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FOREWORD

The present report is one of a series of three reports
describing a new computer program which predicts turbulent bound-
ary layer behavior under conditions involving both heat transfer
and pressure gradient. Part I serves as a summary report and
describes the general analysis which is utilized in the numerical
calculation scheme. 1In Part II the requisite low speed formula-
tion, consisting of a constant property flow with combined
pressure gradient and mass transfer is described. Part III
describes the numerical and computational procedures involved
and serves as a computer program manual.

The titles in the series are:

Part I - Summary Report - "Calculation of Turbulent Boundary
lavers with Heat Transfer and Pressure Gradient
Utilizing a Compressibility Transformation," by
C. Economos and J. Boccio.

Part II - "Constant Property Turbulent Boundary Layer Flow with
Simultaneous Mass Transfer and Pressure Gradient,"
by J. Boccio and C. Economos.

Part III ~ "Computer Program Manual," by J. Schneider and J. Boccio

This investigation was conducted for the Langley Research
Center, National Aeronautics and Space Administration, under
Contract No. NAS1-9624, with Mr. Kazimierz Czarnecki as the NASA
Technical Monitor.

The Contractor's report number is GASL TR-748.
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SUMMARY

This report presents the results of a theoretical investiga-
tion of compressible turbulent boundary layer flow with heat
transfer and pressure gradient. The analysis utilizes a com-
pressibility transformation but differs from previous work in
that higher order closure rules are utilized to complete the
transformation. Specifically, by requiring that the momentum
equations in differential form be satisfied at the wall and at
the sublayer edge, correspondence rules are obtained which relate
the variable property (VP) flow of interest to a constant property
(cP) flow in which mass transfer and pressure gradient occur
simultaneously. To implement this approach a new CP formulation
is developed which includes both of these effects. A computer
program based on these formulations, together with a Crocco
integral representation for the energy field, is developed.
Details of the CP analysis and the computational procedures are
presented in companion documents. Numerical results for a variety
of cases are presented in this report. Comparisons with earlier
forms of the transformation and with experiment are also included.
For the zero pressure gradient case some differences between the
various predictions are observed. However, for the several press-
ure gradient cases which are examined, the results obtained are
found to be essentially identical to those given by first order
closure rules; i.e., by a form of transformation which relates
the VP flow to a CP flow with pressure gradient but zero mass
transfer.
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CALCULATION OF TURBULENT BOUNDARY LAYERS WITH
HEAT TRANSFER AND PRESSURE GRADIENT UTILIZING A

COMPRESSIBILITY TRANSFORMATION
PART I: SUMMARY REPORT

By C. Economos and J. Boccio
General Applied Science Laboratories, Inc.

I. INTRODUCTION

In a superficial sense, the overall objective of the current
investigation is identical to that of previous work reported in
Reference 1. That is, both investigations address themselves
to the same problem area (VP turbulent boundary layers) and both
utilize a "compressibility transformation" approach to treat this
problem. Nevertheless, the objectives differ in a very sig-
nificant way since the present investigation is particularly
concerned with development of a more self-consistent form of
transformation which eliminates some of the anomalous behavior
observed in the earlier work.

For a complete review of these deficiencies, the reader is
referred to Reference 1. For the present purpose, it suffices
to say that a major portion of the work to be described here
involved development of a more general form of transformation
which would allow introduction of an additional free parameter.

As outlined in Reference 2, such a generalization would
imply a correspondence between the general VP flow case,and a
CP flow with mass transfer and pressure gradient such that,
even for the zero pressure gradient VP case, both mass transfer
and pressure gradient would persist in the CP flow. Such a
result appears to be attractive a priori since mechanisms are
thereby introduced which might be expected to compensate for
the two most striking deficiencies observed in the transformation;
namely distortion of the wake portion of the velocity profile .
(Reference 3) and overestimation of skin friction coefficient at
high heat transfer rates (Reference 4). This expectation is
based, first of all, on the demonstrated improvement in skin
friction prediction (Reference 2) which has been achieved for




the high heat transfer case by use of a form of transformation
which relates constant pressure VP flow with heat transfer to
constant pressure CP flow with mass transfer. So far as the
wake distortion is concerned, no corresponding development has
been reported.* Nevertheless, since the wake distortion can
qualitatively be associated with the existence of a pressure
gradient (c.f., Reference 3), it may be anticipated that the
form of transformation proposed here will simultaneously provide
.improvement in both areas of concern.

+ In order to exploit the proposed modification it is nec-
‘essary, of course, to have available a suitable CP formulation
which describes turbulent boundary layer development under the
influence of both mass transfer and pressure gradient. At the
inception of this program such a formulation did not exist and one
has been developed during the current study. The details of this
development, including presentation of numerical results and com-
parisons with exper.mental data, are given in Part II of this
report. Subsequent to this development, a similar analysis was
carried out by other investigators (Reference 5). Comparison
of the two methods is also included in the aforementioned com-
panion document.

The material presented in the subsequent sections is
structured as follows. First, the modified closure rules which
provide the desired correspondence are derived. We note here
that two types are considered, one of which is rejected on the
grounds that it does not exhibit uniformly valid behavior for
limiting cases. Development of the working equations is then
outlined with most of the algebraic detail either presented in
the Appendices or omitted completely by citing appropriate
references where such detail has previously been presented.
Finally, a series of numerical results is presented and com-
pared with appropriate experimental data and with predictions
due to earlier forms of transformation. These results include
zero and arbitrary pressure gradient cases both with and without
heat transfer.

* In Reference 2, an empirical correction is developed to account
for this effect. However, this does not represent a self-
consistent modification of the compressibility transformation
itself.



IT. SYMBOLS

Al, ... BA64 See Eg. (33) and Appendix B
A, . See Eg. (34)

1]
A, See Eq. (46)

c2, Cc3, C4, C8 See Eqg. (33) and Appendix B

Ci See Eg. (34) and (46)

Cer Ef 2Tw/oeuz , Z;W/SGZ

Fi CP functional forms; see Part II
Gi See Eg. (14), (21) and (26)

Hi See Eg. (36) and (39)

H, H 6%/8, 5%/8

kl,k2 CP law of the wall constants; see Part II
4 reference length

M Mach number

%e See Egq. (31)

P, 5 pressure

P, P See Eg. (14)

R gas constant

R S, 877

ReO (ue/ue)o

R /RS uy/v, . u_y/v




- u 8/v
Re . Rs ued/ue » ub/v
— u 8/v
Rgs Rg ue(-)/ue , ee/u
T, Tt temperature, total temperature
T T/T
e
u, u streamwise velocity components
ﬁ uw/u_ = u/u
e e
__+ - - —_ —;i
u u (Tw/p)
U, U u /u u /u
e e e e, e e
o) o
v, v normal velocity components
-t - = = =}
v
” Vw(Tw/p)
\ v _/u
w w e
o}
w
Tw/Tt
e
X, X streamwise coordinates
v, ¥ normal coordinates
-+ T
Y (Ys/v)(Tw/p)
Z, Z See Egq. (14)
a viscosity exponent
0% isentropic exponent
r See Appendix C
8, & boundary layer thicknesses (.995 u,- . 995 ﬁe)
6%, 6% displacement thicknesses

n: &, © the transformation parameters
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Subscripts
e

(e}

p P

y/6

momentum thicknesses

See Eg. (54) and Appendix D

CP functional forms - see Part II
molecular viscosities

B/ B

w/p. p/o

CP wake parameter, see Eg. (67) and (68)
densities

p/pg

B 0/ p

8/8

shear stress (including Reynolds stresses)

see Appendix C

= -4

(cg/2)

(ue/ve)O (x=x_) ueo(x—xo)/v

stream functions 3j)/3y = pu : 3YP/dxX = oV ~ PV
39/3y = pu : 3P/dx = pv_ - p V

external conditions
initial values
sublayer edge conditions

wall conditions




Superscripts

variables of the CP flow
differentiation w.r.t ¥

evaluation at n =1

evaluation at M=7*=0.5 (see Part II)



IIT. ANALYSIS

A. General Considerations

Most of the detailed development of the original Coles' com-
pressibility transformation (Reference &) has been worked out
many times (c.f., References 1, 7 and 8) and need not be repeated
here. For the present purpose, it suffices to note that by
introduction of three x-dependent stretching parameters, §¢,n,0,
for the x and y coordinates and the stream function §, a VP flow
with fluid dynamic behavior described by

3pu 4 oV _ 4

1

3X Y (1)
au 3u _ 23T _dp

= 4 == L 2

oV 3k T PV 3y T 3y T ax (2)

.

s transformed to a companion CP flow given by

A
+
o/ |o:|
|
o

(3)

<

pu

%I
+

-5 du_ ar _dp
pv 3% (4)

To obtain closure (i.e., to complete the transformation) sufficient
restraints must be imposed to define not only the transformation
parameters, ¢, 7m and g, but the pressure gradient term dp/dx since
this must be considered as an unknown in this formulagion. If

mass transfer is involved, the CP transpiration rate pv, is an
additional unknown requiring still another restraint. Thus, for
the most general case a total of five relations are required to
achieve closure.

