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Abstract

Optimal control of systems governed by functional differential

equations of retarded and neutral type is considered. Problems with func-

tion space initial and terminal manifolds are investigated. Existence of

optimal controls, regularity, and bang-bang properties are discussed.

Necessary and sufficient conditions are derived and several solved examples

which illustrate the theory are presented.



Section 1. Introduction.

A large number of papers have been written on the control of func-

tional differential equations to target sets in R (for partial biblio-

graphies see [kf 5, 44]). In this paper we treat a number of aspects con-

cerning control to targets in function space. To the authors' knowledge

only in the recent investigations reported in [36, 38> 39> **Q> ^9> 5^1 have

others reported results for such problems. Popov [49] and Weiss [54] in-

vestigate controllability while the work of Jacobs and Kao [36, 38] concerns

necessary and sufficient conditions for retarded systems. As is pointed

out in Section 5 below, their methods are quite different from those employed

here. We treat control problems involving a fairly general class of neutral

functional differential systems) a class which includes as special cases

almost all nonlinear retarded systems that are of interest. Control of

neutral systems in a somewhat different formulation has been investigated

by Kamenskii and Khvilon [37] who use the methods of Pontryagin, et. al.

[48] to derive necessary conditions for problems with targets sets in Rn.

In Section 5 we utilize the methods of Neustadt [46, 47] and Gamkrelidze

[21] to obtain necessary conditions for the general nonlinear problem for-

mulated in Section 2. We also show there that under certain convexity as-

sumptions these conditions are sufficient for normal problems with linear-

in-the-state systems.

In addition to the problem formulation, Section 2 also contains

a motivating example which shows that boundary control problems for certain



hyperbolic systems can be transformed to problems involving control of

neutral functional differential equations to function space targets. Sec-

tion 3 contains some of the theory (existence, representation, etc.) of

neutral systems which has been developed, for the formulation used in this

paper, mainly by Hale and his students and colleagues [2k,t 25, 26, 30]. In

Section 4 we present existence results for a large class of linear-in-the-

state control problems. The related questions of smoothness (regularity)

of controls and bang-bang properties (or lack thereof) are discussed. The

paper is concluded with a section containing two solved examples along

with comments concerning methods for solving examples via problem reformula-

tion. More general necessary conditions plus a number of other solved

examples may be found in the thesis of Kent [39? see also ^0] on which much

of the work reported here is based.

The following notational conventions will be adopted throughout

the paper. We denote by % [a,b] the space C([a,b],R ) of R -valued

continuous functions with the usual sup topology and by L [a,b] the usual

spaces of functions f (equivalence classes) with | f | integrable in

the sense of Lebesgue. We shall not use different symbols for various norms

but let | -| represent the norm in whatever space may be appropriate. For

example, if x e % [a,b], | x| is the sup norm of x while |x(t)| repre-

sents the R norm of x(t). The symbol £n̂  will denote the vector

space of n x p real matrices and E_ will be used for the identity in

the space £ , BV[a,b] will represent the space of functions of boundedpxp



variation on [a,b] with norm | g| = Var([a,b]jg) + |g(b)| where

Var([a,b]jg) is the total variation of g on [a,b].

If xi [a-h,b] -»Rn. for t e [a,b] we denote by x, the elements
"0

°f ^n[-h,0] given by x (0) = x(t+0). 0 6 [-h,0]. For systems involving"t

hereditary dependence we shall use the notation f(x(-)̂ t) to mean that

f: % [t -h,t ] x [t ,t ] -»R may depend on any or all of the values

x(s), t -h < s < t, where t e [t .t ]. Examples of such dependence are

f(x(.),t) = G(x(t),x(t-h),t), f(x(-),t) = G(xt,t), f(x(-),t) =

t
/ a(t,s)G(x(s),t)ds (see [2, 24]).

vh
Unless it is otherwise explicitly stated, all statements involving

the concept of meausre will be interpreted with respect to Lebesgue measure.

All integrals will be Lebesgue or Lebesgue - Stieltjas integrals [15].

Finally we shall never distinguish between a vector and its transpose since

in any vector-matrix operations it will be clear what is meant.



Section 2. Problem Formulation.

Let J7~ , _^C be given subsets of $£ [-h,0] and suppose U is a

specified non-empty subset of Rm. Define ^ = {u: [t ,t ] -» R | u is bounded,

measurable with u(t) e U for t e [t ,t ]}. We shall consider the general

*1 oproblem of minimizing J = / f (x.(t), u(t),t)dt subject to

(2.1) i-D(x(.),t) = f(x(.) ,u(t) , t) t e [t0,tL]

+ e , x, et0 o' tx

u e

where the function D is defined by

t
(2.2) D(x(-),t) = x(t) - / d u(t,.s)x(s).

vh

With n 5^ 0 and the hypotheses specified in Section 3 below, the system

(2.1) is a functional differential equation (FDE) of neutral type. If

u = 0, the system is an FDE of retarded type. Simple examples of the type

under consideration here are the differential difference equations

(2.3) x(t) - A(t)x(t-h) = B(t)x(t) + C(t)x(t-h) + k(u(t), t)

and

x(t) = B(t)x(t) + C(t)x(t-h) + k(u(t),t).



Many of the results obtained below can be extended to include cer-

tain types of systems involving a hereditary dependence on the control u

.in addition to the state x (see Kent [39]) but we shall not pursue that

aspect of the problem in this paper.

There are a number of physical situations which motivate the prob-

lem as formulated above, although we shall cite only two of these here. Per-

haps the simplest example where one desires to specify a terminal target

in 5g[-hrQ] involves systems such as (2.3), (2.4). It has been recognized

for many years that the true "state" for such systems is x., not x(t). If

x(t) represents some error which one wishes to be driven to zero (and held

there if possible) and if the error is described by (2.3) or (2.4), then it

is obvious that the desired terminal condition is x = 0.
tl

A second motivational example which we shall only sketch here

(see [39] for discussion of a similar example) involves boundary control of

linear hyperbolic partial differential equations. Suppose we are given the

wave equation for w(t,x)

(2.5) w - C2wv =0 t e [0,T], x e [0,1]'tt ~ "xx

with boundary conditions

AQ(t)wt(t,0) + BQ(t)wx(t,0) =

(2.6)

= g;L(t,w(t,l))



and initial-terminal conditions

w(0,x) = a0(x) wt(0,x) = Oj

(2.7)

w(T,x) = pQ(x) wt(T,x) = P-j

Suppose that A., B. are continuously differentiable, g. are absolutely

continuous in t, continuously differentiable in w with g. , being do-

minated by Lp functions, i = 1,2. In addition assume that a* a,, P', (3.,

are absolutely continuous with Lp derivatives (' = — ) . Under the ad-

ditional hypotheses A (t) - -| B (t) / 0, A^t) + ̂  B^t) / 0 for t e

[0,T], one can derive an equivalent neutral system in the following way.

Assume a solution of the form (D'Alambert)

w(t,x) =cp(t +)

Upon substitution in (2.6), followed by differentiation with respect to t

and a few algebraic manipulations, one obtains a neutral system in (cp1,^1

(y, z) of the form

y(t) +R(t)z(t -f) -tt^rtOX-

(2.8)

+S(t)S(t -) -

The data given in (2.7) can be used to produce initial and terminal data

in terms of (y,z) for the system (2.8). Appropriate assumptions on the



boundary terms gu, g, (which contain the controls for the problem) lead to

a controlled system involving (2.8) for t e [—,T] with initial and terminal

values of y specified on [0,—] and at t = T and corresponding values

11 2
of z given on [ , -] and [T ,T]. The terms H , Hp are such that

C C C -L £-

this initial data is sufficient to solve (2.8) for absolutely continuous

( c p ' j t y 1 ) having Lp derivatives. It is not difficult to argue that this

(cp,i|/) used in the D'Alambert solution above yields a solution to the ori-
•y-

ginal equation (2.5) in the (non-classical) sense that w(t,x) = <p(t+ —) +

X
i|/(t - —) is continuously differentiable with w , w being absolutely

C w X

continuous and possessing L2 partials satisfying (2.5) a.e.

