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CALCULATION OF COMPRESSIBLE, NONADIABATIC BOUNDARY LAYERS
IN LAMINAR, TRANSITIONAL AND TURBULENT FLOW
BY THE METHOD OF INTEGRAL RELATIONS

By Gary D. Kuhn
Nielsen Engineering & Research, Inc.

SUMMARY

The method of integral relations has been applied to the calculation
of compressible, nonadiabatic laminar, transitional, and turbulent
boundary-layer characteristics. A two-layer eddy-viscosity model was
employed for turbulent flow with transition produced by modulating the
eddy viscosity by an intermittency function. A computer program was
developed to do the calculations for two~dimensional or axisymmetric
configurations from low speeds to hypersonic speeds with arbitrary
Prandtl number. The program contains provisions for tabular input of
arbitrary configuration shapes and arbitrary streamwise pressure, tempera-
ture, and Mach number distributions. Options are provided for obtaining
initial conditions either from experimental information or from a
theoretical similarity solution.

The transition region can be described either by an arbitrary distri-
bution of intermittency or by a function based on Emmons' probability
theory. Correlations were developed for use in estimating the parameters
of the theoretical intermittency function. Correlations obtained from

other sources are used for estimating the transition point.

Comparisons were made between calculated and measured boundary-layer
quantities for laminar, transitional, and turbulent flows on flat plates,
cones, cone-flares, and a waisted body of revolution. Excellent compari-
sons were obtained between the present theory and two other theories based
on the method of finite differences.

The intermittency required to reproduce some experimental heat
transfer results in hypersonic flow was found to be quite different from
the theoretical function. It is suggested that the simple probability
theory of Emmons may not be valid for representing the intermittency of
hypersonic transitional boundary layers and that the program could be
useful as a tool for detailed study of the intermittency of the transition
region.



INTRODUCTION

Many empirical methods are available for estimating the properties
of laminar and turbulent boundary layers. With the development of
sophisticated electronic computers, many computer programs have also been
developed for calculating the solutions of the boundary-layer equations
in the laminar and turbulent regions. At the same time, much research has
been done on the nature of the boundary-layer flow in the transition
region between laminar and turbulent flow. Even now, however, the trausi-
tion region is not completely understood. The methods of computing the
boundary layer in the transition region usually employ some empirical
variation of the growth of the turbulent eddy viscosity, itself an
empirical gquantity, along with a prediction of the starting point of the

transition region developed from still other empirical correlations.

At the present time, there are two mathematical techniques for
computing the details of the boundary layer. Both techniques use the
boundary-layer equations together with an empirical eddy-viscosity model
for the turbulent region. The techniques differ essentially in how they
solve the boundary-layer equations. 1In the first method, an example of
which is described in reference 1, the solution is sought by the method
of finite differences. 1In the second method, described in references 2,
3, and 4, the solution is by the method of integral relations, in which
the solution is represented to any degree of accuracy by partial sums

of infinite series.

In the work described in this report, the method of integral relations
is adapted to development of a generalized program for use as an engineer-
ing tool for the calculation of boundary-layers on arbitrary two-

dimensional or axisymmetric bodies, with arbitrary flow conditions.

The method of integral relations was applied in references 2, 3,
and 4 to the calculation of laminar and turbulent, nonadiabatic,
compressible boundary layers. In the work described herein, the method
has been extended to calculation of transitional boundary layers. 1In
addition, the theory has been extended to include arbitrary Prandtl
number, and arbitrary Chapman-Rubesin constant, thus relaxing the assump-
tion of a linear total temperature-velocity relationship as used in the

_previous applications of the method.
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The work presented in this report was accomplished under a l-year

effort sponsored by Langley Research Center, NASA, Contract No. NAS1-9429,.
The main effort was directed toward development of a computer program and

the associated theory based on the method of infegral relations for

calculation of transitional boundary layers. Due to the general nature

of the method, the program and theory are also applicable to the laminar

and turbulent regions. The following sections contain the analyses which

lead to the computer program and contain a substantial number of compari-

sons between prediction and experiment.

An operating manual and a programmer's manual for the computer program

are being issued as separate documents.
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LIST OF SYMBOLS
speed of sound
elements of coefficient matrix defined by eq. (88)
elements of coefficient matrix defined by eq. (89)

parameter defined by eq. (26)
parameters defined by eq. (150)

elements of a coefficient matrix defined by eqg. (117)

parameter defined by eq. (27)

right-hand side of eq. (86), defined by eq. (90)
right-hand side of eq. (87), defined by eq. (91)
specific heat for constant pressure

Chapman-Rubesin constant defined by eq. (45)

. . . . . 2
skin-friction coefficient, 2Tw/peue

coefficients used in specifying the velocity gradient profile,
eqg. (77)

coefficients used in specifying the enthalpy function, eq. (82)

frequency of Tollmien-Schlichting wave
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Nu

Pi»Qi5Ry

Pr

weighting functions defined in egs. (68), (639), and (70)
weighting function defined by eq. (83)

constants in transition correlation, eq. (121)

integrand of integral defined by eq. (94)

static enthalpy
total enthalpy
transverse curvature index defined in egs. (1), (2), and (3)

constants in eddy viscosity, eq. (139)
constants defined in eq. (113)

reference length in two-dimensional coordinates or Probstein-
Elliott coordinates (eq. (56))

reference length in physical coordinate system
order of approximation of enthalpy function (eqg. (82))

(v = 1)MZ/2

Mach number
order of approximation of velocity gradient profile, eq. (77)

exponent of unit Reynolds number in transition correlation
(egq. (121))

reference Reynolds number defined by eqg. (160)

Nusselt number
pressure

integrals defined by equations (94), (95), and (96)
integrals defined by eq. (119)

Prandtl number

radius from axis of axisymmetric configuration or distance
from datum plane of two-dimensional configuration

laminar recovery factor
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Re
X

Re

Reé*

ReAx

st

turbulent recovery factor

transition Reynolds number, (ue/ve)xt

unit Reynolds number, u/v
Reynolds number, (ue/ve)é*
Reynolds number of length of transition, (ue/ve)Ax

reference Reynolds number, (u, /v, )4
o o

enthalpy-Mach number parameter in transition correlations,
egs. (120), (121), and (122)

enthalpy function, (H/He) -1

Stanton number, kw(aT/ay)Iw/peuecp[Taw - Tw]

transverse curvature factor (eq. (28))
temperature

velocity components in physical coordinates parallel and
normal to surface, respectively

u/ue

reference friction velocity, (Tw/pw)l/z

w/u*

friction velocity, ('r/p)l/2

velocity components in Stewartson plane

velocity parameter in eddy viscosity, defined by egs. (138)
and (143)

normal velocity in Dorodnitsyn plane, (V/Ue) '\’ R,
v + un(Ue/Ue)
curvilinear coordinates in physical system

axial or reference coordinate (fig. 1)

integration step size



X,Y coordinates of the Stewartson transformation,

* Po?s y- PeBe . p
X-—--[Peaedx;'Y.:.l’ Pe 3¢ pedy

o o "o o o o
v P ¥/,
a angle of inclination of surface relative to reference axis

(fig. 1)
a exponent in transition length correlatioﬁ, eq. (150)
B eddy-viscosity parameter, 1 + €/u
ratio of specific heats
intermittency function

PB intermittency function definea By eq. (161l)
) boundary-layer thickness
5* displacement thickness
5; kinematic displacement thickness
€ absolute eddy viscosity
€y eddy conductivity
et peE/L
6 momentum thickness
oy, enthalpy thickness '
A source.functioﬁ'parameter in intermittenéy (eq. (147))
W absolute molecular viscosity
v kinematic viscosity, p/p
€,7 coordinates in the Dorodnitsyn plane,

X U. e " | U

&=f—tf»%; =T g (R )2 ¥

(o] o o
P density
0,350,504 error functions defined in egs. (65), (66), and (67)



zij functions defined by egs. (98) through (103)
T shear stress

(1/3u) /37
'/ stream function

Subscripts

aw adiabatic wall
e refers to the boundary-layer edge
L refers to laminar flow
o initial condition at Xq
s stagnation condition
t transition
T refers to turbulent flow
w condition at the wall
o free-stream condition

Special Notation

) denotes a time average quantity
() denotes variables in the Probstein-Elliott transformation
() denotes differentiation with respect to ¢

() denotes a fluctuating quantity

THEORETICAL BASIS

The method of integral relations used herein is due to Dorodnitsyn
(ref. 5). Briefly, the mathematical procedure employed is that of
representing the solution of a differential equation by an infinite series.
An approximation to the solution is developed by taking a partial sum of
the infinite series. A discussion of some of the pertinent mathematical
theorems associated with the application of the method to the partial



differential equations of the incompressible boundary layer was presented
by Murphy and Rose in reference 6. In the present analysis, the method
is generalized to include compressible flow with arbitrary Prandtl number.

Since the present analysis is considerably more generalized than has
been presented previously, the derivation of the important equations is
presented in detail. The basic analysis is presented in terms of a
turbulent boundary layer since that is the most general case., The equa-
tions describing the transitional and laminar boundary layers differ
from those of the turbulent case only in the definition of the effective,

or eddy, viscosity.

Assumptions
The analysis is based on the following assumptions:

(1) The governing equations are those for a compressible turbulent
boundary layer.

(2) The air behaves as an ideal gas.

(3) The molecular viscosity, i, is proportional to the temperature.

(4) The specific heat of the gas is constant.

(5) The Prandtl number of the gas is constant, but arbitrary.

(6) The conditions at the edge of the boundary-layer are arbitrary.

(7) The wall is either two-dimensional or axisymmetric, but can have
arbitrary variation in the direction of flow as long as the radius of
curvature of the wall is large compared to the boundary layer.

(8) The pressure is constant normal to the wall.

(9) The wall temperature is prescribed and may vary arbitrarily in

the direction of flow.

Boundary-Layer Equations for Compressible
Turbulent Flow
Reference 1 presents the boundary-layer equations for compressible
turbulent flow in a convenient form for both axisymmetric and two-
dimensional flow. The basic notation and coordinate scheme are shown
in figure 1. A blunt body is shown; however, the present analysis applies
equally well to a pointed body since the analysis is restricted to points
downstream of a stagnation point or sharp leading edge or nose. Note also
that the same symbols are used for the physical coordinates of both



two-dimensional and axisymmetric configurations. Thus, r denotes the
distance of a point from the axis of an axisymmetric configuration, or
from the reference plane of a two-dimensional configuration. The coor-
dinates are a curvilinear system in which x 1is tnhe distance along the
surface measured from the stagnation point or leading edge. The dimension
y is measured normal to the surface. 1In the differential equations, the
transverse curvature terms are retained because of their potential import-
ance in predicting the boundary-layer growth on long slender bodies.

The governing equations describing the steady flow of a turbulent

boundary layer are:

CONTINUITY
9 [( — k] d == X1 =
% pu + p'u’)r + Sy (pv + p'vh)r ] =0 (1)
MOMENTUM
(pu + p'u') g—§+ (pv + p'v") g—;
= - gE - .—l_ i k 12 (o] Vg 12
ax rk 3% [r (pu + up'v' + p'u q
l a [k< au 1 1 [} 1 L} ) ] )]
+ = <= |r Lo - pviu' - vp'u' - p'u'v (2)
rk oy oy
ENERGY
(pu+Fu—')%{<-+(pv+p_'vT)-g—§

= L-a_ k L= [k X1 [
__rk aX[r (pu'H' + up'H +puH)]

1 o k|l QH _ —o=
+rk ay {r [Pr ay pv'H

+ WU ( - g% u %% - vp'H' - p‘v'H‘}:} (3)

where k = 0 for two-dimensional flow and k = 1 for axisymmetric flow.




The boundary layer is assumed to be thin and the terms such as p, u,
H, and x are assumed to be .of the order of 1 and v and y are of the
order of the boundary-layer thickness, §. This allows some of the corre-
lation terms involving the fluctuation guantities to be neglected.
Specifically, the double correlation terms p'u’, u'H', p'H', and BTVT
are of the order of & at most, and the triple correlation terms p'v'u’
and BT;TﬁT are of the order of &% at most. Away from separation,

the Reynolds normal stresses =-pu'? -and -pv'? are small and can be

neglected.

