicists. In spite of this, it is highly desirable, at least

for applications to communication and other systems, to have a common framework for

treating quantum random problems that is comparable in scope to the discussion of

classical stochastic problems by ordinary random processes. It is our purpose to

sketch a primitive version of such a novel theory.

By a quantum random process we mean a time-dependent linear operator X{t), which

is defined on the state space of the quantum system under consideration and possesses

a complete set of eigenstates for every t. A quantum random process, which we often

abbreviate as a quantum process, is therefore a quantum observable in the Heisenberg

(or H) picture. See Appendix A for more detailed discussion. We shall first discuss

time-independent operators and then we treat the time-dependent case.

It is appropriate to emphasize, first, the differences between our present treatment

and that of ordinary stochastic processes. In the classical case the system under con-

sideration, composed of functions f(X) of a random variable X, is completely character-

ized by the distribution function of X alone. In quantum theory we cannot obtain the dis-

tribution of an f(X) from that of X in the classical manner when X is non-Hermitian.

Complete statistical characterization of a quantum system is given differently, usually

through a density operator. The purpose of our development is to establish convenient

statistical specifications of a quantum system, while maintaining, as much as possible,

the applicability and usefulness of ordinary stochastic concepts and methods. Similarly

to the classical case, such concepts and methods make possible the efficient analysis

of many quantum statistical problems.

3. 1 Quantum Probabilistic Theory

We have to develop some probabilistic concepts applicable to the quantum case before

we can start our discussion of quantum processes. Appendix A gives a brief introduc-

tion to quantum formalism and to some of the definitions that we use. The essential

point of our treatment is to give a c-number description of the quantum observables
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under consideration, so that many ordinary stochastic concepts and techniques can be

transferred to the quantum domain through this c-number characterization.

3 .1 .1 Self-adjoint Quantum Variables

We shall consider a set of commuting self-adjoint quantum observables {x.} of a

given quantum system. We are not considering a dynamical situation so that the X- ar>e

time-independent in any picture.

As explained in Appendix A, the quantum system under consideration is completely

specified by its mixed state represented by a density operator p. Let |x . . .x.. . .} be

the simultaneous eigenvectors of \X.}, with eigenvalues {x.}. The results of simulta-

neous X. measurements are therefore distributed with a probability density

p(xr . .x.. . .) = < x r . .xr . . | p |xr . .x.. . . ). (95)

When the eigenvalue set {x.} is degenerate, the distribution is modified to read

p ( x 1 . . . x . . . . ) = tr. PP{x_}, {%)

where Pr i is the projection operator for the eigensubspace corresponding to the eigen-

values {x.}. We shall often use the term distribution instead of probability density for

brevity, a common practice among physicists. No confusion should arise, since we

never consider true probability distributions, that is, the integrated probability densi-

ties.

As the distribution (95) or (96) is indeed a joint density for {x.}, marginal and con-

' ditional densities can be defined as usual with corresponding physical interpretations.

We shall not pursue such a development here.

It is important to observe that the distribution (95) or (96) does not specify p com-

pletely in general. If we were interested only in the observables X" or functions

of them, (95) would provide'sufficient information because the off-diagonal elements,

\ X j . . . x^. . . | p | Xj. . . xi; . .; XA x^

would not then play a role in the problems of interest. In this case the system density

operator can then be considered to be effectively diagonal in the | x.. . . x.. . .} represen-

tation. The quantum statistical problem becomes a completely classical one, given the

distribution of (95).

3 .1 .2 Non-Hermitian Quantum Observables

Our interest in this work concentrates on systems whose observables are functions

of b., bT, where for each i, b. and b! are the photon annihilation and creation operators.

Our attention hereafter will be directed only toward such sets of operators.
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Let us first consider the case where we have only one set b, b , with

[b, b1"] =1. (97)

A brief discussion of these boson operators is given in Appendix A. If we write

<98>
for self- adjoint operators b and b-, we see that

.

Thus we have a situation in which the system observables of interest are functions of

non-Hermitian operators b and b' or of two noncommuting self-adjoint operators b.

t 121The operator b' has no eigenvectors except the null state. In contrast, b has

and b., — a case different from that of the previous section.
tr b' has no eigenvectors except the null s

an overcomplete set of eigenstates |p) with complex eigenvalues p.

b | p ) = p | p > (99a)

d2p
= I . (99b)

dp = d(Re P) d(Im P) . (99c)

These coherent states | p) are nonorthogonal '

< P | P ' > = e x p { p * p ' - j l M 2 - i l P ' | 2 } (100a>

but properly normalized

< p | p > = 1. ( lOOb)

Arbitrary functions of b and b' , the observables of interest to us, can be written
74 124 tin different operator orders. ' A function f(b, b') is said to be in normal order if

t 74every b stands to the right of every b1 . We write

f(b, b"*") = f (n)(b, b^ (10 la)

to indicate that an observable has been written in normal order. If we now replace b
and b^ in f ( n )(b, b^) with p and p*, tw
nary function of two complex variables

and b in f (b, b' ) with p and p , two c-number complex variables, we have an ordi-

f (n)(p, p*) ( loib)
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— — • %:

where the bar on f reminds us that f is a c- number function. The variables p and p

will be called the associated classical amplitudes of b and b', and f '(P, p ) will be

called the associated classical function of rn'(b, b' ). Given ( lOlb) , we can clearly
* f

recover ( lOla ) merely by replacing (P, p ) with (b, b1) and write the resulting function

in normal order. This correspondence between normally ordered operators and their

associated classical function can be expressed ' as

,p*)} ' ( lo ic )

with the introduction of a normal ordering operation n.

Similarly, we define a function f(b, b' ) as in antinormal order

f(b, fat) = f (a )(b, fa"1") (10 Id)

when each b' stands to the right of every b. Analogous associated amplitudes and asso-

ciated classical functions can be introduced so that

f ( a ) (b ,b t )=^{f ( a ) (p ,p*)}

for an antinormal ordering operation stf . Further discussions of operator orderings
, „ , 7 4 , 124, 125may be found.

119126-128 *fIt has been suggested ' that for a broad class of functions f (b ,b ' ), we can

expand

2
(a)(p. P * ) | p > < p | — . ( l O l e )

The precise conditions of validity for ( l O l d ) , a subject of much discussion and con-

troversy, ' ' need not concern us here. In all of our applications its validity

can be established.

Applying ( lO le ) to the system density operator p yields

P = I P(P, p * ) | p > < p | d2p, (I02a)

*
where the function P(P, p )

P(P,P*) = ^ p (a )(p, p*) ( lOZb)

1 19is commonly called the P- representation of p. The possibility of such a diagonal

expansion of p rests on the over completeness of the eigenstates | p). Note that p is

not actually diagonal in the | p)-representation because

< P | P | P ' > =
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121implies that p = 0.

Because all observables of the system are functions of b and b', we can evaluate

ges of rn'(b, b' ) with the

< f ( b . b t ) > = < f ( n ) (b ,b t )> =

averages of rn'(b, b' ) with the representation (102a) in the form1 19> 127

(103a)
* -/n\ # 9

P(P,P ) fW(P,P )<TP.

125Similarly, we have

= ( f ( a ) ( b , J ) ) = t r . P
(n¥a)(b.bT)

2 (103b)

= / P(P , P* ) f ( a ) (P ,P*)—.

where

P (P ,P* ) = < p | P | p > (103c)

are the diagonal elements of p in the coherent representation | p).

3 .1 .3 Quasi Densities and Characteristic Functions

39The expression (103c) has been shown (see also Appendix E) to be the probability

density describing the outcome p of quantum measurements of b. Of course (103c) then

possesses^all of the usual properties of a probability density. Also, it is an analytic
*

function of two complex variables. P and p , and, therefore, is a very well-behaved
121 *

function. For the same reason, p is also completely specified by p(p, p ).

In contrast, the P-representation (102b) is not an ordinary probability density. It

can become negative and quite singular, involving an infinite sum of arbitrarily high-

order derivatives of the delta function. ' The general usefulness of P(P, p ) rests

on the fact that normally ordered averages can be computed in a classical fashion (103a),
•j*

as if P(p, p') were a probability density. Furthermore, the density operation p is also
*

completely specified by P(P, p ), as is evident from (102a). In our later applications
*

P(P, p ) will usually be positive and nonsingular, obeying many mathematical properties

of a density function. It is still not interpret able, however, as a distribution describing

outcome probabilities of certain quantum measurements.

Our purpose is to find c-number variables (p, P ) with corresponding given 'quasi-

density' functions such that all quantum information of the system under consideration

can be obtained. We are therefore asking for a convenient c-number characterization

of the quantum system so that the classical stochastic concepts and methods may be

carried over.
* *

We refer to p(P, P ) and P(P, P ) as quasi densities because their role in many
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applications is similar to that of probability densities in ordinary random problems. The
#

c-number variables (p, (3 ) are called quasi-random variables or quasi variables accord-
*

ingly. Note, in fact, t h a t p ( P , P ) is a true density. It is convenient to lump it with
*

P(P, P ) for our purposes.

To emphasize that the density operator p is really needed to describe outcome

distributions for measurements of f (b ,b ' ) , we observe that we cannot calculate the
t *distribution of, say, b'b from that of p(p , P ) by making a classical random variable

transformation. This is an intrinsic quantum property that distinguishes quantum and

classical statistical elements.

Since averages of f(b, b' ) can be calculated by different kinds of orderings of b and

b' as in Eqs. 103a and 103b, we find it convenient to define several characteristic func-

tions. Specifically,

4 > ( H , H*) = tr. {p X e-^b} (104)

<t>A(., ) t r . { p e } . (105)

& ' %

Here ^(t1, M- ) and <f>. (ji, (i ) are called normal and antinormal ordered characteristic
IN A £ j,.

functions, respectively. They are Fourier transforms of P(P, p ) and p(P, P )

* *4 > ( m v*) = / e^ ~^ P P(p, p*) d2p (106)

) d p . (107)

Their interpretation as characteristic functions is obvious because normally and anti-

normally ordered averages are computed from them in the usual way that averages are

computed from characteristic functions.

We can also define the symmetrically ordered characteristic function

4> ( ( i > ( J L ) = tr. |per r } (108)

whose Fourier transform

W(P,P*)=^ e*" P~P ̂ ((i,/)-^ (109)

is the Wigner distribution. We shall also call W(P, P ) a quasi density. These quasi

densities (102b), (103c), (109) and their corresponding characteristic functions (104),

(105), and (108) are essential tools here. Note that the characteristic functions are in

1:1 correspondence with their corresponding quasi densities, which are again in
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1:1 correspondence with the system density operator p. In spite of the fact that the quasi

densities are not generally interpretable as true probability densities with proper under-

lying spaces, it is important to emphasize again that they can be used to compute various

operator-ordered quantum averages.

The characteristic functions are related by

= e <f> s(H-. P- ) = ^(^ ̂
(HO)

The quasi densities can be related through (110); for example,

P ( P , P ) = P(p,p*) d2p (111)

and so forth.

Before we turn to further specific development let us mention that different operator

orderings and their corresponding quasi densities can be introduced for operators that

are linear combinations of b and b' , for example, the usual conjugate variables q and

p. We shall not pursue a detailed discussion here, since it should be clear how such

a development can be carried out.

3 .1 .4 Gaussian Quasi Variables
*

We now define a quantum system and its density operator to be Gaussian when P(P, P )
*

is Gaussian in (P, p ), i. e. ,

P(P,P exp
2(l-r2)

2r
P-P, (112)

with

d2p P ( p , p * ) = 1. (113)

The observable b in such a case will be referred to as a Gaussian observable. From

Eq. ( I l l ) we have, for a Gaussian system,

P(P,P ) = exp

with

r' = r + * •
r cr

cr cr

(114)

(115)
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74
By standard techniques of operator algebra the density operator is therefore of the

form

p = np (P, p ) = N exp

e x p l n l l

where N is a normalization constant. This density operator cannot be brought into a .
*

single exponential, except in the obvious special case when cr = cr = 0.

It should be clear from our definition that if b and b' is a pair of Gaussian observ-

ables, then any linear combination of them will also give rise to Gaussian quasi den-

sities.

An important property of our Gaussian system lies in the following theorem.

Theorem 1

When a photon system described by (b, b' ) is Gaussian in the sense of (112), the third

and higher order cumulants defined in any order are all vanishing.

The validity of this result rests directly on the c-number commutation rule for

[b, b']. To prove the theorem, we need only observe that from (112) and (97) the quasi

densities (102b), (103c), (109) and the characteristic functions (104), (105), and (108)

are all Gaussian in their respective variables. The higher cumulants or linked

moments of various operator orders are therefore all zero, as in the ordinary

Gaussian case. Furthermore, it can be seen that we can define our Gaussian system

with any one of the quasi densities or characteristic functions, since Gaussian properties

of all others follow immediately in each case. Note that the explicit Gaussian form of
*

p((3, p ) has been given in Eq. 114.
*

We wish to characterize our quantum system completely by the c-numbers ((3, p ),

which we call quasi variables in analogy with ordinary random variables. As we have
~ #

said, this is possible because given a Gaussian density of (p ,p ), we can write down the

system density operator p. We have just seen that we can give simple descriptions of

these quasi variables by discussing quasi densities like ordinary distributions. Thus

the usefulness of our Gaussian definition stems from the fact that the resulting quasi

densities and characteristic functions are easy to deal with as in the classical Gaussian

case. Only a few parameters are required for their specification.
*

It is important to observe that under our Gaussian definition the distribution P(P, p )
*

is positive for all (P, p ) and is also a smooth function. It can then be seen that many

ordinary stochastic concepts can be introduced because all of the quasi densities possess

mathematical properties like strict probability densities.
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Let us now generalize the above development to the many-variable case. We consider

a set of observables {b,, b'} in a total system with subsystems denoted by d , . We

assume that the observables of subsystem d , are functions of b, and b' only and that

each b, is a photon annihilation operator
rC

= 1 . (117)

The commutators

[\,bk,]= 0 tf k,k' (119)

and

\.bjU k * k1 (120)

are further taken to be given c-numbers.

We define the set {b, , b'} to be jointly Gaussian with corresponding quasi variables

{p, , p, } when the P-distribution P(P, p ) for the total system operator
K. K. f ~~,

p= 7 P ( P , P * ) | P > < P | "d2p (121)- - . - k K

is Gaussian in {p, p }. We have used the notation p to denote the set {Pk} and

|p> £ | p r . . p k . . . > (122)

represents the eigenstates of

f a , . . . b k . . . | p r . . p k . . . > = p 1 . . . p k . . . | p r . . p k . . . ) . (123)

The P-distribution in (121) can be used to compute normal-order averages, that is',

averages of operators where all the b, stand to the right of all the bj. By the c-number
K. .K

character of Eqs. 119 and 120, various subsystem and operator-ordered characteristic

functions and quasi densities are all Gaussian, so that various higher order cumulants

vanish. Our situation here is completely analogous to the single subsystem case.
*

While we shall not write down the explicit form of P(P, P ), it is appropriate to note

that it is completely specified by the mean

-*

and the covariances
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<(bk,-bk,)(bk-bk)> = <(bk-bk)(bk,-bk,)> = b k - b b k - b (126)

for an arbitrarily chosen ordering among the k's. Together with (119) and (120), we can

obtain all of the other subsystem operator-ordered quasi densities and characteristic

functions. To show how one can write down a characteristic function, we have the fol-
*

lowing normal-ordered characterization function corresponding to P(p, p ) of

(127)

where

It is intuitively clear that our joint quasi densities have the usual properties of

jointly Gaussian distributions. Defining the marginal quasi densities for a subset of

{b, , b£} in a manner analogous to the ordinary case as, for example,

p(p p*;p |3*)= / P(p,p*) n d2p ,
\ i i t t ; ^ ~ k>2 k

we can state the following theorem.

Theorem 2

If {b, , b£} are jointly Gaussian, then any subset of them is also jointly Gaussian. If

{a, , a£} are obtained from linear transformations of {b, ,b^}, then {a, ,a£} are also jointly

Gaussian.

This theorem can be proved in exactly the same way as the classical results are

proved, since the proof depends only on the form of the quasi-density functions. Further-

more, any one of the subsystem operator-ordered quasi densities can be used, as they

are all Gaussian.

3 .1 .5 Statistically Independent Quasi Variables

To continue our development of the properties of jointly Gaussian quasi densities,

we first define the important notion of statistical independence of quasi variables. While

it is possible to define conditional quasi densities, we choose directly our fundamental

definition of complete statistical independence between subsystems 4 , to be the factor-

ization of the total system density operator

P = P! ® P2 ® • •• ® Pfc •• •
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into a direct product of subsystem density operators.

With this definition we see that

< 1 2 9 >

where Q, is an arbitrary observable of subsystem 4 Also we have

because (128) implies that the b, are defined on different Hilbert spaces.
ri

We may state now the following theorem.

Theorem 3
j. i

The jointly Gaussian {b, , bj} are independent if and only if (119) and (120) and (125)
K. K.

and (126) are zero for k * k' .

To prove this in the two-subsystem case, we note that with (129), (119), and (120)

we can write

< P l P
2 l p l P l P 2 > = < P i l < P z l p l ® P 2

= < P j P 1 | P 1 > < P 2 l ? 2 \ P 2 >

so that the covariances are zero. The argument can be reversed to show the converse

statement. Generalization to the multivariable situation is clearly straightforward. It
r *ican be seen from Theorems 1-3 that the Gaussian quasi variables {p,, p, } have many

properties of ordinary Gaussian random variables.

It is also fruitful to define normal- order statistical independence by the factoriza-

tion of the P-distribution. For example, in the two-subsystem case

In this situation the normal-ordered averages will factorize

<->(„,. bT;b2, bt)> . «(bl, bt

but the antinormal ones may not. The difference between (128) and (130) is that in the

latter case the commutator

may not vanish. It is again obvious that jointly Gaussian {b, ,b '} are normal-order
K. K.

independent if and only if (125) and (126) are zero for k # k1 . Henceforth, the word
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'independent' will imply complete independence, whereas normal-order independence

will be given in full terms.

3 .1 .6 Sums of Independent Quasi Variables

We now consider two statistically independent subsystems d and ^ „ with a total
4.

density operator p. Each subsystem contains observables that are functions of {b,, bj},
r i

k = 1,2, which we allow to possess commutator b, , b£ , which are merely c-numbers

that need not be unity. Equation 119, of course, holds in this case. We introduce the

operator

b = bj + b2 (132)

and consider the quantum system whose observables are functions of b and b . We call

this system the 'sum system.1 The quantum-state space of this sum system is con-

structed in the following way. Let

|p) = I p j ) ® |(32) - (133)

be the eigenstates of b. Here | p,) and | P_) are eigenstates of b and b,, but they are

not necessarily complete in the systems A and d The eigenvalues P of b are
1 £>

P= P! + P2, (134)

where p, and p, are eigenvalues of b, and b,. There is in general an infinite set of
L £ i LJ

eigenvectors | p) with the same eigenvalues p. For our purpose, all of the eigenvectors

I Pi ) <8> I P?^ associated with a given | p) are equivalent, so that we can pick any one of

them. The state space of our sum system is then the space spanned by the chosen | p).

Clearly, the sum system is not the total system ^ + ^,.
4. 1

Let us assume that the b of (132) obeys [b, b'] = 1. Furthermore, the eigenstates

of b chosen in the manner above is clearly complete-in the sum system. It is then

meaningful to state the following theorem.

Theorem 4

The density operator p of the sum system can be represented by a P-distribution
5

which is the'Fourier transform of

(135)

To prove this statement, we observe that by statistical independence

At t\ */u u / t * \ / ut *u \H ( b ' + b ' j -JJL (b +b2) / |J.b' -H- b. \ I v-o' -p. b, \
tr. p e ' e = tr. I p. e e I tr. I p, e e ) . (136)
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Furthermore,

Since the state |p) is complete in our sum system, the Fourier transform of (136) is

the P- represent at ion of the density operators p . A more complete discussion is givens
in Appendix G.

Let us define

(137)

(138)

(139)

We have the usual convolution formula

P{,(P. P*) = / P'^P-P'.P*-?1*) P 2 (P ' .P '*) d2p. (140)

119 * *
This formula has been derived heuristically when P' (p, p ) and P^P- P ) are both the

P-representations of p and p , the subsystem density operators of (128). Our devel-
1 # ^

opment shows that P! (P, P ) cannot then be interpreted without proper scaling as the
t t

P-function of p because in-such a case [b, b'] = 2. Thus when the commutator [b, b'],
S

and also

^ (141)

are arbitrary c-numbers, our formula (135), (136), and (140) still retains its valid-

ity, although none of P^P, P*), P'jfP, P ), and P^(P,p") may be interpreted as a

P-representation.

It is easy to see from the c-number character of the commutator involved that other

ordered characteristic functions also factorize. This is also evident from (128), as a

consequence of statistical independence. Therefore the other quasi densities for the

sum system can be obtained by convolving the corresponding Fourier transforms of the

subsystem characteristic functions. Formulas like (140) are then not special to the

P-representation, but hold for other quasi densities. Since each of the quasi densities

represents the sum system uniquely, we can use any one for convenience.
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In the case when Eq. 97 holds, it can be seen from the same argument that the com-

mutators (141) are not important for the representation of p as long as their sum is
S

unity. In general we have the following theorem.

Theorem 5

Consider a sum of N independent subsystems with

b = b, + b -t- + b,.T (142)1 2 N

and

[b.bt] = 1.

The P-distribution of p is then obtained by convolving successively
S

2

Pi(P'(3*) = J e^ ~* ̂  *Nb>>|JL*)~r' (143>

where for given

* A
•frjjb ( H . H ) = e e , (144)

1 .

the resulting Pj_(P, P ) is independent of the distribution of the c-number commutators

[b . ,b j ]=C. . (145)

Thus it is easy to consider a classical subsystem with b«, bl = 0 added to other quan-

.turn subsystems. It can now be seen that factorization of characteristic functions is

the more fundamental formula for summing statistically independent quasi variables.

In the case of normal-order statistical independence our development is valid when

restricted to normal-order averages and characteristic functions. In this case the con-

volution of the form (140) still holds, but now the other quasi densities cannot be con-

volved in the same manner. Normalization of the commutator is again required.

3.2 Quantum Stochastic Processes

We now turn our attention to stochastic processes. As we have-mentioned, by a

quantum stochastic process we mean a time-dependent observable in the H-picture.

3.2. 1 Fundamental Characterization

Since our quantum process is a dynamical variable, it will generally be character-

ized by the statistical dynamical equation it obeys, together with the initial system
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density operator. Since such information is not generally available, we may want to

seek other convenient characterizations.

Let us consider the photon operator b(t) with

[b(t),b t(t)] = 1 (146)

and the quantum system composed of observables that are functions of {b(t), b' (t)}. In

such a case the equation of motion for b(t) or the equation of motion for p(t), the system

density operator, gives the complete specification of the system behavior. It is more

convenient to use b(t) for a general characterization because we can then readily obtain

other density operators.

A general abstract characterization of b(t) can be given in terms of the multi-time

quasi-density functions.

P(PnPnV ' ' ' Wl) = (6(Prbtfrl>) • ' • «-btM Wn-^n" ' ' ' ̂ r^V') •

(147)

where the average is with respect to an initial system density operator p(o) and

6(p*-bt) 6(p-b)

• J f J V, 70is defined by

M(b,bt) = n{M(n)(p, p*)}

= / M(n)(p, p*) SfP*-^) 6(p-b) d2p. (148)

Other sequences of such delta operators are defined similarly. For a complete specifi-

cation of b(t), we need to know (147) for any time sequence {t.; i= 1, . . . n}, and to know

the commutation rules [b(t), b(t ') j ,

[b(t).bV)] t = t' (149)

which are taken to be c-numbers. We shall assume that

[b( t ) ,b( t ' ) ]= 0. (150)

The multi-time P-distribution (147) can be written as the Fourier transform of a

multi-time characteristic function, in case we do not like delta operators. ' Further-

more, it can be interpreted as the P-representation of a density operator describing

measurement output probabilities of observables which are functions of

b(tn).

The specification of a general quantum process is at least as complicated as the
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specification of a classical random process. We shall examine certain special cases

for which a complete specification can be given in a relatively simple manner.

3 . 2 . 2 Gaussian Quasi Processes

We consider the pair of photon operators {b(t), b' (t)} obeying (146). Their associated

classical functions {(3(t), p (t)} will be called a quasi process. We define a quasi process

to be Gaussian when its multi-time P-function (147) is a Gaussian in the variable (P(t.),

(3 (t.) | i= 1, . . . , n} for every n. From the c-number property of (149) and (150) different

quasi densities with any time order are Gaussian. It also follows that any operator and

time-ordered quasi densities and characteristic functions are Gaussian. The situation

here is similar to the many Gaussian quasi-variables case. We have therefore the fol-

lowing theorem.

Theorem 6

When (b(t), b'(t)} is a Gaussian quantum process if and only if the third and higher

order cumulants defined in any time operator order.are all vanishing.

Note that for the quasi process {P(t), p (t)} to be Gaussian only one quasi density or
r *characteristic function need be Gaussian for each n sequence {p(t , )P ( t , ) ; ; p(t )

j, J- J- II

" «n»-
With (149) and (150) a complete characterization of a Gaussian quasi process is

given by the mean

= <b(t)>* (151)

and the covariances

<(b^(t)-blT)*)(b(s)-b(s))> = C t (t, s) (152)
b'b

<(b(t)-b(t))(b(s)-b(s~))> = Cbb(t, s) (153)

from Theorem 6. We shall not write an explicit form of the multi-time P-function, as

it is the same as a classical distribution.

We can see that all usual properties of a Gaussian process are preserved in every

one of our quasi-density functions. Jointly Gaussian processes can be similarly defined.

The notion of statistical independent processes also follows in the same manner. We

shall not pursue a detailed development here.

3 . 2 . 3 Karhunen-Loeve Expansion for Quantum Processes

We shall now develop a Karhunen-Loeve expansion theorem for a class of quantum

processes. Let b(t) be an observable with mean (151) and covariance (152) and (153).

No Gaussian assumption is made and (146) is not needed. Let
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C + (t, s) = Z x ( t ) * (s) (154)
b'b k 1 K k

C + ( t , s ) = <(b(t)-blt))(bt(s)-b(s~M) = 2 X^4>, (t) <j>*(s) (155)
bb' k i k k

, s ) = 0 (156)

< b ( t ) > = Z a 4 (t), (157)
k k k

with

/ < t> k ( t )4>* , ( t )W 1 ( t )d t = 6^, (158)

2 \(t) «^{t') W 1 ( t ' ) = 6(t-f) ' (159)
It

similar to Eqs. 75 and 76. We have then the following theorem.

Theorem 7

For a process b(t) obeying (154)- (156) we can expand

b(t) = 2 ak4>k(t) " (160)
rC

with a set of operators a having mean

and covariances

6 - ^ (162)

5kk^2 (163)

<(ak,-ak,)(ak-5k))= 0. (164)

To show the possibility of such an expansion, we observe that

b(t) <t)k(t) W j ( t ) d t (165)

so that

\(4~5k)(ak'~Sk')}= ' C t ( t lS )

_ «k,
- Xl6kk"
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Equation (16 3) follows similarly. When b(t) is Gaussian the quasi variables corresponding

to the operators a, will then be statistically independent.