Up until the present time this more general case has not been
worked out in detail although in Reference 2 a possible general
procedure was outlined.*In Coles' original work, closure for the

*

The general case has also been examined by Lewis (Ref. 9) but
from a somewhat different point of view. A discussion of the differ-
ences and similarities of the two approaches may be found in Ref. 2.




special case of zero pressure gradient and zero transpiration in
both planes was achieved by (a) satisfying Equations (2) and

(4) at the outer edge of the boundary layer, (b) satisfying
integrals of these equations from the wall to the edge, and

(c) invoking the so-called sub-structure hypothesis which
assumes the invarience, under the transformation, of a character-
istic Reynolds number based on average thermodynamic properties
within the viscous layer. Libby and Baronti (Reference 8)
examined the pressure gradient case but with zero mass transfer.
They also employed (a) and (b) but replaced (c) with the sub-
layer hypothesis which evaluates the characteristic Reynolds
number at the sublayer edge. The fourth restraint required to
achieve closure in this case was obtained by satisfying
Equations (2) and (4) at the wall. Economos (Reference 7) con-
sidered the mass transfer case with zero pressure gradient.
Closure was achieved in a manner similar to that of Reference 8
but with the blowing rate pV, replacing dp/dx as an unknown.

With the exception of the sub-layer (or substructure)hypo-
thesis, all of the restraints utilized by the various investigat-
ors can be thought of as "compatibility"” conditions on the
various unknown parameters which assure satisfaction of the
describing equations at specified points in the flow regime. Any
number of such conditions can be set down in a variety of ways
so that, in principle, additional free parameters could be
introduced with closure still being possible. For example, the
approach used in Reference 2 to treat the case of simultaneous
mass transfer and pressure and pressure gradient proposed utiliz-
ing the first derivatives of Equations (2) and (4) evaluated at
the wall to achieve closure. Alternately, Eguations (2) and (4)
could be evaluated at points other than the wall; at the sub-
layer edge, say.

The point of view enumerated above implies non-uniqueness of
solution to the problem of interest. Thus, to assess the useful-
ness of any particular choice, the entire formulation must be
developed and implemented to the point where prediction of tur-
bulent boundary layer behavior can be generated and compared with
experiment. In the next section, two such possibilities are
examined in detail. These include the use of the first derivatives
of Equations (2) and (4) evaluated at the wall which will be
referred to as "closure by wall compatibility." It will be shown
that this particular choice is unsatisfactory by virtue of non-
uniformly valid behavior for limiting cases of zero mass and heat



transfer and zero pressure gradient. The second choice involves
satisfying Equations (2) and (4) at the sublayer edge. This
will be denoted by "closure by collocation.” It is found that
this second choice yields well behaved solutions for all ranges
of conditions.

B. The Second Order Closure Relations

Closure by Wall Compatibility. - The starting point for
deriving the closure relations is Equations (2) and (4) together
with certain relations between the VP and CP flow parameters
which follow from the basic transformation rules. The pertinent
results, taken from Reference 1, are

STEw )
u =f’}ﬁ (6)
u/ue = E/GC =1 {(7)
-2
Ay Iw p O 3V I w

Consider now Equation (2) evaluated at y = 0. There results

T b M S I~

where mass transfer in the VP plane as reflected by the coefficient
pwVw has been included for generality and it has been recognized
that in the vicinity of the wall the shear takes on a laminar

form. Carrying out the indicated differentiation leads to

2], - O el [

where we have used the Euler relation pguedue/dx = - dp/dx. If
the same procedure is applied to Equation (4) there results

1 du

Ple &
W




- du
au 1l - e
(ay)w B PYe a% (10)

] 3

aaﬁ) 5
(392 W

which is identical in form to Equation (9) except that the

viscosity derivative vanishes since, for CP flow, pu is a constant.
We now note that the relations (5), (6), and (8) imply

-5 .- (e
(a§2)w 7 ( pw) { 3y? | w o, \avlw L aylw } (11)

which permits elimination of the second derivatives appearing
in Equations (9) and (10). There results

Plw _ —1_:9-?- Mo _ngPulw 1 L w1 20
T, T, & O© T (du/dy)  Lp, 3y'w p 3y w
_ peue“w due } (12)
wa ax

where we have recognized that the wall shear is related to the
velocity field by

.- = 1 (QE) = 3u
Tw  H V' W w Py dy'w

In the further development it will be assumed that the thermo-
dynamics can be related to the velocity field by means of a Crocco
integral. Accordingly, we can write

Oy - QM  2u
(ay)w (au)w (ay)w

(13)
6o, = € &Y,
Then Equation (12) can be written
2-13=z—1>+c;l (14)
w

10



where the following definitions have been introduced

- PV, 2 o_V
Z=G) = ; z=EEY
£ Pl £ Pee
e T i S e T Celvede 2%
ce 0 ayx ! Hw ce (Ue/ve) dy

G = - Qﬁgﬂﬂ

_ _ (3inoy
1 du ¢, = ( au )w

1
w

~-e

and the remaining parameters U , c_, p, etc., have been defined

in the List of Symbols. Note €hat the terms appearing in

Equation (14) are_of three types; terms proportional to an in-
jection rate (Z, Z), terms proportional to velocity gradients

(P, P), and a term le which depends solely upon the thermodynamics
of the VP fluid.

It ig unseful at this point to show how special forms of
Equation (14) have been utilized by other investigators to Jibtain
closure. In addition, the effect of the fluid thermodynamics on
the CP flow behavior will also be examined gqualitatively. The
latter is best accomplished by considering a specific thermo-
dynamic system in order to evaluate explicitly the parameter G, .
For this purpose we assume that the CP fluid is a perfect gas
with an exponential viscosity-temperature relation and Unity Prandtl
number. It is further assumed, for the case of injection, that the
injectant gas is identical to the external fluid. Then the Crocco
integral for total enthalpy implies

G - (A-q) (3:-W) (15)

1w w

where a denotes the viscosity exponent (for most gases o < 1) and
W is the temperature ratio Tw/Tte. Evidently, for the adiabatic
wall case (W = 1), Equation (15) implies that G1w= 0 while for heat
transfer to the surface (W<l), Gy, > 0. Note however, for the
special case g = 1 (i.e., a linear viscosity temperature relation)
le = 0.

11




Now consider the special case Z = 2Z = 0, which is the flow
configuration examined in References 1 and 8. The closure
relation becomes, from Equation (14)

P=P -G (16)

which implies some interesting possibilities insofar as the CP
pressure gradient is concerned when a # 1. It is apparent, for
example, that P does not vanish when P = 0 except for the adia-
batic wall case. It is also possible, of course, to achieve the
case P= O by considering a VP flow where P - Gl = 0; whether
this corresponds to a physically realizable conflguratlon is not
known at this time and will not be considered further.

The most relevant possibility, for the present purpose, is
the situation corresponding to VP flow with heat transfer and
zero pressure gradient. This is of particular interest here in
view of the fact that much of the anomalous behavior exhibited
by earlier forms of the transformation has been associated with
experimental data obtained under such conditions.

From Equation (16) with P = Q0 we note that
- <
P = 2 0 when Gl > 0.

That is, with heat transfer to the wetted surface (Gl > 0), this
particular closure rule implies the existence of adverse pressure
gradient (P < 0) in the CP plane, while for the "hot wall" case
(le < 0) a favorable pressure gradient occurs. The first of these
results appears to be gualitatively inconsistent with observation,
since, as pointed out in Reference 3, the distortion of the wake
component is such as to imply a favorable pressure gradient. Note
however that this distortion has been observed even for adiabatic
flow for which this particular formulation yields no effect.

