
NASA  TECHNICAL  NOTE 

LOAN COPY: RETUKZi 
AFWL (DOqL) zi- 

KiRTLAND AFB, N % E  w n  F 
-m 

COMPARISON OF A DISCRETE 
STEEPEST ASCENT METHOD WITH 
THE CONTINUOUS STEEPEST ASCENT 
METHOD FOR  OPTIMAL PROGRAMING 

by A. Gary Childs 

Langley  Research Cmter 
Hampton, Vu. 23365 

NATIONAL  AERONAUTICS  AND  SPACE  ADMINISTRATION WASHINGTON, D. C. DECEMBER 1971 



1.  Report  No. 
NASA TN  D -6  549 

4. Title and  Subtitle 

COMPARISON OF A DISCRETE,  STEEPEST ASCENT METHOD 
WITH THE CONTINUOUS STEEPEST ASCENT METHOD FOR 
OPTIMAL PROGRAMING 

7. Author(s) 

A. Gary  Childs 

9. Performing  Organization  Name  and  Address 

NASA Langley  Research  Center 
Hampton, Va. 23365 

5. Report  Date 

December 1971 
6. Performing  Organization  Code 

8.  Performing  Organization  Report NO. 

I L-7949 
I 10. Work Unit No. 

135-23-01-03 
11.  Contract  or  Grant  No. 
-~ 

2. Sponsoring  Agency  Name  and  Address 

National  Aeronautics  and  Space  Administration 
Washington, D.C. 20546 

5.  Supplementary  Notes 

13. Type of Report and  Period  Covered . 
Technical  Note 

14. Sponsoring  Agency Code 

6. Abstract 

A discrete  steepest  ascent  method  which  allows  controls which are not  piecewise  con- 
stant  (for  example, it allows all continuous  piecewise  linear  controls) is derived  for  the 
solution of optimal  programing  problems.  This  method is based on the  continuous  steepest 
ascent  method of Bryson  and  Denham  and new concepts  introduced by Kelley  and Denham 
in  their  development of "compatible"  adjoints for taking  into  account  the effects of numer- 
ical  integration.  The  method is a generalization of the  algorithm  suggested by  Canon, 
Cullum,  and  Polak  with  the  details of the  gradient  computation  given.  The  discrete  method 
is compared  with  the  continuous  method for an aerodynamics  problem for which an  analytic 
solution is given  by  Pontryagin's  maximum  principle,  and  numerical  results are presented. 
The discrete method  converges  more  rapidly  than  the  continuous  method at first, but  then 
for  some  undetermined  reason,  loses its exponential  convergence rate. A  comparison is 
also  made  for  the  algorithm of Canon,  Cullum,  and  Polak  using  piecewise  constant  controls. 
This  algorithm is very  competitive  with  the  continuous  algorithm. 

17. Key-Words  (Suggested by Authoris) I 
Optimal  control 
Discrete  optimization 
Steepest  ascent 

18.  Distribution  Statement 

Unclassified - Unlimited 

I 
19. Security  Classif. (of this report) 20. Security  Classif. (of this page) 

~~ 

21. NO. of Pages 22. Price* 

Unclassified $3.00 40 Unclassified 
- .. "~ " . 

For sale by the  National Technical Information Service,  Springfield, Virginia 22151 



COMPARISON OF A DISCRETE STEEPEST ASCENT  METHOD 

WITH  THE  CONTINUOUS STEEPEST ASCENT  METHOD 

FOR  OPTIMAL PROGRAMING 

By A. Gary  Childs 
Langley  Research  Center 

SUMMARY 

A discrete  steepest  ascent method which allows  controls which are not piecewise 
constant  (for  example, it allows all continuous piecewise  linear  controls) is derived  for 
the  solution of optimal  programing  problems.  This method is based on the continuous 
steepest  ascent method of Bryson and Denham and new concepts  introduced by Kelley and 
Denham  in their  development of "compatible" adjoints  for taking  into  account the  effects 
of numerical  integration. The  method is a generalization of the algorithm  suggested by 
Canon, Cullum, and Polak with the details of the  gradient computation given. The discrete 
method is compared with the  continuous  method for  an  aerodynamics  problem  for which 
an  analytic soltition is given by Pontryagin's  maximum  principle,  and  numerical  results 
are presented.  The  discrete method converges  more  rapidly  than  the continuous  method 
at first, but then for  some  undetermined  reason,  loses its exponential convergence  rate. 
A  comparison is also made for the  algorithm of Canon, Cullum, and Polak  using  piece- 
wise constant  controls.  This  algorithm is very  competitive with the  continuous  algorithm. 

