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ABSTRACT

The region in north-central Iowa referred to as the Hanson

disturbed area was investigated with the seismic refraction method

and the bedrock configuration mapped. The area is approximately 30

km in diameter and is not detectable from the surface topography;

however, water wells that penetrate the bedrock indicate that the

bedrock is composed of disturbed Cretaceous sediments with a central

region approximately 6 km in diameter composed of Precambrian cry-

stalline rock.

Seismic velocity differences between the overlying glacial till

and the Cretaceous sediments were so small that a statistical program

was developed to analyze the data. The program developed utilizes

existing 2 segment regression analyses and extends the method to fit

3 or more regression lines to seismic data.

The seismic data was collected on two-mile centers as reversed

profiles. The data was analyzed and depths and velocities were determined

and plotted as two separate maps. The resulting bedrock topography includes

closed depressions, but the circular pattern observed in the subsurface

data is not reflected in the bedrock topography. Bedrock seismic velocity

patterns appear to correlate with the Bouguer gravity map developed in

an earlier study. The Precambrian crystalline rock displayed velocities

ranging between 3000 m/sec to 5000 m/sec whereas the disturbed sediments

ranged between 2000 m/sec to 3000 m/sec.

The study was not able to provide the necessary data to establish

the origin of the crater. The bedrock configuration map and the velocity

distribution map do point to another crystalline subcrop west and south

of the present outcrop.
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INTRODUCTION

The identification of granitic well cuttings by the Iowa Geological

Survey from water well samples taken near the town of Manson, Iowa,

suggested that an unusual geologic feature was buried at relatively shal low

depths beneath glacial drift that blankets most of Iowa. A number of water

wells drilled into bedrock near the wells from which the granitic cuttings

were taken, revealed that the normal sequence of bedrock formations did not

exist in the region. Moreover, the cuttings from these wells were highly

deformed. The Iowa Geological Survey established a boundary enclosing all

of these wells and labeled the region the Manson disturbed area.

In an endeavor to explain the occurrence of the granitic rock and

anomalously soft well-water in this region, the Iowa Geological Survey and

U.S. Geological Survey conducted a d r i l l i ng program near Manson in 1952.

From a bore hole, drilled approximately 6 km north of Manson, 118 m of

crystalline core was recovered below 28 m (93 ft.) of glacial drift.

Petrologic analysis showed that it consisted of highly deformed gneiss,

gneissoid granite, granite, and diabase, all Precambrian in age (Hoppin and

Dryden, 1958). The dimensions of the major components of each rock type

were also varied. Breccias, wi th rock fragments as long as 45 cm grading

down to chloritized microbreccia, made up a large part of the core.

Weathering alterations occurred as deep as 60 m into the crystalline material

(Dryden, 1955). Lidiak £t al_. (1966) have dated the crystalline rock by the
9Rb-Sr method to be between 1.13 and 1.44 x 10 years. Bunch (1968) found

that the minerals in the crystalline mass had numerous unusual microstruc-

tures. Quartz, had well-defined mult iple k ink bands, and deformation bands



in plagioclase were observed.

After an examination of available well logs, both Dryden (1955) and

Hoppin and Dryden (1958) suggested that the crystalline rock surface is
2nearly flat-topped and covers an area approximately 4 km directly beneath

the glacial drift. Extending beyond this area, the surface of the crys-

talline rock falls away in all directions with steeper slopes to the south-

east. They concluded that the Manson disturbed area has many similarities

with the characteristics of cryptovolcanic features as outlined by Bucher

(1936). Bunch (1968) concluded that the numerous structural features in the

minerals indicated that the Manson disturbed area had undergone violent

disruption. Irrefutable evidence that the area had been subjected to shock

pressures that only a meteorite could produce, such as shock-formed glass

and/or high pressure silica polymorphs, had not been discovered in the thin

sections.

A compilation of elevations of the basement rock of Iowa by Yoho (1967)

shows that at two locations in Ft. Dodge the top of the basement rock is 315

and 399 m below mean sea level and is typical of north central Iowa. The

elevation at which the crystalline rock was found north of Manson by Hoppin

and Dryden (1958) was 351 m above mean sea level. Therefore, the relief of

the crystalline rock in the Manson disturbed area must be near 700 m.

A ground water resource study of Webster County by Hale (1955) suggested

that the regional structure in the Manson area was abruptly broken by

faulting, forming a roughly circular basin. Figure 1 is a geologic map of

the Manson area as presented by the Iowa Geological Survey (1969). The

Precambrian subcrop is shown surrounded by highly deformed lower Cretaceous

shales. Mississippian limestones and dolomites border the disturbed area on
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the east, and Cretaceous shales and sandstones border on the north, west

and south.

In 1953 an aeromagnetic survey was flown over the disturbed area

(Henderson e_t al_., 1963), and the resultant map was incorporated into a

regional aeromagnetic map of central and southeast Iowa (Henderson and

Vargo, 1965). Figure 2 is a reproduction of a portion of the 1953 survey.

A magnetic high with a peak value of 4470 gammas roughly coincides with the

outline of the crystalline rock as established from borehole information.

Also prominent on the aeromagnetic map are several other anomalies. An

elongate anomaly, trending NW-SE and having an intensity of 4605 gammas, is

centered at a point 6 km northwest of Manson. Smaller anomalies (4115 and

3620 gammas) are located further from the center of the structure.

Holtzman (1970) recently completed a gravity survey of the disturbed

region. He found that the regional effect of the mid-continent gravity

high, which lies to the southeast of the Manson disturbed area, could be

minimized with a trend surface technique that was successfully applied by

Coons, Woollard and Hershey (1967) to similar gravity data. The Bouguer

gravity map is shown on Figure 3. Holtzman found that a negative Bouguer

anomaly in the interior of the disturbed area reflected, in part, low

density brecciated sedimentary rock. Residual maps, calculated from as high

as sixth degree trend surfaces, suggested to Holtzman that a peripheral

graben bounds the eastern and southern edge of the Manson disturbed area,

and that an inner arcuate fault paralleling the graben might also be located

roughly equidistant between the center of the structure and the graben.

Holtzman concluded that the gravity data from Manson had an appearance

similar to gravity data from impact features. With this information at
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hand the seismic refraction study was ini t iated to investigate the nature

and configuration of the upper portion of the Hanson disturbed area.



COLLECTION OF THE SEISMIC DATA

A total of 107 seismic locations were occupied in the course of the

investigation. The data were collected at sites loosely fitting a .3.2 x 3.2

km (2 x 2 mi.) grid to take advantage of the spacing of the county roads in

the area. In many cases the seismic locations could not be exactly located

at the grid points because it was necessary to avoid primary roads, farm

drainage tiles, and electric hi-lines. For identification purposes, the

seismic sites were numbered along profile lines east or west of a north-

south trending center line. The center line was drawn 1.6 km (1 mi.) east

of the west edge of the -townships in range 31W, and 11 profile lines per-

pendicular to the center line were drawn with a spacing every 3.2 km (2 mi.).

See Figure 1. An example of the identification of a station would be the

seismic site marked 3-2E. It would be the second seismic site east of the

center line on line 3. Where a seismic site lies between two profile lines,

the number is marked on the figure. All grid locations were occupied except

8-4W and 10-4E.

The seismic data were collected with a truck-mounted, 24-channel,

analog, seismic recorder. Single 14 Hz geophones were spaced 32 m apart

along two 12-channel seismic lines. The low-pass filters on the amplifier

banks were locked out so that the lower effective frequency was the 14 Hz of

the geophone response. A high-pass filter of 120 Hz was used throughout the

field operation. Amplifier gains were adjusted to enhance the first arrival

breaks. Timing on the seismic records was marked by timing lines spaced

0.010 seconds apart. Two independent 100 Hz oscillators were simultaneously

recorded and later checked against each other, giving a precision of the
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lines better than 0.001 second in five seconds.

Two basic geophone spread configurations were employed. At 29 loca-

tions, most of which were along line 6, a split spread geometry was used,

and a charge was detonated between them. This geometry produced two sets

of 12 arrival times for each shot. In several locations on the eastern

side of the study area in the undisturbed region, the two cables were strung

perpendicular to each other; in this fashion the presence of a marker

horizon below the bedrock surface might be used to detect the true bedrock

dip. Also at 13 other sites, a second charge was detonated at one end of

the seismic line so that true reversed profiling might be accomplished on 12

traces. At the 78 other sites, the spread geometry consisted of stringing

the cables along a straight line, and charges were detonated at each end of

the seismic line. This geometry produced 24 arrival times for each shot.

Five to six pound (about 25 NT) charges of 40% strength stick dynamite

were buried at a depth of approximately 3 m in the gVacial drift. The

charge was placed beyond the farthest geophone at a distance in line with

the seismic line of from 20 to 60 m and at a distance perpendicular to the

line of from 3 to 15 m.

From the seismic recordings the first arrival times and time breaks

were picked with a 3X power binocular microscope mounted with an eyepiece

reticule. Three trained observers analyzed several records, and a compari-

son showed that the arrival times could be picked with a precision of

± 0.002 seconds. Because the mechanical alignment of the galvanometer and

timing line optics in the recording oscillograph cannot be accurately

assured below this level, the overall accuracy of the arrival time deter-

minations was sufficiently low to warrant the use of one observer for the
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bulk of the data.

The raw time values and distances were encoded and digitized. Each

coding form was sight verified with the original seismic record, and the

digital records were then mechanically verified with the coding forms.

Several consistency checks were made on the digitized data. As an example,

on 24 trace records the time shift and offset distances on traces 1-12 were

compared to those of traces 13-24, and the difference in ground distance

between trace 12 and 13 was checked against the standard takeout spacing.

Several corrections were applied to the time and distance data. A

relay closure time of 0.001 second was added to each of the raw first

arrival times. The horizontal distance from shot point to geophone for

each arrival time was corrected for the distance the shot point was offset

from the seismic line. The relief along the geophone spread was usually

less than 5 m; only in one instance was the relief as great at 15 m.