The Reynolds shear stress -pu'v' is eliminated through use of the

definitions
and (4)

The term pv'h' 1is eliminated through the use of an eddy-conductivity

concept as follows: the total enthalpy is defined
H=h+h'+ % [u2 + v® + 2uu' + 2vv' + u'? + v'2]

As before, the terms u'? and v'? are assumed to be of at least second

order so that the total enthalpy can be expressed

H=H+ H'
where
= 1l =
H=h+ 5 u
and
H' = h' + uu' + vv'
Then
v'H' = v'h' + uu'v'
10



or

—— — €
v'H' = v'h! = u —
P

11

If an eddy conductivity is introduced so that

R =y B (5)

then

-pv'H' = €H %%-+ (e - eH) u %%

Or, defining a turbulent Prandtl number as

€
Pr_, = — (6)
T €H
gives
T = S oH . ou
-pv'H PrT Sy + € ( PrT u Sy

Laufer (ref. 7) has pointed out that some of the higher order corre-
lation terms should probably be retained in the energy equation for
hypersonic flows. However, in the absence of reliable experimental or
theoretical information, an appropriate model for those terms cannot be

developed at the present time.

In the present analysis, the turbulent Prandtl number, Pr., has
been assumed to be constant except in the transition region, where it is

defined as

Pr, = 1 = I’(1 - Pr

t T)

where I’ is a modulation factor for the transition region and will be

discussed in detail in a subsequent section.

11



Neglecting higher-order terms and incorporating the eddy-viscosity and

eddy-conductivity concepts, the differential equations (1) to (3) become

CONTINUITY
k k
—aa;[rpu]+%[rpv]=0 (7)
MOMENTUM
du w_ _dp, 1 3 [k, du
PUSx " Py " "ax Y X Fy[r“B ayJ (8)
ENERGY

where the term pv 1is a time-averaged quantity defined by

pv = pv + p'v! (10)

In solving the differential equations, it is convenient to define

a new variable

= 2
S = i 1 (11)
e
with which the energy equation (eqg. (9)) becomes

3, o3 _1 & [ x[,(L_ 1,8 \as
pux+pvay—rk dy {r [LL Pr Prt+Prt>ay

+

=
o

!

g
F
+
3|

o
I
|-
N
mm|¢
oy
Y2
—_—
—

SH
o (52) e o

e

where He is assumed to be a function of x.

12
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Equations (7), (8), and (12) are easily applicable to laminar and
transitional flow. In laminar flow, substitution of B = Pr, = 1 reduces
the equations to those for a laminar boundary layer. Further, suitable
variation of the eddy viscosity and turbulent Prandtl number makes the
equations applicable to the transition region.

The boundary conditions for this system of equations are:

At y = O: u=v=20
r=r,
S = Sw
At y = o u = ue(x)
du/dy = 0

s =20
At x = x! u = uo(y)
s = s,(y)

Transformation of Axisymmetric Boundary-Layer
Equations to Almost Two-Dimensional Form
In order to put the axisymmetric equations (k = 1) into a more
convenient form, the Probstein-Elliott transformation (ref. 8) is applied.
The coordinates of the axisymmetric body are shown in figure 1l(a). The

Probstein-Elliott transformation is

-~ [r,®D7°
dx = [-—L—] dx (13)
ay = HEaY) gy (14)

where rw(x') is specified by the body shape and r(x,y) is given by

r(x,y) = rw(x') + y cos a (15)

13



with

xl

/
x =f [1 + (drw/dx')g]l ® axe (16)

[¢]

A stream function that satisfies the continuity equation, equation (7),

is defined by

oY _ k
% = r pu (17)
U = Koy = K GY + TV (18)
Let
1; = JLL a=u v=v (19)
TV = v T = ¢ P~rt = Pr, (20)
Then the continuity equation with
ou = & (21)
oy
and
. . _zL L2 ¥y
pv 3% pv + = ox pu (22)
w w
has the form
d(pu) + o (pv) =0 (23)

dx dy

Applying the transformation to the momentum and energy equations (8) and
(12) yields the transformed equations

pu§—§+ pv-g%=-§§+a%[(l+kt§)uﬁ§§] (24)
X b4

14



oS o8 9 > Js B du

=+ pV o = = (l+kty)[uA—:+u.—-—u—:]

PaxT? dy ¥ oy He 5Y}

dH
S+1) e ;
—pu( He ) % (25)
where

A=l _ 1 . B (26)

=ea B, 1 _ 1
B=P -3+ B Br (27)

and t is the transverse curvature factor

t = 2L ch Q (28)
Ty
and
~ L cos a .2
Y= Y+ Ty (29)

For flows in which the transverse curvature terms are negligible,
letting k = 0 in equations (24) and (25) produces the equations of a
two-dimensional boﬁhdary layer. The transverse curvature terms may be
negligible for an axisymmetric flow if the body radius is large compared
to the boundary-layer thickness. The Probstein-Elliott transformation
is thus a first-order correction of the approximate equations for the

effect of transverse curvature.

Transformation of the Compressible
Boundary-Layer Equations
In order to further simplify the equations, two additional trans-
formations are applied. The Stewartson transformation (ref. 9) reduces
the equations to a set of eqguations for an incompressible flow. The
Dorodnitsyn transformation (ref. 5) removes the explicit dependence on
the molecular viscosity. The following analysis is presented in terms

15




of the Probstein-Elliott coordinates, X and ¥, with the understanding
X

that in the two-dimensional case x = and y = y.

Stewartson transformation.- In the Stewartson transformation the

following variables are introduced:

X y
p.a - p.a -
x=f5%e_dx Yaj’;)_e_aibp_dy (30)
o € %o (o} €o ®o e
and
e
U=—a—°-u (31)
e
2 ~ p. a
P a y p.a e e
v = €, eo> d _e_e_id;,'_,._o__o LV (32)
== \3 ]/ uvls P 2 [ p.2a p
Pe a, 3% e €0 e e e ey
With these the boundary conditions become:
At y = O: U=v=0
S = Sw
At § = oo U=U_=a M
e e e
o
oU/oY = O
S=20
At X=Xo: U= Uo(Y)
S = SO(Y)

It is assumed that S, He’ and the eddy-viscosity parameter, B8, transform

directly. That is,

S(X,Y) = S(X,y) (33)
He(X) = He(SE) (34)
B(X,Y) = B(X,y) (35)

16
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With the above definitions, the derivatives become

d _ X D, D PeBe 3 3y
9 . o2 ox =€ g ,91r 9 3
3% o OoX + 3% oY peoaeo X * 35 ¥ (36)

and

DX 3 ,%x% 3 _ Pl p 2 (37)
3F T3y X T 3g O pga, e N

Then with the definitions

- ¥
U= Y (38)
and
_ oY

it is easily shown, using relations (31) through (39) and the perfect
gas assumption along with the relations

- I
ue C Te (40)
(o} o
and
-a—E=
Sy 0 (41)

that the boundary-layer equations in the Stewartson plane are:

CONTINUITY

DU . dV o

&4--5?: (42)

17



MOMENTUM

dU
ou ouU _ 90 ou
U X + Vv 5 (s + l)Ue dx + Cv e, kTa [(l + kty)B BY]
P, 3, de P
+ _2]; oa o) Tl ~e <_g v - Uz) (43)
Pe%e s dax p e
e
ENERGY
o8 s 9 o8
UX+VaY—CVOB?[(l+kty)A ]
v 2
e a
() e 9o dU
+ C ?i; - 3¢ [(l + kty)BU BY]
a
€o
a p
e ‘e dH
-—=2 1 2.y (44)
ePe e dax

The derivatives dee/di and dHe/d§ are not transformed because H
and Tse are assumed to transform directly. Also, since He(ﬁ) is a
boundary condition and H, and Tse are related by

He(ﬁ) = cste(x)
nothing is gained by transforming their derivatives. Likewise, the
coordinate § is not transformed in the transverse curvature terms
because integration of the equations across the boundary layer is anti-
cipated and only corresponding values are needed in those terms. The
Chapman-Rubesin constant, C, is assumed to be at most a function of x.
In the work presented herein, C is evaluated at the wall temperature.

That is,

1/2 1T + 198.6

My, e,
C = (45)
““e < ) Tw T + 198.6

where Sutherland's law is used to evaluate the viscosity.

18



Dorodnitsyn transformation.- The Dorodnitsyn transformation (ref. 5)

converts the viscous equations in the Stewartson variables to a set of

non-viscous equations in variables defined as follows:

where

ax
)

<
]

1/2
Ue erz
NI\ Y ¥ (46)
e e
o o
— U
u= - (47)
Ue
Ue ) 1/2
v o
e o
U
- = e
= v + un — (49)
Ug
. du,
U = @

The boundary conditions in the Dorodnitsyn plane are:

At 17
At 7
At ¢

0:

u
s
u

du/3dn

el

v=w=0

(50)
SW
1
0 (51)
0
Eg(n)

(52)
8o (n)

19



As in the Stewartson transformation, it is assumed that S, H, and B

transform as parameters, so that

S(E,n) = S(X,Y) = S(X,y) (53)
H (&) = BH,(X) = H, (%) (54)
B(E,n) = B(X,Y) = B(X,Y) (55)

The reference conditions in relations (30) through (32) and (46)
through (48) have been chosen in calculations made in the present work as
the conditions at the edge of the boundary layer at the station Xq
where the solution is considered to begin. This is a somewhat arbitrary
choice, but is found to be most convenient. The reference conditions
could be those at any point related isentropically to the boundary-layer
edge at Xq- The reference length [/ 1is completely arbitrary. However,
note that for an axisymmetric body, the reference length [ in the
équivalent plane must be related to the length’ L in the physical system

by the transformation relation

L >
Y
,3=j X ax (56)
L
(o]
From relations (46)
AU
D _2 23 ., 23 _ Y% a3 a1 %% 5
X T ETX T U, s %ETU K o G7)
O
NG
2.2 2,0 o _ Y% %o 2 (58)
oY ~ oY 09¢ oY on U, £ Ve on
o] (o]
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The application of relations (46) through (49) and (57) and (58) to

equations (42), (43), and (44) is straightforward. The resulting equations

are:
CONTINUITY
éru —gﬂ 0 (59)
MOMENTUM
- du, = [ —2] e d au
S twas-=|s+1=-u|=—=+C== |1+ kty)B ==
- dH 2
1 K e (pe. - )
+2 K e (e_3 (60)
2 He ax P
ENERGY
2Cm —
=98 . =95 _ -~ Sya 95 e 9 Sypy Q0
u SF + w 3 C aﬂ [(l + kty)a aﬂ] + 11 m_ aﬂ [(l + kty)Bu 3
~ dH
- éL —1? (S + Lu (61)
e dx
where
m, = L5+ M (62)
and
= Peoaeo Meoﬂ
K = 3 M (63)
Pa%e e
and it has been assumed that
4aT
1 e _ 1 dHe
T ax H, ax
e

by virtue of the assumption of constant specific heat.
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Derivation of Ordinary Differential Equations

Development of integro-differential equations.- The partial differen-
tial equations (59), (60), and (6l) are reduced to a set of ordinary
differential equations by the introduction of certain approximating

functions. First, it is convenient to define a function

¢ = —= (64)
ou/9dn

Then, if ¢, S, and W are considered to be represented by approximating
functions in terms of the variable E, equations (59), (60), and (6l1l) can

be expressed as

ou , aw
¢ 3T *
—du - 7 Eg R 5) B
¢u§z—+w—(S+l—u)¢Ue—C _[(l+kty) ¢]
— daH” P 2
1 K e e - -
_E- ﬁ— —E¢<T-—u)—02 (66)
e
¢55_S+a§§-c—a—[(1+kt§)% a—f]
€ >T 5T du
2Cm - z dH
e -§_—[(1+kt§) ]—3<1'%1-]+HL = ¢ + DT =0, (67)
e Ju e

where o,, 0,, and 0, differ from zero by virtue of the use of approxi-
mating functions to represent ¢, S, and W. The exact form of the
approximating functions will be examined later. If the errors 0,5 Ogs
and o, are required to be orthogonal to three sets of linearly
independent functions fi’ 95 and hi’ respectively, then

f £i0, du = 0 i=1,2,...,n (68)
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f g;o, du =0 i=1,2,....n (69)

1
j’ h.o, du=0 i=1,2,...,n (70)
o

Requiring that

_ g%
fi = fi
(71)
Jf,
9; < 'Tl = f;'
ou
and
* =
fi(l) 0

and adding equations (68) and (69) gives, after some preliminary manipulation,
1 1 . 1

S (£%0) au + o (£%W) du e £ (s + 1 _2) du
o} SE iv u e iv u -y [0) i - u u
o)

oy u e

1 K e o (Pe _ Y a5 -
-5 5 p£} p-u)du——o (72)

Note that the semi~infinite interval in the independent variable mn has
been transformed into the more convenient finite interval [0,1] for the
independent variable u.
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Following the same procedure as for equation (72) it is required

that
\
— *
£, = sf;
— *l
g; = S > (73)
_ *
h, = £/ )
Then adding equations (68), (69), and (70) gives
1 1 1
— dau 1 2
f¢ai(f’-‘sﬁ)dﬁ+f%(8fﬁ)du-%—a—e PSE¥ (s + 1 -TW) au
£ . ou e g .
o) o o
l ’ -
-cf Sf;i[(1+kt§)i +f’.‘-5:[(1+kt§)-i-5§]
o) ou ¢J * ou ¢ Ju
2mg * ~ B -] —
+l+m fi_: (l+th)—¢"u du
e du -
= du_ p >
K e * T 1 w* ! e — - _
+E"g [fi¢u(S+l) _3fi S¢<—p—-u)] du =0 (74)
€ o

The integrals in equations (72) and (74) can be evaluated in a straight-

forward manner if the condition fi*(l) = 0 1is considered to be satisfied
by requiring that

- —_
fi—l-u

and f; is required to be bounded as U approaches 1 (r approaches ).