The boundary conditions (2.6) include as special cases the usual

boundary conditions [15, 1̂ , 53] associated with (2.5) for transverse vibra-

tions of a string or longitudinal vibrations in an elastic rod with elasti-

cally supported ends.

Other authors have pointed out connections between the study of

hyperbolic systems and neutral FDE1s. Brayton [9] and'Slemrod [52] were con-

cerned with systems arising from the study of lossless transmission lines

while Cooke and Krumme [12] discussed a general method for reducing linear

hyperbolic systems with nonlinear initial-boundary conditions to functional

differential systems of neutral type.
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Section 3. Representation Results for Linear Neutral Systems.

In this section we shall present properties of solutions of neutral

systems which will be needed in the ensuing discussions. Our main results

pertain to the variation of parameters representation for solutions to

general linear systems. Referring to the function D defined in (2.2), we

2
make the following standing assumptions on |j.: R ->

(5.1J n(tf,0) =0 for 0 > a, n(a,0) = n(0,tQ-h) for 0 < tQ-h; |i is

Borel measurable, continuous from the right in its first argument

and continuous from the left in its second argument; 9 ->n(cr,0) is

of bounded variation on every finite 0 interval, uniformly in a$
t

and the mapping t -» T(q>,t) = / d u(t, s)cp(s) is continuous on

v s[t ,t ] for each fixed cp e jf [t -h,t ], which obviously implies

that (cp,t) -»r(cp,t) is continuous.

there is a continuous non-decreasing function 5 with 6(0) = 0 such

that for each t e R and Q >0 we have Var([t-8,t]; u(t, •)) <

6(6).

Specific conditions on n directly for which the last hypothesis

in (5.1) obtains have been given by Kent [39]. Included as a special case

of these is the situation where |a(s, 0) = ̂/(s, 0) + Ĵ (s,0), 0 -* /(s} 0)

being a "well-behaved" jump function and 0 -»J3̂ (s,0) representing the ab-

solutely continuous part of 0 ->n(s,0). We shall not present the exact



technical assumptions on f̂ stf here, but refer the interested reader to

[39]. It suffices to remark that systems encountered in applications almost

always satisfy these conditions.

We next consider solutions to

jjLD(x(.),t) = / dsT](t,s)x(s) + g(t) t 6 [t̂ t-J

(3.5) Vh

where by a solution x we shall mean an x e % [t -h,t ] such that t -»

D(x(-),t) is absolutely continuous on ["t/yt-J with (3.3) being satisfied

a.e. The non-homogeneous term gt [iv,**-.] ~> Rn will always satisfy g e 1

2
and we make the following hypotheses on TJ: R -* £

T](a,0) =0 for 0 > a, rj(a,0) = T)(a,t0-h) for 9 < tQ-h; TJ is

measurable, continuous from the left in its second variable on

(-»,a); 0 -» T)(a,0) is of bounded variation on every finite 0 inter-

loc
val and there is an me L, such that Var([t -h,a];r)(a, •)) < m(a).

Under the above hypotheses and Caratheordory type assumptions on

f, one can prove the usual local existence and continuation theorems for

solutions to (2.1) with x = <p, ep e ̂ n[-h,0]. In addition one can es-

tablish that (3.3) possesses a unique solution [25, 26, 30, 39]. We turn

next to the "adjoint" system to (3.3) with g = 0.
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Theorem 3.1. Under the assumptions (3.1), (3.2), (3.̂ ), for each fixed t e

[t ,t ] the system

t+ t
Y(s,t) = E +./ <J Y(a,t)n(a,s) - / Y(a,t)Tj(a,s)da s e [tQ,t)

s s

Y(t,t) = EQ, Y(s,t) =0 for s >t

has a unique solution on [t ,t ]. This solution Y(s,t) e £̂ ,u is left-

continuous in its first argument and JY(s,t)| < <&, Var([t ,t ];Y(',t)) < ^

for (s, t) e [t ,t,] X [t ,t ] where 38 is finite and independent of (s,t).

Proof; We assume for ease in notation (and without loss of generality) that

t = 0. The proof of existence of a unique solution and left continuity in

its first argument is due to Henry [30]. We shall here only sketch the argu-

ments, indicating how one obtains the bound _^. We note that it suffices

to prove the uniform bound on the variation of Y(*,t) since for s e [tQ,t ]

Var([to,t1];Y(-,t)) > | Y(tQ,t)-Y(s,t)| + | Y(

- |Y(tpt)| >|Y(

In the proof sketched here, one actually obtains existence of the

solution to (3.5) on | s| < t,, 1 1| < t . Let G > 0 be chosen sufficiently

small so that



(3.6)

11

8(6) + / m(e)d0 < A, < 1
t-e

for all | t| < 2t , where 5 is the function guaranteed in (J.2). We make

the induction hypotheses (clearly true for p = 0) that for 1 1| < t the

solution Y(s,t) of (3.5) exists for s e [t-pS,t ] and satisfies

Var([t-pS,t ,]jY(-,t)) < K where K is independent of t. We then define

successive approximants by

Y°(s,t) =
Y(s,t)

Y(t-pE,t)

s e (t-pS,t ]
X

s €

and

n

s e

t t
f d Y*"-W)n(a,s)-/ YK-1(a,t)T)(a,s)da

S € [-

for k = 1,2,... . Using (3»6) and these definitions along with the

hypotheses in (3.2), (3«10, one can easily show that

,t)|| < X||Yk(-,t) - J*-\-,

and hence
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where || g|| = Var([t-(p+l)e,t-pS];g)<. Observing that one actually has

Y (s,t) = Y(s,t) for s e [t-pS,t ], one sees that Y (°,t) converges

in BV[t-(p+l)e,t-pS] to a function Y(°,t). Letting k -» » in the above

approximants we see that this extends the solution from [t-pS,t..] to

[t-(p+l)S,t1 ] . A finite number of induction steps on p yields existence

as claimed. The left continuity and uniqueness follow directly from the

hypotheses on H,T] and the equation for Y-

Returning to the arguments involving i (*,t), we have that

But || Y (°,t)|| = 0 and using elementary arguments with the hypotheses on

T],|J., the definitions of Y°,Y , one can easily show that

< K {M + 2/ m(0)d9)
P t-(p+l)e

for 11| < t^. It follows that

,t) <Bp
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.k/where B is independent of t, |t| <t . Since ||Y («, t)-Y( *,t)|| ->0,

we obtain | |Y(- , t )H <B . Thus

where K is independent of t, 11| < t . The finite number of induc-

tion steps on p then produce the bound & independent of t.

Theorem 3.2. Let x be the solution of (3.3) under the assumptions (3.1),

(3.2), (3.^). Then for t e [tt

x(t) = Y(tQ,t)D(cp,t0) + / °" dpT(t,p)q>(P)

*0~h

Y(p,t)g(p)dp
(3.7) t

where Y is given by (3.5) and

t+ t
Y<t,p) = -/ dQY(a,t)n(a,p) + / Y(a,t)Tj(a,p)da.

to *o

The proof of this theorem is due to Henry [30]. We shall omit it

here since it involves a standard type of argument making use of integration

by parts, an unsymmetric Fubini theorem [10], and the equation for Y. We

note that for n = 0 the adjoint system (3.5) and the representation (3.7)

reduce to that for retarded systems [2, 3],



Remark 3.1. We make some further comments about the solution Y of (3.5)

which may correctly be regarded as a "fundamental matrix solution". It is

not difficult to show [39] that for fixed s, the function t -»Y(s,t) (which

is, in general, discontinuous) is BV and satisfies

t t p
Y(s,t) = E + / d0u(t,0)Y(s,0) + / dp / d0T](p,0)Y(s,0)

s s s

for t > s, with Y(s,t) = 0 for t < s. Note that this is just the

integrated form of (3.3) with g = 0. In a subsequent section (Section 5)

of this paper, it will be essential that the mapping (s,t) -»Y(s,t) be

Borel measurable. (This is needed in order to use Y as the measure in

the unsymmetric Fubini theorem [10].) This will be true under varied assump-

tions on |i. For example, Kent [391 nas shown that it is sufficient that

t -»|a(t,0) be of bounded variation on each finite t interval for each

fixed 0. Henry [30] has established Borel measurability of Y under

other assumptions. Since we do not wish to become involved in these techni-

cal details here and since any system of interest to us in this paper would

meet either Kent1 s or Henry1s assumptions, we make the standing hypothesis

that (s,t) -»Y(s,t) is Borel measurable.

