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Abstract

Optimal control of systems governed by functional differential
equations of retarded and neutral type is considered. Problems with func-.
tion space initial and terminal manifolds are investigated. Existenée of
optimal controls, regularity, and bang-bang properties are discussed.
Necessary and sufficient conditions are derived and several solved examples

which illustrate the theory are presented.



Section 1, Introduction.

A large number of papers have been written on the control of func-
tional differential equations to target sets in Rn (for partial biblio- |
graphies see [4, 5, 44]). In this paper we treat a number of aspects con-
cerning control to targets in function space. To the authors' knowledge
only in the recent investigations reported in [36, 38, 39, 40, 49, 54] have
others reported results for such problems. Popov [49] and Weiss [54] in-
vestigate controllability while the work of Jacobs and Kao [36, 38] concerns
necessary and sufficient conditions for retarded systems., As is pointed
out in Section 5 below, their methods are quite different from those employed
here. We treat control problems involving a fairly general class of neutral
functional differential systemsy a class which includes as special cases
almost all nonlinear retarded systems that are of interest. Control of |
neutral systems in a scomewhat different formulation has been investigated
by Kamenskii and Khvilon [37] who use the methods of Pontryagin, et. al.
[48] to derive necessary conditions for problems with targets sets in RRF,
In Section 5 we utilize the methods of Neustadt [46, 47] and Gamkrelidze
[21] to obtain necessary conditions for the general nonlinear problem for-
mulated in Section 2. We also show there that under certain convexity as-
sumptioné these conditions are sufficient for normal problems with linear-
in-the-state systems.

In addition to the problem formulation, Section 2 also contains

a motivating example which shows that boundary control problems for certain




hyperbolic systems can be transformed to problems involving control of
neutral functional differential equations to function space targets. Sec-
tion 3 contains some of the theory (existence, representation, etc.,) of
neutral systems which has been developed, for the formulation used in this -
paper, mainly by Hale and his students and colleagues [2k, 25, 26, 30]. 1In
Section 4 we present existence results for a large class of linear-in-the-
state control problems. The related questions of smoothness (regularity)
of controls and bang-bang properties (or lack thereof) are discussed. The
paper is concluded with a section containing two solved examples along
with comments concerning methods for solving examples via problem reformula-
tion. More general necessary conditions plus a number of other solved
examples may be found in the thesis of Kent [39y see also 40] on which much
of the work reported here is based,

The following notational conventions will be adopted throughout
the paper., We denote by &fn[a,b] the space C([a,b],Rn) of R%-valued
continuous functions with the usual sup topology and by Lp[a,b] the usual
spaces of functions f (equivalence classes) with Iflp integrable in
the sense of Lebesgue. We shall not use differént symbols for various norms
but let |+| represent the norm in whatever space may be appropriate, For
example, if x € jfn[a,b], |x] is the sup norm of x while lx(t)l‘ repre-
sents the R norm of x(t). The symbol fnxP will denote the vector
space of n X p real matrices and E_, will be used for the identity in

p

the space fpxp' BV[a,b] will represent the space of functions of bounded



variation on [a,b] with norm |g| = Var([a,bls;g) + |g(b)| where
Var([a,b]sg) is the total variation of g on [a,b].

'If xs [a-h,Db] —>Rn, for t € [a,b] we denote by X, the elements
of ifn[-h,o] given by xt(e) = x(t+0), @ € [-h,0]. For systems involving
hereditary dependepce we sﬁall use the notation f£(x(+),t) to mean that
bl ifn[to-h,tl] X [to,tl] —>Rn may depend on any or all of the values

x(s), to-h < s <t, where t ¢ [to,tl]. Examples of such dependence are

£(x(+),t) = G(x(t),x(t-h),t), £(x(+),t) = &(x,,t), £(x(+),t) =
t
[ a(t,s)G(x(s),t)ds (see [2, 24]).

0
Unless it is otherwise explicitly stated, all statements involving

the concept of meausre will be interpreted with respect to lLebesgue measure.
All integrals will be Lebesgue or Lebesgue - Stieltjss integrals [15].
Finally we shall never distinguish between a vector and its transpose since

in any vector-matrix operations it will be clear what is meant.