A somewhat parallel situation occurs for flow with mass
transfer but zero pressure gradient as treated in Reference 7.
The closure relation in this case was taken to be

zZ=2+6, (17)

which follows from Equation (14) when P = P = 0. It is now easy
to see how the use of two different closure rules yields different
solutions for the same physical problem. That is, the zero mass

12



transfer, zero pressure gradient, VP case can be associated either
to a CP flow with pressure gradient given by

§ = - le (18)

or with constant pressure flow with transpiration (or suction)
given by

7 = G (19)

The second of these formulations, of course, contributes nothing
in the way of explaining the wake distortion. However, as
demonstrated in Reference 2, it can improve skin friction pre-
diction for the cold wall case le > 0. It might be anticipated
that some intermediate combination of these effects would provide
improvement in both areas, which is, of course, the motivation
for the current investigation.

Returning now to the general problem,we require an additional
relation involving the parameters P and Z. Here we utilize the
“"second wall compatibility" relation obtained by differentiating
Rauations (2) and (4) with respect to y and y, respectively,
and evaluating these at y, y = 0.

This procedure yields

3%u Py’ _ D4 Wy 2u
(ay w { T (ay)w } (ay w p (ay )w(ay)w
3°E. Ve, —~
(a§a)w T (a ')w

But Equations (5) and (6) imply the following relation between
the third derivatives:

u,_e® 3 2oy, Pw? 2
GF v = G G { &, - o v G ) &0,

1 2%p Pw 2, 2u
oo o) by v}

13




Now combine these last three equations to obtain

ay -~ 8 _ RTY
2 &, = o {[E-26h - 238y ] &

37w PN p, dUw p 3y?'w

3 QE 2 1 .é.?_ﬂ.) + .l__. _Qiﬂ ] 2

— - | = 0
o G0 Lo v Gyt } (20)

where we have also utilized (7), (8), and (13). To proceed, it
is necessary to relate the last term on the right-hand-side of
Egquation (20) to the velocity field. Using Equation (13) it is
easy to show that

1 3%p 1 3 324 1 3% 31, 2
( ). = ) E=) + =D =
P, v 'w Py, du'w ay®’w P, duf’w  oay'w
and
2 277 2 ~
1 .3 1 .2 2%u 1 .3 3u
=iy = =9y (Y (i (oM
pw(ayz)w pw(au)w(ayz)w pw(aua)w(ay)w

The second derivatives can then be eliminated as before yielding
the desired result which is

Z(Z-P) = (2+G,) (2+Gy) + G, ~ (Z+G,) P (21)
where

G2 - (gégﬂ)w

Gy = 3G - (%""{)W

)

s @LR? 1 2%, _ 1 2%
G4 3¢ du )w (auz)w w(auz)w

=

w

Note that all of the G;'s depend only on fluid thermodynamics. As
with the term le, they can also be expressed in terms of
specified flow parameters according to

14



G, =~ (22)
. 1-
(y=-1)M2 /2
- LW, 2 2(1-a) e
Gy = (Tta—a®) (57 - =y 1+ (y-1) M2 /2 (24)

It is interesting to note the Mach number dependence oOf G4'and
the fact that it does not necessarily vanish for the adiabatic
case.

Equations (14) and (21) represent the two additional re-=
straints required to treat the general VP problem involving both
mass transfer and pressure gradient. They should, however, be
equally applicable and uniformly valid for limiting cases
(i.e., 2 - 0, P> 0, W-1). 1In order to examine this limiting
behavior it is convenient to introduce some new notation. Let
Z = 0; then Equation (21) reduces to

Z({(Z-P) = u5—G3P (25)

where

G.G. + G (26)

Gs 293 4

i

Several limiting cases can now be considered as itemized in

Table I. The first entry therein corresponds to the zero pressure
gradient adiabatic wall case. From Equations (15) and (23) it
follows that Gy, = G3 = 0 as has been indicated. Equations (24)
and (26) imply Yhat Gg #¥ 0 (assuming Mg # 0). In this circumstance
Equations (14) and (25) imply

Z -P=0
Z(z-P) # 0

The only way in which these equations can be satisfied simultan-
eously is for Z and P both to be infinitely large which is clearly
unacceptable from both a physical and computational point of view.
This irregular behavior could be suppressed by taking the viscosity
exponent to be unity. The resulting situation is indicated by the

15




second entry in Table I. In this case we find that Z = P but that
neither one is explicitly defined. Even if we consider this an
acceptable situation, the irregular behavior has not really been
eliminated. This is demonstrated by the third entry wherein

the adiabatic case with non-zero pressure gradient is considered.
Again, it is found that in_order to satisfy the closure relations
(14) and (25), both Z and P must take on infinitely large values.

In view of these results it is concluded that a consistent set of
_closure rules cannot be obtained in this manner, at least for the form
of transformation utilized here (e.g., Egs. (5),(6) and (8). Accordingly,
an alternate approach is required and this is discussed in the next
section.

Closure by Collocation. - In this approach Equation (14)
is also utilized. However, Equation (21) is replaced by satisfy-
ing Equations (2) and (4) at the sublayer edge. This would yield

du du, _ (21, _ dp
(pu) , )¢+ (V) (ay)s (ay)s ™ (27)
-~ 2u au, _ 21, _&p

where subscript s indicates that the variables have been evaluated
at their respective sublayer edge. In order to be consistent with
the CP formulation, however, the following approximations are
appropriate:

dE_ - Ju OT e au
dx +pus (a;{)s << (By) PYs Q'8§)s
\_7 I~ \—7

s w

By analogy we assume that similar approximations are appropriate

for the VP flow. Thus if it is further assumed that Dg a pw and

that at the sublaver edge the shear is due solelv to laminar viscosity,
Equations (27) and (28) reduce to

2 e,V 1
(_6__;1) = {_ﬂ_w _ 1l (éu) }(@_)
3y® s Ky B dY's J3Y s

1
<

azu) _
d3y? s

»
o v
7,

(

i
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By utilizing relations similar to Equation (11) and (13) and
eliminating the second derivatives between these last two
equations, there is obtained

- ?w Tw
Z =" =12 ="+ 61
Ts Ts
where
_ _ (34mod
Gls ( du )s
and
- _ -2u ) -, Qu
TS = “(ai})s ! Ts - “S (ay)s

For the further development it is convenient to express the
laminar shear ;s in terms of other variables of this formulation.
For this purpose we can use Equation (10) of Part II of this
report to show that

~“
~N
-’
i
'.J
£
S}

S w S

where u_ denotes the velocity ratio occurring at the edge of the
sublaye%. We will also restrict further consideration to the
case of zero mass transfer in the VP plane. Accordingly, the
desired closure relations become

§—§=G1-P (29)
W
z
14+u Z Gls (30)
s
where, to be consistent with Equation (15), Gy would be
expressed as S
(L-w)+2m U
G, = (l-a) €2 (31)
1 WH(l-w)d M R
s S e s

17




where

“1)M? /2
~ (y l)Me/
me - 1+ (‘y—l)M?é/z

Qualitatively, Equations (29) and (30) appear to be well behaved
for all conditions of interest. We note especially_that even
for zero pressure gradient adiabatic flows neither Z nor P
vanish which would certainly be the type of effect being sought
here. Note also that as M - 0 and W -» 1, there is obtained

Z = 0, P = P which implieg that the system reduces uniformly to
the CP problem as it should.

A more guantitative assessment of the general behavior of
these relations is not possible without full implementation of
the entire formulation. This is due_to the fact that the velocity
ratio u 1is a function, not only of Z, but of the CP skin fric-
tion co8fficient as well. Nevertheless, some representative
results have been generated for the zero pressure gradient case
by considering Es as a parameter. That is, we let W, M, Es and
o vary over reasonable range of interest and evaluate the
corresponding values of Z from
G1

S
T 1-u Gy (32)

s is
which follows directly from Eguation (30). Some representative
results of this procedure are shown in Figures 1 and 2. Figure 1
shows the effect of Mach number and wall temperature ratio at a
fixed value of a with the velocity ratio W as a parameter. 1In
Figure 2, U_ is maintained constant with a°taken as the parameter.
As may be ngted, Equation (32) is well behaved throughout a wide
range of all of the parameters even up to and including infinitely
large Mach numbers and vanishingly small wall temperatures. By
contrast, the first order closure rule represented by Equation
(19), which incidentally does not include any Mach number depend-
ence, exhibits singular behavior when W - 0 as may be seen by
examining Equation (15).

