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FOREWORD

This report, which supersedes the interim report dated May 1971, presents the

results of work performed by Computer Sciences Corporation's Aerospace Systems

Center while under contract to the Aero-Astrodynamics Laboratory of the George C.

'	 Marshall Space Flight Center, Contract NAS8-26113.

The authors are grateful to Messrs. L. D. Mullins and 13. S. Perrine (MSFC-

S&E-AFRO-MMD) for their technical assistance and to Messrs. W. J. Elkins and

M. M. Hansing (CSC) for their programming support.
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SUMMARY

The methods of both special and general perturbation theory are employed in

solving the equations of motion for a satellite subjected to the perturbational effects

of earth oblateness and atmospheric drag. In the special perturbation method,

Cowell and variation-of-parameters formulations of the motion equations are imple-

mented and numerically integrated by means of a MARVES (Marshall Vehicle Engi-

neering Simulation System) computer program. Variations in the orbital elements

i
	 due to drag are computed using the 1970 Jacchia atmospheric density model, which

includes the effects of semiannual variations, diurnal bulge, solar activity, and geo-

inagnetic activity. In the general perturbation method, two-variable asymptotic

series and the automated manipulation capabilities of FORMAC (Formula Manipulation

Compiler) are used to obtain analytical solutions to the variation-of-parameters
r

equations. Solutions are obtained when considering the effect of oblateness only

(JL and J3 ) and the combined effects of oblateness and drag. These solutions are

then numerically evaluated by means of a FORTRAN program in which an updating

scheme is used to maintain accurate epoch values of the elements. The atmospheric

density function is approximated by a Fourier series in true anomaly, and the 1970

Jacchia model is used to periodically update the Fourier coefficients. The accuracy

of both methods is demonstrated by comparing computed orbital elements to actual

elements (or elements computed by standard MSFC programs) over time spans of up	

S
to S days for the special perturbation method and up to 356 days for the general

perturbation method.
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s^

.^s,.	 NOMENCLATURE

Mathematical Symbols

a semimajor axis

a, b, c a set of constants arising in the solution of the ordinary
differential equations having t as the independent variable
(explicitly defined in Appendix 1:)

ai , b i Fourier coefficients appearing in Fourier series
apps oximation to atmospheric density function

a

A a constant arising in the solution of the ordinary differential
equations having t as the independent variable (explicitly

t'. defined in Appendix F.)

(A/m) satellite area/mr:ss ratio

Eli b angle measured normal to orbital pls,ne in direction of normal

^a
perturbative acceleration

B orbital element defined as a 1/2

C 1 9 C , ...	 a set of constants arising in the solution of the ordinary° 1	 2 .v
differential equations having t as the independent variable
(explicitly defined in Appendix E)

4 C(t) integration "constant" associated with asymptotic series
solution development (see Paragraph 4.3.1)

x

#-
CD aerodynamic drag coefficient

D drag force magnitude per unit mass

D2

	

	a constant arising in the solution of the ordinary differential
equations having t as the independent variable (explicitly
defined in Appendix F)

e	 eccentricity

h	 specific angular momentum

vii
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NOMENCLATURE (Continued)

x

i inclination relative to earth equatorial plane

2, 	 .14 coefficients of second, third and fourth harmonics, respectively,
' of earth gravitational potential

K* constant arising in the formulation of the differential equations
of motion for tangential atmosph:;ric drag (explicitly defined in
Paragraph 2.5.2)

'	 M mean anomaly

n 3 1/2mean motion defined as (µ/a )

P semilatus parameter defined as all-e2)

T geocentric radius vector

r perturbative acceleration vector

r equatorial radius of earth
e

It perturbative gravitational potential function

t time

t fast time variable defined as t(1+

t slow time variable defined as Et

u argument of la±itude (V+cc')

v inertial velocity vector

vP relative velocity vector

a a constant arising in the solution of the ordinary differential
equations having t as the independent variable (explicitly
defined in Appendix E)

viii



NOMENCLATURL' (Continued)

a i' Bi' Yip 81 a set of constants used to represent different linear combinations
of the Fourier coefficients a  and b  (explicitly defined in Appendix F)

at	right ascension of satellite subpoint

a f	 flight path angle (positive above local horizontal)

R'	 angle between local latitude and orbital planes

8	 declination of satellite subpoint

E	 small perturbative parameter defined as (:s/2)J2

77	 transformation parameter defined as a sing,

a	 angle between local longitude and orbital planes

l o x 2	 constants appearing in the & and 77 solutions for oblateness/
drag (explicitly defined in Appendix F)

µ	 earth gravitational constant

v	 true anomaly

transformation parameter defined as a cosw

P	 atmospheric density

3	 angle between radius and velocity vectors

W	 argument of perigee

we	magnitude of earth rotational velocity vector

s;l	 right ascension of ascending node

NOTE: The subscript "p" is used to denote the epoch (or reference) value of an
element or element function (i.e., cot e (o ), (l )).
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NOMENCLATURE (Continued)

Element Types and Variations

long-periodic variation - A variation periodic with respect to co or
multiples of w; for example, sine.

mean orbital elements - The osculating elements with the short periodic
variations removed.

osculating orbital elements - The instantaneous elements defining the
continually changing elliptical orbit.

secular variation - A steady nonoscillatory variation from the epoch
value, i.e. , a variation directly proportional to the independent
variable; for example, Ct.

short-periodic variation - A variation periodic with respect to linear
combinations of v and w; for example, cos (v+W).

x
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SECTION 1 - INTRODUCTION

The purpose of this study is to develop techniques of orbital decay and long-

term ephemeris prediction for satellites in elliptical earth-orbit. 	 These techniques

are to be accurate and flexible, and are to lead themselves to rapid computation.

n In order to meet current needs, emphasis is to be placed on the development of

=	 i ephemeris prediction techniques for low-eccentricity, near-earth orbits when con-

{
sidering the perturbational effects of earth oblateness and atmospheric drag.