We next define a white Gaussian process to be one for which

<bt( t )b(u)> = Vj6(t-u) (166)

<b(u)bt ( t )> = \26(t-u) (167)

(b^b^u)) = v36(t-u) (168)

<b(t)b(u)> = V36(t-u). . • (169)

We also have an expansion theorem similar to Theorem 7.

Theorem 8

A white Gaussian quantum process b(t) with zero mean and correlation (166)- (169)

can be expanded in any real orthonormal set

b(t) = Z Vt>k(t) <17°)
K

/ *k(t) 4>k , ( t )dt = 6^, (171)

such that the associated classical variables of the operators a are .statistically inde-

pendent Gaussian quasi variables

< > = 6 ^ (172)

The proof of this theorem can be carried out in a straightforward manner similar to

the previous one, and is therefore omitted.

Expansion theorems of this type are clearly useful for many purposes. In classical

communication theory their applications are well known, and we would expect that they

would also play an important role in quantum communication analysis.

3 .2 .4 Markov Quasi Processes

Another useful characterization of quantum processes is possible by using the

Markov idea. We let
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* > *

(175)

as the definition for the conditional distribution

P(P*. p , t |o*. a. t ' ) t > t ' . ^ (176)

A quantum, process is then defined to be Markovian if its multi-time P-function of (147)

obeys

(177)
»

for

t n > V l > . . . > t r (178)

This property can be shown to be equivalent to the quantum regression theorem ' '

with which general multi-time quantum averages can be computed by two-time results.
70 73Other characteristic properties of what we call a Markov case ' also follow from

(177). If the P-function of (147) is a classical density, (197) is the usual definition of

a Markov process and gives rise to the Chapman-Kolmogorov-Smoluchowshi con-

dition.

It can be seen again from the property of c-number commutators involved that the

Markov property of one quasi density implies that all other quasi densities are

Markovian, obeying relations similar to (177) and (178).

As in the ordinary Markovian case the one-time P-function of a quantum Markov
*

process P(P, p , t) can be shown to obey a Fokker-Planck-Kolmogorov equation .under

appropriate conditions, as the derivation involves only the condition (177). In the same

way the conditional Green's function solution to the Fokker-Planck-Kolmogorov equa-

tion " is the conditional distribution (176). Thus a one-time density operator con-

ditioned upon an initial distribution contains full information about a quantum Markov

process.

We call the associated classical function p(t) of a quantum Markov process b(t) a

Markov quasi process. Thus Markov quasi processes have quasi densities that are

completely characterized by a Fokker-Planck-Kolmogorov equation under conditions

that will be obeyed in our applications. Specification of such a quasi process can then

be given in terms of the drifts and diffusion coefficients60"65' 69' 72' 73

A (t) = lim - j<b( t+At) -b( t )> (179)
p At-0
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2! D (t) = 2! D t (t)
p . p b ' b

= lim -Jr {[b^t+Athb^tjnbft+Athbm]). . (180)
At-0

\
Generalization to include higher order diffusion terms is also possible. '

In our application we shall adopt a Langevin rather than a Fokker-Planck point of

view. In such a description our quantum process is defined by a quantum Langevin
.. 69equation

Lb(t) = e(t) + f(t)

(181)

L*V(t) = e*(t) + f f ( t ) ,

where L is a linear time differential operator, and e(t) a deterministic excitation. The

noise process f(t) is an operator

ft)]* 0

and is usually taken to be Gaussian. .When

[f(t).fV)J a 6(t-t')

the observables {b(t), b' (t)} will be components of a vector quantum Markov process.

When L involves only first-order time derivatives, {b(t), b' (t)} then becomes a quantun

Markov process.

With proper ordering interpretations we can find, as previously, the c-number

quasi processes {(3(t), (3 (t)} which correspond to {b(t), b'(t)} and which obey a c-number

Langevin equation. Usual relations between Langevin equations and the corresponding

Markov processes will still hold ~ for this quasi process. When the equation is

linear the situation is particularly simple. We shall not give a detailed development

here.

3 . 2 . 5 Stationary Quantum Processes

Stationary processes play a particular role in our study similar to Markov pro-

cesses, since they obey some simple fluctuation-dissipation theorems. We define a quan-

tum process b(t) to be stationary when all multi-time averages are invariant to a shift

in origin. That is,

< b t ( t l) . . .bt(tn)b(tn).. . b( t l )> = (btftj-y - . .bT(tn-to)b(tn-to). . .b(trto)>.

(182)

In our application we actually need only
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= <b t(t-t ')b(o)> etc.

for second-order averages, since we deal, for the most part, with Gaussian processes.

The stationary processes that we shall encounter will be described by linear time-

invariant differential equations.

3.3 Conclusion

We have developed certain fundamental quantum stochastic concepts that will be

employed in the following sections for quantum channel characterization. While we shall

actually be talking about statistical quantum fields, rather than processes, there is no

need to discuss them separately. Quantum fields bear to quantum processes relations

exactly analogous to those of classical random fields to classical random functions.

The most important idea in our previous development is Gaussianity, since we shall

deal in the quantum treatment exclusively with Gaussian additive noise. Our results

therefore lay the groundwork for treatment of such quantum processes. The notion of

a quasi process will make classical and quantum-channel comparisons more efficient

and illuminating.
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D. QUANTUM FIELD PROPAGATION AND

CLASSICAL CORRESPONDENCE

We shall develop the theory of quantum field transmission through a linear system,

employing quantum processes that have just been described. Our quantum discussion

will closely parallel the development of classical random field propagation in Sec-

tion I-B. In particular, we shall establish the way in which given classical field specifi-

cations give rise to corresponding unique quantum field specifications. With this

connection we can then set up the quantum channel representation directly from the given

classical channel.

We shall restrict our consideration to deterministic channels. Stochastic channels

and signals will be discussed in Section I-E.

4. 1 General Theory of Quantum Field Propagation

We consider the transmission of electromagnetic quantum fields through media char-

acterized by linear partial differential equations of field propagation. The nature

of our channel is exactly the same as that previously discussed. Instead of c -number

wave fields 4>(r, t) we are now just treating q-number fields \\> (r, t). Our discussion

is a generalization of section 2. 1 to the quantum region, by application of our results

in Section I-C.

Let \\i (r, t) be a scalar field operator with adjoint ^ (r, t) and from which the

electric and magnetic fields can be obtained by linear operations. See Appendix F for

details. The dynamical field equation describing our channel is

(F,t) = E(?,t) +#" ( f , t ) , (183)

where Jif is a. linear partial differential operator with" respect to t, the components

of r, E(r, t) a c -number deterministic excitation, and &~ (r, t) a random-noise-source

operator. As in Eq. 5 we take

J$f=^1+jSf2 (184)

for two ordinary differential operators with respect to t and r. The noise -source oper

ator has zero average

( r , t ) > = 0 (185)

and is taken to be a Gaussian quantum field. Although we only discussed quantum pro-

cesses in the last section, it should be clear that ^ ( r , t ) is a Gaussian quantum

field if and only if all of its linear functionals

/ 4/o (r, t) W(r, t) drdt (186)
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are Gaussian quantum observables.

Since 3? factorizes in Eq. 184 as in Eq. 5, we have (Eqs. 6 and 7) also

n<F ' t ) = ( Xk+ vn )*kn ( ? ' t) <1 8 7 )

*kn(F, t) = 4>k(F) yn(t) (188)

for the c -number eigenf unctions 4>, (r, t) of <£ ' .

In the present quantum case we have to know the commutator

(189)UH j

or equivalently

^,-y T _ I

(190)

for a complete characterization of the quantum field. We shall discuss later how

Eqs. 189 and 190 may be determined in different situations. Here we generally assume

that the noise field 3F (r, t) and, in particular, the commutator (190) are .specified.

It should be clear that our present consideration is again restricted to Gaussian noise

added to the electromagnetic fields, and to linear space-time filter systems.

4. 1. 1 General Case

Let us assume that (190) is given and that

(&~l (?, t) JTQ ( r ' . t 1 ) ) = 2 Ck .. ( t . t 1 ) ct>*(r) 4>k(? r) (191)

<jFop(?,t).rop(?.,t')> = 2 C^t.t') V?) <t>k(?') (192)
K.

This &~ (r, t) is taken to be the noise source driving the wave equation for the field

4» (F, t) = 2 < k ( r ) b . ( t ) (193)
Op ^ K K

with photon operators b, (t)

[bk(t),bj(t)l = 1. (194)
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We assume (see Section I-B) that

/ <j>, (r) cfi i(r) dr = 6, (195)

2 4>k(F) <|>k(F') = 6(r-F'). (196)

A knowledge of (190) and (191) is equivalent to that of (191) and ( <JF (r, t ) # ~ ' ( r ' , t ' ) >op op '
when (190) is a c-number function that we shall assume. We take

_ t k - *,-(3T (r,t)^"' ( r ' , t ' ) > = ZC 4.( t , t ' ) <(>, (r) 4>, (r1). (197)
°P °P t or ar\ k k

Thus we are assuming that (190) is in general of the form

op

If we expand

( t , t ' ) -C k (t, t ' ) }* (? ) 4>k(?'K (198)
" k k

op-— k "V"Fk(t) (199)

for noise operators {Fjjt)}, we see from (192), (197), and (198) that

= {ck
 +( t , t ' ) -Ck

 t (t,t ')}6kk , (200)

[Fk(t),Fk,(t')] = 0 (201)

and

<Pk( t)} = 0 (202)

( t , f ) (203)

( t , t ' ) . (204)

Thus as a direct consequence of (191), (192), and (197) we have independent Gaussian

observables Fk(t). If we also write, as in Eq. 15,

E(r. t) = Z ^(F)ek(t), (205)

Eq. 183 is reduced to the following set of ordinary differential equations for the oper-

ators bk(t)
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(Xk+:S? j) bk(t) = ek(t) + Fk(t), (206)

where the correlations of the Gaussian operators F,( t) are as given by (200)-(204).

Similarly to the discussion of Eqs. 22 and 23, we can write the solution of (206) in

the form

bk(t) = /*' hk(t, T) ek(T) dT + n°p(t) (207)

with an additive noise operator

nkP(t) = '-co hk(t> T) Fk(T) dT (208)

= /* hk(t, T) Pk(T) dr + /_° hk(t, T) Fk(r) dT. (209)
o

The h, (t, T) is again the zero-state impulse response of the differential system. (Eq. 16).

The second term on the right-hand side of (209) represents the contribution to the addi-

tive noise n, ̂ (t) of initial conditions. It can be seen that

[bk(t),bk,(t ')] = 0 (210)

[bk(t) ,bJ,(t ')J = 6kk, J^dT /^ ds hk(t,T)h*(t',s){ck
 t(T,s)-Ck

 t (T,S)}
3F $F ^ &

(211)

<b k ( t ) ,b j , ( t ' )> = 6 k k I / * o o d T / ^ o o d s h k ( t , T ) h * ( t ' , s ) C k
 t(T,s) etc. - (212)

^r ^

Thus the different normal-mode operators b, (t) are statistically independent Gaussian

observables, since they are linear transformations of the independent F, (t).

With the representation (207) it can be seen that for a fixed-input excitation each

Gaussian b, (t) is completely specified by the correlations of F, (t) and h, (t, T). Our field

4> (r, t) is therefore also completely specified with knowledge of < j> , ( r ) .
Op K

We also emphasize that the noise source 3F (r, t) or F, (t) in this differential equa-
Op K.

tion description is a thermal noise associated with the filter system. Other possible

independent noises can also be introduced. They will be considered in Section IJE.

4. 1. 2 Markov Case

We next investigate the case in which

Ck ( t , f ) = 6(t-f) 2Jk(t) (213)
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( t , t ' ) = &(t-t') 2Jk(t) (214)
.

, ( t , t ' ) = 6(t-t ')2Jk(t) (215)

for the noise source &" (r, t) driving the field (193). In this situation the F,(t) are

independent white Gaussian observables so that each b , ( t ) is a component of a vector

Markov process, as discussed in section 3. 2.4 (Part I). This vector quantum process

is formed by b, (t) and its higher derivatives.
K

Following the same discussions as in section 2. 1. 2 (Part I) we consider here the

case in which t£ ' involves only first-order time derivatives. The vector Markov case

is treated in Appendix B. Thus we have

) bk(t) = ek(t) + Ffc(t) (216)

<F k ( t )> = 0

<F k( t )F k( t ' )> = 6kk,6(t-t') 2Jk(t) (217)

<F k ( t )Fj , ( t ' ) ) = 6kk,6(t-f) 2Jk(t) (218)

[Fk(t). Fj,(t')] = 6
kk.6(t-t') 2{jk(t)-Jk(t)}. (219)

Again we find it convenient to introduce the notation

\

(221).

(222)

(223)

(224)
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and write

~ } ^k(t) = ^k(t) + -k(tK (225)

A development analogous to section 2. 1. 2 (Part I) can be given for the quantum oper-

ators. (We shall just give the most important points.) We assume a stable system in

the sense of Eq. 55. Let

ik + g i = l T t + W } (226)

[l ^ + Ak(t)l hk(t, T) = 0, t > T (227)

tk ( t ' t ) = ^ ' (228)

then we have

bk(t) = /* hk(t, T) ek(T) dr + n°p(t), (229)
~

with

p t> T) -k(T) dT- (230)

The noise -source correlation is

<Fk( t)Fj(t ' )> = 2Dk(t) 6(t-f), (231)

with

(232)
k*(t)

is related to the variance 4>? (t, t) by

(233)

t > f

(234)

t > f .
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Also, we have

*J*(t, t) = 2 £„ hk(t, T) Dk(T) hjlt, T) dr - (235)

^ ^*(t, t) = ZDk(t) - Jyt) ^(t, t) - ^(t, t) A^(t). (236)

Derivations of (234)-(236) follow in the same way as those in section 2. 1. 2 (Part I). Sim-

ilarly to the classical case, the relations (234) and (236) will be our quantum -mechanical

fluctuation dissipation theorems for quantum Markov processes. The discussion in sec-

tion 2. 1. 2 (Part I) applies here in an identical manner. Further discussion is given in

Appendix C.

We wish to give here the fluctuation -dissipation theorem for fields in coordinate -

independent form. Let G(rt; r 't1) be the Green's function of

^'i} . (237)

under the space boundary conditions of interest and zero initial conditions. The nota-

tion

2 4, (?) b (
k

Z 4 (r) b ' ( t )
k k k

(238)

and E(r, t), 3F (r, t) is obvious. This Green's function can be expanded in the form- —op

G(Ft;F ' t ' ) = Z <)> , (? ) <£(r') h ( t . t1) . (239)~ k k k ~k

It is now straightforward to obtain from (234) and (239) the following distributive

fluctuation -dissipation theorem for the output field i(j (r, t)

Theorem 9

The two-time field covariances are related to the one-time field variances by

<^o <F ' t^oT< ? ' ' t J )> = ' df" G(?t;F"t ')<^p(?»,t ')4;^(? I , t ')); t > t' (240)

<i^p(r , t ' )1 j /J(r l , t )> = / dF»<ijj ( : ) p(F,t ')^p(F",t)) GT(F"t;?'t '); t > t ' . (241)

Here the notation \\i' (r, t) implies that the mean has been subtracted out. To establish
— °P _ # _

(240) we can multiply both sides of (234) by 4>k(r) ^(r1) and then sum over k. The right-

hand side of (240) follows from simple manipulations. The fluctuation -dissipation
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theorem for the noise -field correlation can be obtained from (236) similarly.

4. 1. 3 Stationary Case

In the stationary case it is more convenient to consider directly the electric or mag

netic fields. Let

6 _ _ ( F , t ) = Z 4> (?) Q (t) (242)
op k

be the electric operator obeying the wave equation

* ( r , t) = E(F, t) + - F ( F , t). (243)

Note that Q i ( t ) is a self -adjoint operator so that E(r, t) is now real. The space -time

invariant operators & . and <£ involve then only real coefficients too. The correla-

tions of the self -adjoint noise field &~ (r, t) is given by

(F ' t )- rop ( ? l ' t ' )> = 2 C - t ' ) *k(?) *k(?I) (244)

K.

^'^op^1'*1^ Z C2(t"t') *k(F) \(?I)> (245)
K

A decomposition into spatial normal modes, similarly to previous cases, yields

(V-^V Qk(t) = ek(t) + Ffe(t) (246)

for real excitations e, (t). The noise source F, (t) are self-adjoint operators and have

correlations, from (239) and (240), given by

(Pk(t)Fk ,(0)> =cj ( t ) 6kk, (247)

<Fk(0)Fk , ( t )> ={c^(t)-C^(t)}6kk,. , (248)

The higher cumulants of F, (t) are taken to vanish so that F, (t) are independent Gaussian

observables.

The observables for each mode k are functions of Qk(t) and

dQ (t)

The observables Qk(t) and Pk(t) would have quasi densities, for example, the Wigner

distribution, that are Gaussian. See Appendix F for further details. It should be

clear that properties of Qk(t) and Pk(t) are completely specified by those of F,( t ) and
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the impulse response h, (t, T) of (240).

The commutator between the conjugate observables

[Qk(t),Pk(t')] (250)

has now to be given or determined in place of (231). Instead of (194) we have

[Qk(t), Pk(t)] = in, (251)

where K is Planck's constant.

We define the Fourier transform of an operator A(t) by

A ( » ) = C e i t o tA(t)dt (252)

A t M = !"„ e '^A^tJdt (253)

and the spectrum by

' (254)

= f dt e~ilot (A t( t )A(0)>. (255)

When A is self -adjoint the dagger notation in the spectrum just denotes where the time

dependence belongs in the correlation function. The following quantum fluctuation-

dissipation theorems hold ' ' ' as generalizations of Eqs. 68 and 69.

<Fj(w)FkM) =2f i5(w) j2*(w) „ (256)

<F k(w)Fj(w)> = 2n{nM+l}0Sf k(u>) (257)

< Q w ) Q J ) > = 2Kn(w) Im I -- — 1 (258)

( w ) Q ( w ) > = 2K{n(co)+l)} Im - -^— , (259)

where

1
n(co) = . (260)

WkBT
e - 1
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The parameter T is the temperature at which the fields are in thermal equilibrium. The

frequency response <£ , (to) and 3? , (to) is defined in Eqs. 65 and 68. The notation QJ (u>)

indicates, as usual in our treatment, that the mean has been subtracted out.

Qk(") =Qk(«) -<Qk(co)>. (261)

For a discussion of Eqs. 256-259 see Appendix C. Other correlations of P, (co) can be
K

obtained similarly by noting that

Pk(to) = -iioQk(to). (262)

It is clear that (250) and (252) goes readily to the classical limits (Eqs. 68 and 69) when

k^-T » fito.
E>

To give the fluctuation -dissipation theorems for the field <^(r, t), we let

u J Q w ) ) (263)

(264)

The expressions S (r, <o) are clearly time Fourier transforms of $ (r, t), and the cor-

responding spectrum is similarly defined as in (254)-(255). We also define the Fourier

transform of the Green's function

G(F(o;F'o) = /^ elcjt G(rt ;r 'o) dt. (265)

We have then the distributive fluctuation -dissipation theorems for $ ( r , t ) in the fre-

quency domain expressed by the following theorem.

Theorem 10

The spectra of $ (r, t) are given in terms of G(rco; r 'o) by

(f ^{r, w j ^ ' t r ' . u ) ) = 2fin(w) Im {-G(?co;?'o)} (266)

(<8"(r, co) ^'"^(r1, to)> = 2fi{n(w) + l} Im {-G(rto; r'o)}. (267)

To establish (266), we multiply both sides of (258) by <j>, (r) "hJ?') and sum over k. The

right-hand side of (266) follows from noting that {^f, (to)}~ is the Fourier transform of

hk(t). Similar relations can be given for the correlations of F(r, co) which will not be

discussed here.
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Note that in. this stationary case we can also consider the photon operators

{b,(t), fcJ(t)} instead of {Q(t) , Q(t)}. They are related in a very simple way.

(268)
2co(k)

« f
Pk(t) =>/ ~~2~ {bk(t)+bT(t)}, (269)

where' u(k) is the dispersion relation between frequency u and wave vector k. Thus

the results on {Q, (t), P, (t)} can be transferred to the variables {b, (t), b,Mt)}. We have

used the present form here mainly for convenience. For further discussion see Appen-

dix F.

4. 2 Necessity of Introducing Quantum Noise Source and

Preservation of Commutation Rules

It is entirely possible and consistent to have

, t) = o

in the classical wave equation (Eq. 1). Such a situation would occur, for example, when

T = 0 in the stationary case, as is evident from Eq. 56. In contrast, we cannot set

in the corresponding quantum case even when the temperature is zero, since the spec-

trum

<Fk(o>)Fj(w))

of (257) is nonvanishing. This so-called zero-point fluctuation ' arises from the

commutator (251) and is a distinguishing quantum effect having no classical analogs.

These zero -point fluctuations are always present physically. As we have just

observed, they are intimately connected with the commutation rules for the field vari-

ables. To insure the proper appearance of such quantum fluctuations, we have to insist

on the preservation of commutators like (194). Mathematically, the validity of b, (t) or

Q, (t) as proper quantum observables also depends on such commutator conservation.
K

Physically the presence of such quantum fluctuations can be traced to quantum-

mechanical energy conservation. We shall not elaborate on this point here.

We shall show that preservation of field commutator rules ' ' requires, in

general, the introduction of operator noise sources in the wave equation (183). We shall

consider, in contrast to previous cases, the general conservation of two-time commu-

tators like (211) or (189). Some explicit formulas will be given for the noise-source
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commutator that conserves the field commutator through the wave equation. Again we

find it natural to divide our discussions into three cases.

4. 2. 1 General Case

In our general case we wish to determine the commutator (189)

— -f —
= (270)

so that

[b k ( t ) ,b t l ( t< ) ]=6 k k ,C k ( t , t ' ) (271)

When the noise field &~ (r , t ) is taken to vanish, the solution b, (t) of (206) can no longer
Op K

be expressed in the form (207)- (209) because the initial conditions have to be written

explicitly. Similarly to'Eq. 29, we can write

b, ( t ) = Z 2
r=l n '= l

hk(t, T)

T=t

t. T) ek(T) dr

(272)

for the form of X, + 3? -. given by Eq. 25. The commutator can therefore be evaluated
K A

as

I b , ( t ) ,b j , ( t ' ) l
|_ K K J

n n n n
2 2 Z Z

'1 d r-1
hk(t' T)

T=t

T=t

* f n '—r tn"—r 1
i ,(t ) a ,,(t ) b" (t ), b,T r(t )n-n1 o n-n" o |_ k o k o J

(273)

from the initial commutators. We have assumed in (273) that the {b, (t ), b^t )} commute
K O K O

between different k's. We shall also assume (210) in general.

For a given system described by (183) and a given two-time commutator (271) it is

clear that both sides of (273) are specified which will not be equal in general. We need

always to have

Ck(t,t) - 1. (274)

By setting t = t1 in (273), the commutator (194) is again not preserved in general for a

given (206). To see this in a simple example, consider the equation
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db(t) Y
= -iwb ~-5-b; V > 0dt

with the solution

V
b(t) = e x p - i c o t - t b(0).

The corresponding commutator

[b(t) ,bt( t)] = e Yt

is therefore decaying, and violating the conservation of (194).

In general, the noise-source commutator (200) is determined by the condition (194),

which amounts to solving the integral equation t

dt'dt" h k ( t , t « ) h^(t,t"} F ( t ' ) , F ( t " ) . (275a)
f -f- 1
| Fk(t'), Fj(t")

The two-time commutator (271) is then given by

[bk(t) 'bk(t l)] = ' dt"dt"' hk(t,t") h*(t' ,t '")rFk(tn), Fj(t'»)j (27 5b)

One way to solve (27 5a) is to apply the eigenfunction expansion for h, (t, T)

hk(t- T) = 2 T-TXT yn
(t) y n < T > w i< T >- (275c)

n n k

Alternatively, we may convert (275a) to a differential equation for F, (t) , F^(t') . In

both cases the questions of existence and uniqueness of solutions, as well as methods
87-89for finding them explicitly, can be studied by conventional methods. " Note that the

solution thus found depends on k in general, and hence the introduction of spatially non-

white noise is necessary, even when the classical noise is 6-correlated in space. This

possibility lies in the additional correlation (201) that we have quantum-mechanically,

which is equal to (191) in the classical case.

We have not yet produced the general solution of (27 5a) and the corresponding evalu-

ation of (275b) which, although not entirely straightforward, seem to be completely

within reach of existing methods. In some cases, Eqs. 27 5a and 27 5b may be directly

determined from the system Green's function, the information presumably being given

classically. The connection of this general case with the following special cases will

be commented upon later.

4, 2. 2 Markov Case

In this case the two-time commutators are determined by one-time commutators in
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the following manner. Once we are assured of the preservation of (194), the commuta-

tor (271) follows from (234).

[bk(t), bJ(t')J = hk(t, t ' ) , t > t1 (276)

bk(t),bj(t ')l = h*(t ' , t) , t ' > t . (277)
L. J

Therefore we have to choose

Jk(t) = 2{jk(t)-Jk(t)} (278)

to satisfy

/!oodT |h k ( t > T ) | 2 Jk (T) = *• < 2 7 9 >

When h , ( t , T) satisfies (227) it is easy to see that (279) is solved by

Jk(t) = 2 Re Ak(t). (280)

The corresponding two-time field commutator is then -

U (r, t),^ (r ' . t1) = G(rt;r't ') t > t1 (281)[/op Yop J

= G*(r't ' ;rt) t' > t, (282)

the Green's function of the wave equation (183). It is important to note that with a given

equation (183) or (206) the conditions (281)-(282) or (276)-(277) are necessary for the

amplitudes b, (t) to be Markovian.

In many applications we may find that the real part of A, (t), the dissipative coef-

ficients, is independent of k. It is then possible to have spatially white driving force

3F (r, t) even in the quantum case. In general, when J!(i) is k-dependent we are forced
Op K

to deal with strictly spatially non-white noise sources.

4. 2. 3 Stationary Case

The noise correlations (256)-(257) in this case are computed from (258)-(259), which

in turn are directly derived from a large conservative system in which the observ-

ables (Qk(t), Pk(t)} are defined.66 '68 ' 106> 10? The commutation rules (250) are there-

fore automatically obeyed through (258) and (259). Explicit commutator rules will be

given in Section I-E.
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4. 3 Classical Description of Quantum Field Propagation

The quantum Gaussian field 4> (r, t) that has been discussed thus far is specified

completely by the mean { ̂  ( r , t ) ) , the covariances

<^p(?,t)^p(F',t ')) (283)

<^(?,t)4.;p(?I,t')}, (284)

and the commutator (189). It follows from (210) that

[^(F. tJ . iKr ' . t 1 ) ] = 0. (285)

A classical Gaussian field, on the other hand, is completely specified by the mean

{iMr, t)) and only the covariances

<4j ' (? , t )4< ' ( ? ' , t ' ) } . (286)

<*|* | V(r , t) i | j l(rM:1)) . (287)

The difference is that the commutator (189) is zero classically. If, however, an arbi-

trary function of the operators \\\> (r, t), 4/(r, t)} is always written in such a way that these

operators appear in a chosen order, say, in the normal order, then the commutator (189)

need not be invoked subsequently and our problem is very much like the c-number

description. This idea of ordering has been substantially exploited. ~ We shall indi-

cate how it can be used to provide a c-number description of our quantum fields.