Superficially, it would appear that the second order closure
rules derived here represent a means for resolving all of the
difficulties previously encountered with the transformation.
Closer examination of the data shown in Figures 1 and 2 implies
however that this may not be the case. This is particularly
evident by noting that for the adiabatic wall case W = 1, negative
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values of Z occur for all non-zero Mach numbers. But from
Equation (29) with le =P =0, we have Z = P < 0 which implies
the occurrence of adverse pressure gradient in the transformed
plane. Since this is precisely opposite to the effect desired,
the likelihood of improving the performance of the transforma-
tion approach by second order closure is substantially dimin-
ished. This will be borne out by the results »nresented in
Section III-

C. Working Equations
General Remarks. — The final result of this section will be

a system of ordinary differential equations whose matrix repre-
sentation can be written

FAl A9 Al7 A25 A33 0 0 0 | (4n R)’ 0

A2 Al0 Al8 A26 A34 O 0 0 (tn @)’ c2

A3 All Al9 A27 A35 O 0 0 (m)’ c3

0 o0 0 A28 0 0 o o (4n Te)’ = c4

0 Al3 o0 A29 A37 O 0 a6l | (V) ’ o | (33)
0 Al4 O A30 A38 A46 O 263 { (4n )’

0 o 0O A31 0 a47 A55 A63 | (4n M)’ 0

0 0 0 0 0 a48 a56 A64 | (x)’ c8

It is believed that by setting down Equation (33) initially, the
detailed development which follows will be facilitated and
clarified. This procedure will also provide an opportunity to
compare the present formulation with that of Reference 1, at the
outset. By virtue of this comparison, those similarities which
occur in the two methods can be exploited to reduce much of the
tedious algebra involved in the derivation of Equation (33).

In addition to this derivation, appropriate initial
conditions will be developed in this section. For this purpose
it will be necessary to outline a procedure for deducing skin
friction coefficients from experimental velocity profile data
according to the second order closure rules employed here.
Similar procedures for the various other closure rules.will also
be set down. Although these so called "Clauser Plots" have been
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utilized by previous investigators (c.f. References 3, 7, 10)
they have not, to the authors' knowledge, been set down in a sys-
tematic manner in any of the literature.

Finally, we note that the reason conventional notation has
not been used in the coefficient matrix of Equation (33) is
twofold. First of all it was desirable to avoid any possibility
of confusing the various terms appearing here and in Reference 1.
Secondly, the choice of notation anticipates the logical flow
of certain "canned" subroutines used by the CDC 6600 computer
for which this analysis has been programmed. A further discussion
of this aspect may be found in Part III of this report.

Comparison of First and Second Order Closure Formulations
for the Pressure Gradient Case. - In SectionIII.B, it has been
pointed out that closure was achieved in Reference 1 by means of
Equation (16). The resulting formulation has the matrix
representation (c.f. Equation (56) of Reference 1):

- - _ - _
Ay BAjp B3 Ay O 0 0 (2n o)’ o |

Ay; Ay, Ays A, O 0 0 (m)’ c,

A3y Ayy B33 Az, O 0 0 (¢n R)' . c3

e 0 0 By, O 0 0 (¢n Te)'| = c, (34)
Ag;; 0 0 0 A O A (¢n o)’ 0

0 0 0 Bga Bgs Bgg Bgo (4n %)’ 0

0 o 0 0 Byg Age Ago | | (x)° ] | Cy

The most obvious difference between Equations (33) and (34)
is that the former is an eight-~dimensional system as compared to
a 7 x 7 for the latter. Evidently this increase in dimension
is due to the introduction of the additional free parameter
corresponding to transpiration in the CP plane. 1In Eq. (33)
this parameter is represented by the dependent variable Gw whose
relation to the parameter Z previously introduced will be
indicated in the subsequent development. Aside from this rather
essential differehce the two systems bear a considerable similar-
ity in the sense that the same fundamental relations are utilized
to derive the final working system of equations. For Equation

(34) the specific relations, proceeding in order from the first
row, were:

20



(a) the CP skin friction law (38)

(b) the CP momentum integral equation (34)
(c) the CP auxiliary equation (43)

(@) the first order closure relation (26)

(e) the sub-layer hypothesis (45)

(f) the edge compatibility condition (21)

(g) the VP momentum integral equation (30)

where the numbers in parenthesis refer to the appropriate equa-
tions as given in Reference 1. Note that item (d) is identical
to Ey. (16) of this report.

The first point to be made regarding Equation (34) is that
the first three relations (a) through (c) constitute the describ-
ing equations for the CP flow. If the CP pressure gradient
parameter* (Lnﬁéf' were a known function, these three equations
could be solved independently cf the remaining four equations.
Here, the two groups of relations are coupled by virtue of the
fact that . (4nUr) must be considered as an unknown. As for this
second group of relations, they represent the four restraints
which are required to define the three stretching parameters of
the transformation and the unknown CP pressure distribution.

The analogy with the present formulation should now be
apparent. Again, a group of relations is required to describe
the CP flow, but, of course, in this case they would involve
both a pressure gradient and a mass transfer parameter. 1In
Part II of this report such a system is developed and it is found
that, once again, three equations are involved which are com-
pletely equivalent to items (a), (b) and (c) abave. The second
group of equations must now involve five rather than four, funda-
mental relations to account for the additional unknown parameter
V.. Of these, three are exactly equivalent to items (e), (f) and
(g). The remaining two are provided by the closure rules developed
in the previous sections; i.e., Egs. (29) and (30).

* ﬁe bears the same relation to the parameter P that Gw does to

Z. The explicit correspondence between these variables will
be indicated later.
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With this as a background we are now in a position to
proceed with the derivation of Equation (33) in a straight-
forward manner. This will be accomplished in the next three
subsections.

In the first of these the working form of the two closure
relations, which are unique to this formulation, will be derived.
Then the relations corresponding to items (e), (f) and (g) will
be considered. Finally, the CP formulation of Part II of this
report will be arranged in a manner suitable for numerical
integration and incorporation into the matrix representation of
Eguation (33).

Working Form of the Closure Relations. ~ The working depend-
ent variables which are employed in the numerical integration
scheme have been indicated in the solution vector appearing in
Equation (33). The first five members of this vector all
represent CP variables and have been defined in Part II of this
report. Furthermore, with the exception of the mass transfer
parameter Gw . all of the variables are identical in meaning to
those utilized in Reference 1. Accordingly, to proceed with this
derivation, it is only necessary to show the relation between Z
and P and these working variables. From the definition of these
latter and those appearing on page 11 of this report, it follows
immediately that

_ PV, _ _
Z = g ; P = %— (LnUe)
e e

Accordingly, Equation (29) can be written

4 v
[l 4 R A
= - - U = - P
U ‘Pg (4nUe) Gl
e w

or, taking into account the definitions of P and the correspond-
ence* between the CP and VP skin friction coefficients

~

_ Y U G m.  d4nu
(nle)’ = =2 - &F 4 | Ao ) & —=2 (35
© lial ﬁwuwon % dy

* Correspondence between the CP and VP variables as implied by
the transformation are listed in Appendix A.
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This equation corresponds to the fourth row in Eq. (33) with
A28 equal to unity and C4 taken equal to the right hand side
of Eqg. (35).%* Complete evaluation of C4, of course, requires
specification ot both the external boundary conditions "~
(d4n U /dx) as well as the wall boundary conditions (le,pw,pw)
the latter also involving the thermodynamic behavior

of the VP fluid. Detailed evaluation of these parameters is
discussed later in this section.

Consider now the second closure rule, Eg. (30). Proceeding
as before, we can write

— w ~ —
1 - L 1- (1 + us) Gls] = 0 (36)

Since this is an algebraic equation it is necessary to differ-
entiate it for the purpose of incorporating it in Eq.(33). 1In
carrying out this differentiation the implicit dependence of

u_and G, on the dependent variables must be recognlzed From

Ea. (ZOaf of Part II of this report it can be shown that

‘-.u.u -

-+t

Es = 7 [ exp (v wYs ) - 1] (37)
__Ww
-+ Vw
where vw = ﬁ;_

-+ -+,
and y_ = fcn(vw ) as determined from the transcendental
equation (20c) of Part II. Accordingly,

= 0, U ,V
u fen(op o’ w)

In view of Eq. (31) we may also anticipate that in the
general case, Gls will exhibit a dependence on both U and the
s

* All of the coefficients appearing in Eq. (33) are defined
explicitily in Appendix B,
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streamwise coordinate X through a corresponding Mach number
variation. Eq. (36) is then of the form

-61—1 =
H1("D' e Vw X) 0

Thus, differentiation of Eq. (36) yields

dH _ aHl - aHl _ aHl
(—=2) (np) ' + (—=) (nU )" + (=) (V ) +(575)(x) ' = 0
3Mno 40 _ e 7 X

(36a)

which corresponds to the fifth row of Eg. (33) where the
coefficients Al3, A29, A37 and A6l are related to the partial
derivatives in an obvious way. The latter are evaluated for
a particular choice of thermodynamic behavior in Appendix C.