Section 2. Problem Formulation,

Let j7b,_9z be given subsets of .2?n[—h,0] and suppose U 1is a
specified non-empty subset of Rm. Define % = {u: [to,tl] —aleu is bounded,
measurable with u(t) ¢ U for t ¢ [to,tl]}. We shall consider the general

%
problem of minimizing J = “£(x(t),u(t),t)dt subject to
0 t :

o .
(2.1) & D(x(+),8) = £(x(+),u(t),t) b e [ %]
uey

where the function D 1s defined by

t
(2.2) D(x(*),t) = x(t) -/ am(t,s)x(s).
to—h

With. p # O and the hypotheses specified in Section 3 below, the system
(2.1) is a functional differential equation (FDE) of neutral type. If
= 0, the system is an FDE of retarded type. Simple examples of the type

under consideration here are the differential difference equations
(2.3) x(t) - A(t)x(t-n) = B(t)x(t) + c(t)x(t-h) + k(u(t),t)
and

(2.4) x(t) = B(t)x(t) + c(t)x(t-h) + k(u(t),t).



Many of the results obtained below can be extended to include cer-
tain types of systems involving a hereditary dependence on the control u
in addition to the state x (see Kent [39]) but we shall not pursue that
aspect of the problem in this paper.

There are a number of physical situations which motivate the prob-
lem as formulated above, although we shall cite only two of these here. Per-
haps the simplest example where one desires to specify a terminal target
in jgn[~h,0] involves systems such as (2.3), (2.4). It has been recognized
for many years that the true "state" for such systems is x;, not x(t). If
x(t) represents some error which one wisheé to be driven to zero (and held
there if possible) and if the error is desecribed by (2.3) or (2.4), then it

is obvious that the desired terminal condition is X, = o.
1
A second motivational example which we shall only sketch here
(see [39] for discussion of a similar example) involves boundary control of
linear hyperbolic partial differential equations. Suppose we are given the

wave equation for w(t,x)

(2.5) Wy - cw 0 t € [0,T], x € [0,1]

with boundary conditions

Ao(t)wt(t,o) + Bo(t)wk(t,o)

go(t,w(t,O))
(2.6) .

+

Al(t)wt(t: 1) Bl(t)wx(t: 1) gl( t,w(t,1))



and initial-terminal conditions

w(0,x) ab(x) Wi(o’x) = al(x)

(2.7)

w(T,x) 6O(x) W£(T,X) Bl(x).

Suppose that Ai’ Bi are continuously differentiable, g; are absolutely
3\

continuous in t, continuously differentiable in w with 8t being do-

minated by L, functions, i = 1,2, In addition assume that 06,

are absolutely continuous with L, derivatives (' = %;). Under the ad-

4
oy, By By

.y 1 1 .
ditional hypotheses Ao(t) -3 Bo(t) # 0, A (t) + 3 Bl(t) #0 for t €
[0,T], one can derive an equivalent neutral system in the following way.

Assume a solution of the form (D'Alambert)
X X
w(t,x) = o(t + D+ v(t - E)’
Upon substitution in (2.6), followed by differentiation with respect to t

and a few algebraic manipulations, one obtains a neutral system in (@',y') =

(yy2) of the form

§(t) + R(E)2(t - 2) = B (%,5(+),2(*))

(2.8)

2(t) + S()a(t - 2)

Hy(t,3(+),2(+)).

The data given in (2.7) can be used to produce initial and terminal data

in terms of (y,z) for the system (2.8). Appropriate assumptions on the



boundary terms &1 81 (which contain the controls for the problem) lead to

a controlled system involving (2.8) for t ¢ [%,T] "with initial and terminal
values of y specified on [O,%] and at t = T and corresponding values

of z given on [- %5 %] and [T- %,T]. The terms Hl’ H, are such that
this initial data is sufficient to solve (2.8) for absolutely continuous
(p',¥') having L, derivatives. It is not difficult to argue that this
(P,¥) wused in the D'Alambert solution above yields a solution to the ori-
ginal equation (2.5) in the (non-classical) sense that w(t,x) = @(t+ %) +
¥(t - %) is continuously differentiable with Wt’ L being absolutely
contiﬁuous and possessing L2 partials satisfying (2.5) a.e.

The boundary conditions (2.6) include as special cases the usual
boundary conditions [13, 14, 53] associated with (2.5) for transverse vibra-
tions of a string or longitudinal vibrations in an elastic rod with elasti-
cally supported ends.

Other authors have pointed out connections between the study of
hyperbolic systems and neutral FDE's., Brayton [9] and'Slemrod [52] were con-
cerned with systéms arising from the study of lossless transmission lines
while Cooke and Krumme [12] discussed a general method for reducing linear

hyperbolic systems with nonlinear initial-boundary conditions to functional

differential systems of neutral type.



Section 3, Representation Results for Linear Neutral Systems.