Let {p. (t)} be the associated classical amplitudes of {b, (t)}, obtained from normal

ordering to be specific. Let i|j(r, t) be the associated amplitude of ip (r, t), also for

normal ordering. Then

ip(F. t ) = Z 4>k(?) |3k(t). (288)
K,

Since the system is linear, the classical and quantum mean equations of motion are iden-

tical. This implies that 4>(r, t) obeys a wave equation with impulse response G ( r , t ; r ' t l )

which is the same as that of (237). To characterize fy(r, t), we also need only to know

(286)-(287), which we can take as (283)-(284). We have thus a classical field iM?,t) whose

properties are identical to the normal-ordered ones of ty (r, t). To specify ip (r, t)

from ip(r , t ) we just need to know (189).

Therefore, with the commutator (189) given, we can develop the theory of linear

quantum field propagation in an entirely classical manner as in Section I-B, by inter-

preting the classical averages as properly ordered quantum averages. Since the sys-

tem is linear, such a classical description is not much simpler than the q-number

description. Operator representations that we have discussed will be required in Sec-

tion I-E. The virtue of a c-number description in our case is that it emphasizes the
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close relation between a quantum and a classical theory of field transmission through

a linear system. Since the quasi densities that we use extensively obey classical equa-

tions we are in effect employing a c-number description in many places. With the

approach that we have described thus far it is not very important to distinguish

q-number and c-number descriptions.

4. 4 Quantum Classical Field Correspondence

We shall establish the connection that will enable us to write down the quantum field

specification from a given classical field. (Remember that the only difference between

quantum and classical fields in our case lies in the commutator (189).) In case this com-

mutator, like other two-time correlations, is specified by one-time averages through

the 'fluctuation-dissipation theorems, we need only establish a correspondence between

one-time quantum and classical averages. When a unique one-time classical quantum

transition is set up the complete field correspondence also follows.

It is worthwhile to emphasize that our aim is to give unique quantum channel specifi-

cation from given classical specifications. Our quantum treatment is clearly appro-

priate for quantum channel representation, similarly to the classical case discussed

in Section I-B. The quantum averages required for the specification, however, may be

difficult to obtain, depending on individual cases. Therefore we give these quantum

averages from the classical averages, which need to be given in any case for a classical

specification. Our development is again conveniently classified in three cases.

4. 4. 1 General Case

We consider a general classical channel as described in section 2. 1. 1 (Part I) to be

given, with amplitudes P , ( t ) obeying Eq. 16. We first ask what the quantum system

should be corresponding to a given Eq. 16 and Eqs. 19-21. Some physical assumptions

will be employed in this connection.

We assume that the system is linear both classically and quantum-mechanically, so

that the classical and quantum equations of motion have the same form because no

ordering ambiguity arises. Thus the quantum system will be described by the wave

equation (183) with differential operators ^, and &„ identical to those of Eq. 1. This

is equivalent to the assertion that the mean response of both systems is obtained

through the same Green's function G(rt;r ' t ' ) . We then have an expansion (193), where

each b, (t) obeys an equation (206), with h, (t, T) the same impulse response as that cor-
K K

responding to Eq. 16. Furthermore, the solution b, (t) can be written explicitly as (207),

corresponding to Eq. 29.

When fk(t) is Gaussian its third and higher order cumulants all vanish. It is

therefore reasonable to choose F,(t) so that all higher cumulants of F, (t) taken in any

time operator order are also zero. Such observables F^(t) are, according to The-

orem 6, Gaussian quantum processes. Since the f^(t) are independent for different k,

we should also choose the F, (t) to be mutually independent. We have therefore a

64



quantum system described precisely as (206) and (200)-(204) corresponding to Eqs. 29

and 19-21. We still have to establish the correlations (200)-(204) from those of

Eqs. 20-21.

Let us first consider the correspondence between one-time variances. Since the

F,(t) are independently Gaussian, the outputs b , ( t ) will also be independent Gaussian

processes, according to Theorems 2 and 3. It follows that the quasi processes cor-

responding to b, (t) have one-time P-distributions given by

(w)= 1

*(' 2 \
-rNj

^ 2 2r

*2

. ^ 'Vk

Pi(t)

(289)

with

(290)

N, = , (291)

(292)

where a prime on the quantity denotes that the mean has been subtracted out and the time

dependence of the quantities can be conveniently suppressed. Note that the averages

(290)-(292) in the P-distribution (289) are the normal-ordered averages. We shall com-

pare (289)-(292) with the given classical distribution:

exp
*2

B1

k* k pk

pk(t)
*V

(293)

k ,,. k / k* k
rc£(t) = 'cA^cfc

(294)

(295)

(296)

The use of P-distribution in (289) has the distinct feature that the classical limit
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of (292) is the function (296). In contrast,

(297)

should not be directly related to (296).

Since the noise sources that we have dealt with thus far are the chaotic noise asso-

ciated with the filter system, they can be expressed in thermal equilibrium in a special

Gaussian form

cc exp
Pk' P( t )

(298)

Such a noise distribution arises from a canonical distribution with

kBT

(299)

where T is the equilibrium temperature. If we wish, we can also let T be k-dependent.

The corresponding quantum canonical distribution

oc exp
bk(t)

(300)

~ksuggests the usual replacement of tr , of (299) by the Bose-Einstein distribution

1
(301)

for cr^r . When we allow the system to be in instantaneous equilibrium with a tempera-

ture T(t) we have the relation

4 (t) = 1
(302)

- 1

Such a relation arises even when the same coefficients <r , enter (299) and (300) because

operator ordering is involved in going from (300) to a P-representation.

In the more general case (293) the Gaussian noise distribution admits more gen-

eral interpretation than equilibrium thermal noise. It can be generally considered

to be the chaotic noise with distribution function obtained by maximizing the system
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entropy, subject to the constraints (294) and (296) in addition to normalization. Sim-

ilarly, the noise density operator

Pk = Nk exp <

2(l-i

exp In/ 1 +
bktbk exp

,2

2(1-1 2
7k

(303)

is obtained by maximizing the quantum entropy, subject to normalization and (290)-(292).

Equation 303 follows from Eq. 116 for a proper normalization constant N, and with
K

r*' — -rk * (304)

In the two maximization problems above it is reasonable to set

ffk = (30.5)

in the absence of other information. It is also reasonable to assume that the quantum -

noise energy for mode k is given by

so that (302) holds between o-,, and <r ,,(t). With (302) and (305) our one-time corre-

spondence is complete.

It is important to observe that the quantum -noise photon number in the general cha-

otic noise case, although still given by the Bose-Einstein form (302), may not allow the
~k 2interpretation of tr ,(t) as in (299) with a time-variant temperature. In such a situa-

tion we cannot go to the classical limit readily, and (302) may not hold. When the cha-

otic noise energy distribution is thermal-like, so that (299) holds, our relation (302)

becomes valid. In the other situations we can assume

~k (306)

without further information.

Moreover, let us note that our unique one-time correspondence expressed by (305)

and (302) or (306) is founded on two other assumptions, strictly speaking. The first is

that the F, (t) are taken to be Gaussian. It is possible to construct higher cumulants

of F, (t) which go to zero in the classical limit, in the sense of setting

R- 0 (307)
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or

<3 0 8>

etc.

In this case the structure of the F,(t) is quite arbitrary and not necessarily Gaussian.

The second is that expressions vanishing in the classical limits as (307) and (308) may

be present in the right-hand side of (302), (305), and (306). These differences cannot

be recognized in general, and the correspondence is therefore not unique in this sense.

In the absence of specific information pertaining to individual problems, there is no way

to improve our present treatment. Our Gaussian quantum -noise assumption would prob-

ably be retained in many cases for the sake of analytic simplicity. Furthermore, it

may be possible to get more unique correspondence by imposing additional physical

properties on the system, for example, properties of the reservoir.

Our argument giving the properties of {b,(t), bJ(t)} at one time from the classical

information may be regarded as a way of quantizing linear classical stochastic systems.

We can adopt an alternative viewpoint in which our quantum field representation as

described in section 4..1 is granted first. The one-time quantum variances would then

be compared with the classical variances with the same results as for the other repre-

sentation. The advantage of the latter approach is that it shows more clearly that our

developments in section 4. 1 always retain their meaning for quantum-field modeling,

even in the absence of classical knowledge. The quantum averages can then be deter-

mined by measurements or by a full quantum calculation, depending on individual prob-

lems.

In this general case the output quantum field can be written .

= '-00 dt' Jy dFG(Ft;?1t ')[E(?',t ')+J r
o p(i : i , t ')]. (309)

This can be compared with the classical given field

iMF.t) = /* dt' / dFG(rt;F't ')[E(?'t ')+.r(F't1)]. (310)
2

For a given classical G(Ft;F't ' ) , E( r ' , t ' ) and (286)-(287) we have our equation (309)

with the same Green's function and excitation E(r, t). The mean in both cases is there-

fore the same. Furthermore, from (305) we have

<4^p(F,tM^p(F,t)> =<^p(?,t)^p(F' , t)> = <i | i ' (F. t )4. ' (F ' , t ) ) , (311)

and when (306) holds
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(312)

When (302) is valid we have to use a modal expansion

*k(F'>

2 _
which may be expanded in a power series in cr ... The nature of ^"(r, t) or &~ (r, t) is

not important, insofar as it gives an additive noise.

In this general case it is difficult to obtain multi-time correspondence in any unique

fashion from the one-time results, even when the commutator (189) for ^ (r, t) is

given. When (189) is not given, there is no way to find this commutator in general from

the given classical information. With the one-time correspondence (311)-(313), in the

absence of better choices, we can assume

(iK(r, tH ' ( r ' , t ' ) ) = < iK( r , Wfr ', t ' ) ) t * t' (314)

< 4 » l 1 ' ( r , t ) 4 i l ( r l
] , t l ) > =< i | i l *{ r , t ) » | i l (F l , t I )> t * t'. (315)

We have given the correspondence directly in terms of fy (r, t) rather than &~ (r, t)

because the noise source is usually quite singular. Furthermore, correspondence in

i); (r, t) is more directly applicable to given classical additive noise specifications. If

desired, we can also find .the noise-source correlations from that of \\i (r, t). Since they

are not needed in the present work we shall not pursue them here.

4. 4. 2 Markov Case

In the Markov case, the one-time correspondence (311)-(313) establishes a complete

multi-time correspondence as follows. The commutator (189) is specified directly by

the given Green's function G(rt ; r ' t ' ) as in (281)-(282). From Theorem 9 the relations

.(311) and (312) can be immediately generalized to read

<^p(r,t)^p(?,t)> = <4,'(F,t)4 ! '
t(?' ,t ')). (316)

For the case (302) we can also obtain the quantum covariances from (313) with The-

orem 9. In this situation both the one-time and two-time quantum averages

(4/ ' ( r , t)i|j(r', t ' ) ) are different from the given classical averages. As the quantum field

is Gaussian, we have already arrived at a complete correspondence.

In this Markov case the classical and quantum diffusion coefficients can be com-

pared more directly. With a given classical ck (t, t) we can obtain D, (t) readily by
"** erf "**

Eq. 60. With the correspondence (302) or (306) we find <)>? (t, t) and D' (t) follows from
j^K ~ R

(236). Again we need not be explicit about such relations.

69



4. 4. 3 Stationary Case

In this case the quantum classical correspondence is most easily established. Com-

plete characterization is given by Theorem 10. It is important to note that in this situa-

tion the classical specification can be given in terms of G(r t ; r ' t ' ) and only parameter T.

We have a thermal-equilibrium steady state in general. The classical information is

presumably given by (266), with n(co) replaced by kRT/Rco. Note that a quantum system

is Markov or stationary only if its classical limit is also Markov or stationary.

It is clear that with the prescription described here we can write down a quantum

field specification corresponding to a given classical specification. Various communi-

cation configurations can then be formed. They will be treated, together with nondif-

ferential filters, in Section I-E.

4. 5 Conclusion

The basic idea of our approach is quite simple. To establish complete specification

of a Gaussian quantum field 41 ( r , t ) from the classical field, we need to compare

normal-ordered quantum averages with the given classical averages. One-time aver-

ages can be compared by using a noise-energy distribution argument. Two-time quan-

tum averages follow either from the one-time averages when fluctuation-dissipation

theorems are available, or can be assumed to be the same as the classical averages.

In any case, the commutator Eq. 189 has to be known. It is important to note that thus

far only in the Markov or stationary cases have we been able to specify the commuta-

tor from the given classical information.

The necessity of introducing an operator noise source is not evident in our quantum

classical comparison, but will be seen more explicitly later. This is required in gen-

eral to insure that ip (r, t) has the proper commutator (189), which in turn is necessary

for \\> (r, t) to be a valid quantum operator.

Since it should be clear from Eqs. 275a and 275b that the two-time field commutator

is determined by the system Green's function, it is interesting to inquire how the spe-

cial cases result from imposing additional properties on the general case. In the

author's opinion, the existence of fluctuation-dissipation theorems is closely connected

with the conservation of commutators (194). In fact, energy conservation should be the

basis for both. There should be more general fluctuation-dissipation theorems that

take particularly simple forms in the Markov or stationary cases. Efforts to seek such

results are certainly encouraging. Further discussion will be given in Appendix C.
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E. GENERAL QUANTUM -CHANNEL REPRESENTATION

We shall give a general prescription for modeling quantum -mechanical communica-

tion systems, including arbitrary transmitter-receiver configurations, independent addi-

tive noise, and channel-dependent as well as signa^dependent noises. These factors

will be studied separately but unified ultimately in a combined representation. A general

yet simple procedure is then described for converting a given classical communi-

cation system to a quantum-mechanical representation. Examples of such treatment

will be given in Section I-F.

We begin our consideration by generalizing the correspondence of Section I-D to

channels described by stochastic differential equations.

5. 1 Quantum Classical Correspondence for Stochastic Channels

Our stochastic channel is described by a stochastic differential equation

^Qp(F, t) = E(F, t) + ̂  (r, t) (317)

with an associated random Green's function

GR(?t;F't'). (318)

If we assume an expansion of the form of Eq. 82, our development in Section I-D

remains largely valid by interpreting h, (t, T) and the relevant quantities as stochastic

processes. With complete specification of h, (t, T) we can average the equations over

the channel statistics and obtain whatever channel quantum total averages we want. We

shall use the term channel statistics for the randomness in G R ( r t ; r ' t ' ) to distinguish

from noise statistics that arise from 3?~ (r, t) and other independent additive noise.

There is an important difference, however, which we will show later in commutator

conservation of the kind

[b.b^] = 1 (319)

that cannot hold as a stochastic equation in general when h, (t, T) is random.

Commutation -rule preservation can therefore only take the following form

[ b . b ] = 1 (320)

after averaging over the channel. Similarly, the field commutation rule can only be

interpreted as an average

\>o p(r , t) ,^o p(r ' ,V) | = 2 «,(r) <Mr) C( t , f ) (321)

[b k ( t ) ,b k ( t ' ) ]=6 k k ,C k ( t , t ' ) . (322)
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Preservation of such commutators, in particular (320), is again required for quantum-

mechanical consistency.

We shall establish, separately for the three cases that we treat, commutator (321)

conservation and quantum classical field correspondence. Note that when the correla-

tions of &~ (r, t) are specified together with (318), our development in Section I-D can

be immediately considered to be a proper description of quantum stochastic field trans-

mission through a linear system.

5. 1. 1 General Case

Commutator preservation in this case can be achieved by solving the nonrandom

[ F k ( t ) > F k ( t l ) | from

C k ( t , t ' ) = [bk(t),bj(t ')j = /.^dr /^ds hk(t ,T) h*(t', s)|^Fk(T), Fj(s)l. (323)

In the nonrandom case this amounts to solving an integral equation for a function of two

independent variables.

Note that the commutator F, (t), Fj(t') so determined is nonrandom and depends

only on the channel statistics. In the deterministic channel case it may happen that the

other correlations of F, (t), Eqs. 194-204, depend on h, (t, T). When h, (t, T) becomes

random we shall have strictly random correlation functions for F, (t). To simplify the

analysis, we will not consider the case of higher randomness and instead regard the

correlations of F, (t) as given nonrandom functions.

The one-time quantum classical correspondence of section 4.4. 1 (Part I) breaks

down here because the additive noise in this case is the noise source &~ (r, t) filteredop
through the random Green's function (318) in such a way that channel statistics plays a

role. In such a situation it is more convenient to compare the correlations of &~ (r, t)

and ^"(r, t). In the absence of better choices we have to equate the normally ordered

average of &~ (r, t) to that of ^"(r, t).

Let us write

dt ' d? Gk(rt;F't'){E(F,t)+^op(F,t)} (324)

in the "signal plus noise" form

\>op(r,t) = /* dt1 /v dr GR(rt;r ' t ') E( r ' , f )
o 2

dt1 /„ dr G' ( r t j r ' t 1 ) E(r ' , t ' )
V2 R

/_ t
0 0dt ' /v dr GR(rt;r ' t ')J^op(r ' , t ') , (325)
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where

GR(Ft; F't1) = GR(?t; F't ') - GR(rt; F't1). (326)

The additive noise

nop(F,t) = J^dt' /v dFGR(Ft;F' t ' )^~o p(F' , t ' ) . (327)
•f 2

is still Gaussian, but may be correlated with the signal carrying "noise"

nE(F,t) = / dt' /v dFGR(Ft ;F ' t ' ) E(F' , t ' ) . (328)

When G(rt;F't ') is again given and normal-order averages of &~ (F, t) are identified

with those of ^"(r, t), the properties of i|j (F, t) are completely specified in the form

(325) with (321) and E(r, t) given.

The most crucial element in setting up a quantum field specification from a given

classical specification is the derivation of (321) from the classical information. We have

discussed in Section I-D and in Appendix C how we may be able to employ various

analyses to derive (321) in general. In the absence of such knowledge, this field com-

mutator has to be given, or we have to resort to the following cases.

5. 1. 2 Markov Case

In the Markov case (276)-(277) remain valid when both sides of the equations are

interpreted as random processes. In fact, in such a case b,( t) , bJ(t) equals unity

without the need of an average because the random process h, (t, T) was assumed to

satisfy the deterministic initial condition (Eq. 42). If, however, we leave the commuta-

tor (189) and (211) random, we shall not be able to establish a photon operator nature

for functionals of Jj (F, t), as will be evident in section 5. 4. In order not to deal withop
a random commutator it is sufficient for our purpose to require average conservation

of a commutator like (321). It is then evident that

|bk(t),bj(t ') 1 = hk(t,t '), t > t ' (329)

[bk(t), b ( t ' ) = h*(t ' , t) , t ' > t (330)

and the commutator

[Fk(t)> Fk- ( t l )] = 6kk-6(t-tl) Jk(t) (331)

can be chosen to be nonrandom, and hence to satisfy
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|hk(t, T ) | 2 Jk(T) = 1. (332)

Furthermore, from (281)-(282), we have

G R ( r , t ; r ' f ) t > t' (333)

= G*(rt ;r ' t ' ) t1 > t. (334)K

Similarly to the general case, we shall take diffusion coefficients of F, (t) that are

nonrandom, although possibly dependent on the channel statistics. Moreover, one-time

quantum classical correspondence will be obtained by equating normal-ordered diffusion

coefficients to the given classical coefficients.

It is important to observe that the two-time averages are not as simply related to

the one-time averages as they are in Theorem 9, which can only be generalized to read,

say, for t > t',

<So p(r , t ) r£p(r ' , t ' )> = / dr » GR(rt; r » t ' ) < nQp(r ». t ')n^p(r', t ' ) ) (335)

but not

<no p(F,t)r£p(r- ' , t ' )> = / dr" GR(rt; r« t ' )<n o p ( r» , t ' )n^ p ( r ' , t')

where

— T —The reason for this is that the one-time average (n ( r , t )n (r, t)} depends also on

hk(t, T), as is evident from Eq. 235. With a given specification of G(rt;r ' t ' ) it is pos-

sible, however, to compute two-time averages from the ' one-time result through

Eqs. 335 and 235.

When the classical and quantum diffusion coefficients are identical it is clear that

the normal-ordered variances of ty (r, t) are the same as the classical variances before

channel averaging. From (335) it follows that the normal -ordered covariances of

i|j (r , t) are also the same as the classical covariances. The antinormal covariance

can be obtained through the normal one by using (333)-(334). It is more important that

with (333) and (334) and given diffusion coefficients, our quantum Markov field is com-

pletely specified as (325). In contrast to the general case, it is significant that in this

situation we know the field commutator from G(rt;r ' t ') .

5. 1. 3 Stationary Case

Preservation of commutation rules is a simple matter in the stationary case. The

noise source 3F (r, t), having a commutator
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, , (336)
°P °P J k

preserves all of the commutation rules for $ ( r , t ) . The correlations of F, (to) as givenop T K
by Eqs. 74 and 75 would be random, however, when & (cj) is random. In order not

Ito deal with random correlations we can either assume 3? k(u>) to be nonrandom or

set n(u>) = 0, so that we have no classical correlations.

In any case, the commutator [Q, (0) , P,(t)] can be simply evaluated from

Q ( 0 ) , P ( t ) ] = i f i h ( t ) (337)

[Qk(0), Pk(t)] = iff ̂  hk(t). (338)

If we let

</op(r,t) = 2 4>k(F)Pk(t) , (339)

it follows from (338) that

r — * — n "d — —

so that the field commutator is determined.

The classical quantum correspondence can be set up in this case by proper identifi-

cation of the system temperature T. In general we also have

(njp . (r ,u)no p(r ' ,u)> = 2fin(w) Im {-GR(ru; r'O)} (341)

<n ( r , u )n j ( r ' , w ) > =2K{n(w)+l}lm{-GR(rw,r '0)} (342)

for the signal-independent noise

F (co)
n ( r .u) = Z 4> , ( r ) —^ . (343)
°P k k Jgrk(«)

Since the essential difference between quantum and classical fields lies in the pres-

ence of commutators in the quantum case, we should recognize that Eqs. 333, 334, and

340 are of paramount importance in our quantum classical correspondence. This will

become more apparent in our discussion of stochastic signals.

5. 2 Stochastic Signals

Consider Eq. 317, and now take the excitation E(r, t) to be a random field. Let the

mean of E(r, t) be denoted E(r, t), and
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E'(F,t) = E(F,t)- ' /E(r,t). (344)

Here we use a wavy underline to indicate stochastic signal averaging. We then have

(^1 + ̂ 2)^o p(r , t )=^(r , t )+^o ( r , t ) + E ' ( r , t ) (345)

which differs from (317) in the presence of an additional noise source E'(r.t). As in

ordinary classical cases, the signal information may enter through this E'(r, t).

Since E(r, t) is completely classical, it causes no disturbance to the field commutator

and the quantum classical correspondence. Our previous development can therefore

include this case in a simple way. Similarly, another classical pure noise source

r, t) can also be included in (345).

Consider now the situation in which we have a wave equation

0 (?.t) = E(F,t) +Q (F, t) + 0 ( r , t ) +Jr(?,t), (346)

where Q (r, t) is also an operator source with completely specified stochastic prop-

erties. We therefore have an operator stochastic signal. Let us define

Qip<?lt) = Qop ( ? > t )"< Qop ( ? > t )> (34?)

E(F,t) = E(F,t) + < Q ( F , t ) > (348)
'

) + E ' ( F , t ) (349)

p (? ' t ) + QV?lt) (350)

so that (346) becomes
r*j r*s

(&,+&-) 4- (F, t ) = E(F.t) + ̂ ~(r,t) + ^ (F,t). (351)
± L* UJJ ^r

Suppose that we want to retain a given field commutator (321) for \\i (r, t), and in

particular still wish to conserve this commutator. The commutator of tF (r, t) hasop
then to be chosen as we chose IF (r, t) before. For a given Q (r, t) this is equivalent

to a choice of the commutator for !F (r, t) through (350). In particular, when IF (r, t)

or Q (r, t) are independent

(352)[>op<F. t), P tp(F. t)] = [^op(r. t), ̂ (r, t)] - ^(F, t), Q^F. t)].

When we are restricted to Gaussian quantum noise so that Q' (r, t) is Gaussian there will

be no distinction between operator stochastic signals and classical stochastic signals,

as is evident from (351). Note that •^~oc/
r>t) maY n°w contain signal information

through Q ( r . t ) .
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At this point is is worth noting that a Gaussian quantum noise source &~ (r, t) can

always be separated into an intrinsic quantum component plus a classical component

& (F, t) = J^ (F, t) + J^F.t) (353)op «v/ op

with

(r, t)) (354)

( r , t ) > (355)

f ,~ ** at- ,~ t)) (356)

(F,t)^~ (F, t)) (357)op op '•

We are therefore putting the quantum nature, and in particular the commutator of

3F (F, t), on the new source &~ (F, t), whereas ^"(r, t) carries the correlations that
op ~ op _

exist classically. It is now more apparent why an operator source Q (r, t) acts like

a classical stochastic signal. In our following treatment the separation (353)-(357) has

'other conceptual advantages.

It is important to note that it is possible to have a prescribed commutator (319) dis-

turbed by the introduction of an Q (r, t). In such a case we choose the commutator of

&~ (F, t) in (346) to get (321), which is then modified by Q (F,t). It is usually rea-

sonable to retain the b, (t) as photon operators, and in particular to retain the commuta-

tors (333), (334), and (340) for the Markov and stationary cases. The situation is then

just as described above.

5. 3 Other Additive Noise and Noise Sources

We have now discussed both classical and operator noise sources added to the wave

equation (346). These noise sources can be assumed to be independent, but they give

rise to dependent additive noises through a random G, (Ft;F't ') . With properly specified

statistics the output ty (F, t) is completely defined. We can write

ip (r, t) = /t dt1 /,, dr1 G D ( r t ; r l t ' ){E(r l , t 1 )+^(r ' , t l ) + ̂  (r'.t1)}. (358)op —°o V _ H op

It is clear that other added classical noise sources can be lumped in the same man-

ner. Further added quantum noise sources are effectively the same as classical

noise sources, if we insist on a specified field commutator (321). The commutators

of different quantum noise source components are therefore unimportant, as in the

situation in Theorem 5.

It is possible that the added noise sources are not diagonal in <Mr), or stated
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differently, do not have. spatial modes 4>k(r) identical to those of the original noise

sources. Analysis is more complicated, but the quantum nature of the situation is

unchanged or known; the commutator (321) is either the same as before or changed

in a specific way.