Because of this low relief, time corrections due to topography were not

calculated.

A reconnaissance altimeter survey of many of the gravity stations

established by Holtzman (1970) confirmed his published ± 1.2 m elevation

accuracy. For each seismic location an altimeter loop was tied from the

seismic shot points to the nearest gravity station. The horizontal datum

plane for each shot, from which the depth calculations were made, was set

at an elevation, E, such that E = E .. - C/2, where E L t is the elevation

of the top of the shot hole and C is the depth to the center of charge.

Therefore the accuracy of the elevations of the refracting horizons is

within ± 2.5 m.
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STATISTICAL METHOD

In the development of the refraction method, it was immediately

realized that there was some reproduceable l inear relationship between the

source-to-receiver surface distance and the time of arrival of the seismic

energy. The exact l inear relat ionship, as inferred from geometrical optics,

is often expressed as a l ine segment on a time-distance plot of the data,

and the least squares method has been used to 'best f i t 1 these l ine segments

to the data.

Background

The statistical implicat ions of the 'best f i t 1 regression analysis have

not, un t i l recently, been appreciated. Steinhart and Meyer (1961) have
i

reviewed the use of statistical uncertainty in seismic refraction, and they

have concluded that the results of seismic refraction investigations have

seldom been presented with estimates of uncertainty.

Because the error of measurement of distance is normally several orders

of magnitude less than the error of the measurement of time, as a reasonable

approximation, the error associated with the data may be considered to arise

only from time. The measurement of distance is then taken to be without

error. From this, all deviation from the time value predicted by this

linear relationship are thought to arise from the error of the measurement

of time only.

The principle of least squares states that the best estimate of the

true time value at a distance is one that minimizes the sum of the squares

of the time deviations from their estimates. The wave slowness and time

intercept, determined with least squares regression, are used as
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coefficients of the regression l ine of best fit. But by the admission of

error, there cannot be considered an 'exact1 functional relationship between

time and distance, and so,the measurement of the coefficients is also

subject to error.

No assumption as to the dis tr ibut ion of time deviations at a distance

need be made. The pr inc ip le of least squares does not imply the normal

distribution of errors, only that the estimated parameters are unbiased and

have min imum variance. Borcherdt and IHealy (1968), in fact, suggest that

for crustal refraction data, the distr ibution is not normal but is more

peaked than normal. Regardless of whether or not it is, the central l imi t

theory states that the dis tr ibut ion of the sum of a number of small errors

w i l l approach a normal d is t r ibut ion when the number of measurements grows

large. If no assumption as to the dis t r ibut ion of time error at a particular

distance is made, or no measure of the d is t r ibut ion is attempted, only the

determination of the slope and time intercept parameters with the method

of least squares may be made. Ul t imately the time deviations at a distance

are not as important as the abi l i ty of the model to fit the si tuation.

The method of least squares was first used to choose the l ine that

'best f i t ' the data over a range of distances chosen by the seismologist.

Steinhart and Meyer (1961) presented the uncertainty of the wave slowness

and time intercept for a l i ne segment under the assumption that the error

of time was normally dis t r ibuted. Statistics may further be used to choose

the 'best f i t 1 combinat ion of l i ne segments for the entire range of dis-

tances over which the refraction data was collected. This problem has not

been attacked in the f i e ld of seismology. The problem has only recently

been investigated by those in the f ie ld of statistics.
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Sprent (1961) considered the determination of the critical value of

the independent variable when there were known to be two connected regression

lines. Quandt (1958b) considered the estimation of parameters when the

regression system obeys two separate regimes. He concluded that some

previous determination must be made as to the number of regressions present

in the system. Several d i f f i cu l t i es were encountered by Quandt (1958a) when

he attempted to establish statistical tests to determine this number.

Robinson (1964) investigated the change-over value for polynomical regres-

sions. Hudson (1966) presented the general solution to the estimation of

parameters and change-over values for both l inear and higher order poly-

nonomial regressions.
•

Two computational schemes, fo l lowing Hudson 's gu ide l ines , have been

developed to estimate the number of regressions which w i l l fit a set of

data. Bel lmen and Roth (1969) have used a dynamic programming approach, and

McGee and Carleton (1970) have appl ied the method of cluster analysis .

Recently seismologists have approached the determination of join point

(or cri t ical distance) by us ing selective data rejection. Iyer ejt al_. (1969)

used an i terative scheme which rejects data wi th h i g h time deviat ions. Seg-

ments of the data are selected to be f i t ted, and at each successive itera-

t ion, data points which deviate from the calculated regression l ine by some

specified level are rejected from subsequent calculat ions. The curve

f i t t i ng method formulated by Kai l a and Nara in (1970) differs from the method

used by Iyer et ^1_. in that weights are assigned to each data point. The

weights are assigned on the basis of the normal probabi l i ty funct ion for the

time error. Then the regression for each l ine segment is calculated us ing

all the data points weighted for that part icular regression. Because of slow
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convergence, however, Kail a and Narain found it necessary to revert to data

rejection in the vicinity of the critical distance at higher iteration

levels.

A method is presented here that makes no supposition as to the quality

of the data and takes advantage of several characteristics of seismic

refraction data. Because shallow seismic refraction data may be modeled by

a series of line segments, many aspects of the general solution of the

multisegmented regression problem, as presented by Hudson, may be omitted.

The parameters for each line segment, wave slowness and time intercept, are

calculated, and under the assumption that the distribution of time values

at a distance are normally and independently distributed, the standard

deviations of these parameters are found. An algorithm, utilizing Hudson's

2 segment regression analysis, is presented here which extends his method

to fit 3 or more regression lines to seismic refraction data. The statis-

tical uncertainties of the parameters for each line segment are used to

estimate the uncertainty in the determination of depth.

Unconstrained Join Type

Let the n time and distance pairs form a series in ascending order,

and let there be only one time value for each distance, as [(t-,, d,),...,

(t »d )]. Let the t^ be the dependent variable, and let the d. be the

independent variable. Now the set of time-distance pairs may be partitioned

into m sections, where j = l,...,m, and a simple linear regression equation

may be applied to each section of data. Let one of these sections be

composed of a series of s pairs of values [(t ,d ),...,(t^,d^)]. Here

s = h-g+1. The model equation for the jth_ section of the data is
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t- = oij + B,d. + £.. i = g h 0)

The l ine parameters a. and B- are the time-intercept and wave slowness,
J J

respectively. The random variables e. . are normally and independently
* j •o

distributed with a mean of zero and variance a. . Let the sample estimate
J

for the time intercepts be E(a . ) = a. and the sample estimate for the wave
J J

2 2slowness by E($.) = b.. The estimator of the variance is E(a. ) = s. .
J J J J

The estimator of each e.. is zero, so the m regression equations are

determined by calculating (a-,, b,,..., a , b ). Statistical weights could

easily be included here, but for the present discussion they have been

omitted.

The line segments should be continuously connected at points D. which
J

are positioned between the end elements of the parti t ions. There must also

be at least 2 points of data on each segment, then the time estimates are

/\

t. = a, + b , d - for 0<d, <d2<D-]

t. = a~ + bpd, for D, <d1.<d-

(2)

i = aj + bjdi f°r

Vm+W for Dm<dn-l<dn

For the j^h_ section of the time-distance series, the deviation of each time
s\

value ; t- ,from i t ' s estimation, t. ,1's
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Temporarily let the jth section of the data be considered separately,

as [(t. ,d.) i = g,...,h]. The residual sum of squares from Equation 3 is

s ?
RSS, = Z e/ (4)

J k=l k

where the length of the jth section is s. The following sums must also be

calculated.

s s
Sd. = Z d. St. = Z t.

J k=1 K . J k=1 K

Sdd. = Z d. 2 Stt. = Z t. 2 (5)J k=1 K j k=] K

s
Sdt. = Z d, t.J k=1 k k

Steinhart and Meyer (1961, Eq. 1 and 2) have presented the solution of

the line parameters, a. and b.. They are
J J

Sdd. St. - Sd.Sdt.
a = — i-J - iU-1 (6)
J ssdd - (Sd )*

J J

and

SSdt, - Sd.St.
b = - J - LJ. (7)
J sSdd.. - (Sdj)̂

Now the variance of the wave slowness is

a.2(b) = RSS,/t(s-2)SSd.] (8)
J J O

where
SSd. - Z (d, - <d»

S 2

k=l
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The angle brackets indicate average. Steinhart and Meyer (Eq. 13) have

shown that the variance of the mean value of the regression line at any

distance, d,is

RSS. 2

s SSd.
J

(9)

At the time intercept, d = 0, the variance is

0.2(a) = (RSS./s-Z) (1/s + <d>2/SSd.) (10)
J J J

Substituting Equation 8 into Equation 10 and using the identity

s ? s 2
SSd. = z d. - ( Z d. r/s, then

J k=l K k=l K

(11)

a.2(a) = [0.2(b) Sdd.]/s
J J J

Equations 4, 8, and 11 may be applied to any section of the data.

The join points D,,...,D represented on the model given by Equation 2

are not constrained to a particular value but may be located anywhere

between the uppermost distance d. of one segment and the lowermost distance

d^ of the next segment. Let this type of join, where the data are

separated, be called s-join. The total residual sum of squares is

m
RSST = Z RSS. (12)

Consider a 2-segment regression (r = 2). The computation necessary to

find the best statistical fit of 2 lines fitted to the data proceeds by

passing a line through [(t, ,d,), (t-.dp)] without error and regressing a

line through [(t^.d-,) (t ,d )]. If the intersection of these 2 lines
»5 o n n
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is between cL and d_, then these are a valid pair of regression lines

because the regression lines join where the data have been separated. The

total regression sum of squares RSSy = RSS-j + RSS2 for this combination of

lines. If instead the intersection is not between dp and do this combina-

tion of lines is rejected as a possible 2-segment regression candidate.