Equations (72) and (74) then reduce to two integro-differential equations
in the dependent variables ¢(¢£,7) and S(£,d), namely
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2 ! - £*' (0)B(¢,0)
d *— —  _€ _ oy e* o i d
EE _[ ¢fiu du - - j. o(S + 1 u )fi da + C 3(E,0)
[e} o]
2 ff"B = dH S p 2 ,
+cf (1 + kt¥) l¢ dE-%Hi—?[ —‘Se——_>¢f;dﬁ‘=0 (75)
5 e dx 5
and

i 1
U 2  —
f PSETTE du - = f (S + 1 -1 )¢pSE: au
U 1
[e]

, £¥(0)A(€,0)
* B(£,0) i DS AAR- -}
St SR Y ) MY ) ey I
u=0

+

1
~ 1] * ! as B
cf (1 + kty) {[Sf’i‘ + £ —_]—¢
A o

— dH ; p 2
X —= f (s + 1)o£}T - = (—e- -3 >Sf;.*_'¢ a3 = 0 (76)
e dx - P

Note that equations (75) and (76) were obtained by linear combinations

of the equations (68), (69), and (70) using particular forms for the

weighting functions f., d; and h,. It is clear that the conditions

(68), (69), and (70) are not necessary conditions for equations (75) and
(76) to be valid. 1In particular, this procedure offers no information
to aid in selecting either the weighting function f; or the forms of the

approximating functions for ¢, S, and W. These functions must be deter-

mined on the basis of the boundary conditions and other conditions the

functions must satisfy.
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Selection of approximating functions.- The choice of functions to

represent the variables ¢ and S 1is not arbitrary. The functions must
satisfy the boundary conditions as well as certain compatibility relations
for boundary-layer flows. Specifically, the boundary conditions are:

finite

At u = 0O: ¢

S =295
w

*

f. = bounded

=]

[ S O} ©
1
o

The Weierstrauss approximation theorem applied to the differential equa-
tions (65), (66), and (67) alone, that is, without boundary conditions,
suggests that the functions ¢, S, and w could be approximated uniformly
by polynomials on the closed interval [O,l]. However, caution must be
used when applying the Weierstrauss theorem to cases with boundary condi-
tions. In the present case the condition on ¢ at U = 1 cannot be
satisfied by a polynomial alone. Furthermore, the condition that S be
exactly equal to zero at u =1 1is a stronger condition than continuity
as required by the Weilerstrauss theorem, so that uniform convergence
cannct necessarily be guaranteed if the function S is represented by
polynomials. This is especially important in the transitional and

turbulent regions as will be demonstrated subsequently.

Velocity-gradient function, ¢: To avoid the difficulty of the infinite
condition on the function ¢ at U = 1, Dorodnitsyn (ref. 5) introduced a

profile of the form

n .
_i-
o= ——= PCAGE (77)

i=1

In references 2, 3, and 4, it was shown that a three-parameter (n = 3)
function could adequately represent both laminar and turbulent profiles

except in the vicinity of a separation point. At separation, the polynomial
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formulation of equation (77) is inadequate for any order. The three-
parameter formulation was used in the present study and was found to
fepresent_adequately transitional profiles as well as laminar and turbu-

lent profiles.

Enthalpy function, S: In previous applications of the method of
integral relations to boundary layers (refs. 2, 3, 4), the assumption was
made that the Prandtl number is unity. Under that assumption, the energy
equation takes the same form as the momentum equation and the total tempera-
ture distribution in the boundary layer is a linear function of the normal-
ized velocity, u, so that the dependent variable S can be represented by

S =15 (1 -1 _ (78)

However, as shown by Schlichting (ref. 10), for non-unity Prandtl number,
the velocity and thermal boundary layers are not congruent. For a
laminar boundary layer on a flat plate, with constant pressure along the
plate, Schlichting shows that the temperature in the boundary layer is

2 —
T = Te[l + ere](l ~T) o+ (T, - T ) (L =W (79)

This means that the enthalpy profile parameter, S, is

—_ y, = 1 —

S = (1 = u) SW + l_"_'—ri meu] (80)
In a turbulent boundary layer, Pinckney (ref. 11) has shown that the
temperature profile is a fourth-order polynomial. Converting Pinckney's

static temperature function to the present notation yields

S = (1L - 1) {sw + [Saw(Pr)l/s +5,(1 - Prl/s)]ﬁ

l +m
e e

m . 2 3
1 e K —
+ a (u +u i} (81)
where K is determined by requiring the total energy deficiency of a
boundary layer, obtained by integration across the boundary layer, to be
equal to the energy removed from the boundary layer upstream of the local
station by radiation, surface heat transfer, or any other means. 1In the

present work, the enthalpy function was represented by
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m ) }
— i
S = (1 - u) Sw + Z E;u (82)
i=1

This allows continuous calculation of the enthalpy profiles in laminar,
transitional, and turbulent flows. For laminar flow on a cooled flat
plate, the formulation was found to converge uniformly so that an adequate
approximation was obtained with a profile of any order greater than m = 2.
For turbulent flow, the combination of an approximate eddy-viscosity
function and the condition at u = 1 was found to cause polynomials of
order greater than m = 2 to develop waves which rendered the polynomials
inadequate to represent the variable S. The details of a study of the
best order for the polynomial in equation (82) will be presented in a

subsequent section.

In summary, theé functions chosen to represent the variables ¢ and

S were
1 —i-1
¢ = —— E: C;(€)u
1 -u h
i=1
and
m .
_ - —J
S = (l—u)<sw+ Z Eju
j=1
where the values n =3 and m= 2 were used for most of the work

reported herein.

Selection of weighting functions: In order to assure that the equa-
tions to be derived from equations (75) and (76) are linearly independent,

the weighting functions fi’ g and hi must be families of linearly

i’
independent functions. Furthermore, the functions must be bounded as u
approaches 1. The functions fI chosen for this analysis were the same
as those used in reference 2, namely

i-1

£, = (1 - W (83)
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Develobment of ordinary differential equations.- Substitution of

equations (77), (82), and (83) into equatioas (75) and (76) results in a
set of six ordinary nonlinear differential equations in the six unknowns
C,(£) and E,(§). Since the C;, and E; are functions only of the
independent variable, £, the resulting equations may be expressed in terms
of the independent variables, x and u. Thus, with expressions (13),
(36), and (57),

dCi L o* 1 -
- () 4 (24)
: K
and
dE; <rw o 1 -
&= \1/) T (85)
The differential equations to be solved are then
dCi
[aij] ax - Bi (86)
and .
dE.
[a']—l= B. (87)
ijd dx i
where
1 i=1,2,3,...,n 88)
a. = =
i i+ .
J J j = 12293"")n
= Cyp ’ i=1,2,...,m
ai.j=Z(i+j+k)(i+j+k+l) (89)
k=1 i=1,2,...,m
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] rw) 1 . . , cB (£,0) £ (0)
By T <T ? {C(l -1 [lPi-l - i~ 2)P:i_-z] = C,

1 dUe 1 1+ m, dHe
+ [E—e— dx + 2 He dx (1 + SW)le + Z12] (90)
and
2k £%' (0)8(¢,0) £%(0) E, -5
BI = <.ri> L —CS 1 E"’ -C i 1 - w
t L K w C, Pr <,
-cf-vo,_, -ioy] -cti -n[u - 2R, - 1Ri_l]}
dHe
+ i dx [swzi+1’4 (L +s )214 - 215]
du du
1 1 1 e .
+[f1_ ax t2 1 +m) g dx][(l_l)zl 1,6_lzi6]
e e
as n s
-——2 5 - W
dx “ia Z (1i+ NE+ 3+ 1)
j=1
m
+ | = = (o1)
(L + J+%XK)(1+ 3+ %k + 1) dx
k=1
in which
ds dH H dH
w_ Ll _w_ _w __e (92)
dx H dx H dx
e e
P 2
1 dy 1 o 1+ me d Pe Pe YMe dHe
e e e eo eo

30



_ > ~ [a} _i—l - _ > —
P, —f (1L + kty) s du —f F, du (94)
(o) (]
1
2m
- 3s A e B g =
Qi_f[—<l+8>+l+m Bu]Fidu (95)
5 du e
| .
1 .
Ri =f SFi du (96)
o)

m _i43 i1 -3
+ (1 + m Z [lu+lE.]—ln (1L - - Z [uT:DCl} (97)
S 3=

(1 - 3)cy
Z(l+3—2)(l+3—l) (98)

n .
Z =7 - (1 -3 - kB
(i+n-1)(i+n)+Z(i+j+k-2)(i+j+k—1) €y
Jj=1 k=1

(99)
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Nusselt Number

In this work, the Nusselt number is computed from the Stanton number

as
Nu = (Pr) (Re )St
Displacement Thickness
[20]
5* =f < dy
o

(l+me)(l+Sw) Ai-'—

k

(=
m

+l+m)Zl ]1} (106)

Momentum Thickness

n
= C.
- L K E: i .
- <rw> "\/-;(; h i+1 (107)

Enthalpy Thickness

(eg. (l08) continued on next page)
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m
£3
SCEERIDY ﬁ—j—ﬁ]ci}

3=1

Velocity Profile

(108)

In the two-dimensional system or the Probstein-Elliott system, the

~

y coordinate is given by equation (97), and for axisymmetric flow, the

physical coordinate is
1/2
r 2
- w
Y [(cos a

2Ly
CcOoSs QO

Velocity Gradient

y/L)=<)kM <—> ( )

If k=0, then L = /.

Mach Number Profile

r

cOs Q

n

i=1

M u
M m 1/
e ' iy 2
(1+m)l+(l—u)Gw+ZEju> - m.d
j=1
Temperature and Density Profiles
0 m
T _ e _ = =] -2
Te-p—-(l+me)l+(l-u)<sw+ZEju> - m.u
1
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Initial Conditions

In order to solve the differential equations (86) and (87), initial
values of C,; and E;, must be specified. The required values can be
determined in several ways. The ways that have been found to be most

useful are discussed in this section.

Similarity solution.- For laminar flow on a flat plate at uniform

temperature with constant pressure, similarity is known to exist.

Solution of equation (86) under those conditions yields

C; = K, (%)1/2 (113)

where K, is a constant. So the initial values of C;, are simply

/
e, =, (%) (110

For the laminar similarity case, the equation (86) does not depend
upon the E.. Therefore, it is easy to show from equation (87) that for

the laminar similarity case

dE.

l—
o= = 0 (115)

and equation (87) can be expressed as
{Aij} E; = B, (116)
where

n *
ij = (i + J+k)(L+ 3 +%k+ 1) C Pr J1

1 ; 5 (p! ) ;
N (1 + E) C {(1 - 1)[3(Pi+j_2 - Pi+j_l) - Pj_+j—1]

- i[3rh g, - Ry - Pi+j]}

+Ci - 1)[(1 = 2 (Pl g, = Pl - iRl - Pi+j)] (117)
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and

I * n . *'
B - s Cfi(O) _ }: Ck _ Cfi (0)
i \ C, Pr (1 + X)(i + kx + 1) C

k=1
1 . ' Lo R . 1 '
+C (1 o [(1 - e}, - lPi] + Cc(i - 1)[1(1:.1_l - 2))
' ' 2me 1 ' 1
- G-, e ] - T+m © (-3) L6 -ve) - aef,]
(118)
where
l for =1
& , =
J 0 for 3> 1
and
1 _i-1
L u —
Pi = j’ ) du (119)
o]

Solution of the equations (116) for the values of E; is accomplished by

substituting the values

and

into equations (117), (118), and (119).