In this section we shall present properties of solutions of neutral
- systems which will be needed in the ensuing discussions. Our main results
pertain to the variation of parameters representation for solutions to
general linear systems. Referring to the function D defined in (2.2), we
make the following standing assumptions on u: R2 —)fnxu.
(3.1) w(o,0) =0 for 6 >0, n(o,8) = u(c,to-h) for 6 <t,-h; p is
Borel measurable, continuous from the right in its first argument
and continuous from the left in its second argument; 6 - u(o,8) 1is
of bounded variation on every finite 6 interval, uniformly in oj

t -
and the mapping t - I(9,t) = [ dsu(t,s)w(s) is continuous on

t
0
[tyt,] for each fixed o e fg’n[to-h,tl], which obviously implies

that (@,t) » I(p,t) is continuous.

3,2) there is a continuous non-decreasing function & with 8(0) =0 such
that for each t ¢ Rl and € >0 we have Var([t-€,t]; n(t,:)) <

(AR

Specific conditions on p directly for which the last hypothesis
in (3.1) obtains have been given by Kent [39)}. Included as a special case
of these is the situation where u(s,68) = £(s,0) + o/(s,0), 6 —9dg(s,6)
being a "well-behaved" jump function and 6 — of(s,8) representing the ab-

solutely continuous part of 6 —>u(s,6). We shall not present the exact



technical assumptions on ¢}?,_g{ here, but refer the interested reader to
[39]. It suffices to remark that systems encountered in applications almost
always satisfy these conditions.

We next consider solutions to

t
g{ D(x(-),t) = { hdsn(t,s)x(s) + g(t) t € [to,tl]
(3.3) 0”
Xto = Q,

where by a solution x we shall mean an x ¢ jfn[to-h,tl] such that t —
D(x(-),t) is absolutely continuous on [to,tl] with (3.3) being satisfied
a.e. The non-homogeneous term gt [to,tl] - RY will always satisfy g ¢ L,

2
and we make the following hypotheses on 1n: R —>£an.

(3.4) n(0,0) =0 for 6 >0, n(0g,8) = n(c,to-h) for 6 <t -h; 1 is
measurable, continuous from the left in its second variable on
(-»,0); 6 »n(0,0) is of bounded variation on every finite 6 inter-

val and there is an m € Lioc such that Var([to-h,c];n(c,-)) < m(o).

Under the above hypotheses and Caratheordory type assumptions on
f, one can prove the usual local existence and continuation theorems for
solutions to (2.1) with Xto =9, 9 € jfn[—h,o]. In addition one can es-
tablish that (3.3) possesses a unique solution [25, 26, 30, 39]. We turn

next to the "adjoint" system to (3.3) with g = 0.
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Theorem 3.1, Under the assumptions (3.1), (3.2), (3.4), for each fixed t e
[to,tl] the system
t* t

E +.£ daY(a,t)u(a,s) - ,2 Y(a,t)n(a,s)da s ¢ [to,t)

Y(s,t)

(3.5)
Y(t,t) = E, ¥(s,t) =0 for s>t

has a unique solution on [to,tl]. This solution Y(s,t) € fan is left-
continuous in its first argument and |¥(s,t)| < 4, Var([to,tl];Y(',t)) < B

for (s,t) € [to,tl] X [to,tl] where % 1is finite and independent of (s,t).

Proof: We assume for ease in notation (and without loss of generality) that
to = 0. The proof of existence of a unique solution and left continuity in
its first argument is due to Henry [30]. We shall here only sketch the argu-

ments, indicating how one obtains the bound % . We note that it suffices

to prove the uniform bound on the variation of Y(-,t) since for s € [to,tl]

Var([ty,t,1;¥(+,1)) > [¥(t,,t)-¥(s,t)| + | ¥(s,t)-¥(t),1)]

2 IY(S,t)l - lY(tl)t)l 2 IY(S:t‘)I - IEnl'

In the proof sketched here, one actually obtains existence of the

solution to (3.5) on |s| < t, [t] <t Let € >0 be chosen sufficiently

l.
small so that
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t
(3.6) 8(e) + /] m(B)de <A <1

t-€
for all Itl < 2tl, where & is the function guaranteed in (3.2). We make
the induction hypotheses (clearly true for p = 0) that for |t < tl the
solution Y(s,t) of (3.5) exists for s € [t-pe,tl] and satisfies