Next the first (3) pairs and the last (n-3) pairs are fitted. Again, if the

intersection is found to be between do and d. we have an acceptable candi-

date. The procedure is continued, testing each possible combination of

data, to the last combination which is t(t-],d.j),...(t 2,d 2)]
 and

[(t , ,d ,), (t ,d )]. Of these candidates the best statistical fit is the

candidate which has the smallest RSS-... For r = 2 the total number of

combinations that must be tested is (n-2).

Hudson (1966, p. 1104) has shown that for those candidates that have

not been rejected, the estimates of the regression parameters are valid.

After the best statistical fit has been found, the coefficients (a, ,a2,b,,
p p

b2) are calculated from Equations 6 and 7 and their variances [0, (a),a-, (b),

2 2
a2 (a),02 (b)] are calculated from Equations 8 and 11.

If r>2 then the same basic computational plan would follow, and if all

the join points were s-join, the overall least squares solution would be

the best fit of r line segments found as local least squares solutions from

all possible combinations of the data points.

Constrained Join Type

Although the data have been searched for all s-join candidates, the set

of all possible linear regression fits is still not complete. The model

regression equations in Equation 2 must also be tested for the case where
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the join points are located on time ordinate fixed at the data point

distances. This type of join is here called c-join because, for each pair

of regression lines, one data point is common to the solution of each line.

The system of model equations, with the constraint that the lines join

somewhere on ordinate corresponding to d. , has been solved with the use of

a Lagrange multiplier.

As before, the details of the procedure will be presented for r = 2.

The appropriate linear constraint is that the lines join at some D.

a1 + b-,0 = a2 + b2D (13)

Again let the time-distance pairs be [(t-| ,d,) ,... ,(t ,d )], and let

the c-join be located at D = d . Before the calculations of the residual

sum of squares and the coefficients of the line segments are made, a

number of sums must be found.

Y n
Sd, = Z d. Sd9 = Z d.

and

Y o n ?
Sdd, = Z d,/ Sdd9 = Z d.

1 k=l K * k=Y+l k

Following Hudson (p. 1126) the terms <j> and fy are

<j> = ara2 + (brb2)D (15)

Sdd, - 2DSd, + YD Sdd. - 2DSd

U)-i

where c , . /c , \2

= (n-Y) Sdd2 - (Sd2)2
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*Let RSSy be the total residual sum of squares for two line segments

connected with a c-join, and from before, let RSSj and RS$2 be the uncon-

strained residual sum of squares, then

RSST* = RSS] + RSS2 + <J>2/^ (17)

* * * *Finally, let (a^ , b, , a2 , b2 ) be the coefficients of the line segments

joined by c-join, and let (a,, b,, a2, b2) be the unconstrained coefficients

as determined from before. The new coefficients are:

- (n-y)D]

A line segment with these coefficients does not pass through its point of

mean time and distance.

The computational scheme could proceed from this point by testing the

*data from y = 2,...,n-l and finding the minimum RSST , as had been done for

the s-join candidates, but several short cuts may be taken. The complete

set of combinations with s-joins may be used to reduce the number of

combinations with c-joins. Hudson (1966, Theorem 3) has investigated the

case for r = 2. Each of these combinations may be rejected and not

calculated if they pass one of the following 5 tests:

Test 1. At each s-join candidate, say at i = £> the c-join candidate

need not be calculated at y = £, £ + 1.
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Test 2. If at any i, RSS-j + RSS2 > Min RSSj (Minimum RSSj), even if

the join point was not between the end members of the 2 sets of data, the

c-join candidate need not be calculated at y = i> i+1-

At this point the static tests for the elimination of possible c-join

*candidates have been exhausted, and the calculation of RSSj must be made

*at c-join locations from y = 3,...,n-2. After each calculation of RSSj

through, the next 2 dynamic tests should be made to further reduce the

number of possible c-join locations.

* *Test 3. Let a RSSj be calculated and from these let a Min RSSj be

*found. If at any i, RSS, + RSS2 > Min RSSj , even if the join was not

located between the end members, then the c-join candidate need not be

calculated for y = i. i+1 •

*Test 4. Let a RSSj be calculated at some y and that the mean dis-

tances for the left and right line segments are found as (d-j) = Sd,/y and

(d ) = Sd2/(n-y). If the join point D from the s-join calculations is

(d-|) < D < <dr> then RSSj need not be calculated at any y such that

<<*!> < dy < <dr>.

Finally a test at y=2 and y = n-1 is presented.

Test 5. At y = 2 and y = n-1, regression lines may be fitted and

residual sum of squares, RSS2 and RSS ,, may be calculated on the data

sets [(t2,d2),...,(tn,dn)] and [(t^d-j) (tn-1 ,dn_ ])], respectively.

Then a second regression line may be drawn through (t, ,d,) and the inter-

section of the first regression line with d2 (without error). Similarly a

second regression may be drawn through (t ,d ) and the intersection of the
*

second regression line with d _-,. If RSS2 > Min RSSj, then RSSj at y = 2

need not be calculated. And if RSS^ > Min RSSj, then RSSj at y = n-1
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need not be calculated.

At this point for r = 2, all (n-3) calculations have been completed

for the s-join candidates, and of these, the 2-segment candidate with Min

RSS, has been retained. There are (n-2) possible candidates with c-join,

and hopefully, many of these have been rejected by the tests. From those

*that were calculated, the c-join candidate with Min RSS,. has also been

retained. There are then a total of (2n-5) possibilities for r = 2. The

final least squares solution is either the minimum s-join candidate or the

minimum c-join candidate, whichever has the smaller residual sum of squares.

As before when r>2, the same basic computational scheme would be

followed for the search for c-join candidates. It is not surprising that

the total number of possible candidates 'grows rapidly for problems involving

many segment models or large sets of data, although many may be rejected by

the tests. When n = 24 and r = 2 the number of possible candidates is 43,

and when n = 24 and r - 3 the total is 841. For greater n or r the number

of possible candidates is extremely large. For example, when n = 100 and
g

r = 6 the total number of possible candidates is near 1.9 X 10 .

An Algorithm

Seismic refraction measurements provide data which are sufficiently

linear to allow certain liberties in the curve-fitting process. The first

of these is to suppose that some reasonable estimate may be made of the

maximum number of permissible line segments present in the investigation.

The estimate does not need to be known, but that only some upper limiting

number may be chosen.

This decision though must be tempered with the inherent tendency for
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higher-numbered regression systems to fit the data better than lower-

numbered systems. To be guided in this direction, one must choose a value

high enough so that no line segment is missed, but not so high that the

curve is 'over-fitted' and the solution is physically impossible. This

would be the case when the fitted solution contains velocity reversals.

The second criterion then is that starting from the origin, the velocity of

each line segment must monotonically increase. In practice, this is a

valuable guide to the selection of the best least squares solution.

In a 2 segment linear regression model, the residual sum of squares may

be plotted against join point distance. In the limit as n -> °° the residual

sum of squares form a curve, and the minimum point on this curve corres-

ponds to the distance at which the two regression lines intersect. For a

3 segment linear regression as n ->• °° the best least squares solution is the

minimum point on a surface of residual sum of squares. This surface is

formed on 2 axes which correspond to the D, and D2 join point values and a

third axis which is the residual sum of squares. The anology is similar

for more line segments. If this r-dimension surface is reasonably simple,

the minimum point may be reached by making a series of traverses across the

surface, each of which is accomplished by varying the values of only one

join point. Each traverse is equivalent to the 2 segment regression problem

considered earlier.

To evaluate an r>2 regression system, a number of points along the

data must be chosen to effectively lower the number of possible candidates

to be searched at any one time to (2n-5). These test points should be

chosen as near as possible to the suspected join points, but it is prefera-

ble to choose them slightly below the suspected join point. In this way no
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data points from the next higher line segment enter the calculation. The

procedure advances by searching for 2 segment joins in successive sets of

data. Each successive set of data has an upper bound which has been set by

a test point and a lower bound which has been set at the join point found

in a preceding join search.

As an example, suppose there are 3 suspected line segments to be

fitted to time-distance pairs where [(t. ,d. ) i = l,...,n]. There must be 1

test point chosen at or slightly below the suspected join between the second

and third line segments, say at i = T. The pairs [(t. ,d. ) i = 1.....T] are

first searched for the join between the first and second line segment. Let

the solution for this set of data be an s-join candidate between i = £ and

i = <; + 1 , as dr<D-i<d
c+-]- The data [ ( t ^ j d ^ ) i = ?+!,..., n] is now searched

for the join between the second and third line segment. Suppose the

solution here is a c-join candidate such that d <D0<d ,, . The finaln ^
solution is composed of 3 line segments joined at D, and Dp, and the total

residual sum of squares is equal to the sum of the residual sum of squares

from each line segment.

If the solution in the first search had been a c-join candidate the

data in the second search would be scanned from [(t. ,d. ) i = c,...,n], Or

if a join point had not been found in the first search the data in the

second search would have been scanned from [(t.,d.) i = 1 ..... n], and only

a 2 segment solution would have been found. The computation for each search

would proceed accordingly.

For an n-segment linear regression a vector of test points must be

chosen as (T, ,. . . >T o) anc) tne algorithm proceeds with (n-1) levels of 2

segment join search. Because the number of possible candidates to be
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searched at each level of join point selection is restricted to the search

for a 2 segment fit, the actual computation is greatly reduced.

Examples

An example of a set of data from a typical shallow refraction shot is

presented in Figure 4. Here [(t.,d.) i = 1,...,21]. A linear regression

with all 21 data points yields a line with a velocity of 2682 m/sec and a
? 2residual sum of squares of 0.47325 x 10 sec . The best s-join candidate

from a 2 segment regression analysis is superimposed on the data in the

figure. The join point is located at a distance of 421 m and the total
3 2residual sum of squares is 0.13222 x 10 sec . All possible c-join

combinations were eliminated by the 5 tests, so the s-join candidate is the

best overall 2 segment regression fit.