The values Ki have been determined by computing the solution to the
equations (86) from arbitrary initial conditions. The similar solution is

obtained asymptotically.. The results for n = 3 are

K, = 3.006443 (c)*/?



-3.041346(C)*/2

N
It

K 0.7048994 (c) /2

]

3

The same procedure as used to obtain Ky in the laminar case can also be
used to compute initial values of c; and E; for a fully turbulent
boundary layer on a flat plate or for higher orders of approximation

(n > 3). This procedure was discussed in reference 2.

Direct fit of known velocity and temperature profiles.- If the

velocity profile, y versus U, and the total temperature profiles can be
known at the initial station, the required values of E; are easily
obtained from equation (82) by substituting the values of S and U at
m points in the boundary layer at that station. Then, the required
values of C; are obtained by substituting the n values of y corres-
ponding to the n values of u into eguation (97) and solving the
resulting set of n algebraic equations simultaneously. Note, however,
that for an axisymmetric configuration, the coordinate y must be
transformed to the Probstein-Elliott value, y, before equation (97) is
used. It must be noted that this technique depends on the choice of the
points at which values of U and T are obtained in the boundary layer.
Thus, 1f all points are near the edge of the boundary layer, a different

fit may be obtained than for points near the wall.

Known boundary-layer parameters.- A third method of obtaining initial

values of C; and E; for a three-parameter (n = 3) velocity gradient
profile depends upon knowledge of the parameters Cep S, &%, and 6 plus
knowledge of the total temperature at (m - 1) values of u. The skin-
friction coefficient, Ces is used to obtain C;, from equation (104).

Then the parameter E, is obtained from equation (105) with the known

value of the Stanton number. The (m - 1) values of Tt are then used
in equation (82) to obtain the remaining E;. Finally, the eguations (106)

and (107) are used to obtain the remaining two parameters, c, and C,.

This method can be used for any order of approximation on the enthalpy

profile, but is limited to a three-parameter velocity-gradient profile.

Least squares fit of velocity and temperature profiles.- A fourth

method of obtaining initial conditions consists of solving the the required
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parameters from known distributions of y versus W and S versus u
by the method of least squares. This method was used in the work of
reference 2. The method was not used in the present work, but is outlined

here to generalize the presentation.

Least squares fitting of the enthalpy function is straightforward.
The residual equations are written in the form

R; = 5; - (1 - ui)Sw - (1 - ui)Elui
— —2 — —m
- (1 - ui)Ezui - eee = (1 - ui)Emui

and the coefficients E; are obtained by solving the set of equations

given by

Z Ri SE . =0; j=1,2,...,m
i=1 J .

where m' is the number of data points.

Fitting of the velocity profiles is a more complicated process.
First the data must be expressed in terms of a distribution of Jdu/Jdy
versus u. That is,

() - 25
an /.

1 n :
-]
E c.a”
y J
j=2

The residual equations are then written as

— n ]
—J-1
%5> Z c.u
n/ i 3 1 - ﬁi
Ry = T n
‘=1 1—J-1
Z ¢ Z C5u4
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An iteration procedure is then used to compute the required values of Cj.

First it is assumed that

for all Hi and the Cj are computed by least squares. Then these Cj
are used to compute the denominators of the residual equations and new
values of Cj are obtained. This is repeated until successive iterations

yield the same solution within a desired degree of accuracy.
CALCULATION OF TRANSITIONAL BOUNDARY LAYERS

As discussed previously, the only thing that distinguishes between
laminar, transitional, and turbulent flow in the present formulation is
the parameter B 1in the dissipation integrals P., Qy, and R; (egs. (94),
(95), and (96)). Thus, the requirements of calculating transitional flow
are (1) knowledge of the point where transition begins, (2) a function
representing the turbulent eddy-viscosity B, (3) a modulation function to
cause the parameter B to go smoothly from its laminar value of unity
to its fully turbulent distribution, and (4) knowledge of where transition

ends.

In this section, the methods chosen for treating the requirements for
calculating transitional boundary layers will be discussed. For greater
detail regarding the theoretical aspects of boundary-layer stability and
transition, the reader is referred to the many excellent references on the
subject. In particular, the report by M. V. Morkovin (ref. 12) is an
excellent review of all aspects of the transition problem and contains an
extensive list of references for the reader desiring detailed knowledge of
specific topics. The report by L. Mack (ref. 13) is, to the author's
knowledge, the most current and comprehensive study of laminar boundary-

layer stability theory.
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Prediction of the Transition Point

At the present time, the transition point cannot be predicted with
confidence by purely theoretical methods. While sophisticated methods of
solving the equations describing the stability of the laminar boundary
layer have been developed in recent years (refs. 13, 14, 15) these methods
are unable to predict the point where the growing linearized disturbances
characteristic of boundary-layer stability theory become large enough to
trigger the breakdown which creates the transition region. A promising
method of approach was taken by Donaldson (ref. 16) who devised a model
of the transitional boundary-layer two-dimensional in the mean flow but
three-dimensional in the disturbance flow. The model was apparently
capable of predicting an onset of transition boundary for the case of
fairly large disturbances introduced into a flat plate boundary layer.
However, although the method appears to be an effective way of studying
the transition process, it has not been developed into a general engineering
tool. Purely empirical methods are also limited in application due to
the myriad of factors affecting the transition. Some of these factors are
Reynolds number, Mach number, unit Reynolds number, pressure gradients,
nose bluntness, surface roughness, free-stream turbulence level, angle of
attack, and radiated aerodynamic noise. In a recent paper, Morkovin (ref. 12)
indicates that even though a large amount of experimental transition data
exists much of the information has not been recorded in sufficient detail
to allow the separation of the effects of all the different parameters.

For this reason, the approach usually taken for engineering applications

is to try to correlate data with certain parameters or groups of parameters.
Even though limited in scope depending upon the parameters chosen for the
correlation, this method at least can provide a first approximation over

a reasonably wide range of parameters.

Definition of the transition point is difficult since experimentally
transition takes place over a finite region and different kinds of data
produce different indications of the point of transition. Optical tech-
niques such as schlieren photographs indicate a point of transition which
is somewhere near the middle of the transition region (ref. 17). wall
temperature or recovery factor determinations indicate a peak value which
is also considered by Brinich (ref. 18) to correspond approximately to
the mean point of the transition zone. The only guantities which yield

well-defined points near the beginning of the transition zone are the
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Stanton number, the skin-friction coefficient, and the pressure indicated by
a pitot probe placed near the surface (surface pitot pressure). Those
guantities exhibit maxima and minima. The minimum of any of those guanti-
ties occurs near the point of onset of transition. It is not clear,
however, that the minimum values of each of the three quantities would

necessarily occur at the same point.

It was found that the calculated boundary-layer quantities, skin-
friction coefficient, Cg, and Stanton number, St, tended to develop the
same form of variation in the transition region as the imposed inter-
mittency distribution. A well-defined minimum is obtained for both
quantities. On the other hand, the minimum of the surface pitot pressure
distribution is less well defined. The surface pitot pressure is a
quantity which depends on the velocity profile in the boundary layer.
Because of this, the surface pitot pressure distribution depends to some
extent on the size of the probe relative to the boundary layer, and on
the position of the probe within the boundary layer. 1In addition, the
possible effect of the probe on starting the transition cannot be
dismissed. For these reasons, correlations based on measurements of sur-
face quantities such as Cf or St are believed to be the most reliable

for predicting the onset of transition.

In the present work, two methods are used for estimating the location
of the transition point. These methods are (1) correlations based on
collection of experimental data over a broad range of experimental condi-
tions and (2) use of the experimental location of transition. When the
transition point is determined by one of these methods, it is used as a
direct input into the analytical solution. The remainder of this section
will be devoted to discussion of correlations for the transition Reynolds

number.

In recent years, several correlations have been developed for
predicting transition Reynolds numbers. Some of these are described in
references 19 through 23. Pate and Schueler (ref. 19) and Pate (ref. 20)
showed that data on flat plates and cones in wind tunnels could be
correlated using parameters characteristic of the boundary layer on the
wind-tunnel walls. However, that kind of correlation is restricted to
use in wind tunnels and hence cannot be extended to predicting transition

on models in a ballistic range or in free flight. Deem et al. (ref. 21)
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developed a correlation for sharp and cylindrically blunted flat plates
at zero angle of attack based on Mach number, unit Reynolds number,
leading-edge bluntness, leading-edge sweep angle, and wall-to-adiabatic=-
wall temperature ratio. Their correlation, applicable only to wind

" tunnels, predicted the Reynolds number of the end of transition within a
factor of less than 2 for most of the data used. This correlation
was developed into a set of charts by Hopkins, Jillie, and Sorensen
(ref. 22), who pointed out that the correlation can provide only a first
approximation of the transition Reynolds number expected for flight
vehicles. Correlation parameters developed at NASA Langley Research
Center by Bertram and Beckwith (ref. 23) were able to predict the onset
of transition Reynolds number for sharp-nosed cones within a factor of

2 when wind-tunnel, ballistics range, and flight data were considered
separately. Researchers at Langley Research Center have recently
developed an improved correlation for the onset of transition on sharp
cones in wind tunnels and ballistics ranges. The specific relations for

these correlations will be presented subsequently.

The correlation relations to be presented in this report will be
directly applicable to sharp-nosed cones or sharp-leading-edged flat
plates or hollow cylinders. The relations may be used as first approxi-
mations for determining the transition point on other configurations with
sharp noses or leading edges. The effects of nose or leading-edge
bluntness and pressure gradients have been studied by a number of investi-
gators (refs. 24, 25, 26). However, a completely general correlation
accounting for all the various parameters affecting the transition point

does not exist at this time.

The correlations recommended for use with the present theory are as

follows:

Sharp Flat Plates

N 2[0.95 % o0.167 s']
_ 1 0.8 10
x. = 3 Ry (120)

t 1 h 2
@.094 M+ 1.22 —w)
e he
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where

h Q-7 exp (-o0.05S MZ)
_ Cw
s' = Mg <}1 >
e

This relation was obtained by dividing the expression given in reference 23
for sharp cones in wind tunnels by 3. A sample of the success of the
relation is shown in figure 2 where the predicted value of Rext is
compared with experimental values from different sources (refs. 18 and

27 through 32 and unpublished data from LRC). The prediction is within

a factor of 2 for most of the data.

Sharp Cones

Wind Tunnels and Ballistics Ranges*

n' o [F+Gs' + I(s")?]

Rex = Re1 (121)
t
where n', F, G, and I depend on the experimental environment as
follows:
Facility n' F G I
Wind Tunnel 0.4 4,5158 -0.29861 0.027300
Ballistics Range 0.6 2.5955 -0.13680 0.014578
Free Flight (ref. 23)
0.6 2[i1.32 + o0.130 s']
Re = % Re, 10 . (122)
t h
0.094 M® + 1.22 —ﬂ>
e he

For estimating the transition Reynolds number on blunt leading-edge
flat plates or hollow cylinders or other two-dimensional or open-nosed
axisymmetric configurations, the reader is referred to the charts of
Hopkins, Jillie, and Sorensen (ref. 22). It must be remembered, however,
that those charts refer to the end of the transition region. A corre-

lation for estimating the length of the transition region will be discussed

*The author gratefully acknowledges the cooperation of Mr. P. Calvin
Stainback of LRC in providing this correlation relation.
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in a subsequent section of this report. For blunted cones or other closed-
nose axisymmetric configurations, the work of Stetson and Rushton (ref. 25)
and Moeckel (ref. 26) and Zakkay and Krause (ref. 33) may be helpful.