One can also add to (358) other. independent additive noises

*0p(r,t) - J^dt' /v dFGR(Ft;? ' t ' ){E(? ' , t ' ) + ̂ (?',t')+^ (r'.t1)}

+ n(r . t ) + n (r,t) . (359)

The classical additive noise n( r , t ) clearly causes no trouble. The quantum noise

n (r, t) may modify (321), however. Again if we prescribe (321), the commutator for

&~ (r, t) can be chosen to set (321) for arbitrary given n (r , t ) . Here the situation is

the same as for the introduction of Q (r, t). The quantum classical correspondence

is clear in the stochastic signal cases. When the commutator (321) is specified it is

also clear in the case of additive noise (359). In particular, the correspondence (313)

may apply to normal-ordered average of n ( r , t ) other than (312).

It is important to note, however, that the additive noise n (r, t) or n(r , t ) does

not obey fluctuation-dissipation theorems, which are derived for Hamiltonian sys-

tems. Such theorems apply only to noise sources filtered through the Green's function

of a differential equation. The quantum classical correspondence is still complete

because we know the properties of this filtered noise from the fluctuation-dissipation

theorems and the properties of additive noise that are given.

5. 4 Quantum Classical Correspondence for Nondifferential

Filter Channels

A general nondifferential system as discussed in section 2. 2 (Part I) can be

expressed as

*op<r,t) = / GR(?t;?'t '){E(F' )t ') + Jr(F',t')} dF'dt' +nQ ( r , t ) + n(r , t ) (360)

for a possibly random filter G R ( r t ; r ' t ' ) that does not arise from a differential equa-

tion. The signal E(r, t), which may be stochastic, is a classical field. The additive

noise contains an operator, as well as a c-number component. The commutator (321)

is given by that of n (r, t).

In this case it is clear that quantum classical correspondence can be obtained

as before with the important difference that the commutator (321), or equivalently that

of n (r, t), has to be given. When only classical information on (360) is given there

is no way, as in our general case, to tell (321). Since the commutator (-321) is extremely

important in the quantum representation, it is unfortunate that it cannot be related to

Gj,(rt; r't '). In our general case it may still be possible, as discussed before, to
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relate (321) to G^rt; r't '). In this nondifferential case, on the contrary, there is no
_

way to find (321). It is clear that the fields ^ (r, t) ultimately have to obey differential

equations from the laws of physics, and we have to go back to the physical situation in

which we approximate the system as (360) to see what kind of differential system it may

come from. This implies that for transition to quantum description the communica-

tion system should be described from the viewpoint of physical differential equations.

Further discussion of classical quantum transition will be made later.

5. 5 Channel Representation for Different Receiver-Transmitter

Configurations

We shall now show how different channel models emerge from different types of

receiver-transmitter configurations. Generality and flexibility of the possibilities are

discussed, and some simple examples are given.

5. 5. 1 Theory of Receiver Input Representation

Suppose that a field ^ (r, t) is given in the general form (358) with known (321). Con-

sider the linear functionals of ^ (r, t)

a = /v v d F d t W ( F , t ) 4 j (?,t) (361)
v r v t . op

If

a* = /v y d?dt W*(r, t) i|ij (?,t). (362)
r t ^

We are interested in determining the density operator that gives the outcome probabilities

for measurements of observables that are functions of a and a . It is clear that

(361)-(362) represent completely general linear functionals of i|j (r, t) and i)j' (r, t) by

various choices of W(r, t) including generalized functions. We can therefore first

develop a general representation for such (a, a') and later specialize to different

measurements corresponding to particular W(r,t). .

The function W(r, t) and the range of observation {v , V,} reflect the receiver con-

figuration in this case. The range

{Vr,Vt} (363)

specifies the region of space and time in which we observe the output signal <\> (r, t) of

the channel. In particular, V gives the physical size of the receiver. The function
_ r +

W(r, t) can be chosen for convenience of observation. Note that a and a' are in general

space-time-dependent. When

W(r , t ) = 6(r-rQ) 6(t-tQ) ' (364)

we are observing the field directly. When W(r, t) is constant we are observing the field

integrated over a given space-time region (363). The transmitter configuration is
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given by th'e domain of the excitation E(r, t) . We shall eventually discuss the class of

measurements included in such a description, and also the problem of measurement

probability calculation for a given observable incorporating the receiver configuration.

We shall first discuss the actual implementation of the integrals of (361) and (362).

For a given W(r, t) there may be many physical ways of actually realizing the integrals.

The essential problem is to determine whether additive noise has been introduced in

such realizations. For different specific implementations there is no general way to

tell the nature of the additive noise if it has been introduced. In practical applications

we have to investigate the actual receiver action on the field.

There is, however, a rather general approach by which the integrals (361) and (362)

can be realized and the corresponding additive noise determined. This involves passing

i|j (r, t) through a matched filter H(rt;r't ') defined for a given W(r, t), by

H(rt;r ' t ' ) = H(r-r';t-t')

= 0

R - r + r 1 <

T-t + t1 £

r < r1

t < t'

£ v^ r

= V.
t

= W(R-r+r'; T-t+t1) otherwise. (365)

This filter is space-time-invariant and its output sampled at t = T and r = R is

a = Co W(?,t) giop(F, t) dFdt (366)

in the absence of additive noise. Since the filter is zero in the proper region, the a

of (366) is the same as that of (361).

For this specific implementation of the integral (361)-(362) the minimum noise that

need be introduced is given by the fluctuation-dissipation-amplification theorems of

Appendix C. In order that the fluctuation-dissipation-amplification theorems apply, we

must be able to interpret the filter H(r-r';t-t') as the Green's function of a differen-

tial equation. Detailed discussion of such attenuation or amplification systems will be

omitted here. The important point in this connection is that no additive noise need be

introduced if the integrals (361)-(362) do not correspond to amplification of 4; (r, t). In

case amplification is involved, a noise will be added to (361)-(362) which is specified

by Eqs. C. 2, C. 3, and C. 4. Since the a of (361) is related linearly to ty (r, t), it

appears that our fluctuation-amplification theorem provides the limit noise required in

any implementation of the integrals.

Generalizing (361)-(362), we therefore write

a = /„ v dFdt W(?,t) *.n(?.t) + n (367)v v U U
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/„ v drdt W*(F,
r t ' *> + n op (368)

where n can vanish, depending on W(r, t). The n , which is independent of fy (r, t),

is now assumed to be given. The commutator

[a, a1"] = / drdF'dtdt1 W(r, t) W*(F', t1) Uop(r, t), «|^ (r1, t ' ) l + [n, nt] (369)

can be calculated from (321), given W(r, t) and [n, n']. Let us first assume that

[a, af] = 1 (370)

so that a can be interpreted as a photon operator averaged over the channel. Suppose,

first, that the channel is fixed. Since <\> (r, t) and n are Gaussian, we have also
op * op

a Gaussian a, from Theorem 2. Let a and a be the associated classical amplitude

of a and a. We can then form the distribution

P(a ,a exp

N

2a'*«'rN
a

*
cr (ra a

,'*}2
°" /

V
(371)

where

v v ^^ jloodt1 /v dr« W(r , t ) GR(rt ;r ' t ' ) E(r , t )
r t 2

(372)

2 , ,2X / *2
r = < c ' > =

1 V,r t
ropx (373)

(374)

rN = < r Na a

dt' :?It ') E(r' .t ').

(375)

(376)

For a fixed deterministic channel with nonrandom GD(rt; r't1), the distribution (371)
rv
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is the P-representation of the density operator p(a, a ) that we seek to determine. The

reason for this is that a, the linear transformation of *\> ( r , t ) , also possesses a com-

plete set of eigenstates. Together with [a, a'] = 1, it is sufficient for

pta.a1") = / d2a |o) <o| P(a,a*). (377)

An explicit demonstration is given in Appendix G.

When G~(rt ; r ' t ' ) becomes random the condition (370) allows us to interpret

(378)

as the P-representation for the channel-averaged density operator p^a, a') describing

measurement probabilities of functions of (a, a M derived from a random channel. In

Eq. 381 we shall assume that the random filter GD(rt; r 't1) is given in the form of
/ k \ r k iEq. 84 with a joint distribution pig ) for the random coefficients {g /.

f i v-mn/ smn
Similarly, for a set \k/, we have

ak = /v v ipQ (F, t) Wk(r, t) drdt + n^ , (379)

with

[ak'ak'] =av avi I ~ ̂ kk1

[ak,ak,] = 0. (381)

For a fixed channel the joint P-distribution P(c, c) for the associated classical ampli-

tudes {a, , a, } can be directly calculated for any order among the a. , as they are jointly
K. K. A. K

Gaussian. The parameters in P(a, a ) are determined from the statistics of \\i (r, t) and

n . We summarize this in the following theorem.

Theorem 11

The distribution

is the P-representation of the density operator describing measurements of observables

that are functions of a, a', where a = {a, } denotes the set of operators {a, } of (379)-

(381) collectively, and o_ is the associated amplitudes of a.

Note that according to Theorem 11, the density operator p(a, aj) can be constructed

only from given statistical specification of ip (r, t) in the normal order, together with

the commutator (321). See Appendix G for a more detailed elaboration of this possibility.
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When the a, do not commute for different k,

[ak,

t *the density operator p(a, a') may not be simply related to the P(o^ £ ) calculated in this

manner. In this case a specification of ^00(r> *) m terms of its modal amplitude den-

sity operators will be necessary. (See Appendix G.)

It may turn out that we have operators (a, a ' ) , as given by (367) and (368), which

have

[a, a] * 1 (383)

[a, a"*"] * 1. (384)

In such a case we cannot interpret a distribution like (371) as the P -representation of

p(a, a '), but proper scaling of the variables a to insure (370) can be achieved, since

(383)-(384) are c-numbers. The resulting P -distribution so constructed would in gen-

eral be quite different from (371). The case of many operators a_ can be handled sim-

ilarly.

It is now clear that the commutator (321) is needed for construction of the density-
f — *

operator representation p(a, a ' ) . The specific form of P(et, o ) is influenced greatly by

different commutators (321).

Let us now consider what class of measurements has been included in (384). Con-

sider measurement of an observable

which is an arbitrary function of \\i (r, t) and 41 (r, t). The receiver configuration is

now built into the form of 0 ( if • *\> ) • When 0 ( fy , i)j ' \ is a nonlinear function of

\\i (r, t) a function W(r, t) may not exist such that Q \ 4 > , ty ' ) can be expressed in
op , \ op op / / t \

terms of a and a1 only. With a set a, of (384) the observables G(I|J ,1);' ) can
K \ Op Op /

be expressed, under some broad conditions, in terms of a, through *\i , when ^ is
rC ^P P

expandable in terms of a, . In this case we can form density-operator representations
tfor the a, and then calculate the measurement probability for 0(a, a ' ) . This pro-

cedure is inconvenient, and simpler methods may be available depending on par-

ticular eify , AJJ ' j and the statistics of i|j (-r, t). We are unable to develop a simple

convenient procedure comparable to the one above which applies when the receiver

structure is reflected in the W, (r, t).

To illustrate the situation further, let us consider the following energy measurement
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which is frequently employed in practice. Here we make a direct measurement of N,

where

N = / i|/f (F, t) 4> (F, t) W(F, t) drdt.op op

This variable N cannot be readily expressed in terms of a and a^ of (361)-(362) in

general. When we expand ^ (r, t) in terms of a. , N can also be given in terms of a,op K j. —
but the resulting probability calculation for measurement from p(a, a') is inconvenient.

In the presence of other information, for example, when if (F, t) i|j (F, t) has Poisson-

distributed eigenvalues, we can make a direct calculation of measurement probabilities

without using p(a, a ' ) .

We wish to point out here that under general conditions we can always find a set {a, }

describing the field 41 (Ft) completely in a convenient manner. That is, there exists

a canonical representation for the receiver input field

i|i (F,t) = S a, <MF,t), (385)
Op i K. K.

where 4)i,(r"' t) is proportional to the eigenfunction of a linear integral equation whose

kernel is

4> ( r t ) ,4 ( r ' . t 1 )L op Yop

so that (380) and (381) hold. When the joint variances of {a,} factorize in any order,

we have a set of independent quantum observables {a, } which specifies ^ (?• t) in much
K OP

the same way as the coefficients in a Karhunen-Loeve expansion of a classical random

field. In particular, the density operators of each mode a, , which play the role of

probability densities for the coefficients in the classical case, can be calculated in the

way described above. Any set {a£} that does not obey (380) can still be considered

as a linear combination of the {a, } in (385) so that the representation applies to any
K.

receiver configuration. This canonical quantum description thus parallels the "covari-
12ance function-impulse response" type, which is a common approach to classical

detection and estimation problems, although our system is described in a "state-

variable-differential-equation" approach.

As the transmitter configuration is contained entirely in the form of the excitation

E(r, t), our complete system representation

*op(r,t) = / GR(Ft;F't ')[E(F',t ')+.ro p(F',t ')]dF'dt1 + ...

fully parallels the ordinary classical channel description. Note that an explicit physi-

cal field description in the H-picture is required for such parallelism.

Our procedure makes it evident that we can form a variety of density operator repre-

sentations for different types of measurements. In general, any receiver configuration
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can be treated at the expense of complications in analysis. This important feature makes

it possible for us to study the optimal receiver measurement for any given receiver

size. Before studying these questions we want first to give some simple examples

illustrating our procedure.

5. 5. 2 Examples

Let us first consider the case

VF ' t )4>k (?)dr- (386)

Each b, (t) has a P-distribution of the form

1

X exp

with

(387)

'Nf l
= \ [

^

bk(t) ~ ' hk(t« T) ek(T) dT] [bk(t) " ! hk(t> T) ek(T) dT

(388)

(389)

'N f l

N_ *

The total density operator is

k

(390)

(391) '

This density operator describes one-time measurement of observables that are functions

of t> i ( t ) . Since <t>k(?) ^s defined in the spatial region from the transmitter to the receiver,
it is clear that such b, (t) would never be really measured, and we should find
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density-operator representations for more realistic measurements.

For this purpose, we assume that

)} =0 F £ V J , ( t ) (392)

and expand

4,op(?,t) = z ek(r) ak(t) F e v>2 (393)

The spatial region V'(t) for which the mean output field is nonzero may be time-

dependent. We also assume, for simplicity, that 9k(r) are real orthonormal functions

over V' (t) so that 6k(r) actually also carries a time dependence. We have

a ( t ) = / , 4 - ( ? . t ) 6 ( F ) d F (395)op

so that

<ak(t)> = /yi 6k(r) dr /y dr' /J dt' G(rt;r'f) E(r'.t') (396)

(a'1" a ) = 2 / dFdF' 6 (F) 0 (F') «>* (F)cj> (F')< b'1" (t)b' (t))
kl K2 k3k4

 V2 kl k2 R3 k4 k3 k4

= <b'̂ (t)b'(t)) 2 / drdr1 9, (r) 9, (F1) $* (F) <f>, (F1)
k V2 kl k2 k3 k3

= 6 (b'Vjb'a)}. (397)
K1K2

We have made the approximation

<akt(t)ak(t)) = 6 k k^b l l f ( t )b( t )>. (398)

or equivalently

h, (t, T) = h(t, T) independent of k.

Similarly, it is easy to show that

[ak,(t), a(t)] = 6kk, (399)
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[ak,(t),ak(t)] = 0 (400)

<a k( t )a k , ( t )> = 6k k ,<bk(t)bk ,( t)>. (401)

It is clear that a , ( t ) is the photon operator b , ( t ) restricted to the spatial region V' (t).

A density operator p(a, a') then results which describes measurement of b, (t) in thek
interval V ' ( t ) . We shall not write down the explicit form here, since it is a product of

Gaussians. Note that since VI(t) can be of measurable size, we have a description

that is more realistic than the previous p(b, b ' ) .

It is worthwhile to observe that with the approximation (398) we can make a random

variable transformation to express the product distribution II P, ((3, , p, , t j of (391) in

terms of {a, , a, }, the associated classical amplitudes of {a, , a.'}. The resulting dis-
K K r * -i

tribution differs from the one corresponding to \a, , a, / by a factor

{ '

^'F^V^op^f^op^1' (402)

which corresponds to the field ty (r, t) outside Vl(t).

In these examples the total density operator is an infinite product of many compo-

nent density operators and is therefore quite untractable. Assume that we have a situ-

ation of digital communication with a total number M of messages {i}. For a specific

set of input excitation E.(r, t) the mean output

M
<i£ ( r , t ) > = S C <a ( i )> e n ( r , t ) i = 1, . . . , M (403)

up • ^_ j 11 u 11

can be expanded in terms of only M orthonormal functions {£ (r, t)}. The signal infor-

mation can then be obtained by observing functions of an infinite set

a = pr- / il* (F, t) £ (r, t) dFdt n = l , . . . , M . (404)
il V_y ^P

By proper choice of the i-independent constants C , we can have

an' an = 1 n = 1, . . . ,M (405)

so that a joint P-distribution for M amplitudes {a } can be readily found. The resulting

density operator should be much simpler than the operator like (391). Employing (if

possible) Karhunen-Loeve expansions of the type given in Section I-C, we can construct

other simple receiver input representations. We shall not give the details of such a

development here.

We will now consider the following question: Which "optimal1 measurement is more
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optimum, the one derived from (391) or the one based on (404)?

5. 6 Relative Optimality of Different Receiver Configurations

The optimality that we are talking about is that of communication system perfor

mance. We use criteria that are functions of the receiver input density operators and

the message statistics. We shall first establish a means of judging whether a loss of

optimality has occurred for a given receiver configuration. This criterion will be a

quantum -mechanical version of the theorem of irrelevance for density operators.
Q ~~

For this purpose, let p , be the total channel output density operator corresponding

to the signals with subsystem density operators

p - f P (406>

P 2 = trj P (407)

which describe measurements of observables X.i and X~ of subsystems 1 and 2, respec-

tively. As in the classical case, we want to find the condition under which measurements

of any subsystem 2 observables furnish no further information about the signal S,

given that any measurement of Xj has been made. For this to hold, we must demand

that the conditional probability of measured x« given measured x, for input signal S,

P s(x2 |x1), (408)

be independent of S for all subsystem observables X, and X_. The probability (408)

can be computed straightforwardly

p(x |x) = —1 , V ' -. (409)
/ I I V

/ #1 *\
If we also define a conditional quasi-density P (p9(39 p i p i I by

S \ L, £ 1 1 /

(412)
O \ L * t * A A / i \ J- A ^

Eq. 409 can be written
/
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(413)

Unfortunately, we see that the stipulation that

be independent of S is not sufficient for (408) to be independent of S for all X, and

X_. A sufficient condition is

P sV P 2 P 2 l p l P l ) = P2\P2P2J (415)

for which we can state the following theorem.

Theorem 12

If the subsystems 1 and 2 are normal-order-independent; that is,

(416)

then subsystem 2 can be ignored for signal processing without loss of optimality.

We conjecture from (413) that (416) is also a necessary condition for subsystem 2

to be neglected. This is in direct contrast to the classical case, and the difference is

clear from (413) because we demand that any measurement of subsystem 1 make mea-

surements of subsystem 2 fruitless, which is quite a strong condition. When X, and X_

are specified, however, the problem becomes completely classical. Alternatively, we

can also ask the question for fixed X, but variable XT- There is no easy solution other
s sthan the condition (416). Note that (416) includes the particular case p. = p, ® Pj. •
* *1 ^2

Let us consider a given receiver configuration

{wk(F,t)>

(417)

{vr,vt}

such that {w, (r, t)} is complete in the interval (363). We can express
K.

? > t ) s ? > t ) + i | ( ? ' t ) ' (418)

where
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V^^OP^ " I W^ 1 (419)

n .- . fr £ V

The signal dependence goes only to ^ (r,t). By Theorem 12, we have not lost optimality
*i" Q _

by measuring functions of (a, a') if the random field if (r , t) is normal -order indepen-
Q — Q _ . tr

dent of the field i}j (r, t). In our case ty (r, t) is usually the additive noise so that for

deterministic channels 4*° (r, t) can be ignored if the noise field in (V^, V.) is normal-op r t

order independent of its other part outside. In particular, if the additive noise is white

in both space and time, we need only look at the portion of the system containing
^ — C* — *

the signal. In the presence of non-white additive noise or when ip ( r , t ) and 41 (r, t)

are correlated in the normal order we shall be able to improve our performance, in
f\ _ Q _

principle, by observing i)j ( r «t ) . In this case if (r, t) cannot be ignored by an optimum

receiver. Note that optimality may also be degraded when the integral of v|j (r, t) over

W, (r, t) introduces additive noise.
K.

It is important to observe that because of preservation of commutators like (321)

and (322) the additive noise component of fy (r, t) cannot be completely white either spa-

tially or temporally. Nevertheless, the additives can be normal-ordered white, in that

the normal-order correlations are 6-correlated. In such a case there will be no loss

of optimality by observing the field in a restricted space -time region. Intuitively this

seems so, since the antinormal correlations, although non-white, contain no addi-

tional information other than the commutator that we already know.

Since we may have to be restricted to measurement intervals (363), for various rea-

sons, it is more appropriate to ask whether in an expansion of the form

M

<4 2 1 )

the optimal observation based on (a, aj) suffers any possible performance degradation.
C ^

When the additive noise is non-white it is clear that i); (r, t) of (421) cannot be ignored

by the optimum receiver. In this situation the additive noise is frequently not "time-

white."

In the example (386-) measurement of simple time observables based on {b, (t)}

entails no loss of optimality if we are constrained to make one-time measurements,

although further observations would be desirable. No loss is attributed to space non-

whiteness, since we are observing the total spatial volume under consideration. In

the example following (393) the optimality is the same as in the previous case, even

though we are observing a smaller spatial region. This is because under the approxi-

mation (398) the additive noise is spatially white in normal order.
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Although unknown loss of optimality occurs in situations like (421), the loss is likely

to be small. The simplification in system analysis, design, and implementation

resulting from (421) would probably favor its use rather than strictly optimal represen-

tations. In conclusion, let us note that Theorem 12 cannot give the quantitative dif-

ferences that may exist between two sub-optimal receiver configurations. It seems

that there is no general way to obtain these differences except by individual optimal

evaluation.

5. 7 Complete Channel Representation

We can represent our channel and the corresponding receiver input density operator

as in Fig. 4, As we have shown, the system can be simplified for Gaussian quantum

noise to the form shown in Fig. 5. We shall now summarize and discuss the general

procedure for establishing p(a, a/).

We first emphasize that in the absence of given classical information our linear

quantum-channel characterization provides the general framework for the develop-

ment of p(a, a ) from the transmitter channel receiver characteristics as outlined in

Fig. 5. Parametrization of such characteristics has to be obtained from calculations

or measurements for each individual problem, by using the approach that we have out-

lined. The specific nature of a problem may be invoked to find the field commuta-

tor (321) when fluctuation-dissipation theorems are not available, although this may not

be easy.

It is most desirable to ignore the specific nature of a problem and to obtain the

quantum specification directly from a given classical specification with a prescribed

procedure. Such a procedure can then be applied without detailed knowledge of quantum

theory. We shall now show how such a procedure may result from our development

when the commutator can be determined from the given classical information.

1. The only essential difference between the quantum and classical cases lies in

the commutator (321) which for Markov or stationary systems can be obtained from

Eqs. 333, 334, or 340.

2. Separating out this commutator, or the corresponding one for ^"(r, t) in Fig. 5

as in Eqs. 353-357, we have left a basically classical wave field. The normal-ordered

averages of these fields may be identified with the given classical information. When

appropriate, modifications like Eq. 313 may be introduced.

3. Stochastic channels and signals can now be described in a classical manner.

4. Form the observables (Eq. 379) for a given receiver configuration and find the

P-representation by making sure that Eq. 380 holds.
•Jr

We summarize this procedure in the following formula. Let p(v, -y ) be the distribu-

tion describing the stochastic signals characterized by the random variables {y.Y^}-

Assume that {a, a } is given as in (379) so that (380) holds. Let the corresponding
~ ~ *

classical variables be denoted (a, a ) so that
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ck = V V Wr, t) Wk(r, t) drdt + n. (422)
r t

for the given classical field ty(r, t) and noise n, associated with W, (r, t). The noise n,

can be assumed to be Gaussian. The given classical information can then be used to

calculate

p(r,r*) p g d ' r d g , < 4 2 3 >

( * * k \ *a, a ; r , r ; g ) is the Gaussian distribution for (a, a ) when the channel and

signal are deterministic. We now have the following theorem.

Theorem 13

The density operator p(a, a ) can be represented in a P -distribution given by (422).

The only important requirement for. applying Theorem 13 is that the field commu-

tator (321) is needed in general to find out the commutator for {a, a'}. The specific
+ _ * - - ~

form of p(a, a') or P(c, a ) depends heavily on such commutators. On the other hand,

we are not yet able to obtain (32.1) from the given classical information, except for

the special cases of Markov and stationary systems.

An even more important obstacle in applying Theorem 13 is that the usual classical

specification is not given by a differential equation description. For an arbitrary spe-

cified random filter we may not be able to interpret it as the Green's function of

a differential equation. In general, there are consistency requirements that arise from

the deterministic initial and boundary conditions. For our Markov and stationary cases

the consistency requirement is even more severe. The difficulty is actually a classical

one, of finding G R ( r t ; r ' t ' ) corresponding to a differential equation, which comes up

unavoidably in our quantum situations. These points will be considered further.

Note that if we are restricted to one-time measurements, we do not need two-time

commutators. Since the one-time commutator is always known, the difficulty discussed

above does not appear. Equation 321 is still needed, however, for complete specifica-

tion of the quantum situation. The relation of our procedure to an ordinary description

can be carried out as in section 2. 6 (Part I). In our correspondence we have to deal

with the complete fields, however.

5. 8 Conclusion

We have discussed various points in connection with the development of quantum

communication system models. They can be properly unified "as in Fig. 5. When

applicable, the procedure that we prescribe for the quantum classical transition is

quite simple and can yield a variety of different representations.

It is possible to put each individual quantum problem into our framework in an

approximate fashion. The task is reduced to a classical development of a proper

93



wave equation and the determination of its corresponding GR(rt; r't1). While the field

commutator Eq. 321 is crucial for a general quantum specification, and is not yet

available in our general case, we feel that it should be possible to find it in general.

In any case, a differential equation viewpoint is necessary for finding such commu-

tators, and hence for our quantum classical correspondence. Alternatively, what

we actually need is a procedure for canonical quantization of nonconservative linear

stochastic systems.
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F. APPLICATION TO OPTICAL CHANNELS

We shall illustrate by some concrete examples the theory of quantum-channel repre-

sentation that has just been described. We shall concentrate on the case in which a first-

principle analysis is not available and only classical information is specified. Our

purpose is to illustrate general procedures rather than to present detailed results. We

shall treat one case in which a detailed analysis can be carried out from a basic physi-

cal description of the situation.

6. 1 Consistency Conditions for the Classical Quantum Transition

We shall first elaborate upon the application of our correspondence procedure to a

given classical field that has already been briefly described. It is clear that the develop-

ment of a density-operator channel representation from our prescription is straight-

forward in principle, although it may be difficult analytically. The important problem is

the establishment of the' commutator Eq. 321 from the given classical information. Let

us first observe more carefully the significance of this commutator.