Before presenting the final results of this section we must make

the following definition. For $Ĉ n[-h,0], K e L-Jt̂ t.̂  and X C Rn,

define C([t0-h,t1],X;0,K) C if̂ -h,̂ ] by CÛ -h,̂ ]̂ ,*,̂  =

(x e <^n[t0-h,t1]|xt e 0, x(t) ex for t e [t̂ h,̂ ], | ̂  D(x( -),t)| < K(t)

a.e. t e [tt]}.



Theorem 3.3. In addition to (3.1), (3-2), assume that n satisfies

there exist £ > 0, L > 0 such that for s < t

(3.8) t
)-ji(s,0)}| < L|t-s|.

t-4

Then x,$ compact implies C([t -h,t ],X;$,K) is a compact subset of

% [t -h,t ]. It is also convex if X,* are.

Proof; Convexity follows from the linearity of D(x(«),t) = x(t) - r(x,t)

For any cp e «, we define x^ by x̂ t) = q>(t-tQ), t e [t0-h,tQ], 3̂ (t) =

cp(0), t >t . Then for x e C([t -h,t ],X;«,K) with x = cp we have

|x(t)-x(t)| <|D(x(.),0

t t
K(s)ds + |/ den(t,e){x(0)-x(t0)}|

to to

Choosing p such that 0 < p < i and 5(p) < 1, we thus find for t e

|x(t)-x(tQ)| </ K(s)ds + 6(p)||x-Xcp||t

+ sup£|r(x^tj-iXx^yi: t
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where ||x|| = sup{|x(s)| : s 6 [t_-h,t]}. But since the right side of this

expression is non-decreasing in t, we obtain

t
< / K(s)ds + 5(p)||x-x || + sup
~~ 4- ™ ^ + ill

or

( tn+p /
t < b /

 u K(s)ds + sup |r(x̂ t)-r(xrt0)| = R,
(to ^̂

where b = l/(l-6(p))

We remark that the sup term is finite since T is continuous, $ is compact.

For t < T < t < t +p we therefore have

|x(t)-x(T)| < |D(x(.) , t)-D(x(.) ,T) | + |T(x,t)-r(x,T)|

t
</ K(s)ds + |r(x t)-r(x T)|

T

t

dJn(t,s)-n(T,s)]{x(s)-xm(s)}|
"0

s , , c p

"t
< / K(s)ds + sup{|r(x t)-F(x T)| :

T V T

+ L|t-T|R.

From the continuity of P and the compactness of <D, it follows that the

elements of C([t -h,t1],X;$,K) form an equicontinuous family on [t -h,t +p],



IT

Since the restrictions of these elements to [t -h,t +p] constitute a bounded

subset of <g [t -h,t +p], use of the Arzela-Ascoli theorem here, followed

by repetition of the above arguments on [t +p,t +2p], [t +2p,t +3p],... (for

a finite number of steps), leads to the conclusion that C([t -h,t-.],X;<l>,K)

is a conditionally compact subset of ^^t -h,t ]. Using the compactness

of X,<£ and the continuity of D, it is not difficult to argue that

C([t -h,t ],X;$,K) is a closed, hence compact, subset of ^n[t -h,t ].
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Section 4. Existence, Regularity and Bang-Bang Results.

We shall consider first systems that are linear in the state, i.e.,

system (3.3) with g(t) = k(u(t),t). We shall approach the questions of

existence, smoothness of controls and bang-bang properties by considering

attainable sets in % [-h,0]. We assume

the mapping k: R X R -* R is continuous, the set UC R is com-

pact, and k(U,t) = {k(u,t)|u e U) is convex for each t.

Define the family & by JF= (f: %\>^,*>{\ X [t^t^ -» Rn| f (x( -) , t) =

t
/ dgT](t, s)x(s) + k(u(t),t), u e <%} where ^ is the class of admissible

Vh

controls as defined in Section 2. We are thus considering

x = cp
to

for (cp, f) e $ X J5^ We assume of course throughout that u, T] satisfy

conditions (3.1), (3.2), (3.4). Recalling that ||y|| = sup{|y(s)| : s e

[tQ-h,t]} we then have

Lemma 4.1. In addition to the above hypotheses, assume 4 is a bounded

subset of ^n[-h,0]. Then there is an M >0 such that ||x(qp, f ) | | <M
"C •"•

for t e [t0,t̂ ],' (<P, f) e $ X J*, where x(cp,f) denotes the solution to

(4.2) for (cp,f) e $ x &.
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Proof; It is easy to see that there is a constant d and an L, function

m such that |f(x(-),t)| < m(t)[||xj|t+d] for every f e &. Letting

x = x(cp, f), (<p, f) e $ x Jf we have

= x(tQ) + / dski(t,s)x(s)

*0
tn *

•f / ° d [n(t,s)-n(t s)]x(s) + / f (x( . ) , s )ds .

Vh

Choosing p such 0 < 6(p) < 1 and letting b = l/(l-8(p)), we find for

t0
6(p)||x||, + 25(tn-tA+h)|q)| + f v0

It follows that

d + l|x||t <b [l+26(t1-t0+h)][|cp|+d] + / S(s)[||x||s+d]ds J

and applying Gronwall1 s inequality, we find that for t e [t ,t +p]

^d + ||x||, < b{l+26(t -t +h)}{d+lq>| }exp[b / m(s)ds].t ~~ j. (j .

Repetition of the above arguments on [t +p,t +2p],...,[t +(N-l)p,t ]

yields

d + ||x||t <bW{l+25(t1-t0+h)}N{d+|cp|}exp[b /
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The result then follows from the fact that $ is bounded.

Lemma 4.2. Under the assumptions (3.1), (3.2), (3.4), (3.8) and (4.1), $

compact in <g [-h,0] implies 80 = (x(cp, f) j (cp, f) e $ x JP] is an equicon-

tinuous subset of & [t -h,t ].

Proof; From Lemma 4.1 it follows that for any x e -9^ -rr D(x(«),t) <

m(t)[||x|| +d] < m(t)[M+d] = K(t) on [t ,t ] where K e L, . The same lemma
~G ~~* \J J- -i-

guarantees existence of a compact X C R such that x(t) e X, t e

[t -hft-J, x € -Q̂ . Thus stf is a subset of C([t -h,t1],X;4,K) which, by

Lemma 3.3, is a compact subset of % [t -h,t ]. The equicontinuity of Q&

thus follows from a well-known theorem [15, p. 266],

We define, for each t e [t ,t ], the attainable set at time t

given by

-h,0]|z = x(cp,f), (cp,f) e 0 x̂ }.

Using the representation results given in Theorem 3.2 for the solutions

x(cPf we can write

where
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<s) = Y(t0,s)D(q>,t0)

t~
+ / dpT(s,P)<p(P) for s > tQ, y(s) =cp(s-tQ)
tQ-h

for s e [t0-h,tQ], 9 e *

and

= / Y(P,s)k(u(P),p)dp for

> tQ, y(s) =0 for s e [tQ-h,t0], u

We note that ^ (*,o) consists of restrictions of solutions to (3.5) witht

g = 0 and initial data 9 e $ while <%. (O.̂ r) is the set of restrictions
"C

of solutions to (3.3) with g(t) = k(u(t),t), u e *&, and initial data

9=0.

