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wi th   a rb i t ra ry   Prandt l  number. The program contains  provisions  for  tabular  input of a r b i t r a r y  

Options  are   provided  for   obtaining  ini t ia l   condi t ions  e i ther  f r o m  experimental  information  or 
configuration  shapes and arbitrary  streamwise  pressure,   temperature,  and Mach number d i s t r i b u t i o n s .  

from a theo re t i ca l   s imi l a r i t y   so lu t ion .  

The t rans i t ion   reg ion   can  be  descr ibed  e i ther  by an a r b i t r a r y   d i s t r i b u t i o n  of intermit tency  or  
by a function  based on Emnons' p robabi l i ty   theory .   Corre la t ions  were developed  for   use  in   es t -  
imating  the  parameters of the   theore t ica l   in te rmi t tency   func t ion .   Corre la t ions   ob ta ined  from other  
sources  are  used for es t ima t ing   t he   t r ans i t i on   po in t .  

Comparisons  were made between calculated  and  measured  boundary-layer  quantities  for  laminar, 
t r a n s i t i o n a l ,  and turbulent  f lows on f la t   p la tes ,   cones ,   cone- f la res ,  and a waisted body of  rev- 
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s o n i c   t r a n s i t i o h a l  boundary l a y e r s  and t h a t   t h e  program  could  be  useful as a t o o l   f o r   d e t a i l e d  
study of the  intermit tency  of   the  t ransi t ion  region.  
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CALCULATION OF COMPRESSIBLE,  NONADIABATIC  BOUNDARY  LAYERS 

IN  LAMINAR,  TRANSITIONAL AND TURBULENT FLCW 

BY THE METHOD OF INTEGRAL RELATIONS 

By  Gary D. Kuhn 
Nielsen  Engineering & Research,  Inc. 

SUMMARY 

The  method  of  integral  relations  has  been  applied  to  the  calculation 
of  compressible,  nonadiabatic  laminar,  transitional,  and  turbulent 
boundary-layer  characteristics.  A  two-layer.  eddy-viscosity  model  was 
employed  for  turbulent  flow  with  transition  produced  by  modulating  the 
eddy  viscosity  by  an  intermittency  function.  A  computer  program  was 
developed  to do the  calculations  for  two-dimensional  or  axisymmetric 
configurations  from  low  speeds  to  hypersonic  speeds  with  arbitrary 
Prandtl  number.  The  program  contains  provisions  for  tabular  input  of 
arbitrary  configuration  shapes  and  arbitrary  streamwise  pressure,  tempera- 
ture,  and  Mach  number  distributions.  Options  are  provided  for  obtaining 
initial  conditions  either  from  experimental  information  or  from  a 
theoretical  similarity  solution. 

The  transition  region  can  be  described  either  by  an  arbitrary  distri- 
bution  of  intermittency  or  by  a  function  based  on m o n s '  probability 
theory.  Correlations  were  developed  for  use  in  estimating  the  parameters 
of  the  theoretical  intermittency  function.  Correlations  obtained  from 
other  sources  are  used  for  estimating  the  transition  point. 

Comparisons  were  made  between  calculated  and  measured  boundary-layer 
quantities  for  laminar,  transitional,  and  turbulent  flows  on  flat  plates, 
cones,  cone-flares,  and  a  waisted  body  of  revolution.  Excellent  compari- 
sons  were  obtained  between  the  present  theory  and  two  other  theories  based 
on  the  method  of  finite  differences. 

The  intermittency  required  to  reproduce  some  experimental  heat 
transfer  results  in  hypersonic  flow  was  found  to  be  quite  different  from 
the  theoretical  function.  It  is  suggested  that  the  simple  probability 
theory  of m o n s  may  not be valid  for  representing  the  intermittency of 
hypersonic  transitional  boundary  layers  and  that  the  program  could  be 
useful  as  a  tool  for  detailed  study  of  the  intermittency  of  the  transition 
region. 



INTRODUCTION 

Many empirical  methods are a v a i l a b l e   f o r   e s t i m a t i n g   t h e   p r o p e r t i e s  
of laminar and turbulent   boundary  layers .   With  the  development   of  
sophis t ica ted   e lec t ronic   computers ,  many computer  programs  have a l s o  been 
developed  for   calculat ing  the  solut ions  of   the  boundary-layer   equat ions 
i n  the   l aminar  and tu rbu len t   r eg ions .  A t  t h e  same t i m e ,  much research   has  
been done   on   the   na ture   o f   the   boundary- layer   f low  in   the   t rans i t ion  
region  between  laminar and turbulent   f low.  Even now, however ,   the   t raLls i -  
t i on   r eg ion  is not  completely  understood. The methods  of  computing  the 
boundary  layer i n  t h e   t r a n s i t i o n   r e g i o n   u s u a l l y  employ some empir ica l  
var ia t ion   o f   the   g rowth   of   the   tu rbulen t   eddy   v i scos i ty ,   i t se l f   an  
empir ica l   quant i ty ,   a long   wi th  a p r e d i c t i o n   o f   t h e   s t a r t i n g   p o i n t   o f   t h e  
t ransi t ion  region  developed  f rom still o the r   empi r i ca l   co r re l a t ions .  

A t  t he   p re sen t  time, t h e r e   a r e  two mathematical   techniques  for  
computing  the  detai ls   of   the   boundary  layer .   Both  techniques use  t h e  
boundary-layer  equations  together  with  an  empirical   eddy-viscosity model 
fo r   t he   t u rbu len t   r eg ion .  The t e c h n i q u e s   d i f f e r   e s s e n t i a l l y   i n  how they 
solve  the  boundary-layer  equations.  I n  t h e   f i r s t  method,  an  example  of 
which is described. i n  re ference  1, t h e   s o l u t i o n  i s  sought   by  the method 
of f in i t e   d i f f e rences .   In   t he   s econd  method,  described i n  re ferences  2, 
3 ,  and 4, t h e   s o l u t i o n  is by   the  method o f   i n t eg ra l   r e l a t ions ,   i n   wh ich  
t h e   s o l u t i o n  is  r e p r e s e n t e d   t o  any  degree of accuracy   by   par t ia l  sums 
of i n f i n i t e   s e r i e s .  

I n  t he  work descr ibed i n  t h i s   r e p o r t ,   t h e  method of i n t e g r a l   r e l a t i o n s  
i s  adapted t o  development  of a general ized  program  for  use a s  an  engineer- 

ing   too l   for   the   ca lcu la t ion   of   boundary- layers  on a r b i t r a r y  two- 
dimensional  or  axisymmetric  bodies,   with  arbitrary  f low  conditions.  

The  method o f   i n t e g r a l   r e l a t i o n s  was app l i ed   i n   r e f e rences  2 ,  3 ,  

and 4 t o   t h e   c a l c u l a t i o n   o f   l a m i n a r  and turbulen t ,   nonadiaba t ic ,  
compressible   boundary  layers .   In   the work desc r ibed   he re in ,   t he  method 
has  been extended t o   c a l c u l a t i o n  of t rans i t iona l   boundary   l ayers .  I n  
add i t ion ,   t he   t heo ry   has   been   ex tended   t o   i nc lude   a rb i t r a ry   P rand t l  
number,  and a r b i t r a r y  Chapman-Rubesin cons tan t ,   thus   re lax ing   the  assump- 
t i o n  of a l i n e a r   t o t a l   t e m p e r a t u r e - v e l o c i t y   r e l a t i o n s h i p  as used i n   t h e  
prev ious   appl ica t ions   o f   the  method. 
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The work  presented  in  this  report was accomplished  under  a  1-year 
effort  sponsored  by  Langley  Research  Center,  NASA,  Contract  No.  NAS1-9429. 
The main  effort  was  directed  toward  development  of  a  computer  program  and 
the  associated  theory  based  on  the  method  of  infegral  relations  for 
calculation  of  transitional  boundary  layers.  Due to the  general  nature 
of  the  method,  the  program  and  theory  are  also  applicable  to  the  laminar 
and  turbulent  regions.  The  following  sections  contain  the  analyses  which 
lead to  the  computer  program  and  contain  a  substantial  number  of  compari- 
sons  between  prediction  and  experiment. 

An  operating  manual  and  a  programmer's  manual  for  the  computer  program 
are  being  issued  as  separate  documents. 

LIST OF SYMBOLS 

a 

B 

C P 

C 

cf 

Ei 

f 

speed  of  sound 

elements  of  coefficient  matrix  defined  by  eq. (88) 

elements  of  coefficient  matrix  defined  by  eq. (89) 

parameter  defined  by  eq. (26) 

parameters  defined  by  eq.  (150) 

elements  of  a  coefficient  matrix  defined  by  eq. (117) 

parameter  defined  by  eq. (27 )  

right-hand  side  of  eq. (86) , defined  by  eq. (90) 

specific  heat  for  constant  pressure 

Chapman-Rubesin  constant  defined  by  eq.  (45) 

skin-friction  coefficient, 2.rJpeu: 

coefficients  used  in  specifying  the  velocity  gradient  profile, 
eq. (77) 

coefficients  used  in  specifying  the  enthalpy  function,  eq. (82) 

frequency  of  Tollmien-Schlichting  wave 
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r L 

weighting  functions  defined  in  eqs. (681, (69), and (70) 

weighting  function  defined  by  eq. (83) 

constants  in  transition  correlation,  eq. (121) 

integrand  of  integral  defined  by  eq. (94) 

static  enthalpy 

total  enthalpy 

transverse  curvature  index  defined  in  eqs.  (1) , (2) , and  (3) 
constants  in  eddy  viscosity,  eq.  (139) 

constants  defined  in  eq.  (113) 

reference  length  in  two-dimensional  coordinates  or  Probstein- 
Elliott  coordinates  (eq.  (56)) 

reference  length  in  physical  coordinate  system 

order of approximation  of  enthalpy  function  (eq.  (82) ) 

( y  - 1)MZ/2 
Mach  number 

order  of  approximation  of  velocity  gradient  profile,  eq. (77) 

exponent of unit  Reynolds  number  in  transition  correlation 
(eq.  (121) 1 

reference  Reynolds  number  defined  by  eq.  (160) 

Nusselt  number 

pressure 

integrals  defined by equations  (94) , (95) , and (96) 

integrals  defined  by  eq.  (119) 

Prandtl  number 

radius  from  axis  of  axisymmetric  configuration  or  distance 
from  datum  plane of two-dimensional  configuration 

laminar  recovery  factor 
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r T turbulent  recovery  factor 

Re 
Xt 

S 

st 

U* 

U 
+ 

u 
7 

X,Y 

X' 

AX i 

transition  Reynolds  number,  (ue/ve)xt 

unit  Reynolds  number, u/v 

Reynolds  number, ( ue/ve) 6 * 

Reynolds  number  of  length  of  transition,  (ue/ve)~x 

reference  Reynolds  number,  (ueo/veo) 

enthalpy-Mach  number  parameter  in  transition  correlations, 
eqs. (120), (121), and (122) 

enthalpy  function, (H/He) - 1 
Stanton  number, kw (aT/ay) I J p  u c [Taw - T"] 
transverse  curvature  factor  (eq. (28)) 

e e p  

temperature 

velocity  components  in  physical  coordinates  parallel  and 
normal  to  surface,  respectively 

d u e  

reference  friction  velocity,  (rJpw) 1 /2 

u/u* 

friction  velocity, ( r / p )  1/2 

velocity  components  in  Stewartson  plane 

velocity  parameter  in  eddy  viscosity,  defined  by  eqs. (138) 

normal  velocity  in  Dorodnitsyn  plane,  (V/Ue)fio 

and (143) 

- 
v + iiq(be/Ue) 

curvilinear  coordinates  in  physical  system 

axial  or  reference  coordinate  (fig.  1) 

integration  step  size 
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r 

rB 

6 

6* 

E 

E H 

E+ 

0 

h 

CL 

V 

coordinates ,of the Stewartson  transformation, 

P"U*Y/PW 

angle  of  inclination  of  surface  relative  to  reference axis 
(fig.  1) 

exponent  in  transition  length  correlation,  eq. (150) 

eddy-viscosity  parameter, 1 + E/F 

ratio  of  specific  heats 

intermittency  function 

intermittency  function  defined  by eq. (161) 

boundary-layer  thickness 

displacement  thickness 

kinematic  displacement  thickness 

absolute  eddy  viscosity 

eddy  conductivity 

momentum  thickness 
. .  

enthalpy  thickness 
. .  

source  function'  parameter  in  intermittency  (eq. (147))' 

absolute  molecu,lar  viscosity . .  

kinematic  viscosity, p/p 

coordinates  in  the  Dorodnitsyn  plane, 

P density 

ul, uz, us error  functions  defined  in  eqs. (65) , (66), and (67) - 
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aw 

e 

L 

0 

funct ions  def ined by eqs. (98) through (103) 

shear  stress 

(mi) /aq 
stream  function 

Subscr ip ts  

ad iaba t ic   wal l  

r e f e r s   t o   t he   boundary - l aye r  edge 

r e fe r s   t o   l amina r   f l ow 

i n i t i a l   c o n d i t i o n   a t  x. 

s tagnat ion   condi t ion  

t r a n s i t i o n  

r e fe r s   t o   t u rbu len t   f l ow 

cond i t ion   a t   t he   wa l l  

f ree-s t ream  condi t ion 

Special   Notation 

denotes  a t i m e  average  quantity 

denotes   var iables  i n  the   Probs te in-El l io t t   t ransformat ion  

deno tes   d i f f e ren t i a t ion   w i th   r e spec t  to 4 
denotes   a   f luctuat ing  quant i ty  

THEOFU3TICAL BASIS 

7 

The  method  of i n t eg ra l   r e l a t ions   u sed   he re in  is due t o  Dorodnitsyn 
( r e f .  5 ) .  Briefly,   the  mathematical   procedure employed is t h a t  of 
represent ing  the  solut ion  of  a d i f f e r e n t i a l   e q u a t i o n  by  an i n f i n i t e   s e r i e s .  
An approximation t o   t h e   s o l u t i o n  is developed  by  taking  a   par t ia l  sum of 
t h e   i n f i n i t e   s e r i e s .  A discuss ion  of some of the   per t inent   mathemat ica l  
theorems  associated  with  the  appl icat ion  of   the method t o   t h e   p a r t i a l  



d i f f e r e n t i a l   e q u a t i o n s   o f  the incompressible  boundary  layer w a s  presented 
by Murphy and Rose i n   r e f e r e n c e  6. I n   t h e   p r e s e n t   a n a l y s i s ,  the method 
is  gene ra l i zed   t o   i nc lude   compress ib l e   f l ow  wi th   a rb i t r a ry   P rand t l  number. 

S ince  the p r e s e n t   a n a l y s i s  is cons iderably  more genera l ized   than   has  
been   presented   prev ious ly ,   the   der iva t ion   of   the   impor tan t   equa t ions  i s  
p r e s e n t e d   i n   d e t a i l .  The b a s i c   a n a l y s i s  is  p resen ted   i n  terms of a 
t u rbu len t   boundary   l aye r   s ince   t ha t  i s  t h e  most genera l   case .  The equa- 
t i o n s   d e s c r i b i n g   t h e   t r a n s i t i o n a l  and laminar   boundary   l ayers   d i f fe r  
from t h o s e   o f   t h e   t u r b u l e n t   c a s e   o n l y   i n   t h e   d e f i n i t i o n   o f   t h e   e f f e c t i v e ,  
or eddy,   viscosi ty .  

Assumptions 

The a n a l y s i s  i s  based on the  following  assumptions: 

(1) The governing  equat ions are t h o s e   f o r  a compressible   turbulent  

boundary  layer. 
( 2 )  The a i r  behaves  as an idea l   gas .  
( 3 )  The molecu la r   v i scos i ty ,  F, i s  p ropor t iona l   t o   t he   t empera tu re .  
(4)  The s p e c i f i c   h e a t   o f   t h e   g a s  i s  cons tan t .  
( 5 )  The Prandt l  number of   the   gas  i s  cons t an t ,  b u t  a r b i t r a r y .  
( 6 )  The c o n d i t i o n s   a t  the edge  of  the  boundary-layer  are  arbitrary.  
( 7 )  The wa l l  is  e i t h e r  two-dimensional  or  axisymmetric,  but  can  have 

a r b i t r a r y   v a r i a t i o n   i n   t h e   d i r e c t i o n   o f   f l o w  as long   as   the   rad ius   o f  
cu rva tu re   o f   t he   wa l l  i s  l a r g e  compared to   t he   boundary   l aye r .  

(8)  The p res su re  i s  constant   normal   to   the  wal l .  
( 9 )  The w a l l  temperature  i s  prescr ibed  and may v a r y   a r b i t r a r i l y   i n  

the   d i rec t ion   of   f low.  

Boundary-Layer Equations  for  Compressible 
Turbulent  Flow 

Reference 1 p r e s e n t s  the boundary-layer  equations  for  compressible 
tu rbu len t   f l ow  in  a convenient form for  both  axisymmetric and two- 

dimensional  flow. The b a s i c   n o t a t i o n  and coord ina te  scheme a r e  shown 
i n   f i g u r e  1. A b l u n t  body i s  shown; however, t he   p re sen t   ana lys i s   app l i e s  
e q u a l l y   w e l l   t o  a po in ted  body s i n c e   t h e   a n a l y s i s  is  r e s t r i c t e d   t o   p o i n t s  
downstream of a s t agna t ion   po in t   o r   sha rp   l ead ing   edge  or nose.   Note  also 
t h a t   t h e  same symbols are used fo r   t he   phys i ca l   coo rd ina te s  of both 

a 



two-dimensional and  axisyrnmetric configurations. Thus, r  denotes the 
distance  of  a point from the axis  of  an  axisymmetric  configuration,  or 
from the  reference  plane  of  a  two-dimensional configuration. The  coor- 
dinates are a  curvilinear  system in which x is tne  distance  along  the 
surface  measured from the stagnation  point  or  leading edge. The dimension 
y  is  measured  normal to  the surface. In  the  differential  equations, the 
transverse  curvature  terms  are  retained  because  of  their  potential import- 
ance  in predicting  the  boundary-layer  growth  on  long  slender bodies. 

The governing  equations  describing the steady  flow  of  a  turbulent 
boundary  layer are: 

CONTINUITY 

MOMENTUM 
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The  boundary  layer  is  assumed  to be thin  and  the  terms  such  as p, u, 
H, and x are  assumed  to be-of the  order  of 1 and v and y  are of the 
order of the  boundary-layer  thickness, 6. This  allows  some  of  the  corre- 
lation  terms  involving  the  fluctuation  quantities to be neglected. 
Specifically,  the  double  correlation  terms  p'u',  u'H', p ' H ' ,  and p ' v '  
are  of  the  order  of 6 at  most,  and  the  triple  correlation  terms  p'v'u' 

"- - 

and p'v'H'  are  of  the  order  of h 2  at  most.  Away  from  separation, 
the  Reynolds  normal  stresses -puI2  . and  -pv"  are  small  and  can be 
neglected. 