Aside from being a requirement for complete quantum specification of the field under

consideration, the commutator Eq. 321 has to be explicitly invoked in determining the

commutators Eqs. 380 and 381. The extent to which Eqs. 380-381 determine the form

of the final density-operator representation can be seen as follows. When the resulting

~p(a, a') for the set {a, } of Eq. 379 is Gaussian the effect of Eq. 321 is simply a scaling

in the parameters of p(a, a ) or of Eq. 382. Without a precise knowledge of (321) the

scaling effect cannot be determined. Although the operator form of p(a, a') is the same

regardless of the form of (321), we shall still not be able to determine the quantitative

dependence of our results on the system parameters. Such a situation is clearly not

acceptable. Furthermore, when p(a, aT) is not Gaussian its operator form, or its

P-representation (Eq. 352), cannot be determined properly without the specific com-

mutators Eqs. 380 and 381. The commutator (321) is therefore necessary for general

{a. }. The only exception is whenk

Wk(?,t) oc 6(t-tQ)

in Eq. 379. In this case only the one-time commutator

*0p(r,t),«|£p(r',t)] = &(?-?'), (424)

or

[^op(r,t),^op(r'.t)] = iR &(?-?'), (425)

is needed.

While we feel that it should be possible to find (321) in general from a classical
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differential equation description of the channel, we have obtained results only in the

Markov (or the vector Markov component) and stationary cases. We shall now investi-

gate in these situations the applicability of our Eqs. 333, 334, and 340 to a classi-

cally specified GR(rt;r't ').

Let us assume that the given Gn(rt;r 't ') arises from a differential equation, and thent\
determine what consistency conditions it has to satisfy. For Markov and stationary sys-

tems the output fields have a particular structure that leads to consistency conditions

for both the classical and the quantum fields. In the Markov case the conditions are

the fluctuation-dissipation theorems Eqs. 335 and 370 averaged over channel statistics.

The channel-averaged quantities in these relations are very difficult to compute and

depend heavily on the individual random GR(rt;r ' t ') . It is not clear what they would

imply about the structure of GR(rt;r ' t ') in general. It is therefore appropriate to ignore

these relations under the assumption that the processes are describable in a Markov or

vector Markov way, at least as a first approximation. There still remain consistency

conditions that arise from the deterministic initial and boundary conditions.

Spatial boundary conditions of the problem are presumed to have been incorporated

in the mode functions <(>, (?) in the expansion (Eq. 193) for ^ (?, t). Initial conditionsic op
give rise to the constraint (424) at equal time so that

G R ( r t ;P t )= 6(?-?') . (426)

in the Markov case. From Eq. B. 11, the equal-time constraint on G (rt;r't) for the
R

vector Markov case is

dt
GD(rt;r 'T)

t=T+

= 6(r-r') (427)

when .5?. involves derivatives up to the n order. It is clear that condition (426) pre-

cludes interpreting a classical random filter with response function

cL(rt;Pt) = 0 (428)
tv

as the Green's function of a Markov differential system.

Assuming GT?(rt;r ' t ') to be mean-square differentiable we can interchange differen-
60tiation and expectation operations so that (427) becomes

Hn-l _ _
G(rt;r 'r)

dt'n-1 t=T,
= 6(r-r'). (429)

This is inconsistent with (428). In any case, (426) or (429) becomes the necessary and

sufficient condition for interpreting a given GR(rt;r't ') as a random Green's function for

Markov or vector Markov systems. In this case the field commutator (321) is

96



given by Eqs. 333, 334 or B. 10. ,

In the stationary case the fluctuation-dissipation relation (Eq. 341) can be readily

interpreted and puts a rather severe requirement on the correlations of the additive

noise. Initial conditions, or (425), also require

£GR(rt;r 'o) = 6(r-r.'K. • . (430)

which has to hold in addition to Eq. 341. While we do not know the commutator (321)

in the general case, we can see from Eq. 24 that we also have

8n-l

at
—r GR(rt;r 'f)

t=t;
= 6(r-r')

which is identical to (429). This condition arises from the constraint (425) at equal

times. It is now clear that (429) is in general a necessary requirement for GR(rt;r ' t ')

to be the random Green's function of a differential equation corresponding to i)j (r, t)

in Eq. 193. Depending on the nature of the fields, for example, $ (r, t) or £ (r, t),

the corresponding GR(rt;r 't ') would be different functions. Since ^ (r, t) and the elec-

tromagnetic fields are related deterministically by linear operations, so are their cor-

responding Green's functions. Explicit relations between such Green's functions can

be obtained in general as in Appendix F. It suffices to note that the vanishing of one

GR(rt;r 't ') implies the vanishing of all others from linearity.

In summary, when (428) holds for a given random filter GR(rt;r ' t ' ) we cannot strictly

interpret it as the random Green's function of a differential equation. On the other hand,

the commutator Eq. 189 can be' immediately written when we are willing to accept the

Markov assumption and, also, when (426) or (429) is satisfied. In the stationary case

the additive noise correlations and GR(rt;r ' t ' ) have further to obey Eq. 341 in addition

to the condition (430).

6.2 Further Considerations

To sharpen the discussion, let us consider a given random Green's function expanded

in the form

G f(r t ;? ' t ' )= 2 ikn\(?) «£(?') y (t) y*(f), (431)
kn

where <K (?) and y (t) are complete and orthonormal without weighting functions, and

{g, } are random variables with given joint distributions. It is clear then that

G f(rt;? ' t ')= 2 gkn<J.k(?) <(.*(?')yn(t)y*(t ') (432)
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so that if G f(rt;r 't ') is nonvanishing in some space-time intervals the averages of {g, }

cannot all vanish. When t = t1 it is reasonable to expect nonvanishing G,(rt;r't') for a

differential system, since the channel disturbance has not yet begun to develop. While

it is possible to expect G f(rt;r 't ') = 0 for t » t1, our expansion of the form (432) may not

be consistent with such situations.

It is possible to account for these situations in a phenomenological manner. Let

G ( r t ; r ' t ' )= A(r , t ) G f(rt;r 't ') (433)

be the new random Green's function. We assume that A(r, t) is a given classical random

field when

t » t1

r » r1

but is unity otherwise. The precise region of random A(r, t) can be specified depending

on the individual problem. It is therefore possible, by considering (433) as the random

Green' s function, to satisfy the initial conditions and at the same time have the desired

behavior at the channel output. The function

G R ( r t ; r ' t ' )= A(r , t ) G f(rt;r 't ') ' (434)

then enters into the commutator instead of GJrt;r't'). The expression (434) gains further

significance from the observation that for a multiplicative system

The transmitted field <]i (r, t) is usually related to the source by a possibly random

Green's function G/.(rt;r't' ). A representation of the form (433) can therefore be regarded

as quite satisfactory when the region of random A(r, t) is properly determined.

Randomness in the output can also be attributed to the stochastic nature of the signals

in the following way. Let a random Green's function of the form (43 1) be given. We

write

GR(rt;?'t') E(? , t ' ) dPdt' +nop(?,t), (435)

where we suppose that the commutator of n (r, t) is given by (426). Let us assume {g, }
Op KIT

to be independent so that we have a canonical diversity representation

ib (F,t) = Z gUTA(r) yJ*) ' y*(t') 4>*(?') E(P. t ' ) dF'dt' + n (F,t) . (436)
Op k II K. Op

Define
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E(r , t ) = 2 e. <(>. (r) y (t)

"°p(f'"vn (t).

We have

y ( t )

'kn

i1 ak'n' = 6kk'6nn'-

drdt = ekn - r "kn
gkn

For independent Gaussian f, we can immediately form

.. * / * \
P(a, a ) = II P, (a. , a. )- - ' , kn\ kn kn/kn

(437)

(438)

(439)

Pkm(Qkn'akn) =~r-
""kn

akn ekngkn/gkn'

"kn

(440)

where a = {a, } is the associated classical amplitude of {a, }, and we have assumed

< f L f k n > = ° -

(441)

(442)

It can be seen from (440) that the randomness in g may alternatively be introduced

through e, . Assume

* \ 1 I i "kn1

Plei^- <*,,„ ) = =— exp <( - —^
Jkn

The averaged P-function for a becomes

— / * \ 1P. (a, , a. ) = —kn\ kn kn/ „.- , r;

(443)

jr(n, + N, )kn kn
exp-F

kn
- +

Ten kn

(444)

where we have assumed for simplicity that g is now chosen to be nonrandom. The
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form (444) is the familiar one of Gaussian signal in Gaussian noise. Note that we can-

not assume {g, } to possess a distribution like (443), since in that case g, = 0.

Random- phase channels can be introduced through signals similar to those in the

example above. While such a procedure is acceptable analytically, we feel nevertheless

that it is more meaningful and correct to treat random channels by Green' s functions

like (433), since the commutator (321) does reflect the channel mean response. This

will be discussed further.

6.3 Radiative Loss. and Dissipative Channels

We wish to show the differences and similarities between quantum- channel repre-

sentations of the radiative loss and dissipative channels. The radiative loss case is an

example of a free- space optical channel. Classically, both channels may be regarded

as additive noise that is free under appropriate conditions. It is interesting to find out

whether they are also similar quantum- mechanically.

6.3. 1 Radiative Loss Channel

Consider a field *\> (r, t) at the channel output resulting from free-space transmis-

sion. The expansion (Eq. 193) becomes

- -^op(r, t) = 2 ^(r) e bk(0), . (445)

where

and all other commutators are taken to be zero. The observables b, (0) correspond to

pure coherent states.

< b k ( 0 ) > = p k (447)

<bk(0)bk(0)> = p*pk (448)

< b j ( 0 ) b t ( 0 ) > = 0 (449)

<b k (0)b k (0)>= 0. (450)

If {p } are the associated classical amplitudes of b (0), the P-distribution of b (t) is
K it 1C

given by
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The field commutator (321) is then

t 1 * -iw. (t-f)
' (r1, t') = v A ''*** A '^ * ̂ '
op J k ~

which is the free-space Green's function

GF(rt ;r ' t ' )= GF(?-r';t-t'). : , (453)

The observables (Eq. 379) can be taken to be, say,

\ = L d ^ e ^ vF>t)'dt ' ' ' ' " (454)
-rt. • • . . . . . . • • ' . , ' • ' i t .

= b. (0) A . (455)
K. K. • ' • • , ,

which are proportional to b , (0 ) , with * . _ • .,-
it

Each a, therefore also corresponds to a pure coherent state so that Eq. 382 becomes

(456)

We occasionally prefer to use a., rather than a', = a,/A, , since it shows more clearly

the distribution in a, . We also can derive from Eq. 379 • ..- . .

f * _ _ f hs*
a. = \ <P, (r) dr \ e w (r.t) dt, (457)

A k J op •
/

and the resulting constant A would then reflect directly the relative energy intensities
rC

included in the observation volume or area A.

In the presence of independent additive noise n(r, t) the field commutator (452) can

be preserved by taking the noise to be classical. If the noise is stationary and Gaussian-

distributed,

n(? . t )= 2 <*>,(?) f, (t) (458)
k k k

' Kf
(459)

rrn
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For independent fk(t), the output distribution of (455) is modified to read

2~
I ~iu\,^ -
\ ft _ « K a

1

-iw t _
P k ' e Pk (46°)

Such a distribution would also arise when (3, is a Gaussian random variable. The cor-
responding distribution for {a, } is

{ ?1
I'k'fVSJ

"^j-

Again, a, of the type (454) or (457) can be formed, and the resulting p(a, a' ) worked outK.
in a straightforward way.

It is now clear that the radiative loss system in the absence of additive noise gives

rise to pure quantum states — the coherent states of the electromagnetic field. This

does not imply, however, that perfect performance can be readily achieved, because
of the quantum nature of the received signal.

6 . 3 . 2 Dissipative Channel

We shall consider a simple stationary dissipative system with a Green's function

G(rt;r't ') = 2 <f>, (?) 4>J?') h ,(t-t' ) . (462)
k k k k

for the field

*'*- ' (463)

hk(t-t' ) = exp | - j- (t-f ) - icok(t-t' ) j .

For concreteness, we may take, for example,

(464)

In this case the system is describable in a Markov manner, and, from Eq. 281, we have

' , t ' ) J = G(?t;Pt'), t > t ' . (465)

This commutator (465) can be immediately compared with (452).

In this situation an additive quantum noise is needed to preserve (424). It is

only necessary for that noise to have a commutator, so that (465) holds. The
normal-ordered correlations of the additive noise can be taken to vanish, as, for

example, when the system temperature goes to zero. Thus, if we write
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bfe(t) = exp(- yt-iw^t) bk(0) + fk(t). (466)

where t) , (0) obeys (447)- (458), and

<f£(t)fk( t )> = <fk( t )fk( t )> = 0, (467)

we have

< b k ( t ) > = exp(-^t-iukt) pk (468)

<bk(t)bk(t)> = e'rt |pk |2. . (469)

The P-distribution of Pk(t) is then

Pk(pk(t), P» = 62[pk - exp(- It-i^t) pj- ' (470)

For

ak = /A dr / exp(i^t+ ^t) 4-op(?,t) dt

= Akbk(0), (471)

( #\
ak' ak/ is identical to (45^>) if the integral in (471) can be

physically implemented without additive noise. Such an integral implies amplification,

and so will probably introduce an additive noise.

When the system is at a finite temperature there will be additive noise associated

with the dissipation. When according to our Markov assumption

< f j ( t ) f k ( t ' ) > = rn6(t-f) (472)

< y t ) f k ( t ' ) > = 0, ' (473)

we have

(474)
n

The resulting distribution for a, of the form (471) is the same as (46 1) even in the pres-

ence of amplification noise, since further Gaussian additive noise can be accounted

for by adding the corresponding noise power to n. Further discussion will be

found in Appendix C.
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6.3 .3 Comparison

Let us observe that the first difference between the radiative and dissipative loss

channels lies in the corresponding field commutator (452) vs (465). In spite of this, the

one-time distribution (470), while different from (455), is essentially the same as (456).

In both cases the observables suffer losses, radiative for a, and dissipative for p. (t).
K- R

Moreover; 'note that we have pure coherent states in all of these situations. Similarly,

the distributions (460) and (461) can be compared with (474). In the absence of ampli-

. fication noise the a,-of (471) is identical to the a of (457).
K ' K

. ' In general, the dissipative case is more complicated. In the first place, amplifi-

cation noise may be introduced. In the second place, observables like (457) are coupled

for the dissipative channel. It should be clear, however, that when noiseless amplifi-

cation like (471) is possible, the two situations can always be made identical with

a different receiver.

In summary, the two situations are basically identical for one-time measurements.

In general they will be identical insofar as an integral of the (471) type can be imple-

mented without additive noise. This is possible in principle classically, but we indi-

cate in Appendix C that this is not possible quantum-mechanically if the integral is

implemented by a linear filter. Except for this point, the quantum situation is com-

; pletely analogous to the classical one, with similar quantum-channel representations.

6.4.. Atmospheric Channel

We now apply our previous consideration in section 6. 1 to the turbulent atmospheric

optical channel. ' • Our first task is to establish the field commutator Eq. 321 from

given classical specifications. While there are basic differential equation descriptions

for electromagnetic transmission through the atmosphere, ~ ' we shall not pursue

such a'detailed quantum development from first principles. Instead, we shall try to

find the quantum model directly from our procedures for classical quantum correspon-

dence. This would demonstrate the generality and convenience of our treatment.

Warning should be given at the outset that our result is approximate, although it may

be .adequate for communication analysis.

: In the usual model of a'turbulent atmosphere, dissipative losses are neglected. When

the turbulence is turned off, the field commutator is then clearly given by the free-space

Green's function (453), where the set 4>k(r) is chosen-depending on system geometry.

When turbulence is introduced, one. may expect the mean Green's function to remain

basically the free-space function. While this is not .true in general, we shall show that

'our. correspondence procedure supports this proposition as applied to many potential

receiver configurations. . " '. . .

. - We first argue that the output field (442) is strictly Markov. . This follows in general

from the time harmonic field that is usually assumed for the turbulent atmosphere, and

also follows from the approximation that we shall make. .The field commutator Eq. 321
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is now given by the averaged Green's functions.

We assume, as before, that the transmitted electric field is related to the output

field by a log-normal multiplicative process • •

op(F,t), .- . .. , - • (475)

where \(r, t) is a complex Gaussian process and & (r, t) is the. complex envelope of

the electric field. The transmitted field <g (r, t) is then related to the source through

the free- space propagation. The field ^ (r, t) is related to $ (r, t) through a linear

deterministic filter in general. We further assume that- the; process v(r, t) is stationary

in both space and time arguments. The average Green's function for ip. (r, t) is then

of the form . .

GR(?,t;Pt') = ev ( r > t ) GF(rt;?'t')

= C^X GF(?t;?'t') .. , (476)

with the free -space Green's function G_,(rt;r't') and a multiplicative constant C .

As we have explained in section 6. 1, 'the GD(ft;r ' t ' ) of (476) cannot be interpretedK , __ ,
as the average random Green's function of a differential equation for all {r,)r';t, t1/ when

C + 1. It is possible to have such an interpretation when the constant C is turned on

only for t » t1 and r » r' . We can therefore consider (476) as the'GR(rt;r't') of (433). We

still have to determine the region where C begins to be important.

The commutator Eq. 321, which is now given by (476),- is used only iir constructing.

density-operator models. A ty^aSsal construction in this case involves integrating t and

t1 within the same coherent time interval and r and r' within a~diversity pf coherence

areas. If the turbulence effect has not modified the field propagation significantly in..

a time interval t - t' and a space interval r - r1 that are small compared iwith the •

coherent time and the distance traveled in that time, respectively, it is reasonable •

to approximate C by unity in (476). We can then take Eq. 321 to be the free-space'

Green's function G^frtir ' t ' ) for applications to density-operator calculations of many
'*w _ _

receiver configurations. For large t - t', the GR(rt;r't ') will be given in our approxi-

mation by (477). The precise behavior of GR(rt;r't ') for all time has to be obtained by

a more detailed classical analysis. • -

The assumption that is actually -required for using G^trtir't ') as GR(rt;r't ') in our

field commutator applications is that.the signal- pro cess ing time should be short enough

so that in the scale of field propagation the turbulence effect is still not important in

determining GR(rt;r't'). With the high velocity of light the corresponding space interval

would certainly be large enough to include the signal-processing areas. This character-

istic time at which turbulence starts to turn on has again to be obtained classically. We

may nevertheless always use as a first approximation the original Green1 s function of ~
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the transmission medium without perturbing effect as the Gofr t j r ' t ' ) in the field com-
K

mutator Eq. 321.

It may frequently be convenient to employ the commutator between the electric or

magnetic fields for receiver input modeling. This has the further advantage that the

electromagnetic fields are more readily observable dynamical quantities. It is shown

in Appendix F that in general we have

r , t ) ,<f( r , t ) ] = ifi Re GR(rt;r ' t ') , ' (477)
IX-

where GD(rt;r't ') is the Green's function for *\> (r, t) of the form (463).t\ op
Let us now give the density-operator representation of the atmospheric channel for

the following kind of receiver configuration. We assume that the free-space Green's

function is expanded in the form

GF(rt;?'f) = Z jp <t>k(?) «£(?') yk(t) y*(t'). (478)
rC rC s • -

Over a time interval T we assume

AT yk(t) yk-( t) dt = 6kk-' (479)

For convenience, let us employ a cylindrical coordinate system r = (z, p ) with the fol-

lowing property for <t>i (z, p ). At certain points z we assume
K. O

P ) P > d ? = 5 - Y (480)

over the coherence area A in the received plane at z . Here v is a constant smallerc ^ o
than 1 when 4*1,(?) is orthonormal over the spatial volume of interest. We now define

* . * -* _ --
SL — i, jrp Vi (t) dt /. 6(z—z ) 4>. (z , p ) i^ (r, t) dzdp, (481)

c

so that by using (478) as our field commutator,

2 " ' ' ^
(482)

JXA.

•

The variables

a = -^ (483)

are properly normalized photon operators.

. Suppose that y(r, t) of (475) is completely correlated over the time interval and
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spatial area where it is correlated at all, and is completely utfcorrelated from one such
7 8

interval and area to another. Moreover, we assume that T is smaller than the coher-

ent time interval. We can then write

a, = za, + n, , . (484)

where a, is a parameter depending on the signal. The random variable z is

z = ue1* (485)

with independent distributions for u and <f:

2^2'

Jzlf o-u 1 2o-

, (Inu
P(u) = — = - exp -- : - = - }•; u> 0 (486)

p(4>) = 2jjr; 2;r »<f »0. (487)

We assume that n, is a Gaussian quantum noise that is uncorrelated to any order with z.

Strictly speaking, n, is a Gaussian noise also multiplied by z so that, while still
K.

Gaussian; it may have some higher order correlations with z. These correlations we

neglect here for simplicity.

The variables a, possess a joint P -distribution

P(c) = n P (a ), (488)
k K k

where for fixed z

2 f I ~ i2
-za. I

(489)

and the {a, } are the associated classical amplitudes of {ak}- We have assumed

< n k \ > = 0 '

Averaging (489) over the distribution for z, we finally obtain

2 2 2 2
, I (In u + o- ) a, u

X exp ^ g =— >•• (490>
V27T o- | 2(r n,

t\.
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where I (x) is the zero-order modified Bessel function of the first kind. The
tP-distribution is diagonal in the photon number representation of aJa,. If we are care-

ful about the corresponding density-operator representation we can change variables

back to (akl for {a,} by direct substitution of a, = \a in (490).

We have considered only one coherence area. The extension to a diversity of many

coherence areas will be straightforward. Furthermore, we may see that many other

density-operator representations can be formed, even with the many approximations

that we have made. One most susceptible assumption is that within the signal-processing

time T the turbulence effect represented by C is not yet significant in GR(rt;r ' t ' ) .

It appears that a more detailed consideration of the problem at the classical level is

required for a better quantum treatment.

6. 5 Multiple Scattering Channel
cf\ o o

We shall give only a brief consideration of scattering channels ' that describe

optical communication through clouds, fog, and haze. The first question for a quantum

formulation is again the development of an appropriate field commutator at the receiver.

Scattering channels are usually characterized classically by randomly varying space-

time linear filters which are sample functions of Gaussian processes. They are

analogous to ordinary fading dispersive channels with the added complication of spatial

fading. The mean output field of the mean impulse response is again taken to vanish.

Thus this problem falls into the general case that we treated in sections 6. 1 and 6. 2.

The filter cannot therefore be interpreted as a random Green's function without mod-

ification.

Our argument in sections 6. 2 and 6.4 suggests that for t close to t1 and r close

to ?' the average filter response G - n f r t j r ' t ' ) should not vanish, and can be taken to be

the free-space Green's function for receiver input calculation. In the present form this

is not a very good application, particularly for an earth-to-space optical link. In the

absence of a detailed consideration one may take the free-space Green's function for

the field commutator as a first approximation.

Once the field commutator is known, it is straightforward to obtain density-operator

representation for different receiver configurations. Since our received field is

Gaussian, the calculation is further simplified because the signal-carrying processes

and the pure-noise processes are independent. With a Karhunen-Loeve expansion of

G.o(rt; r '( t ' ) , or an expansion of the type of Eq. 84, the problem is reduced to ari
canonical diversity representation where each diversity path is a Gaussian multi-

plicative or Rayleigh fading channel. For brevity, we are omitting the obvious pro-

cedures for carrying out such an analysis.

If the phase information has been already completely destroyed at the receiver, pre-

sumably a direct-energy measurement would be made. In such a case it might appear

that the field-amplitude commutator is not needed. That this is not so is clear if we

note that we require the field commutator for calculation of the receiver input .
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density operators, which in turn are needed for calculations of photon measure-

ment probabilities.

6. 6 Guided Optical Transmission

We shall give a first-principle quantum description of an optical transmission line

considered as a communication channel. The purpose of such an analysis is to show

the relation of our general theory to concrete situations by an example in which things

can be worked out in detail, and to gain further confidence in our general results.

Our pace here will be rather rapid, omitting many detailed derivations.

Let the voltage and current along a one-dimensional TEM wave transmission line

be V(z, t) and I(z, t) which obey the dissipative equations

a_v _ _T ai
az ~ at

(491)

H = -C ~ - GV + I ( t ) 6(z) + F(z, t ) • "

for a source current I (t) and noise F(z,t) . Introduce the potential A(z , t ) so that

KZ t) = - —

(492)

We have from (491)

2 2
= - I ( t ) 6(z) -F(z , t ) (493)

3t dt ° ,

The conjugate field for A(z, t) is

77(z,t) =-| ^A, (495)
s

and from canonical quantization "-•—

[A(z , t ) ,7T(z l , t ) ] = iK6(z-z'). (496)

Introduce the initial and boundary conditions

ai(z.t)
Kz.o ) = at t=0

= 0 (497)
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I(o,t) = I U , t ) = 0, (498)

where the length S. of the line can become infinite. In general we shall only look at the

signal field before it reaches the end of the line so that a finite i. is just a mathe-

matical convenience.

We can now expand A ( z , t ) in the standing-wave modes

A ( z . t ) = s 2 cos k zq (t), (499)
n

with

"n = V5' kn = T ' integer n

and [q (t), q (t)] = ifi. If we expand
v,

1/2
F ( z , t ) = ( ^ p ) S wn cos knz{fn(t)4fj(t)} (500)

and adopt a Markov -rotating -wave approximation ' we have, corresponding to

Eq. 216,

db / vl/2
(501)

where

bn(t) =

[bn(t), bj(t)l = 1 . (503)

V = (504)

)6n n , (505)

<4{ t ) fn' ( T )> = Vn6(t-r) 6nn, (506)

<f n ( t ) f n , (T ) ) = 0 (507)

and n is a Bose distribution as before. When f (t) is taken to be Gaussian, specification
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of the relevant fields is complete. The Markov-rotating-wave approximation is valid

when vA> is negligibly small for the frequency modes of interest. A fundamental deri-

vation of (501) can be given by considering a coupled system and reservoir.

Introducing the field (Eq. 193)

p (z . t ) = 2-cos knzbn(t),
" n

(508)

we have (Eq. 321)

rop' \i' ( z ' . f ) = S cos k z cos k z1 exp l --(t-t.')-iwn(t-t (509)

which can be compared with (462)-(465). It is clear that a P-distribution for each b (t)

can be written with the same form as (474).

The Green's function of our differential equation (493) under a source -6(z) 6(t) and

our boundary condition in general is

-l-(t-t') / z _ z , x

G(z t ; z ' t ' ) = e U-1V "*'~ s~) ^ (510)

which is of course space-time invariant. The function U ,(x) denotes the unit step func-

tion, and I is the modified Bessel function of zero order. In our approximation we take

G(zt ;z ' t ' ) = e (511)

so that under a source -I (t) 6(z), the.output current is
S

(512)

Other output fields including the noise can be readily obtained from (511). Such explicit

construction of the detailed physical space-time behavior for the fields is clearly useful.