For fixed t e (t ,t ], let us first consider the set .̂(0, "2̂ ).

We define the set and the mapping T: -h,0] by

= { = k(u(s),s), u

and

t+e
Y(p,t+e)g(p)dp t+e

o

o t+e
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for 6 e [-h,0], so that .(

Lemma 4.3. Under the assumptions (4.1), ĵ .(0, I2?) is a closed subset of

f̂n[-h,0].

Proof: The ideas in this proof are by now quite familiar to control theorists

[J2, p. 18-23; 11, 17, 31]. First, from arguments similar to Filippov1 s [19],

it follows easily that &(<%) is a weakly sequentially closed subset of

L,[t Qjt-jJ. From the hypotheses (4.1) one obtains [15, p. 292] that _$̂ (<̂  )

is weakly sequentially compact in L,[t ,t,] and hence by Eberlein-Smulian

[15, p. 430] the weak closure of Ĵ (̂ r) is weakly compact. But the weak

closure of (̂fy] is the same as its weak sequential closure [15, p. 434],

Hence 3̂ (̂ ) is a weakly compact subset of L-,[t ,t ].

The map T is clearly continuous with respect to the strong

topologies of L, and S£ [-h,0], and hence continuous -with respect to

the weak topologies on these spaces [15, p. 422], It follows that

is weakly compact and hence weakly [a fortiori strongly] closed in ̂  [-h,0].

Remark 4.1. The conditions (4.1) under which Lemma 4.3 obtains can be re-

laxed. Using arguments similar to those of Jacobs [35, p. 4l6] one can

show that J"̂ )̂ is weakly sequentially closed under the assumptions:

t -»U(t) defines an upper semicontinuous mapping with range in the collec-

tion of non-empty compact subsets of R ; k(U(t),t) is convex for each

t e [to,t ]*
 and u -»k(u,t) is continuous for each t, t -»k(u,t) is

measurable and there is an me L, such that |k(u,t)| < m(t), u e U(t).



The other arguments in the proof of Lemma 4.3 then hold without change. Com-

ments on relaxing the convexity assumptions will be made below.

Under the assumptions of Lemma. 4.2, we see that &. (0,̂) is an

equicontinuous subset of *£ [-h,0]. Since it is also bounded, the Arzela-

Ascoli theorem implies that &+(0, ̂) is conditionally compact. Lemma 4.3

then yields the compactness of &' (Q.fy').t

Next let us consider 3$($,0). For $ compact in $g [-h,0],

to show ^ ($.0) compact in <g [-h,0] it suffices to show that the map-
t

ping cp -» y (cp) is continuous, where y is as given in the definition of
t t

-̂ ,($,0). Clearly, it is enough to demonstrate that for t > t+h the map-

ping cp -» z,(cp) e <g [~h,0] is continuous, where

t"
z,(cp)(e) = Y(t t+e)D(cp,t ) + / ° dt o u

life have

< sup |Y(t0,t+e)||D(cp,t0)-DU,t0)|
-h,0 J

t~
+ sup I/ ° dBT(t+e,p)[(pO)-Mf(p)]|
0e[-h,0] t -hu

sup |Y(t0,t+0)||D(q>,t0)-DU,t0)|
0

+ sup Var([t0-h,t0];r(t+e,.))|cp-̂  .
0

From the continuity of D, it suffices to show that the sup terms are finite.

Using the definition of r and the hypotheses (3.1), (3.4) on n,T], one can



show easily that for 0 e [-h,0]

t+e+

Var([t0-h,t0];T(t+e,-)) <M X/
to

t+e
|Y(a,t+0)|m(a)da.

The bounds guaranteed in Theorem 3.1 then imply that the sup terms are in-

deed finite.

Theorem U.I. Under the assumptions (3.1), (3.2), (3.U), (3.8), and (U.I), *

compact in ^n[-h,0] implies _Q.(0,̂ ") is compact in ^n[-h,0], t e

[t ,t ]. Furthermore, the mapping t -» jâ ,($,̂ ) is continuous with respect

to the Hausdorff metric [7].

Proof» The first conclusion of the theorem is evident from the compactness

of .̂(0,0) and .̂(0,̂). The second assertion follows easily from the
o t

fact (Lemma U.2) that t ->x.(cp,f) is continuous uniformly in (9,f) e $ x j^

Remark U. 2. The continuity of t -» _Q̂ . ( <&, ̂) can be proved for retarded

systems (n = 0) by the usual arguments ([U2; p. 70-71], [U5; p. llU]) in-

volving the variation of parameters representation (Theorem 3.2). These argu-

ments depend very much on the continuity of t -»Y(a,t). For neutral systems,

this continuity requirement is not met and hence a direct extension of the

usual arguments is not possible. The compactness arguments can also be

made somewhat more directly for the retarded case by taking advantage of the
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continuity of t -»Y(a,t).

The results given in Theorem 4.1 are sufficient to obtain existence

theorems for a wide class of linear-in-the-state problems with initial and
j

terminal manifolds in % [-h,0]. Since the proofs involve well-known argu-

ments [32, 42, 45], we shall only list a few of these problems here, (in each

case it is assumed that 3~ = $ is compact and -/ is closed.)

(i) The time-optimal problem for hitting a target set -/ C

_̂ n[-h,0], starting from an initial manifold J/_ = *. (In

the formulation of Section 2, take f = 1 and t, not fixed.)

(ii) The problem of minimizing P(x. ) subject to x, e J~.yt1 t± i

i =0,1, where P: j^7 [-h,0] -»R is continuous.

(iii) Minimization of J = / {A x(t)+k (u(t),t)}dt subject to

\
x e _̂ 7, i =0,1. (The usual device of augmenting the
1 1

system and then minimizing P(x) = x (t ) allows a direct

application of Theorem 4.1 here.)

Various generalizations are possible, e.g. allowing the target ^ to de-

pend on time [4, 32, 42, 45]. We shall not pursue these matters in this

paper since our main interest concerns problems with ^~ } _5T each consist-

ing of a single point in $g [-h,0].

Kent has shown that fairly general existence results such as those

by Jacobs [35] can be extended to include systems described by certain non-

linear neutral equations. Some of the arguments are tedious and we shall not

present them here, but instead refer the reader to [39], One type of nonlinear
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existence result which we should mention here is needed for a complete dis-

cussion of Example 6.2 below. Briefly, suppose that in the formulation in
t

Section 2, f of (2,1) has the form f(x( • ),u(t),t) = / d T](t, s)x(s)

vh
+ B(t)u(t), f°(x(t),u(t),t) = x(t)Qx(t) + u(t)Ru(t) where Q > 0, R >0

and ^~ = {cp}, y - {£} where cp, t, are given in ̂ n[-h,0]. Existence

results for this problem follow from standard arguments [42] which we shall

only sketch here. Letting {u } be chosen, u e "2̂ , x = cp, x = £, so

t t() t;L

that J(u ) = / "Sc Qx + u Ru -»p = inf{j(u)|u e <% x (u) = cp, x (u) = £},n . n n n n. o _ "o.,

°t
one sees that / u Ru is bounded, and hence {u } is bounded in L2[t ,t ].

to n n

Choosing a weakly convergent subsequence {u }, it is not hard to argue that

the corresponding trajectories {x } satisfy x (t) -» x (t), t e [t ,t ],
nk nk °

* -x-
where x is the trajectory corresponding to u , the weak limit of {u }.

nk
Use of the weak lower-semi-continuity of u -»/uRu along with other well-

* m * ++
known arguments yields J(u ) < p. If U = R , then u e ̂  and the proof

is completed. If U is compact convex in R , then [15, p. 422] some se-

quence of convex combinations of the u converges in Lp[t ,t ] to u .
* k

It follows that u (t) e U a.e. and again the proof is concluded.