- - 

The  Reynolds  shear  stress  -pu'v'  is  eliminated  through  use of the 
definitions 

and > 
B = l + -  E 

c1 J 
The  term  pv'h' is eliminated  through  the  use  of  an  eddy-conductivity 

concept  as  follows:  the  total  enthalpy  is  defined 

H = h + h' + 7 [u' + v2 + 2uu' + 2 w '  + um2 + vI2] 1 

As before,  the  terms ut* and v ' '  are  assumed to be of  at  least  second 
order so that  the  total  enthalpy  can  be  expressed 

H = E +  H' 

where 

- 
H = h + - u  1 2  

2 

and 

H' = h' + uu' + vv' 

Then 

" - 
v'H' = v'h' + UU'V' 

10 



o r  

If an  eddy  conductivity is introduced so t h a t  

t h e n  

O r ,  de f in ing  a tu rbu len t   P rand t l  nurrber a s  

P rT  - - - E 

H E 

g ives  

Laufer   ( re f .  7 )  has   po in t ed   ou t   t ha t  some of   the  higher   order   corre-  
l a t i o n  terms should  probably be re ta ined   in   the   energy   equat ion   for  
hypersonic  flows. However, i n   t h e   a b s e n c e  of reliable experimental   or  
theore t ica l   in format ion ,  an appropr ia te  model fo r   t hose  terms cannot be 
developed a t   t h e   p r e s e n t  time. 

I n  t he   p re sen t   ana lys i s ,   t he   t u rbu len t  P r a n d t l  number, P rT ,  has  
been assumed t o  be cons t an t   excep t   i n   t he   t r ans i t i on   r eg ion ,  where it i s  

def ined as 

Pr t  = 1 - r (1 - PrT)  

where r is a m o d u l a t i o n   f a c t o r   f o r   t h e   t r a n s i t i o n   r e g i o n  and w i l l  be 
d i s c u s s e d   i n   d e t a i l   i n  a subsequent   sect ion.  

11 

I 



Neglecting  higher-order  terms  and  incorporating  the  eddy-viscosity  and 
eddy-conductivity  concepts,  the  differential  equations (1) to ( 3 )  become 

CONTINUITY 

& [rkpu] + ay a [ rkpv] = o 

MOMENTUM 

ENERGY 

aH 
P U  + PV 

Pr 

where  the t e n  pv  is a time-averaged  quantity  defined  by 

" 

pv = pv + p'v' (10) 

In  solving  the  differential  equations,  it is convenient  to  define 
a new  variable 

S = H  - 1  
He 

with  which  the  energy  equation  (eq. ( 9 )  ) becomes 

where He is  assumed to be a function  of x. 

12 



Equations (7) , (8) , and (12)  are easily applicable to laminar and 
transitional flow. In laminar flow, substitution of 6 = Prt - 1  reduces 
the  equations to those for a  laminar  boundary layer. Further,  suitable 
variation  of the eddy viscosity and turbulent  Prandtl  number  makes the 
equations  applicable to the  transition region. 

The boundary  conditions  for  this  system of equations are: 

At y = 0: u = v = o  

r = rw 

s = s, 

At  y = m: 

At  x = xo: 

u = ue(x) 

au/ay = 0 

v = ve (x) 

s = o  

Transformation of Axisymmetric  Boundary-Layer 
Equations to Almost  Two-Dimensional Form 

In order to put the  axisymmetric  equations (k = 1) into a  more 
convenient form, the  Probstein-Elliott  transformation (ref. 8) is applied. 
The coordinates  of  the  axisymmetric  body are shown in figure l(a). The 
Probstein-Elliott  transformation is 

dy = dy 

where rw (x ' ) is  specified by the  body  shape and r (x, y) is given  by 

r(x,y) = rw(x') + y  cos a (15) 

13 



wi th  

X I  

x = [l + ( d r J d ~ ' ) ~ ]  dx'  
1 /2 

0 

A stream f u n c t i o n   t h a t   s a t i s f i e s   t h e   c o n t i n u i t y   e q u a t i o n ,   e q u a t i o n  ( 7 ) ,  

is def ined  by 

L e t  

+ r p u  k 

* =  L - A  - 
u = u  

- 
v - v  

Then t h e   c o n t i n u i t y   e q u a t i o n   w i t h  

pu = - &  
a? 

and 

has t h e  form 

Apply ing   the   t ransformat ion   to   the  momentum and energy  equations ( 8 )  and 
( 1 2 )  y ie lds   the   t ransformed  equat ions  

14 



where 

- p.(y) x 

A = - - -  1 

B=P"@-+ 
Prt 

1  1 "- 
Prt Pr 

and t is the transverse  curvature  factor 

t =  2L cos a 

xW 
2 

and 

r 
Y = L Y + T  Y2 (29) 
- W cos a 

For  flows in which  the  transverse  curvature  terms are  negligible, 
letting k = 0 in equations (24) and (25) produces the equations of 8 

two-dimensional boundary layer. The transverse  curvature  terms may be 
negligible for an axisymmetric  flow if the  body  radius is lazge  cornpard 
to the  boundary-layer thickness. The  Probstein-Elliott  transformation 
is thus a first-order correction  of  the  approximate  equations  for the 

effect  of  transverse curvature. 

Transformation  of  the  Compressible 
Boundary-Layer  Equations 

In order to further  simplify  the equations, t w o  additional tranm- 
formations  are applied. The  Stewartson  transformation (ref. 9) reduces 
the equations  to a set of equations for  an  incompressible flow. The 
Dorodnitsyn  transformation (ref. 5) removes  the  explicit  dependence  on 
the molecular viscosity. The following  analysis is presented  in  terms 

15 



of  the  Probstein-Elliott  coordinates, x and G, with  the  understanding 
that  in  the  two-dimensional  case x = x and y = y. 

- 
- - 

Stewartson transformation.- In  the  Stewartson  transformation  the 
following  variables  are introduced: 

and 

a e 
a e 

u = -  O U  

With  these the boundary  conditions become: 

At = 0: 

At = m: 

At  X = Xo: 

u =  v =  0 
s = s  W 

U = ue = ae Me 
0 

au/ay = 0 

s = o  

u = U0(Y) 

s = S0(Y) 

It  is  assumed that s, He, and the  eddy-viscosity  parameter, 6, transform 
directly. That is, 

16 



and 

With t h e  above   de f in i t i ons ,   t he   de r iva t ives  become 

Then w i t h   t h e   d e f i n i t i o n s  

and 

it is e a s i l y  shown, us ing   re la t ions   (31)   th rough (39) and t h e   p e r f e c t  
gas   assumption  a long  with  the  re la t ions 

and 

that  the  boundary-lay 

CONTINUITY 

e r   equa t ions  i n  t h e  S t  e w a r  t s 

(41) 

on plane  are:  
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u - + v g =  ax &J (S+1)Ue= 

a 
1 + -  

e 

ENERGY 

CVe & [(l + kt9)A - 
0 

'e .a2 
He a 2 e dY a [(l + ktF)BU ay au 1 + c -  - - 

e 
0 

(43)  

The derivatives  dT /di?  and dHe/dz are  not  transformed  because He 
and Tse are  assumed to transform  directly. Also, since  He(?)  is a 
boundary  condition  and  He  and  are  related by 

se 

Tse 

nothing  is  gained by  transforming  their  derivatives.  Likewise,  the 
coordinate y is not transformed  in  the  transverse  curvature  terms 
because  integration of the  equations  across  the  boundary  layer  is  anti- 
cipated  and  only  corresponding  values  are  needed  in  those  terms.  The 
Chapman-Rubesin  constant, C, is assumed to be at  most  a  function  of  x. 
In the  work  presented  herein,  C  is  evaluated  at  the  wall  temperature. 
That is, 

- 

c = -  
Tw + 198.6  1 (45)  

where  Sutherland's  law is used to evaluate  the  viscosity. 
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Dorodnitsvn transformation.- The Dorodnitsyn  transformation (ref. 5) 
converts the,viscous equations in the  Stewartson  variables to a Set of 
non-viscous equations  in  variables defined as  follows: 

U 4 1’2 - v = (e) 
‘e 

where 

At q = 00: 

A t  4 = 4,: 

G,,aq  = o 

s = o  
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As i n   t he   S t ewar t son   t r ans fo rma t ion ,  it i s  assumed t h a t  S ,  He,  and B 
t ransform  as   parameters ,  so t h a t  

The r e f e r e n c e   c o n d i t i o n s   i n   r e l a t i o n s  (30)  through ( 3 2 )  and (46) 
through (48) have   been   chosen   in   ca lcu la t ions  made i n   t h e   p r e s e n t  work a s  
the   cond i t ions   a t   t he   edge   o f   t he   boundary   l aye r   a t   t he   s t a t ion  x. 
where t h e   s o l u t i o n  i s  cons idered   to   begin .   This  i s  a somewhat a r b i t r a r y  
choice ,   bu t  i s  found t o  be most  convenient. The reference  condi t ions 
could be those a t  any p o i n t   r e l a t e d   i s e n t r o p i c a l l y   t o   t h e   b o u n d a r y - l a y e r  
edge a t  xo. The re ference   l ength  1 i s  comple te ly   a rb i t ra ry .  However, 
n o t e   t h a t   f o r  an  axisymmetric  body,  the  reference  length J? i n   t h e  
equivalent  plane  must be r e l a t e d  t o  the  length '  L in   the   phys ica l   sys tem 
by   the   t ransformat ion   re la t ion  

From r e l a t i o n s   ( 4 6 )  

20 



The app l i ca t ion  of relations  (46)  through  (49) and (57) and (58) t o  
equat ions ( 4 2 ) ,  (43) ,  and  (44) is s t ra ight forward .  The r e su l t i ng   equa t ions  
a r e  : 

CONTINUITY 

ag+q- aii a; - 0  

MOmNTUM 

ENERCX 

where 

and 

(59) 

- 
K dHe 
" - (S + 1 ) U  

He dZ 

= y - l  
e 2 M2e 

Peoae 
Me ' 

Pea, Me 
0 -  0 

and it has  been assumed t h a t  

- 1 - = -  dTS e l  - dHe 
TS dZ e 

He dZ 

by v i r t u e  of the  assumption of c o n s t a n t   s p e c i f i c   h e a t .  
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Deriva t ion   of   Ordinary   Di f fe ren t ia l   Equat ions  

Development of i n t eg ro -d i f f e ren t i a l   eqga t ions . -  The p a r t i a l   d i f f e r e n -  
t i a l  equations (59) , (60) , and (61) are  reduced t o  a set of   ordinary 
differential equat ions  by the in t roduc t ion  of cer ta in   approximating 
functions, F i r s t ,  it is convenient  t o  d e f i n e  a func t ion  

Then, i f  @, S ,  and w a r e   c o n s i d e r e d   t o  be represented  by  approximating 
func t ions  in terms of t he   va r i ab le   u ,   equa t ions   (59 ) ,  (60), and (61)  can 
be  expressed as 

- 
- 

@ u - + w - - C - -  - as - as A x aii 

2Cme - - 1 + me [(I + kt?) "1 + - dHe 
a; @ He dx @ ( S  + 1); = o3 (67) 

where al, o Z y  and u3 d i f f e r  from ze ro   by   v i r tue  of the  use  of  approxi- 
mat ing   func t ions   to   represent  @, S, and w. The exac t  form  of the 
approximating  functions will be  examined l a t e r .  If the e r r o r s  Y 02' 

and o3 a r e   r e q u i r e d   t o  be o r thogona l   t o  three sets of l i n e a r l y  
independent  functions f i y  gi, and hi' r e spec t ive ly ,   t hen  

- 

f fro, d u  = 0 i = 1 , 2 , . . . , n  (68) 
0 
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dE-  0 i = 1 , 2 ,  .... n 
0 

{ his, dii 0 i = 1 , 2 ,  ..., n 
0 

Requi r ing   tha t  

and 

( 69) 

and adding  equations (68) and (69) g i v e s ,   a f t e r  some preliminary  manipulation, 

1 

a (f:ii) diZ + I a (fzv) d; - - @fz'(S + 1 - u ) d u  
2 - 

0 0 
aii 'e 0 

Note t h a t  the s e m i - i n f i n i t e   i n t e r v a l   i n  the independent   var iable  q has 
been t ransformed  in to  the more c o n v e n i e n t   f i n i t e   i n t e r v a l  [ 0,1] for  the 
independent   var iable  u. 

- 
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Following the same procedure as fo r   equa t ion  (72)  it is requi red  
t h a t  

f i  = s f ;  

gi = Sf i  

hi = f * i 

(73) 

Then adding  equations (68), (69) , and (70)   gives  

du  = 0 

0 

(74) 

The in t eg ra l s   i n   equa t ions   (72 )  and  (74)  can be evaluated i n  a s t r a i g h t -  
forward  manner i f   t h e   c o n d i t i o n   f z ( 1 )  = 0 is cons ide red   t o  be s a t i s f i e d  
by r e q u i r i n g   t h a t  

and fz ' is  r e q u i r e d   t o  be bounded as E approaches 1 ( 7  approaches m) . 
Equations  (72) and (74)   then   reduce   to  t w o  i n t eg ro -d i f f e ren t i a l   equa t ions  
in   t he   dependen t   va r i ab le s  @ ( 4  ,IT) and S ( 4  ,ii) , namely 
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and 

@Sf:= d; - - 'e j (S + 1 - ii )@Sfi du 
2 k '  - 

0 
ue 

0 

+ C [ (1 + kt?) ([ sf;" + f;' "3 + 
0 

aii 

- 
K + -  dHe (S + l)@f:E - ($ - .'> Sf:'@ dE = 0 (76) 

He dx 

Note tha t   equa t ions   (75)  and (76) w e r e  obtained  by  l inear  combinations 
of  the  equations  (68) , ( 6 9 ) ,  and (70 )   u s ing   pa r t i cu la r   fo rms   fo r   t he  
weight ing  funct ions  f iy  giy  and hi. I t  is clear  t h a t   t h e   c o n d i t i o n s  
(68) , (69) , and (70) are no t   necessa ry   cond i t ions   fo r   equa t ions   (75 )  and 
(76) t o  be v a l i d .   I n   p a r t i c u l a r ,   t h i s   p r o c e d u r e   o f f e r s   n o   i n f o r m a t i o n  
t o   a i d   i n   s e l e c t i n g   e i t h e r   t h e   w e i g h t i n g   f u n c t i o n  f i  or t h e  forms of the 

approximating  functions  for @, S,  and w. These funct ions  must  be de ter -  
mined on the basis of the boundary  condi t ions  and  other   condi t ions the 
func t ions   mus t   s a t i s fy .  

* 
- 
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Selection of approximating  functions.- The  choice  of  functions to 
represent the variables 9 and S is  not  arbitrary.  The  functions  must 
satisfy the boundary  conditions  as  well  as  certain  compatibility  relations 
for boundary-layer flows.  Specifically,  the  boundary  conditions  are: 

A t  = 0: 

At u = 1: 

@ = finite 

s = sw 

f: = bounded 

@ = W' 

s = o  
fi = 0 
* 

The  Weierstrauss  approximation  theorem  applied  to  the ( differentia 1  equa- 
tions  (65),  (66),  and  (67)  alone,  that  is,  without  boundary  conditions, 
suggests  that  the  functions @, S, and w could be approximated  uniformly 
by  polynomials  on  the  closed  interval [0,1]. However,  caution  must be 
used  when  applying  the  Weierstrauss  theorem  to  cases  with  boundary  condi- 
tions.  In  the  present  case  the  condition on @ at = 1 cannot  be 
satisfied  by a polynomial  alone.  Furthermore,  the  condition  that S be 
exactly  equal  to zero at u = 1 is a stronger  condition  than  continuity 
as  required  by  the  Weierstrauss  theorem, so that  uniform  convergence 
can1;o-L necessarily  be  guaranteed  if  the  function S is  represented  by 
polynomials.  This is especially  important  in  the  transitional  and 
turbulent  regions  as  will be demonstrated  subsequently. 

- 

- 

Velocity-gradient  function, @: To avoid  the  difficulty  of  the  infinite 
condition on the  function @ at u = 1, Dorodnitsyn  (ref. 5) introduced a 
profile  of  the  form 

- 

n 

In references 2, 3 ,  and 4, it  was  shown  that  a  three-parameter (n = 3 )  

function  could  adequately  represent  both  laminar  and  turbulent  profiles 
except  in  the  vicinity of a  separation  point.  At  separation,  the  polynomial 
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formulation  of  equation  (77) is  inadequate   for  any order .  The three- 
parameter   formulat ion w a s  used in   t he   p re sen t   s tudy  and w a s  found t o  
r e p r e s e n t   a d e q u a t e l y   t r a n s i t i o n a l   p r o f i l e s   a s  w e l l  a s   l aminar  and turbu- ' 

l e n t   p r o f i l e s .  

Enthalpy  function, S: In   p rev ious   appl ica t ions   o f   the  method of 
i n t e g r a l   r e l a t i o n s  t o  boundary  layers   ( refs .  2 ,  3 ,  4) ,  the assumption was 
made t h a t  the P rand t l  number i s  un i ty .  Under that   assumption,   the   energy , 

equa t ion   t akes   t he  same form a s   t h e  momentum equat ion and t h e   t o t a l  tempera- 
t u r e   d i s t r i b u t i o n   i n   t h e  boundary  layer i s  a l i nea r   func t ion   o f   t he  normal- 
ized   ve loc i ty ,   u ,  so  tha t   t he   dependen t   va r i ab le  S can be represented  by 

- 

However, a s  shown b y   S c h l i c h t i n g   ( r e f .  lo), for   non-uni ty   Prandt l  number, 
t h e   v e l o c i t y  and thermal  boundary  layers  are  not  congruent.   For a 
laminar  boundary  layer  on a f l a t   p l a t e ,   w i t h   c o n s t a n t   p r e s s u r e   a l o n g   t h e  
p l a t e ,   S c h l i c h t i n g  shows tha t   the   t empera ture   in   the   boundary   l ayer  i s  

This means t h a t  the en tha lpy   prof i le   parameter ,  S ,  i s  

r - 1  

e 
L m E] 

e 

r r- - 1 1 

I n  a turbulen t   boundary   l ayer ,   P inckney   ( re f .  11) has shown t h a t   t h e  
t empera tu re   p ro f i l e  i s  a fourth-order  polynomial.  Converting  Pinckney's 
s t a t i c   t e m p e r a t u r e   f u n c t i o n   t o   t h e   p r e s e n t   n o t a t i o n   y i e l d s  

l m  e 2 

+ ' Z  l + m e  ue 

where K i s  determined  by  requir ing  the  total   energy  def ic iency of a 

boundary  layer,   obtained  by  integration  across  the  boundary  layer,  t o  be 

equa l   t o   t he   ene rgy  removed f r o m  the  boundary  layer  upstream of t h e   l o c a l  
s t a t i o n  by r a d i a t i o n ,   s u r f a c e   h e a t   t r a n s f e r ,   o r  any o t h e r  means. I n   t h e  
p re sen t  work, the   en tha lpy   func t ion  was represented  by 
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r m 1 m 
S = (1 - E) ISw + EiEil 

L J 

This a l lows   cont inuous   ca lcu la t ion   of  the e n t h a l p y   p r o f i l e s   i n   l a m i n a r ,  
t r a n s i t i o n a l ,  and turbulent  f lows.  For  laminar  f low on a c o o l e d   f l a t  
p l a t e ,  the formulat ion w a s  found t o  converge  uniformly so t h a t  an adequate 
approximation was obta ined  w i t h  a p r o f i l e  of  any order g r e a t e r   t h a n  rn = 2.  