INTRODUCTION 

One of the  simplest and most  direct  algorithms  for  the  solution of optimal  programing 
problems is the  steepest  ascent  algorithm of Bryson and Denham. (See ref. 1.) This 
method, being a first-order method, suffers from poor terminal convergence. Kelley and 
Denham  (ref. 2) claim  convergence  can  be  improved  for a conjugate gradient  algorithm by 
use of "compatible" adjoints. These  adjoints satisfy adjoint difference  equations  for  the 
numerical  integration  difference  equations  associated with the  differential  constraints  and 
represent  an  attempt  to  take into  account numerical  calculations  in  the  algorithm. In this 
paper,  what is called Ira discrete  steepest  ascent"  algorithm is derived;  this  algorithm is 
based on the  numerical  integration  difference  equations and a reformulation of the  optimal 
programing  problem as a discrete  problem.  This  algorithm is a generalization of the 
algorithm given by  Canon, Cullum, and Polak  in  reference 3. The new algorithm is then 
compared with the  Bryson-Denham  algorithm  for  an  aerodynamics  problem  for which 



an  analytic  solution is determined by Pontryagin's  maximum  principle. (See r.ef. 4.) 
Numerical  results  comparing  the  convergence rates of the two methods are presented 
in  graphical  form. Also, the  algorithm of Canon, Cullum, and Pol& is compared with 
the continuous algorithm  for  piecewise  constant  controls.  Numerical  results  comparing 
convergence rates are presented. 

SYMBOLS 

Measurements and calculations were made  in U.S. Customary Units. They are 
presented  herein  in  the  International  System of Units (SI). 

CD drag coefficient 

cDcL2 induced drag coefficient 

cD, o zero-lift  drag coefficient 

CL lift coefficient 

cLa lift  -curve  slope 

D  drag, newtons 

da,dc$,dq defined by equations (7) 

N* 
(dP)2 = 1 6$wi6ui 

i=O 

s function of xi,q,ui+l, ti,ti+l equal to 

f function of x(t), u(t), and t equal  to  k(t) 

fx = - af 
ax 
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defined by equations  (Cl) or (C2) 

aFi 
aui Gi = - 

gravity  acceleration  constant, 9.7759 meters/second 2 

Pontryagin  pseudo-Hamiltonian 

h numerical  integration  step  size 

I identity  matrix 

14+,1@@+@ defined by equations (13) 

i index used  for  difference  equations, Axi = %ri 

J performance  index  for  sample  problem 

KD, 1 9  KD, 2 9  KL defined by equations  (Bl) 

L 

m 

N 

P()’P1,P2 

S 

T 

t 

tf 

lift, newtons 

mass,  kilograms 

maximum value of i 

Pontryagin  adjoints 

aerodynamic surface area,  meters 2 

thrust,  newtons 

time or independent  variable,  seconds 

final  time,  seconds 
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t0 initial  time,  seconds 

U control  vector or horizontal  velocity,  meters/second 

uO initial  control at initial  increment 

UN final  control at f ina l  increment 

1/2 V = ("2 + v2) , meters/second 

V vertical velocity,  meters/second 

W weight, newtons 

Wi  weighting matrix  (symmetric) 

X state vector 

xO initial state 

a! = 8 - y, radians 

Y flight-path  angle,  radians 

0 control  angle,  radians 

X i  difference-equation  adjoint  vector 

difference-equation  adjoints  associated with s2, 4, and + 

4 p , i h + , g p i  defined by equations (9) 

P, v Lagrange  multipliers 

P air density,  kilograms/meter3 

4 performance  index  for  development of algorithm 
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IC/ constraint  vector function 

a stopping  condition  function 

Operations: 

(* 1 derivative of ( ) with respect  to t 

d( 1 differential of ( ) with respect to 

( )-l  matrix  inverse 

- a[ l  
a( ) 

partial  derivative of [] with respect  to ( ) 

( IT matrix-vector  transpose 

A symbol with an asterisk denotes a nominal  variable; a symbol without an asterisk 
denotes a general  or  arbitrary  variable. 

ANALYSIS 

The  Optimal  Programing  Problem 

Let the following problem be considered.  Maximize 

subject  to 

;r = f(x,qt) (to 5 t s tf) 
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and 

with tf determined by 

and to and x. as given  constants.  For this problem, @ is a scalar function called 
the  cost function, SZ is a scalar function called the stopping condition, x is a vector 
function called the state, u is a vector function called the  control, and is a vector 
function  called the terminal  constraint.  The  dimensions of the vector  functions are, in 
general,  different.  The  optimal  programing  problem  in this form is discussed  in refer- 
ence 1 along with the continuous steepest  ascent method for solving it. 