Var([t—pe,tl];Y(°,t)) < Kp where Kp is independent of t. We then define

successive approximants by

Y(s,t) S € (t-ps,tl]
Yo(s,t) = { '
Y(t-1€,1t) 5 € ['tl)t“Pe]
and
¥(s,%) s € (52,8,
Yk(s,t) = +

t t
B, + [ 4.0 o, 0)u(e,9) -] Yo, t)n(e,8)d0

S € [-tl,t-pE]

for k = 1,2,... « Using (3.6) and these definitions along with the

hypotheses in (3.2), (3.4), one can easily show that
k+1 k k k-1
I7Cst) - Tl S AY(e,t) - X (e, 0)

and hence



I3, 0) - Y5, 0l < AT ,t) - YO(e, 1)

where || = var([t-(p+1)€,t-1€]5g). Observing that one actually hés
Yk(s,t) = Y(s,t) for s € [t-pE',,tl], one sees that Yk(v,t) converges

in BV[t-(p+l)€,t-p€] to a function Y(°,t). Letting k - ® in the above
approximants we see that this extends the solution from [t-ps,tl] to
[t-(p+l)€,tl]e A finite number of induction steps on p yields existence
as claimed. The left continuity and uniqueness follow directly from the
hypotheses on W,n and the equation for Y.

Returning to the arguments involving Yk(°,t), we have that

1Yo < Y5, ) -2 L0l + 1Y, 1))

k-1 k-2 1 1
< DT e+l Y (L 1) Y00 )]+ 11O, ))

1 1 o] o
S m ”Y (':t)'Y (':t)” + ”Y (°)t) °
But [|¥°(s,t)| = O and using elementary arguments with the hypotheses on
N,u, the definitions of Yo,Yl, one can easily show that
t-pf

1Yh(e,6)-Y2(e, ) < K (M + 2f m( 8)de)
P t-(p+l)e

o It follows that

for |t} < tl

k
Y (e, )l < B,
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where Bp is independent of t, |t| < tl. Since ||Yk(~,t)-§(',t)ll -0,

we obtain [|¥(,t)|| < B+ Thus

Var([6-(p+1)€,t,13¥(+,1)) <I¥(,0)ll + var([t-pe,5,15%(+,1))

<B +K =K
-p D p+l

is independent of t, |t| < t.. The finite number of induc-

whereA Kp+1 1°

tion steps on p then produce the bound 4 independent of t.

Theorem 3.2, Let x be the solution of (5.3) under the assumptions (3.1),

(3.2), (3.4). Then for t e [t,,%,]

t
x(t) = ¥(t,)D(0,,) + [ ° a;7(t,B)0(p)
(3.7) s fo™"
+ [ ¥(B,t)a(p)ap
t
0
where Y is given by (3.5) and
t* t
(t,B) = -/ a Y(a,t)u(a,B) + [ ¥(a,t)n(a,B)da.
%o ? %

The proof of this theorem is due to Henry [30]. We shall omit it
here since it involves a standard type of argument making use of integration
by parts, an unsymmetric Fubini theorem [10], and the eguation-for Y. We
note that for p =0 the adjoint systemi(5.5) and the representation (3.7)

reduce to that for retarded systems [2, 3].
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Remark 3.1. We make some further comments about the solution Y of (3.5)
which may correctly be regarded as a "fundamental matrix solution". It is

not difficult to show [39] that for fixed s, the function t - Y¥(s,t) (which
in general, discontinuous) is BV and satisfies

is,

t t
¥(s,t) = B+ [ agu(t,0)¥(s,0) + J ap fﬁden(B,G)Y(s,G)

S s s
for t >s, with ¥(s,t) =0 for t <s. Note that this is just the
integrated form of (3.3) with g =0. In a subsequent section (Section 5)
of this paper, it will be essential that the mapping (s,t) — ¥(s,t) be
Borel measurable. (This is needed in order to use Y as the measure in
the unsymmetric Fubini theorem [10].) This will be true under varied assump-
tions on p. For example, Kent [39] has shown that it is sufficient that
t - u(t,0) Dbe of bounded variation on each finite t interval for each
fixed 6. Henry [30] has established Borel measurabiiity of Y under
other assumptions. Since we do not wish to become involved in these techni-
cal details here and since any system of interest to us in this paper would
meet either Kent's or Henry's assumptions, we make the standing hypothesis
that (s,t) - Y(s,t) is Borel measurable.