For  turbulent  f low,  the  combin.ation of  an  approximate  eddy-viscosity 
func t ion  and t h e   c o n d i t i o n   a t  u = 1 was  found t o  cause  polynomials  of 
o rde r   g rea t e r   t han  m = 2 t o   d e v e l o p  waves  which  rendered the polynomials 
inadequate t o  r e p r e s e n t   t h e   v a r i a b l e  S. The d e t a i l s   o f  a s tudy  of   the 
best order  €or the  polynomial   in   equat ion  (82)  w i l l  be   p resented   in  a 

subsequent  section. 

- 

I n  summary, t he   func t ions   chosen   t o   r ep resen t   t he   va r i ab le s  @ and 

S were 

n 

and 

where the va lues  n = 3 and m = 2 were  used for most of t h e  work 
repor ted   here in .  

Sedect ion  of   weight ing  funct ions:   In   order  to a s s u r e   t h a t   t h e  equa- 
t i o n s   t o  be der ived from equat ions  ( 7 5 )  and ( 7 6 )  a re   l inear ly   independent ,  
the  weight ing  funct ions  f i ,   g i ,  and h i  must be   f ami l i e s   o f   l i nea r ly  
independent  functions.  Furthermore,  the  €unctions must  be bounded a s  u 
approaches 1. The func t ions  f: chosen for  t h i s   a n a l y s i s  were t h e  same 
as   those   used   in   re fe rence  2 ,  namely 

- 

” 

f; = (1 - u ) u  
i-1 
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Deve loben t  of o rd ina ry   d i f f e ren t i a l   equa t ions . -   Subs t i t u t ion  of 
equat ions (77)  , ( 8 2 )  , and  (83)  into  equatio,;s (75) and (76)  results i n  a 
s e t  of s ix   o rd ina ry   non l inea r   d i f f e ren t i a l   equa t ions   i n  the s i x  unknowns 
C i ( 4 )  and E i ( E ) . '  S ince the Ci and Ei are func t ions   on ly  of t h e  
independent   var iable ,  e ,  the r e s u l t i n g   e q u a t i o n s  may be expressed   in  terms 
o f  the independent   var iables ,  x and ii. Thus,  with  expressions  (13),  

(361, and (571, 

and 

The d i f f e r e n t i a l   e q u a t i o n s   t o  be solved are then 

r 1 d C ,  

and. 

d E  
[ a i j ]  = B; 

where 

1 i = 1,2,3,...yn 

j = 1 , 2 y 3 , . . . , n  
a = -  
i j   i + j  

rn 
'k i = 1 , 2 , .  . . , m  

j = 1 , 2 ,  ..., m a '  i j  = x  ( i +  j + k ) ( i +   j + k + l )  (89) 
k= 1 

29 



+ 1 l + m e  dH +[t dx 2 He dx 

and 

- C [ ( i  - l)Qi,l - i Q i ]  - C ( i  - 1) [(i - 2)Ri-2 - iRi-l]) 

Ek 
+ f [ ( i +  j + k ) ( i  + j + k +  1) 

k=1 

in w h i c h  

dH 
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Pi = J+ (1 + kt?) - 6 -i-l U d~ = [ Fi d u  
@ 

0 0 

Ri = f SFi dii 

0 

(94) 

where R, = u L/ve  . 
e 

0 0 

I (99) 
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Nusselt Number 

In  this work, the Nusselt number is computed from the  Stanton number 
as 

Nu = (Pr) (Rex) St 

Displacement Thickness 

m 

0 
e e  

Momentum Thickness 

m 

Enthalpy Thickness 

m 

m  m e 

1= 1 

(eq. (108) continued on next page) 
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Velocity  Profile 

In the  two-dimensional  system  or  the  Probstein-Elliott  system,  the 
y coordinate  is  given  by  equation (97), and  for  axisymmetric  flow,  the 
physical  coordinate  is 

- 

1 /2 

r W 
cos a cos a 

Velocity  Gradient 

If k = 0, then  L = 1. 

Mach  Number  Profile 

Temperature  and  Density  Profiles 
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I n i t i a l   C o n d i t i o n s  

I n   o r d e r  t o  s o l v e   t h e   d i f f e r e n t i a l   e q u a t i o n s   ( 8 6 )  and ( 8 7 ) ,  i n i t i a l  
values  of Ci  and Ei must be spec i f i ed .  The requi red   va lues  can be 
de termined   in   severa l  ways. The ways tha t   have   been   found  to  be most 
u s e f u l   a r e   d i s c u s s e d   i n   t h i s   s e c t i o n .  

S imi la r i ty   so lu t ion . -   For   l aminar   f low on a f l a t   p l a t e   a t  uniform 
temperature   with  constant  pressure, s i m i l a r i t y  i s  known t o  e x i s t .  
Solut ion  of   equat ion  (86)   under   those  condi t ions  yields  

1/2 
Ci = Ki  (+) 

where Ki i s  a cons tan t .  So t h e   i n i t i a l   v a l u e s   o f  Ci  are   s imply 

1/2 

‘i 0 = Ki (:) 
For the   l aminar   s imi la r i ty   case ,   the   equat ion   (86)   does   no t  depend 

upon t h e  Ei. Therefore ,  it i s  e a s y   t o  show f rom  equat ion   (87)   tha t   for  
t he   l amina r   s imi l a r i t y   ca se  

dEi 
dx 
” - 0  

and equation  (87)  can be expressed   as  

where 

n 
- ‘k  Cf 2 ( 0 )  

Aij - 1 ( i  + j + k ) ( i  + j + k + 1) C , P ~  6 j l  + 
k= 1 
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and 

cf2(0) Bi = Sw 'k - CfZ' (0)  - f (i + k)  (i + k + 1) C l  k=1 

where 

{ 1 f o r  j = 1 

0 for j > 1 

and 

Solut ion  of   the  equat ions  (116)   for   the  values  of Ei is accomplished  by 
s u b s t i t u t i n g   t h e   v a l u e s  

Ci = K i  

and 

in to   equa t ions  (117)  , (118) , and (119) . 
The values  Ki have  been  determined  by  computing  the  solution  to  the 

equations  (86) f r o m  a r b i t r a r y   i n i t i a l   c o n d i t i o n s .  The s i m i l a r   s o l u t i o n  is 
obtained  asymptotically. '  The r e s u l t s   f o r  n = 3 are 

K, = 3.006443 ( C )  1'2 

- 37 



K, = -3.041346(C) 1/2 

K, = 0.7048994 (C)  1'2 

Th,e same procedure as used t o   o b t a i n  Ki i n  the  laminar   case  can also be 

used t o  compute i n i t i a l   v a l u e s   o f  Ci and Ei f o r  a f u l l y   t u r b u l e n t  
boundary  layer on a f l a t   p l a t e   o r   fo r   h ighe r   o rde r s   o f   app rox ima t ion  
( n  > 3 )  . This  procedure was d iscussed   in   re fe rence  2 .  

D i r e c t   f i t   o f  known v e l o c i t y  and t e m p e r a t u r e   p r o f i l e s . -   I f   t h e  
v e l o c i t y   p r o f i l e ,  y versus   u ,  and t h e   t o t a l   t e m p e r a t u r e   p r o f i l e s   c a n   b e  
known a t   t h e   i n i t i a l   s t a t i o n ,   t h e   r e q u i r e d   v a l u e s   o f  E i  a r e   e a s i l y  
obtained  f rom  equat ion  (82)   by  subst i tut ing  the  values   of  S and ii a t  

m po in ts   in   the   boundary   l ayer  a t  t h a t   s t a t i o n .  Then, the   requi red  
values  of Ci  a r e   ob ta ined   by   subs t i t u t ing   t he  n values  of y cor res -  
ponding t o   t h e  n values  of ii i n to   equa t ion   (97 )  and s o l v i n g   t h e  
r e s u l t i n g   s e t   o f  n algebraic  equations  simultaneously.   Note,   however,  
t h a t   f o r  an  axisymmetr ic   configurat ion,   the   coordinate  y must  be  
transformed t o   t h e   P r o b s t e i n - E l l i o t t   v a l u e ,   y ,   b e f o r e   e q u a t i o n  ( 9 7 )  is 
used. I t  must be noted   tha t   th i s   t echnique   depends  on the   choice  of t h e  
p o i n t s   a t  which  values  of ii and T a re   ob ta ined   in   the   boundary   l ayer .  
Thus, i f   a l l   p o i n t s   a r e   n e a r   t h e   e d g e  of  the  boundary  layer,  a d i f f e r e n t  
fit may be   ob ta ined   than   for   po in ts   near   the   wal l .  

~~ - 

- 

Known boundary-layer  parameters.- A t h i r d  method  of o b t a i n i n g   i n i t i a l  
values  of Ci  and Ei  €or a three-parameter   (n  = 3 )  v e l o c i t y   g r a d i e n t  
p r o f i l e  depends upon knowledge  of the  parameters  C f ,  S t ,  6*, and 9 p lus  
knowledge  of t h e   t o t a l   t e m p e r a t u r e   a t  ( m  - 1) values  of u. The skin- 
f r i c t i o n   c o e f f i c i e n t ,  C f ,  i s  used t o   o b t a i n  C, from equat ion ( 1 0 4 ) .  

Then the  parameter  E, i s  obtained  from  equation (105)  wi th   the  known 
value  of   the  Stanton number. The ( m  - 1) values  of Tt are   then  used 
in   equa t ion  ( 8 2 )  t o   ob ta in   t he   r ema in ing  Ei.  F ina l ly ,   t he   equa t ions  (106)  

and (107)   are   used  to   obtain  the  remaining two parameters ,  C2 and C3. 

- 

This method can  be  used  for  any order  of  approximation on the   en tha lpy  
p r o f i l e ,   b u t  i s  l i m i t e d   t o  a th ree-parameter   ve loc i ty-gradien t   p rof i le .  

L e a s t   s q u a r e s   f i t  o f   ve loc i ty  and t empera tu re   p ro f i l e s . -  A fou r th  
method of o b t a i n i n g   i n i t i a l   c o n d i t i o n s   c o n s i s t s   o f   s o l v i n g   t h e   t h e   r e q u i r e d  
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parameters  from  known  distributions of y versus  u  and S versus  u 
by  the  method  of  least  squares.  This  method  was  used  in  the  work of 
reference 2. The  method  was  not  used  in  the  present  work,  but  is  outlined 
here  to  generalize  the  presentation. 

- - 

Least  squares  fitting  of  the  enthalpy  function  is  straightforward. 
The  residual  equations  are  written  in  the form 

and  the  coefficients  Ei  are  obtained  by  solving  the  set  of  equations 
given  by 

where m' is the  number  of  data  points. 

Fitting of the  velocity  profiles  is  a  more  complicated  process. 
First  the  data must be  expressed  in  terms of a  distribution  of aii/aq 
versus u. That  is, - 

= 

1 - Gi 
n 

j=l 

The  residual  equations  are  then  written  as 

(%li 2 "3 -1 

1 -ii 
Ri = 3=1 i 

n - n 
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An iteration  procedure  is  then  used to compute  the  required  values  of C 
First  it  is  assumed  that 

1- 

n 

for  all  ui  and  the  C  are  computed  by  least  squares.  Then  these  C 
are  used to compute  the  denominators  of  the  residual  equations  and  new 
values  of C are  obtained.  This  is  repeated  until  successive  iterations 
yield  the  same  solution  within  a  desired  degree  of  accuracy. 

- 
j j 

j 

CALCULATION OF TRANSITIONAL  BOUNDARY  LAYERS 

As  discussed  previously,  the  only  thing  that  distinguishes  between 
laminar,  transitional,  and  turbulent  flow  in  the  present  formulation  is 
the  parameter 0 in  the  dissipation  integrals  Pi,  Qi,  and  Ri  (eqs.  (94) , 
( 9 5 ) ,  and  (96)). Thus,  the  requirements  of  calculating  transitional  flow 
are (1) knowledge of the  point  where  transition  begins, (2) a  function 
representing  the  turbulent  eddy-viscosity 0, ( 3 )  a  modulation  function  to 
cause  the  parameter 0 to  go  smoothly  from  its  laminar  value  of  unity 
to its  fully  turbulent  distribution,  and  (4)  knowledge of where  transition 
ends. 

In  this  section,  the  methods  chosen  for  treating  the  requirements  for 
calculating  transitional  boundary  layers  will be discussed.  For  greater 
detail  regarding  the  theoretical  aspects  of  boundary-layer  stability  and 
transition,  the  reader  is  referred  to  the  many  excellent  references  on  the 
subject.  In  particular,  the  report by M. V. Morkovin  (ref.  12)  is  an 
excellent  review of all  aspects  of  the  transition  problem  and  contains  an 
extensive  list  of  references  for  the  reader  desiring  detailed  knowledge  of 
specific  topics. The  report  by L. Mack  (ref. 13) is,  to  the author’s 
knowledge,  the  most  current  and  comprehensive  study of laminar  boundary- 
layer  stability  theory. 
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Prediction  of  the  Transition  Point 

At the  present  time,  the  transition  point  cannot be predicted  with 
confidence by purely  theoretical  methods.  While  sophisticated  methods of 
solving  the  equations  describing  the  stability  of  the  laminar  boundary 
layer  have  been  developed  in  recent  years  (refs. 13, 14, 15)  these  methods 
are  unable to predict  the  point  where  the  growing  linearized  disturbances 
characteristic of boundary-layer  stability  theory  become  large  enough to 
trigger  the  breakdown  which  creates  the  transition  region. A promising 
method  of  approach  was  taken  by  Donaldson  (ref. 16) who devised  a  model 
of  the  transitional  boundary-layer  two-dimensional  in  the  mean  flow  but 
three-dimensional in  the  disturbance  flow.  The  model  was  apparently 
capable  of  predicting  an  onset  of  transition  boundary  for  the  case  of 
fairly  large  disturbances  introduced  into  a  flat  plate  boundary  layer. 
However,  although  the  method  appears  to be an  effective  way  of  studying 
the  transition  process,  it  has  not  been  developed  into  a  general  engineering 
tool.  Purely  empirical  methods  are  also  limited  in  application  due  to 
the  myriad  of  factors  affecting  the  transition.  Some  of  these  factors  are 
Reynolds  number,  Mach  number,  unit  Reynolds  number,  pressure  gradients, 
nose  bluntness,  surface  roughness,  free-stream  turbulence  level,  angle  of 
attack,  and  radiated  aerodynamic  noise.  In  a  recent  paper,  Morkovin  (ref.  12) 
indicates  that  even  though a large  amount  of  experimental  transition  data 
exists  much  of  the  information has not  been  recorded  in  sufficient  detail 
to  allow  the  separation  of  the  effects of all  the  different  parameters. 
For  this  reason,  the  approach  usually  taken  €or  engineering  applications 
is  to  try  to  correlate  data  with  certain  parameters  or  groups of parameters. 
Even  though  limited  in  scope  depending  upon  the  parameters  chosen  for  the 
correlation,  this  method  at  least can  provide  a  first  approximation  over 
a reasonably  wide  range  of  parameters. 

Definition  of  the  transition  point  is  difficult  since  experimentally 
transition  takes  place  over  a  finite  region  and  different  kinds  of  data 
produce  different  indications  of  the  point  of  transition.  Optical  tech- 
niques  such  as  schlieren  photographs  indicate  a  point  of  transition  which 
is  somewhere  near  the  middle  of  the  transition  region  (ref.  17).  Wall 
temperature  or  recovery  factor  determinations  indicate  a  peak  value  which 
is  also  considered  by  Brinich  (ref. 18) to  correspond  approximately  to 
the  mean  point of  the  transition  zone.  The  only  quantities  which  yield 
well-defined  points  near  the  beginning  of  the  transition zone are  the 
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Stanton nuniber, t h e   s k i n - f r i c t i o n   c o e f f i c i e n t ,  and the   p ressure   ind ica ted   by  
a p i t o t   p r o b e   p l a c e d   n e a r   t h e   s u r f a c e   ( s u r f a c e   p i t o t   p r e s s u r e ) .  Those 
q u a n t i t i e s   e x h i b i t  m a x i m a  and  minima.  The minimum of  any  of  those  quanti-  
t i es  occurs   near   the   po in t   o f   onse t   o f   t rans i t ion .  I t  is  not  clear, 
however, t h a t   t h e  minimum va lues   o f   each   o f   t he   t h ree   quan t i t i e s  would 
n e c e s s a r i l y   o c c u r   a t   t h e  same poin t .  

I t  was found t h a t  the ca lcu la ted   boundary- layer   quant i t ies ,   sk in-  
f r i c t i o n   c o e f f i c i e n t ,  C f ,  and Stanton number, S t ,  tended t o  develop  the 
same form  of v a r i a t i o n   i n   t h e   t r a n s i t i o n   r e g i o n  as t h e  imposed i n t e r -  
mi t t ency   d i s t r ibu t ion .  A well-defined minimum i s  obta ined   for   bo th  
q u a n t i t i e s .  On the   o the r   hand ,   t he  minimum of   t he   su r f ace   p i to t   p re s su re  

d i s t r i b u t i o n  is  l e s s  w e l l  def ined.  The s u r f a c e   p i t o t   p r e s s u r e  is  a 
quantity  which  depends on t h e   v e l o c i t y   p r o f i l e   i n   t h e   b o u n d a r y   l a y e r .  
Because  of t h i s ,   t h e   s u r f a c e   p i t o t   p r e s s u r e   d i s t r i b u t i o n   d e p e n d s   t o  some 
ex ten t  on t h e   s i z e  of   the   p robe   re la t ive   to   the   boundary   l ayer ,  and  on 
the  posi t ion  of   the  probe  within  the  boundary  layer .   In   addi t ion,   the  
poss ib le   e f fec t   o f   the   p robe  on s t a r t i n g   t h e   t r a n s i t i o n   c a n n o t  be 

dismissed.  For  these  reasons,   correlations  based  on  measurements  of  sur- 
f ace   quan t i t i e s   such  as Cf o r  S t  a r e   b e l i e v e d   t o  be t h e  most r e l i a b l e  
€or   p red ic t ing   the   onse t   o f   t rans i t ion .  

In  the  present  work, two  methods a re   used   for   es t imat ing   the   loca t ion  
of   the  t ransi t ion  point .   These  methods  are  (1) corre la t ions   based  on 
co l lec t ion   of   exper imenta l   da ta   over  a broad  range  of  experimental  condi- 
t i o n s  and ( 2 )  u se   o f   t he   expe r imen ta l   l oca t ion   o f   t r ans i t i on .  When t h e  
t r a n s i t i o n   p o i n t  i s  determined  by  one  of  these  methods, it is  used as a 
d i r e c t   i n p u t   i n t o   t h e   a n a l y t i c a l   s o l u t i o n .  The remainder of t h i s   s e c t i o n  
w i l l  be devoted to   d i scuss ion   o f   co r re l a t ions   fo r   t he   t r ans i t i on   Reyno lds  
number. 