The  theory of reference 1 requires  (strictly speaking) that all functions be known 
exactly. However, for the solution of the foregoing  problem, one frequently  uses  numer- 
ical integrations  for  obtaining the state. Hence, an  algorithm is required which recog- 
nizes the use of difference  equations  for  the state, that is, a discrete algorithm. A dis- 
crete method is developed  in an  analogous  fashion to  the  development of the continuous 
method. A reformulation of the problem  taking  into  account  some of the before-mentioned 
realities of computer  calculations is made.  Maximize 

subject  to 

with tN  determined by 

and to and x. as given  constants.  For this problem, @, S2, xi,. ui, and are 
scalars or  vectors as in the continuous formulation of the problem.  In  addition, it is 
specified that 

ti+l - ti = h (i = 0, . . ., N - 2) 
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where h is a constant. Also, 

Hence, the ti are the  time  points of the  numerical  integration of the  continuous state 
equations  (represented by eq. (1)) with t N  = tf. 

Formulation of Discrete Method 

Let q* (i = 0, . . ., N*) be a nominal  control. Let x: (i = 0, . . ., N*) be  the 
nominal state resulting from this control. Suppose a new control  ui (i = 0, . . ., N*) is 
given  which yields a new state xi (i = 0, . . ., N*). Then 

(i = 0, . . ., N*) 

Expanding equations (1) about the  nominal  control and state and  truncating  to  the  linear 
terms yield 

A(6xi) = 6xi+l - 6xi = Fi6xi + Gi6ui + HiGui+l (i = 0, . . ., N* - 1) (2) 

where 

The  adjoint  equations for equations (2) are obtained from 

(i = 0, . . ., N* - 1) 
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Then defining the X i  terms  to be the  compatible  adjoints of reference 2 for  the  partic- 
ular type of numerical  integration  used  in  equations  (l), 

A(Ai) = X i + l  - X i  = -Fi T X i + l  (i = 0, . . ., N* - 1) 

and  substituting  equations (4) into  equations (3) gives 

A(Ay6xi) = XLl(Gi6ui + q b q + l )  

Summing  equations (5) from i P 0 to N* yields 

N*- 1 

Linear  approximations  for  changes of @, q, and 0 are 
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where 4 is the  final  time  associated with the control ui (i = 0, . . ., N*) and is deter- 
mined by use of the stopping  condition 51. E 51 is not zero by the  time t;, the new 
control  must be extrapolated  in  some way and  the  numerical  integration of the state con- 
tinued  until a zero of 51 is found. Note that a reversion  to the continuous system 
(i = f(x,u, t)) is used  to  obtain  an  approximation  for x($) - XN*. 

Let 

and using  equation (6), equations (7) become 

N*-1 

7 1 
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Setting d n  = 0 gives a formula  for 4 - tN* which modifies  equations (8) to 

J 

where 

It is desired  to  maximize 

N* 

+ (X;n,i - v T T  Xqn,i)Hi-l - 6ui + v T d@ + p(dP)2 

With respect  to 6ui (i = 0, . . ., N*) where 6xo, d+, and the step size 

(where Wi is a symmetric m X m  matrix) are assumed  to be specified and v and p 

are Lagrange  multipliers. Also, GN* and H-1 are  defined to be zero  matrices in  con- 
structing a form  for  d@ which  will be easier  to  maximize.  Taking  the  differential  yields 
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This  relation is zero for all values of d(6ui) (i = 0, . . ., N*) if 

Substituting  these  control  increments  into  the  equations for d+  and  (dP)2  gives 
values for v and 1.1. By use of these values,  the 6Ui  (i = 0, . . ., N*) are completely 
specified.  This  process is carried out in appendix A. The result is 

where 

The  change of @ caused by this  control change is (by use of eq. (4)) 

d@ = x ~ a , 0 6 ~ o  T + 1 ~ $ ~ , ~ k '  + Fi)-ki + q - 4 6 ~ ~  
i=O 



The  Sample  Problem 

A problem was chosen  for  the  comparison of the  usual  steepest  ascent method  with 
the  discrete  steepest  ascent method.  The f i n a l  vertical velocity of an  airplane with aero- 
dynamic parameters  similar to  those of the X-15 was  to  be  maximized.  The  airplane 
was  flying in a vertical  plane,  that is, it was constrained  to  two-dimensional motion. It 
had no initial horizontal  velocity  and  some  positive  vertical  velocity.  The  airplane was 
considered  to be a point mass. The  coordinate  system  and  force  diagram  used  for  the 
problem a re  shown in  figure 1. The  equations of motion a re  