We turn next to the questions of regularity (smoothness) of con-

trols and bang-bang properties (U is taken compact in Rm). Many authors

In this case we take <% as Lp[t ,t ] and do not insist that u be

pointwise bounded as required in the formulation of Section 2.



have investigated these questions for finite and certain types of infinite

dimensional systems. An often considered question [l8, 27, 28, 29, J2_, h2~\

is the following* Given a "state" that is attainable from a given initial

"state" employing a measurable control, is it possible to attain the same

"state" using a piece-wise continuous bang-bang control? An affirmative

answer to this question has been given by Banks and Jacobs [k~\ for some

classes of retarded systems when the attainable "states" are taken in R .

The methods used are extensions of ideas due to Halkin and Hendricks

[27, 28, 29]. The results in [k] can be extended to include certain types

of neutral systems (for example, (2.3) above when A, B, C are analytic).

However, our interest here is in attainable "states" in % [-h,0]. Since

it is known that there is no infinite dimensional analogue of the

Liapunov theorem which is the basis of the above arguments [27, 28, 29],

we face considerable difficulties. In fact, in light of known results for

linear ODE systems [see 32, p. Ill] concerning bang-bang results for tra-

jectories (attainable "states" in $ [-h,0] correspond to terminal seg-

ments of trajectories: x(s), s e [t,-h,t ]) one might suspect that the best

that can be obtained is a density theorem. But what if one is willing to

make assumptions on the FDE (such as A or C non-singular in (2.3) or

(2.4)) so that ODE's are not special cases of the FDE? The authors did

this for retarded systems, using the methods of Hale [23] involving a

finite dimensional projection argument (for which the Liapunov type re-

sults are valid). Certain results on eigenfunction expansions of solu-

tions to EDE1 s [6] were also needed since a limiting process in a space
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of closed subsets of % [-h,0] was employed. This lead only to the den-

sity theorem one would certainly expect to be true. The following examples

demonstrate the futility of our efforts.

Example ij-.JL. Consider the retarded system

X(t) = X(t-l) + U(t) t 6 [0,3]

with U = (v e R2: |v| < 1} and £(t) = -| (3-t), t e [2,3]. It is not hard

to show that £ can be attained by a measurable control u with u(t) e U,

starting from the initial function cp(t) = -t, t e [-1,0]. But £ is not

attainable with a bang-bang control from any initial cp. Suppose it were,

with the bang-bang control denoted by u°. Since x(t) = - ^ for t e [2,3]

and |u (t)| = 1, we see from the equation that | - •* - x(t-l)| = 1 or

x(t-l) = i, t e [2,3]. This implies x(t) = -| and x(t) =0 for t e [1,2].

But then 0 = x(t-l) + u°(t), t e [1,2] and |u°(t)| = 1 implies |x(t-l)| = 1,

t e [1,2] or |x(t) | = 1, t e [0,1], contradicting the fact that x(l) = ^.

Example U._2. Consider the neutral system

x(t) = x(t-l) + u(t) t e [0,2]

with U as in the previous example and £(t) = 2-t, t e [1,2], The as-

sumption that u is bang-bang and £ is attained leads easily to the con-

clusion that |<p(t)| =1 or cp(t) = -3 where 9 is the initial function.

But it is easy to demonstrate that there are initial functions cp (e.g.
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cp(t) = 1) with |<p(t)| ̂  1, cp(t) ̂ -3, and admissible controls u such that

£ is attainable from cp using u. Thus there are initial functions cp for

which the attainable set in % [-h,0] from 9 using bang-bang controls

is a proper subset of the set attained using all admissible controls.

The density theorem mentioned above can also be obtained under less

restrictive assumptions as an easy application of a result due to Fattorini.

For example, consider (3.3) with u = 0, 0 = {<?}, g(t) = B(t)u(t), B e L,,
m m

and define U = IT [-1,1], U = TT {-1,1} so that U consists of the
* -i C • -i ^1=1 1=1

vertices of the "cube" U. Let <& = {u: [t ,t ] -»R | u measurable,

u(t) e U} while ^^ = {u: [t ,t ] -»R™) u piecewise continuous, u(t) e Ug).

Then _£/.($,'%), J&.(®.'% ) are defined as subsets of _̂ n[-h,0] in the
" "f±.\-i *" / ) -xjfj.\

usual way using the representation results of Section 3. It is not hard to

argue that one could make use of Bochner integrals [33] in place of the
M.

Lebesgue integrals in defining J3̂ , ($. <2̂ ). J#.(*.<2j ). Under the standing
\j "0

hypotheses of Section 3, it is then easy to verify that Lemma 1 of [l8]
M.

is applicable and thus _Q^_ ($, <2? ) is dense in J3̂ ($ ^) in the norm of

M.
Remark 4.3. The examples above show that while J& (Q.ty ) may be dense in

"C

, it will in general be a proper subset of J^. ( fc,"^ ) and hence is

not closed in <g [-h,0]. Referring to Remark 4.1, we see that one there-

fore would not obtain the closure results of Lemma 4.3 if the convexity as-

sumptions of (4.1) are relaxed. Note that this differs from the situation



30

for linear ODE and FDE systems where one can obtain existence results in

the absence of convexity assumptions when the "state" is taken in R

K 35,
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Section 5» Necessary and Sufficient Conditions.

In this section we shall first derive necessary conditions for the

problem given in Section 2 with t , t, fixed and ^ = {cp}, J^T = {£}

where cp, £ are given in ^n[-h,0], i.e., the fixed endpoint problem in

control theory. Necessary conditions for problems with t variable (in-

cluding the time optimal problem) and with more general manifolds J/" JT

have been given in [39, *40]. Considering the problem as formulated in Sec-

tion 2, we define f = (f ,f) and in addition to the standing hypotheses

of Section 3 on |i we assume: f: j£"n[t -h,.t ] X U X [to,t ] -» R
n+ is

continuously differentiable in x for each fixed (u,t) e U X [t ,t,] and

Borel measurable in (u,t) for each fixed x e % [t -h,t ]. Furthermore,

given any u e <fy and compact convex X C Rn, there is an me L [t ,t,]

such that |f(x(-),u(t),t)| < m(t), | df[x( • ),u(t),tj • ]| < m(t) for each

x e C([t -h,t ],X) and t e C^ ,t ], where df is the Frechet differential

of f with respect to x (see [2, p. 1-2]). Defining x°(t) =

t
/ f (x(s),u(s),s)ds and x = (x ,x), we have the following necessary con-

ditions that must be satisfied by solutions to the above problem.

Theorem 5.1. Let (x ,u ) be optimal. Then there exist a° < 0,

~ x n + 1 I n ~
v: L*O^°°J -* R , X: R -»R with ytX of bounded variation and left-con-

tinuous such that

(i) X = (^n+i~^^ .p~^2'**"'^2 "^ ^ where the X., j = 1, ...,2n

satisfy: X. is constant on (-°°,-h], X.(s) = 0 for s > 0,
o J



X. is left-continuous and non-increasing with

2n
|a°| + £ Var([-h,0];X.) > 0;

^ o o o
(ii) \|/ = (ty , ty) satisfies i|/ = a < 0 and

0+ t* t
*(s) = / d\(0) + / -^(0)11(0,8) - / T iKejT] (0,s)-a°f°*(0)]d0

S-t-. S S

s e [t t ]
t( s) = 0 s > t

where f°*(0) = f°(x*(0),u*(0),0) and TJ* is such that
4-

df[x*(-),u*(t),t;y] = / d Ti*(t,s)y(s) for t e [t t ],

Vh

*(iii) / * ( s ) f ( x ( - ) , u ( s ) , s ) d s <

for all u e

Proof: Let & = &' = {x e ^[ t - h , ] ) x°(t) = f°(x(t),u(t),t),

|^D(x(.),t) = f (x(- ) ,u( t ) , t ) , t e [t^t^, for some u e and

(<VP)}> ^o s ^1[-h»°^ atld Z
0

 = {y e ^o' y(0) <0' e

fine mappings cpQ: J^ -» R1, cp_ i:^-^ ^Q, i = -l,-2, ...,-2n, by 9Q(x)