Some effects of nose bluntness on cones were studied experimentally by
Stainback (ref. 34) and by Softley, Graber and Zempel (ref. 35). However,
the generality of the results is uncertain since each investigator
examined flow over a limited range of Mach numbers and Reynolds numbers.

Turbulent Eddy-Viscosity Model

Several authors have developed eddy-~viscosity models for use in
solving the turbulent boundary-~layer equations. Some of these models are
described in references 1,.2, 36, 37, and 38. Several models are compared
in references 36 and 39. The criteria used for choosing a particular
model for the present work were that the model yield results which agreed
reasonably well with those of other models and that the model formulation
be as simple as possible. The latter criterion dictated that the best
model for the present theory would be one which could be described in
terms of the independent variable u rather than the boundary-layer
coordinate y. This makes calculation of the actual velocity profiles
at each integration step unnecessary except at stations where they are
desired for output, or in cases where transverse curvature is being

accounted for, thus maximizing the speed of the computer program.

The eddy-viscosity model employed in the present work is a two-layer
model based on the work of Kleinstein (ref. 38) and of Clauser (ref. 40).
Kleinstein derived an expression for the eddy-viscosity of the inner layer
of an incompressible boundary layer (the laminar sublayer and the law of the
wall region). Clauser proposed that the eddy viscosity in the outer layer

was constant at the value

B = 0.0168 Re (123)

6*

for an incompressible boundary layer.
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Inner Layer Eddy-Viscosity Model

Extension of Kleinstein's model for the inner layer to compressible
With the definitions

flow is straightforward.

the turbulent shear stress

‘T

where it has been assumed that

becomes

from which

a
1]

+ _ Pt
Yy i, Y
ot = u/u*
u* = (Tw/pw)l/2
€ = pe/u
u_ = ('r/p)l/2
+ _ Y
u_ = ;;
- Qu
= (u + p€) ay
— _ Qu
—pu'v’ = pe 3
+
ﬁL 1+ ¢ QHI u*®
w dy
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w \ v
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and

RV +
B=1+¢c =X (ut)2 X (133)

Tt
For incompressible flow, Kleinstein found that Prandtl's mixing
length theory gave

+
€+ - kz(y+ 2 du

)
1 ay*

(134)

For compressible flow, the assumption is made that the fluid properties do
not change significantly in a distance dy. The major contributions to the
turbulent shear then come from the velocity correlation u'v' so that with
the mixing length hypothesis € = kfyz(du/dy) and the definitions (124)
through (127), the expression (134) becomes
et = x2(yH® "v_w ‘—il‘-} (135)
dy

For large distances from the wall such that et is large compared to

unity, equation (133) can be expressed

+ v
al e e 2 120
dy €
so that with equations (135) and (136)
v
+ _ + 4
€ =kyu, - (137)

Retaining Kleinstein's definition, a new variable is introduced, namely

u
+ _ du
U = f - (138)
o

where u: can ba variable due to variations of both the turbulent shear
and the density. Following Kleinstein, it is easily shown that the
turbulent eddy-viscasity can be represented by the expression
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v k k, U

B=1+—2 ol {e N A (klU+)2]} (139)
’ 2

where the values 0.41 and 7.7 are used for k; and k2, respectively.

With the conditions

qQ
]
K

y = O:

w
9T _ 9P
oy ox

y = 4: =0
9T _
8y_o

it can be shown that the variation of the shear stress in a boundary layer

can be represented by

o i@ e @] e [F - @]

(140)
For an equilibrium turbulent boundary layer in which dp/dx = 0 and

Lew
it is easy to see that the shear stress can be assumed to be constant for
the inner layer calculations, since values of y/6 at which significant
deviations of T from T, occur require values of u near unity, corre-
sponding to the outer layer of the boundary layer. Of course, flows with
significant adverse pressure gradients may require the full polynomial
expression. In the present work it was always assumed that 71 = Ty
throughout the inner layer. This assumption is the "Prandtl hypothesis"

which results in the classical law of the wall.

The Kleinstein model of the inner layer eddy viscosity is conveniently

expressed in terms of u as follows. Since

- = —;— —= uZC (141)
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it follows that

ut = ulp/n) 2 = T(2/cp) (o /0] (142)
So
u . 1/2
ut =f [Ci 2 —9—] au (143)
5 £ Pe

In the computer program written for the present analysis, the expression
(143) is evaluated using simple trapezoidal integration for 11 values of
u.

Outer Lavyer Eddy Viscosity

Herring and Mellor (ref. 36) extended Clauser's model to compressible

flow by defining the eddy viscosity in the outer layer as

u
= & 5%
B = 0.0168 v oy (144)
where 6; is called the kinematic displacement thickness defined by
0o
by =f (1 - ®) dy (145)

o

Other authors (refs. 1 and 41) have used an intermittency function in the
outer layer to cause the eddy viscosity to decay to zero at the edge of the
boundary layer. The major effect of such an intermittency function is
confined to the region U > 0.9. The intermittency function is thus of
secondary importance in calculation of the boundary-layer solutions. For
this reason, no intermittency function was used in the outer layer in the

present analysis.
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Modulation of the Eddy Viscosity
in the Transition Region
The functional form of the eddy viscosity in the transition zone is
defined in the present work as

B.(x,y) = 1 = [B0x,y) - 1] riw) (146)

where TI'(x) is called the intermittency. The intermittency must satisfy
the conditions that ' = 0 when x = X, and I'=1 when x is far
downstream of x,. In the present work, the intermittency is specified
in one of two ways: (1) an analytical expression derived from considera-
tions of the probability of the flow'being turbulent at a given station
or (2) an empirical distribution. The analytical function chosen to
represent ['(x) is the Gaussian distribution derived by Emmons (ref. 42).
In this analysis, the function is expressed as

—7\(x-xt)2
r=1-e (147)

In the present analysis, the parameter A is determined by calculating the
length of the transition region and requiring that TI' = 0.95 at the point
of maximum skin friction or heat transfer. This process will be described
in greater detail in a subsequent section concerned with correlation of

the length of the transition region.

Emmons derived the intermittency function after observing turbulent
spots form in a water flow. He introduced a source-density function
(related to the parameter 1A) to describe the production of turbulent spots,
and showed that the probability of the flow being turbulent at a given
point is the intermittency factor, I', given by equation (147).

The existence of turbulent spots in a boundary layer has been con-
firmed in a water flow by Mitchner (ref. 43), by Schubauer and Klebanoff
(ref. 44) in low-speed air flows, and by James (ref. 45) in air flows at
Mach numbers from 2.7 to 10. Emmons' assumption that the spots grow
independently of each other was confirmed by the experiments of Elder
(ref. 46). Dhawan and Narasimha (ref. 47) used their own and Schubauer
and Klebanoff's (ref. 44) experiments to show that Emmons' source density
function could be best represented by a delta function in x, implying
that the spots originate essentially along a single line transverse to the
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flow. Nagel (ref. 48), in extending the theory to hypersonic flow, showed
that a key factor in the source density function is the frequency of spot
formation. That frequency was found to reguire the existence of a
characteristic length which was identified as the average lateral spécing
of the turbulent spots. This length was found to be related to free-
stream disturbances which could be related to wind-tunnel size, model
vibrations, or other external causes.

The intermittency distribution across the boundary layer in the
transition region is a function of the shape of the turbulent spots.
Schubauer and Klebanoff (ref., 44) showed that at low speeds the spots have
a nearly constant cross sectional area close to the surface and taper
toward the outer edge of the boundary layer. Owen (ref. 49) reported
that the intermittency distributions across the boundary layer in the
transition region were similar to those reported by Corrsin and Kistler
(ref. 50) in turbulent boundary layers. That is, the intermittency varies
from some maximum value near the wall to zero toward the outer edge of the
boundary layer. The intermittency distribution in the direction normal to
the wall is of secondary importance in relation to the streamwise distri-
bution in determining the mean profiles and the heat transfer and shear
stress at the wall. This is especially true in the present analysis,
since the intermittency is nearly constant across the inner part of the
boundary layer from which come the major contributions to the integrals
involved in the solution. For this reason, in this work no intermittency
distribution was applied in the direction normal to the wall.

That Emmons' theory may not be generally applicable was discovered by
Morkovin (ref. 12), who found that in plotting the distributions of a
number of surface variables from different experiments through the transi-
tion region, only about half of those examined could be fitted to the
probability distribution curves of Dhawan and Narasimha (ref. 47). Likewise,
the present author found that for some hypersonic flows the intermittency
tends to increase faster toward the end of transition than the low-speed
probability theory predicts. One reason for this may be that some of the
higher instability modes found by Mack (ref. 13) become excited and
contribute to the breakdown so that the source function is not adequately
represented by a single line source, but should include new sources intro-~
duced downstream of the original transition point. 1In the absence of a
more satisfactory theory of the spot distribution in hypersonic flow, the
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simple probability theory of Emmons was chosen to be used in the computer
program written for the present theory. Provision was also made for the
input of an arbitrary distribution of the function TI'(x). 1In this way,
known deviations from the Emmons function can be accommodated in the
computer program. In the test calculations to be discussed in this
report, the experimental intermittency distributions were used whenever

they could be clearly determined.

It is important to note at this point that the capability of using an
arbitrary distribution of TI'(x) allows the determination of the experi-
mental intermittency distribution from data. Thus, the computer program
can provide a useful engineering tool for studying hypersonic transition
or transition under other circumstances where the simple probability

theory is inadequate.

Correlation for the Extent of the Transition Zone

In the present work, the parameter A in equation (147) is determined
from relations describing the length of the transition region. The length
of the region is defined as the distance between the minimum and the
maximum of the heat transfer, skin-friction coefficient, or surface pitot
pressure. A typical distribution is shown in figure 3. It was found that
when the expressions (139) and (146) were used for the eddy viscosity, the
minimum of the calculated heat transfer and skin-friction coefficient
occurred at approximately I' = 0.0l, and the maximum occurred at approxi-
mately ' = 0.95. These values were used to determine the point of onset
of transition and the parameter A so that if the Reynolds number of the
length of the transition region is known, the location of the point of

onset of transition is given by

Re = Re - 0.061 Re (148)
Xt Xmin AX

and the factor A 1is given by
A= 2.66/(nx)% (149)

In most cases, due to the uncertainty involved with locating the transition
point, the correction described in equation (148) is a minor one and may be
neglected. The correction is necessary if the minimum point is known from

specific data.
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In reference 47, it is shown with data for a limited range of Mach

numbers that the quantity Re could be represented by the expression

AX

0.8

Re =5 Rex
t

AX

Potter and whitfield (ref. 31) studied the transition zone over a broad

range of Mach numbers (2 < M £ 8). They observed that the parameter ReAx

igs independent of the unit Reynolds number and leading-edge geometry, and

is basically only a function of the transition Reynolds number and the Mach

number. That is,

ReAX = f(ReXt,Me)

Some insight into the variation of ReAx with Mach number can be
obtained by examining the work of Nagel (ref. 48), Lees and Reshotko
(ref. 51), and Mack (ref. 13). Nagel showed that the source function in
the intermittency (eq. (147)) could depend upon the frequency, £, of the
Tollmien-Schlichting wave most unstable with respect to the breakdown
process. Nagel further showed that the Reynolds number based on the
distance from the onset of transition to a given point in the transition
region was inversely proportional to the square root of that frequency.
That is,

ReAx = Rex - ReXt = 1/£f

Lees and Reshotko showed by boundary-layer stability theory that the most

unstable frequency was inversely proportional to M®  for high Mach numbers.

Thus, the length of transition Reynolds number, ReAx’ would be linear with

Mach number for high supersonic and hypersonic flows.

Formulas for ReAx were developed by examination of experimental

data. For flat plates and hollow cylinders, the data of Potter and Whitfield

(ref. 31) were used. For cones, data were obtained from references 20, 28,

34, and 52 through 61l. The data of Potter and Whitfield were found to

suggest a form

53



The function f(Me) was assumed to be linear so that

- B a
ReAx = (A + BMe)Rext (150)

The parameter o was determined as the slope of a plot of 1log (ReAx)
versus log (Rext) for fixed Mach number. Thfp the parameters A and

B were determined from a plot of ReAX(Rext)‘cz versus Me’ For cones,
this was a trial and error process, since the data exhibited a consi-
derable amount of scatter. Thus, the formula arrived at can be considered
a first approximation for arbitrary flow conditions. The values obtained

for the parameters are as follows:

Configuration a A B
Flat plates, hollow cylinders 0.575 237.5 61.8
Cones .6 20.0 34.5

Comparisons of the predicted value of Re with experimental values from

several sources are shown in figure 4. A%? data were obtained in wind
tunnels except for one free-flight case shown in figure 4(b). Some of

the scatter of the data can be attributed to the gquality and quantity of
available data. In many instances, insufficient experimental data were
obtained to locate accurately the ends of the transition region. Also,

the data shown in figure 4 were obtained by several different methods.