mh = T cos 8 - ‘ D  cos y - L sin y 

mir = T sin 8 - W - D sin y + L cos y 

where  T is the  (constant)  thrust, W = mg is the  weight,  D is the  drag, L is the 
lift,  m is the  mass, g is the  earth’s  gravitational  acceleration  constant,  u is the 
horizontal  speed,  v is the  vertical  speed, e is the  control  angle, and . y is the  flight- 
path angle.  The  formulas  used  for  the lift and drag  are 

pv2s L = C L -  
2 

D=CD-   pv2s  
2 

where 

c D = c D , o + c D ~  2 c2 L, CY2 
L 

and  p is the air density  (constant), V = (u2 + ~ 2 ) ~ ’ ~  is the  speed, S is the wing sur- 
face area, and C L, 7 ‘D,o, and cD are  constant  coefficients  determined by the air- 

plane  configuration.  The  values of constants  used  in  the  computer study are  as follows: 

T,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250000 
m , k g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15000 
g,  m/sec2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.7759 

CL2 

CL, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.61 
CD, o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.055 
CDcL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.398 

p, kg/m3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.41351 
s , m 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

12 



The  problem, then, was  to  maximize v(tf) - v(to) where tf was given and u(to) 
was  zero, .eo) = vo > 0. This  problem  was  solved  analytically by using  Pontryagin's 
maximum  principle. (See ref. 4.) The  solution  was  to  fly with 8 constantly  equal 
to 900. This solution is derived  in appendix B. The  problem  was  programed  for  solution 
by both the  usual steepest ascent method and the  discrete steepest ascent method. Fourth- 
order Runge-Kutta integration  was  used (ref. 5), and  appendix  C gives  the  relationship 
between  the  adjoints of the two methods. Linear  interpolation  was  used  to obtain inter- 
mediate  values of the control. A comparison of the results from the two methods obtained 
by the  computer is given in  the next section. 

RESULTS AND DISCUSSION 

Computer  solutions of the  problem  were  programed  for both steepest  ascent  algo- 
rithms.  The  discrete  algorithm  compared  very unfavorably with the continuous  algorithm. 
The discrete algorithm gave corrections  for 8, and ON* which are only about half as 
much as the corrections given by the continuous  algorithm. Recall  that H-1 and %* 
in equation (12) are zero  matrices. Hence, there are only half as many terms  in  the  com- 
putation for 6uo and 6uN* as for the other 6ui (i = 1, . . ., N* - 1). As can be seen 
in reference 1, for  the continuous algorithm, the equation corresponding  to equation (12) 
has an  equal  number of terms  for the calculation of all 6u(t) (to 5 t d tf*). If one traces 
back both from equation (12) and the corresponding equation  in reference 1, one discovers 
that the  difference  just noted in these equations  appears first in  the  state equations. In 
this paper, the equations are 

(i = 0, . . ., N* - 1) 

In reference 1, the  equations are 

k = f(x,qt) (to 5 t I tf) 

The  difference arises because both 9 and 9+1 appear  in  the first set of equations. 
Thus, in  summing to  get xN3  the ui (i = 1, . . ., N* - 1) appear  twice as often as uo 
and uN*. For  the continuous equations of motion, every u(t) (to 5 t 5 4) has equal  influ- 
ence  in  determining x@). Since the first set of equations represents a numerical  inte- 
gration  process  for  the  second set, the  difficulty appears in the attempted discrete 
modeling of a continuous  model for  the  dynamics of the  problem.  The  most obvious solu- 
tion  for  such a difficulty is to find directly a discrete model for  the  dynamics of the  prob- 
lem.  This  model would be a set of difference  equations of the  form 
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that is, equations (1) where it is assumed  that y+l and ti+l do not appear. 

This  form of the  difference  equations for the state is essentially  the  same as that 
used in reference 3. It can be achieved by requiring  the  control of the  sample  problem  to 
be constant  over  the  numerical  integration  intervals. In general, however, there might 
exist "wild" piecewise  constant  controls (that is, where the control would have, at some 
interval end points, large jump  discontinuities) which, although  optimal, would be imprac- 
tical  to  implement. Also, even though such  controls, as optimal  controls, might not occur, 
the  possibility exists that such  controls would be encountered  in the iterations of the algo- 
rithm and could precipitate  divergence.  Putting  ui+l and ti+l in  the  difference  equa- 
tions  allows continuity restrictions  to be used to  keep  the  control  reasonable.  The  fore- 
going should be considered  an  argument  justifying  the study of the algorithm of this paper' 
rather than as a criticism of the  effectiveness of the algorithm of reference 3. Indeed, 
results presented  for  this  algorithm  in  figure 2 reveal  that it is very  competitive with .. 

the continuous algorithm  for  this  problem  where the restriction  has  been made for both 
methods  that 8 be piecewise constant. Appendix D gives the derivation of the  equations 
used  in  this study which was suggested by Terry A. Straeter of the  Langley  Research 
Center. 