To demonstrate the usefulness of such an explicit representation, let us suppose that

the signal I (t) is turned on for a duration T only. The mean current ( I (z , t ) ) is then

nonvanishing only in the space interval st to s(t-T) at any moment t. The mean voltage

is similarly nonvanishing only in such an interval. We can construct a density-operator

representation for linear functionals of

ij j (z , t ) = Cl(z.t) + iV(z,t)

or other similar fields like A(z, t ) .

of Eq. 379

(513)

Here C is a real constant. For a choice
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r ' i / -t- \ It- i I .̂ -̂  I j " / ci i /t \

the commutator

[a, a1]

can be determined from

= ifis26'(z-z'). (515)

When

s

/ y2(t) dt = 1 (517)

the operator a as obtained from (514) contains I directly as its mean. A single den-
' t s

sity operator can then be developed for (a, a') without loss of optimality when the addi-

tive noise is spatially white, which is the case for our frequency band of interest. This

density operator can be compared with

k

constructed from each of the mode amplitudes b, (t). The resulting simplification is

indeed enormous, especially for a parameter estimation problem when we want to

estimate I .

It is clear that the statistical dynamical problem here is completely solved. We have

both the detailed Heisenberg operator solutions and the relevant statistics derived from

what we may call a first-principle calculation. Again, many density operators can be

formed, and since this is a straightforward exercise we shall not dwell on the pro-

cedure.

6. 7 Conclusion

We have given several explicit examples, together with a general consideration, in

our procedure for obtaining quantum-channel representation from given classical spe-

cification. Our purpose has been only to indicate the convenience and generality of our

method, rather than to present an exhaustive treatment of the individual optical channels.

From the description that we have given, we can construct the density-operator repre-

sentation for any convenient receiver configuration.

An important point in our discussion is that the unperturbed Green's function may

be used quite generally as a first approximation in the field commutator employed for

receiver input calculations. When this commutator is known our classical quantum cor-

respondence is completed. The extent to which this use of \inperturbed Green's function
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will be a good approximation is still unknown. It is clear that for both the atmospheric

and scattering channels it cannot be held unconditionally. It appears that further detailed

classical analyses, particularly those from a differential equation viewpoint, will be

required to give more accurate quantitative determination of the field commutators or

the system Green's functions.
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G. CONCLUSION TO PART I

We shall give a final synopsis of the major points in our quantum communication

system modeling and some discussion of the nature of our approach. Suggestions for

more useful work in this area will also be indicated.

7. 1 Summary of Results

In Part I we have developed the general quantum representation of channels that are

describable by linear equations. For this purpose our theory provides a general frame-

work for obtaining the specifying parameters in the quantum description by various

means. A most convenient way of achieving the quantum specification is through the given

classical specification. In such a situation we have to obtain the channel output field

commutator from the classical information. Receiver input density operators can then

be calculated directly from a classical statistical specification of the output field. Our

field commutator specification is limited, however, to given classical Markov or sta-

tionary systems, so that we assume that the corresponding quantum system is also

Markov or stationary.

Our final construction of the P-representation given by Theorem 13 is quite simple.

In particular, if, in the absence of noise, our transmitter generates a coherent state

at the channel output, then, in the presence of noise and other channel-signal statistics,

the channel output is a classical superposition of coherent states.

It may be argued that this construction and interpretation are obvious without our

analysis. Our theory, however, illuminates the assumptions that are inherent in such

a procedure, including the special form of quantum statistics that we take for the fields.

More important is the essential point that in this procedure the field commutator has

to be known for a proper construction of density operators. Thus, an application to an

arbitrary set of variables a in the procedure will lead to incorrect results. It should

be clear that such a procedure will usually have no meaning unless the field commutator

is derived from the classical information.

We have given some examples that are pertinent to optical channels to illustrate

applications of our procedure. The important lesson to learn from these applications

is that the classical information is not always directly given in a suitable form for

transition to the quantum region. Various classical analyses may be needed to put the

classical information in a correct form. In this connection it has been noted that

descriptions of classical communication systems from a physical differential equation

viewpoint will be more convenient for quantization.

We have presented primarily a framework in which linear quantum channel repre-

sentation can be developed, particularly from given classical specification. We have

also considered some matters of independent interest, for example, a theory of quan-

tum random processes and fluctuation-amplification theorems. Also, our theory of

quantum field propagation can be immediately adopted as a theory of quantum noise in
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traveling-wave amplifiers. There are several problems, however, that need further

study for a complete theory of communication system modeling.

7.2 Suggestions for Further Research

The most important unsolved problem is the proper development, from classical

information only, of the field commutator that is applicable in a general situation. This

can be viewed as a problem of canonically quantizing a nonconservative stochastic sys-

tem. A brief discussion of possible approaches to this problem has been given before

and also in Appendix C.

Another outstanding problem is the development of convenient density operators or

measurement probabilities for any receiver configuration and observable. Whether and,

if so, how this can be done is uncertain.

The transmitter that we have assumed generates only coherent states or their super-

positions. This can be shown to be necessary if the channel output field is going to relate

linearly to the input excitations. Moreover, one may want to generate other states at

the expense of allowing nonlinearity in the system. Given a channel structure, it may

be possible to formulate this problem in a manner analogous to our development. In

general, analysis will be complicated by nonlinearity. This problem is interesting

enough to deserve much attention.

We have not considered the problem of developing a physical implementation of a

given quantum measurement, except for a brief theoretical discussion in Appendix E.

This problem is somewhat remote from channel modeling; nevertheless, it is an impor-

tant matter that is closely connected with a more physical description of communication

systems.

Some other generalizations of our theory are discussed in Appendix D. Despite its

apparent generality, we conclude that our theory leaves many fruitful areas that are

open for further investigation.
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Part II. Optimization of Communication System Performance

A. INTRODUCTION AND DETECTION THEORY FORMULATION

In Part II we shall take up the problem of optimizing quantum communication system

performance under various performance critieria. We shall concentrate on M-ary digi-

tal signal detection and only briefly consider other areas. Our main results are some

necessary and sufficient conditions on general optimal receiver specification in quan-

tum detection theory. We have not yet seriously exploited the applications of these con-

ditions.

1. 1 Relation to Previous Work

In classical communication theory the general mathematical specification of

receivers is an important conceptual problem whose solution is well-known. The

conceptual problem also arises in quantum communication theory, but the general

solution is still to be found. For digital quantum detection the optimal receiver
41 43 44specification is known only in very special cases, ' ' and no general conditions that

the optimal detector must satisfy have been given. The minimum mean-square-error

quantum estimate (MMSEQ) of a single random parameter has also been worked out
47 42and bounds of the Cramer-Rao have been given for both random and nonrandom

parameter estimations. The measurement observables in these works are restricted,

however, to self-adjoint operators. The general MMSEQ in the multiple-parameter case

is still unknown, as is the maximum-likelihood quantum (MLQ) estimate. The Wiener-

Kalman type of continuous filtering also has no quantum analogy at present.

We shall examine these general specification problems, and give some general con-

ditions on the optimal digital detector, together with some examples illustrating our

results. We shall extend some of the previous work on estimation and analog com-

munication. A final summary for Part II will be included with suggestions for treat-

ment of other optimization problems. First, we shall give several careful formulations

of the detection problem.

1. 2 Background

In establishing the results of Part II we have to pursue mathematical rigor, in con-

trast to Part I where the precise conditions of validity are relatively unimportant. We

shall employ some general optimization theories that are applicable to abstract normed

linear spaces. We shall also need certain properties of various spaces of operators

corresponding to our quantities of interest. The mathematical theories of these sub-

jects are of relatively recent origin and their detailed exposition may be found in

the references; some will be briefly discussed in Appendix H and Appendix I.
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1. 3 Original Formulation of the Detection Problem

A detailed treatment of quantum channels and the corresponding receiver input den-

sity operator representations has been given in Part I. These receiver input density

operators are the basic given quantities in the formulation of our detection problems.

For present purposes, we model our communication system as in Fig. 6. The S.(t)which

SOURCE
m.

J

TRANSMITTER

V"
CHANNEL

P:(0
J

RECEIVER

Fig. 6. Simplified representation of quantum communication systems.

represents the message information on the signal is an ordinary time function, and the

dependence of p. on j is hidden in some parameters in the expressions of the p. Our
J • J

p's are the analogs of conditional probabilities in the classical case. If the message

ensemble is continuous, we still have the same kind of p. representation, the only dif-
J

ference being that now j runs through a continuous set. With this description we can

begin to formulate the detection problems.

Let 3C be a separable Hilbert space over the complex field $ whose elements are

the quantum states | } on which our p's are defined. Suppose that we have an M-ary

equiprobable message alphabet {j = 1,. . . , M} with the corresponding channel output for

message j described by the density operator p.. Each p. is therefore a self-adjoint
J J

positive semidefinite operator of unit trace on 3C. [See Appendix H for a brief resume

of some basic mathematical definitions and facts that we shall use.]

Suppose that we make a quantum measurement of the observable X on the receiver

input. We take the class of measurable operators to be those whose eigenvectors form

a complete orthonormal or overcomplete set in 3C. Thus the measurable operators are

the observables that are defined in Appendix A. As discussed in Appendix G, not all

such observables have been explicitly shown to be measurable, in the sense that the

eigenvectors of the operators are used to compute measurement probabilities and the

eigenvalues are the measured parameters. We can therefore make the qualification that

X should indeed be measurable in the following formulation. This qualification is not

relevant to our work since we feel that such observables can ultimately be shown to be

measurable, and in any case we shall not deal with this formulation in its original form.

The difficulty arises only if the conjugate Hermitian components of X possess a q-number

commutator.

The probability that an eigenvalue x of X is measured, given that the j

message is sent, is then , .

P(x|m j) = <n | P j |x),
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where x) is the eigenvector of X. Let us adopt a possible random strategy with T T - ( X )
th ^being the probability that we decide that the j message was sent, given the measured

value x. The total probability of correct decision is then

J
>l Pj ix> Tj(x) d x- (518)

We use the integral here merely as a symbol, in that it represents a sum in the discrete

case and an integral over the relevant variables in the continuous case.

In our detection problem we wish to maximize (518) for given p., subject to the fol-

lowing constraints. First, the eigenvectors |x), which we use to imply either com-

plete orthonormal or overcomplete must be complete. Thus

! |x) <x| dx = I,

where I is the identity operator on 3C. The decision function 77.(x) obeys
J

7 U x ) 3 = 0 WJ
J

Z 7 7 . ( X ) = 1.

(519)

(520)

(521)

Then the problem is to maximize (518), subject to (519)-(521). To be precise we have

also to add the constraint that the resulting X be measurable.

This formulation of the detection problem, which we call 0, is the most accurate

and general one. It is very difficult to handle, however, because of the dependence of

77.(x) on the parameter x which is still unknown. Therefore it is necessary to trans-
J 41

form it to a more convenient form. Helstrom first gave an operator formulation of

the problem in which he considered only orthonormal sets {|x)}. Particular caution

should be used when including overcomplete sets. We shall develop several formulations

of the detection problem for orthonormal sets {(x)} and for general complete.sets.

1. 4 Operator Formulation of the Detection Problem

41Let us introduce the detection operators

77 =/ 7T (x) |x> <x| dx,
J J

(522)

where we have let all 77. be simultaneously diagonal in a complete set {|x}} so that
J

the decision can be made by measuring X. Then condition (521) is equivalent through

(519) to the operator constraint

2 77 = I,
J

(523)

and (518) can be written in operator form
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M s tr- YJ- < 5 2 4 >
J

The condition (520) has to be left in its original form in general, since {|x}} may be

overcomplete. The constraints on the ir. restrict them to be self-adjoint positive semi-

definite bounded operators. If {|x)} happens to be an orthonormal set, then (520) follows

from positive semidefiniteness. In principle, this formulation also includes overcom-

plete sets.

We then have to maximize (524) by choosing {TT.}, subject to (520), (522) , and (523).

This problem, which we call I, appears to be little more than a rewriting of our orig-

inal formulation 0. There is significant difference, however, in the quantities chosen

for optimization. With this formulation we have transformed Problem 0 to an operator

optimization Problem I. This problem is untractable because the constraint (522) that

the TT . be simultaneously expressible in diagonal form in terms of the same complete
J

set is hard to handle. It makes the domain of optimization nonconvex and it cannot be

expressed as an explicit equality constraint. We must therefore consider some variants

of the problem.

1. 5 Broader Operator Formulation of the Detection Problem

A more general problem, which we call II, can be set up by dropping the difficult

constraint (522). Thus Problem II is: Given {p •}, maximize (524) by choosing positive

semidefinite self-adjoint bounded operators {TT .}, subject to (523).

The solution set of ir. of Problem II is not guaranteed to be simultaneously express-
J

ible in diagonal form in the same set of vectors. Even if they are simultaneously diag-

onal in an overcomplete representation, the T T . ( X ) are not necessarily positive for all x.
J

Furthermore, their simultaneously diagonal representation, if it exists, may not be

measurable. Nevertheless, this formulation is useful because it permits exact solu-

tions and may yield a usable set for the original problem. Its solution will yield at least

an upper bound on the probability of correct decision given by (524).

1. 6 Operator Formulation Allowing Only Self-Adjoint Observables

When we are restricted to measurements of self-adjoint operators, the usual observ-

ables that are referred to in quantum theory, the original formulation can be greatly

simplified. We first observe that the use of a nonrandom strategy for any complete set

{|x)}is generally optimum. In fact, once the set {|x)}is given, we can only do worse

by using a random strategy, just as in the classical case. Thus without loss of optimal-

ity we can take

i r i ( x ) 7 T . ( x ) = 0 , i * j . (525)

For Problems I and II the application of (525) does not lead to simplifcation of

the constraints, because of the possibility of overcomplete {(x)}. When {|x)} is
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orthonormal, from (522) and (525), we have

T T . T T . = 0 V i * j. (526)

Lemma 1

The constraints (526) are equivalent through (523) to the smaller set of conditions

771 = TT.. (527)

Proof: Multiplying both sides of (523) by T T . , we have (527) immediately. Given (523)
1 Q C

and (527), conditions (526) follow from the theorem, which states that a finite sum

of projection operators is a projection operator if and only if the operators are pairwise

orthogonal.

Note that (526) implies, in particular, that

[ir i tiTj] = 0, V (i.j). (528)

While an arbitrary set of commuting self-adjoint operators may not possess a complete

orthonormal set of simultaneous eigenvectors, our {TT .} do have such a simultaneous set.
J

Since this point is of some importance we state the following lemma.

Lemma 2

Our detection operators obeying (523) and (527) possess many complete orthonormal

sets of simultaneous eigenvectors.
f

Proof: Such operators {TT.} are orthogonal projection operators so that their ranges^—^— j
are orthogonal subspaces of 3C. Within each of these subspaces any complete ortho-

normal, set can be formed which automatically has eigenvectors of all of the {TT}.

Adjoining all such sets, we have a complete orthonormal set of simultaneous eigenvec-

tors for the {TT.}. Different choices of eigenvector subsets in each subspace give rise

to different sets of simultaneous eigenvectors.

By restricting ourselves to self-adjoint operators, our Problems 0 or I are trans-

formed to the problem, which we call III, of maximizing (524), subject to (523) and

(526) or (527). Note that the {TT .} are automatically positive semidefinite under these
J

constraints. Furthermore, the solution set of this problem is guaranteed by Lemma 2

to be simultaneously diagonal in many complete orthonormal sets. The general quan-

tum measurement of a self-adjoint observable possessing a complete set of eigenvectors

is explicitly shown in Appendix G to be possible in principle. The many complete ortho-

normal simultaneous eigenvector sets are all equivalent in detection error per-

formance.
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1. 7 Conclusion

We have given three different operator formulations of the detection problem. These

formulations of digital error minimization with equiprobable messages are actually, as

general as an arbitrary quantum M-ary decision problem. For the Bayes or the Neyman-

Pearson criteria we are led to minimize the average cost

_ M M
C = 2 2 p.C., / <n| p |x> i r . (x )dx

i=l j=l J 3 3

= X I < x | p ! |n> 7r . (x )dx (529)

with

p! = Z p.C. .p..
i j HJ iJ J

Thus our previous formulations remain the same except for substitution of the p! for

p.. The p\ are also positive semidefinite self-adjoint operators of the trace class.
J J
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B. OPTIMAL DETECTOR SPECIFICATION AND EXAMPLES

We shall derive some necessary and sufficient conditions on the optimizing set {JT .}
J

for the detection problems II and III formulated in Part II-A. Some simple examples

illustrating the usefulness of our results will also be given. A brief description of some

optimization methods that we employ is given in Appendix I, and certain mathematical

definitions and properties are listed in Appendix H. There will be no discussion of back-

ground material here.

2. 1 Conditions on Optimal Detectors of Problem II

We start with Problem II where, for given {p-}, we want to maximize
J

Z tr. T T . p . , (530)
j J J

subject to the constraint

Z 7T, = 1, (531)
J

by choosing the positive semidefinite self-adjoint bounded operators 77. on 3C. We shall

derive our results for Problem II from its dual Problem lid. For this purpose, we con-
1 o /

sider the Banach space of trace-class operators T C 38, where 3S is the normed lin-

ear space of all bounded linear operators on 3C. Let S C T be the normed linear space

of self-adjoint finite trace operators over TR . Let P be the positive cone of positive
137 138semidefinite operators in S which defines the partial order 2=. ' It is obvious that

P is indeed a closed convex cone in S. [See Appendix H for definitions of these

terms.]

We suggest that the dual problem of II, which we call lid, is

min tr. \, (532)
xe s

subject to

X 3° PJ j = 1 M (533)

for given {p.}. We have to first establish a few points before we can proceed. The fol-
J

lowing lemma will be used frequently.

Lemma 3

Let x ,x be two positive semidefinite self-adjoint operators on an arbitrary
1 ^

Hilbert space. Then
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tr. X j X 2 > 0

and (534)

tr v v — n
ti. A. , A n — \J

if and only if

x x - x x - fl f "i^R 1Al o — X ~ A - — U. ^ J J - 3 ^

Proof: We need to show first that tr. x x is real. This follows from

(tr xx \f - tr l~x x I ' - tr x 'x ' = tr x x - tr x x\ " * 1 O / — Ui . . ^A.-"-« / — t l . A ^ A , l « A . - A - ^ - ^ i — t l . A . ^ A . « . j
i £ I £ Li L Li L L Li

Every positive semidefinite self-adjoint operator admits a unique positive semi-
1 O Q O p

definite square root such that x = a . Also let x = b so that

tr. X j X 2 = tr. a2b2 = tr. (ab)^ (ab) ̂  0. (536)

It follows also from (536) that tr. x x > 0 if and only if ab = 0 so that the lemma follows.

Consider the dual space S of S. The elements of S can all be represented as

tr. TTX (537)

136 139for x G S and 7T €E V, where V is the space of self-adjoint bounded operators. '

Also, it is clear that for each such IT/ ' defines a bounded linear functional on S. This

representation of elements in S is crucial for concrete application to our problem of
* *

Theorem I. 1 in Appendix I. The conjugate cone P C S corresponds to positive semi-

definite self-adjoint bounded operators; that is, x G P can be represented as (537)

with if also positive semidefinite. We now want first to establish existence for Prob-

lem lid, which is more important to us than uniqueness.

Lemma 4

A solution to Problem lid exists and is unique.

Proof: Consider the larger Hilbert space of Hilbert-Schmidt operators Z,

(31 D Z D T. Problem lid can be formulated as a minimum norm problem on Z. The

constraints define the domain of optimization as a closed convex set in Z. Let D be

the set of positive semidefinite self-adjoint operators in Z which satisfy (533). D is

obviously convex. Since each set {\|\& P-}is closed for every j, D is also closed. Thus

Theorem I. 2 in Appendix I can be applied to yield existence and uniqueness for

X. G D C Z. If we write X' = Z p we see that the minimum is certainly finite.
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Therefore X is of finite trace and so is in S.

After these preliminaries we may now state a theorem.

Theorem 14

There exists a set {IT .} which can be used to solve Problem II. The necessary and
J

sufficient conditions for this optimizing set, in addition to the constraints, are

iT j ( \ . -p j )=0 V j (538)

for an X G S such that ,

\> P- V j . (539)
J

Proof; We apply Theorem I. 1 directly to Problem lid. Our f is a linear functional

tr. X defined on S, and the constraint mappings are also linear. It is clear that all con-

ditions of the theorem are satisfied. Thus we have

min tr
.
J

. X = max min {tr. X + Z tr. 7T,(p.-X)}, (540)
77,^0 xes j J J

by using the linear functional representation (537) on S so that 7T. G V. Here TT . ^ 0 is

also defined with respect to the cone of positive semidefinite operators in V. The right-

hand side of (540) can be converted to our Problem II.

min tr . X= max tr . Z T T . p . . (541)
. ir,»0 j J J

J J

Z 7 T . = 1

The existence of Problem II is therefore given by Theorem I. 1. Furthermore, using

the constraint (Eq. 527), we have

2 tr. (X-p.)7T =0. (542)
j J J

By Lemma 2, (542) immediately gives

(X-p- j )TTj = T T . ( \ - p . ) = 0 V j (543)

with X 3= p-, ty j. By Lemma 3 such a X exists, and the necessity part of the theo-
J

rem follows. To show sufficiency, we note that in general

tr. X ̂  tr. Z TT. p. . (544)
j J J

which follows from (531) and (533). Thus the set {TT,} which satisfies (542) achieves a
J
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maximum for (530), and sufficiency is demonstrated.

Since we know that the solution of Problem II is not unique, Theorem 14 provides

a rather complete characterization of Problem II. We have also the dual problem of

choosing one variable, subject to M constraints, whose solution would provide valuable

hints on the solution to Problem II. This dual problem may appear to be easier to handle

than a unique one. Of course, we can always attempt to solve the system .

T i . ( \ - p . ) = 0 ft j (545)

X > Pj H 3 ' . (546)

S 7T, = 1 (547)
J

T T . ^ 0 t f j (548)
J

which is quite difficult in general, and may not be useful for our original problem.

(Recall the discussion on the nature of Problem II in Section II-A. )

Several interesting properties follow directly from (545)-(548). First, we note that

\, by summation over j on (543), is

\= -L P 77 = ZTT p (549)
j J J j .J J

This equation is already a condition on the solution set {TT .}. With equation (549) the sys-
J

tern of operator equations and inequalities (545)- (548) is also transformed to a system

with variables {vr.} and {p.} only. Besides application to Problem III, which will be dis-
J J

cussed, Theorem 14 yields immediately the following corollary.

COROLLARY. Suppose that we have found \G S and a complete set {|x>} such that

(546) is satisfied and

< x | x | x ) = m a x < x | p . |x>, (550)
j J

then the original Problem 0 is solved by measurement of { |x}}, together with a non-

random strategy.

Proof: Given { |x)} and \, let us expand

IT. = / ir ( x ) | x ) <x| dx. (551)
J J

Consider

tr. (X-p.)TT = / 77 ( x ) { < x | x | x > - ( x | p |x»dx. (552)
J J J J
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Employing nonrandom strategy such that T T . ( X ) ^ 0, ty j and S T T . ( X ) = 1, we can set
J j J

(552) to be zero for every j, which is then equivalent to (551) by Lemma 3. Theorem 14
then insures that (551) provides a solution to Problem II and so to Problem 0, since
(531)-(535) are satisfied.

2. 2 Conditions on Optimal Detectors of Problem III

We now consider the problem, which we call III, of maximizing (530) by choosing
orthogonal projection operators {TT .}, subject to (531). The constraint (Eq. 526 or

J

Eq. 52?) makes our problem nonconvex, so that it is difficult to establish existence or
global sufficient conditions by use of Kuhn-Tucker theorems. We have then to apply
local conditions by taking derivatives. The following theorem is proved in Appendix I.

Theorem 15

A necessary condition for {7T.}to solve Problem III is Eq. 549:
J

2 77 .p . = Z p .If'..

j 3 J j ' J
A sufficient condition is given by the following theorem.

Theorem 1 6

A sufficient condition for {TT} to solve Problem III, apart from constraints, is

Z 7T p = Z P,7T (553)
j j j j j j

Z i r .p . >P. V j. (554)

The solution so found will also solve our original problem.

Proof; For a set {TT .} satisfying (553) and (554), we see that with
J

\ = Z TT.p, = Z p,7T,
j J J j J J

the necessary and sufficient conditions of Theorem 14 are satisfied if we apply
Eq. 526.

There are actually some more restrictive necessary conditions than Theo-
rem 15. We do not list them here because, at present, they are in a more
complicated form, and we think that in a final analysis the sufficient conditions
of Theorem 16 are also necessary. It is then important and interesting to estab-
lish existence for Problem III explicitly. We now turn our attention to some
simple applications of our results.
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2. 3 Simple Detection Examples

41 44A known solution of Problem I has been found previously ' for the special

case in which the density operators p. pairwise commute. That is,
J

[PJ-PJ, Pk-P£] = o, V (i.i.k.n (555)

Optimal detector specification and evaluations have been limited to such particular sets

of given p.. In this case the observable to be measured has eigenvectors that form the
J

simultaneous diagonal representation of p. - p.. It is straightforward to show that the

detection operators T! . so constructed satisfy the sufficient conditions of Theorem 16
J 53

when the p. satisfy (555). To demonstrate the usefulness of our result, we have then

to consider a given set {p.} which does not obey (555). Some such simple sets {p. /will
53 J J

now be discussed.

When the ranges of p. span a finite dimensional space only, the operator system
J

(545)-(548) reduces to one for finite matrices.. Let us consider a particular case in

which we are given M pure states p.
. J

P , = | J > < J | j = 1 . . . . . M , (556)
J '

where the vectors |j) are linear -independent. The projection operators ir . can be
J

chosen to have one -dimensional ranges

n. = i P j X P j l J= 1, . . . . . M- ' (557)

Applying the necessary condition (Eq. 549) in the | p.) -representation, we obtain imme-
J

diately the equations

< P m | m > < m | p n > = < f 3 m | n > < n | p n > , m, n = 1 ..... M (558)

which have to be solved, together with

= Z
n

XP n | j> , i , j = 1 . . . . . M . (559)

Note that the system (.558)-(559) implies -5- M(M+1) equations with the same number of
LJ

unknowns. The solution should therefore be optimal in general if an optimum solu-

tion exists at all. It is difficult to check the sufficient conditions in general, but

we believe that they are automatically obeyed in this case. Note that the necessary

condition (558) has also been derived before in a different manner.

Consider a special case in which the given |j) { j | obey

< i j > = V i*3 (560)
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for a real constant -y independent of i and j. A detection basis where the optimal ir.
are constructed can be formed from |p.) which satisfy

J

< i | p . ) = a . (561)

< j | p . ) = b i * j , (562)

where a and b are real constants independent of i and j. [This particular structure
was suggested to the author by Dr. Jane W. S. Liu.] These constants are solutions of

a2 + (M-l)b2 = 1

2ab + '(M-2)b2 = y.

(563)

It can be checked that (558) is obeyed for such TT . = |p.) ( p . | . The sufficient conditions
J J J CO

(554) for this case have also been shown to be satisfied. Generalization of this
example to the case of complex -y. a, and b is straightforward.