Working Form of the Remaining Transformation Restraints: -

(a) Sublayer Hypothesis - The basic form of this restraint is
given by

pu Ly, Puy

#S

= (38)

Tl |0

By utilizing the various correspondences between the CP and VP
variables given in Appendix A and the definitions this can be

written 5 +

-+
1 fs av. _,
- 4 ~
‘ o
Y P

"

H =g -

2 (39)

=

S

The dependence of this relation on the thermodynamic behavior
of the VP fluid is apparent. Proceeding as in the case of
Eg. (36) we recognize that Egq. (39) is of the form
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Differentiations yields

aLnHz 34 nH o4 nH d34nH

)t Ty oyt ~ ! 2
34nnp (tne) + aanﬁe (LnUe) * (VW) +(¢no) +

AY x =0

(39a)

which corresponds to the sixth row of Eqg. (33). Explicit eval-
uation of these partial derivatives is presented in Appendix C.

(b) Edge Compatibility - This restraint follows directly from'
Eg. (6) evaluated at y, y - . There results

u =-aq
e

als

or, in terms of the working variables

7 3 Ye o -
U =& (%) ( ) U (40)
e o0 Mo v e
€o

The working form of this relation, corresponding to the seventh
row in Eq. (33) follows by differentiation. There results

dsnU /v
e e

(Lnae)--(&nt;)' + (4nm) " 3y

x' =0 {40a)

where we have recognized that Vg and (8/%)0 are constants.
o
(c) VP Momentum Integral - Since this formulation will corre-
spond to the case of zero mass transfer in the VP plane, the
momentum integral eqguation remains identical to that used in
Reference 1 and can be written
du dp c

dx u dx p_ ax 2
e e

The CP counterpart of this equation must, of course, reflect the
axistence of mass transfer. Accordingly, it takes the form
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- v
a4, 8 Tl iy o f,w
+ = #2) = 3=+ 5" (42)

After introduction of the various definitions these can be

written
dinU denp c u -1
dind e , e __f e
dy + (H+2) dy dy 28 (ve)o (41a)
V u. -1
Ay ! T = l._l'...]_'__. .__"!. __..._..eo
(nf) " + (@42) 0D )= FlGF + 5) (50 (42a)

Now the correspondence between 6 and 8 according to Appendix A
is given by 8 = 6/m. Accordingly

dén =2, ung)' ==, [(nd) - (o) ')
X X' X

Hence, Eg. (4la) can be written after some rearrangement

d4nU dino c_u -1
e f

o o) ) ! ' - L& =
(F+2) (enD,) *+(enm) ' —x ' { (H+2) . * ey 26(Ve)o }
= u
v e -1
i+ =% (=9
8 o Ug v

It is also convenient to eliminate (LnU )' by means of Eg. (40a).

There results

denu _ dinp _ dLnue
€ _(H+1) € 4 (H+2)
dx dy

@u)uﬁw—@ﬂ»uﬁbu{méb

—1_1—1
V
(o + ——)c———) (43)

QHH

- 55‘:"0 }x=

In Part II of thlS report, a CP Reynolds number _based on boundary
layer thickness,§, is defined according to R = ue 6/v which is
one of the working variables appearing in Eq. (33 Let the
ratio §/5 be denoted by L. Then
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u -1
Lo oL
6 v ZR
and
c,u -1 ppoT ~
L -ww_o g,
26 v, © «® IR N,

where we have utilized several of the correspondences given in
Appendix A. Note that by introducing the parameter R the
dependence of this system on the unit Reynolds number of the CP
flow and, consequently, on its thermodynamic state, has totally
been eliminated.

Equation (43) can now be written

_ N _ _ _ dLnUe - d&npe
(H+2) (4ng) ' = (H+1) (¢n7) ' - {(H-H) o CE) =+
d ' 7 )
ny P MO0,
T = — Tw“—o ﬂ—- 1 = }—_é— _—w

In Eq. (44) the x derivatives of U, p , and B r are, of course,
considered to be specified and henSe afe known® Furthermore,
the CP formulation provides relations of the form

ﬁ ((;I T, 6e' VW)

= ((,Dl T, Uel Vw) ’

f22]]
i

Consequently, provided only that the VP form factor H is ex-
pressed in terms of the working variables, Eg. (44) is in a form
suitable for incorporation in Eq. (33). This representation
must await specification of a particular thermodynamic model for
the VP fluid since, in accordance with the correspondence (A8)

- 5
H=H+ %‘j & -1) ay (45)
°© p

The integral appearing in this expression is evaluated later in
this se~tion. Equation (44) is represented by the last row ot

Equation (33).
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Working Form of the CP Formulation. - The describing
equations for the CP formulation are given by Eq. (38) of Part II
of this report. It takes the form

A1 Ag A7 («Ln(;)' 1

A, 25 Ag (LnR) "' = \c, (46)
A3 A6 A9 (17)l 3

— - - - e -t

where derivatives of V. and U are included in the forcing

terms Ci' For the CP groblemeitself this is appropriate since
these are considered to be given forcing functions. For the
present application they represent unknowns so that this system
has to be modified accordingly. The procedure is straightforward
and involves only the transposition of the coefficients of (v)'
and (4nU )' from the right hand side of Eqg. (46) to the left

hand side. After some rearrangement there is obtained the first
three rows of Eq. (33) where the coefficients in (33) and (46)
are related by

Al = Ay, A2 = Ag, A3 = Ag
A9 = A, Al0 = A3, All = Ay
Al7 = A4, Al8 = Ag, Al9 = Ag
TT LR - <7 [
A25 (LnUe) A33(Vw) Cq
A26 (4nU )' + A34(V )' - C2 = - C3
e w
2 U)o+ v ) - = -
A27 (¢nU ) A35 (V)" -~ C3 Cy

For convenience in the further development it is useful to
note here that the first of these eguations arises by differentia-
tion of the algebraic equation corresponding to the CP skin
friction law; (Eq. (28b) of Part II). This equation can be written

- L - ——
v, : é.vw 1 RU 2
+—2 = = - —_— ,___@_
(1+g° =) 1+ 2= {kz Ham )+ } (47)
e e 1 1
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Thermodynamic Representation. - The influence of the VP
fluid thermodynamics on Eg. (33) is reflected by several para-~
meters appearing in Eqs. (33), (36), (39), and (45). These
involve viscosity and density ratios at the wall and sublayer
edge (Ew, Hw' Es' ﬁs) and derivatives and integrals thereof, i.e.,

(RLD0eU,

1l AT ‘w
W

G

Each of these must be related to the velocity field and sub-
sequently to the working variables in ourder to complcic the
formulation. As indicated in Section III.B, a Crocco integral
representation will be utilized for this purpose. For a per-

fect gas, taking into account that the pressure across the boundary
layer is uniform, this implies that

+ w

W+ (1-W) u + %e'{i?

~ 1
+
e 1 me

It will also be assumed here, for additional generality, that
the VP fluid viscosity can be represented by a Sutherland type
law

2
T3/

K~ 1+198.6

Then it can be shown that

T = :.,l— = H (49)
w D 14m
w e
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~ 1
Ts - ;’— 1 +m (50)
s e
N L )3/2 1+l98.6/Te 51)
Bw,s ~ (Tw,s Ly +198.6/T
w,s e
L _llw T -198.6/T_ )
1 2 W T + 198.6/T
w w e
(1-W) +27m U T -198.6/T
G _ 1 e s il s e (53)
1 21T (1+m ) T +198.6/T
s s e I 's e
Note that since T =T, (l+m ), Egs. (51), (52) and (53) require

specification of Ehe exEernal stream stagnation temperature, which
is, of course, taken as constant in this formulation.

To evaluate the first density integral we make use of the
velocity distribution given by Eq. (20a) Part II. Taking into
account Eg. (48) there results

-+
jfs -+ W+ (1-W) (xl/a) + ?ﬁe (/¢

1 d
e Il T (54)
Yg "o P e
where o+ —
Y Y
s s
R | =+ =+ 1 —-+2 -+
Al === j u dy P A, E i u dy
s o s o

-+

are functions of ;w only and are defined explicitly in

Appendix D.