I n  recent   years ,   several   correlat ions  have  been  developed  for  
pred ic t ing   t rans i t ion   Reynolds  nunibers. Some of   these are d e s c r i b e d   i n  
references  19  through 23. Pate and Schueler   ( re f .   19)  and Pate ( r e f .  20)  

showed t h a t   d a t a  on f l a t   p l a t e s  and cones   in  wind tunnels   could be 
co r re l a t ed   u s ing   pa rame te r s   cha rac t e r i s t i c  of the  boundary  layer  on t h e  
wind-tunnel w a l l s .  However, t ha t   k ind   o f   co r re l a t ion  i s  r e s t r i c t e d   t o  
use i n  wind tunnels  and hence  cannot be ex tended   t o   p red ic t ing   t r ans i t i on  
on models i n  a ba l l i s t i c  range   or  i n  f r e e   f l i g h t .  D e e m  e t  a l .   ( r e f .  2 1 )  
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developed  a  correlation  for  sharp  and  cylindrically  blunted  flat  plates 
at  zero  angle  of  attack  based  on  Mach  number,  unit  Reynolds  number, 
leaaing-edge'bluntness,  leading-edge  sweep  angle,  and  wall-to-adiabatic- 
wall  temperature  ratio.  Their  correlation,  applicable  only to wind 
tunnels,  predicted  the  Reynolds  number of the  end  of  transition  within a 
factor of less  than  2  for  most  of  the data-used. This  correlation 
was  developed  into  a  set  of  charts  by  Hopkins,  Jillie, ahd Sorensen 
(ref.  22),  who  pointed  out  that  the  correlation  can  provide  only  a  first 
approximation  of  the  transition  Reynolds  number  expected  for  flight 
vehicles.  Correlation  parameters  developed  at NASA Langley  Research 
Center  by  Bertram  and  Beckwith  (ref.  23)  were  able to  predict  the  onset 
of  transition  Reynolds  number  for  sharp-nosed  cones  within  a  factor  of 
2  when  wind-tunnel,  ballistics  range,  and  flight  data  were  considered 
separately.  Researchers  at  Langley  Research  Center  have  recently 
developed  an  improved  correlation  for  the  onset  of  transition  on  sharp 
cones  in  wind  tunnels  and  ballistics  ranges.  The  specific  relations  for 
these  correlations  will be presented  subsequently. 

The  correlation  relations  to  be  presented  in  this  report  will  be 
directly  applicable  to  sharp-nosed  cones  or  sharp-leading-edged  flat 
plates  or  hollow  cylindezs.  The  relations  may  be  used  as  first  approxi- 
mations  for  determining  the  transition  point  on  other  configurations  with 
sharp  noses  or  leading  edges.  The  effects  of  nose  or  leading-edge 
bluntness  and  pressure  gradients  have  been  studied  by  a  number  of  investi- 
gators  (refs.  24,  25, 26). However,  a  completely  general  correlation 
accounting  for  all  the  various  parameters  affecting  the  transition  point 
does  not  exist  at  this  time. 

The  correlations  recommended  for  use  with  the  present  theory  are  as 
follows: 

Sharp  Flat  Plates 

2c0.95 7- 0.167 s ' J  
Re = - R  1 0 . 6  10 ~- 

Xt 
6.094 MZ + 1.22 - 
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where 

This  relation  was  obtained by dividing  the  expression  given  in  reference 23 

for  sharp  cones  in  wind  tunnels by 3. A sample of  the  success of the 
relation is shown  in  figure 2 where  the  predicted  value  of  Re  is 
compared  with  experimental  values  from  different  sources  (refs. 18 and 
27 through 32 and  unpublished  data  from  LRC). The  prediction  is  within 
a  factor  of 2 €or  most  of  the  data. 

Xt 

Sharp  Cones 

Wind  Tunnels  and  Ballistics  Ranges* 

Rex = Re, 10 n' [F + G S '  + I ( s ' ) ~ ]  

t 

where n', F, G, and I depend on the  experimental  environment  as 
follows: 

Facility - n' - F - G - I 

Wind  Tunnel 0.4  4.5158 -0.29861 0.027300 

Ballistics  Range 0.6 2.5955 -0.13680 0.014578 

Free  Flight  (ref. 23) 

3 0.6 102 [1-32 + 0.130 S ' J  

2 Rex = - Re, 
t 

6 - 0 9 ,  MZ + 1.22 >I e 

For  estimating  the  transition  Reynolds  number  on  blunt  leading-edge 
flat  plates or  hollow  cylinders  or  other  two-dimensional  or  open-nosed 
axisymmetric  configurations,  the  reader  is  referred to the  charts of 
Hopkins,  Jillie,  and  Sorensen  (ref.  22). It must be remembered,  however, 
that  those  charts  refer to the  end  of  the  transition  region. A corre- 
lation  for  estimating  the  length  of  the  transition  region  will  be  discussed 

* ~~ ~. . . :c - - 
The  author  gratefully  acknowledges  the  cooperation of Mr. P. Calvin 
Stainback  of  LRC  in  providing  this  correlation  relation. 
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i n  a subsequent   sect ion of t h i s   r e p o r t .  For  blunted cones or  other closed-  
nose  axisymmetr ic   configurat ions,   the  work of S te t son  and  Rushton ( r e f .  25) 
and  Moeckel ( r e f .  26)  and  Zakkay  and  Krause ( r e f .  33) may be h e l p f u l .  
Some effects   of   nose  bluntness   on  cones w e r e  s tud ied   exper imenta l ly   by  
Stainback  ( ref .   34)  and by  Softley,   Graber and Z e m p e l  ( ref .   35)  . However, 
the gene ra l i t y   o f  the r e s u l t s  is unce r t a in   s ince   each   i nves t iga to r  
examined flow  over a l imited  range  of  Mach numbers  and  Reynolds  numbers. 

Turbulent  Eddy-Viscosity Model 

Several  authors  have  developed  eddy-viscosity  models  for  use  in 
so lv ing   the   tu rbulen t   boundary- layer   equa t ions .  Some of these models a r e  
desc r ibed   i n   r e f e rences  1,.2, 36,  37,  and  38.  Several  models are compared 
i n   r e f e r e n c e s  36 and 39. The c r i t e r i a  used  for  choosing a p a r t i c u l a r  
model f o r   t h e   p r e s e n t  work were t h a t   t h e  model y i e l d   r e s u l t s  which  agreed 
reasonably w e l l  with  those  of  other  models and t h a t   t h e  model formulation 
be  as   s imple as poss ib l e .  The l a t t e r   c r i t e r i o n   d i c t a t e d   t h a t   t h e   b e s t  
model f o r   t h e   p r e s e n t   t h e o r y  would be  one  which  could  be  described  in 
terms  of  the  independent  variable u ra ther   than  the  boundary-layer  
coordinate   y .   This  makes c a l c u l a t i o n  of t h e   a c t u a l   v e l o c i t y   p r o f i l e s  
a t  each   i n t eg ra t ion   s t ep   unnecessa ry   excep t   a t   s t a t ions  where  they  are 
d e s i r e d   f o r   o u t p u t ,   o r   i n   c a s e s  where t r ansve r se   cu rva tu re  i s  be ing  
accounted  for,  thus  maximizing  the  speed  of  the  computer  program. 

- 

The eddy-viscosi ty  model  employed i n   t h e   p r e s e n t  work is a two-layer 
model based on t h e  work o f   K le ins t e in   ( r e f .  38) and of C lause r   ( r e f .  4 0 ) .  

Kle ins te in   der ived  an express ion   for   the   eddy-v iscos i ty   o f   the   inner   l ayer  
of  an  incompressible  boundary  layer  (the  laminar  sublayer and t h e  l a w  of   the 
wal l   reg ion) .   Clauser   p roposed   tha t   the  eddy v i s c o s i t y   i n   t h e   o u t e r   l a y e r  
was c o n s t a n t   a t   t h e   v a l u e  

6 = 0.0168 Reg* 

f o r  an  incompressible  boundary  layer.  
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Inner  Layer  Eddy-Viscosity  Model 

Extension of Kleinstein's 
flow is straightforward. With 

t he   t u rbu len t   shea r  stress 

model  for  the inner layer to compressible 
the  definitions 

PWU* y+ = - 
I ,  Y 

- T  = ( w  + PE) ay 8 U  

where it has  been assumed that 

-pu 'v '  = ay 
a U  

becomes 

V (1 + E+) 7 au+ u*= 
r =  PC 

8Y 

from which 

7 = P  '2- ( l + € ) -  + au+ 
Tw pw vw aY+ 
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and 

For  incompressible flow, Kleinstein  found  that  Prandtl's  mixing 
length  theory  gave 

E+ = k: (y + 2 d u +  ) 
dY+ 

For  compressible  flow,  the  assumption  is  made  that  the  fluid  properties  do 
not  change  significantly  in  a  distance  dy.  The  major  contributions  to  the 
turbulent  shear  then  come  from  the  velocity  correlation  u'v' so that  with 
the  mixing  length  hypothesis E = k:y2 (du/dy)  and  the  definitions  (124) 
through  (127) , the  expression  (134)  becomes 

- 

For  large  distances  from  the  wall  such  that E+ is  large  compared to 
unity,  equation  (133)  can  be  expressed 

so that  with  equations  (135)  and  (136) 

+ 
E = k,y uT y- + vw 

Retaining  Rleinstein's  definition,  a  new  variable  is  introduced,  namely 

+ 
.=/u du' + 

0 T 
U 

where u+ can  ba  variable  due  to  variations of both  the  turbulent  shear 
and  the  density.  Following  Kleinstein,  it  is  easily  shown  that  the 
turbulent  eddy-viscosity  can  be  represented  by  the  expression 

7 
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With the condi t ions  

y = 0: 

where the values  0.41 and 7.7 are   used for k, and k2, respec t ive ly .  

y = 6:  T =  0 

- =  
aY 

0 

it can  be shown t h a t   t h e   v a r i a t i o n   o f   t h e   s h e a r   s t r e s s   i n  a boundary  layer 

can  be  represented  by 

For  an  equilibrium  turbulent  boundary  layer  in  which dp/dx = 0 and 

" 
y - -7 
6 - u  

it i s  easy t o  s e e   t h a t   t h e  shear s t r e s s   c a n  be assumed t o  be   cons t an t   fo r  
t he   i nne r   l aye r   ca l cu la t ions ,   s ince   va lues  of y/6 a t  which s i g n i f i c a n t  
deviat ions  of  r from rw occur   requi re   va lues  of u nea r   un i ty ,   co r re -  
sponding to   t he   ou te r   l aye r   o f   t he   boundary   l aye r .  O f  course,   f lows  with 
s ign i f i can t   adve r se   p re s su re   g rad ien t s  may r equ i r e   t he   fu l l   po lynomia l  
express ion .   In   the   p resent  work it was always  assumed t h a t  r = T 

throughout   the  inner   layer .  This assumption is  the   "Prandt l   hypothes is"  
which r e s u l t s   i n   t h e   c l a s s i c a l  law  of t h e   w a l l .  

- 

W 

The Kle ins t e in  model o f   t he   i nne r   l aye r  eddy v i s c o s i t y  i s  convenient ly  
- 

expressed  in  terms of u a s  follows. Since 
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it fol lows that 

so 

I n  the computer  program w r i t t e n   f o r   t h e   p r e s e n t   a n a l y s i s ,   t h e   e x p r e s s i o n  
(143) is  evaluated  using simple t r a p e z o i d a l   i n t e g r a t i o n   f o r  11 values  of - 

U. 

Outer Layer Eddy Viscos i ty  

Herr ing and Mel lo r   ( r e f .  36)  extended  Clauser’s model t o   compress ib l e  
flow  by  defining the eddy v i s c o s i t y   i n   t h e   o u t e r   l a y e r   a s  

where 6; i s  ca l led   the   k inemat ic   d i sp lacement   th ickness   def ined   by  

6; = [ (1 - E) dy 
0 

Other   au thors   ( re fs .  1 and  41) have  used  an  intermit tency  funct ion  in  the 

o u t e r   l a y e r  t o  cause   the  eddy v i s c o s i t y   t o   d e c a y   t o   z e r o   a t   t h e   e d g e   o f   t h e  
boundary  layer. The major  effect   of  such an in t e rmi t t ency   func t ion  i s  
conf ined   t o  the reg ion  ii > 0.9. The in t e rmi t t ency   func t ion  is  thus  of 
secondary  importance  in  calculation  of  the  boundary-layer  solutions.  For 
th i s   r ea son ,  no in t e rmi t t ency   func t ion  was u s e d   i n   t h e   o u t e r   l a y e r   i n   t h e  
p re sen t   ana lys i s .  
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Modulation  of  the  Eddy  Viscosity 
in  the  Transition  Region 

The  functional form of  the ea'dy viscosity  in  the  transition  zone  is 
defined  in  the  present  work  as 

where  r(x)  is  called  the  intermittency. The  intermittency  must  satisfy 
the  conditions  that r =. 0 when x = x and r = 1 when x is  far 
downstream  of  xt.  In  the  present  work,  the  intermittency  is  specified 
in  one  of  two  ways: (1) an  analytical  expression  derived  from  considera- 
tions  of  the  probability  of  the  flow  being  turbulent  at a given  statior 
or  (2)  an  empirical  distribution.  The  analytical  function  chosen to 
represent  r(x)  is  the  Gaussian  distribution  derived  by  Emmons  (ref.  42). 
In this  analysis,  the  function  is  expressed  as 

t 

-1 (x-x,) 
r = l - e  

In the  present  analysis,  the  parameter h is  determined  by  calculating  the 
length  of  the  transition  region  and  requiring  that I' = 0.95 at  the  point 
of  maximum  skin  friction  or  heat  transfer.  This  process  will  be  described 
in  greater  detail  in a subsequent  section  concerned  with  correlation  of 
the  length  of  the  transition  region. 

Emmons  derived  the  intermittency  function  after  observing  turbulent 
spots  form  in a water  flow. He introduced a source-density  function 
(related  to  the  parameter h )  to  describe  the  production  of  turbulent  spots, 
and  showed  that  the  probability  of  the  flow  being  turbulent  at a given 
point  is  the  intermittency  factor, r ,  given  by  equation  (147). 

The  existence  of  turbulent  spots  in a boundary  layer  has  been  con- 
firmed  in a water  flow  by  Mitchner  (ref. 4 3 ) ,  by  Schubauer  and  Klebanogf 
(ref. 44) in  low-speed  air  flows,  and  by  James  (ref.  45)  in  air  flows  at 
Mach  numbers  from 2.7 to 10. Emmons'  assumption  that  the  spots  grow 
independently  of  each  other  was  confirmed  by  the  experiments  of  Elder 
(ref. 46) . Dhawan  and  Narasimha  (ref.  47)  used  their own and  Schubauer 
and  Klebanoff's  (ref. 44) experiments  to  show  that  Emmons'  source  density 
function  could be best  represented  by a delta  function  in x, implying 
that  the  spots  originate  essentially  along a single  line  transverse  to  the 
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flow.  Nagel  (ref. 48), in   ex tending   the   theory   to   hypersonic   f low,  showed 
t h a t  a key factor in   t he   sou rce   dens i ty   func t ion  is the   f requency   of   spot  
formation. "hat frequency was found t o   r e q u i r e   t h e   e x i s t e n c e   o f  a 
cha rac t e r i s t i c   l eng th   wh ich  w a s  i d e n t i f i e d  as t h e   a v e r a g e   l a t e r a l   s p a c i n g  
of t h e   t u r b u l e n t  spots. This l eng th  was found t o   b e  related t o   f r e e -  
stream disturbances  which  could be re l a t ed   t o   w ind- tunne l   s i ze ,  model 
v ib ra t ions ,   o r   o the r   ex t e rna l   causes .  

The in t e rmi t t ency   d i s t r ibu t ion   ac ross   t he   boundary   l aye r   i n   t he  
t r a n s i t i o n   r e g i o n  is  a func t ion   of   the   shape   of   the   tu rbulen t  spots. 
Schubauer  and  Klebanoff  (ref. 44) showed t h a t   a t  low speeds the   spots   have  
a n e a r l y   c o n s t a n t   c r o s s   s e c t i o n a l   a r e a   c l o s e   t o  the su r face  and t a p e r  
toward  the  outer  edge  of  the  boundary  layer.  Owen (ref. 49) repor ted  
tha t   t he   i n t e rmi t t ency   d i s t r ibu t ions   ac ross   t he   boundary   l aye r  i n  t h e  
t r ans i t i on   r eg ion   were   s imi l a r   t o   t hose   r epor t ed   by   Cor r s in  and Kistler 
(ref. 50) in   turbulent   boundary  layers .   That  is, t h e   i n t e r m i t t e n c y   v a r i e s  
from some maximum value near the  wal l   to   zero  toward  the  outer   edge  of   the 
boundary  layer. The i n t e r m i t t e n c y   d i s t r i b u t i o n   i n   t h e   d i r e c t i o n  normal t o  
the wal l  i s  of  secondary  importance i n  r e l a t i o n   t o   t h e   s t r e a m w i s e  distri- 

but ion   in   de te rmining  the mean p r o f i l e s  and the h e a t   t r a n s f e r  and shear 
stress a t   t h e  w a l l .  This i s  e s p e c i a l l y   t r u e   i n   t h e   p r e s e n t   a n a l y s i s ,  
s ince  the in te rmi t tency  is  nea r ly   cons t an t   ac ross   t he   i nne r   pa r t   o f   t he  
boundary  layer  from  which come the   ma jo r   con t r ibu t ions   t o   t he   i n t eg ra l s  
i n v o l v e d   i n   t h e   s o l u t i o n .   F o r   t h i s   r e a s o n ,   i n   t h i s  work  no in te rmi t tency  
d i s t r i b u t i o n  was appl ied i n  t he   d i r ec t ion   no rma l   t o  the wal l .  