The best 3 segment regression is presented in Figure 5. A test point

at dg was chosen, and a 2 segment analysis of [(t.,d.) i = 1,...,8] revealed

that the best fit was a c-join candidate joined on the time ordinate

corresponding to d2. The second level of data then consisted of [(t..,d.)

i = 2,...,21]. The best statistical fit here was an s-join candidate with

a join between d-^ and d,~. To be sure the test point was correctly chosen,

the set [(t.,d.) i = !,...,12] was analyzed. This time the best fit was a

c-join candidate with join point at dj. This third scan of the data

protected the overall solution from an inaccurate choice of test point.

Here the test point of dg was too low and should have perhaps been d^. The

overall 3 segment regression fit has a total residual sum of squares of

0.44170 x 10" sec2. A borehole adjacent to the shot showed that the 3

segment fit compared favorably in velocity and depth with glacial drift,
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shale, and limestone.

These two examples show that two valid regression models may be fitted

to the shallow seismic refraction data. At other times only a 2 segment

regression model may be acceptable. This situation might arise if the 3

segment regression model contained a velocity reversal between two

adjoining line segments. In the first case additional information must be

used to discriminate between the two cases. This information is acquired

from a knowledge of the geological conditions in the area.
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ANALYSIS OF NEAR-SURFACE VELOCITIES

Multi-layered earth models of any dimension, whether they are based

on bedrock structures measured in meters or crustal structures measured in

kilometers, may be developed from seismic refraction data only when velocity

measurement of the uppermost layer has been made. On many scales the earth

may be approximated by a model bounded by a series of planar surfaces. The

congressional wave velocity of this uppermost earth material may, in theory,

be calculated from the reciprocal of the slope of a line segment that

passes through the origin of the time-distance graph of the data.

Selection of Data

Many seismic refraction investigations are hampered by a lack of

knowledge of the near-surface geologic environment near the shot and under

each geophone. In shallow refraction investigations the plot of some

records reveals that perhaps one or two data points nearest the shot fall

markedly below the first fitted line segment. They may represent random

scatter about the first line segment, or they may represent travel times

from direct waves passing through a shallower layer. In either case, the

first layer is not detected because there is a lack of data from each

record due to the fixed sampling intervals along the distance axis at which

time was measured. By combining the data from all records the lack of data

at near distances on individual records is overcome, and the maximum times

in each interval may be used to estimate the minimum velocity of the first

detected layer of a generalized model for the entire study area.

In the Manson area, line segments drawn through the first several time

distance points on each shot record did not pass through the origin, so the
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entire set of first arrival time-distances pairs was plotted. The field of

points is shown on the scatter diagram (Figure 6). The locus of points

near the time axis clearly demonstrates that the first layer line segments

do not pass through the origin. Although the lower border of data scatter

is not well marked, the upper border is strikingly smooth.

In an endeavor to better understand the nature of this upper border,

the distances of all time-distances pairs were partitioned with a class

interval of 5 m, as 0-5 m, 5-10 m, etc., and the corresponding time values

in each interval were scanned for the maximum time in each interval. A

plot of these maximum time values was found to be quite regular even to a

distance of 500 m from the origin. The maximum time at this distance was

0.275 sec. The scatter of the maximum times beyond 500 m is probably due

to the smaller sample sizes in each interval at these farther distances.

It was found that the locations of these time-distance pairs which had

a maximum time were uniformly scattered over the entire area. The original

records, from which these time values were taken, were then reexamined to

see if these times might have been taken from traces where the refracted

wave was obsured or where the arrival time was incorrectly measured.

Because of the large size of the shot charges, first arrival onsets were

quite strong even at the farthest recording distances. It is unlikely

that the maximum time values could be attributed to poor record quality or

to second arrivals from later phases, particularly for distances less than

500 m.

Statistical Analysis

Once that it had been established that the maximum time values were

valid refraction arrival times, these maximum time-distance pairs were
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stat is t ical ly fitted with l i ne segments as if they were data from a s ing le

seismic record as described previously. By this method a portion of the

set of all possible combinations of l inearly regressed l ine segments was

searched for the one fit which had the m i n i m u m residual sum of squares.

The first 100 time-distance pairs were fitted with 1, 2, 3, and 4 l ine

segments. The results are tabulated in Table 1. The first l ine segment

from the 4 segment model best fits the maximum time values at the nearest

distances. Models wi th a greater number of l ine segments suffered from

velocity reversals in the first and second l ine segments, probably due to

random deviation of the maximum time values and accentuated by the fewer

number of points represented on the first fitted l ine segment.

Table 1. Statistical fits of first 100 maximum times

Model

1 layer

2 layer

3 layer

4 layer

Points

100

53

47

12

50 .

38

7

20

40

35

Velocity9

1919

1771

2138

1462

1844

2203

1258 .

1749

1863

2200

Residual
sum of,

squares

0.24530

0.12464

0.10938

0.10772

In m/sec.
bln 10"2 sec2.
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From the analysis of the data collected at Manson, it is inferred that

the minimum velocity of the first detected layer is near 1250 m/sec. A

line with a slope corresponding to a layer with velocity of 1250 m/sec may

not be made to pass through the origin and still remain within the data

scatter. Therefore, the first layer has not been detected, for if it were,

the line with a velocity of 1250 m/sec would pass through the origin.

Several investigators (Hobson, 1969; Staub, 1969) have suggested that

at very short distances, the first detected energy arrives at the geophone

from a ground-coupled air wave when the velocity of the surficial layer is

less than the velocity of sound. Although the detection of this air wave

was not an object of the present study, all depth calculations in this study

include a first line segment which is attributed to a ground-coupled air

wave. To avoid confusion the first statistically fitted layer has been

called the first layer. The depth to the '"air" - first layer1 interface

has been found to range from 1 to 2.5 m.
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ANALYSIS OF DEEPER VELOCITIES

The velocity determinations from the statistical line-fitting analysis

of individual seismic records may be combined to indicate the variability

of the velocities of various seismic refractors. The utility of the

shallow seismic refraction technique rests not on the analysis of each

seismic record, but on how well seismic refractors may be traced below

many seismic stations, and how well the depths to the seismic refractors

compare with lithologic changes at depth, as indicated from borehole data.

Statistical Analysis

Nineteen seismic spreads were placed as near as possible to boreholes

where adequate well logs were available, so that a correlation between

seismic refractor layers and lithologic units could be established. These

records were plotted and analyzed with the statistical line fitting method

mentioned previously. Test points were chosen as near as possible to the

join between suspected second and third line segments. Each seismic record

was fitted with 2 and 3 line segments.

The uniqueness of the statistical fit depends on the choice of test

points. In an attempt to improve the 3 line segment fits, each record was

analyzed with a variety of test points. The final statistical fit of the

data for the 3-layer model does not seem to be very sensitive to the loca-

tion of the test point. Experience on artificially generated 3-layer data

has shown that if the test point is chosen between the middle of the second

line serment and the join point between the second and third lines segments,

a correct solution is found.

The statistical fitting method was also measured by how well it
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eliminated the number of calculations of 2 segment regressions. For any

particular set of n time-distance pairs, the search for the best fit of 2

line segments joined between data points (s-join) was necessarily applied

to all (n-3) combination of data points. The robustness of the 5 tests

used to eliminate the calculation of the regressions of 2 line segments

connected with a c-join was measured by the percentage of calculations that

had been eliminated. Of the (n-2) possible combinations to be tested for

c-join, approximately 90% could be eliminated from consideration for any

one of the 5 tests. The rejection rate for each of the 5 tests was approxi-

mately: test 1 - 0%, test 2 - 50%, test 3 - 40%, test 4 - 2%, and test 5 -

8%.

After the validity of the statistical method had been tested, rough

correlations were made between model velocities and the borehole litholo-

gies. Test points based on those correlations were then picked on plots of

seismic profiles without well log control. These seismic records were then

analyzed for both 2 and 3 line segments. In no instance could 4 line seg-

ments be satisfactorily fitted to the data because no more than 24 data

points were available for each statistical analysis. After the best

statistical fits had been made it was necessary to decide, for each record,

whether the 2 layer or 3 layer model best fit the geologic conditions.

Velocity Distributions

The final results are plotted on Figure 7. The frequency polygons for

the first layer velocities, second layer velocities, and a combination of

first, second, and third layer velocities are plotted with the distance axis

divided by a class interval of 50 m/sec. The results are plotted at the
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mid-point between the ends of the class intervals.

The narrow distribution of first layer velocities is attributed to

glacial drift. Much of the velocity of the glacial drift is between 1800

and 1850 m/sec. It is significant to note that the distribution about the

main peak is symmetric. This indicates that there is only one type of

material measured in the distribution. The presence of a second material

with a slightly higher velocity, for example the disturbed shale, would

skew the distribution to the right. The presence of a second material with

a slightly lower velocity would accordingly skew the distribution to the

left. The shape of the main first layer distribution compares favorably

with the velocity distribution of other glacial drifts as presented by

Hobson (1969), Lennox and Carlson (1969) and Staub (1969). The several

first layer velocities above 3600 m/sec were from seismic stations on the

eastern portion of the area in the undisturbed area where the glacial drift

was known to be quite thin.

The frequency of velocities between 2250 and 2300 m/sec on the second

graph is the highest on the plot. The distribution is not nearly as sharp

as the glacial drift distribution in the first layer but it represents a

portion of the disturbed shale velocity distribution. Superimposed on this

graph are the velocities of the undisturbed bedrock layers which include

undisturbed limestones and dolomites ranging in velocity from 3000 to 7000

m/sec and the velocity of the crystalline bedrock which ranges from 3000 to

5000 m/sec.