Evaluation of the second integral is somewhat more straight-
forward since the final result can be expressed in terms of pre-
viously defined parameters. That is, using Eqg. (48) it can be
shown that

6 4 . We*mf)
J G -1 dy = —=—— - &> (55)
(o] e
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Thus, from Eq. (45) the correspondence for the form factor
becomes

Wﬁ—%e
H = =~
14m (56)
e
Boundary Conditions. - (a) Edge Conditions - Inviscid

Flow: So far as the computer program is concerned, the edge
conditions are imposed by inputting a table of Mach number versus
streamwise length normalized with respect to a reference length
2. The internal logic of the program then smooths these data,

if desired, and also numerically evaluates the first derivatives
thereof. The details of this processing is given in Part III

of this report. Here, we will indicate only how the various
inviscid parameters appearing in Eq. (33) are related to this
Mach number table.

For a calorically and thermally perfect gas the isentropic
relations imply that

u, = Me(l¥ﬁe)% (yRTte)% (57)

Accordingly, since the stagnation speed of sound is considered
to be constant here

dsnu 14m aM
e e

dy Me dyx

or

+~
dLnUe 1+m dMe 1

e
= ( ) (58)
dy M, dx/1 Re L

where M and x/4 are the tabulated input values and Reo denotes
the inifial unit Reynolds number (u /ve)o- Note that in deriv-
ing Eg. (58) we have made use of th€ r818tion

dm 2m (1+m ) dam
e ) e 1

= e
dx M ax/1 (ReOL) (59)

which follows directly from the definition of Ee'
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Proceeding in a similar fashion it can be shown that

d{,nTe 2m dMm

_ e e 1
dy B M (& /1) (Reo&) (60)
dLn-""’e dM 1
BT T ) M) Gt (61)

In view of Eq. (60) a Sutherland-type viscosity law would then
imply
d&nue 2m dM l+ﬁp

ay M dx/.{, {2 "~ (1+m_)+198.6/T }(Re I (62)
e e te o

The derivative of the kinematic viscosity Vo follows directly
from Eq. (61) and (62) since

din din din
ve - ”e _ pe (63)
dy dx dy

Note that several of the foregoing relations are also required
to evaluate the partial derivatives aH /ax and 34nH /ax appearing
in Egs. (36a)and (39a)respectively.

(b) Wall Conditions: A detailed examination of this system
reveals that the state of flow at the wall is completely
characterized by the parameter W which represents the ratio of
wall temperature to external total temperature. This parameter
is imposed in a manner identical to that used to input the ex-
ternal Mach number distribution. That is, a table of W vs x/4¢ is
read in, smoothed and differentiated as discussed in Part III.
Thus for the present purpose it is only necessary to recognize
that

o _ gL
dy ax/+, ReoL

) (64)

Initial Conditions. - A detailed examination of the system
represented by Eg. (33) reveals that
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a) The initial value of the independent variable
x is arbitrary.

b) The initial value of y is arbitrary except that
the choice must be consistent with the input
Mach number and wall temperature tables.

c) The initial value of U and T are arbitrary,

as is n_, but they must be selected in a

consistent manner; i.e., they must satisfy the

algebraic equation (40). This is most conveniently

accomplished by taking ﬁe = ﬁo = 1.

0

The five remaining dependent variables R, @, 7, V and g, are
connected by three algebraic equations corresponding to the CP
skin friction law, Eq. (47), and Egs. (36) and (39). Accordingly,
only two initial values need to be prescribed.* These will be
taken to be ¢ and f. The reason for this choice will be made
clear by virtue of the ensuing development.

As in Reference 1, two types of initial conditions will be
considered; namely, conditions corresponding to a "leading edge"
and ceonditions associated with some downstream station where

boundary layer profiles are prescribed.

Since the formulation developed here corresponds to fully
developed turbulent flow, initialization at a leading edge is
necessarily an approximate concept. Nevertheless, if the concept
is to be employed at all, it should at least exhibit gualitatively
consistent behavior in the sense that the solutions sufficiently
far downstream should be independent of the particular initial
values selected.

* As far as the computer program itself is concerned, it will
accept arbitrary initial values for all of the variables in
order to permit restart and continuation of any particular
calculation. Such a procedure is admissible provided a self-
consistent set of values is utilized. 1If this is not the case,
the inconsistency will show up by means of certain output
parameters which provide a running check on whether the alge-
braic equations are being satisfied as discussed in Part III
of this report.
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To establish appropriate initial values in line with this
point of view, a series of numerical calculations were made. Some
representative examples are shown in Figure 3. Here the varia-
tion of skin friction with streamwise distance corresponding to
various choices of initial conditions are shown. It is apparent
that the solutions exhibit virtually no dependence on the initial
choice of ¢ for values in the range associated with zero pressure
gradient CP flows. On the other hand, although all solutions
eventually merge, some effect of the initial choice of ¢ persists
in the near region. _Based on the criterion that the solutions be
identical for x = 107, a suitable choice of ¢, appears to be
¢, = 15. Thus, the "leading edge" option which has been provided
in the computer program utilizes the values Ty = 0.6, ®, = 15.

We now wish to consider initialization at any downstream
station where profile data have been prescribed. This requires
the use of so called "Clauser Plots" which were mentioned
briefly in a previous section. This procedure was first used by
Clauser (Reference 11) in conjunction with analysis of CP flow
profiles obtained on impermeable surfaces. For this case, the
procedure is a relatively simple one and it is worthwhile to
review this elementary case briefly here.

We suppose that the velocity distribution at some stream-
wise station has been determined experimentally in the form
W vs R_ where R_ = u y/y. From this profile it is desired to
infer the assoclated“value of skin friction coefficient c_/2 = 1/¢° .
This is accomplished by comparing a semi-log plot of the experi-
mental profile with a series of curves generated from the equation

~ 1 1 -
a==|k. +=— 4n (R-/ 65
5 5 kl ( - o) (65)

using several arbitrary values of the parameter . Equation (65),
of course, is the so-called "law of the wall” corresponding to

CP flow without mass transfer and is obtained from Eg. (20b) of
Part II by taking v = 0. From this comparison the value of ¢
which best fits thewgiven data can be determined by inspection.
An example of such a "Clauser Plot" is shown in Figure 4. Note
that the shear is quite unambiguously determined by this method
and that it is in good agreement with the value obtained directly
by means of a skin friction balance.
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Generalization to the CP case with mass transfer is due to
Stevenson (Reference 12) and has been used by others (References 5,
7). In this case the velocity distribution is compared with
curves corresponding to Eq. (20b), Part II, which can be written:

-

~ _ 1 i I -
u = p {k (1+k2 \Y (p) + l(1 3 (p) ,{,n(Ry/(p)
T ? (Ro/9)
4ki W tn® (R-/p } (66)

Since V is known in the case of CP flow, Eq. (66) is exactly
equivalgnt to Eg. (65) in the sense that a unique U vs R- varia-
tion results for any particular choice of 5. A represengative
example of such a Clauser Plot has been given in Figure 1 of

Part II and is repeated here as Figure 5, for convenience. Again,
the determlnatlon of ¢ (and therefore of c ) is clear cut.

Once » has been determined, it is also possible to assess

the value of the profile parameter n for any particular profile.
For thie purnose the relations

~

1 (- 1 -
” =5—{<p -k, —kl in (Rg/‘f’)} (67)
1.2 S =33 1 _/a
35 ade” -1 -x, - K, " (R:/p) } (68)

are utilized for the zero and non-zero mass transfer cases,
respectively. These relations follow from the skin friction law,
Eq. (47), where we have recognized that

m

ﬁﬁ = R- G g/;
e 6 e

which can also be determined from the experimental profiles.

¥ Note that*U ~hasﬂbeen“taken*equai—to~unity—here*which—Is
approprlate since the ultimate purpose of this procedure
s to establish initial conditions.
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The equivalent method for impermeable VP flow was developed
by Baronti and Libby (Reference 3). 1In this case, however, the
procedure is somewhat more involved since the measured profiles
in the form W vs R = u y/y must first be transformed to the
corresponding CP £f8rm. ©Sin&e ¥ can be interpreted as either the
VP or CP velocity ratio (c.f. Eg. (7)) no stretching of the
ordinate is required. On the other hand, points corresponding
to various values of Ry must be transformed according to

(69)

It

Rs o[ pdRr

as indicated in Appendix A. Thus, if the density variation has
also been obtained experimentally, a semi-log plot of U vs R-/C
can be prepared from the measured data. This must then be cOm-
pared with appropriate forms of the "law of the wall."

Depending upon the type of closure utilized, the U vs R-
variation would be obtained from either Eg. (65) or (66).
Note however that the abscissa must be divided by a corresponding
value of g before the comparison can be made. Furthermore, if
Eq. (66) is utilized, a consistent value of V must also be
selected. The details of how this is accomplehed for each of
the various closure rules will now be outlined.