As for the location of the beginning of transition, as discussed previously,
the observed location of the end of transition depends upon the guantity
being observed. Included in figure 4 are data from heat-transfer measure-
ments, surface pitot probe measurements, and wall temperature measurements.
It is not clear that all three quantities will exhibit a maximum at the

same point for a given flow situation.

DETERMINATION OF ORDER OF APPROXIMATION
FOR THE ENTHALPY FUNCTION

The selection of the best order of the polynomial in equation (82)
was done by examining the solutions produced by various orders in both
laminar and turbulent flow. The solutions were compared with other

theories as well as with experimental data.
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First, it can be shown that for a laminar boundary layer on a flat
plate, the E;, are functions only of the Prandtl number, Pr. For such a
case, the velocity profiles are similar and the solution for the coeffi-
cients of the approximating polynomial in the function ¢ (eqg. (8l1)) is
given by equation (113), and the solution for the E; is obtained from
equations (116).

In order to evaluate the order of approximation of the enthalpy
function, equations (116) were solved for values of m of 0, 1, 2, 3, 4,
5, and 6. The results are shown in figures 5 and 6 for a Prandtl number
of 0.72 and a wall-to-total temperature ratio of 0.3086. In figure 5 is
shown the variation of total temperature as a function of u. The
profiles appear to converge uniformly so that there is only a slight
difference between the curves for m = 2 and m = 3 and the higher-
order curves are the same as that for m = 3. The variation of the static
temperature is shown in figure 6. The manner of convergence is more
apparent for the static temperature than for the total temperature. The
curve for m = 0 is relatively high, while that for m = 1 1is low. The
higher-~order curves then appear to approach a limiting curve between those
for m=0 and 1 as m increases. The curve for the temperature pro-
file discussed by Schlichting (eq. (79)) is also shown in figure 6. That
curve is slightly higher than the apparent limiting curve for the present
approximate profile except in the outer region (U greater than 0.7 in the

v

figure).

Another test that can be given the enthalpy function approximation in
the laminar boundary layer is the value of the recovery factor., If E, is

set equal to Suw? then the heat transfer to the wall is zero, since

1 1 W

$(€,00 ~ ~ cC,

%iT,_I ~ 98 (151)

w T

w

Then solution for Sy yvields the adiabatic wall temperature. The recovery
factor is then computed from the relation

1+ me
r; = 1+ Saw ——Eg—— (152)
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. where

T
= | (153)

The variation of «r with the order of the approximating funct:..n for S

is shown in figure g. The recovery factor appears to converge in approxi-
mately the same manner as the temperature profiles shown in figures 5 and 6.
As the order of approximation, m, is increased from 1, r; appears to
approach the theoretical value of (Pr)l/2 asymptotically. For m = 3,

the error in the recovery factor is approximately 4 percent, with the

error decreasing as m is increased.

Finally, the approximating function for S must be able to represent
the enthalpy profile in a turbulent boundary layer. In this case, the E;
cannot be obtained as simply as for the laminar similarity case. Further-
more, the E; will depend to some extent upon the particular model used
to represent the eddy viscosity as well as upon the accuracy with which
the velocity profiles are represented. In order to examine the effect of
the order of approximation of the variable S in turbulent flow, the
solution for a boundary layer was calculated for m = 0, 1, 2, 3, and 4,
starting in laminar flow with a similarity solution, going through a
transition zone, and terminating after the boundary layer had become
fully turbulent. Both the eddy viscosity model chosen for the present
work and that used in reference 2 were used for this study. Similar

results were obtained with both models.

The variation of the total temperature profile at a station near the
end of the transition zone for the present eddy-viscosity model is shown
in figure 8. The total temperature profiles for m = 3 and 4 are qguite
different from the profiles for m = 0, 1, and 2. The profiles for m = 3
and 4 display a waviness not indicated by the lower-order profiles. This
phenomenon is explained by the fact that the equations used to calculate
the profiles (egs. (86) and (87)) contain an approximate function, namely
the eddy viscosity. Because of this, the function being represented by
the approximate series is not precisely defined. This fact alone might
only serve to require higher orders for convergence since the Weierstrauss
approximation theorem guarantees convergence if the functions are simply

continuous. However, the imposition of the additional condition on the
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function 8§ at U = 1 removes the guarantee of convergence and as the
order of the approximation is increased the higher-order functions develop
waves as they try to satisfy both the boundary condition at W =1 and
the differential equations.

The importance of the temperature profile approximation is shown in
figure 9 where the distribution of the Stanton number in a transitional
boundary layer is shown for values of m of 0, 1, 2, 3, and 4. The
present eddy-viscosity model was used in those calculations. The approxi-
mation produces a solution for the Stanton number which appears to converge
as does the temperature profile for m = 0, 1, and 2. Then for m = 3 and 4,
a completely different solution is obtained.

Convergence in the turbulent boundary layer will probably depend on the
velocity profiles as well as the eddy viscosity. It was found in previous
investigations (refs. 2 and 6) that the three-parameter velocity gradient
profile given by equation (77) is not the best for all conditions on a
turbulent boundary layer. Specifically, that kind of profile was found in
both references cited to be inadequate for accurately representing the
turbulent profile close to separation. However, since the three-parameter
profile is found to be accurate for a wide range of conditions, its use

represents a reasonable engineering compromise.

In view of the results shown in figures 5, 6, 7, 8, and 9 and the
preceding discussion, it is believed that the value of m= 2 1is a
reasonable order of approximation for the enthalpy function. The apparent
discrepancy between this series and the profile of Pinckney (eq. (8l)) is
explained by the fact that the present formulation is an approximation to
the true profile function. Some effort was expended to modify the formu-
lation by specifying the slope of the enthalpy function at u = 0 in
terms of Pinckney's function (eq. (8l1)). However, such a device reduces
the generality and predictive nature of the solution since knowledge of
the recovery factor becomes a necessary part of the solution of the
equations. Specification of the value of the parameter E; and the
recovery factor is tantamount to specifying the Reynold's analogy factor
since from equation (105)
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It was reported by Cary (ref. 62) that a comprehensive definition of
Reynolds analogy is not available. In the absence of reliable information,
from which E, could be specified, it was decided to let E, vary
independently along with the other parameters, E,, Eg,..., E . A compre-
hensive search for more sophisticated approximating functions was beyond
the scope of the present effort and was not undertaken. It should be
emphasized that the present formulation allows prediction of boundary-
layer properties for both adiabatic and nonadiabatic conditions. Some
error may be encountered at adiabatic wall conditions since the recovery
factor of the present theory for low orders of approximation is about

4 percent lower than the theoretical value of (Pr)l/z. However, it will
be shown subsequently that the theory yields predictions of heat transfer,
skin-friction coefficient and other boundary-layer properties in excellent

agreement with experimental data over a wide range of conditions.

It is also believed that improvement of the eddy-viscosity model so
that the equations being solved more exactly represent the true physical
situation will help the present enthalpy profile formulation to converge
for turbulent flow as well as for laminar flow. Until a more exact repre-
sentation of the eddy viscosity is found, it is recommended that values of

m greater than 2 be used with caution.
DESCRIPTION OF COMPUTER PROGRAM

A generalized computer program was written to calculate laminar,
transitional, and turbulent boundary layers of a perfect gas on arbitrary
two-dimensional or axisymmetric bodies with arbitrary prescribed edge
conditions and wall temperature. The program was.based on equations (86)
and (87) and their accompanying relations (88) through (103) as well as
the auxiliary relations (104) through (112). The options for initial

conditions discussed in a previous section were included in the program.
The basic input data required for the computer program are as follows:

1. Reference flow conditions, Relo, Meo, TSe s peo. These are most
conveniently chosen as the conditions at the initi¥1 station although they
can be the conditions at any point in a shock~free flow. The edge pressure,
Pe, s and the edge pressure distribution may be input in arbitrary units
since the distribution is normalized with respect to the reference value when

calculations are performed.
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2. Prandtl numbers PrL and PrT and recovery factors Ty, and T
The turbulent Prandtl number, Prg, is defined to be equal to 1.0 in laminar
flow and is modulated to change continuously to the turbulent value by the

expression

Pr, = 1 - r@ - pry) (154)

Recovery factors can be inputted arbitrarily or automatically computed as

2}
I}

(prL)1/2 (155)

r (rL)2/3 (156)

T

In the transition region, the recovery factor is then computed as

r, = r_ + F(rT - T (157)

t L L)

3. Information for transition, Re, A. Options are included

Re
t’ Ax’
in the program for input of an arbitrary tabular distribution of [ versus
X or calculating I from equation (147). If equation (147) is used, then
the parameter A may be either inputted or computed from equation (149).

If N is to be computed, then ReAx is required as input.

4, Distributions of the required edge conditions, wall temperature,
and configuration coordinates are provided as input to the computer program
a? Tses Me’
can be input with a corresponding list of values of x. For the configura-

in tabular form. A list of values of each quantity, p and Tw
tion coordinates a subroutine is provided to compute a table of values of
x corresponding to the input values of x' and L Interpolation for
values of any quantity between the input values is accomplished by second-
order interpolation. Tables of values of derivatives of the quantities at
the input stations are obtained by averaging the slopes on either side of
a given input station computed using the first differences between stations.
Subsequent values of derivatives at stations between input stations are
computed by linear interpolation. In the present work, it was found that
adequate smoothness of the input data was easily achieved by obtaining the
data from a smooth curve drawn to a scale from which three significant

figures could be read. The most important requirement is that enough data
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be input in regions of rapid changes that the values obtained from the

interpolation schemes can adequately represent the input distribution.

An option is provided so that the edge conditions may be computed
from isentropic flow relations. In that case, only the pressure distri-
bution is necessary as input. The Mach number distribution is then

computed from the relation

o L0 /7] 1/2
M = 2 ( e°> 1+ XzLly2) o (158)
e vy -1 Pe ' E eo

5. Initial conditions. Four options are provided: (1) input of n
values of C, and m values of E.3 (2) input of n wvalues of U and
y and m values of u and T.; (3) input of values of Cg., St, 8%, 0,
and (m - 1) wvalues of U and T3 (4) calculation of Ci and Ei from

a similarity solution as described previously.

Output from the computer program consists of values of x, x', Re_,

' *
Lo drw/dx ’ pe/PeO, Tse/TSeo’ Me’ d(pe/peo)/dxa 5%, 6, Cf, eha S5t, Nu,
r, ax;, C;, E;, and C at each station at which output is required. 1In
addition, the profiles of U, y, y/6, ou/on, du/d(y/L), M/M_, T/T,, Ts/TSe’

and B may be printed at the output stations if desired.

The integration of equations (86) and (87) is accomplished using a
fourth-order Adams-Moulton predictor-corrector integration scheme (refs. 2,
3, and 63) with a fourth-order Runge-Kutta scheme used to obtain starting
values. By doubling or halving the integration step size, the integration
scheme is capable of some optimization of the integration. Thus, numerical
errors are kept within certain bounds by dividing the integration step by
2 whenever the error is too large and by multiplying the interval by 2
whenever less accuracy is necessary than is being attained. Because of
this feature, the running time of the program is somewhat dependent upon
the rate at which quantities are changing. Typical run times for the
flat-plate and cone calculations to be discussed in the following sectio:.
of this report were 1.0 to 2.0 minutes per run on the IBM 7094. The

calculations described in this report were performed on the IBM 7094.
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EVALUATION OF THE METHOD

The method of integral relations solution technigue together with the
transitional flow structure and eddy-viscosity model discussed in previous
sections of this report are applied in this section to a number of
boundary-layer calculations. Included are comparisons with experimental
measurements on various two-dimensional and axisymmetric configurations as
well as comparisons with calculated solutions obtained by the method of
finite differences. Cases were selected to demonstrate the ability of the
method to compute boundary-layer solutions over a wide range of flow
parameters as well as to demonstrate the flexibility of the program for

calculating boundary layers on arbitrary configurations.