Before presenting the final results of this section we must make
the following definition. For @ Ciﬁfn[-h,o], K ¢ Ll[to,tl] and X CZRn,
define C([to—h,tl],x;¢,K) Ci.ifn[to-h,tl] by C([to—h,tl],x5®,K) =
(x e %n[to-h,tlnxto €9 x(t) € X for t e[t -ht ], |J¢ D(x(+),t)| < K(t)

a.e. t € [to,tl]}.
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satisfies

Theorem 3.3. 1In addition to (3.1), (3.2), assume that p

there exist 4 >0, L >0 such that for s <+t

(3.8) t
[ | e u(t,0)-n(s,8)} < Tlt-s|.

t-2
Then X, compact implies C([to—'h,tl],X;d),K) is a compact subset of

gn[to-h,tl]. It is also convex if X,0 are.

Proof: Convexity follows from the linearity of D(x(-:),t) = x(t) - TI(x,t).

by ch(t) =q)(t-t0), t e [to-h,to], ch(t) =

=@ we have
0

For any ¢ € ®, we define ch

®(0), t >t,. Then for x e c([to-h,tl],x;cb,K) with x

|x(t)‘x(t0)| < ID(X('):t)'D(X('):tOH + |1"(x,t)-1"(xcp,t)|

+ | P(ch,t) -I( Xq),to)l

t t
< [ K(s)as + |/ agu(t,6){x(6)-x(ty)}

0 tO
+ |F(X(P,t)-f‘(xq),to)| .

Choosing p such that 0 <p <4 and &p) <1, we thus find for +t €

[t4sto+o]

%
|X(’°)-X(to)l 5{ K(s)ds + S(P)HX-X(P”t
)
+ Sup{IF(X‘U’t)-P(XW’tON: t e [t,t.4p], ¥ € 0)
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where |x||, = sup(|x(s)| ¢+ s € [ty-h,t]}. But since the right side of this

expression is non-decreasing in t, we obtain

t
“X-X(P“t S{ K( S)dS + 6(P)”X'X(p”t + Eu:\i IF(xwyt)'P(xw’to)l
0 I
or
t0+p
”X_ant < bif K(s)ds + sup IP(XW’t)-P(XW’tO)| = R,
t £,V
0 P

where b = 1/(1-8(p)).

We remark that the sup term is finite since TI' is continuous, ® 1is compact.

For to <1t<t< to+p we therefore have

| x(t)-x(7)] < [D(x(+),t)-D(x(+),T)| + |D(x,t)-I(x,7)]

t
< J K(s)as + |I‘(xq),‘b)-I‘(xcp, )|

t
+ 1] afult,5)-u(x, ) 10x(s) -, ()]
4o
< [ K(s)as + sup{|F(xw,t)-P(xw,T)|: Vv ¢ 9}
T

+ L| t-1|R.

From the continuity of T' and the compactness of @&, it follows that the

elements of C([to-h,tl],X;Q,K) form an equicontinuous family on [to-h,to+p].
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Since the restrictions of these elements to [to-h,to+p] constitute a bounded
subset of jfn[to—h,to+p], use of the Arzela-Ascoli theorem here, followed

by repetition of the above arguments on [t0+p,to+2p], [to+2p,to+5p],... (for
a finite number of steps), leads to the conclusion that C([to-h,tl],X;Q,K)

is a conditionally compact subset of ifn[to-h,tl]. Using the compactness

of X,® and the continuity of D, it is not difficult to argue that

C([to-h,tl],X;Q,K) is a closed, hence compact, subset of ifn[to-h,tl].
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Section 4, Existence, Regularity and Bang-Bang Results.

We shall consider first systems that are linear in the state, i.e.,
system (3.3) with g(t) = k(u(t),t). We shall approach the questions of
existence, smoothness of controls and bang-bang properties by considering
attainable sets in ,ifn[-h,o]. We assume

1

(4.1) the mapping ks Rm X R —9Rn is continuous, the set U'CIRm is com-

pact, and k(U,t) = {k(u,t)]u € U} is convex for each t.

Define the family & by F= (f: F [t F,t,] X [t,,t;] 2R 1(x(+),t) =

t
[ ag(t,s)x(s) + k(u(t),t), u e %} where % is the class of admissible

0
controls as defined in Section 2. We are thus considering

S D(x(+),1) = f(x(+),8) t e [t,t,]
(402)

for (9,f) € ® x F We assume of course throughout that p,n  satisfy
conditions (3.1), (3.2), (3.4). Recalling that ||y||JC = sup{|y(s)| : s ¢

[to-h,t]} we then have

Lemma 4,1. In addition to the above hypotheses, assume & is a bounded
n :

subset of % [-h,0]. Then there is an M >0 such that | x(op, Bil, <M

for t e [to,tl]; (p,f) ¢ ® x &, where x(9,f) denotes the solution to

(4.2) for (9,f) ¢ & x Z.
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Proof: It is easy to see that there is a constant d and an Ll function
m such that |f(x(+),t)] _<_§1'(t)[|lxllt+3] for every | e S Letting

x = x(9o,f), (9,f) ¢ ® xS we have

t
x(t) = x(t,) + [ dp(t,s)x(s)
t
0
t t
+ [0 a [u(t,s)-nty,s)1x(s) + [ f(x(+),s)ds.
%o %