,

x^t^, (p^xjce) = ^(ej-x^t^o), cp_. ._n(x)(0) = xi(t1+0) - ^(0), 0

[-h,0], i = 1,2, . ..,n, where ^ = (^ ,...,^n). The problem formulated
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above is then equivalent to the problem of finding z e & such that

cp^z) e ZQ, i = -l,-2,...,-2n, cpQ(2) < 9Q(x) for all x e if with

cpi(x) e z , i = -l,...,-2n. Letting ^= R1 X ft gQ, Z = (a e RX|
2n i=l

a < 0} X ]T Z , and 4> = («PQ-<P0(z), •P . i*- - •> < P_2 n ^» °ne has that a S°lu~
i=l

tion to this problem is a (<J>,Z) extremal [Vf, Definition 2.2]. Defining

&' = & and Q/= &n+\t -h,t1], it is obvious that Condition 6.1 of

p. 75] obtains. Next let f*(t) = f(x*(' ),u (t),t), & = {g: [î ,̂ ] -»

n+1 /\ -x- ^
R |g(t) = f(x (•)>u(t)»t) for some u e "It and Y be tne soiution to

t+ t^
Y(s,t) = En+1 + / daY(a,t)S(a,s) - / Y(a,t)̂ (a,s)da s < t ,

s s

(5.1)
Y(t,t) = E Y(s,t) =0 s >t,

where En+1 is the identity in *(n+l)x(n+l),

'0 -ff(a)

o T] (a, s)

Define the convex set ^ by x^= {ox e ̂ n+1[t -h,t ]| 6x(t) = 0, t e
t

[t0-h,tQ], 5x(t) = / Y(a,t)6f(a)da, t e [t^t^, 6f e co(^) - f*}. Using

the hypotheses of this paper, a generalized idea of quasiconvexity

[1, 2, 21̂  k6, Vf], the chattering lemma, of Gamkrelidze [21, Lemma ̂.l;

2.} Lemma 3-1], and reasoning similar to that of Neustadt [k6, Section 5],

a long and tedious argument verifies that Condition 6.21 of [Vf, p. 76]



is satisfied. For retarded systems the arguments are much like those in

[1*6; see also 1, 2], Some technical difficulties are involved for neutral

systems, but Kent [39] has shown that these can be overcome. Finally,

Condition 6.k of [4j] can easily be shown to hold with h = (nn>h -*>'••>

h_2n) mapping ty into ^ given by hQ(y) = y
0 )̂, h_±(y)(9) =

-y1(t1+8), ̂ (̂yXe) = y'(\+0), 9 € C-h,0], i = 1,2,... ,n. Thus,

Theorem 6.2 and hence Theorem 3.1 of [Vf] hold. We shall show that the

desired results follow from Theorem 3.1.

Applying Theorem 3.1 of [Vf] we obtain the existence of a non-zero

i e <£* such that

(5.2) l(x) > 0 for all x e Z

(5.3) t°h(£x) < 0 for all Sx e ^.

From the definition of ^, we see that there are a° e R and I . e ̂  ,

i = 1,2,...,2n such that

2n
Z -i i

for every (CD, ̂ . . . ,£2n) e ^. Since Q̂ =̂
1[-h,0], it follows that

there are X.: (-°°,oo) -» R of bounded variation, with \. left continuous,
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X.(s) = 0 for s > 0, X. constant on (-oo^-h], i = 1,2,. . .,2n such that

0+

-h

,1.for every g e &\-h,0]. Observing that (-1,0,.. .,0), (0,1,0,...,0),...,

(0,0,...,!) are in Z whenever | e Z we conclude from (5«2) that oP < 0

and X. is non-increasing, i = 1,2,...,2n. The fact that £ is non-zero
1 2n

yields \a°\ + T, Var([-h,0]5XjL) > 0.
i=l

The inequality (5-3) thus becomes

n 0+

a°ox°(t ) + £ / dxi(e)[-8x
1(t1+e)]

1=1 -h

n O +

i=l -h

.
^t +0)] <o

^ / / I nfor all ox e -/#. Defining X: R -»R as in statement (i) above, this

then becomes

o - °+

a 6x. (t ) + / dX(9)8x(t +0) < 0
-h

A /N ^ 1 Y

for all 8x e Jt-. The matrix solution Y in (5.1) may be written Y = ( Y )

where Y (s,t) is an n-dimensional row vector and Y(s,t) is in £nxn

The equations for Y ,Y are

Y°(s,t) =/ daY°(a,t)n(a,s) - / [-f°
s s
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and

Y(s,t) = En + / d Y(a,t)n(a,s) - / Y(a,t)r| (a,s)da
s s

for s < t with Y°(s,t), Y(s,t) vanishing for s > t. Using the defini

tion of -#• in (5.*0 we obtain

t.. 0+ t +0
a0/ ±[6f°(s)+Y°(s,t1)6f(s)]ds + / cU(0)[/

 x Y(s,t +0)5f(s)ds] < 0

*o -h '0
A "I xs*

for all Sf in co(J?*) - f . This can be written as

t 0+

/ Iĉ of̂ s) + (a°Y°(s,t,) + / dX(0)Y(s,t +e)}Bf(s)]ds < 0.

Defining i|/(s) =a°Y°(s,t ) + / d\(0)Y(s,t +0) and \f° = a°, an appropriate

A -h -
choice of 5f yields (iii). The properties of Y guaranteed by Theorem 3. 1

of Section 3 of this paper lead easily to the conclusion that ty is left-

continuous and of bounded variation on [t ,<») with \|/( s) =0 for s > t .

Using the equations for Y ,Y in the definition of ty and making several

interchanges in the orders of integration (it is here that the Borel measur-
/\

ability of Y becomes important - see Remark 3-1 above) which are. justified

by the Fubini type theorem in [10], we easily conclude that \|/ satisfies

the equation in (ii). This completes the proof of Theorem 5.1.
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We point out that the equation for i in (ii) can be written in

the equivalent form

t+ t *
- -

1 s s

Since A, is usually only of bounded variation (BV) on [-h,0], one would

scarcely expect \|/ to be smoother, say absolutely continuous (AC), on

[t -h,t ]. But for s < t -h, the X(s-t ) term is a constant (X(-h))

and one might ask whether the equation can be written in differentiated

form (i.e., is \|r AC?) for s e [t ,t,-h]. Even for simple neutral systems

ty is not in general AC. For example if the system in the problem has the

form (2.3) the equation for \|/ becomes

\(s-t ) - /
s+h s+h

aV (0)]d0

and it is easily seen that \|/ has jump discontinuities at s = t,-h,

t,-2h, t -Jh,... . However for problems involving system (2.U) the \

equation is

1 1 o n*
= -X(s-t ) + / -Lt(0)C(0)d0 + / ±[i|/(0)B(0)4a°f° (0)]d0

s+h s X

and \|/ is readily seen to be AC on [t ,t -h] satisfying a.e.
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ijf(s) = -a f *(s) - i|f(s)B(s) - *(s+h)C(s+h).
X

In fact there are a number of types of retarded systems for which the cor-

responding \|; will be AC on [t ,t -h]. These are discussed on p. 15-l6

of [2]. Note that for retarded systems the associated ty equation is the

same as the X equation of (i) of Theorem 1 in [2, p. 3] with the exception

of the X(s-t ) term which will be constant for s < t-L-h.

If, instead of £ e 5£ [-h,0], one only specifies q components

(q < n) of x on [t,-h,t ], then one can derive the corresponding nec-

essary conditions as above by using 2q of the cp . constraint functions

instead of 2n. The ideas for use of the "conflict" constraints cp . evolved

from trying to treat the terminal conditions in % [-h,0] as some type of

bounded state variable restraint. It is not surprising then that in a

number of examples [39]> the multiplier \ behaves much like the multipliers

obtained in considering bounded state variable problems [8, 48], That is, \

has jumps at t^-h^t.. (the points at which the trajectory enters and leaves

the "boundary" £ of the restraint region), and has jumps at points where

the trajectory follows the "boundary" across a point where it is not smooth.