In all cases, air is assumed to be a perfect gas with a constant
ratio of specific heats, vy, equal to 1.4 and constant laminar and turbulent
Prandtl numbers. Unless otherwise stated, the conditions at the edge of
the boundary layer were computed assuming isentropic flow. Initial condi-
tions for most of the calculations were obtained assuming a similar
solution from the leading edge or nose to the initial station of the
calculations. 1In all calculations of transitional boundary layers, the
velocity gradient and enthalpy function approximations employed three-

parameter expressions (n =3 and m = 2 in equations (77) and (82)).

Incompressible Transitional Flow on a Flat Plate

The first case to be examined is the data of Schubauer and Klebanoff
(ref. 44). These data were shown by Dhawan and Narasimha (ref. 47) to fit
the probability theory of Emmons (ref. 42) describing the intermittency of
the transition region. Because of this, the case is an excellent one for
demonstrating that the boundary-layer calculations have the correct response
to the modulation of the eddy viscosity by the intermittency factor, T.
Also, the case demonstrates the applicability of the theory for low Mach
numbers.
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The test conditions used for the calculations were:

M_ = 0.072
e
Re, = 0.44(10°%) ft~'
_ o]
T, = 530°R
T = 530°R
w
Re. = 2.31(10°)
X
t
A = 0.838 ft™2

Values of transition Reynolds number and the source factor of the inter-
mittency function (eqg. (147)) were determined from the data. The configu~

ration was a sharp-leading-edge flat plate of length 12 feet.

In figure 10(a) is shown a series of calculated velocity profiles
through the transition region compared with the experimental profiles.
Excellent agreement is achieved for the entire region. Likewise, the
agreement between the experimental values of the skin-friction coefficient

and the theory shown in figure 10(b) is excellent.

Compressible Transitional Flow on a Sharp Flat Plate

The next case to be examined is for compressible flow on a flat
plate. Some data were obtained from the Langley Research Center for the
he at transfer to a sharp-leading-edge flat plate. The data were obtained
on a model of length 2.5 feet in the Continuous Flow Hypersonic Wind
Tunnel. The tunnel Mach number was 10.39. Mach numbers from 6 to 10 on
theplate were produced by varying the angle of attack of the plate. Due
to the rapid expansion required to produce a Mach number of 10 in the
tunnel, an error of 4 percent existed in the static temperature and
pressure at the edge of the boundary layer on the plate. This error in the
temperature was aco unted for in the calculations by defining an effective
total temperature so that the calculated local static temperature agreed

with the data.

A characteristic of the experimental data was that all of it displayed

an intermittency distribution in the transition region different from that

62



given by Emmons' probability analysis represented by equation (147). For
this reason, the experimental intermittency distribution was used in calcu-

lations.

Recall that the intermittency represents the fraction of turbulence
existing in the boundary layer at a given station. The procedure for
determining the intermittency is somewhat iterative since the fraction of
turbulence cannot be determined directly from the experimental data. To
make a direct calculation of [, it would be necessary to know both the
laminar and the fully turbulent conditions at each station. This is clearly
impossible for the turbulent conditions since the virtual origin of the
turbulent boundary layer is unknown. Accordingly, the procedure followed
was to first use equation (147) to compute the intermittency, then, by
comparing the results of the boundary-layer calculation with the data the
intermittency distribution could be modified to fit the data. Two or three

trials were sufficient to produce good comparisons with the data.

The results for three sets of data are shown in figure 11 where the
calculated distributions of the Stanton number are compared with the
experimental data. Also shown in the figures is the intermittency distri-
bution used in the calculations as well as that given by equation (147).

The conditions used in the calculations were as follows:

Case 1 Case 2 Case 3
M, = 6.18 M_ = 6.18 M, = 6.18
Re, = 1.32(10°) £t™% Re = 1.63(10°) ft™° Re = 2.03(10%) ft~'
T, = 1860°R T, = 1815°R T, = 1829°R
T = 549°R T = 552°R T, = 553°R
PrL = 0.72 PrL = 0.72 PrL = 0.72
PrT =1.0 PrT = 1.0 PrT = 1.0
T ., = 1526°R T ., = 1525°R T, = 1527°R

In the reduction of the experimental heat-transfer data for presentation
in terms of the Stanton number, the recovery factor was assumed to be

constant along the plate at the laminar value. In the theoretical
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calculations shown in figure 11, the same assumption was used with the
values of r and rq taken to be equal to the value required to make

L

Taw correspond to the value used for the experimental data.

In each case, it was discovered that the intermittency distribution
required to fit the experimental data deviated from the distribution of
equation (147) by increasing more rapidly than that distribution near the
end of transition. A possible reason for this was that the end of the
transition zone coincided with the end of the plate. The laminar heat
transfer was predicted quite well without any adjustments. The solution
generated by the intermittency of equation (147) with the parameter A
determined from the indicated Ax is shown in figures 1ll(a), (b), and (c)
for comparison. The experimental data indicate that the intermittency at
first increases more slowly than for the probability function but then
rises to its ultimate value more rapidly than the probability function.
In figure 11(b), it is seen that intermittency values greater than unity

are required to match the data.

Transitional Flow on a Sharp Cone

Fischer (ref. 52) recently conducted a study of boundary-layer transi-
tion on a 10° half-angle sharp-nosed metal cone at a free-stream Mach
number of 7. The data provide an excellent case for comparison as well as
for demonstrating the flexibility of the computer program. Three cases were
selected at random from reference 52 for comparison. The test conditions

used for the sample calculations were as follows:

Case 1 Case 2 Case 3
M_ = 5.54 M_ = 5.54 M_ = 5.54
e e e
Re, = 6.69(10°) ft™* Re, = 7.01(10°) ft™* Re, = 7.48(10°) £t™*
< = 1040°R T, = 1070°R T, = 1075°R
€o €o €o
_ o _ o - o
T, = 551°R T, = 556°R T, = 548°R
Pr; = 0.72 Pr, = 0.72 Pr, = 0.72
Pr, = 1.0 Prp, = 1.0 Prp, = 1.0
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In all three cases, the laminar and turbulent recovery factors were taken
to be (PrL)l/2 and (PrL)l/s, respectively. The experimental location of
transition and the experimental intermittency distribution determined in
the same manner as for the previous examples were used in the numerical

calculations.

Comparisons of the calculated results with the experimental Stanton
nunber distributions are presented in figure 12. The agreement between
the numerical results and the experimental data is very good for all three
test cases. Also shown with the Stanton number distributions are the
intermittency distributions as determined to match the data and as given

by equation (147).

Adverse Pressure Gradient Flow on a Cone-Flare

The previous examples have demonstrated the ability of the theory
and the computer program to calculate transitional boundary layers on flat
plates and cones on which a constant pressure existed. In the next example,
a case in which transition occurs in an adverse pressure gradient is consi-
dered. The data were obtained by Zakkay, Bos, and Jensen (ref. 64) on a
cone-flare model on which a 7.5° half-angle cone was blended smoothly into
an axisymmetric flare body with a constant radius of curvature. The data
are an excellent case for demonstrating the ability of the theory and the
computer program to calculate boundary layers under nonzero pressure
gradients. In addition, since both the pressure distribution and the Mach
number distribution are presented in reference 64, the case is also a
demonstration of the ability of the program to accept arbitrary boundary-
layer edge conditions. A sketch of the configuration and the coordinates

used in the computer program is shown in figure 13.

The reference conditions used in the theoretical calculations corre-

sponded to the conditions on the cone and were as follows:

Re, = 4.86(10°) £t~
o
M_ = 8.0
eO
- (o]
T_ = 1800°R
- o]
T, = 520°R
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PrL = 0.70
PrT = 1,0
A= 42 ft72
Re, = 6.88(10°%)
Xe

Calculations were initialized on the cone 9 inches from the nose. Initial
conditions for the calculations were obtained from the similarity solution
built into the computer program. The experimental distributions of the
Mach number at the edge of the boundary layer and the static pressure in the
boundary layer shown in figure 14 were used for the calculations. Transi-
tion was assumed to begin at a point estimated from the experimental data.
The intermittency of the transition region was calculated by equation (147).

Experimental data are presented in reference 64 for the heat transfer

1/2

Reynolds number are defined in terms of local stagnation conditions. That

on the body in terms of a parameter Nu/NR where the Nusselt number and

is,
q . C L
e pse z
Nu = =—{F %) (159)
s \
e e
and
Ps ueLz
= -8
Np = s (160)
e

where L, is a reference length equal to 1 inch. The results of the
theoretical calculations in terms of the heat-transfer parameter compare

quite well with the data as shown in figure 15.

Comparison with a Finite-Difference Method

The technology of finite-difference methods of solving the boundary-
layer equations has recently been applied to solution of transitional
boundary layers by Harris (ref. 41). That technique apparently provides

good comparisons with experimental measurements. Therefore, it was
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considered worthwhile to compare the results of a calculation made with
that technique with the present theory. Accordingly, some calculations
made by the technique of reference 41 were obtained and are compared with
calculations from the present theory in figure 16. The flow conditions of

the calculations were as follows:

Re. = 1.706(107) ft~1

M, = 6.21
_ O
T, = 1367 R
_ (o]
T, = 584°R
PrL = 0.7
PrT = 0.9
Re. = 4.45(10°)
X
t
A = 160.0

The configuration is a 10° half-angle sharp-nosed cone, 2.5 feet in length.
The calculations of the present theory were initialized at x = 0.1 wutiliz-
ing the internally generated similarity solution of the computer program.
The intermittency was computed from equation (147), using a value of the

parameter A determined from the referenced calculations.

In figures l6(a), (b), and (c), the initial velocity and temperature
profiles of the two theories are compared. The initial velocity profiles
show excellent agreement between the two theories. The temperature profiles
show excellent agreement near the wall, but only fair agreement near the
outer edge of the boundary layer. Comparison of turbulent profiles from a
station downstream of the transition is presented in figures 16(d) and (e).
In this case, both the temperature profiles and the velocity profiles given
by the two theories show good agreement over the entire boundary layer.

In the referenced theory, the inner layer eddy viscosity was based on

Prandtl's mixing-length hypothesis as described by Van Driest (ref. 65),
while the outer layer was described by the same function as used in the
present theory (eqg. (144)) except that an intermittency factor was used.
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Comparison of the two models at the turbulent station of figures 16(a; and
{(e) is shown in figure 16(f).

Skin~friction coefficient and Stanton number predictions for the two
theories are compared in figures 16(g) and (h). The two theories are in
excellent agreement in the laminar region for the skin-friction coefficient,
displaying slight differences in the transitional and turbulent regions.

For the Stanton number, a slight difference between the two theories is
noted for the entire length of the calculation. Finally, the two theories
are in excellent agreement for the displacement and momentum thicknesses

as shown in figure 1l6(i).

Calculations with Specified Initial Conditions

One of the useful features of the present theory is that initial
conditions may be obtained in a number of ways. Four methods were dis-
cussed in a previous section of this report. One of these methods is the
similarity solution used for initializing the previous test cases. The
other three methods require known profiles. Two of these were tested by
comparison with results of another theoretical calculation. The comparison
calculations were produced by the finite-difference technique of Bushnell
and Beckwith described in reference 66. Those authors extended the calcu-
lation technique to transitional flow by the use of an intermittency function
like equation (147). In addition, their intermittency function was multi-

plied by a factor which was specified as a function of TI'. That is,

FB(X) = £(I)Tr (1el)

where TI' 1is given by equation (147).

In the calculations obtained from the authors of reference 66 for
comparison, the intermittency, FB(x) was specified at four points. These
values of PB(x) were plotted and a smooth distribution of ' for use
with the present theory was obtained graphically.: The distribution is shown
in figure 17(a). It should be noted that the distribution of TI'(x) shown
in figure 17(a) was used only as an illustrative example to compare the
present theory with another theory. No special significance is implied

by values of I' greater than unity.
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The configuration was a sharp-leading-edge flat plate. The reference

conditions used for the calculations were as follows:

M, = 8.5
[o]
Re, = 2.295(107) ol
o]
_ O
T, = 640°R
_ (o]
T = 526°R
Pr; = 0.688
PrT = 0.9
rL = rT = 0.89

The turbulent Prandtl number of the reference calculation varied across the
boundary layer from 0.9 to 1.5. The value of 0.9 was chosen for the
present calculations. Two cases were computed with the present theory,
corresponding to the two methods of obtaining initial conditions from

known quantities. The initial conditions were as follows:

Case 1:
. A Tt
0.30097 0.020068 570.0
.50396 .0336 590.0
.80428 .05361
Case 2:
Cf = 0.00019736

5% = 0.006595

6 = 0.00014955

St = 0.00076354
U = 0.50396
T = 590.0

S
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The initial temperature profiles are compared in figure 17(b). For
Case 1, the fitted profile matches the reference profile very well over
the entire profile while the profile for Case 2 exactly matches the
reference profile at the wall and at the specified point (W = 0.5) with
good fit elsewhere.