To attempt  an  alleviation of the before-mentioned difficulty, an  empirical  device 
was employed. The corrections 6uo and ~ U N *  were doubled. It was hoped that this 
doubling would give 6uo and ~ U N *  an  almost equal  influence with the other 6ui terms. 
For the sample  problem, 6 8, and 6 8 ~ *  would be doubled and would be about right. 

This  procedure helped, but performance of the discrete  algorithm still was not as 
good as that of the continuous  algorithm. Further computer  experience  revealed that the 
68i terms  (i = 0, . . ., N*) were  larger  for the discrete  algorithm  than  for  the continuous 
algorithm.  The  formula  for  these  corrections  for  the  sample  problem is 

- ,  

Observe  that  an  increase  in IC@ would make these  quantities  smaller. On the basis of 
the  problems with 6e0 and SON*, examination of the  equation for I$,@ of equations (13) 
revealed  that there are only half as many terms  for i = 0 and i = N* ' as there are for 
the other  values of i. Therefore, the i = 0 and i = N* terms were doubled. After 
these two changes, the performance of the discrete  algorithm modified in this fashion 
during the first few iterations,  was better than  that of the continuous  algorithm. 

14 



Figures 3 to 9 give  the results of a comparison of the two algorithms as they are 
presently  formulated.  Each case was  run  for 25 iterations.  Points are omitted  for iter- 
ations  where  the  automatic  convergence  scheme rejected a forward  trajectory which  did 
not give as good a performance index as the  trajectory of the  previous  iteration. 

For  figure 3, the f ina l  time was 10 seconds,  the  computation  interval  was 0.5 sec- 
ond, and the  nominal  control  was 8 P 70°. The  computation interval of 0.5 second  pro- 
duces  terms twice as large  for  the discrete (dP)2 as would appear  in  an  approximation 
for  the continuous  (dP)2; that is, 

N* 
Discrete: (dP)2 4 1 68: 

i=O 

N*- 1 

Hence, the initial  (dP)2  for  the  discrete  algorithm was  chosen  to be twice the value of 
the  initial (dP)2 for the continuous algorithm  to allow an  equal  amount of control  change 
for both algorithms. 

For a fixed-final-time  fixed-initial-condition  problem, 

Therefore,  an I+@ for the discrete  algorithm  equal  to half the  value of the I$+ for 
the  continuous algorithm will give just as much change for $. Hence, the  ordinates  for 
figure 3 are I@+ for the continuous  method and 2 1 ~ 4  for the discrete method. Sim- 
ilar adjustments  were  made  for  the results shown in figures 4 to 9. 

The case of figure 3 was  considered as the base problem.  Figures 4 to 9 show 
results of perturbations  from this case.  These  cases  were  run  to  determine  whether any 
changes of certain  parameters would improve the performance of the discrete algorithm 
relative  to  the continuous  algorithm. In figures 4 and 5 results are presented  for  per- 
turbations  in  the  computation  interval  to 1 second and 5  seconds,  respectively. In fig- 
ures 6 and 7 results are given for  perturbations  from  the base problem  nominal  control 
to 8 P 800 and 8 = 600, respectively.  The  values of initial  (dP)2  for  these two cases 
were  chosen  to give less and more  control  effort  to  effect  convergence  in about 25 itera- 
tions.  Figures 8 and 9 give results for  final  times of 20 seconds and 30 seconds, respec- 
tively. For both cases the computation interval  was 5  seconds. This calculation  was  an 
- attempt  to  determine  the effect of large  errors  in the  numerical  integration. 