The multiplier X can also be interpreted as a terminal boundary condition

in function space [36, 38] which usually results from transversality condi-

tions.

Let us mention briefly other ways of deriving the necessary con-

ditions of Theorem 5.1. First, various other types of "conflicting" con-
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straints [39] will yield essentially the same theoremj also it is possible

to use a constraint of the form q> ,(x) = |x -t,\-£, (an S-ball about £
-1 ^

in ^n[-h,0]) together with Theorem 5.1 of [47]. Allowing e -»0 and

using the linear "subfunctionals" A of that theorem yield (formally) the

same necessary conditions as derived above. All of these proofs yield

necessary conditions that have a notable deficiency. Observe that for the

maximum principle (iii) to be nontrivial, one needs a or A, or both non-

zero. The non-zero statement involving I in the proof (see also (i)

of the theorem) does not guarantee this. In fact, nothing rules out the

situation a° = 0 and X. = \ ., i = 1, 2, ...,n, in which case the in-

equality in (iii) is trivially true with i = 0, a° = 0. This difficulty

also appears in the approach employing Theorem 5-1 of [47] mentioned above

(there is no guarantee that A/ 0). Nonetheless, as we shall see, the

conditions of Theorem 5.1 above are non-trivial in numerous examples [39]

and are actually sufficient for linear problems with certain payoffs when

a / 0 (normality). Thus we do obtain conditions which are both necessary

and sufficient for a non-empty class of normal problems.

There are derivations of the necessary conditions presented here

which for special problems do yield a° / 0 (and hence nontriviality and

sufficiency). The authors have shown that using an attainable sets approach

[42] in function space for linear retarded systems with integral quadratic

payoff and %= 1, necessary conditions which are the same as those of



Theorem 5.1 can be obtained. Jacobs and Kao [36, 38] have obtained equi-

valent necessary conditions for problems with general nonlinear retarded

systems by employing an abstract Lagrange Multiplier Rule [̂ 3, p. 2̂ 3] in

the function space W;, '. But both of these latter approaches are for un-

constrained controls and require more restrictive hypotheses than are de-

sirable (roughly speaking, the matrix D(t), where k(u(t),t) = D(t)u(t),

has rank n for a.e. t).

We next exhibit a class of problems for which the necessary con-

10
t

ditions derived above are also sufficient. Let f (z}uft) = g (z,t) +

k (u.t) and f(x(-),u, t) = / d T](t, s)x(s) + k(u, t) satisfy the hypotheses
t -h S

given preceding Theorem 5-1 where T] is as in (3.̂ -). In addition assume

that g : R x [t ,t ] -»R is convex in z for each fixed t € [t ,t,].

Under these hypotheses we have the following sufficiency results.

* *\Theorem 5.2. Suppose (x ,u ) satisfy the conditions of Theorem 5.1 with

o o * * .
ty =0; < 0. Then (x , u ) are optimal.

Proof; Let v e ̂  be such that the corresponding trajectory x = x(v)

it-
satisfies x = £1= x . Then from the equations for x,x* we have

,*! I * *10 = / ± d*(s)j[x(s)-x (s)] - / xd u(s,0)[x(0)-x (0)]

^ +
 / *0S t . 8 . . .

0T](cr,0)[x(0)-x (0)]da - / [k(v(a),a)-k(u (cr),i

'0 ̂ 0 *0



Thus, using the definition of x we obtain

(̂tj-x̂ tj] =a°/ 1[g°(x(s),s)-g°(x*(s),s)]ds

*0
T r» ^

+ a°/ [k (v(s),s) - k (u (s),s)]ds
t

/ :LW(s)[x(s)-x*(s)] - / -W(s)/ Xd |j(s,0)[x(0)-x*(0)]

*0 *0 *0

t!
[k(v(a),a)-k(u (a),a)]dcj.

o*/ v o, *-Adding and subtracting a term involving g (s) = g (x (s),s), integrating "by

parts in the last two terms, and noting that i(t ) ~ 0, we find

T W 4C. «

..Or lr_O/__/_\ _\ O/_ */ \ _\ _o /_\r../_\ — /x° (t̂ -x̂ )̂] = a0/ J-{g°(x(s),s)-g°(x (s),s)-gj (s)[x(s)-x (s)]}ds

*0

1!a°[k°(v(s),s)-k0(u*(s),s)] +*(B)[k(v(s),s)-k(u*(s),s(
t+ t+

*0 *0 *0

! *
/ *(s)/ xd Tj(s,0)[x(0)-x (0)]ds

*0 *0

+ a°/ V*(s)[x(s)-x*(s)]ds.



Using the Fubini type theorem [10] to interchange the order of integration

in several of the integrals and combining terms, we have

-x0 )̂] = a0/ 1{

+ / X *(s)[f(x*(.),v(s),s) - f(x*(.),u*(s),s)]ds

/o

*o *o *o
lNoting that / di|/(s)(i(s,0) =/ ^(s)^ s,0) and / \ |»(s)r](s,0)ds =

/ \j/( S)T]( s,a)ds, it follows from the convexity assumption on g and parts
e
(ii) and (iii) of Theorem 5.1 that

t+

-a°[x0 (tj-x (t,)] < / d.X(0-t.)[x.(0)-x (0)]i j- — y i

= / I dQX(0-t1)[x(0)-x*(0)]

= 0,

y y. y

or since a < 0, [x° (t )-x°(t )] < 0. Thus (x ,u ) is optimal.

The underlying idea for this sufficiency proof can be traced at

least as far back as a paper by Rozonoer [50]. A number of other authors

[20, 22, 4l, 42] have used and refined it. In fact, in a recent work of

Funk and Gilbert [20] it is pointed out that under normality and certain

convexity assumptions, the abstract necessary conditions derived by Neustadt

[46, 47] are also sufficient in a number of situations.



Section 6. Examples.

We first present two examples which illustrate use of some of the

results obtained above.

Example 6.1. Consider a system described by the scalar equation

x(t) = x(t) - x(t-l) + u(t).

We wish to drive from the initial function qp = 0 to the target function
3

given by £(0) = 2+9, 9 e [-1,0], while minimizing j(u) = / x(t)dt
0

subject to U = [-1,1].

Since f = x, the maximum condition of Theorem 5-1 reduces to

5 5

/ \|/(s)u(s)ds < / i|/(s)u (s)ds.
0 0

..

Thus u (s) = sgn[\|;(s)] whenever i|/(s) / 0. The equation for \|r reduces

to

3 3
= -X(s-3) + / i|/(9)(-l)d9 + / U(0)(l)+a°]d9, s e [0,3].

s+1 s

.

From the discussion and examples of Section 4, we guess that u is not

bang-bang on [2,3], Thus we try t = 0 on (2,3] and a° = -1. On (2,3]

the equation for ^ becomes



3
0 = -X(s-3) + / (-l)d0, so

s

X(0) = 0 for 0 e (-1,0],

On [1,2] we differentiate the equation for i|/ and obtain

Thus iKs) = ce~(S~2)+l on [1,2]. But \|r(2) = -*(-!) + / (-l)de = -X(-l)-l,
2

so c+1 = -l-X(-l). Let v = -X(-l); then c = v-2, and

= (v-2)e(2"s)+l, s e [1,2].

Similarly, on [0,1] ̂ (0) = -t(0) + i|/(0+l)+l. Integrating from \|r( 1) =

(v-2)e+l, we obtain

i|r(e) = (v-2){e(2-0)-(l-0)e(l'0)}+2-e(l~0), 0 e [0,1].