That Emmons' theory may not  be gene ra l ly   app l i cab le  was discovered  by 
Morkovin ( r e f .  1 2 ) ,  who found t h a t  i n  p l o t t i n g   t h e   d i s t r i b u t i o n s  of  a 
number of   surface  var iables   f rom  different   experiments   through  the  t ransi-  
t ion   reg ion ,   on ly   about   ha l f   o f   those  examined  could  be f i t t e d   t o  the 
p r o b a b i l i t y   d i s t r i b u t i o n   c u r v e s  of Dhawan and Narasimha (ref. 4 7 ) .  Likewise, 
the present   author   found  that   for  some hypersonic flows the   i n t e rmi t t ency  
t e n d s   t o   i n c r e a s e   f a s t e r  toward t h e  end of t r a n s i t i o n   t h a n  the low-speed 
p robab i l i t y   t heo ry  predicts. One r e a s o n   f o r   t h i s  may be t h a t  some of   the  
h i g h e r   i n s t a b i l i t y  modes found  by Mack ( r e f .   13 )  become exc i ted  and 
c o n t r i b u t e  to t h e  breakdown so t ha t   t he   sou rce   func t ion  is not   adequately 
represented  by a s ing le   l i ne   sou rce ,   bu t   shou ld   i nc lude  new sources   in t ro-  
duced  downstream of t h e   o r i g i n a l   t r a n s i t i o n   p o i n t .  I n  the  absence  of a 
more ea t i s f ac to ry   t heo ry   o f   t he  spot d i s t r ibu t ion   i n   hype r son ic   f l ow,   t he  
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simple p robab i l i t y   t heo ry   o f  Emmons was chosen t o  be used i n   t h e  computer 
program w r i t t e n   f o r  the present   theory .   Provis ion  was a l s o  made f o r   t h e  
Ynput of an a r b i t r a r y   d i s t r i b u t i o n   o f   t h e   f u n c t i o n  r (x) .  I n   t h i s  way, 
known dev ia t ions  from the Emmons func t ion   can  be accommodated i n  the 
computer  program. I n  the tes t  c a l c u l a t i o n s  t o  be d i s c u s s e d   i n   t h i s  
r epor t ,   t he   expe r imen ta l   i n t e rmi t t ency   d i s t r ibu t ions  w e r e  used  whenever 
they  could be clear ly   determined.  

I t  i s  important t o  n o t e   a t   t h i s   p o i n t   t h a t   t h e   c a p a b i l i t y  of  using  an 
a r b i t r a r y   d i s t r i b u t i o n  of r (x )   a l l ows   t he   de t e rmina t ion  of t he   expe r i -  
men ta l   i n t e rmi t t ency   d i s t r ibu t ion  from data.  Thus,  the  computer  program 
can  provide a usefu l   engineer ing  tool fo r   s tudy ing   hype r son ic   t r ans i t i on  
o r   t r ans i t i on   unde r   o the r   c i r cums tances  where t h e  simple p r o b a b i l i t y  
theory i s  inadequate.  

C o r r e l a t i o n   f o r  the Extent   of   the   Transi t ion Zone 

I n   t h e   p r e s e n t  work, the  parameter  h in   equat ion  (147)  i s  determined 
from r e l a t i o n s   d e s c r i b i n g   t h e   l e n g t h   o f   t h e   t r a n s i t i o n   r e g i o n .  The l eng th  
of the   reg ion  i s  def ined  as   the  dis tance  between  the minimum and t h e  
maximum o f   t h e   h e a t   t r a n s f e r ,   s k i n - f r i c t i o n   c o e f f i c i e n t ,  or s u r f a c e   p i t o t  
p ressure .  A t y p i c a l   d i s t r i b u t i o n  is  shown i n   f i g u r e  3 .  I t  was found t h a t  
when the  expressions  (139)  and (146) were  used f o r   t h e  eddy v i s c o s i t y ,   t h e  
minimum o f   t h e   c a l c u l a t e d   h e a t   t r a n s f e r  and s k i n - f r i c t i o n   c o e f f i c i e n t  
occurred a t  approximately r = 0.01, and t h e  maximum occurred   a t   approxi -  
mately r = 0.95.  These  values were used t o  determine  the  point   of   onset  
of t r a n s i t i o n  and the  parameter h so t h a t   i f   t h e  Reynolds number of t h e  
l eng th   o f   t he   t r ans i t i on   r eg ion  is  known, the   l oca t ion   o f   t he   po in t  of 
onse t   o f   t r ans i t i on  i s  given by 

Rex = Re - 0.061 Renx 
t min X 

and t h e   f a c t o r  h i s  given  by 

h = 2.66/(Ax) * 

I n  most ca ses ,  due t o   t h e   u n c e r t a i n t y   i n v o l v e d   w i t h   l o c a t i n g   t h e   t r a n s i t i o n  
point ,   the   correct ion  descr ibed  in   equat ion  (148)  is a minor  one and may be 
neglected.  The c o r r e c t i o n  is  necessa ry   i f   t he  minimum po in t  i s  known .from 
s p e c i f i c   d a t a .  

52 



I n   r e f e r e n c e  47, it is shown w i t h  d a t a   f o r  a l imited  range  of  Mach 
numbers t h a t   t h e   q u a n t i t y  R e  could be represented   by  the express ion  Ax 

R e  = 5 Rex Ax t 

P o t t e r  and   Whi t f ie ld   ( re f .  31) s t u d i e d   t h e   t r a n s i t i o n  zone  over a broad 
range  of Mach numbers ( 2  M 2 8 ) .  They observed that  the   parameter  R e  

is  independent of the u n i t  Reynolds number and  leading-edge  geometry,  and 
is b a s i c a l l y   o n l y  a f u n c t i o n   o f   t h e   t r a n s i t i o n  Reynolds number and t h e  Mach 
number. That is, 

Ax 

Some i n s i g h t   i n t o   t h e   v a r i a t i o n   o f  ReAx wi th  Mach number can be 

obtained  by  examining  the work of  Nagel ( r e f .   48 ) ,   Lees  and Reshotko 
( r e f .  5 1 ) ,  and Mack ( r e f .  1 3 ) .  Nagel showed tha t   t he   sou rce   func t ion   i n  
the   in te rmi t tency   (eq .   (147))   could  depend upon the   f r equency ,   f ,  of t h e  
Tollmien-Schlichting wave most uns t ab le   w i th   r e spec t   t o   t he  breakdown 
process .   Nagel   fur ther  showed t h a t   t h e  Reynolds number based on t h e  
d i s t a n c e  from the o n s e t   o f   t r a n s i t i o n   t o  a g iven   po in t   i n   t he   t r ans i t i on  
reg ion  was inve r se ly   p ropor t iona l   t o   t he   squa re   roo t  of that   f requency.  
That i s ,  

ReAx = Rex - Rex 
t 

Lees and Reshotko showed by   boundary - l aye r   s t ab i l i t y   t heo ry   t ha t   t he  most 
unstable   f requency was inve r se ly   p ropor t iona l   t o  M2 f o r   h igh  Mach numbers. 
Thus ,   t he   l eng th   o f   t r ans i t i on  Reynolds  number, Re Ax, would b e   l i n e a r   w i t h  
Mach number €or   h igh   supersonic  and hypersonic  f lows. 

Formulas f o r  ReAx w e r e  developed  by  examination  of  experimental 
da t a .  For f l a t   p l a t e s  and ho l low  cy l inde r s ,   t he   da t a   o f   Po t t e r  and Whi t f ie ld  
( r e f .  31) w e r e  used.  For  cones,  data w e r e  obtained  from  references 20 ,  28, 
34, and 5 2  through 61.  The da ta   o f   Po t t e r  and 
suggest  a form 

Whi t f ie ld  w e r e  found t o  

ReAx = f (Me) Rex 
U 

t 
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The funct ion  f(Me) w a s  assumed t o  be l i n e a r  so that  

R e  = (x + EMe) Re: 
- 

Ax t 

The parameter a was determined as t h e   s l o p e   o f  a plot  of log (ReAx) 

versus   log  (Rext) f o r   f i x e d  Mach number.  Then the   parameters  x and 
B were determined  from a p l o t   o f  ReAx ( R e  ) -a versus  Me. For cones, 
t h i s  w a s  a t r i a l  and error p rocess ,   s ince  the d a t a   e x h i b i t e d  a consi-  
de rab le  amount o f   s c a t t e r .  Thus, t he   fo rmula   a r r ived   a t   can  be considered 
a f i r s t  approximation  for   arbi t rary  f low  condi t ions.  The values   obtained 
fo r   t he   pa rame te r s  are as follows: 

- 

- - 
X t  

Configurat ion 
- - 
a A 

- 
- - - B 

F l a t   p l a t e s ,   h o l l o w   c y l i n d e r s  0.575 237.5 61.8 
Cones .6 20.0 34.5 

Comparisons  of t he   p red ic t ed   va lue   o f  R e  with  experimental   values  from 
seve ra l   sou rces   a r e  shown i n   f i g u r e  4. A l l  d a t a  were ob ta ined   i n  wind 
tunne l s   excep t   fo r  one f r e e - f l i g h t   c a s e  shown i n   f i g u r e   4 ( b ) .  Some of 
t h e   s c a t t e r  of t h e   d a t a   c a n   b e   a t t r i b u t e d   t o   t h e   q u a l i t y  and quant i ty   of  
a v a i l a b l e   d a t a .   I n  many ins tances ,   insuf f ic ien t   exper imenta l   da ta   were  
o b t a i n e d   t o   l o c a t e   a c c u r a t e l y   t h e   e n d s   o f   t h e   t r a n s i t i o n   r e g i o n .   A l s o ,  
t h e   d a t a  shown i n   f i g u r e  4 were  obtained  by  several   d i f ferent   methods.  
A s  f o r   t h e   l o c a t i o n  of the beg inn ing   o f   t r ans i t i on ,   a s   d i scussed   p rev ious ly ,  
the   observed   loca t ion   of   the  end  of t r a n s i t i o n  depends upon t h e   q u a n t i t y  
being  observed.   Included  in   f igure 4 a r e   d a t a  from h e a t - t r a n s f e r  measure- 

ments,   surface  pitot   probe  measurements,  and wall  temperature  measurements. 
I t  i s  n o t   c l e a r   t h a t   a l l   t h r e e   q u a n t i t i e s  w i l l  e x h i b i t  a maximum a t   t h e  
same p o i n t   f o r  a g iven   f low  s i tua t ion .  

Ax 

DETERMINATION OF ORDER OF APPROXIMATION 
FOR THE ENTHALPY FUNCTION 

The se lec t ion   of   the   bes t   o rder   o f   the   po lynomia l   in   equa t ion  ( 8 2 )  
was done  by  examining the   so lu t ions   p roduced   by   var ious   o rders   in   bo th  
laminar and turbulent   f low.  The solut ions  were compared wi th   o the r  
t heo r i e s   a s   we l l   a s   w i th   expe r imen ta l   da t a .  

54 



First,  it can be shown  that  for  a  laminar  boundary  layer on a  flat 
plate,  the  Ei  are  functions  only  of  the  Prandtl  number,  Pr.  For  such  a 
case,  the  velocity  profiles  are  similar  and  the  solution  for  the  coeffi- 
cisnts  of  the  approximating  polynomial  in  the  function @ (eq.  (81))  is 
given by equation  (113),  and  the  solution  for  the  Ei i s  obtained  from 
equations (116) . 

In order to evaluate  the  order  of  approximation of  the  enthalpy 
function,  equations (116) were  solved  for  values  of  m  of 0, 1, 2,  3, 4, 
5,  and 6. The  results  are shown in  figures  5  and 6 for  a  Prandtl  number 
of 0.72  and  a  wall-to-total  temperature  ratio of 0.3086. In figure  5  is 
shown  the  variation  of  total  temperature  as  a  function of ii. "ie 
profiles  appear to converge  uniformly so that  there  is  only  a  slight 
difference  between  the  curves  for  m = 2  and  m = 3  and  the  higher- 
order  curves  are  the  same  as  that  for  m = 3 .  The  variation  of  the  static 
temperature  is  shown  in  figure 6. The manner  of  convergence  is  more 
apparent  for  the  static  temperature  than  for  the  total  temperature.  The 
curve  for  m = 0 is  relatively  high,  while  that  for  m = 1  is  low.  The 
higher-order  curves  then  appear  to  approach  a  limiting  curve  between  those 
for  m = 0 and  1  as  m  increases.  The  curve  for  the  temperature  pro- 
file  discussed by  Schlichting  (eq. (79) ) is  also  shown  in  figure 6. That 
curve  is  slightly  higher  than  the  apparent  limiting  curve  for  the  present 
approximate  profile  except  in  t,he  outer  region (E greater  than 0.7 in  the 
figure) . 

Another  test  that  can be given  the  enthalpy  function  approximation  in 
the  laminar  boundary  layer is the  value of the  recovery  factor.  If El is 
set  equal  to Sw, then  the  heat  transfer  to  the  wall  is  zero,  since 

Then  solution  for  Sw  yields  the  adiabatic  wall  temperature. The recovery 
factor  is  then  computed  from  the  relation 

r = 1 + Saw L (l Leme) (152) 
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The v a r i a t i o n   o f  rL wi th  the order   of  

- 1  (153) 

the  approximating  funct  ... ..n f o r  S 
is  shown i n   f i g u r e  7. The recovery   fac tor   appears   to   converge   in   approxi -  
mate ly   the  same manner as the   t empera tu re   p ro f i l e s  shown i n   f i g u r e s  5 and 6. 
A s  the   order   of   approximation,  m ,  i s  increased  from 1, rL appears t o  
approach   the   theore t ica l   va lue   o f  ( P r )  1’2 asymptot ical ly .   Fer  m = 3, 
t h e   e r r o r   i n   t h e   r e c o v e r y   f a c t o r  i s  approximately 4 pe rcen t ,   w i th   t he  

e r ro r   dec reas ing   a s  m i s  increased. 

F ina l ly ,   the   approximat ing   func t ion   for  S must be able t o   r e p r e s e n t  
t h e   e n t h a l p y   p r o f i l e   i n  a t u r b u l e n t   b o u n d a r y   l a y e r .   I n   t h i s   c a s e ,   t h e  Ei 

cannot be ob ta ined   a s   s imp ly   a s   fo r   t he   l amina r   s imi l a r i t y   ca se .   Fu r the r -  
more, t h e  Ei w i l l  depend t o  some e x t e n t  upon t h e   p a r t i c u l a r  model used 
t o   r e p r e s e n t   t h e  eddy v i s c o s i t y   a s  w e l l  a s  upon the  accuracy  with  which 
t h e   v e l o c i t y   p r o f i l e s   a r e   r e p r e s e n t e d .   I n   o r d e r   t o  examine t h e   e f f e c t   o f  
the   o rder   o f   approximat ion   of   the   var iab le  S i n   t u rbu len t   f l ow,   t he  
s o l u t i o n   f o r  a boundary  layer w a s  c a l c u l a t e d   f o r  m = 0 ,  1, 2 ,  3,  and 4,  
s t a r t i n g   i n   l a m i n a r   f l o w   w i t h  a s imi l a r i t y   so lu t ion ,   go ing   t h rough  a 

t r ans i t i on   zone ,  and terminat ing  af ter   the   boundary  layer   had become 
fu l ly   tu rbulen t .   Both   the   eddy  v i scos i ty  model  chosen f o r   t h e   p r e s e n t  
work  and t h a t  used i n   r e f e r e n c e  2 w e r e  u sed   fo r   t h i s   s tudy .   S imi l a r  
r e s u l t s  w e r e  obtained  with  both  models.  

The v a r i a t i o n   o f   t h e   t o t a l   t e m p e r a t u r e   p r o f i l e  a t  a s t a t i o n   n e a r   t h e  
end  of t h e   t r a n s i t i o n  zone fo r   t he   p re sen t   eddy-v i scos i ty  model i s  shown 
i n   f i g u r e  8. The t o t a l   t e m p e r a t u r e   p r o f i l e s   f o r  m = 3 and 4 a r e   q u i t e  
d i f f e r e n t  from t h e   p r o f i l e s   f o r  m = 0,  1, and 2 .  The p r o f i l e s   f o r  m = 3 

and 4 d i s p l a y  a waviness   not   indicated  by  the  lower-order   prof i les .   This  
phenomenon is  e x p l a i n e d   b y   t h e   f a c t   t h a t   t h e   e q u a t i o n s   u s e d   t o   c a l c u l a t e  
t h e   p r o f i l e s   ( e q s .  (86)  and ( 8 7 )  ) contain  an  approximate  function, namely 
t h e  eddy v iscos i ty .   Because   o f   th i s ,   the   func t ion   be ing   represented   by  
the  approximate series is not   p rec ise ly   def ined .   This   fac t   a lone   might  
on ly   s e rve   t o   r equ i r e   h ighe r   o rde r s   fo r   conve rgence   s ince   t he   Weie r s t r auss  
approximation  theorem  guarantees  convergence i f   t h e   f u n c t i o n s  are  simply 
continuous. However, t he   impos i t i on   o f   t he   add i t iona l   cond i t ion  on t h e  
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func t ion  S a t  ii = 1 removes the guarantee of convergence and as t h e  
order   of   the   approximation is increased   the   h igher -order   func t ions   deve lop  
waves a s   t h e y   t r y   t o   s a t i s f y   b o t h   t h e   b o u n d a r y   c o n d i t i o n   a t  ii = 1 and 
t h e   d i f f e r e n t i a l   e q u a t i o n s .  

The importance  of  the  temperature  profiJa  approximation is  shown i n  
f i g u r e  9 where the d i s t r i b u t i o n  of the Stanton number i n  a t r a n s i t i o n a l  
boundary  layer is  shown for   va lues   o f  m of 0, 1, 2, 3, and 4. The 
present   eddy-viscosi ty  model w a s  used i n   t h o s e   c a l c u l a t i o n s .  The approxi- 
mation  produces a s o l u t i o n   f o r   t h e   S t a n t o n  number which  appears t o  converge 
as does the t empera tu re   p ro f i l e   fo r  m = 0, 1, and 2. Then f o r  m = 3 and 4, 
a comple t e ly   d i f f e ren t   so lu t ion  is  obtained. 

Convergence in   t he   t u rbu len t   boundary   l aye r  w i l l  probably  depend  on  the 
v e l o c i t y   p r o f i l e s  as w e l l  a s   t h e  eddy v i scos i ty .  It was found i n  previous 
i n v e s t i g a t i o n s   ( r e f s ;  2 and 6) tha t   the   th ree-parameter   ve loc i ty   g rad ien t  
prof i le   g iven   by   equat ion  (77) i s  n o t   t h e  best f o r   a l l   c o n d i t i o n s  on a 
tu rbu len t   boundary   l aye r .   Spec i f i ca l ly ,   t ha t   k ind  of p r o f i l e  w a s  found i n  
b o t h   r e f e r e n c e s   c i t e d   t o  be inadequate   €or   accura te ly   represent ing   the  
t u r b u l e n t   p r o f i l e   c l o s e   t o   s e p a r a t i o n .  However, s ince  the  three-parameter  
p r o f i l e  is  found t o  be accura t e   fo r  a wide  range  of  conditions, i t s  use 
r ep resen t s  a reasonable   engineer ing compromise. 