"Zero Order" Closure (2C): This form of transformation is
utilized in Reference 3 and presupposes that V = dp/dx = 0.
In this case, the appropriate value of g which is required would
be obtained from Egs. (39) and (54) specialized to the case §w=0.
There results

~ — ~

W+ (1-W) (5.3/p) + T_ (37.45/0%)

1 +m
e

T = (70)

0 Im

=

where BS and us are evaluated from Eq. (50) and (51) with
u = 10. 6/m. For prescribed values of m and W, Eq. (70) 1is
of the form o = o(¢) Accordingly, for any choice of ¢, the

* In Appgndlx E, it is shown that as Gw - 0, Eq. (37) implies
us = ys/c = 10. 6/@ while Eq. (54) takes on the form indicated.



variation of U vs R_/§ can be generated using Egs. (65) and
(70) . An example of this procedure is shown in Figure 6.

Once the value of a which best fits the data has been selected,
the corresponding value of 7 can be obtained from Eg. (67) by
recognizing that R: is determined by the second of the rela-
tions (69). Finally, the value of the VP skin friction
coefficient associated with this profile is obtained by using
the correspondence (A-9).

First Order Closure with Pressure Gradient (FCP): Since
Gw is also assumed to be zero here, the procedure is identical
to that for ZC in view of the fact that Egs. (65), (67) and
(70) retain identical forms despite non-zero values of dp/dx.

First Order Closure with Transpiration (FCT): - As has
been noted above, the variation of u with R-/¢ depends here
not only on a choice of ¢ but on a value ofyv as well. This
is true both for Eg. (66) and Eq. (39). The Yaditional
relation which is required is Eg. (19). That is, with W
specified, le is known. Accordingly, with a value of ©
selected, the appropriate value of V is obtained from

S
v, = 7 (71)

which follows from Eg. (19) and the definition of Z. With ¢
and V thus selected, the proper value of ¢ is obtained from
Eq. (§9) using (50), (51) and (54). Equation (66) is then
utilized to obtain the desired variation of U vs R-/g. The
value of 7 follows from Eqg. (68) while cg is obtaifed as
before. An example of an FCT Clauser Plot is shown in Figure 7.

Second Order Closure (SC): fThe procedure for the SC and
FCT cases is similar except that the appropriate value of V
must be determined by iteration using Eg. (36) which, for
specified Mg and W is of the form H (m,V ) = 0. Otherwise, cal-
culation Of U vs R-/0 and g for any value of ¢ is identical.
Figure 8 shows the” result of applying SC rules to particular
experimental profiles. A comparison of the results obtained
using the various methods is presented in the next section.
A summary of the Clauser Plot procedures outlined above is
presented in Table II.
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IV. RESULTS AND DISCUSSION

A. Profile Analysis

As indicated in previous sections, one of the primary
reasons for modifying the compressibility transformation was
for the purpose of eliminating the observed distortion in the
wake region of the transformed velocity profiles. This phenomenon,
which was first pointed out in Reference 3 and also discussed in
References 2 and 7, manifests itself in values of the wake para-
meter g which are substantially smaller than those which are
expected to occur for constant pressure CP flows.

To determine whether the modified transformation provides
any improvement in this respect, a series of profiles were
analyzed according to the procedures set down in the previous
sections. That is, Clauser plots for selected profiles were
prepared and the values of c_ and g determined. A typical set
of these Clauser plots is shown in Figures 6 and 8 corresponding
to two choices of closure. The final estimated values of c_,

m, etc., are compared in Table III. As can be notedtherein, the
values of ¢ inferred by using the SC rule are only slightly

higher than the ones deduced by means of the ZC rules. Figure 9
shows how both of these values compare with the anticipated CP
values. It appears that, although some improvement has been
obtained, the distortion for the most part has not been eliminated.
This situation prevailed for all of the profiles analyzed which
included most of those listed in Table II of Reference 2.

B. Zero Pressure Gradient Results

To assess the usefulness of the form of transformation
developed here in predicting boundary layer behavior for the VP
zero pressure gradient case, a series of calculations were
carried out corresponding to the range of conditions 0 <M < 6,
0.25 < W < 1.0. Similar calculations were also carried ouf
using both the FCT and FCP forms of the transformation. To
expedite comparison of these results with experiment, the pre-
dictions due to Spalding-Chi (Reference 13) were utilized to
represent the experimental data since this methodology is generally
recognized as a reasonably accurate correlation of most of the
available data.
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The comparison of all of these results is shown in Fig-
ure 10. PFrom thie comparison it would appear that for the
range of parameters examined:

. The FCT form of transformation provides the
best agreement with experiment.

. The FCP form is superior to the SC form for
the adiabatic wall case W = 1.

. For moderate Mach number level (M < 2), the
SC form of transformation provideg improved
agreement with experiment, relative to the
FCP form, for flow configurations involving
heat transfer.

. For Mach numbers above approximately M = 4,
the FCP and SC forms give essentially £he same
results for the heat transfer case.

C. Pressure Gradient Results

The present methodology has been used to generate boundary
layer predictions for two cases involving adverse pressure
gradient. These include the adiabatic wall configuration of
McLafferty and Barber (Reference 14) as well as the case examined
by Kepler and O'Brien (Reference 15) which involved heat trans-
fer as well. These results are compared with the experimental
data in Figures 11 and 12 as well as with the predicti ons due
to the FCP form of the transformation. As may be noted, the two
predictions are essentially equivalent and neither agrees too
wéll with the data in the region of maximum pressure gradient.
Note, however, that this latter disagreement is most probably
due to the normal pressure gradients which exist in the experi-
mental setup and which are not accounted for in either of the
theoretical calculations.
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V. CONCLUDING REMARKS

On the basis of the results cited it would appear that the
modified compressibility transformation developed here provides,
at best, only marginal improvement over the methodology pre-
viously developed in Reference 1. This conclusion is valid
only if the latter is utilized without the use of the so-called
"Wake Parameter Correlation." In this case the earlier formula-
tion is superior to the present method.

In principal, of course, the aforementioned correlation
could also be employed in the present analysis. The resulting
formulation, however, can be anticipated to be equivalent to
that of Reference 1 with the correlation. Thus, it is concluded
that such additional development would not be appropriate and
it is recommended that, for the present, the method of Refer-
ence 1 be employed to treat VP flows with pressure gradient.

Although the present effort has not been entirely success-
ful in achieving an improved form of transformation which is
self-consistent, the basic objective remains valid and further
effort in this area is recommended. In this connection, the
approach outlined in Reference 16 appears promising and its
further exploitation to achieve this objective is indicated.
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APPENDIX A

CORRESPONDENCE BETWEEN CP AND VP

%=£(X)
.
%ay="®
oy
w-ww = o (x)
"W
=%y
n
pY-pY, = ¢
vt
a
6 ==
n

su AV

{(pV—pwvw) 4 B

n ax

5 _
6% = 5 6% + [ (= -147 ]
o}

6
- 1
H=H+=j
9O
e = BT
R-='EJRY
4 O
R-. = E I o dRy
& 5
Rg =0 Ry

1)ay

b,

g

VARIABLES

.

do
d><-;

(a-1)

(A-2)

(A-3)

(A~4)

—
o
|
(%]
S’

(a-6)

A-7)

(A-8)

(A-9)

(a-10)

(A-11)

(A-12)
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APPENDIX B

ELEMENTS OF THE SYSTEM (33)%*

Al = 1/kl
1
A2 = A§)+ A} )
- N -, o
A3 = A;n*) + (2-u¥*) Afn_) + (1-u*) n* _
2T, Vo oy A
A9 = - 1/k, + P [+ - 11-260 +—75)
w e e
- (1)
AlO = F,
= p(n%)
All = F;
3H
Al3 = —i-
3/2no
Ald = a{,nHz
3Lng
Al7 = 2/kl
- (1)
Al8 = F,
Al9 = Fén*)
T s
A25 = - A9 - o(1 + —=)
e
= op (1) (1) (1)
A26 = 27,70 +3A; - F,
- N - o _
A27 = 2A2(n )4 (4-u*) Al(n*)+ (L-u*) n* - Fz(n*)

* The parameters kl' _A(](_l), A2(l), Az(ﬁ*)’ A(lﬂ*)' a*, Fl(l)' F("_’l*),
(1) _ (n* 1 * 1
F2 , an ), F3( ), F3n ) are defined in Part II of this report.
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A28 =

A29 =

A30 =

A3l =

A33

A34 =

A35 =

A37 =

A38 =

A47 =

A48 =

AbB5 =

A56 =

A6l

A62 =

A63 =

1
dH
L
BLnUe

a!,nH2

BLnUe

-1

(A1-A25) /V
w
(1) =
F2 /vw

(n*) =
F, /VW
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THE PARTIAL DERIVATIVES APPEARING IN EQS.