- . . . .. - 
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Both methods  converge  for the base problem. As shown in figure 3, the discrete 
method converges faster than the continuous  method  until it loses its exponential  con- 
vergence rate for  some unknown reason.  The loss of convergence rate is seen as a 
"flattening out" on the semi-log plot. This  behavior is typical of the discrete method 
and is seen  in the other  figures  where the discrete method  converges. No good hypothe- 
sis has been  formulated  to explain the behavior. It is noted, however, that  the discrete 
method stops  working in each case after about the  same  number of iterations. An exami- 
nation of the  computer output reveals that the  control  after this number of iterations is 
11rough;71 that is, the values of the 8i are scattered on both sides of the theoretically 
optimal 90'. For the continuous method, the  control is kept relatively  llsmoothll in the 
same  sense. Hence, the reason  for  the loss of convergence of the discrete  algorithm  may 
be involved with some  implicit  constraints which the continuous algorithm  exerts on the 
control  to  keep it smooth. This  reasoning leads one to think about the possibility of some 
uniqueness  problem  for the discrete  algorithm  (caused by the lack of the  implicit con- 
straints),  especially  since such problems are commonly  encountered in dealing with dis- 
crete  models  for continuous systems. Another possible explanation for the  flattening out 
is that it is due to the modifications of the discrete  algorithm  described  in the first part 
of the  section  "Results and Discussion;" that is, a switch  back  to the original  algorithm 
when the  flattening out begins may improve  convergence. Unfortunately, time  limitations 
prevented a study of this possibility. 

Comparison of figures 3 to 5 reveals the effect of a change  in  the  computation inter- 
val. Both methods  converge  more slowly for a larger computation interval.  The  discrete 
method is notably more  sensitive  to a degrading of numerical  accuracy  in the integration, 
particularly in the flat  section. A possible  reason  for  this  greater  sensitivity is that as 
the final  time  remains the same and the  computation interval  increases,  the number of 
integration  points  becomes less. Hence, the  problems  mentioned earlier with respect  to 
6 8, and 6 0 ~ *  have a greater influence on results. The  computation interval of 5 sec- 
onds, yielding only three  integration points, affected the discrete algorithm so adversely 
that  it diverged. 

Comparison of figures 3, 6, and 7 demonstrates  an  interesting phenomenon. The 
flat part of the discrete algorithm plot occurs at different  levels for different  choices of 
the nominal  control. It is especially  surprising that the convergence  %ettles out" for a 
60° nominal at a lower value of the  gradient  than for a 70° nominal. The convergence 
rates with this exception are about the same  for  different  nominal  controls;  that is, the 
average  slope of a curve connecting the  points would be about the same  for the three plots. 

The discrete method diverged  for  figure 8. The  continuous  method was converging 
very slowly for  the  case of figure 8, as is indicated by the  presence of points for up to 
24 iterations. Both methods  diverged  in figure 9. The erratic behavior of the  points 

16 



represents  an  inaccurate  calculation of the  gradient and explains  the  poor  convergence 
rate. The state integration up to 10 seconds is accurate to three significant figures for 
the  case of figure 8. The same would, of course,  be  true  for  the  case of figure 9 since 
the  computation  interval is the  same as that  for figure 8. However, the  error  over  the 
30 seconds of figure 9 would be  greater  than  the  error  over  the 20 seconds of figure 8. 
Therefore,  the state integration e r ro r  probably  contributed  substantially  to  the  divergence 
in these  cases. 

CONCLUDING REMARKS 

A discrete  steepest  ascent  algorithm which takes into  account  numerical  integration 
of the  differential  constraints  and  allows  controls which are not piecewise  constant  has 
been  formulated  for  the  solution of optimal  programing  problems.  The  algorithm was 
compared  with  the  continuous  steepest  ascent  algorithm of Bryson  and Denham for  an  aero- 
dynamic  problem  for which an  analytic  solution had  been  obtained by using  Pontryagin's 
maximum principle. For this  problem  the  discrete  algorithm  converged  somewhat faster 
initially but eventually  slowed its convergence rate greatly.  Basic  difficulties with the 
discrete method which caused  this  condition are described.  The  prime and seemingly 
unavoidable  difficulty is that  the  method of this  paper  uses a discrete model for a problem 
stated  in  terms of a continuous  model. For physical  problems  formulated by use of such 
a continuous  model,  the method would apparently  be of limited  usefulness. However, if 
the  problem is stated  in  terms of a discrete model  (that is, using  piecewise  constant  con- 
trols),  the  algorithm of Canon, Cullum,  and  Polak, of which the  algorithm of this  paper is 
a generalization, is very  competitive with the  continuous  algorithm. 