Choosing p such 0 < §(p) <1 and letting b = 1/(1-8p)), we find for
t

Il < lol + @), + 26, -tpmlel + [ eIl s,
(0]

It follows that

t,
d + l=lly <® g[l+26(tl'to+h)][|¢l+g] + {: m( s) [ ||| S+a']ds
0

and applying Gronwall's inequality, we find that for ¢t ¢ [to,to+p]

t
d + [l < b(1+28(t,-t +n)}{d+|¢| Jexp[b [ m(s)ds].
t

0
Repetition of the above arguments on [t0+p,to+2p],...,[to+(N-l)p,tl]

yields

da + ||x||tl <b {l+26(tl-to+h)] (a4 | Yexp[b [ m(s)as].
t

0
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The result then follows from the fact that & 1is bounded.

Lemma 4.2, Under the assumptions (3.1), (3.2), (3.4), (3.8) and (4.1), @
compact in %n[-h,o] implies o/ = {x(9,f)|(9,f) ¢ ® X F} is an equicon-

tinuous subset of _%”n[to-h,tl].

Proof: From Lemma 4,1 it follows that for any x e ¥, g_{ D(x(-),t) <

E(t)[||x||t+a] < E(t)[Mﬁ] = K(t) on [to,tl] where K ¢ L The same lemma

1
guarantees existence of a compact X C R" such that x(t) e X, t e
[to-h,tl], x ¢ &, Thus & is a subset of C([to-h,tl],x;d?,K) which, by
Lemma 3.3, is a compact subset of fgn[to—h,tl]. The equicontinuity of 7
thus follows from a well-known theorem [15, p. 266].

We define, for each t € [to,tl], the attainable set at time +t

given by
o, (0,F) = (z € £[-0,0]|z = x.(0,f), (9,) € & xF}.

Using the representation results given in Theorem 3.2 for the solutions

x(p,f), we can write
(0, 7) = R(2,0) + R(0,%)

where
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#,(0,0) s%t e £71-5,0]1¥(5) = ¥(b,,9)D(, b))

t

+ 10 agr(s,B)0(B) for s >ty, ¥(5) = 0(s-ty)

to-h

for s € [to-h,to], P cd
and

s
R,(0,%) =]y, € % [-5,0]|3(s) = ch ¥(B,s)k(u(p),p)ap for
6]
s>ty y(s) =0 for s e[t -h,t ], u e?ké.

We note that EZE(Q,O) consists of restrictions of solutions to (3.3) with
g =0 and initial data ¢ € ® while 9@t(0,€k) is the set of restrictions

of solutions to (3.3) with g(t) = k(u(t),t), u ¢ %, and initial data

For fixed t ¢ (t,,t;], let us first consider the set R.(0,%).

We define the set #(%) and the mapping 70, Ll[to,tl] > -h,0] Dby

(%) = (& & L(t,t] () = Ku(s),s), v %)

and

t+6 :
{ ¥(B,t+0)g(p)ap t40 >t

T(g) () = °
0 140 < t
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for 6 € [-h,0], so that %#,(0,%) = 1%(#(%))-

Lemma 4,3, Under the assumptions (L4.1), 52%(0,?%) is a closed subset of

“"1-h,01.

Proof: The ideas in this proof are by now quite familiar to control theorists
[32, p. 18-23; 11, 17, 31]. First, from arguments similar to Filippov's [19],
it follows easily that #(%) is a weakly sequentially closed subset of
Ll[to,tl]. From the hypotheses (4,1) one obtains [15, p. 292] that #(%)
is weakly sequentially compact in Ll[to,tl] and hence by Eberlein-Smulian
[15, p. 430] the weak closure of #(%) is weakly compact. But the weak
closure of #(%) 1is the same as its weak sequential closure [15, p. 43L4].
Hence ¥ (%) is a weakly compact subset of Ll[to,tl].

The map Tt is clearly continuous with respect to the strong
topologies of Ll and .2?“[-h,o], and hence continuous with respect to
the weak topologies on these spaces [15, p. 4221, It follows that Tt(je(ﬁk))

is weakly compact and hence weakly [a fortiori strongly] closed in ¥ n[-h,O].