I n  v i ew  o f   t he   r e su l t s  shown i n  f i g u r e s  5, 6, 7 ,  8 ,  and 9 and t h e  
preceding  discussion,  it i s  be l ieved   tha t   the   va lue   o f  m = 2 is a 
reasonable  order  of  approximation  for  the  enthalpy  function. The apparent 
discrepancy  between  this  series and t h e   p r o f i l e  of  Pinckney  (eq.  (81)) is  

expla ined   by   the   fac t   tha t   the   p resent   formula t ion  is  an  approximation t o  
t h e   t r u e   p r o f i l e   f u n c t i o n .  Some e f f o r t  was expended t o  modify  the  formu- 
l a t ion   by   spec i fy ing   t he   s lope   o f   t he   en tha lpy   func t ion   a t  ii: = 0 i n  
terms of  Pinckney's  function  (eq.  ( 81 ) ) .  However, such a device reduces 
t h e   g e n e r a l i t y  and predict ive  nature   of   the   solut ion  s ince  knowledge  of  
the  recovery  fact .or  becomes a necessary   par t   o f   the   so lu t ion   of   the  
equat ions .   Spec i f ica t ion   of   the   va lue   o f   the   parameter  Ei and t h e  
recovery   fac tor  i s  tantamount to   spec i fy ing   the   Reynold ' s   ana logy   fac tor  
s i n c e  from equat ion (105) 
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It  w a s  reported  by  Cary  ( ref .  62) that  a comprehensive d e f i n i t i o n  of 
Reynolds  analogy is  no t   ava i l ab le .   In   t he   absence   o f  reliable information,  
from  which E, could be s p e c i f i e d ,  it w a s  decided t o  l e t  E, vary 
independent ly   a long  with  the other parameters, E,, E3,..., Em. A compre- 
hens ive   s ea rch   fo r  more sophis t ica ted   approximat ing   func t ions  was beyond 
the scope  of the present e f f o r t  and was not   undertaken.  I t  should be 

emphasized tha t   the   p resent   formula t ion   a l lows   pred ic t ion   of   boundary-  
l a y e r   p r o p e r t i e s   f o r   b o t h   a d i a b a t i c  and nonadiabat ic   condi t ions.  Some 
e r r o r  may be encountered a t  ad iaba t ic   wal l   condi t ions   s ince   the   recovery  
f a c t o r  of t he   p re sen t   t heo ry   fo r  low orders  of  approximation is  about 
4 percent  lower than   t he   t heo re t i ca l   va lue   o f  ( P r )  1’2. However, it w i l l  
be shown s u b s e q u e n t l y   t h a t   t h e   t h e o r y   y i e l d s   p r e d i c t i o n s   o f   h e a t   t r a n s f e r ,  
s k i n - f r i c t i o n   c o e f f i c i e n t  and o ther   boundary- layer   p roper t ies   in   exce l len t  
agreement  with  experimental   data  over a w i d e  range  of  conditions.  

I t  i s  a l s o   b e l i e v e d   t h a t  improvement  of the  eddy-viscosi ty  model so 
tha t   t he   equa t ions   be ing   so lved  more e x a c t l y   r e p r e s e n t   t h e   t r u e   p h y s i c a l  
s i t u a t i o n  w i l l  h e l p  the p resen t   en tha lpy   p ro f i l e   fo rmula t ion   t o   conve rge  
f o r ~ t u r b u l e n t   f l o w   a s  w e l l  as for   laminar   f low.   Unti l  a more exact   repre-  
s e n t a t i o n  of t h e  eddy v i s c o s i t y  i s  found, it i s  recommended tha t   va lues   o f  
rn g r e a t e r   t h a n  2 be used  with  caution. 

DESCRIPTION O F  COMPUTER PROGRAM 

A generalized  computer  program was w r i t t e n   t o   c a l c u l a t e   l a m i n a r ,  
t r a n s i t i o n a l ,  and turbulent   boundary  layers   of  a pe r fec t   gas  on a r b i t r a r y  
two-dimensional or   axisymmetr ic   bodies   with  arbi t rary  prescr ibed  edge 
condi t ions  and wal l   temperature .  The program  was,based on equat ions (86)  

and (87 )  and t h e i r  accompanying r e l a t i o n s  (88) through (103) a s  w e l l  a s  
t h e   a u x i l i a r y   r e l a t i o n s  (104) through ( 1 1 2 ) .  The o p t i o n s   f o r   i n i t i a l  
c o n d i t i o n s   d i s c u s s e d   i n  a previous  sect ion  were  included  in   the  program. 

The basic   input   data   required  for   the  computer   program  are   as   fol lows:  

1. Reference  f low  conditions,   Relo,  Meo, Tse , peo.  These a r e  most 
conven ien t ly   chosen   a s   t he   cond i t ions   a t   t he   i n i t i s1   s t a t ion   a l though   t hey  
c a n   b e   t h e   c o n d i t i o n s   a t  any p o i n t   i n  a shock-free  flow. The edge  pressure,  
peo,  and t h e   e d g e   p r e s s u r e   d i s t r i b u t i o n  may be   i npu t  i n  a r b i t r a r y   u n i t s  
s i n c e   t h e   d i s t r i b u t i o n  i s  normal ized   wi th   respec t   to   the   re fe rence   va lue  when 
calculat ions  are   performed.  
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2 .  Prandtl  nunibers PrL and  PrT  and  recovery  factors  rL  and  rT.. 
The  turbulent  Prandtl  number,  PrT,  is  defined to be equal to 1.0 in  laminar 
flow  and  is  modulated tb  change  continuously  to  the  turbulent  value by the 
expression 

Recovery  factors can be inputted  arbitrarily  or  automatically  computed  as 

In  the  transition  region,  the  recovery  factor  is  then  computed  as 

rt = rL + r(rT - rL) 
3 .  Information  for  transition,  Re Re A. Options  are  included Xt’  Ax’ 

in  the  program  for  input  of  an  arbitrary  tabular  distribution  of r versus 
x  or  calculating r from  equation  (147).  If  equation  (147)  is  used,  then 
the  parameter A may  be  either  inputted  or  computed  from  equation (149). 
If A is  to be computed,  then  ReAx  is  required  as  input. 

4. Distributions of the required  edge  conditions,  wall  temperature, 
and  configuration  coordinates  are  provided  as  input  to  the  computer  program 
in  tabular  form. A list  of  values  of  each  quantity,  pe, Tse, Me, and Tw 
can be input  with a corresponding  list  of  values  of x. For  the  configura- 
tion  coordinates  a  subroutine  is  provided  to  compute  a  table of values of 
x corresponding  to  the  input  values of x’ and  rw.  Interpolation  for 
values  of  any  quantity  between  the  input  values  is  accomplished by second- 
order  interpolation.  Tables  of  values  of  derivatives  of  the  quantities  at 
the  input  stations  are  obtained  by  averaging  the  slopes on  either  side  of 
a given  input  station  computed  using  the  first  differences  between  stations. 
Subsequent  values  of  derivatives  at  stations  between  input  stations  are 
computed by linear  interpolation. In the  present  work,  it  was  found  that 
adequate  smoothness of the  input  data  was  easily  achieved  by  obtaining  the 
data  from  a  smooth  curve  drawn  to  a  scale  from  which  three  significant 
figures  could be read.  The  most  important  requirement  is  that  enough  data 
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be i n p u t   i n   r e g i o n s  of rapid  changes  that   the   values   obtained  f rom  the 
i n t e r p o l a t i o n  schemes  can  adequately  represent   the  input   dis t r ibut ion.  

An opt ion  is  provided so tha t   t he   edge   cond i t ions  may be computed 
from i s e n t r o p i c   f l o w   r e l a t i o n s .   I n   t h a t   c a s e ,   o n l y   t h e   p r e s s u r e   d i s t r i -  
bu t ion  i s  necessary   as   input .  The Mach nuniber d i s t r i b u t i o n  is  then 
computed  from t h e   r e l a t i o n  

5. In i t ia l   condi t ions .   Four   op t ions   a re   p rovided:  (1) input  of n 
values  of Ci and rn values   of  Ei; ( 2 )  input  of n values  of ii and 
y and m values  of u and Tt;  (3)  input  of  values  of C f ,  S t ,  6*, 8 ,  

and (m - 1) values   of  ii and Tt; (4) ca lcu la t ion   of  Ci and Ei from 
a s imi l a r i t y   so lu t ion   a s   desc r ibed   p rev ious ly .  

- - 

Output  from t h e  computer  program  consists  of  values  of  x, X I ,  R e x y  

add i t ion ,   t he   p ro f i l e s   o f  E, y ,  y / 6 ,  aii/aq, dii/d(y/L), M/Me, T/Te, Ts/Tse, 

and f3 may be p r i n t e d  a t  t h e   o u t p u t   s t a t i o n s   i f  desired. 

The in tegra t ion   of   equa t ions   (86)  and  (87) i s  accomplished  using a 
fourth-order Adams-Moulton p red ic to r - co r rec to r   i n t eg ra t ion  scheme ( r e f s .  2, 
3, and 63)  with a fourth-order  Runge-Kutta  scheme  used t o   o b t a i n   s t a r t i n g  
values.  By doub l ing   o r   ha lv ing   t he   i n t eg ra t ion   s t ep   s i ze ,   t he   i n t eg ra t ion  
scheme is  capable  of some opt imizat ion  of   the  integrat ion.   Thus,   numerical  
e r ro r s   a r e   kep t   w i th in   ce r t a in   bounds  by d iv id ing   t he   i n t eg ra t ion   s t ep   by  
2 whenever t h e   e r r o r  is t o o   l a r g e  and by   mu l t ip ly ing   t he   i n t e rva l  by 2 
whenever less   accuracy  is necessary  than is being  attained.  Because  of 
t h i s   f e a t u r e ,   t h e   r u n n i n g  time of  the  program is  somewhat dependent upon 
t h e   r a t e   a t  which  quant i t ies   are   changing.   Typical   run times f o r   t h e  
f l a t - p l a t e  and c o n e   c a l c u l a t i o n s   t o  be d iscussed   in   the   fo l lowing   sec t io i ,  
of t h i s   r e p o r t  w e r e  1.0 t o  2 . 0  minutes  per  run on t h e  IBM 7094.  The 
c a l c u l a t i o n s   d e s c r i b e d   i n   t h i s   r e p o r t  w e r e  performed on t h e  IBM 7094. 
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EVALUATION OF THE METHOD 

The method  of  integral  relations  solution  technique  together with  the 
transitional  flow  structure  and  eddy-viscosity  model  discussed  in  previous 
sections  of  this  report  are  applied  in  this  section to a  number  of 
boundary-layer  calculations.  Included  are  comparisons  with  experimental 
measurements on various  two-dimensional  and  axisymmetric  configurations  as 
well  as  comparisons  with  calculated  solutions  obtained  by  the  method  of 
finite  differences.  Cases were selected to demonstrate  the  ability  of  the 
method to compute  boundary-layer  solutions  over  a  wide  range of flow 
parameters  as  well  as  to  demonstrate  the  flexibility of the  program  for 
calculating  boundary  layers  on  arbitrary  configurations. 

In all  cases,  air  is  assumed  to be a  perfect  gas  with  a  constant 
ratio  of  specific  heats, y ,  equal to 1.4 and  constant  laminar  and  turbulent 
Prandtl  numbers.  Unless  otherwise  stated,  the  conditions  at  the  edge  of 
the  boundary  layer  were  computed  assuming  isentropic  flow.  Initial  condi- 
tions  fox  most  of  the  calculations  were  obtained  assuming a similar 
solution  from  the  leading  edge  or  nose to the  initial  station  of  the 
calculations. In all  calculations  of  transitional  boundary  layers,  the 
velocity  gradient  and  enthalpy  function  approximations  employed  three- 
parameter  expressions (n = 3 and  m = 2 in  equations ( 7 7 )  and (82) ) . 

Incompressible  Transitional  Flow  on a Flat  Plate 

The  first  case  to  be  examined  is  the  data  of  Schubauer  and  Klebanoff 
(ref. 44). These  data  were  shown by Dhawan  and  Narasimha  (ref. 47)  to  fit 
the  probability  theory  of  Emmons  (ref. 4 2 )  describing  the  intermittency  of 
the  transition  region.  Because  of  this,  the  case  is  an  excellent  one  for 
demonstrating  that  the  boundary-layer  calculations  have  the  correct  response 
to the  modulation of the  eddy  viscosity by  the  intermittency  factor, r. 
Also,  the  case  demonstrates  the  applicability  of  the  theory  for  low  Mach D 

numbers. 
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The tes t  c o n d i t i o n s   u s e d   f o r   t h e   c a l c u l a t i o n s  w e r e :  

Me = 0.072 

Re, = 0.44(106) ft- '  

Ts = 530°R 

Tw = 530°R 

Rext = 2.31 ( l o 6 )  

h = 0.838 f t -*  

Values  of  transit ion  Reynolds number and the   sou rce   f ac to r   o f   t he   i n t e r -  
mit tency  funct ion  (eq.  ( 1 4 7 ) )  w e r e  determined  from  the  data.  The configu- 
r a t i o n  was a sharp-leading-edge f l a t   p l a t e   o f   l e n g t h  1 2  f e e t .  

I n   f i g u r e   l O ( a )  i s  shown  a series o f   c a l c u l a t e d   v e l o c i t y   p r o f i l e s  
t h rough   t he   t r ans i t i on   r eg ion  compared wi th   the   exper imenta l   p rof i les .  
Excellent  agreement i s  achieved   for   the   en t i re   reg ion .   L ikewise ,   the  
agreement  between the   expe r imen ta l   va lues   o f   t he   sk in - f r i c t ion   coe f f i c i en t  
and the   theory  shown i n   f i g u r e   1 0 ( b )  i s  e x c e l l e n t .  

Compressible   Transi t ional  Flow  on a Sha rp   F l a t  P la te  

The n e x t   c a s e   t o  be examined i s  for  compressible  f low on a f l a t  
p l a t e .  Some d a t a  w e r e  obtained from the  Langley  Research  Center   for   the 
k a t   t r a n s f e r   t o  a sharp-leading-edge f l a t   p l a t e .  The d a t a  w e r e  obtained 
on a model of   l ength   2 .5   fee t   in   the   Cont inuous  Flow Hypersonic Wind 
Tunnel. The tunnel  Mach number w a s  10.39. Mach numbers  from 6 t o  1 0  on 
t h e p l a t e  w e r e  produced  by  varying  the  angle  of  at tack  of  the  plate.  Due 
to   the   rap id   expans ion   requi red   to   p roduce  a Mach number of 10 i n   t h e  
tunnel ,  an e r ro r   o f  4 p e r c e n t   e x i s t e d   i n   t h e   s t a t i c   t e m p e r a t u r e  and 
pressure   a t   the   edge   of   the   boundary   l ayer  on t h e   p l a t e .   T h i s   e r r o r   i n   t h e  
temperature w a s  a c m u n t e d   f o r   i n   t h e   c a l c u l a t i o n s   b y   d e f i n i n g   a n   e f f e c t i v e  
to t a l   t empera tu re  s o  t h a t   t h e   c a l c u l a t e d   l o c a l   s t a t i c   t e m p e r a t u r e   a g r e e d  
wi th   t he   da t a .  

A cha rac t e r i s t i c   o f   t he   expe r imen ta l   da t a  was t h a t   a l l   o f  it displayed 
an   i n t e rmi t t ency   d i s t r ibu t ion   i n   t he   t r ans i t i on   r eg ion   d i f f e ren t   f rom  tha t  
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given  by Emmons' p robab i l i t y   ana lys i s   r ep resen ted   by   equa t ion   (147) .   Fo r  
this reason, the expe r imen ta l   i n t e rmi t t ency   d i s t r ibu t ion  was used  in   calcu-  
1 a t   i o n s .  

R e c a l l   t h a t   t h e   i n t e r m i t t e n c y   r e p r e s e n t s  the f r ac t ion   o f   t u rbu lence  
e x i s t i n g   i n  the boundary   l aye r   a t  a g iven   s t a t ion .  The p rocedure   fo r  
determining the in t e rmi t t ency  is  somewhat i t e r a t i v e   s i n c e   t h e   f r a c t i o n   o f  
turbulence  cannot  be determined  direct ly   f rom the experimental   data .  T o  

make a d i r e c t   c a l c u l a t i o n  of r, it would be necessary t o  know both   the  
laminar and t h e   f u l l y   t u r b u l e n t   c o n d i t i o n s  a t  each   s t a t ion .   Th i s  i s  clearly 
imposs ib le   for  the t u r b u l e n t   c o n d i t i o n s   s i n c e   t h e   v i r t u a l   o r i g i n  of the 
turbulent   boundary  layer  is  unknown. Accordingly,  the  procedure  followed 
was t o   f i r s t   u s e   e q u a t i o n  (147) t o  compute the  intermit tency,   then,   by 
comparing  the  resul ts  of the  boundary-layer   calculat ion  with  the  data   the 
in t e rmi t t ency   d i s t r ibu t ion   cou ld  be modified t o  f i t   t h e   d a t a .  Two o r   t h r e e  
t r i a l s  w e r e  s u f f i c i e n t   t o   p r o d u c e  good comparisons  with  the  data.  

The r e s u l t s   f o r   t h r e e   s e t s  of da ta   a r e  shown i n   f i g u r e  11 where t h e  
c a l c u l a t e d   d i s t r i b u t i o n s  of the   S t an ton  number a r e  compared wi th   t he  
experimental   data .  A l s o  shown i n   t h e   f i g u r e s  i s  the   i n t e rmi t t ency  distri-  

bu t ion   u sed   i n   t he   ca l cu la t ions   a s   we l l   a s   t ha t   g iven  by equat ion  (147) .  
The  cond i t ions   u sed   i n   t he   ca l cu la t ions  w e r e  as follows: 

Case 1 Case 2 Case 3 

Me = 6.18 Me = 6.18 Me = 6.18 

Re, = 1 . 3 2 ( 1 0 6 )  f t - I  Re, = 1.63 ( l o 6 )  f t - '  Rel = 2 -03 ( l o 6 )  f t - I  

Ts = 1860°R Ts = 1815OR T s  = 1829OR 

Tw = 549OR Tw = 5 5 2 O R  Tw = 553OR 

PrL = 0.72 PrL  = 0.72 PrL = 0.72 

PrT = 1.0 PrT = 1.0 PrT  = 1 . 0  

Taw = 1526OR Taw = 1525OR Taw = 1 5 2 7 O R  

In   the   reduct ion   of   the   exper imenta l   hea t - t ransfer   da ta   for   p resenta t ion  
i n  terms of t he   S t an ton  number, the   recovery   fac tor  was assumed t o   b e  
cons t an t   a long   t he   p l a t e  a t  t he   l amina r   va lue .   In   t he   t heo re t i ca l  
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c a l c u l a t i o n s  shown i n   f i g u r e  11, t h e  same assumption w a s  used  with the 
values of rL and rT taken t o  be equal t o  t h e   v a l u e   r e q u i r e d   t o  make 
Taw correspond to   t he   va lue   u sed   fo r   t he   expe r imen ta l   da t a .  