Langley  Research  Center, 
National Aeronautics and Space Administration, 

Hampton, Va., October 13, 1971. 
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APPENDIX A 

DERTVATION OF EQUATIONS FOR CONSTANT 

LAGRANGE MULTIPLIERS 

In this appendix formulas are determined  for  the  Lagrange  multipliers, v and p 
introduced  in  the  section “Analysis.” The  control  corrections 6ui are then  given by 
using  these  formulas. Using equations (9) and (11) for d+  and 6ui (i = 0,. . .,N*) 
yields 

where (by using  eqs. (4)) 

N* 

Solving for v from equation (Al) yields 

v = I&$ - 21.1. dP) 
where 
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APPENDIX A - Continued 

Using equations (10) and (11) for (dP)2 and 6 9  (i = 0, . . ., N*) and  equation (A2) 

N* r- I- 

where (by using eqs. (4)) 

N* 

Solving for 2p  from equation (A3) yields 

where the positive  sign  has  been  chosen  to  make d@ positive. 
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APPENDIX A - Concluded 

By using  equations (ll), (A2),  and (A4), the  control change equations are given by 

(i = 0, . . ., N*) 

20 
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APPENDIX B 

ANALYTICAL  SOLUTION  DERIVED BY USE 

OF PONTRYAGIN'S PRINCIPLE 

Pontryagin's maximum principle  (ref. 4) 
earlier. It is established  that  the  control 8 = 
optimality . Let 
. .  

From  .figure  1, it is clear  that 

cos y = V 

sin ,=x 
V 

is applied  to  the  same  problem  introduced 
90° satisfies a necessary condition for 

(0 s y 5 n) 

where Q! is the  angle of attack of the  airplane. By using  equations (Bl) and (B2),  the 
equations of motion can  be  rewritten as 

mG = T cos 8 - [i..,1 + KD,~CJ!~)U 

m t  = T sin 0 - mg - c(...l + KD,z 

It is desired  to  minimize 
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APPENDIX B - Continued 

The Pontryagin pseudo-Hamiltonian is 

H & po(-6) + plh + p2t = p2 ipo sin 8 - mg - [(%,I + %,2a!2)v - KLcYu (u2 + v2) J 

where 

(KD,1  KD,2CY2) - KL u 1 ( ~ 2  + V2)lI2 - [ (KD,~ + K D , ~ " ~ ) ,  

- KLCYU V ( U ~  + v') 1 
By using the  equation for a! from equations (B2), 

aa! uv - = - -  
av @v2 
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APPENDIX B - Concluded 

One has also 

Po * -1 

From  reference 4, in order  to  minimize J with respect  to 0 ,  H must  be  maxi- 
mized with respect  to 8.  Therefore, 

The  claim is made  that 8 = 31. t 5 t 5 'f) will be a solution. By putting e = i 2 ( 0 -  
into  the  equation  for ir of equations  (B3), it is seen  that u = 0 (to 5 t 2 tf) satisfies the 
equation. This  result is in  agreement with the  boundary  condition  u(to) = 0. From  the 
equation for a! from  equations (B2), a! = 0 (to 5 t 5 'f). By putting 8. = and  u = 0 
into  the  equation  for fi, of equations  (B4), p1 = 0 (to 5 t 5 tf) is seen to be a solution 

which also satisfies pl(Q) = 0 .  With 8 = 5, u = 0, and p1 = 0, it is seen  that 

- = O ( t o  aH z t  z . ae 'r) 
The  second  partial is 

than zero  for to d t 5 tf if p2 + 1 > 0, and -T - 2% 2viv2 will be less than  zero 
for  to 6 t 5 tf. These two conditions  can be shown to hold if it is further  assumed 
'that T > mg + K D , ~ v ~  and that v is continuous.  Thus,  under  these  conditions, 
6 F (to S. t St$) satisfies a sufficient condition for a local maximum of H and 

- .  

~ thereby -. . satisfies a necessary  condition  for  optimality. 
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APPENDM C 

DERIVATION OF COMPATIBLE ADJOINTS  FOR  FOURTH-ORDER 

RUNGE-KUTTA  INTEGRATION 

In this appendix the  adjoints  for both the  continuous  method  and  the discrete method 
for  fourth-order  Runge-Kutta  integration are developed. Relationships  between  the two 
methods are discussed.  For both methods x* is given by Runge-Kutta integration of 
the  equation 

K* = f(X*,U*,t) 

with initial condition x*(to) = x. and the  interval to 5 t S t; is partitioned as in the 
section  77Analysis.'7 

The  adjoints  for  the  usual  steepest  ascent  method are generated by 

i = -fx T * *  (x ,u ,t)X 

with the terminal condition X(tf) for 4 and @ the same as for the discrete method. 
For any i = 0, 1, . . . , N* - 2, by using  backwards Runge-Kutta fourth-order  integration, 