Remark 4.1, The conditions (4.1) under which Lemma 4.3 obtains can be re-
laxed. Using arguments similar to those of Jacobs [35, p. 416] one can
show that %) is weakly sequentially closed under the assumptions:

t - U(t) defines an upper semicontinuous mapping with range in the collec-
tion of non-empty compact subsets of Rm; k(U(t),t) is convex for each

t e [to,tl]; and u - k(u,t) is continuous for each t, t —»k(u,t) is

measurable and there is an m e L., such that |k(u,t)] < m(t), u e U(t).

1
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The other arguments in the proof of Lemma 4,3 then hold without change. Com-
ments on relaxing the convexity assumptions will be made below.

Under the assumptions of Lemma 4,2, we see that E%EU%Q?) is an
equicontinuous subset of .an[-h,o]. Since it is also bounded, the Arzela-
Ascoli theorem implies that é?t(O,Qk) is conditionally compact. Lemma 4.3
then yields the compactness of 5%%(0,?%).

Next let us consider §@t(¢,0). For & compact in ﬁfn[-h,o],
to show 5@%(@,0) compact in ¢'[-h,0] it suffices to show that the map-
ping o _)yf(Q) is continuous, where Yy is as given in the definition of
£2%(¢,O). Clearly, it is enough to demonstrate that for t > t.+h the map-

6]
ping o —azt(m) € §§n[—h,0] is continuous, where

t

2,(9)(8) = Y(t_,t+6)D(P,t,) + { ?hdsy(t+9,6)¢(6) 6  [-h,0].
0
We have
[24(@)-2 ] S oup 150, 49)][500,)-500, 1)
o
+ sup |[ 0 an(t+6,)(9(p)-¥(p) ]|

6¢[ -h,0] t,-h

* sup Var([t,-h,t,1;7(t+6,-))|o-y| .

From the continuity of D, it suffices to show that the sup terms are finite,

Using the definition of y and the hypotheses (3.1), (3.4) on p,7n, one can



2k

show easily that for 6 € [-h,0]

| t+6"
Var([ty-h,t 1;7(t+46,+)) <M, 1{ la ¥(a,t+6)]
0

t+6
+ [ |¥(a,t+0)| m(@)da.

T

The bounds guaranteed in Theorem 3.1 then imply that the sup terms are in-

deed finite.

Theorem 4.1. Under the assumptions (3.1), (3.2), (3.4), (3.8), and (k.1), ¢
compact in ,E?n[-h,o] implies j&%(@rET) is compact in 2fn[-h,0], t €
[to,tl]. Furthermore, the mapping t - j&%(@,é?) is continuous with respect

to the Hausdorff metric [7].

Proofs The first conclusion of the theorem is evident from the compactness
of 521(@,0) and 5@%(0,5&), The second assertion follows easily from the

fact (Lemma 4.2) that t - x (9,f) is continuous uniformly in (p,f) e @ x .

Remark 4.2. The continuity of t —aJ&i(Q,éV) can be proved for retarded
systems (u = 0) by the usual arguments ([42; p. 70-711, [45; p. llﬁ]) in-
volving the variation of parameters represen£ation (Theorem 3.2). These argu-
ments depend very much on the continuity of t - ¥(o,t). For neutral systemns,
this continuity requirement is not met and hence a direct extension of the
usual arguments is not possible., The compactness arguments can also be

made somewhat more directly for the retarded case by taking advantage of the
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continuity of t - Y(o,t).

The results given in Theorem 4.1 are sufficient to obtain existence
theorems for a wide class of linear-in-the-state prqblems with initial and
terminal manifolds in .an[—h,o]. Since the proofs involve well-known argu-
ments [32, k2, 457, we shall only list a few of these problems here (In each

case it is assumed that ﬁ7b = ¢ 1is compact and J71 is closed.)

(1) The time-optimal problem for hitting a target set .91 C

% "[-h,0], starting from an initial manifold ¥, =®. (In

0
the formulation of Section 2, take £° =1 and tl not fixed.)
(ii) The problem of minimizing P(x_ ) subject to x ¢ _9;,
1 i

i = 0,1, where P: .2?n[-h,0] 5RY is continuous.

t
(iii) Minimization of J = [ l{on(t)+ko(u(t),t)}dt subject to
t

0]

x, € 7., 1i=0,1. (The usual device of augmenting the

t, i’
i
system and then minimizing P(%) = xo(tl) allows a direct

application of Theorem k4,1 here.)

Various generalizations are possible, e.g. allowing the target .91 to de-
pend on time [4, 32, 42, L45], We shall not pursue these matters in this
paper since our main interest concerns problems with J7b,_5§ each consist-
ing of a single point in ¥ '[-h,0].