It can be seen from these examples that our theorems have at least the virtue of *
enabling verification of conjectured detection operators. The sufficient conditions (554),
however, are usually hard to check, especially when the problem does not possess some
kind of symmetry. Further work in the simplification or reduction of the sufficient con-
ditio^is is indeed warranted.

2. 4 Conclusion

We have given some necessary and sufficient conditions for the optimal detection
operators of Problems II and III. They do not completely characterize the optimal
detectors of our problem. It should be possible by the same kinds of techniques
or simple extensions of them to generalize considerably these results to yield a more
complete solution for the original problem.

Nevertheless, it is meaningful to ask for solutions of our system of operator equa-
tions and inequalities specifying the optimum detector. Although methods for dealing
with such systems regarding both existence of solution and procedure of solution, do
exist, ' ' ' they do not appear to be directly applicable to our situation. It
should be fruitful to develop an efficient procedure.for the solutions of such sets for both
general and specific {p }. When 3C is finite-dimensional the conditions above would be
only on finite matrices where additional methods are available. A numerical solution
of the optimizing conditions would not be useful for receiver implementation, at present,
although it would provide a bound on error performance. ' ,

The examples that we have considered all pertain to Theorem 16. They suggest,
together with our general results, that the sufficient conditions should follow from
the necessary condition, the constraints, and the obvious optimal choice. A proof
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of this important and convenient result has not yet been given. Further applications of

our theorems should be exploited, both for the determination of general optimal detector

properties and for performance evaluations of realistic channels.
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C. OTHER PERFORMANCE OPTIMIZATION PROBLEMS

We shall now treat briefly some quantum optimization problems in other areas of

communication theory. This will include mainly certain considerations of estimation

and channel capacity. Our pace will be quite rapid, indicating just final results. The

derivations are often straightforward. A summary of Part II will be given at the end of

this section.

3. 1 Estimation of Random Parameters

The general optimal self-adjoint operator for estimation of a single random param-

eter was first worked out by Personick. The following theorem can be applied to yield

the corresponding optimal operator without self-adjoint restriction.

DEFINITION. A pseudo-Hilbert space is a linear vector space X, together with a

pseudo inner product defined on the product space X X X . Corresponding to each pair

of vectors x, y in X the pseudo inner product (x ,y) of x and y is a scalar, taken to be

a real number. The pseudo inner product satisfies the following axioms:

2. (x+y, Z)= (x, z) + (y, z)

3. (\x,y) = X(x,y) , X. e TR

4. (x, x ) = s O .

The corresponding pseudonorm will also be denoted by double vertical bars. The only

difference between our pseudo inner product and an ordinary inner product is that

(x, x) = 0 does not imply x = 0 in our case. Our pseudo-Hilbert space is then a pre-

Hilbert space whose inner product is a pseudo product. The following theorem is

a straightforward generalizati

this theorem will be omitted.

Theorem 17

137a straightforward generalization of the ordinary projection theorem. Proof of

Let X be a pseudo-Hilbert space, M a subspace of X, and x an arbitrary vector

in X. A necessary and sufficient condition for m e M to minimize l lx -MJI , m e M, is

that the error vector x - m be orthogonal to M. That is,

(x-m , m) =0 • V m.

Suppose that in the estimation of a single real random parameter we choose to

measure X, whose eigenvalue x we take to be the estimate of a. The mean-

square error is
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e2 = tr. Po (X-aI)(X-aI)')', (564)
ct

where p is the density operator describing the receiver input. Let p(a) be the a priori
EL

distribution of a, and let

P = / p(a) pa da (565)
cL

' PI = / ap(a) pa da. (566)

A straightforward application of Theorem 17 defines the optimal X that minimizes (564)

by

When p is positive definite, a solution X clearly exists:

• X Q = p ~ l P l (568)

which can be shown to be unique. Note that (567) can also be derived by the gra-

dient operator method discussed in Appendix I.

The. drawback of condition (567) is that the optimal X so found may not be mea-

surable. Again it is difficult to include measurability constraints in a simple way.

Estimation of two real parameters can be equivalently formulated as a problem

of estimating one complex variable. In such a case our above formulation carries

over directly and the optimal observable is again given by (567), which should now

be non-Hermitian. Measurability questions come up as in the single parameter case

above.

One way to insure measurability in this two-variables case is to allow for two

self-adjoint observables X, and X, whose eigenvalues correspond to the parameters to

be estimated. We then impose in the optimization problem the constraint that X, and

X, commute. While optimizing conditions can readily be developed, they cannot be solved

in general. Similar comments apply to the case of multiple parameter estimation.

Bounds of the Cramer -Rao type on the mean- square error can be derived in this gen-
47eral case similar to the situation where only self-adjoint observables are allowed.

They will not be further discussed here.

3. 2 Estimation of Nonrandom Parameters

42
A Cramer-Rao bound was first given by Helstrom for estimation of a nonran-

dom real parameter, again restricting the observables to be self-adjoint. The

131



following bound results when we relax the Hermiticity condition. . We first define
~2

the mean square error e in estimation of a possibly complex nonrandom parameter a

to be

= tr. p (X-a)(X-a) . (569)

and also define the operator L whose adjoint obeys

dp t

It is then straightforward to show the following theorem.

Theorem 18

The mean-square error (569) is bounded from

~2 -^ 1
e ^ +.

tr. pa

(570)

(57 r

where the equality holds if and only if

L = k(a).(X-a) (572)

for some function k(a) of a.

v_ The difficulty with condition (572) is similar to that associated with (567), namely

the optimal observables so found may not be measurable. Note that our formulation here

includes estimation of two real nonrandom variables. It is difficult to generalize the

bound to the multiple parameter case when the corresponding observables do not com-

mute.

3. 3 Channel Capacity

With p given for a set of digital messages, we can write for measurement of X the

average mutual information

< x | P j | x )

1= Z Z p ( j ) ( x | P |x) log , ' (573)
j x J Z p ( j ) < x | P |x>

1

where the summation notation for x can be interpreted as an integral when x is a

continuous variable. The a priori probability for message j is denoted by p(j). We

now define the channel capacity to be
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C = m a x I .

The maximum is taken over all input probability assignments and all possible measure-

ments. With this capacity for discrete memoryless channels it is straightforward to

show that both the coding theorem and its converse hold.

Theorem 19

With data rate R smaller than the capacity C of a quantum channel defined above,

the probability of error for digital information transmission through the channel can be

made arbitrarily small by proper encoding and decoding. Conversly, when R exceeds

C the error probability is lower-bounded from zero.

An upper bound on the channel capacity for any measurement observable has been
24 25conjectured by Gordon and rigorously proved by Zador. It was known that the bound

can be achieved when the p. commute among themselves. By examining Zador1 s proof
J

in further detail, we have been able to show that the bound can also be achieved when

the p. pairwise commute as in Eq. 555. In this case the observable that maximizes C
J

is the same as the one that minimizes detection error. We would conjecture that this

coincidence may turn out to be still valid in more general cases, although there is no

more than a weak-bound argument in support of this, at present.

In addition to the obvious convexity properties as in the classical case, the average

mutual information I can be shown to be a convex U function of the p.. Consider p to
J

be a vector with components p. which are density operators. Then a function F(p) is a

convex U function of p if

S X p Ffp 1)
i i ~

when {p } is a set of density operator vectors, and {p } is a probability vector. This

convexity property of I as a function of p is the direct analog of the convexity of ordi-

nary I as a function of the channel conditional probability. They are not going to be

discussed further here. We note that there is an interesting open problem which con-

sists in determining the optimal measurements as a function of source rate for the sys-

tem reliability function. ' One may then obtain a general quantum system reliability

function. This problem appears to be extremely difficult.

3. 4 Other Problems

There are clearly many other classical communication theoretical problems

that need quantum analogs. In the estimation area an outstanding problem is

the development of a proper maximum-likelihood quantum estimate (MLQ) for •

both random and nonrandom parameters. We suggest that the observable X which

satisfies
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da a=X
= 0 . (574)

be called the MLQ because of some interesting properties that it possesses, but we shall

not discuss it here. Its treatment may be found elsewhere.

Similarly, it is very interesting to develop the quantum counterpart of ordinary

Wiener-Kalman filters. While we have not been able to produce any useful results thus

far, the existence of such quantum filters appears to be promising. Certainly, there

is plenty of room for these and other areas in quantum communication theory.

3. 5 Summary of Part II

In Part II, we have considered some problems relating to optimal performance of

communication systems under different criteria. Our attention was mainly directed to

the M-ary detection problem, the major results of which were some necessary and suf-

ficient conditions of the general optimal detector. While interesting in themselves,

further consideration is required in applying our theorems in Section II-B to actual

evaluations of system performance.

A major difficulty in our optimization problems is that it is hard to express con-

veniently the constraint of measurability on the observables that we optimize over. It

seems that an accurate determination of the class of measurable observables will be an

important basis for system optimization. We hope that this can be achieved by extending

the analysis of Appendix E.

It should be clear that there are many interesting open problems of performance

optimization in a general quantum communication theory. The importance of such a

theory will be uncertain until it is properly developed.
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D. GENERAL CONCLUSION

In Part I of this report we have developed a general characterization of quantum

communication systems, including the channel and the transmitter-receiver configura-

tions. In particular, a procedure is described which under certain conditions yields

the canonical quantum equivalent of a given classical space-time varying linear random

channel. We have thus provided a comprehensive framework with which density-operator

receiver input representation can be readily obtained for various communication sys-

tems,

In Part II we have established some results concerning the optimization of system

performance under various criteria. In particular, the general conditions that we pro-

vide on the optimal digital detector can be taken as a basis for the development and

evaluation of optimal quantum receivers. In conjunction with Part I we have therefore

provided some broad principles that are necessary for general quantum communication

analysis.

The framework presented in this report is not all encompassing, however. It

is therefore appropriate to indicate promising areas for future research. These

include extensions and generalizations of our present work, as well as other topics

which we have not discussed.

In the area of communication modeling the most outstanding unsolved problem

is the general development of a proper field commutator at the channel output from the

given classical information only. This should be possible, as mentioned in Part I,

either by employing a more detailed mathematical analysis or making more explicit

physical assumptions. Many other generalizations are possible, but they appear to be

minor in comparison with this problem. When the general field commutator is found,

the quantum issues in communication system modeling will have been completely cleared

up. This does not mean that the classical quantum transition will be direct and trivial

for any classical channel because the classical information has to be given in proper

form for application of our correspondence.

Many more problems remain to be solved in the broad field of system optimization.

In fact, there are almost as many different areas in quantum communication theory as

there are in classical communication theory. Only a few of them have been discussed

in this report. Quantum receiver implementation also raises problems that have no

classical analogs. All of these problems are challenging and deserve attention. Par-

ticular areas that we have not touched upon, but can readily be treated by our methods

or their simple extensions, include signal design, linear filtering, and other fields of

analog communication theory.

Much work also remains to be done in the development of appropriate procedures

for evaluation of realistic system performance from the general principles., In particu-

lar, we need practical methods of solving systems of operator equations. Knowledge

of operator inequalities will also be very helpful.
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Finally, let us observe that while our theories will be most useful only when optical

communication systems are sufficiently well-developed, they can actually indicate fruit-

ful areas of device research for applications to such systems.
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APPENDIX A

Mathematical Framework of Quantum Theory

We shall give a very brief treatment of the mathematical structure of quantum theory

that is most frequently employed. We shall also define a few special notions that will

be used in the main content. A common mathematical description of quantum formalism

has been provided by von Neumann, Dirac, and Rosen. Alternative and general-
8 11 2- 1 1 ft

ized schemes have been given by Jauch, and others. " Introductory discussions
74 111 142with physical details can be found in Louisell, Dirac, , and in textbooks.

A. 1 QUANTUM STATES

A physical system is characterized by a quantum-state space which is the set of

possible states in which the system is allowed to be. This set is generally taken to be

a separable Hilbert space over the complex field $ , with vectors denoted by the Dirac

kets

( A . I )

and inner product between two kets | X.) and 1^} denoted by

<xk>. ' (A. 2)

[For a summary of certain mathematical definitions and their elementary consequences,

which are particularly required in Part II, see Appendix H.] Expression (A. 2) is equiv-

alent to the usual Hilbert space notation

(X.40. - (A. 3)

By introducing the concept of a bra vector

<\ | , (A. 4)

notation (A. 2) has been found more versatile and convenient than (A. 3). The vectors

a e $ (A. 5)

represent physical equivalent states so that one usually considers a state to be normal-.

ized

< * ! * > = I- - (A. 6)

Separability of the space is equivalent to the condition that there exist in the space

~ countable, complete, orthonormal sequences of vectors. In concrete applications we

usually need to choose a particular set of basis vectors, referred to as a representation.

A. 2 QUANTUM OBSERVABLES

Dynamical quantities of the physical system are represented by linear operators

on 3C. Specifically, if A denotes a linear operator, then A| 4>) denotes the transformed
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vector which is also in 3C. Linear operators are frequently abbreviated here as oper-

ators. Adjoint of an operator A is denoted by A . The set of linear operators on 3C

forms an algebra. ' The identity operator I leaves all vectors and operators

unchanged, and so is the unit element in the operator algebra. It is convenient to refer
"f

to physical variables as "q" or "c" numbers, according to whether they are operators

or just ordinary functions. Frequently a multiple of the identity operator is also called

a c number.

A dynamical variable is usually called an observable in quantum theory when its

corresponding operator A is self- adjoint and possesses a complete set of eigenstates

in 3C. We shall define observables, however, to include all operators having a complete

set of eigenvectors. This complete set of eigenvectors may be complete orthonormal
1 22

or overcomplete, where overcompleteness for a set of states means that a proper
C Q Q *7

subset of states is already complete. The spectrum ' ' of A can also be discrete or

continuous when it is self- adjoint, and be arbitrary when it is non-Hermitian.

Projection operators occupying a central position in quantum theory are denoted by

for projections into one-dimensional subspaces. At the heart of a full exploitation of

the Dirac notation is the repeated use of the relation

1= S U> (t\ (A. 8)
S.

or

1= / d! | j*> < j e | , (A. 9)

which is called a resolution of the identity. Equation A. 8 or A. 9 is valid for an arbitrary

set of complete orthonormal basis vectors {|#}} in the discrete and continuous spectrum

cases, respectively. Dirac delta functions are frequently employed to normalize the

strictly non-normalizable eigenvectors of a self-adjoint operator A having a continuous

spectrum. Such a procedure leads to correct results efficiently when used with proper
o c

caution, similar to other use of distributions, or singular functions. In our applications

such normalization is not needed.

Our attention is directed primarily to the photon creation and annihilation oper-

ators b , b which obey the Bose commutation rules

. [b, b+] = bb+ - b+b = 1. (A. 10)

1 1 9- 121The annihilation operators b possess an overcomplete set of eigenstates in 3C,

b | p > = ' p | p > (A. 11)

7/ | P > < P | d2p = I (A. 12)

< P | - P ' > = exp|p*p'-||p|2-|||3'|2j. (A. 13)
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Each eigenstate |p) is properly normalized with complex eigenvalue p. Representations

of states or observables based on the continuous set |p) are called "coherent- state

representations," since |p) are commonly referred to as coherent states with proper

justification. ' While we shall certainly not only consider the observables b and

b but also arbitrary functions of them, we shall employ the coherent-state representa-

tion when we need to use one.

A. 3 QUANTUM MEASUREMENT INTERPRETATION

'Physical interpretation of the states in 3C goes as follows. When the system is in

} quantum measurements ~ on the observable A w

point in the spectrum of A, with a probability density

quantum measurements ~ on the observable A would yield possible results a, a

| < « 4 * > | - (A. 14)

We have implicitly assumed that the eigenvalues a in (A. 14) are nondegenerate. In gen-

eral proper modification can be made by summing over the degeneracies. The mean

observable value of A is always

A |^}. (A. 15)

This interpretation is commonly held as postulates of quantum theory when the

observable A is self- adjoint. When A is not, the validity of the interpretation is uncer-

tain. At least in the case of boson operator b (discussed previously) these interpreta-
3 9tions can be shown to hold (see also Appendix E)1. It is partly for this reason that

we have broadened the traditional meaning of an observable (see Appendix E).

Higher observed moments of A are given by

(A. 16)

Similarly to (A. 15), this is consistent with (A. 14) through application of the spectral

representation of A . If A is unbounded, then (A. 16) may be undefined for certain states.

The characteristic function for the distribution of a self- adjoint A in the state 1^) given

by

4>AM = < 4 < | eitlA |4>> (A. 17)

is always defined for any \ f y } . (The characteristic functions in non-Hermitian A cases

are discussed in Section C. 3. Ic. )

From our interpretation it can be seen that the measured values of an observ-

able A will have a nonzero variance when 1 41) is not an eigenvector of A. Since

not all observables can be simultaneously diagonalized for any state |i)j) because

of noncommutativity, there are always some observables with a spread in their

distribution. This is the essence of the uncertainty principle that dominates phys

ical reasoning in quantum theory.
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A. 4 MIXED STATES AND DENSITY OPERATOR REPRESENTATION

The states that we have discussed are usually called "pure states" to distinguish

them from the mixed state described by a self- adjoint, positive semidefinite operator

of unit trace. A pure state can be represented by these so-called density operators in

the form

P= ><^ (A . 18 )

so that (A. 14) becomes

(a\ P U> , (A- 19)

and (A. 16) becomes

tr (PAn). (A. 20)

A mixed state is a convex combination of pure states. That is,

where

p > 0 (A. 22)

oo
S p = 1. (A.23)

n=l

Such a density operator describes an ensemble of pure states. Equations A. 19 and A. 20

clearly retain their validity with the same interpretation. Thus, in general, a complete

characterization of a quantum system is given by a density operator. Further general
143

properties and various applications of density operators can be found Fano,
74 144 5Louis ell, ter Haar, and von Neumann.

A. 5 DYNAMICAL STRUCTURE

For a conservative system described by a Hamiltonian H, the dynamical equation

governing the system behavior is given by the Schrodinger equation

dp
iK -£- = [H, p] (A. 24)

so that the density operator p(t) is time-dependent. This scheme is called the

Schrodinger picture, abbreviated as S-picture.

In contrast, another description, called the Heisenberg or H-picture, is obtained

if we retain the states or mixed states fixed but instead change the observables in such

a way that all expectation values are identical with those calculated in the S-picture.

Thus we introduce new time-dependent operators representing observables, determined
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in such a way that

tr p(t) A= tr p(o) A(t). (A. 25)

Since a general solution of (A. 24) can be written

P(t)=e- i H t /Kp(o)e i H t /H ; .(A. 26)

We obtain

A(t) = eiHt/R A e-11*/* (A. 2.7)

which is the time dependence of an observable in the H-picture.

Other pictures can also be formulated in a similar manner, but we'shall not discuss

them. The interaction, or Dirac, picture was found particularly useful for many prob-

lems. '

In our treatment we usually assume in a dynamical problem that we are using the

S-picture when we talk about density operators and the H-picture when we talk about

observables.

When the Hamiltonian H in (A. 24) becomes time-dependent, the evolution of p(t) is

still given by (A. 24). For other nonconservative systems the precise form of the equa-

tions of motion is not known in general. They can be obtained in various ways depending

on individual problems.
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APPENDIX B

Treatment of the Vector Markov Case

We shall discuss the vector Markov case as a generalization of the strict-

Markov case treated in the main content of this report. This vector Markov

case may be unimportant for the following reason. When the system is linear

and is described by a total Hamiltonian, the equation of motion for the funda-

mental field variables would usually involve time derivatives up to second order

only. If a Markov approximation can be made, the equations will then contain

only first-order time derivatives and therefore become strictly Markov. We treat

the vector Markov case here for generality and for possible situations where

higher order derivative loss terms occur.

We discuss directly the quantum case that is readily specialized to the classical

situation. Consider the differential equation

(\ l + &1)bli(t) = f k ( t ) , (B . I )

where the correlations of the noise operator fk(t) are given by Eqs. 213-215.

Suppose that-Sfj is of the form

,n n-l
+ a ( t ). ......

dtn X dtn-1 n

so that with

an(t)

the differential operator X, + S£ . is expressed by

V *1 = +al ( t ) T + • ' ' + an-l(t) dV+ an(t)' <B' 2)

We again let h, (t, T) to be the zero-state impulse response of (B.I ) . We have

turned off the excitation at (B . I ) for simplicity so that the mean of b,( t) van-

ishes. Our following result can be immediately interpreted when e,( t ) is present,

by letting b, (t) be the operator with its mean subtracted.

Let the vector 2£^ ^e Defined by
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bk(t)

xk(t) =

bt(t)
bk(t)

bkt(t)

(B. 3)

thHere, b, (t) denotes the r -order derivative of b, (t). For each k the vector X, (t) will

be a Markov state vector. Define the noise vector

lk(t) =
fk(t)

and the 2(n-l) X 2(n-l) matrix

(B.4)

0

0

0

0

0

0

-1
0

0 a* (t) 0

0

-1 . 0

&1(t)

0

0

0

0
-1

a*(t) (B. 5)

We can put (B. 1) into the state-variable form

u
(B.6)
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It should now be clear that manipulations can be carried out for X, (t) identical to those
K.

for bk(t) in the strict Markov case. We shall therefore only give the final results of

importance.

The state transition matrix h, (t, T) obeying

t > T

=

is found in terms of h , ( t , T) as following 2(n-l) X 2(n-l) matrix

h(t,

<- I > u ' 7TT5 h k"- T >

. ,.n-l d" ' d" ' .*.. .(-i) —rrr —JTTJ h . ( t , T )
dtn ' drn ' k

0 0 h. (t. T)

•>«->

•d_
dtn

(B.7)

The solution vector is

xk(t) = hk(t,to)x1R(t0) f h (t, T) f
J^ ~K H

(B. 8)

or

xk(t) = t, T) fk(T) dT (B. 9)

under the assumption that the initial distribution arises from f, (T). Fluctuation-
•~K.

dissipation relations can be written down similar to Eqs. 234-236. These and other

relations can be explicitly obtained by expansion when desired.

One time preservation of the commutator
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[bk(t) (bt(t)] =
can be achieved by solving the integral equation (280), but the solution is now not given

by (280). Its explicit form is not important, however. The two-time commutator then

follows with*the form

T=t'

r=2

n-1

- I
r=l

i-r dn-r
h. (t, T) < b

T=t'

— 1 H rt
(-I)" 1-^- -9—-r h , ( t , T)

dt dr
(B. 10)

T=t'

The one-time averages occurring in (B. 10) can be computed from h, (t, T) and the dif-

fusion coefficients through Eq. 235. The field commutator can also be obtained from

(B. 10), although it will now be quite messy. The equal-time commutator is simple,

however, and from (B. 10) is

dr
T=t ,

dt
hk(t' T)

='6(r-r'). (B. 11)

Equations B. 10 and B. 11 are all that are really required in our generalization of the

Markov case to the vector Markov case.
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APPENDIX C

Fluctuation-Dissipation-Amplification Theorems

We shall give a deeper discussion of the fluctuation-dissipation theorems, '

employed in Part I and indicate possible generalizations to our general case. We shall

also try to interpret the theorems for applications to amplifiers other than atten-

uators.

C. 1 FLUCTUATION-DISSIPATION THEOREMS

We have only employed fluctuation-dissipation theorems for establishing the field

commutators, while at the same time these theorems actually give all of the two-time

quantum averages. This puts some constraint .on the classical process with mean

and covariances given separately. It therefore appears that not all given classical pro-

cess would obey fluctuation-dissipation theorems. Since such theorems seem to be

quite generally applicable and useful both for field commutator specification and for

other purposes, we can first observe their nature more closely and then see what

kind of conditions are required for their applicability.

The fluctuation-dissipation theorems in the Markov or vector Markov cases are

direct mathematical consequences of the Markov character of the processes. No phys-

ical assumption is required for their validity. On the contrary, the stationary system

fluctuation-dissipation theorems are derived from the so-called linear response the-

ory, ' which applies to the system plus its environment so that the total sys-

tem is describable by a Hamiltonian. The form that we use in this report can readily
/ o

be obtained from M. Lax. The point to be observed here is that once the mean equa-

tion of a system observable is known, the two-time fluctuations are also determined,

regardless of the details of the reservoir. While elegant in its interpretation and

rich in its applications, this theorem is unfortunately restricted to stationary pro-

cesses.

The nature of the derivation of these stationary fluctuation-dissipation theorems sug-

gests that it is fruitful to consider a stochastic system as part of a conservative system.

Some physical assumptions may be involved in such a description. It will be extremely

useful if we can then derive some system statistics from the system mean equation

independent of the detailed reservoir behavior. Preliminary consideration for gen-

eralizing these theorems to the time-variant case results in certain analytical

difficulties. It appears nevertheless that such generalizations are quite viable.

Another possible route for such generalizations lies in exploiting the mathematical

structure of particular classes of random processes. We feel that a development

from the physical point of view is likely to be more generally applicable. The phys-

ical assumption would illuminate rather than restrict their application to individual

problems.
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C. Z FLUCTUATION-AMPLIFICATION THEOREMS

The usual stationary fluctuation-dissipation theorems have not been interpreted or

modified to apply to situations in which the system energy is amplified rather than atten-

uated. We introduce the term fluctuation-amplification theorems to indicate relations

that apply to amplifiers that are similar in spirit and in content to the usual fluctuation-

dissipation theorems. Such theorems clearly exist in the Markov case, even quantum-

mechanically. By proper reinterpretation of the usual stationary fluctuation-dissipation

theorems, they should also be applicable to amplification situations, although in such

cases the physical nature of the system is more uncertain.

To indicate how such an interpretation may be possible, let us consider Eq. 258

whose right-hand side has to be positive. Let the temperature T in n(o>) of Eq. 260 be

negative, and <£ , (oj) also be negative in the frequency range of interest. Such a neg-

ative imaginary part of the 'susceptibility' can be readily seen to imply amplification. A

negative temperature also changes the dissipative environment to an amplifying one.

We can therefore retain Eq. 257 as consistent when applied to amplifiers. Generali-

zation similar to the fluctuation-dissipation case discussed above should also be pos-

sible.

In this connection let us note that the positivity of Eq. 258 puts a fundamental limit

on the noise behavior of our system considered as an amplifier. Let us write

1
^(coj = 3*0 ( C . I )

-WkB|TN|
1 - e

"for a negative temperature T,,. We have

< F ( w ) F ( ( i ) > = 2fi ?j(w) | ^ (w) | (C. 2)

( u > ) | (C.3)

so that

?i(w) ^ 1. (C. 4)

The minimum noise results when

?i(co) =1 (C. 5)

whose physical origin is spontaneous emission.

This limit on the minimum noise present in our system appears to be general, at

least for systems of the kind considered in the derivation of Eqs. 256 and 257. It should

be worthwhile to examine further the generality of (C. 2)-(C. 3) when applied to amplifiers
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because we may then access the fundamental noise limit of linear stationary amplifiers

in complete generality. Note that the case of a time-variant linear amplifier may have

quite different limits.