2
We claim i|/(o) < 0. Suppose i|/(o) > 0. Then (v-2)[e -e]+2-e > 0, or

(v-2)>^2->0. Thus \|/(s) = (v-2)e^2~sUl > 1 for se[l,2],
e -e

i(0) > -i(0)+l+l = -\|/(0)+2 for 0 e [0,1]. Hence if \|/(0) > 0, then
y

i|/(s) >0 on (0,2), and u (s) = +1 for s e (0,2). A simple integration

shows that this implies x (2) > 1, contradicting the boundary condition



x(2) =1 and proving the claim. We next claim that \|/(l) > 0. Suppose

\|f(l) < 0. Then (v-2)e+l < 0, or v-2 < - -. For 9 e (0,1),

< -

= -e~0{e+0-l+e}+2 = -e~0{2e+0-l}+2.

This expression has its maximum over [0,1] at 0 = 1 ,

< -e~1{2e1}+2 = 0,

and hence i)/(0) < 0 for 0 e (0, 1). For s e (1,2),

-1 (2-s) (1-s) ^ n> e ev ' = ev ' > 0.

Thus \|> has at most one zero in [1,21. If the^e is no zero in [1,2],
.£

u (s) = -1 for all s e (0,2), and a simple integration shows that the res-

.̂ponse to such a control does not satisfy x (2) = 1. If \|f has a zero at

CD e [1,2], then u* is given on (0,2) by



* (-1, S 6 (0,0)),
u (s) =•?

(+1, S € ((JQ,2).

Another integration shows that the response to such a control also can not

satisfy x*(2) = 1. Thus ty(l) >0 must hold.

From i|/(l) >0 it follows that (v-2)e1+l > 0, or (v~2)e > -1.

On (1,2)

so t(s) >0 for s e (1,2), On (0,1),

Thus we have that iff has at most one zero in (0, 1). Since iff is continuous

with i)f(O) <0 and \|;(1) > 0, f has a zero in (0,1), which we denote by CD.

This applies the optimal control is given by

-1, s e (0,0)),
u (s)

+1, s e (o>,2).

The response to this control is



x*(t) =

, t e [0,do]

, t e [a>,l]

t e [

1-^-2, t € [1*0,2],

From the boundary conditions

l-x*(2)

The solution is approximately en = 0.53L To determine v we go back to

the equation i|>(o>) =0.

(v-2)Ce(2-a>>-(lKD)e(1-<D)}4S.e(1-a)) = 0

v = 2 -
(2-CD)v '

2-o.ni = 1.88Q.

*We determine u on (2,3) by using the equation for x and the fact

that x(s) = s-1, s e (2,3). On (2,3), 1 = s-1 - x(s-l) + u*(s), u*( s)

2-s + x(s-l), from which it follows that

u*(s) =|

, s e (2,2-kn)



Since |u | < 1 this is an admissible control satisfying the necessary con-

o / *ditions with a f 0, and by Theorem 5.2 u is an optimal control. It is

*
not difficult to argue that u is in fact the unique optimal control.

Example 6.2. Consider a system described by the scalar equation

x(t) = x(t-l) + u(t).

We wish to drive from the initial function cp = 0 to the target function

given by

- | - e, e e [-1,- i],

| + e, e e [- |,o],

3 2 i
while minimizing J(u) = / u (t)dt subject to U = R .

0
The maximum condition of theorem 5.1 reduces to

a°[v2-u*2(s)] + V(s)[v-u*(s)] < 0

for all v e R , almost all s e [0,5], Let us choose a° = -1. Then this

implies

u (s) = g *(s),



The equation for \|/ reduces to

i|f(s) = \Ks+l) - X(s-3), s £ [0,3],

hence we have that

u*(s) = u*(s+l) - ^9^- for s e (0,2).

From the shape of the target, the equations, and this relationship between

•& -x-
u (s) and u (s+l), we guess that the optimal trajectory is composed of

straight line segments of time-length ^. Let the slopes of these be a,

P, r, 8 respectively on [0,2], and set - X(-l) = K. Thus

u ( s ) H

a ,

P >

r-a ,

^ J

-i-r,

1-6,

s e (0, |)

s e fi 1)b fc V2^ J- /

s e (1, |)

s e (|, 2)

- e (2, |)

s e (|, 3)

^-Substituting these in u ( s) = u , we obtain the systems of equations

6-p = 1-6 + /c, r-a = -i-r +

= 6-p + Kt a = r-a +
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Solving in pairs; $ = 26-1-K and 6 = 2p-K imply p = 1<P-2K-1-K, or 3P =

1 2JK+I. Thus p = /c + ?• , o = / c + - r . Also a = 2y-K+l and y = 2cc-K imply

1 2a = i4a-2/c+l-«r, or 3a = 3/c-l. Thus a = K - T> y = K - -. The endpoint
j£ -i T n

x (2) = 7= is half the sum of the slopes, so ^ = ^(cc-tp+r+o), 1 = or

= •jj-. Thus a = - 1-, p = I-, r = - ̂ -, and 6 = —. From u*( s) =

#.

(̂S) and the expression for u in terms of a, P, y, and & we obtain

1
- F »

7
D '

ij.

' E »
Lj.

D '

_ 7

l
F >

s e (0, |)

s e (|, 1)

^ ^ (1, |)

« e (|, 2)

^ € (2, |)

8 6 (|, 3)

This satisfies the equation in Theorem 5.1 with

7
F' (-1,-

, i

o, e 6 (0,00)



•
The x , u obtained here satisfy the necessary conditions with \|> and \

o *given above and a = -1. By Theorem 5-2> u is optimal. Since the system

equations are linear and f is strictly convex in u, standard arguments

*
[42] show that u is unique.

There are several ways in which one could attempt to solve fixed

function target problems without using the necessary conditions for driving
tl"h o

to a function. The most direct is to minimize / f (x( s),u( s), s)ds

.
while driving to x (t,-h), and then attempt to determine u on (t̂ -ĥ t.̂ )

so that x is as desired. If f (x,u,s) is independent of u for s e
1 m(t,-h,t ) and U = R , this approach can succeed provided that given x on

[t -h,t ] one can solve the system equations for u(s), s € (t,-h,t ).

If U ̂  R the method may fail because the u determined on (t,-h,t,)

in this manner need not lie in U; in the case of example 6.1 it succeeds.

In fact, given the assumption that \|>( s) =0 for s e (t^-h^t ] in Example

6.1 the subsequent arguments are identical to those resulting from applying

the maximum principle for point-target problems [2, 40] as suggested above.

If f (x,u,s) is not independent of u for s e (t,-h,t,) this approach

will generally fail. In example 6.2, driving to x(2) = ̂  while minimizing
2 p
/ u (t)dt yields
0

*
u (s) =

1
5
1_
10

*
(t) =

t
5

10 t € [1,2],

which is not even close to the optimal trajectory for the function target
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problem.

A more complicated method involves making the function-target prob-

lem equivalent to a point-target problem by altering the form of f on
.£.

[t ,t -h] to include the "cost" due to the u determined on (t,-h,t,) as

above. With U = R™ one may then use either the necessary conditions of

the calculus of variations (see [l6, 3^> 51]) or the point-target maximum

principle. Examples illustrating this can be found in [391- In example

6.2, the altered cost-functional is

IP 3/2
J(u) = / u (t)dt + / {u (t)+[-l-u(t)-u(t-l)] }dt

0 1

2 2 2
+ / {u (t)+[l-u(t)-u(t-l)] }dt
3/2

1 2 5/2 2 2

0 1

2 O
+ / {[x(t)-x(t-i)r + [
3/2

With this form of J(u) in terms of u, one clearly would prefer not to use

the maximum principle on this equivalent problem. Applying the modified

Euler conditions to the second expression for J(u), one obtains that the

optimal trajectory must consist of line segments of time-length 1/2. How-

ever, the relationships between the four slopes and a single constant are

not obtained, and the problem of determining the slopes remains difficult

without the function-target necessary conditions. When U / Rm the



problems encountered in the first point-target method will also occur here.
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