Kent has shown that fairly general existence results such as those
by Jacobs [35] can be extended to include systems described by certain non-

linear neutral equations. Some of the arguments are tedious and we shall not

present them here, but instead refer the reader to [39]. One type of nonlinear
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existence result which we should mention here is needed for a complete dis-

cussion of Example 6.2 below. Briefly, suppose that in the formulation in
t
Section 2, £ of (2,1) has the form f£(x(*),u(t),t) = [ dsq(t,s)x(s)

to-h

+ B(t)u(t), £2(x(t),u(t),t) = x(t)Qx(t) + u(t)Ru(t) where Q@ >0, R >0
and J76 = {9}, J7i = {¢} where ¢,{ are given in .ifn[-h,o]. Existence

results for this problem follow from standard arguments [42] which we shall

only sketch here. Letting {un} be chosen, u, €%, X, =0, x = ¢, so
t t
1 0 1
1 .
that J(u)) = i x Qx +uRu B = inf{J(u)|u ¢ %, Xto(u) = 9, th(u) = t},
%
1 . . .
one sees that { w Ru ~ is bounded, and hence {un} is bounded in L2[t0’tl]'
0

Choosing a weakly convergent subsequence {un }, it is not hard to argue that

*
the corresponding trajectories {x } satisfy x_ (t) »x (t), t e [t ,t.],
nk nk 0 1

* *
where x is the trajectory corresponding to u , the weak limit of [un ].
k
Use of the weak lower-semi-continuity of u — fuRu along with other well-
R * m * ++
known arguments yields J(u ) <pP. If U=R, then u € %  and the proof
is completed, If U 1is compact convex in an then [15, p. 422] some se-
quence of convex combinations of the u, ~ converges in L2[to’tl] to u*.

k
*
It follows that u (t) € U a.e. and again the proof is concluded.

We turn next to the questions of regularity (smoothness) of con-

trols and bang-bang properties (U 1is taken compact in Rm). Many authors

**In this case we take U as L2[to,tl] and do not insist that u  be

pointwise bounded as required in the formulation of Section 2,
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have investigated these questions for finite and certain types of infinite
dimensional systems. An often considered question [18, 27, 28, 29, 32, L2]
is the followings Given a "stafe" that is attainable from a given initial
"state" employing a measurable control, is it possible to attain the same
"state" using a piecewise continuous bang-bang control? An affirmative
answer to this question has been given by Banks and Jacobs [U4] for some
classes of retarded systems when the attainable "states" are taken in R".
The methods used are extensions of ideas due‘to Halkin and Hendricks

[27, 28, 29]. The results in [4] can be extended to include certain types
of neutral systems (for example, (2.3) above when A, B, C are analytic).
However, our interest here is in attainable "states" in jfn[-h,o]. Since
it is known that there is no infinite dimensional analogue of the

Liapunov theorem which is the basis of the above arguments [27, 28, 29],
we face considerable difficulties., In fact, in light of known results for
linear ODE systems [ see 32, p, 1l1l1] concerning bang-bang results for tra-
jectories (attainable "states" in jfn[—h,o] correspond to terminal seg-
ments of trajectories: x(s), s € [tl-h,tl]) one might suspect that the best
that can be obtained is a density theorem. But what if one is willing to
make assumptions on the FDE (such as A or C non-singular in (2.3) or
(2.4)) so that ODE's are not special cases of the FDE? The authors did
this for retarded systems, using the methods of Hale [23] involving a
finite dimensional projection argument (for which the Liapunov type re-
sults are valid). Certain results on eigenfunction expansions of solu-

tions to FDE's [6] were also needed since a limiting process in a space
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of closed subsets of ifn[-h,o] was employed. This lead only to the den-
sity theorem one would certainly expect to be true. The following examples

demonstrate the futility of our efforts.

Example 4,1. Consider the retarded system
k(t) = x(t-1) + u(t) t e [0,3]

with U = {v ¢ R’ |v] <1} and ¢(t) = % (3-t), t € [2,3]. It is not hard
to show that ¢ can be attained by a measurable control u with u(t) € U,
starting from the initial function @(t) = -t, t € [-1,0]. But ¢ is not

attainable with a bang-bang control from any initial ¢. Suppose it were,

with the bang-bang control denoted by uo. Since x(t) = - % for t € [2,3]
and |u®(t)] = 1, we see from the equation that |--% - x(t-1)] =1 or

x(t-1) = %; t € [2,3]. This impl