As an example of the irregularity of the bedrock velocity, at station

6-13E, situated parallel to the rim of the Manson disturbed area, a 24 trace

record shooting north yielded first, second, and third layer velocities of
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1761, 3982, and 5360 m/sec. The second shot detonated between the cables

produced records in both the north and south direction. For the north

spread, layers of 2061 and 5417 m/sec were detected and for the south,

layers of 1762 and 4540 were found. The west end of station 6-14E was

adjacent to the south end of station 6-13E. Here, the west spread detected

layers of 1595 and 4764 m/sec, and the east spread detected layers of 1679,

3077, and 6275 m/sec. It may be seen that neither the second or third

layer may be easily correlated with any other layer on any other record.

The graph of the combined distributions from the first, second, and

third layer reflects all the features mentioned previously. The few points

added at higher velocities are from deeper refracting horizons in the

carbonate sequence of bedrocks in the eastern undisturbed area. Both the

disturbed and undisturbed velocity distributions are suspect of being

quite scattered.
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VELOCITY CONSIDERATIONS

The velocity distributions are not a true representation of the

velocities of the seismic refractors. The presence of dipping refractors,

velocity anisotropy, velocity reversals, hidden layers, and inadequate

velocity contrast will affect, in varying degrees, the measurement of

seismic velocity. Each will be considered in this order.

Dipping Refractors

At nearly all locations the shooting pattern was such that travel

times in opposite directions were recorded. In the split spread configura-

tion, where the shot was detonated between the two geophone cables, the

travel times represent samples of data collected from separate geologic

settings, and in the reverse profile configuration, where shots were

detonated near the far ends of the cables, the travel times represent

samples of data collected from one geologic setting. The split spread

configuration will then produce 2 seismic records based on 2 separate

sections of material, and the 2 velocities, taken from the first line seg-

ments in each record, may be compared. Similarly, the velocities, taken

from the second line segments in each record, may be compared, and so on.

The reverse profile configuration also allows these velocity comparisons to

be made and further allows a check to be made on travel time reciprocity.

These two tests must be applied to each pair of line segments from

corresponding records before the dip calculations may be made. These tests

have not, to the authors knowledge, been suitably framed in statistical

analysis as they must, if the validity of the ultimate results are to be

considered in the light of error of measurement. The statistical tests of
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coefficients for several regression l ines is a topic of analysis of

covariance, and may be found in many books on linear regression, for

example Wine (1964).

First consideration must be given to the question whether the slopes,

b, and b2, of each pair of corresponding l ine segments are statistically

different. If there is no statistical difference between the slope

estimates,they may be combined, and one slope value may be computed for

that pair . If they are different , then a val id pair of slopes whose

reciprocals are apparent dip velocities may be analyzed.

Fol lowing Wine (1964, p. 554), 2 true model equations, based on

separate sets of time-distance data, may be written as

t - j j = a-| + 3-jd-|.j + e^ where i = l , . . . , n . j

(19)

t2l- = a2 + 32d2i + e2i where i = I , . . . ,n 2

The least-squares estimators of a,, cu, are a,, a2, and the estimators of

3-|, 32 are b - j , b,,. Now under the assumption that E .J . and e^ are normally
2

and independently distributed wi th mean zero and constant variance a, and
2

a? at any point on each regression l ine , the estimated regression of time

on distance is
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1 = al + bldli

b2d2i

(20)

because the expectation of the random component of each equation is zero.

Let the terms e,, e2 be the measure of deviation at each d. for each

regression l ine in Equation 19 and are given as

1 ' al - bldli

e2i = *2i " 32 - b2d2i

(21)

These are, in a sense, a measure of randomness at each d^ for each regres-

sion line. The residual sum of squares of Equations 21 are

nl
RSS, = 2 e?.

1 1 = 1 h

(22)
2

RSS- = 2 e~ .

n2 2

The test of the equivalence of 2 slope parameters is stated as the

hypothesis H • 0, = 32 = 3Q. Under the n u l l hypothesis that B-i-fco is

normally distributed and the cornnon population variance is unknown, the

statistic T is given by

b1 - b2
T = _ ' ^ _ __ (23)

sKl/SS^) + (l/SSd2)]1/2

where
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SSdl =

n

i = l
n.

1

(24)

ssd2 = z (d2i - <d2»'

2 ..and the pooled estimate of variance s in Equation 23 is

5 =

RSS1 + RSS2

" + n " 4
(25)

Now instead of applying Equation 8 to segments of one regression analysis,

let it be applied to these 2 regression lines from separate records.

SSd1 = RSS1 / [(nr2) af (b)]

SSd2 = RSS2 / t(n2-2) a* (b)]
(26)

The statistic T is

T =

bl
fRSS-j + RSS2"

n-j +.n2 - 4

"(nr2) GI

RSS

- b 2

2(b)
-I-

(n2-2) o2
2(b)"

RSS2

1/2

•
(27)

The T is distributed with n, + n2 - 4 degrees of freedom.

After T has been calculated it can be compared with the Student's t,

here labeled T, with the same degree of freedom and an appropriate level of

significance. If T is greater than Student's T the hypothesis is rejected,

and it is concluded that b, and b2 are indeed different.

If the hypothesis cannot be rejected, the pooled estimate of 3 is

given as
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SSd1 - b1 + SSd2 - b2 (28)

SSd1 + SSd2

and (a,) and (a2) are

(29)
<a2> = <t2> - <b> <d2>

In this case the analysis may not proceed to the second test with this

particular pair of line segments.

As an example of an analysis of slope differences, consider the case

where two records from a reverse profile configuration had been best fitted

with 3 line segments. The 2 first line segments would be tested to see

whether or not there was a significant difference between the slopes. Then

the 2 second line segments would be tested to see whether or not there was

a significant difference between these slopes. And finally, the 2 third

line segments would be tested.

A fundamental criteria in seismic refraction is that opposite ended

shots and receivers may be interchanged without affecting the travel times,

in other words, they are reciprocal. From this, each pair of line segments

crossing the opposite-intercept must have the same time value. To reduce

this to a statistically convenient question, the line segments from a

hypothetical reversed profile are replotted on one set of axes. Then

in an n-layer case, the first line segments should superimpose, and the

second to the nth_ matched pair of line segments should each intersect at a

distance S from the origin, which is equal to the shot point to shot
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point distance.

Now by shif t ing the time axis to a new time axis at distance S, the

second to the nth_ matched l ine intersect on this axis. The regression

equations then become

1 = al + bl5 + bldli

(30)

By shifting axis, the data are simply coded, and no statistical changes have

been made. The statistical test that the two regression lines intersect

at this new axis is HQ: a, + b,S = a2 + b2$. The statistic T is then

stated as

a, - a2 + S(b rb2)_ _

+ (Sdd2/n2$dd2)]1/2
(31)

n2
where Sddn = - - ' ' - — • «^-« - „ , 2n = Z d,. and Sdd0 = Z d0. . As was done with Equation 8,

1 i=l M * i=l ^
Equation 11 may be rewritten in terms of 2 regression lines from separate

records as

2 2Sddn = n^o-, (a)/o-,i l l i
(32)

Sdd2 = n202
2(a)/02

2(b)

Then by subst i tu t ing the Equations 32 into Equation 31, the statistical

T is
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T =

*

FRSSI i
n, + t1

H RSS2"

12 - 4

"(n1-2)a1
2(a) j

RSS, H

1

'

(n2-2)a2
2(a)"

RSS,2

1/2

>

(33)

As before, the calculated T is compared with Student's T with n, + ru - 4

degrees of freedom at an appropriate level of significance. If the T is

greater than Student's T, the hypothesis that the two regression lines

intersect at distance D is rejected, and therefore, there is a significant

difference in the opposite intercept times. If the hypothesis cannot be

rejected, then there is no significant difference in the opposite intercept

times.

Because the data from split spread profiles were collected from

different geologic settings, only the test of slope may be applied. And

where reverse profile coverage is available, dip may be calculated on the

top of the second layer only when (1) there is no significant difference in

the slopes of the first layer, (2) there is a significant difference in the

slopes of the second layer, and (3) there is not a significant difference

in the opposite-intercept times of the second line segments.

The line segment pairs for each seismic location were tested for slope

and opposite-intercept criteria. Unfortunately when the least square fits

were calculated only the combined residual sum of squares was retained for

those line segments connected by a c-join. Therefore no estimate of the

residual sum of squares for the left and right hand line segments was

retained. Because of this, neither test of covariance could be applied to

any combination of lines where one of the lines did not have a calculated
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residual sum of squares. Also rejected from consideration were those line

segments which had been fitted through only two points.

The results of the slope test are shown on Figure 8. A significant

difference in slope was inferred at the 90% confidence level, or simply

that there was at least a 90% chance that there was a true difference in

slope. Of the stations tested for slope difference, there were approxi-

mately 30% (27) where there was a significant difference in the first

velocity and approximately 70% (58) where there was not. The results have

been drawn in the form of branches to show the different possible cases.

Dip calculations on a 2-layer model,could only be made on those sites

where there was not a sufficient difference in the slopes of the first

layer, but where there was a sufficient difference in the second layer.

Where no differences were found in either the first or second layer slopes,

a horizontal interface model was assumed. This does not imply that the

interface is truly horizontal, but that the magnitude of the subsurface

undulations of the interface are of such a sufficiently low relief that the

time deviations due to this surface have been combined with the error of

measurement of time so that the model is simply a plane passing through the

average depth to this surface. It is interesting to note that only 23

stations passed the slope criteria for the 2-layer dipping model, and of

these, only 1 case could be tested for dip of both the second and third

layers.

The results of the opposite-intercept test of the 23 sites that had

passed both first and second layer slope tests is presented in Table 2. As

in the slope test, a significant difference in opposite-intercept times

was inferred as there was at least a 90% chance that there was a true
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First layer
(bpb2)

No
58(15)

Significant difference in slopes

Second layer

•No
22(8)

aTotal of all stations.