Comparison of the initial velocity profiles is presented in figure 17(c).
As with the temperature profiles, an excellent fit was obtained for the
conditions of Case 1. Only at the outer edge of the boundary layer does
the fitted profile deviate from the reference profile. For Case 2, with the
integral and wall quantities matched, the fitted profile is slightly

different from the reference profile in shape.

Comparison of the skin-=friction coefficient and the displacement and
momentum thickness variation along the plate is shown in figures 17(d4)
and 17(e). The reference calculations and the present calculations are
in excellent agreement for both Case 1 and Case 2. Note in particular that
both calculative methods show the same response to the rather unusual

intermittency variation.

In figures 17(f), (g), and (h) are shown comparison of the velocity
and temperature profiles at two stations downstream of the transition
point. The first station was in the transition region where the inter-
mittency factor, I'y was approximately equal to 3. The second station was
near the end of the transition region, where I = 1. At the first station,
the temperatures within the boundary layer predicted by the present theory
are slightly lower than those of the reference calculation., However, at
the second station, the temperature profiles are in excellent agreement.
Note also, that the temperature profiles corresponding to Case 1 and Case 2
of the present theory are identical with each other at both of the stdtions

shown in figures 17(g) and 17(i).

There is slightly more difference between the velocity profiles of
the present theory and the reference theory than between the temperature
profiles, as shown in figures 17(f) and 17 (h). At both stations, the
reference theory predicts a profile which has higher velocities through a
greater portion of the boundary layer than does the present theory. Recall,
however, that the wall and integral quantities predicted by both theories

were in excellent agreement as shown in figures 17(d) and 17(e).
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Effect of Transverse Curvature in Laminar Flow

On axisymmetric configurations, the effects of transverse curvature
can be important if the thickness of the boundary layer is comparable to
the radius of the configuration. The effect of transverse curvature on a
laminar boundary-layer calculation is illustrated in figure 18. The
configuration being examined is the 10° half-angle cone of reference 52 in
a flow with a Mach number of 6.9. The pressure was assumed to be constant

1
was chosen for

along the cone surface and unit Reynolds number 10% £t~
illustrative purposes. The effects of transverse curvature (TVC) on the
calculated Stanton number distribution are evident from figure 18(a). The
calculation in which transverse curvature was accounted for predicts a
higher value of St than for the calculation in which transverse curvature
is neglected. However, the effect diminishes as the calculation proceeds
downstream, as evidenced by the fact that the error between the two predic-
tions decreases from 29 percent at x = 0.2 foot to 14 percent at

x = 1.0 foot. Similar results are found for the displacement thickness of
the boundary layer as shown in figure 18(b). The calculated velocity and
temperature profiles are shown in figure 18(c) and (d). Since increasing
the Reynolds number has the effect of decreasing the boundary-layer
thickness, it is expected that in most cases of interest for transitional
boundary-layer calculations transverse curvature can be neglected. This
was indeed found to be true for the data of figure 12, discussed previously.
The inclusion of transverse curvature in the calculations for that figure

had no effect on the results.

The initial conditions for both cases shown in figure 18 were obtained
from the similarity solution built into the computer program. This resulted
in an initially transient solution for the case with transverse curvature
included. However, the solution approached a unique variation within a
few integration steps (each step was approximately 0.0001 foot).

Turbulent Flow with Transverse Curvature

A good example of turbulent boundary~layer data for flows with variable
pressure gradients and significant transverse curvature effects was presented
by Winter, Smith, and Rotta (ref. 67). The data provide a particularly good
case for comparison with the present theory because they allow the demon-
stration of many different capebilities of the theory all in two calculations.
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The configuration is an axisymmetric, piecewise continuous, waisted
body (fig. 19). The data presented in reference 67 for M = 1.4 were
chosen for comparison. The transition point was assumed to be at 1.5
inches from the nose of the body, corresponding to the location of a

boundary-layer trip as reported in reference 67.

The test conditions for the case considered were as follows:

M_ = 1.398
[¢o]
Re, = 2.02(10°) £ft7t
(o]
o]
T, = 536°R
T = 524°R
w
M, = 1.06
o]
Re, = 2.02(108%) ft71
[»]

Re, = 0.252(10%)

The reference conditions for the calculations were taken to be the condi-
tions on the conical nose section of the body. The calculations were
started at x = 0.1 foot wusing the similarity solution built into the
computer program., Transition from laminar to turbulent flow was computed

automatically from the given value of Re, with the intermittency given

by equation (147). The source function intequation (147) was computed
assuming the transition region to be equal in length to the length of the
laminar boundary layer. The experimental Mach number distribution is
presented in figure 19 along with the configuration. The isentropic
pressure distribution corresponding to the given Mach number distribution
was used as input to the computer program. The conditions behind the nose

shock wave were obtained from reference 68.

This case was a good one for demonstrating the smoothness requirements
of the input distributions. The smoothness of the distribution describing
the configuration is not critical since the body slope does not enter the
calculations directly. However, the distributions of pressure, Mach number,

wall temperature, and total temperature must be smooth so that the
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interpolation of the first derivatives required will be smooth. 1In the
calculations discussed in this section, it was found to be sufficient to
plot the distribution to a scale at which three significant figures could
be obtained from a smooth curve drawn through the data.

The configuration being described has received considerable attention
by authors of theoretical methods. Calculations on this configuration
have been made by Cebeci, Smith, and Mosinskis (ref. 69), Herring and
Mellor (ref. 36), and Harris (ref. 41). All of these authors used finite-
difference methods. Until now, only Harris was able to compute a completely
theoretical solution with no dependence on experimental profile or skin-
friction information for initial conditions. To the author's knowledge, the
solution presented here is the first to be obtained by the method of
integral relations.

The calculated results are compared with the experimental data for
momentum thickness and skin-friction coefficient distributions in figure 20.
The agreement between the theoretical and experimental distributions is
very good. In particular, note the erratic behavior of the data and the
theory for the skin-friction coefficient in the region x < 1 foot. Also,
note that the inclusion of the transverse curvature terms in the solution
had a significant effect on the momentum thickness. The transverse curvature
effect is the same as found by the authors of references 36, 41, and 69.
The skin friction is predicted quite well both with and without transverse
curvature, particularly at the point of minimum skin friction. Without
transverse curvature, the momentum thickness is overpredicted near the
downstream end of the model, but is in good agreement with the data when

transverse curvature is included in the calculations.

CONCLUDING REMARKS

The method of integral relations has been applied to the calculation
of laminar, transitional, and turbulent boundary layers on arbitrary axisym-
metric or two-dimensional configurations. The technique employed is a new
application of a method previously used successfully to predict the character-
istics of separated laminar boundary layers and unseparated turbulent
boundary layers. An eddy-viscosity model has been developed for use in the
turbulent boundary-layer equations along with an intermittency function for
the transition region. A computer program has been written to solve the
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equations with arbitrarily prescribed boundary-layer edge conditions, wall-
temperature distributions, and Prandtl number for flows from low speeds to

hypersonic speeds.

A number of methods of obtaining initial conditions are discussed.

The solution can be started from known information such as velocity and
temperature profiles or known values of skin friction, heat transfer, and
other boundary-layer properties, or from a similarity solution which assumes
constant pressure from the leading edge of the configuration and has no
dependence on experimental or empirical data. Other theoretical initial
conditions could also be used but were not included in the work described
here. Thus, the calculative method can either be self-starting or rely

on experimental information as the user chooses.

The computer program can be used to calculate the transition region
between other laminar and turbulent boundary-layer calculations or it can
be used to compute the entire solution from laminar through turbulent flow.
Prediction of the transition point is performed by the user of the computer
program using approximate formulas developed by correlating experimental
data. The intermittency of the transition region can be computed using a
function based on probability theory, or it can be provided as an arbitrary
distribution. The computer program may be used to determine the inter-

mittency corresponding to experimental data.

Good comparisons between the theory and experimental data for heat
transfer and skin friction were made on various kinds of configurations in
both subsonic and supersonic flows. Transitional heat transfer on both
sharp-leading—-edged flat plates and sharp-nosed cones was calculated by
determining an intermittency distribution to fit the data. Comparisons of
the present theory with calculations made using finite-difference theory
indicated excellent agreement between the two theories. Calculation of
the turbulent boundary layer on a body of revolution having both favorable
and adverse pressure gradients yielded excellent agreement with the
experimental skin-friction coefficient and momentum thickness, when the
effects of transverse curvature were included. Most significantly, that

calculation was made using no experimental information to obtain initial

conditions.

Finally, some comments are in order regarding the intermittency distri-

bution in hypersonic boundary layers. The exact details of the transition
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region flow structure remain as one of the major unsolved problems of

fluid mechanics. Data examined in this research corroborated the finding
of Morkovin (ref. 12) that the intermittency distributions of hypersoni c
boundary layers do not always fit the simple probability distribution of
Emmons as used by Dhawan and Narasimha (ref. 47). Morkovin stated that of
many hypersonic cases he examined, only about half of them could be fitted
to the low-speed probability distribution curves of Dhawan and Narasimha.
Cases were presented in this report in which the intermittency distributions
found to fit the data were quite different from that given by Emmons’

function.

The cases presented herein were presented to demonstrate the accuracy
and flexibility of the computer program and were not intended as evidence
of the validity of the probability theory. However, the results suggest
that the intermittency function should be a more complicated function than
that given by the simple theory of Dhawan and Narasimha. The results also
suggest an important use of the computer program as a research tool in the
study of hypersonic transition, but such a study must be accompanied by
further experimental research before meaningful results can be obtained.
Many experimental data are available for heat transfer to flat plates and
cones in wind tunnels. However, in order to study the intermittency in
the transition region comprehensively, more data are needed from free-flight
experiments as well as from configurations with significant pressure varia-
tion. It is possible that the higher modes of instability described by
Mack (ref. 13) could produce potential turbulent sources which would be
triggered by the relatively high disturbance level of a wind tunnel, but
might not be triggered in free flight. However, available free-flight data
are not adequate to determine the detailed distribution of the intermittency.
Use of the computer program along with experimental data to determine the
intermittency in boundary layers over a wide range of parameters could lead
to correlations with which the intermittency could be predicted with greater
confidence than with the simple probability function of Dhawan and Narasimha.
Moreover, such correlations could lead to extension of the probability theory
to more complicated source functions, than the delta-function of Dhawan and
Narasimha, with sources of turbulence being introduced downstream of the
original point of onset of transition.
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Most available experimental data in hypersonic flow are for heat
transfer alone. Experiments in which both heat transfer and skin friction
were measured for several Mach numbers would substantially improve the
state of knowledge of the transition region. These measurements could be
accompanied by measurements of the intermittency as determined from
fluctuating quantities in the boundary layer. Calculations could then be
made to verify whether the intermittency determined to match transitional
heat transfer data is the same as required to match skin-friction data.
The experiments would also provide information about Reynolds analogy in
the transition region. This might be useful in improving the present
formulation of the enthalpy profiles in the theory.

Another area in which reliable experimental information is needed is
the effect of pressure gradients on the transition zone. This is needed
for development of improved models of the eddy viscosity and turbulent
Prandtl number as well as for the improvement of the theory regarding the

intermittency.

In conclusion, the method has been found to be a fast, flexible, and
accurate method of computing unseparated laminar, transitional, and
turbulent boundary layers. As input, the computer program requires only
very basic information such as the flow conditions and data describing
the configuration, plus information on the initial conditions. Use of
the program as an engineering tool requires only a minimum amount of
knowledge of the theoretical methods used in the calculations.

Nielsen Engineering & Research, Inc.
Mountain View, California
October 5, 1970
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Figure l.- Boundary-layer coordinate system,
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{(b) Two-dimensional configuration.

Figure 1.~ Concluded.
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