APPENDIX C

(36a) and (39a)

From Eg. (36)
_ ~ ~ AL 2 3Gy
oH, Y aus . du l Z ) s
atnp  (1+u_Z) 3tng  atnv ||\l Z Y
~ _ w 0G
3H, _ 5 . du p T . 1
34nU_ (141 _Z) aLnv 143 _2Z , du
oH, 1 °H
V. T V. »1nU
3 w w e
dH, %G, am % 96; 4t ]
1 _ _ s e . s dw + s e
s )N 4
3% | 2%, ax aW dy = aT_ dx |
where, from Eg. (53),
aGls a"i"s zﬁe
— = ¢ Y =~ + S e
aus 1S | aus (lJW)+2meu
3G, f AT 2%
S _ g v ==+ S _ 1
am 1 am (l—W)+2meu 1+m
e S R > S e
86, 3T
S _ & ¥ s _ 1 e
aw 1 3w (1-W)+2m u
S L e s
aGls Gls Ts
3T 397.2 \ 7= IR 2_(198.6/T )=
e e e
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(50)

where, from Eq.
dT (1-W)+2m U
s =
du 1+m
s e
~4 ~2 ~
3T u -T
s __s__s
am 1+m
e e
dT 1-u
s _ S
AW 1+m
e
with 397.2/T
T T ®-(198.6/T )* T
s e
a’Gs U
— and a{,n\_fv;' are evaluated in Appendix D

and where
¥ 3 o105
(39) and (54)°

From Egs.
34nH, a:,an) o, | )
~ +
34N aus ame a&nv
m
1-w) Dy soe faa_
o Ilar an+ M (Ea denv + 2
+ - -~} =
W+ (1-W) (A, /o) + me()\z/ma)
1-W  _da + Me 4
O v+ T +
d4nHs _ a%}h)( ) © dinvy _® dén‘:w
34nU_ a{,nv+ W+ (1-W) (), /<p)+r"1c’1e()\2 /0%)
3tnH, _ 1 24nHp
v \Y A4nU
w w e
m ar
34nHe _ 34nHy e . 3¢nH, AW | 3inHe e
dX ame dy W  dy aTe dy
Where, taking into account also Eg. (51)
o4 nHs aTs
=T —=
3u
S

u
0 S
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a’{anQ — I-\ — .S_ + >\2/4Q_i 1
T~ = ~ + . el ~ =2 - —~
3m_ om_ W (1-W) (A /) m_ (A, /%) l+m
T -
panme _ [ O0s 1-Qu/g)
oW oW W+ (1-W) (Al/([)) + me ()\p,/tpa)
34nHs _ 198.6 (Tg-1)
3T T 2 (1+198.6/T ) (T_+198.6/T )
e e e s e
n D - 1.5 T_-331/T_
Wt =TT T +198.6/T
s s e
dal diz . .
and where danw+ and danw_‘_ are evaluated in Appendix D.
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APPENDIX D

AUXILIARY CP PARAMETERS

Using Eqg. (10) of Part II of this report

y_* g+
1 s =t _ = 1 s
A E =T u dy+ = be ( =5 - (D-1)
Vi, N2
§ + G +2
—_ __L S - 2 - _ -_l__ s _ _
S o w S
where
u+=ugp= =i [exp(v +y +)-1] (D-3)
s s v +
w
From (D-1) and (D-2) it follows that
d&n§ +
a\ _ °S -4 _ _
dtnv + 1+ ditnv_ + (us Ay) A (D-4)
w w
ax d{ny +
& = + +2 - + —- +- }
aens s AT [ @ +-x) S )
1 dh
-2}, - S T (A + arnv + ) (D-5)
w w
while from (D-3)
a?is
dtng s (D-6)
aﬁs §s+ dLn§s+ o
aanv + = o |1t Gmmm F || xRV - R, (0-7)
w w
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where, from Eqg.

d&n§s+

(15) of Part II of this report

k (v," exp(vF v t/2)-k; 1-tny!

—+-
d{,nvW

1-k vy~ exp(VvFyt/2)

(D-8)
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APPENDIX E
LIMITING FORM OF THE ELEMENTS OF THE SYSTEM (33)

In view of the results shown in Figure 1, it can be antici-

pated that, in general, V. can become vanishingly small during the
. w . .

course of any particular calculation. Since several of the
coefficients appearing in Eg. (33) take on indeterminate forms
when V = 0, special treatment of these is required. Specifically,
for V7 sufficiently small, special limiting forms of these
coefficients are employed by the computer program.

These special forms are listed below:*

lim _ 1 -

w
lim 1
T -0 A25 = k,

\
lim -3 g
5 Lo A33 = 9°/4U

w

. . - a3 °%
llm A37 = - 2— _S _—N—s
v -0 U U 3v. + 3u

e e \ S
13 ~ - 3
-im A38 = Q—{ a'.{:n 2 4 BLRHB == }
v -0 U 3V + du av_+
w e \ s "
where

u v+ v+
aus _ 1 dys + Ys }

v+ o v +

Ve © de 2

1-Wda e dxs

34nHx _ o AUyt & dUwt+
37_+ W+ (1-W) (A /) 41, (X5 /0®)

* Limiting va%g?s of A 4*?nd A35 are not listed here since_the
parameter F and Fi'l are themselves proportional to V
which allows elimination of the indeterminancy in an obvigus
manner.,
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Y

av_ + av_+ 3

w w

vy + dy +

dég = S { 2 =1 + 5 i_/ +?}
av_+ 3 dv + 16 “*s

w w

g+ oy +°
dy y

_ _s { ki }
de+ 4 1-k, Y +

Note that these relations and others appearing in the various
coefficients must be supplemented by limiting values of ys+ and
ﬁs. From Eg. (D-3) it is easy to show that

<l

. . +
lim ~ lim ~ s
- u = - u —

- T"l-'—. O
VW 0 s Vw 0 s 0}

that in the limit Vw - 0 ys+ satisfies thc trancscendenta

- 1
+ = + =y +
Ys ka k, Ys

which, for the choice of constants used here (i.e., k; = 4.9,
1/k, = 2.43) leads to

lim -

VvV -0 YS+ = 10.6
w
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TABLE I. BEHAVIOR OF CLOSURE RULES
FOR LIMITING CASES
LIMITING +ALUE OF CcP
CASES COEFFICIENTS VARIABLES
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SUBLAYER EDGE VELOCITY RATIO ON THE CP
BLOWING PARAMETER ACCORDING TO SECOND
ORDER CLOSURE RULES

59



58

+2.0y

+1.5 +

|
|
|
l
e
I
o
S

+l.o e

-1.0 l | |
0 .25 .50 .75 1.0

FIGURE 2: EFFECT OF MACH NUMBER, WALL TEMPERATURE
RATIO AND VISCOSITY EXPONENT ON THE CP
BLOWING PARAMETER ACCORDING TO SECOND
ORDER CLOSURE RULES
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u - velocity ratio

A Data of Ref.18
Pressure Dist. No. II
X = 8.3 in.

V = .00826

w
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10 10~ 104
R; ~ Normal Coordinate

FIGURE 5: CLAUSER PLOT FOR CP TRANSPIRED
PROFILE DATA OF REFERENCE 18
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FIGURE 6: CLAUSER PLOTS ACCORDING TO ZERO ORDER CLOSURE FOR

PROFILE DATA OF REFERENCE 19, Me ~ 2.0, Wx 1
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FIGURE 7:
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CLAUSER PLOT ACCORDING TO FIRST ORDER CLOSURE WITH
TRANSPIRATION FOR PROFILE DATA OF REFERENCE 19 -

Run 29 (cf = .00218, R9 = 6470)
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PROFILES OF REFERENCE 19 WITH CP VALUES
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FIGURE 1l1: COMPARISON BETWEEN THEORETICAL PREDICTIONS AND
MEASUREMENTS OF MC LAFFERTY AND BARBER
(REFERENCE 14) FOR CURVED SURFACE -~ 1R(B)
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FIGURE 12: COMPARISON BETWEEN THEORETICAL PREDICTIONS AND
MEASUREMENTS OF KEPLER AND O'BRIEN (REFERENCE 15)
FOR CURVED SURFACE, HIGH HEAT TRANSFER, M_ =~ 6.0

NASA-Langley, 1971 — 12 CR=-1923%