Station with good borehole control.

Figure 8. Slope test of all seismic sites by line segment

Third layer
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Opposite-intercept test of 23 sites that had passed 2-layer slope
test for a 2-layer dipping layer model

Seismic
site

2-2W
3-3E
5-5E
5-lWa

5-6Wa

6-11E
6-6E
6-1E
6-4Wa

6-7Wa

6-7Wa

7-6E
7-2W
7-3W
7-4W
8-2W
8-5W
9-4E
9-1W
9-3Wa

10-3E
0-1E

10-2Wa

11-2W

Shot
no.

1+2
3+4
1+2
2+4
6+5
1E+1W
1+2
6+5
1+2
3E+3W
3E+4
4E+4W
4+3
1+2
1+2
5+6
2+1
1+2
1+2
6+5
3+4
7+8
9+10
8+7

Significant
difference

Yes
No
No
Yes
No,b
— u

D
uD

— — ib
" — ib
~ ~ L__b
— °
No
Yes
No
Yes
No
No
Yes
No
No
No
No
No

12

Relation to Mans on
disturbed area

Outside Edge Inside

X

X

X

X

X

X

X

X
X

X

X

2 1 _ _
4 5 3

aSites with well control.

Not calculated.

difference in time. Only 3 seismic locations within the Hanson disturbed

area passed all criteria on which the 2-layer dipping refractor model is

based.
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Velocity Anisotropy

Of the 46 reverse profile stations which were within the disturbed

area, there were 27 stations at which there was no significant difference

in the first layer; 12 stations where there was a significant difference

in the first layer; and 7 stations where no determination could be made.

At the 12 locations where there was a statistical difference in the

first layer, there were 6 locations where there was a significant differ-

ence in the second layer and 6 locations where there was not a significant

difference. Significant velocity differences in the first layer are

explained by the great variability of the unconsolidated drift. Lenticular

sand bodies within the drift, variability of both grain size and lithology,

and degree of water saturation may have an effect on glacial drift veloci-

ties.

At the other 27 stations where the slope test had been made, there were

7 stations where tests of significance in the second layer could not be made

and 12 stations where there was not a significant difference in velocity.

At the remaining 8 stations, the slope tests for dip calculation were

successful. Finally, of these 8 stations, 5 stations did not pass the

opposite-intercept test and 3 stations did pass. Only at these 3 sites may

a simple 2-layer model with a dipping interface be applied. This is approxi-

mately 9% of the total number of stations within the Manson disturbed area.

Those stations where significant velocity differences in the second layer

were found, indicate that the first bedrock layer was anisotropic to seismic

waves.

Velocity Reversals and Hidden Layers

Before the area! distribution of the first bedrock velocity may be

considered, the presence of a layer between the glacial drift and the
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bedrock must be considered. If the velocity of this material is lower than

the velocity of the glacial drift, the layer will be totally undetected by

the horizontal refraction method and will only be revealed by borehole

seismic measurements. The effect of a velocity reversal is to reduce the

velocity of the upper layer. In other words, an average velocity is

obtained for the first 2 layers. Because the first layer for this area of

study is glacial drift, the presence of an appreciable number of cases where

a second layer with a velocity lower than that of the glacial drift would

skew the distribution to the left. From the distributions of the first

layer velocity in Figure 7, this is not the case, with the possible

exception of one occurrence of a first layer between 1450 and 1500 m/sec.

Green (1962) has investigated the case where a layer has a velocity

between the velocity of an overlying layer and the velocity of an under-

lying layer, but whose thickness is below a certain critical thickness. In

such a case the layer will not be detected; therefore both the velocity and

the thickness will not be measurable. Hence it is a hidden layer. There

are also cases where a refractor is not detected due to the spacing of the

geophones. In the former case, the refractor is a true hidden layer because

it will never be recorded regardless of the geophone spacing. In the later

case,the refractor is an apparent hidden layer.

A true hidden layer between the first and second layer, whose velocity

was intermediate between the two, was suspected at six locations (3-3E,

4-1E, 5-1E, 5-4E, 8-6E, and ll-!W)(Figure 1). Unfortunately well logs from

boreholes near these sites did not reveal the presence of either a recog-

nizable basal lithologic unit in the glacial drift or an unusual first

bedrock unit.
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At locations 3-3E, 4-1E, and 8-6E a hidden layer velocity of 2300,

2200, and 2250 m/sec, respectively, was assumed. These were chosen by

averaging the second layer velocities from stations east and west of these

sites. Calculations based on Green's method were performed on the veloci-

ties and intercepts at these sites, and the maximum thickness of a true

hidden layer for each record was determined.

At sites 5-IE and 5-4E results from shots in one direction were

inconsistent with the rest of the records and were discarded. At site 11-1W

no hidden layer velocity was assigned because the velocity of the Pennsyl-

vanian shales and sandstones in the area have not been measured accurately.

Velocity Contrast

Once a reasonably accurate representation of the first bedrock layer

has been established, the area! distribution of the velocities will

reflect, in some fashion, the lateral variations of the bedrock material.

These results are presented on the left side of Figure 9. The graphs were

computed by averaging the data by refraction line. There appears to be no

trend in the averaged first layer (glacial drift) velocities. The averaged

glacial drift velocity of 2143 m/sec on line 4 is unexplainably high. The

second layer velocity for individual velocities below 3000 m/sec is pre-

sented to illustrate the variations in the disturbed shale bedrock. Rather

prominent regions of higher velocity are present on line 2 and 9. The

utility of the algorithm developed previously is demonstrated on line 4

where there is a lack of velocity contrast between the first and second layer

velocities. In such cases the statistical determinations of the best fit

line segments may be the only method by which consistent velocity data may

be obtained.
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BEDROCK VELOCITY AND TOPOGRAPHY

The mean velocity of the two first bedrock velocities, measured at

each station, was chosen to approximate the true bedrock velocity. Here,

the first line segment is chosen to represent the velocity of glacial drift,

and the second line segment is chosen to represent the velocity of the first

bedrock layer. This calculation is always higher than the true velocity of

the bedrock, if all requirements for dip calculations have been met on the

seismic plots. The equation of the true refractor velocity, as presented by

Nettleton (1940, p. 269), may be rewritten in terms of mean velocity. Let

V be the true refractor velocity, 9 be the apparent dip angle, and (V) be

the mean velocity of the refractor as measured from opposite directions at
o

a seismic station, then V = [4R/(1+R) ]cos 9<V), where R is the ratio of

the lower refractor layer velocity to the higher refractor layer velocity.

The measurement (V) is less than 5% greater than V for R>0.68 and 6<16°.

For all stations in the Manson area R>0.65. Therefore, the mean velocity

of the first bedrock layer is less than 5% higher than the true first bed-

rock velocity.

The area! distribution of the first bedrock layer is shown on Figure 9.

The area in the center of figure bounded by the 3500 m/sec contour roughly

coincides with the area of crystalline rock, as determined by borehole

methods. Another area of high bedrock velocity is located 10 km due west

of the center of the Manson structure and has a diameter of 2 km. It is

reasonable to assume that the crystalline rock also subcrops in this area.

The limestones and dolomites which comprise the bedrock on the eastern

flank of the undisturbed area are delineated quite well by the 4000 m/sec
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contour, but velocity data alone may not be used to delineate the edge of

the disturbed area elsewhere. Borehole information near location 11-1W

reveals that the first bedrock layer, Pennsylvania shales and sandstones,

is approximately 3 m thick in this area. The bedrock velocity at station

11-1W reflects the velocity of the underlaying Mississippian limestone

and sandstones, and the Pennsylvanian shales and sandstones have been

averaged in with the glacial drift.

The determination of the depth to the seismic refractors may be calcu-

lated by a variety of methods. A method employing the concept of delay

time, introduced by Gardner (1939), has been successfully applied [for

example the study by Pakiser and Black (1957)]. A similar method employing

the concept known as time-depth was developed by Hagedoorn (1959) and.

Hawkins (1961). Both of these methods make some assumption as to the ray-

path. Because the bedrock is suspected of having velocity anisotropy and

an irregular surface, depth determinations were made with the velocity-time

intercept method, presented by Nettleton (1940), Dobrin (1960), and

Steinhart and Meyer (1961). Because very few seismic records could be

subjected to dip calculations, depth calculations were based on a simple

horizontal model.

In view of the obvious simplicity of this model, error bounds on the

depth determinations were made purposefully high. Let the first layer

correspond to the first line segment, j=l. The error bounds of depth to the

top of say the jth_ layer (j>l) were calculated with error bounds on the

parameters of the jth line segment. Confidence limits were chosen so that

there was a .99 probability that the true time intercept and wave slowness

were within the calculated bounds. The time intercept and wave slowness
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for the first to the jth line segment were first used to calculate the

depth to the top of the jth^ layer. The lower depth bound was found by

substituting the value of the upper confidence limit of the time intercept

and the value of the lower confidence limit of the wave slowness of the jth

regression line and then by recalculating the depth. The upper depth bound

was found by substituting the value of the lower confidence limit of the

time intercept and the value of the upper confidence limit of the wave

slowness and then by recalculating the depth. The upper and lower equations

for the jth line segment with n data points are

t^ = a.j + TO^ a) + [b. + Ta j(b)]d i

(34)

t.1 = a, - TO.(a) + [b. + Ta.(b)]d.
• j j j j i

where the superscripts u and 1 indicate the times for the upper and lower

line segments and where T is Student's TQ Q1 with (n-2) degrees of freedom.