In   each  case, it w a s  d i s c o v e r e d   t h a t   t h e   i n t e r m i t t e n c y   d i s t r i b u t i o n  
r e q u i r e d   t o   f i t   t h e   e x p e r i m e n t a l   d a t a   d e v i a t e d  from t h e   d i s t r i b u t i o n  of 
equat ion (147) by   increas ing  more r a p i d l y   t h a n   t h a t   d i s t r i b u t i o n   n e a r   t h e  
end o f   t r a n s i t i o n .  A poss ib l e   r ea son   fo r  this w a s  t h a t   t h e  end o f   t he  
t rans i t ion   zone   co inc ided   wi th   the  end  of t h e   p l a t e .  The laminar   heat  
t r a n s f e r  was p r e d i c t e d   q u i t e  w e l l  without any adjustments.  The so lu t ion  
generated  by  the  intermit tency  of   equat ion (147)  with  the  parameter  h 

determined  from  the  indicated Ax is  shown i n  f i g u r e s  11 ( a )  (b) and ( c )  
for  comparison. The e x p e r i m e n t a l   d a t a   i n d i c a t e   t h a t   t h e   i n t e r m i t t e n c y   a t  
f i rs t  inc reases  more s lowly   t han   fo r   t he   p robab i l i t y   func t ion   bu t   t hen  
rises t o  i t s  u l t imate   va lue  more r ap id ly   t han   t he   p robab i l i t y   func t ion .  
In   f i gu re  l l ( b ) ,  it i s  seen   t ha t   i n t e rmi t t ency   va lues   g rea t e r   t han   un i ty  

a r e   r e q u i r e d   t o   m a t c h   t h e   d a t a .  

T rans i t i ona l  Flow  on a Sharp Cone 

F i sche r   ( r e f .  52) recent ly   conducted a study  of  boundary-layer  transi-  
t i o n  on a loo half-angle  sharp-nosed  metal  cone a t  a free-stream Mach 
number of  7. The da ta   p rovide   an   exce l len t   case   for   compar ison  as w e l l  a s  
fo r   demons t r a t ing   t he   f l ex ib i l i t y   o f   t he   compute r  program. Three cases  were 
s e l e c t e d   a t  random from  reference 52 for  comparison. The t e s t   c o n d i t i o n s  
used f o r   t h e  sample calculat ions  were  as   fol lows:  

Case 1 Case 2 Case 3 

Me = 5.54 Me = 5.54 Me = 5.54 

Re, = 6.69(106) ft-l Re, = 7.01 (lo6) ft-’ Rel = 7.48(106)   f t - l  

TS = 1040°R 
e0 

Tw = 551°R 

PrL = 0.72 

TS = 1070°R 
e0 

Tw = 556OR 

TS = 1075OR 
e0 

Tw = 548OR 

PrL = 0.72 PrL = 0.72 

PrT  = 1.0 PrT  = 1.0 P r T  = 1 . 0  
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I n  a l l  t h r e e  cases, the   l aminar  and tu rbu len t   r ecove ry   f ac to r s  were taken 
t o  be (PrL) and (Pr,) 'I3, respec t ive ly .  The exper imenta l   loca t ion   of  
t r a n s i t i o n  and the  experimental   in termit tency  dis t r ibut ion  determined i n  
t h e  same manner as for   the  previous  examples  w e r e  used in   t he   numer i ca l  
ca l cu la t ions .  

Comparisons  of   the   calculated  resul ts   wi th  the  experimental   Stanton 
number d i s t r i b u t i o n s  are p r e s e n t e d   i n   f i g u r e  12. The agreement  between 
the  numerical  resu l t s  and the   exper imenta l   da ta  is very good f o r   a l l   t h r e e  
t e s t  cases. Also shown wi th   t he   S t an ton  number d i s t r i b u t i o n s   a r e   t h e  
i n t e r m i t t e n c y   d i s t r i b u t i o n s  as determined t o  match  the  data  and a s   g iven  
by  equation  (147) . 

Adverse  Pressure  Gradient Flow  on a Cone-Flare 

The previous  examples  have  demonstrated  the  abil i ty  of  the  theory 
and t h e  computer  program t o  calculate t r ans i t i ona l   boundary   l aye r s   on   f l a t  
p l a t e s  and cones on which a constant   pressure  exis ted.   In   the  next   example,  
a case i n  which t r ans i t i on   occu r s   i n   an   adve r se   p re s su re   g rad ien t  is  consi-  
dered. The d a t a  were obtained  by  Zakkay, B o s ,  and Jensen   ( r e f .  64)  on a 
cone-f lare  model  on  which a 7.5O half-angle  cone was blended  smoothly  into 
an axisymmetric f l a r e  body  with a constant   radius   of   curvature .  The d a t a  
are an   exce l l en t   ca se   fo r   demons t r a t ing   t he   ab i l i t y   o f   t he   t heo ry  and t h e  
computer  program to  calculate   boundary  layers   under   nonzero  pressure 
g rad ien t s .   I n   add i t ion ,   s ince   bo th   t he   p re s su re   d i s t r ibu t ion  and t h e  Mach 
number d i s t r i b u t i o n   a r e   p r e s e n t e d   i n   r e f e r e n c e  64, t he   ca se  is  a l s o  a 
demonstration of t h e   a b i l i t y  of t h e  program to   accept   a rb i t ra ry   boundary-  
layer   edge  condi t ions.  A sketch  of   the  configurat ion and the   coord ina te s  
used i n   t h e  computer  program i s  shown i n   f i g u r e   1 3 .  

The r e fe rence   cond i t ions   u sed   i n   t he   t heo re t i ca l   ca l cu la t ions   co r re -  
sponded t o   t h e   c o n d i t i o n s  on the  cone and  were as follows: 

Re, = 4.86(106)  ft- '  
0 

M = 8.0 

Ts = 1800°R 

Tw = 520°R 
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PrL = 0.70 

PrT = 1.0 

h = 4 2  f t -2  

Rext = 6.88 (10') 

Calcu la t ions  w e r e  i n i t i a l i z e d  on the  cone 9 inches   f rom  the   nose .   In i t ia l  
cond i t ions   €o r   t he   ca l cu la t ions  were obta ined   f rom  the   s imi la r i ty   so lu t ion  
b u i l t   i n t o   t h e   c o m p u t e r  program. The expe r imen ta l   d i s t r ibu t ions   o f   t he  
Mach number a t   t h e  edge  of  the  boundary  layer and t h e   s t a t i c   p r e s s u r e   i n   t h e  
boundary  layer shown i n   f i g u r e   1 4  w e r e  used   for   the   ca lcu la t ions .   Trans i -  
t i o n  w a s  assumed t o   b e g i n   a t  a. po in t   es t imated  from the experimental   data.  
The i n t e r m i t t e n c y   o f   t h e   t r a n s i t i o n   r e g i o n  w a s  ca lcu la ted   by   equat ion   (147) .  

Experimental data are p r e s e n t e d   i n   r e f e r e n c e  64 for t h e   h e a t   t r a n s f e r  

on t h e  body i n  terms of a parameter Nu/NR where the Nussel t  number and 
Reynolds number a r e   d e f i n e d   i n  terms of   local   s tagnat ion  condi t ions.   That  
is  , 

and 

where Lz is  a re ference   l ength   equal   to  1 inch. The r e s u l t s   o f  the 
t h e o r e t i c a l   c a l c u l a t i o n s   i n  terms of   the   hea t - t ransfer   parameter  compare 
q u i t e  w e l l  wi th  the d a t a   a s  shown i n   f i g u r e  15. 

Comparison  with a Fini te-Difference Method 

The technology  of  f inite-difference  methods  of  solving  the  boundary- 

l a y e r   e q u a t i o n s   h a s   r e c e n t l y   b e e n   a p p l i e d   t o   s o l u t i o n   o f   t r a n s i t i o n a l  
boundary  layers  by Harris (ref. 41) .   That   technique  apparent ly   provides  
good comparisons  with  experimental  measurements.  Therefore, it w a s  
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considered  worthwhile to compare  the  results  of  a  calculation  made  with 
that  technique  with  the  present  theory.  Accordingly,  some  calculations 
made by the  technique of reference 41 were obtained  and  are  compared  with 
calculations  from  the  present  theory  in  figure 16. The  flow  conditions  of 
the  calculations  were  as  follows: 

Re, = 1.706(107) ft-I 

Me = 6.21 

Ts = 1367OR 

Tw = 584OR 

PrL = 0.7 

PrT = 0.9 

Rex = 4.45  (lo6) 
t 

h = 160.0 

The  configuration  is  a l o o  half-angle  sharp-nosed  cone, 2.5 feet  in  length. 
The  calculations  of  the  present  theory  we?-  initialized  at  x = 0.1 utiliz- 
ing  the  internally  generated  similarity  solution  of  the  computer  program. 
The  intermittency  was  computed  from  equation  (147),  using  a  value  of  the 
parameter h determined  from  the  referenced  calculations. 

In  figures  16(a), (b), and  (c),  the  initial  velocity  and  temperature 
profiles  of  the  two  theories  are  compared.  The  initial  velocity  profiles 
show  excellent  agreement  between  the  two  theories.  The  temperature  profiles 
show  excellent  agreement  near  the  wall,  but  only  fair  agreement  near  the 
outer  edge  of  the  boundary  layer.  Comparison  of  turbulent  profiles  from  a 
station  downstream  of  the  transition  is  presented in figures  16(d)  and  (e) . 
In  this  case,  both  the  temperature  profiles  and  the  velocity  profiles  given 
by the  two  theories  show  good  agreement  over  the  entire  boundary  layer. 
In the  referenced  theory,  the  inner  layer  eddy  viscosity  was  based on 
Prandtl's  mixing-length  hypothesis  as  described  by  Van  Driest  (ref.  65), 
while  the  outer  layer  was  described  by  the  same  function as used  in  the 
present  theory  (eq. (144)) except  that  an  intermittency  factor  was  used. 
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Cotnparison  of t h e  t w o  models a t  t h e   t u r b u l e n t   s t a t i o n   o f   f i g u r e s   1 6 ( a l  and 
(e) i s  shown i n   f i g u r e   1 6   ( f )  . 

S k i n - f r i c t i o n   c o e f f i c i e n t  and Stanton number p r e d i c t i o n s   f o r   t h e  two 
t h e o r i e s  are compared i n   f i g u r e s   1 6 ( g )  and ( h ) .  The two t h e o r i e s  are i n  
exce l len t   agreement   in   the   l aminar   reg ion   for   the   sk in- f r ic t ion   coef f ic ien t ,  
d i s p l a y i n g   s l i g h t   d i f f e r e n c e s   i n   t h e   t r a n s i t i o n a l  and turbulen t   reg ions .  
For   the  Stanton number, a s l i gh t   d i f f e rence   be tween   t he  two t h e o r i e s  i s  
no ted   fo r   t he   en t i r e   l eng th   o f   t he   ca l cu la t ion .   F ina l ly ,   t he  two t h e o r i e s  
a re   in   exce l len t   agreement   for   the   d i sp lacement  and momentum th icknesses  
a s  shown i n   f i g u r e   1 6 ( i ) .  

Ca lcu la t ions   w i th   Spec i f i ed   In i t i a l   Cond i t ions  

One of t he   u se fu l   f ea tu re s   o f   t he   p re sen t   t heo ry  is  t h a t   i n i t i a l  
condi t ions  may be obta ined   in  a number of ways. Four  methods  were d i s -  
cussed i n  a prev ious   sec t ion   of   th i s   repor t .  One of  these  methods is  t h e  
s i m i l a r i t y   s o l u t i o n   u s e d   f o r   i n i t i a l i z i n g   t h e   p r e v i o u s  t es t  cases .  The 
o t h e r   t h r e e  methods r e q u i r e  known p r o f i l e s .  Two of   these  were  tes ted  by 
comparison  with  resul ts   of   another   theoret ical   calculat ion.  The comparison 
ca l cu la t ions  were  produced  by  the  f ini te-difference  technique oE Bushnell 
and Beckwith  described  in  reference 66. Those  authors  extezded  the  calcu- 
l a t ion   t echn ique   t o   t r ans i t i ona l   f l ow  by   t he   u se   o f  an in te rmi t tency   func t ion  
l i ke   equa t ion   (147) .   In   add i t ion ,   t he i r   i n t e rmi t t ency   func t ion  was mul t i -  
p l i e d  by a factor   which w a s  spec i f i ed   a s  a funct ion  of  r'. That is, 

where r i s  given  by  equation  (147).  

In   t he   ca l cu la t ions   ob ta ined  from the  authors   of   reference 66 f o r  
comparison,   the   intermit tency,   rB(x)  was spec i f i ed   a t   fou r   po in t s .   These  
values   of   rB(x)  w e r e  p l o t t e d  and a smooth d i s t r i b u t i o n  of r fo r   u se  
wi th   t he   p re sen t   t heo ry  was obta ined   graphica l ly . .  The d i s t r i b u t i o n  i s  shown 
i n  f igu re   17   ( a )  . It shou ld   be   no ted   t ha t   t he   d i s t r ibu t ion  of r ( x )  shown 
i n   f i g u r e  17(a)  was used   on ly   a s   an   i l l u s t r a t ive  example t o  compare t h e  
present   theory  with  another   theory.  N o  s p e c i a l   s i g n i f i c a n c e  i s  implied 
by  values  of r g rea t e r   t han   un i ty .  
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The conf igura t ion  was a sharp-leading-edge f l a t   p l a t e .  The reference  
condi t ions   used   for   the   ca lcu la t ions  w e r e  as  follows: 

MeO 
= 8.5 

Rel  = 2.295 ( l o 7 )  ft-’ 
0 

Ts = 640°R 

Tw = 526OR 

PrL = 0.688 

P r T  = 0.9 

rL = r = 0.89 T 

The tu rbu len t   P rand t l  number of the   re fe rence   ca lcu la t ion   var ied   across   the  
boundary  layer  from 0.9 t o  1.5.  The value 0.f 0.9 was chosen  for   the 
p re sen t   ca l cu la t ions .  Two cases  were computed with  the  present   theory,  
corresponding t o   t h e  two methods of o b t a i n i n g   i n i t i a l   c o n d i t i o n s  from 
known q u a n t i t i e s .  The i n i t i a l   c o n d i t i o n s  were as  follows: 

Case 1: 
- - U y_ Tt - 

0.30097  0.020068 570.0 
-50396 .0336 590.0 
-80428  -05361 

Case 2: 

C f  = 0.00019736 

6*  = 0.006595 

e = 0.00014955 

S t  = 0.00076354 
- 
u = 0.50396 

Ts = 590.0 
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The  initial  temperature  profiles  are  compared  in  figure 17(b). For 
Case 1, the  fitted  profile  matches  the  reference  profile  very  well  over 
the  entire  profile  while  the  profile  for  Case 2 exactly  matches  the 
reference  profile  at  the  wall  and  at  the  specified  point (Ti = 0.5) with 
good  fit  elsewhere. 

Comparison  of  the  initial  velocity  profiles  is  presented  in  figure  17(c). 
As with  the  temperature  profiles,  an  excellent  fit  was  obtained  for  the 
conditions  of  Case 1. Only  at  the  outer  edge  of  the  boundary  layer  does 
the  fitted  profile  deviate  from  the  reference  profile.  For  Case 2 ,  with  the 
integral  and  wall  quantities  matched,  the  fitted  profile  is  slightly 
different  from  the  reference  profile  in  shape. 

Comparison  of  the  skin-friction  coefficient  and  the  displacement  and 
momentrun  thickness  variation  along  the  plate  is  shown  in  figures  17(d) 
and  17(e).  The  reference  calculations  and  the  present  calculations  are 
in  excellent  agreement  for  both  Case 1 and  Case 2 .  Note  in  particular  that 
both  calculative  methods  show  the  same  response  to  the  rather  unusual 
intermittency  variation. 

In  figures 17 (f) , (9) , and  (h)  are  shown  comparison  of  the  velocity 
and  temperature  profiles  at  two  stations  downstream  of  the  transition 
point.  The  first  station  was  in  the  transition  region  where  the  inter- 
mittency  factor, r, was  approximately  equal  to 3 .  The  second  station  was 
near  the  end  of  the  transition  region,  where r = 1. At  the  first  station, 
the  temperatures  within  the  boundary  layer  predicted  by  the  present  theory 
are  slightly  lower  than  those of the  reference  calculation.  However,  at 
the  second  station,  the  temperature  profiles  are  in  excellent  agreement. 
Note  also,  that  the  temperature  profiles  corresponding  to  Case 1 and  Case 2 
of the  present  theory  are  identical  with  each  other  at  both  of  the  stations 
shown  in  figures  17 (9) and  17  (i) . 

There  is  slightly  more  difference  between  the  velocity  profiles  of 
the  present  theory  and  the  reference  theory  than  between  the  temperature 
profiles,  as  shown  in  figures  17  (f)  and  17  (h) . At  both  stations,  the 
reference  theory  predicts  a  profile  which  has  higher  velocities  through a 
greater  portion  of  the  boundary  layer  than  does  the  present  theory.  Recall, 
however,  that  the  wall  and  integral  quantities  predicted  by  both  theoiries 
were  in  excellent  agreement  as  shown  in  figures  17(d)  and  17(e). 
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E f f e c t  of Transverse  Curvature  in  Laminar Flow 

On axisymmetric conf igu ra t ions ,  the e f f ec t s   o f   t r ansve r se   cu rva tu re  
can be i m p o r t a n t   i f  the th i ckness  of the boundary  layer is comparable t o  
the radius   of  the conf igura t ion .  The e f f ec t   o f   t r ansve r se   cu rva tu re  on a 
laminar  boundary-layer  calculation is  i l l u s t r a t e d   i n   f i g u r e  18. The 
conf igu ra t ion   be ing  examined i s  the loo hal f -angle   cone   of   re fe rence  52 i n  
a f l o w  w i t h  a Mach number of 6.9. The p res su re  w a s  assumed t o  be cons tan t  
a long the cone  surface  and  unit   Reynolds number l o 4  ft-’ was chosen f o r  
i l l u s t r a t i v e   p u r p o s e s .  The e f f e c t s   o f   t r a n s v e r s e   c u r v a t u r e  (TVC) on t h e  
ca l cu la t ed   S t an ton  number d i s t r i b u t i o n   a r e   e v i d e n t  from f i g u r e   1 8 ( a ) .  The 

c a l c u l a t i o n   i n  w h i c h  t r ansve r se   cu rva tu re  w a s  accounted   for   p red ic t s  a 
h igher   va lue  of S t  t h a n   f o r  the c a l c u l a t i o n   i n  which t r ansve r se   cu rva tu re  
i s  neglected.  However, the ef fec t   d iminishes   as   the   ca lcu la t ion   proceeds  
downstream, as evidenced  by the f a c t   t h a t  the e r r o r  between the two predic-  
t i ons   dec reases  from 2 9  p e r c e n t   a t  x = 0 . 2  f o o t  t o  1 4   p e r c e n t   a t  
x = 1 .0   foo t .   S imi l a r   r e su l t s   a r e  found for   the   d i sp lacement   th ickness   o f  
the  boundary  layer as shown i n   f i g u r e   1 8 ( b ) .  The ca l cu la t ed   ve loc i ty  and 
t empera tu re   p ro f i l e s   a r e  shown i n   f i g u r e   1 8 ( c )  and ( a ) .  S ince   increas ing  
the Reynolds number has   the   e f fec t   o f   decreas ing   the   boundary- layer  
th ickness ,  it is expec ted   t ha t   i n  mos t   ca ses   o f   i n t e re s t   fo r   t r ans i t i ona l  
boundary-layer   calculat ions  t ransverse  curvature   can be neglected.  This 
w a s  indeed  found t o  be t r u e   f o r   t h e   d a t a  of   f igure  1 2 ,  d iscussed  previously.  
The inc lus ion   of   t ransverse   curva ture   in   the   ca lcu la t ions   for   tha t   f igure  
had  no e f f e c t  on t h e   r e s u l t s .  