= (I + h E  fsf(4) + - 1 T  fx (3) + - 1 T  fx (2) + $ fZ(1g + h2E  fz(3)  fz(4)  + - 1 T  fx (2) fx T (3) 
3  3 6 
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APPENDIX C - Continued 

where 

The same equation  holds for i = N* - 1, except  h is replaced by t; - Lo + (N* - 1)d. 
The  adjoints  for  the discrete steepest  ascent method are generated by 

or  

where 

and 

as give 

(i = 0, . . ., N* - 1) 

!n by the  forward Runge-Kutta fourth-order  integration. By using  the  formulas for 
the  numerical  integration with i = 0, 1, . . ., N* - 2, 
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APPENDM C - Continued 

Using this  equation  yields 

where 

This  procedure  gives 

The same equation  holds for i = N* - 1, except  h is replaced by tf - Eo + (N* - l)g. * 
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APPENDIX C - Concluded 

Therefore,  the only difference  between the two methods with respect  to  the  adjoints 
is that <+1 is replaced by 

Since x ti+l - - must be approximated  from x;’ and  the  approximations 

might as well  be  chosen  to  make fx(2) and $(3) the same  for both methods. 
*( 3 

It has  been noted that  the  replacement  for xF+i is an  approximation  for <+1 

used  in the  forward  Runge-Kutta  integration.  Likewise,  the two approximations  (used in 

fx(2) and fx(3)) for x* (tiel - i) are used  in  the  forward  integration.  Thus,  one sees 

how the  backward  integration is being made  compatible with the  forward  integration. 

27 
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APPENDIX D 

COMPATIBLE  ADJOINTS FOR PIECEWISE CONSTANT  CONTROLS 

In this appendix, the  discrete  algorithm is simplified  for  the  sample  problem by the 
assumption of piecewise  constant  controls.  The  form for the  difference  equations  repre- 
senting  the state can,  in  this  case, be reduced  to 

X i + l  - xi = f - X',U1 1( 1 9 (i = 0, . . ., N* - 1) (Dl) 

which is the  form  discussed at length in reference 3. All changes  in  the  discrete method 
arise from  the  fact  that Hi is now zero. 

Hence,  equation (2) becomes 

A(6xi) % Fi6Xi + Gi6Ui (i = 0, . . ., N* - 1) 

where 

(i = 0, . . ., N* - 1) 

Equation (3) becomes 

Equation (4) remains  the  same;  that is, the  compatible  adjoints of reference 2 are  still 
used. Equation (5) becomes 

For the  sample  problem 6xo is zero;  therefore,  equation (6) is 

N*-1 
T 

%*6XN * 
i=O 

For the  sample  problem tf is fixed;  thus,  equations (7) a re  
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APPENDIX D - Continued. 

where  d@ and dSt are omitted  since  there are no constraints and no stopping  condition. 
Equation (8) becomes 

N*- 1 

It is desired  to  maximize  d+  subject  to 

This  procedure is the  same as maximizing 

and  then  solving  for  the 1.1 which will  satisfy equation (D3). Taking  the  differential  yields 

This  differential will  be zero  for all d(6ui) if and only if 

Substituting  the  differential  into  equation (D3) yields 

N*- 1 

which will  be  satisfied if &=[-I (dP)2 

which gives  for  the  control  corrections 

( i= 0 ,  . . ., N* - I) 

(i = 0, . . ., N* - 1) 
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APPENDIX D - Concluded 

Substituting 6ui into  equation (D2) gives 

and, as a result,  the  gradient  squared is 

These  equations  were  used  in  the  computer  study. 

30 



REFERENCES 

1. Bryson, A. E.; and Denham, W. F.: A Steepest-Ascent Method for Solving Optimum 
Programming  Problems.  Trans. ASME, Ser. E: J. Appl.  Mech.,  vol. 29, no. 2, 
June 1962, pp. 247-257. 

2. Kelley, Henry J.; and Denham, Walter F.: Modeling and  Adjoints for Continuous Sys- 
tems. J. Optimization  Theory Appl.,  vol. 3, no. 3, Mar. 1969, pp. 174-183. 

3. Canon, Michael D. ; Cullum,  Clifton D., Jr.; and  Polak,  Elijah: Theory of Optimal Con- 
trol and  Mathematical  Programming. McGraw-Hill Book Co., Inc., c.1970. 

4. Pontryagin, L. S.; Boltyanskii, V. G. ; Gamkrelidze, FL V. ; and Mishchenko, E. F.: The 
Mathematical  Theory of Optimal Processes.  Interscience Publ.,  Inc., c.1962. 

5. Ralston, Anthony:  A First Course  in  Numerical  Analysis. McGraw-Hill Book Co., 
Inc., c. 1965. 

31  



/ 
W= mg 

Figure 1.- Coordinate system and force diagram  for  sample  problem. 
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