Figure 10 is based on an interpretation of a combination of the areal

distribution of the depth determinations and bedrock elevations from bore-

holes. The irregular surface within the Manson disturbed area is sharply

contrasted by the gentle slopes outside the area. The average elevation,

within the boundaries of the disturbed area is about 300 m above sea level,

whereas the 320 m contour line roughly traces the average elevation of the

undisturbed bedrock surface outside the boundaries. Within the disturbed

area a number of bedrock highs and lows are prominent. The central area

of crystalline bedrock is seen to be a topographic high. Hills of disturbed

shale in the northeast and southwest portion of the disturbed area are

present. Six closed depressions surround these bedrock highs. The
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drainage ways of the disturbed area are not well developed. Several

undisturbed bedrock valleys terminate in the depressed area. Two bedrock

valleys in the southern portion trend northwest-southeast and their gradient

is toward the southeast, away from the disturbed area. The eastern bedrock

valley is a headward extension of the bedrock valley shown by Hale (1955,

p. 151) to extend southeast across the southwest corner of Webster county.

The major drainage network in north-central Iowa is known to drain to the

southeast.
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DISCUSSION

A number of features have come to light from the seismic investiga-

tion. The Hanson disturbed area has been shown to have the appearance of

an impact crater. A central uplift of extremely deformed crystalline rock,

which was lifted some 700 m from the basement, now extends through a

shallow circular basin of highly deformed Cretaceous shales. At the time

of burial by Pleistocene drift, the area surrounding the uplift had

not developed an integrated drainage network, but occurred as a number of

rises and shallow closed depressions. The lack of an integrated drainage

network within the disturbed area may indicate that the structure is

relatively young.

The relative erosional resistance of the Mississippian limestones and

dolomites beyond the northeast rim of the area contrasts with the lack of

resistance to erosion of the Pennsylvanian shales and sandstones beyond the

southwest rim. This is expressed by the very steep slope along the rim in

the northeast and the more gentle slope along the south and southwest rims.

Two rather extensive headward erosion channels had developed in the Pennsyl-

vanian shales and sandstones prior to burial. The western bedrock valley

follows the edge of the disturbed area for some distance. The zone between

the disturbed and undisturbed bedrock must have been less resistant to

erosion than either the disturbed or undisturbed bedrock. The shape of the

western bedrock valley suggests that the disturbed bedrock was comparatively

more erosionally resistant than the undisturbed Pennsylvanian shales. ',

The second crystalline subcrop, as suggested by the bedrock velocity

map, is also seen to be a western extension of the center crystalline
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bedrock high. Indeed, the gravity high (Figure 3) in the area coincides

with this suspected subcrop of crystalline rock. The elongate 4605 gamma

magnetic anomaly (Figure 2) is situated parallel to the crystalline bedrock

high and shifted 1 km to the east.

Only 20% of the seismic records taken at sites well within the Manson

disturbed area could be represented by a 3-layer seismic model. At many

of these sites the third layer detected by a shot in one direction was not

detected in the shot record in the other direction. A third layer with

velocity about 3400 m/sec may be present below sites 3-2E and 3-1E, but the

depths to this layer are quite irregular and dip calculations could not be

made. For the most part, there is no mappable seismic refractor, below

that of the drift-shale interface, to a depth of 250 m.

The rim structure appears to have considerable complexity. The line

segments fitted to the records at stations 6-13E to 6-16E showed that there

is a large variation of velocity in the undisturbed bedrock east of the

Manson disturbed area (seen earlier). No consistent structural model, no

matter how general, could be made of the geometric arrangement of the bed-

rock layers. Simple seismic models may not be applied in these areas, and

it points to considerable geologic complexity, probably due to complex

folding of the bedrock units adjacent to the Manson disturbed area.

Another significant feature is the seismic velocity of the crystalline

rock in the center and western portion of the structure. Press (1966) has

reported that granite velocities may range from 4.8 ;to 5.9 m/sec. Velocity

histograms of granite and gneiss were presented by Hasselstrom (1969) for

shallow seismic refraction measurements. In each case at least 75% of the

sample had a velocity greater than 5000 m/sec. At Manson the velocity of
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the mixture of granite, gneiss, and diabase is between 3000 and 5000 m/sec

and averages near 4000 m/sec. The unusually low velocity of this crystal-

line mass may indicate that this rock body has an abnormally high porosity.

This may be a result of the large scale brecciation of the crystalline mass

during the ireplacement event.

The unusual deformation characteristics of the minerals of the central

crystalline mass have shown that this structure could have been created by

one of only two 'catastrophic1 events. Several similarities of the Hanson

structure to the Canadian craters are noted. This crystalline rock has a

close similarity to rocks taken from central uplifts in larger Canadian

craters, and the age of this crystalline mass is near the approximate age

of the basement rock as observed in some Canadian craters (Michael Dence,

personal communication, 1970).

Regardless of which mechanism had created the structure, the basement

rock would be involved in the final disposition of the materials, because

the thickness of the sedimentary column is considerably less than the

diameter of the structure (roughly 1:400). Therefore gravity and magnetic

anomalies from the upthrown basement rock may not be used to distinguish

between the two mechanisms.

The questions raised by the occurrence of this complex structure must

be answered by sifting and evaluating a wealth of data, some of which is

contradictory or coincidental. The nature of the origin of the Manson

disturbed area must await the collection and interpretation of additional

data.
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- APPENDIX A. LIST OF THE COMPUTER PROGRAM

1. Purpose:

The program fits joined regression lines to an ordered series of

measurements on the basis of residual sum of squares. For each line seg-

ment, the parameters and their standard deviations are calculated. The

measurements are taken to be seismic refraction time-distance pairs, and

from the results of the line fitting analysis, depths and depth error

bounds are determined.

2. Method:

The set of up to 24 time-distance measurements are sequentially

partitioned into subsets of data, each of which is searched for the best 2

segment fit. Each subset has an upper bound, which is chosen prior to the

analysis, and a lower bound, which is determined by the position of the

join point from a preceding 2 segment fit. The final solution is derived

from a combination of the 2 segment fits.

For a subset of data, pairs of regression lines are fitted to all

combinations of the data, and the pair of regression lines which have the

least combined residual sum of squares are taken to be the best fit.

Least squares regression is used to best fit the line segments. The

intercept and wave slowness (parameters a and b) of each regression line

are calculated, and under the assumption that the variable, time, is inde-

pendently and normally distributed with constant variance, the standard

deviations of intercept and wave slowness are found. The depth calculations

are based on the standard time intercept-wave slowness equations. Error

bounds in depth have been treated previously.
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3. Accuracy:

The accuracy of the program was measured from test data presented in

Table 3. These data were analyzed by (1) the OMNITAB program available at

the Iowa State Computation Center, (2) a least squares program written by

Bevington (1969), and (3) a subroutine from this program, SJOIN. All

programs were run on the Computation Center's IBM 360/65. An evaluation of

widely used regression programs by Wampler (1970) found that the single

precision OMNITAB program is correct to 4 and 6 significant figures for the

first two coefficients of a fifth degree polynomial. From the test data,

the calculations of a and b by subroutine SJOIN agree with those from the

OMNITAB program to 5 and 6 figures (Table 4). The standard deviations of

a and b agree to 7 and 6 figures. The calculations of residual sum of

squares from the subroutine SJOIN and program OMNITAB are included. The

results of the Bevington program are presented as another comparison.

Because the calculation of residual sum of squares is fundamental to

the validity of the program, the time values, t (Table 3), were adjusted

for a range of values. The results are presented in Table 5. The approxi-

mate range of values used in the analysis of the data from this study were

0<d.<800 and 0.005<t<0.450, so the residual sum of squares calculations are

valid to approximately 5 significant figures. Because any 2 calculations

of the residual sum of squares were equal to at most 4 digits, the program

is considered to be valid for the statistical decisions undertaken.
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Table 3. Test data of distance, d, and time, t

d t

Table 4. Comparison

Coefficient

ac

o(a)

b

a(b) x 10~2

RSSd

15. 12.

90. 28.

195. 45.

300. 63.

405. 82.

of three computer programs

Program

SJOINa OMNITABb Bevington3

10.53826 10.538361 10.538420

0.91706004 0.91706008 0.916853

0.17642574 0.17642599 0.176426

0.37415442 0.37415458 0.3741

4.1312900 4.1345215

Double precision.

Single precision.

°The form of the equation is t = a + bd.

Residual sum of squares.
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Table 5. Signif icant figures of the calculation of residual sum of squares
for various values of time

Data

(W
(df.O.lt,)

i i

(di .O.OOlt.)

Approximate
velocity3

5.833

58.33

583.3

5833.

Significant
figures"

>"
5

6

4

aVelocity is the reciprocal of b.

bBased on the manual calculation RSS = 4.131290027447.

Slhere i = 1,...,5.

4. Usage:

a. Input ;

A standardized punched card record format is described in the

comment cards of subroutine RREC.

b. Output:

Although the length of the output is a function of the number of

fitted line segments, the number of data, and the number of acceptable

regression candidates, a typical 2 segment analysis of 24 data points will

yield about 1 page of printed output.

c. Operating Procedures:

The first card of the data deck must specify the mode of operation
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of the program (see the comments in the main program). The next 2 cards

must be the first 24 Student's values with a format of D6.3. The input

records then follow. The end of data is specified by placing a blank card

and a card with 99 punched in cols. 47-48 after the final record.

d. Constants:

A total of 4560 bytes has been allocated to unlabeled COMMON and

116 bytes to COMMON area /LABEL/.

5. Subroutines Required:

The subroutines required are RREC, SETS, SJOIN, CJOIN, OUTPUT, and

ABYSS. The main program calls subroutines RREC, SETS, and ABYSS. Sub-

routines SETS calls subroutines SJOIN, CJOIN, and OUTPUT.

A list of the program follows.
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ŝ
s:
o
o

• fl
,_(

II
_J
_J

* #
o o

•«•

*» -

**

*
*#

*
*

*
**
*
*
*##

*
*#
*
*
*
*#
J

*
£

*$
ji

*4f
{(•

*̂f.•it

*##•̂

*.̂
^̂.