The i n i t i a l   c o n d i t i o n s   f o r   b o t h   c a s e s  shown i n   f i g u r e  18 w e r e  obtained 
from t h e   s i m i l a r i t y   s o l u t i o n   b u i l t   i n t o   t h e  computer  program. This r e s u l t e d  
i n  a.n i n i t i a l l y   t r a n s i e n t   s o l u t i o n   f o r   t h e   c a s e  w i t h  t r ansve r se   cu rva tu re  
included. However, the  solut ion  approached a unique   var ia t ion   wi th in  a 
few in t eg ra t ion   s t eps   ( each  step w a s  approximately  0.0001  foot). 

Turbulent  F l o w  with  Transverse  Curvature  

A good  example  of turbulent   boundary-layer   data   for   f lows w i t h  v a r i a b l e  
p r e s s u r e   g r a d i e n t s  and s i g n i f i c a n t   t r a n s v e r s e   c u r v a t u r e   e f f e c t s  w a s  p resented  
by  Winter,  Smith, and R o t t a   ( r e f .  67). The data provide a p a r t i c u l a r l y  good 
case for   comparison  with  the  present   theory  because  they  a l low  the demon- 
s t r a t i o n   o f  many d i f f e r e n t  capsbili t iss of the t h e o r y   a l l   i n  t w o  c a l c u l a t i o n s .  
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The conf igu ra t ion  i s  an axisymmetric, piecewise continuous,   waisted 
body ( f i g .   1 9 ) .  The da ta   p re sen ted   i n   r e f e rence  67 f o r  M, = 1.4  w e r e  
chosen f o r  comparison. The t r a n s i t i o n   p o i n t  w a s  assumed t o  be a t  1.5 
inches from the  nose  of  the  body,  corresponding t o  t h e   l o c a t i o n   o f  a 
boundary-layer t r i p  a s   r e p o r t e d   i n   r e f e r e n c e  67. 

The  test  c o n d i t i o n s   f o r  the case   cons idered  w e r e  as   fol lows:  

M, = 1.398 

Re, = 2.02 ( l o 6 )  f t - I  
m 

Ts = 536OR 

TW 
= 524OR 

Me = 1.06 
0 

Rext = 0 .252  (10') 

The r e fe rence   cond i t ions   fo r   t he   ca l cu la t ions  w e r e  taken t o  be the  condi- 
t i o n s  on the  conical   nose  sect ion  of   the  body.  The c a l c u l a t i o n s  were 
s t a r t e d   a t  x = 0 . 1  foot   us ing   the  s imi la r i ty  s o l u t i o n   b u i l t   i n t o   t h e  
computer  program. Trans i t i on  from  laminar t o   t u r b u l e n t   f l o w  was computed 
au tomat ica l ly  from the  given  value  of  R e  wi th  the in te rmi t tency   g iven  
by equat ion ( 1 4 7 ) .  The source   func t ion   in   equa t ion  (147) was computed 
a s suming   t he   t r ans i t i on   r eg ion   t o   be   equa l   i n   l eng th   t o   t he   l eng th  of t h e  
laminar  boundary  layer.  The experimental  Mach n u d e r   d i s t r i b u t i o n  is  

p resen ted   i n   f i gu re  1 9  a long  with  the  configurat ion.  The i s e n t r o p i c  
p r e s s u r e   d i s t r i b u t i o n   c o r r e s p o n d i n g   t o   t h e   g i v e n  Mach number d i s t r i b u t i o n  
was used a s   i n p u t   t o   t h e  computer  program. The condi t ions  behind  the  nose 
shock wave were  obtained  from  reference 68. 

x t  

This   case  was a good  one for   demonstrat ing  the  smoothness   requirements  
o f   t he   i npu t   d i s t r ibu t ions .  The smoothness  of t h e   d i s t r i b u t i o n   d e s c r i b i n g  
the   conf igura t ion  i s  n o t   c r i t i c a l   s i n c e   t h e  body s lope   does   no t   en te r   the  
c a l c u l a t i o n s   d i r e c t l y .  However, t h e   d i s t r i b u t i o n s  of   pressure,  Mach number, 
wal l   temperature ,  and to t a l   t empera tu re  must be  smooth so t h a t   t h e  
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i n t e r p o l a t i o n   o f   t h e   f i r s t   d e r i v a t i v e s   r e q u i r e d  w i l l  be smooth. I n  the 
c a l c u l a t i o n s   d i s c u s s e d  i n  th i s  sec t ion ,  it w a s  found t o  be s u f f i c i e n t  t o  
plot  t h e   d i s t r i b u t i o n  t o  a scale a t  which three s i g n i f i c a n t   f i g u r e s   c o u l d  
be obtained  from a smooth curve drawn through the da ta .  

The conf igu ra t ion   be ing   desc r ibed   has   r ece ived   cons ide rab le   a t t en t ion  
by   au tho r s   o f   t heo re t i ca l  methods. Ca lcu la t ions  on t h i s   c o n f i g u r a t i o n  
have  been made by Cebeci, S m i t h ,  and Mosinskis   ( ref .  69) , Herring and 
Mellor ( r e f .   3 6 ) ,  and H a r r i s   ( r e f .   4 1 ) .  A l l  o f   these   au thors   used   f in i te -  
d i f f e r e n c e  methods. U n t i l  now, on ly   Har r i s  w a s  a b l e  t o  compute a completely 
theoretical s o l u t i o n  w i t h  no  dependence  on  experimental  profile or skin-  
f r i c t i o n   i n f o r m a t i o n   f o r   i n i t i a l   c o n d i t i o n s .  TO t h e   a u t h o r ' s  knowledge, the 
so lu t ion   presented  here is the f i r s t   t o  be obtained  by  the method  of 
i n t e g r a l   r e l a t i o n s .  

The c a l c u l a t e d   r e s u l t s   a r e  compared wi th   the   exper imenta l   da ta   for  
momentum th i ckness  and s k i n - f r i c t i o n   c o e f f i c i e n t   d i s t r i b u t i o n s   i n   f i g u r e  20 .  

The agreement  between  the  theoretical  and expe r imen ta l   d i s t r ibu t ions  is 
very good. I n   p a r t i c u l a r ,   n o t e   t h e   e r r a t i c   b e h a v i o r   o f   t h e   d a t a  and t h e  
t h e o r y   f o r   t h e   s k i n - f r i c t i o n   c o e f f i c i e n t   i n   t h e   r e g i o n  x < 1 foot .  A l s o ,  

n o t e   t h a t   t h e   i n c l u s i o n  of t h e   t r a n s v e r s e   c u r v a t u r e  terms i n   t h e   s o l u t i o n  
had a s i g n i f i c a n t   e f f e c t  on t h e  momentum th ickness .  The t r ansve r se   cu rva tu re  
e f f e c t  is t h e  same as found  by the authors  of  references  36,   41,  and  69. 
The s k i n   f r i c t i o n  i s  p r e d i c t e d   q u i t e   w e l l   b o t h   w i t h  and wi thout   t ransverse  
c u r v a t u r e ,   p a r t i c u l a r l y   a t   t h e   p o i n t   o f  minimum skin   f r ic t ion .   Wi thout  
t r ansve r se   cu rva tu re ,   t he  momentum th i ckness  i s  overpredic ted   near   the  
downstream end  of  the  model,  but i s  i n  good agreement  with  the  data when 
t r a n s v e r s e   c u r v a t u r e  i s  inc luded   in   the   ca lcu la t ions .  

CONCLUDING REMARKS 

The method o f   i n t e g r a l   r e l a t i o n s   h a s   b e e n   a p p l i e d   t o   t h e   c a l c u l a t i o n  
o f   l amina r ,   t r ans i t i ona l ,  and turbulent   boundary  layers  on a r b i t r a r y  axisym- 
metric or two-dimensional  configurations. The technique employed i s  a new 
app l i ca t ion   o f  a method previously  used  successful ly  t o  predict the charac te r -  
istics of   separated  laminar   boundary  layers  and unsepara ted   tu rbulen t  
boundary  layers.  An eddy-viscosi ty  model has   been  developed  for   use  in  the 
turbulent   boundary-layer   equat ions  a long  with  an  intermit tency  funct ion  for  
the t r a n s i t i o n   r e g i o n .  A computer  program  has  been  written t o  s o l v e   t h e  
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equations  with  arbitrarily  prescribed  boundary-layer  edge  conditions,  wall- 
temperature  distributions,  and  Prandtl  number  for  flows  from low speeds to 
hypersonic  speeds. 

A nuniber of  methods  of  obtaining  initial  conditions  are  discussed. 
The  solution  can be started  from known  information  such  as  velocity  and 
temperature  profiles or  known values of  skin  friction,  heat  transfer,  and 
other  boundary-layer  properties,  or  from  a  similarity  solution  which  assumes 
constant  pressure  from  the  leading  edge  of  the  configuration  and has no 
dependence on experimental  or  empirical  data.  Other  theoretical  initial 
conditions  could  also be used but  were  not  included  in  the  work  described 
here.  Thus,  the  calculative  method  can  either be self-starting  or  rely 
on  experimental  information  as  the  user  chooses. 

The  computer  program  can be used  to  calculate  the  transition  region 
between  other  laminar  and  turbulent  boundary-layer  calculations  or  it  can 
be used to  compute  the  entire  solution  from  laminar  through  turbulent  flow. 
Prediction of the  transition  point  is  performed  by  the  user  of  the  computer 
program  using  approximate  formulas  developed by correlating  experimental 
data. The  intermittency  of  the  transition  region  can be computed  using  a 
function  based  on  probability  theory, or it can be provided  as  an  arbitrary 
distribution.  The  computer  program  may be used to determine  the  inter- 
mittency  corresponding to experimental  data. 

Good  comparisons  between  the  theory  and  experimental  data  for  heat 
transfer  and  skin  friction  were  made  on  various kinds  of  configurations  in 
both  subsonic  and  supersonic  flows.  Transitional  heat  transfer  on  both 
sharp-leading-edged  flat  plates  and  sharp-nosed  cones was calculated  by 
determining  an  intermittency  distribution to fit  the  data.  Comparisons of 
the  present  theory  with  calculations  made  using  finite-difference  theory 
indicated  excellent  agreement  between  the two theories.  Calculation  of 
the  turbulent  boundary  layer on a  body  of  revolution  having  both  favorable 
and  adverse  pressure  gradients  yielded  excellent  agreement  with  the 
experimental  skin-friction  coefficient  and  momentum  thickness,  when  the 
effects of transverse  curvature  were  included.  Most  significantly,  that 
calculation  was  made  using no experimental  information to obtain  initial 
conditions. 

Finally,  some  comments  are  in  order  regarding  the  intermittency  distri- 
bution  in  hypersonic  boundary  layers.  The  exact  details  of  the  transition 
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region  flaw  structure  remain  as  one  of  the  major  unsolved  problems  of 
fluid mechanics. Data  examined  in this research  corroborated the finding 
of Morkovin (ref. 12) that the intermittency  distributions  of  hypersonic 
boundary  layers  do not always fit the  simple  probability  distribution  of 
Emmons  as used by Dhawan and Narasimha (ref. 47). Morkovin  stated  that  of 
many  hypersonic  cases he examined, only about half  of then could be fitted 
to  the low-speed probability  distribution  curves  of  Dhawan and Narasimha. 
Cases were presented  in this report  in  which the intermittency  distributions 
found to fit the  data  were  quite  different from that  given by Emmons' 
function. 

The cases  presented  herein were presented to demonstrate the accuracy 
and flexibility of the computer  program and were not  intended as  evidence 
of  the validity of  the probability theory. However,  the  results  suggest 
that the intermittency  function should be a  more  complicated  function  than 
that  given  by  the  simple  theory  of  Dhawan and Narasimha. The  results  also 
suggest an important use of  the  computer  program as a  research  tool in the 
study  of  hypersonic  transition,  but  such  a  study must be accompanied by 
further  experimental  research  before  meaningful  results can be obtained. 
Many  experimental  data are available  for  heat  transfer  to flat plates and 
cones in wind tunnels.  However,  in order to study  the  intermittency in 
the  transition  region  comprehensively,  more  data are  needed  from free-flight 
experiments as well as  from configurations  with  significant  pressure varia- 
tion.  It  is possible  that  the  higher  modes of instability  described  by 
Mack (ref. 13) could produce  potential  turbulent  sources  which would be 
triggered by  the relatively  high  disturbance  level of a  wind  tunnel,  but 
might not be  triggered in free flight. However,  available free-flight data 
are  not adequate to determine  the  detailed  distribution  of  the intermittency. 
Use  of  the  computer  program along with  experimental  data to determine  the 
intermittency in boundary  layers  over  a  wide  range of parameters could  lead 
to correlations  with  which  the  intermittency could be predicted  with  greater 
confidence  than  with the simple  probability  function  of  Dhawan and Narasimha. 
Moreover,  such  correlations could  lead to extension of the  probability  theory 
to more  complicated  source  functions,  than  the  delta-function of Dhawan and 
Narasimha,  with  sources  of  turbulence  being  introduced  downstream of the 
original  pgint of onset of transition. 
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Most ava i l ab le   expe r imen ta l   da t a   i n   hype r son ic  f l o w  a r e   f o r   h e a t  
t ransfer   a lone.   Experiments   in   which  both heat t r a n s f e r  and s k i n   f r i c t i o n  
were measured f o r   s e v e r a l  Mach numbers  would s u b s t a n t i a l l y  improve t h e  
state of knowledge   of   the   t rans i t ion   reg ion .  These measurements  could be 
accompanied  by  measurements  of  the  intermittency as determined  from 
f luc tua t ing   quan t i t i e s   i n   t he   boundary   l aye r .   Ca lcu la t ions   cou ld   t hen  be 
made t o   v e r i f y   w h e t h e r  the in t e rmi t t ency   de t e rmined   t o  match t r a n s i t i o n a l  
h e a t   t r a n s f e r   d a t a  is  the same a s   r e q u i r e d   t o  match   sk in- f r ic t ion   da ta .  
The experiments  would  also  provide  information  about  Reynolds  analogy  in 
the   t rans i t ion   reg ion .   This   might  be usefu l   in   improving  the p resen t  
formula t ion   of   the   en tha lpy   prof i les   in   the   theory .  

Another area i n  which re.liable experimental   information is  needed i s  
t h e  effect of   p ressure   g rad ien ts  on t h e   t r a n s i t i o n   z o n e .  This is needed 
for  development  of  improved  models  of the eddy v i s c o s i t y  and tu rbu len t  
Prandt l  nuniber a s  w e l l  a s   f o r   t h e  improvement  of t he   t heo ry   r ega rd ing   t he  
intermit tency.  

In   conclusion,  the method has  been  found t o  be a f a s t ,   f l e x i b l e ,  and 
accura te  method of  computing  unseparated  laminar,   transit ional,  and 
turbulent   boundary  layers .  As input,   the  computer  program  requires  only 
very basic information  such  as  the f low  condi t ions and da ta   desc r ib ing  
the  configurat ion,   p lus   information  on the i n i t i a l   c o n d i t i o n s .  U s e  of 
the program as   an   eng inee r ing   t oo l   r equ i r e s   on ly  a minimum amount of 
knowledge  of t h e   t h e o r e t i c a l  methods  used i n  the ca l cu la t ions .  

Nielsen  Engineering & Research,  Inc. 
Mountain V i e w ,  C a l i f o r n i a  

October 5, 1970 
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( a )  Axisymmetric  configuration. 

Figure 1.- Boundary-layer  coordinate  System. 



(b) Two-dimensional configuration. 

Figure 1.- Concluded. 
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Figure 2 . -  Comparison of experimental  data 
with  predicted  transit ion  Reynolds 

numbers on f l a t   p l a t e s .  
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Figure 3.- Typical distribution of a surface 
quantity in a transitional boundary layer. 
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(a)   F lat   r lates  and hollow  cylinders. 

Figure 4.- Comparison of experimental  data for length 
of transition  region  with  predicted  values. 
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(b) Cones. 

Figure 4.- Concluded. 
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Figure 5.- Variation of total temperature in a laminar 
bound8ry layer for different  orders of approximation. 
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Figure 6.- Variation of static temperature in a laminar 
boundary layer for different orders of approximation. 
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Figure 12.- Continued. 
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( c )  I n i t i a l   t o t a l   t e m p e r a t u r e   p r o f i l e s  (x  = 0.1 f t .  ) . 
Figure 16 . -   Cont inued.  
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(d )  Velocity profile a t  end of t r a n s i t i o n  (x - 0 . 5  ft.). 

Figure 16.-  Continued. 
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(e) Total temperature profile at end of transition 
(x  - 0.5 ft.) . 

Figure 16.- Continued. 
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(f) Eddy  viscosity at end of transition 
(x  - 0.5  ft.1. 

Figure 16.- Continued. 
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(9) Skin-fr ic t ion  coeff ic ient .  
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Figure 16.- Continued. 
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(h) Stanton number. 
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Figure 16. - Continued,. 
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(i) Displacement and momentum  thickness, ft. 

Figure 16. - Concluded. 
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Figure 17.- Comparison  of  finite-difference  theory  and  present 
theory  for  different  initial  conditions on a flat  plate. 
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(b) Initial static temperature profiles (x = 0.325 ft.). 

Figure 17.- Continued. 
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(c) In i t ia l   ve loc i ty   prof i l e s  (x = 0 

Figure 1 7 . -  Continued, 

1.0 

- 3 2 5  ft.). 
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(d) Sk in - f r i c t ion   coe f f i c i en t .  

Figure 17.- Continued. 
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(e) Displacement and momentum thickness. 

Figure 17.- Continuedi 
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( f )  Veloc i ty   p rof i les   in   t rans i t ion   reg ion  
(x = 0.825 f t . ,  I' - 3). 
Figure l7.- Continued. 
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(9) Total temperature profile in transition region 
(X - 0.825 ft., r = 3 ) .  

Figure 17.- Continued. 
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(h) Velocity  profiles  in  turbulent,region 
(X = 1.43, r = 1). 

Figure 17.- Continued. 
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(i) Total temperature in turbulent region 
(X = 1-43, r = 1). 

Figure 17.- Concluded. 
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(a)  Stanton number. 
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(b) Displacement thickness. 

Figure 18.  Calculation showing the effect  of  transverse 
curvature on a laminar boundary l a   e r  on a  cone; 

Me = 5.54;q = 104 ftJ. 
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(c) Velocity profiles (x/L = 0 . 2 )  . 
Figure 18.- Continued. 
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(d) Static and total temperature profiles (x/L = 0 . 2 ) .  

F igure  18.- Concluded- 
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Figure 19.- Experimental Mach number distribution 
on a waisted body of revolution. 
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(a) Skin-friction  coefficient. 

Figure 20.- Comparison of theory and experimental data 
on  a  waisted body of revolution. 
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(b) Momentum thickness. 

Figure 20.- Concluded. 
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