General considerations of this kind for amplifiers are also important for our pur-

poses, as we recall from Parts I-E and I-F that they influence the specific form of our

receiver input density operator representations. In particular, when we implement the

integral of Eq. 36 1 by a matched filter as in Eq. 365, the filter introduces an additive

noise obeying (C. 2)-(C. 4).

Let us note that the fluctuation-dissipation-amplification theorems are not nec-

essarily required for specifying field commutators. In fact, we have indicated in sec-

tion 4. 2 (Part I) how the commutator can be determined from the system representation.

In spite of this, we feel that the development of fluctuation-dissipation theorems is of

general importance because we can obtain further nontrivial information on the sys-

tem without additional essential assumptions.
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APPENDIX D

Generalized Classical Quantum Correspondence

We shall discuss briefly several generalizations of the theory presented in Part I-D

and I-E. This involves the relaxation of many of the assumptions that we have made in

our development. The possibilities of these generalizations should be quite apparent

from our discussion.

D. 1 NON-GAUSSIAN QUANTUM NOISE

Our Gaussian noise assumption was made primarily to simplify analysis analogous

to the classical case. While such an assumption is often justified, it can be relaxed if

we impose other structures on the quantum processes. One such structure is a quantum

Markov process defined in section 3. 2. 4. There are many non-Gaussian Markov pro-

cesses even within the Fokker-Planck-Kolmogorov regime. If we allow a 'generalized'

Fokker-Planck description, further non-Gaussian processes can be taken into account.

In a classical quantum correspondence we can set all given classical diffusion coef-

ficients to be the normal ordered quantum diffusion coefficients. A two-time commu-

tator in such a non-Gaussian case is still given by our Markov results, as they depend

in no way on Gaussian assumptions. It should be clear that all of our theory can be

straightforwardly carried through in principle in this Markov case, although added dif-

ficulties may arise in density operator calculations.

D. 2 INCLUSION OF SPATIAL DISSIPATION

Our assumption (Eq. 11) has been used only to the extent of simplifying analysis in

a number of places. It is by no means essential. With the assumption about the noise

source correlations that we have made in Eqs. 17 and 18 this assumption is not really

required in most of our treatment. It will be required, however, in order to retain the

simplicity of our development when the classical noise sources are spatially white. At

the expense of considering coupled equations, we can always employ the noise normal

modes. We shall see in Appendix F that there frequently exists a mode expansion

with independent amplitudes, even when.Sf2 is dissipative, so that Eqs. 17 and 18

are in fact not unusual.

D. 3 COUPLED SPACE AND TIME DERIVATIVES

When the operator & of Eq. 1 does not factorize as in Eq. 5 our treatment cannot

be held to be valid. When a mode expansion is not needed it may be possible to regard

the field commutator as given by the unperturbed Green's function, in the approximation

that we discuss in Part I-F. Unfortunately, even the unperturbed Green's function would

be very complicated in such a case.
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APPENDIX E

Theory of Quantum Measurements

We shall give a brief development of quantum measurement theory which is of prime

importance both for receiver implementation and for specifying a meaningful range

of measurement optimization. Let us first indicate the nature of our following anal-

ysis.

E. 1 INTERACTION HAMILTONIAN ANALYSIS OF

QUANTUM MEASUREMENTS

When we make a microscopic measurement on a system, we invariably let it interact

with a measuring apparatus which in turn produces a macroscopic trace as a result
5-9of the interaction. We shall not reproduce the many discussions about the philos-

ophy and physical nature of quantum measurements. It suffices for our purpose to

note that the system-apparatus interaction, which is essential for quantum measure-

ments, has to be treated in a quantum theoretical fashion as was emphasized by Bohr.

(Actually for a classical measurement too, but one can assume that the disturbance of

the system because of this interaction can be made arbitrarily small in the classical

case.) Since it would be extremely complicated, even in the classical case, to treat the

actual functioning of the measuring apparatus, we take a simple view that an appropriate

set of apparatus observables will have a macroscopic manifestation or can be measured

in some other way after the system-apparatus coupling. This is in accordance with

the Copenhagen interpretation of quantum theory. Our measurement problem consists

in elucidating this system-apparatus interaction in the measurement. The philosophy

or nature of this interaction Hamiltonian approach for receiver implementation is actu-

ally a more delicate problem which we shall not discuss further.

The description of measurements by an interaction Hamiltonian was first introduced

by von Neumann, with a different purpose from ours. It has also been considered more

recently by Gordon and Louisell ' with some generality. Arthurs and Kelly have

given a particularly interesting example of such treatment. The following considera-

tion is an extension and generalization of these works.

We give a more quantitative description now. For simplicity, we restrict ourselves

to the case in which the apparatus can be considered to be initially in a pure state, which

we write

We describe the system at the beginning of our measurement by a density operator

s
P

where the superscripts have their obvious meanings. The measurement is carried
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out by letting the system plus apparatus interact with an interaction Hamiltonian

Hj = Z p.s. i = 1 N (E. 1)
i

where the p. are a set of commuting apparatus observables, and the s. are a set of

system observables. We are dealing in general with N apparatus degrees of free-

dom. Note that this form of HT is very general. The usual impulsive-inter action
/ 1

approximation can be made which says that HT dominates the evolution of the sys-

tem plus apparatus for a short time after they are coupled. At a certain short time

afterwards one then observes an appropriate set of apparatus observables, the values

of which are indicative of the measured values of some corresponding system observ-
ables. If {q.}is the set of apparatus observables being looked at, then the probability

of obtaining a set of values {q.} is given in general by

P({q.}) = Tr |~I({q.}) pVf (qj) J,

where

•}) =<{qi}|u(t)|^A>

U(t) = e
-itHL/fi

L = exp -it/R

) . . . |qN>

and the system is left in the mixture

(E. 2)

. 3)

pf(t) =f
(E.4)

by applying the projection postulate to the apparatus. (The projection postulate, first

formulated explicitly by von Neumann, states that if an observable X is measured on

a system with a result x, then the system is left immediately after the measure-

ment in the eigenstate |x) corresponding to x. We speak about a nondegenerate

spectrum throughout for simplicity. The case of a degenerate spectrum can be

easily included.) The probability in (E .2 ) is also the probability of finding the sys-
g

tern in mixture given by (E.4). Note that p f ( t ) would depend on an initial system
state unless I({q.}), which is a system operator, factorizes into the form of a gen-

eralized projection operator (dyad)

i = x - ( E-5 )
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in which case

}) = (ijj | ps |i)j } (E. 6)

and

ps(t) = |4^) {^|. (E. 7)

Here the {q.} is parametrically related to the eigenvalues of l1!^) which is the eigen-

state of a certain system operator. These results can be derived rigorously. These

derivations are omitted here for brevity. We can also allow I to depend on [ip ) or

not, by proper adjustment of |ijj }. The case wherein I factorizes as it does above

and does not depend on |i|/ ) was called an ideal measurement by Gordon and
3 7 3 8 i A

Louisell. ' We can relax the condition of (^ } independence, however, which to us

is no less "ideal" than the other case.

If we consider ideal measurements (in either of the two senses mentioned), then we

can say that the measurement scheme described above corresponds to the measurement

of the system observable X.

X | x > = x | x > ,

with

lx> = lO- ;
In all of the known situations, it turns out that

Note, however, that X does not have to be self-adjoint. The only requirement is

that it have a complete set of right eigenstates. One would then tend to ask how we can

measure such an X in an ideal measurement. This consists in finding an HT, a set of

|{q.}>, and an |i|/ ), in our case, so that \^) is the eigenstate of X. To this question

we now turn our attention.

E. 2 MEASUREMENT OF OBSERVABLES

We now show explicitly how a quantum measurement can be accomplished in the

framework described above. Let us consider the measurement of a self-adjoint sys-

tem observable S. For this purpose, we choose

Hj = pS (E. 8)

for an apparatus observable p whose conjugate variable is q. From the Heisenberg
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equation of motion, we have

dt = S

dq

dt

dp

d T = ° '

so that q is the observable that we should measure. Let us, for simplicity, choose

k A > = K > < E - 9 )

In this situation we arrive at

1 = | S = q - q o > < S = q - q o | ,

where we have taken the measurement time to be one. The state |S = q-q ) is an eigen-

state of S whose eigenvalue is q - q . An ideal measurement for S is now achieved

by observing q.

In a sense this discussion demonstrates that every self-adjoint observable can be

measured in principle. On the other hand, the argument can be regarded as cir-

cular, since we have now to observe q. When we can make a macroscopic record

on the outcome q this interacting Hamiltonian method may be considered as a satis-

factory way of doing quantum measurements. In any case we have illustrated the

power of our approach and the kind of measurements that can be made with this

scheme.

Similarly, we can show that we shall be able to measure a system photon oper-

ator b with

[ b , b t ] = l ,

by choosing

Hj = PlP + p2Q (E. 10)

whose p and p are two commuting apparatus observables, and P and Q are related
tto b,b ' as usual,

b= — - — (P-ia>Q). (E. 11)

In this case the conjugate variables q. and q_ of p. and p2, respectively, should

be observed. Furthermore, the apparatus initial state should be chosen as a prod-

uct of two coherent states whose parameters are determined by w of (E. 11). It is
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then straightforward to show that the system operator I of (E. 3) factorizes into

where |(3) is the eigenstate of b. A detailed derivation is omitted here.

Assume that a system observable X possesses a complete set of eigenstates. In

general we can write

X = X, + iX, ,
~""~ -- 1 C*

where both X, and X are Hermitian. The commutatorJ. £•

will involve a Hermitian operator X, which may not be a c-number. In this case we

have not yet been able to measure such an X with our approach. It appears, however,

that such an X should indeed be measurable in our sense. Further effort is required

to fix up this important point.
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APPENDIX F

Relations of Linear Fields

We.shall derive certain relations between the fundamental field variables, in par-

ticular those between the electric field & (r, t) and our ty (r, t). Our relation here is

general, and more explicit relations have to be obtained depending on individual cases.

We first observe that given a commutator

[*0p(?.t),*op(F,t)] = C € ( r f ' ;« ' ) , ( F . I )

there will frequently exist, even when Jif of Eq. 1 is not of the form of Eq. 5, spatial

modes 4>k(r) such that

C e ( r"F ' ; t t ' ) = Z 4>k(?) 4>k(r ') C k ( t , t ' ) , (F. 2)
K.

where

Ck(t,t) = ifi. (F. 3)

Karhunen-Loeve expansion of the form (F. 2) holds for a given field C (r r ' ; t t ' ) under

rather general conditions. In such a case we can expand

S (F, t ) = Z 4 > k ( ? ) q , ( t ) (F .4)
Op k K K

g _ _ ( r , t ) = Z <M?)p k ( t ) ' (F.5)
Op k K K

[qk(t),qk(t)] = ffi. (F.6)

We neglect a possible multiplicative constant to <^"(r, t) which, depending on both the

medium and the units, makes $ ( r , t ) the ordinary electric field.

Let us introduce another set of mode functions *!.(?)

V X «k(?) = 4>k(?) (F.7)

so that the magnetic field, also up to a multiplicative constant, is

•#V ( r , t ) = Z « ( r ) p (t). (F.8).
Op k K K

The commutator between & (r, t) and tfP (r, t) is therefore

kop(F,t), JT (r'.f )•] = r ^(r) *k(F)[qk(t),pk(t')]. (F.9)
K.
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We further define the photon operators b, (t) for k:

bk(t) = -J— {pk(t)-iwqk(t)} (F. 10)

so that

[bk(t),bj(t)]i 1 (F.ll)

and consider the field variables

V ? f t ) = k*k(F)\( t)- . (F '12)

It is clear from (F. 12) and (F. 10) that (\IQ (r, t) is related linearly to £ (r, t) and

£ (r, t). An explicit relation appears to be difficult to find in general even if there

is one, but can be found when either the time behavior of qk(t) or the spatial behavior

of <k (?) is known, together with the dispersion relation co, . With generalized functions

allowed, £ ( r , t ) is related linearly to £ (r, t) so that in general we can write

*op(r,t) = / h (F t ;F ' t ' )< i f o p (F ' , t ' ) . (F. 13)

for a deterministic filter h(r t ; r ' t ' ) . Frequently either a spatial or a temporal filter

is already sufficient for relating ^ (r, t) and £ (r , t) .

Suppose that a possible random Green's function G R ( r t ; r ' t ' ) is given relating the

input electric source field to the output electric field of a transmission medium

g (r, t) = / GR(rt; r ' t ' ) £S (r ', t') dr'dt' (F. 14)

when both the signal and the noise sources are included in £s (F, t ) . The random Green's
~ °P

function GD(rt; r ' t ' ) for \\> (r, t) is thent\ op

\\i ( r . t ) =/ G" (r t ;r ' t ' ) >\>S (r1, t1) dr'dt1, (F. 15)op xx op

where

GR(r t ; r ' t ' ) = / h(rt ;r"t") GR(r"t"; r'"t'") h'^r'-'t1", t 'r1) dr "dr'"dt"dt"' (F. 16)

/ h(rt;r"t") h'^r"t"; r ' t ' ) dr"dt" = 6(r-r') 6(t-t'). (F. 17)

The filter h (r t ;r ' f) is the inverse of the filter h(rt;r ' t ') .

We next assume that \]i (r, t) has the commutator

[4;op(F,t),^op(?',t')]= C^FtjF ' t ' ) (F. 18)
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The commutator C (rt ;r ' f) of Eq. P. 1 is then given by

2 4> (r) 4, (r ')[q ( t ) ,p (t1)] = 2 4, (r) Mr1) ^ \ b, (t), bj(t') 1 + fb, (t1) , bj(t)l i
k K K K k ^ L L K J L K K J J

(F. 19)

or

Ce(rt;r ' t ' ) = y {c^rt; r ' tM+C^trt ' , ?', t)}. (F. 20)

Finally, let us observe that our commutator specification has favored observables

of the kind g (r, t) and ^ (?, t) discussed above where the operator character is put

on the time amplitudes. Equivalently, we may construct spatially dependent operators

to advantage in certain cases. The corresponding commutators can be formed and

related similarly.

N
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APPENDIX G

Direct Calculation of Density Operators from Fields

. We shall give an explicit proof that the procedure leading to the construction of den-

sity operators for different receiver configurations as described in section 5. 5. 1

(Part I) is indeed correct. Our discussion should also demonstrate how a sum of inde-

pendent quantum observables may be described by a single density operator in the man-

ner of section 3. 1.6 (Part I). We shall proceed rather rapidly, but the details can be

filled in without difficulty.

We wish to show that density -operator representations can be calculated directly

from a statistical specification of if (r, t). The basic point to observe is that for a

field i|j (r, t) of the kind in Eq. 193 there are infinitely many Schrodinger photon opera-

tors b with

[bn'bn-] = 6 n n -

( G . 2 )

so that J; (r, t) is a linear combination of the b . Thus the linear functionalop n

ak= / <bo p(f,t) Wk(? , t )drdt (G.3)

is also a linear combination of the b . We write

<G '4>

Suppose that the set a, obeys

[ak'ak' = 5 kk ' ] (G '5)

[ak,ak,] = 0. ' (G.6)

The transformation matrix L which is defined by

a = Lb (G.7)

£ < G ' 8 )

is thus unitary from (G. 5)-(G. 6).

Each of the b is described by a P -distribution, P f p , p j, so that the density

operator describing the field 4> (r, t) can be generally given by
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n X P n d p n . ; ( G . 9 )

Introducting the antinormal ordering operator

and making a transformation to a, and the corresponding a, , we have

P = n ' P4l *"kV k ^) k ̂ ^ 6(ak"Ck)

Here $.' , is the nk element of L , the inverse of L. We can now writenk ~

On the other hand, the P-distribution of (a, a) as calculated by the procedure of sec-

tion 5. 5. 1 (Part I) will turn out to be

so that

p = J/P(a, a*) (G. 14)

is the same as (G. 12). It can be seen that all that we have done is to make a change of

variables in p. When the transformation is unitary the a variables possess properties

exactly identical to the (3 variables. As the properties of a can be obtained directly

from the statistics of if (r, t) we can give p(a, a ) without the knowledge of L and. o p - - ~
p(b,bT) .

FWhen the vector a is finite dimensional it may be possible to extend it to an infinite

dimensional vector a which is unitarily related to b. In such a case the P-distribution
~ F ~

of the finite dimensional a is clearly

P(£
F,aF*) = / E d2a. P(a, a*) (G. 15)

and the corresponding density operator will be

F Fand so is the correct reduced density operator for a . In particular, when a = a is

one-dimensional the density operator for "a" can be constructed by our procedure.
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In the situation

[ ak' ak'J*°

or in addition

[ak> ak,] * 0 k * k ' , (G. 18)

our procedure of calculating p(a, a ') may not be valid, since in (G. 13) there will be an

additional determinantal factor that cannot be calculated in general. We cannot there-

fore readily obtain results independent of specific L. It seems that more specific sets

of eigenstates of a need be constructed in this case from those of b. We may then be

able to determine the form of p(a, a ') more generally. Otherwise more detailed infor-

mation of <\i (r, t) will be required; for example, we may need its explicit expansionop j.
in terms of b and the density operator p(b, b ' ) . Further discussion will not be made.

Note that the canonical representation of Eq. 385 can always be employed.
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APPENDIX H

Mathematical Definitions

We shall now define the major mathematical terms and notation used in the text.

Some of their more elementary properties will also be mentioned. Luenberger is

probably the single reference that contains most of our definitions. For the others and

for more details Akhiezer and Glazman, Schatten, Riesz and Sz-Nagy, and
87

Freidman may be consulted.

If x is a number of the set S, we write x e S. If V is a subset of S, we write V C S.

If V C S and V ± S, then V is a proper subset of S. The set of real numbers will be

denoted IR, and the complex numbers (p. If S is a "set of real numbers bounded below,

then there is a largest y e TR such that x > y for all x EE S. The number y is called

the greatest lower bound or infimum of S and is denoted inf. x. The notation V means

"for all." XSS

Let L be a linear space over TR or $. A set n C L is said to be convex if, for

a given x . , x 6E fl all elements of the form ax. + (l-a)x2 with 1 > a > 0 are in n. A

set C in a linear space is said to be a cone if x e n implies ax €E ft for all a 5= 0. A

convex cone is a set that is both convex and a cone. Let P be a convex cone in L. For

x, y e L we write x > y if x, y e P. The cone defining the > relation is called the posi-

tive cone in X. Let L, M be two linear spaces. Linear transformations are abbreviated

here as transformations.

Let L, M be normed linear spaces. An operator A on L to M is bounded if there

is a constant m such that || Ax|| < m|| x|| for all x e L, where the norm is denoted as

usual by || ||. An operator is bounded if and only if it is continuous. If M = $, then

bounded operators from L to M are called bounded linear functionals. If M = TR, it

is simply called a functional. Let L be a normed linear space, the space of all bounded
*

linear functionals on L is called the dual space of X and is denoted L with ele-
$

ments x . We also use the star notation for complex conjugates of x e C. No confusion

is possible, however. Given a normed linear space with a positive cone P C L, one

defines a natural corresponding convex cone P inL byP = { x | x x « ^ o V x e P}.

Let X be a linear space and let Z be a linear space having cone P as the positive cone.

A mapping G from X to Z is convex if the domain n of G is a convex set and if

G[<zx,+(l-a)xJ < aG(x ) + (1-a) G(x?) for all x , x~ e n and all a . O ^ a ' S l (see partic-i c. ^7 i z L t
ularly Luenberger for these definitions).

Let L be a normed linear space. It becomes a Banach space if it is complete with

respect to the metric induced by the norm. A Banach space becomes a Hilbert space

if an inner product ( , ) can be defined which gives the norm. A normed linear space

is separable if it contains a countable dense subset. Two vectors x . , x _ in a Hilbert

space 3C are orthogonal if (x, ,x2) = 0. Two subsets Kj.K, of 3C are orthogonal if

x. and x_ are orthogonal V x. £ K , x~ e K,,.
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Let X be an operator defined on a dense domain Dv C 3C, 3C a Hilbert space. Then X
•t- ' __ •"-

has an adjoint operator X* with domain D__. = {g|(Xf, g) = (f, g') for some g' G 3C and every
, t £

f e D^}. X is called Hermitian if X1 is an extension operator of X and is self-adjoint

if X = X . A self-adjoint operator X is positive semidefinite if (f, X_f) > 0 and positive

definite if (f, Xf) > 0 for all f G D^r.. Let {) x.)} be a complete orthonormal set of vectors

in a separable Hilbert space 3C. Then the trace of an Y is defined as 2 (x.,Yx.) and
i

and is denoted tr. Y. An operator X on 3C is completely continuous if it maps every

bounded set into a relatively compact set on 3C. All bounded operators are completely

continuous on a finite dimensional Hilbert space. An operator X with tr. X/2£ < °° is

of the Hilbert-Schmidt class X of the trace class if | tr. x| < oo. A Hilbert-Schmidt

operator is necessarily completely continuous and a finite-trace operator is necessarily

Hilbert-Schmidt. Completely continuous self-adjoint operators have spectral resolu-

tions exactly analogous to finite dimensional Hermitian matrices. A projection oper-
2

ator P on is an idempotent (P =P) self-adjoint bounded operator. Two projection

operators P,, P~ are said to be orthogonal if P, P = 0. Two projection operators are
87orthogonal if and only if their ranges are orthogonal (see Freidman, Akhiezer and

Glazman, and Schatten for these definitions).
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APPENDIX I

Optimization Conditions and Proof of Theorem 15

We shall briefly consider some general optimization methods that we employ in

establishing our optimal detector specification. The proof of Theorem 15 will also be

given.

First, we state the general convex programming duality theorem which is the major

tool that we use in the proof of Theorem 15. The proof of this duality theorem has been

given by Luenberger. Relevant definitions of the terms can be found in Appen-

dix H.

Theorem I. 1

Let f be a convex functional defined on a convex subset £2 of a linear space X, and

let G be a convex mapping of X into a normal space Z. Suppose there exists an

x SX such that G(XJ ) < 0 and that

(JL = inf. {f(x)|G(x) <0, x S n}

is finite. Then

inf. f(x) = max inf. (f(x)+Z*G(x)}
G(x)<0 *
xen z '

* * ^
for x GE Z and the maximum in the right is achieved'by some Z ^ 0. If the infinum

at the left is achieved by some x S fi, then

Z*G(xo) = 0

*
and x minimizes f(x) +Z G(x), xe n.

o o 13?
In the proof of Lemma 3 we need the following projection theorem.

Theorem I. 2

Let x be a vector in a Hilbe'rt space and K a closed convex subset of the space.

Then there is a unique vector k e K such that

IMJ * ||x-k||

for all k e K.

The following gradient operator method can also be used to obtain the necessary

conditions for optimality in our situation. The essence of our method lies in the

observation that a bounded linear operator defined everywhere on a separable Hilbert
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1 35space can be represented by a discrete infinite matrix. Let 38 denote the Banach

space over (J of all bounded linear operators on 3C. Then the operator X.G & is com-

pletely specified by the infinite matrix

where \ii)} is any complete orthonormal set.

Consider a nonlinear real -valued functional f (X, X ) defined on 38 . We can clearly
-~~ — t / * \regard f(X, X ) as f ( x . . , x . . I, a real -valued function of infinitely many complex variables

# v ij iJ /
x.., x... To facilitate treatment, we further write

J J

r I • — —twhere x.. and x.. are the real and imaginary parts of x... Thus we can consider f(X, X )

as

that is, a real -valued function of countably infinitely many real variables. It is then

clear that in order for f(X, X ) to achieve an extremum we must have

= 0 ; - = 0 , t t ( i . j ) , (1.2)

under the assumption that f has continuous first partial derivatives. In these varia-

tions we have to regard the x.. as completely independent, that is, we vary each x. .
J J

independently.

Condition (I. 2) can be put in a much more suggestive and useful form by introducing

the "gradient operators"

axr ' ax1 ' 9^ ' ax1"

whose matrix representations are

/ 3f\ _ 8f

Uxr/.."axr.
—

8f\ _ 8f
flY »ax /.. 8x..— ij 13
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8f . 8f

so that condition (I. 2) can be written in operator form explicitly independent of repre-

sentation

0. ,,.4,
8Xr 8X 8X 8XT

It can be easily seen that just setting

^ = 0 (I. 5)
8X

is already equivalent to (I. 2). Note that 8f/8X is an operator in 38 . In actual calcula-
*

tion of these first derivatives we can vary x.. and x.. as if they are independent real
^ r Ivariables because from (I. 1) we consider x. . as a function of both x.. and x.., so

that (I. 2) gives

9f

Finite dimensional gradient matrices of the kind (I. 3) have been introduced before
145for application in matrix differential equations. Conditions of the type

have also been used for finite dimensional vector optimization. Our gradient oper-

ator or operator derivative of a functional is closely connected with the Frechet
1 37

or Gateaux derivative ' in a normed linear space. The simplicity that we have

achieved here is that (I. 5) is a direct condition on the elements of 08 .

Care has to be exercised in evaluating the gradient operators 8f/3X_. They are

not entirely similar to ordinary differentiation and, in fact, we do not have all of the

derivative formulas for various forms of f. In actual cases f has to be written down

as an explicit function of x.. and the derivative with respect to x.. taken in the usualX3 . th XJ
manner. The resulting function is identified with the ij element of an appropriate

matrix, which can then be expressed as an operator independent of representation.

In the presence of constraints

Fa(X,x"f) = 0, a = 1, . . . , N (1.6)

for a set F of arbitrary transformations on SS , we can introduce the Lagrangian
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N/ r I \ a a / r I \L = f(xr.,x:. ) + 2 2 \a F (xT^x!.), (1.7)
\ ij ij/ „_! ™ „ mn mn\ 13' ij/0=1 m, n

where F is the (m, n) element of Fa, and Xa is a set of scalar Lagrange mul-

tipliers. A necessary condition for X to be a local extremum is then analogous to
, 146-148 ~~°the usual case

^jrW^-o. (1.8,
8xr.

Introduce operators X. such that

(X a ) = XC .mn mn

Then we can write (I. 7) in the operator form

L =f (X,x t ) + 2tr XCFC. (1.9)
a

The Lagrange multipliers X have to insure that

tr. XGFQ e TR V o.

Our condition (I. 8) can now be compactly written as

Applying (I. 10) to Problem III of Section II-A, we let

L = 2 tr. m . p . - tr. X(Z ir .-I) - 2 tr, ir.ir.X.-1^ (I. 11)

where (ij) denotes a sum over all ( i , j ) for which i * j. Taking the derivative (I. 10),

by a straightforward evaluation, we have

^
\ - p. = 2 tr. \I;>TT.. (I. 12)

Multiplying both sides of (I. 12) by IT., we obtain
J

(X-p )TT =0 (I. 13)
J J

so that

X = 2 up = 2 p v (I. 14)
J J J J
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This affords the proof of Theorem 15. .

Implicit in our method are various continuity properties that guarantee existence

of the relevant quantities. With the simple functionals that we have in Problem III

no trouble should arise in this connection. Note that Theorem 15 can also be

proved by general Lagrange multiplier theorems ' ' with derivatives inter-

preted in the Frechet or Gateaux sense. Our approach here has the virtue of being

more simple and direct.
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