*
*£.

*
#

*
^

^
•̂)(•

^

*
*
O O

o o o o o o o o o o o o
UJUJUJUJUJUJUJUJUJIUUJUJ
ccce.ce.cf.ce.ce.ce.ce.ce.cc.ce.oi

0.
3
»_<
•j •*
» <M

t-l i-4

II f-l

i-" II
t*

*•» hH

" —
^ H^
•— 4 <«^

^»* f r^
•• *. •» »-»

_J _J t\J O* •• *»
* ̂  uj ^ * «) *«^ 0s o cn
<4* co <VJ » •• Z •

•x. f\ j>— i»- i t— i Q x o u j m
r-l *- »-• »• O t-i -t r- «-• U.
>v »-• • •£ f-l CM CM
O -. »-4 O •• — •• O — • ^1
<I in *>• «-i—< — x«—icx jOc \ i •>
UJ^^ — ̂ CT'r-if-li-l i-4 X
oc o "^ »— i — J * •• * » •» »m
Z i™* O *•* UJ O CM O *4" C^* O *•

»-3)co<C'~<< i *J(7N<im
•4-sj-"~«— i<iuj<\iujin « LU i— i
•$ •& r-4 — J O t * ^ O C < ^ O ' O C * *
a: c£ — a: *v z z iuz
UJUJr-UJZ«^t-«-r- ««-r-
O O CD O ^ <— J ^1
LUUJ— iLU3!C i3£Q3£»" 'O3L
I- t- < r- Z < £t < o: < OC
Z Z U J Z O U J O U J O U U U J O
i— ii— • >Y •— * Q g^ ^ tflL**JOflL

0s r-l (M
r-4 r-4

0 O

LU UJ
0£ Of

O
z .
LU
t— t

4k*

f-l

II

l_4

•»

«•

(-4

H

«^
CO
ft
+i

O
<
UJ
o£
2j
i»
Q

4 <—>

UJ fO
oc •

in
— u.
CM <M
(H r-l

4> *»

r— ^
O O
• f-4

0 —z
LU r-
H-l <t

^ £
Of

a. o

ro
r-l

000

LU LU LU
cc.ce.ce.

o
z
LU
HH

•
•̂

II

tw«
t>

••»
l_l
ta»
Q
*^

<•»

f̂-l
••

Q
<I
III
ff
z— z

^O !D
< H Q
LU LU Z

<y>
O^



77

^

o
0
00

UJ
oo

z
t— 1

co
a.
z

1-
LU
Q

•»
-J
LU
O
l— l

•>•
Q

•»

^-.«.
)̂

»-4
•>

H-
oo
LU

t-
1—1

Q

Z
LU
>— 1

oo
1-
LU
00

UJ
z
1-4
t-
z>
0
ac
CD
Z)
oo

« J1
•ft
•ft
•ft
*
*#
•ft
•ft
•ft
•ft
•ft
•ft
•ft
*ft•ft
•ft
•ft
ft
•ft
•ft
•ft
«
*•ft
•ft
•ft
#

*ft

*4•ft
•ft
•ft
*•ft
*•ft•ft
«•
•ft
•ft
•ft
•ft
#
•ft

*

«
•ft
•ft
•ft
•ft
#
•ft
•ft
•ft
•ft
•»•
•ft

**•ft
^f-
ft
•ft
•)$•

*# •«

u U JJ
IT IT TT

LU
CO

oo
QC O
••4 ^

o- z
LU

h- oo
LU O
oo X
00 O

oo oo

LU
X Z
I- 0

oo f-
K 1-4

LU a:
a.

a
Z LU
< X

•b

O LL
O

a
z — •
< CO

-J
1- «-.
00 Q
OC Z
0 Z>
t— o
O CO
LU
> O£

LU
00 X
Z 0
0 _)

|~ j ^

i- -̂

O. o
i-

oo Z
J— 1— 1

LU O
00 O.

UJ Z
Z »-*
M O
H* "̂
Z)
O <
OC
CO QC
^ o
oo u.

1- # -ft

Jt Jt J*.

IS
 

T
H

E
 

T
-D

 
E

L
E

M
E

N
T
 

P
A

IR
 

W
H

O
S

E
 

1
H

E
 

C
O

M
P

U
T

A
T

IO
N

A
L 

S
C

H
E

M
E

 
IS

 
T

O
 

1
T
 

T
( 

IU
(1

))
*
D

( 
IU

U
M

. 
T

H
E

 
L

B
 O

F
X

~ t- <
CO
•=> co

Z)
Q «-! LU
•z. x
Z> OC. H-
O 0
CO h- Q

o -z.
QC LJJ <X
UJ >
Q- -.
CL s; t-i
r> o ~

Oi Q
LU LL •-
X —

UJ «̂i r**
h- O
Z uj ̂

a LU
O. OO CO

_l
•Z. LU
1—4 fy* LU
O < X
-5 h-

00

O£ H— t—
UJ O. LU
Z 1*4 OO

o <*
-J U t-

oo oo
LU CO QC
X Z) *•"•
>— OO U_

# # *

(J
O

IN
),

 
IF

 
O

N
E

 
E

X
IS

T
S

, 
A

N
D

 
T

H
E

 *
C

A
N

D
ID

A
T

E
 

H
A

S
 

B
E

E
N

 
F

O
U

N
D

, 
T

H
E

 
X

A
N

D
 

S
T

A
N

D
A

R
D

 
D

E
V

IA
T

IO
N

S
 

O
F

 
T

H
E

*

O oo
••oo H-

— oo Z

»-l 1-4

O H- O
-? oo 1-1
— < LL
1- UJ LL

_l UJ
oo O
••H O O

•z.
O UJ

LL X
Q >-. K
•z.
<

• •
^_ _ Ml

II , I

0 — 0

o — ̂>-. Q —
t- •• H-
•— i — •
H" •"•* H"
OC »-• <

< —O. D 00
H. 1 2

x — «-«
fr— I— ^I z:
H-I 00 LU

i- OC
UJ
X co co
>— o — J

•ft -ft -ft

•<
1-
UJ
o
>.
<
QC
ac
«l

Z
t_4

Q
LU
OC

~

OO

II 1

ac

00
t-
2
LU
JT

O

00

OC .
<
LU
Z
fr»4

_J

•ft *

X 4 S<

R
S

 
1

X
 

ID
E

L
I

H
 

L
A

Y
E

R
O

N
 

O
F

 
IN

T
E

R
C

E
P

T
Y

E
R

O
N

 
O

F
 

S
L

O
P

E
L

A
Y

E
R

S
Q

U
A

R
E

S
 

F
O

R
 

I-
T

H
 L

A
Y

E
R

C
O

N
T

A
IN

IN
G

 
T

H
E

 
N

U
M

B
E

R
 

O
F

 
D

A
T

A

O * V- t-t < i-» X
^ — 1 (--JH-H-U 1
u 1-4 < < i o LU ac
L U * > >-! I >-« i— i Q LU
> ^ LL ^ t* ̂  y *-4 ^*

O*H »— O LU | LU LL Z> <
LU _| Q M O O 00 X -J

O + OC O LU H- »-
z o z o a o u, a >- -J e> x

1-iOH-U.O^S ^»-iZ)Uj4it
1- L U o o o a C Q u j O o Q - J U J

u,>»-i ujzo.ZO»-i
a-O azK-<o<-Joou.z
O t— O Z t — _ J t — LULUO«-*

XZQi- i» - ioooooo>oc:
x i- «-« z oo a: oo
t- O O < Z II II II II II II O »-
O Z O. uj t- Z

II LU h- t-« t\j ro ^ ir\ o

h- II <<<<<<

UJHZ3 ••QLULULULULUUJO.
t— i t— 41— < (— t— i Q Q O O Q O Z

# * * • » * * * # • » * • » * *

S
Q

U
A

R
E

S
 

=< X

LL
O

y

r>
00

_)
<I
3>
O
I-H

oo
LU
oc
-J
<
i
f~

t-lmr~

z.

<

•» *

—̂ )

a.
h-

O

Z

0
•?
o
z
1— t
o
00

O
IIILU

ac

at
LU
QC

oo
UJ
z
.̂

3
o
aC
CO

ôo
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H ^vlt\l

0 0
O Q

O
(M

->
t»

CO
— o

0< 0
O r- •
• LU O

O CO
||

II II

*_ — _ ••&

-^ -J t.
•• *• t-4

M 00 r-l

4 *f ^r^. ̂
r- r- t-
LU LU LU
CO CO CO

rH
CM

o



85

o o o o o ooooooooooooo
ZZZZZZZZZZZZZZZZZZ

oooooooooooooooooo

— Q— Z•9 <

o
fNJ

H- s:
UJ T>
CQ ^
I X

o

o
o
•

O

<VJ •

< ̂
I- ••
UJ h-
CD ~

•» iu
~ CD

O
r-
O

— OH

o
o
• o

o o
00 •

II •• O

— II
-} II
CM 1-1 -5
•-« ••

< <M -*
h- Q
LU O K-
CO O 00

CM
CM

(M

o

00
(\J

LU — .
CD -}

•>

+ in

CO CD
•~ O
< I f-
h- Ouj — •
CO -O fH

II (M II

— < -.

LU —
CQ f-l
I I 00

—
<
t-
lit
00

UJ
CO

Z O> •« LU »
-> Z 00 CD »*-

O *•• •" ' "^
II II I- < — <

O »~*
H «-

o u . a r z o L u u . u j

m -4- ir>r\j (\j

CM ••
h-

o •—

O UL)
O 00

>O
CM

-9 H —
» rs

h- Z

U.
-9 z
— O

t- Q
LU Z

CM
00
tVI



86

1-4

O
o
ẑ
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APPENDIX B. TABULATION OF PREFERRED REGRESSION FITS
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