Classically, two general methods of attack are available for solving this

problem.	 These methods are known as the methods of special and general pertur-

bations, respectively.	 In both methods, the equations of motion may be formulated

either as three second-order differential equations (for the perturbative accelerations)

or as six first-order differential equations (for some set of fundamental orbital ele-

ments).	 The two methods differ in that special perturbation formulations (such as

Cowell's, Encke's, varia`-.on-of-parameters, etc.) employ various numerical inte-

gration procedures (such as Runge-Kutta, Fehlberg, Shanks, etc.) to obtain the

solution, while general perturbation techniques (such as variation-of-parameters,

variation-of-coordinates, etc.) generally employ series expansions (such as Taylor's,

multivariable asymp"ic, etc.) combined with analytical integration to achieve the
Y desired solution.	 In choosing one method or the other, one must keep in mind both

the nature of the orbit under consideration and the nature of the solutions desired.

The main advantages of the special perturbation method lie in simplicity of

formulation, applicability to any type of orbit in any perturbing force field, and com-

pactness of storage requirements foi- program solution. 	 This method is ideally

suited for calculating orbits of limited duration. 	 The main disadvantages inherent

in this method are the inducement of errors (truncation and round-off) due to the

numerical nature of the process, the resulting lack of application to orbits of long
ii

x duration, and the extensive computation time required for solution.

x.^
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i
The primary advantages of the general perturbation method lie in its applica-

bilit to orbits of long	 its relatively rapid computer solution time and its^	 Y	 g duration^	 Y P^ com p

ability to provide a clearer geometric conception of the effects of the various pertur-

bations. On the other hand, in applying this method one is faced with much analytical

labor in formulating.thc equations to include various perturbations and in obtaining

the solutions to these equations.

To achieve extended applicability in attacking the problem at hand, it was

decided to employ formulations of both methods. In the special perturbation method

both the Cowell and the variation-of-parameters formulations are employed, while

the general perturbation method consists of the variation-of-parameters formulation

using two-variable asymptotic series expansions. To alleviate the analytical labor

required, the automated manipulation capabilities of the FORMAC ;Formula Manipu-

lation Compiler) language are utilized.

:.

i
t

t
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SECTION 2 - DERIVATION OF THE VARIATION-OF-PARAMETERS
DIFFERENTIAL EQUATIONS OF MOTION (LAGRANGE'S

PLANETARY EQUATIONS)

The purpose of this section is to derive, by the method of perturbative differ-

entiation, the differential equations of motion for a selected set of orbital elements

(or parameters) when considering the perturbational effects of earth oblateness and

tangential atmospheric drag. Since perturbative forces are additive, the differential

equations for each perturbational effect can be formulated separately. This set of

differential equations will then be solved numerically by the methods of special pertur-

bation theory and analytically by the methods of general perturbation theory.

2.1 SELECTED ORBITAL ELEMENT SET

The orbital element set selected for consideration is

(B, e, i. S?, ce, M(or v); t)

where	 B = a-1/2 (defined for mathematical simplification)

a = semimajor axis

e - eccentricity

i	 =	 inclination relative to earth equatorial. plane

11 = right ascension of ascending node

w = argument of perigee

M = mean anomaly

v = true anomaly

t	 - time (independent variable)

Although only one anomaly angle is needed in the element set, it is advantageous

to consider both M and v. The differential equation for 14 is more amenable to

asymptotic series solution; on the other hand, it is mathematically easier to derive the

differential equations for all elements in terms of v_. Consequently, the differential

2-1



equation for M is derived and solved; v is then obtained by a Fourier-Bessel expansion

involving M and e.

2.2 PERTURBATIVE DIFFERENTIATION

In the theory of perturbative differentiation, the variation (time-derivative) of

any element f is considered as the sum of two parts; i. e.

df = f + f^
dt

where f (f-dot) is the Keplerian variation that remains if all disturbing forces are

suddenly removed and a (f-grave) is the perturbative variation caused by the disturbing

forces. There are three types of variations which arise in the theory; namely,

Type 1: df = f	 where f^ = 0
dt

Type 2: df = f^	 where f = 0
dt

Type 3: df - f + f
dt	

where both parts exist

Since the velocity associated with the osculating orbit at the point of tangency is

the same as the actual velocity of the perturbed satellite, the components of d in an

inertial coordinate system are of the first type. Variations of the second type arise

for elements that would be constant in Keplerian motion, such as a, e, i, 0, and W.

Elements referred to a perturbed reference direction, such as M and ! , are of the

third type.

It follows, then, that the basic differential equations of motion for the selected

elements are

dB	 = B^	 (2-1)
dt

de	 = el	(2-2)
dt

2-2



,.. di
i^	 (2-3)

dt

dO	
=	 S?^ 	(2-4)

^ dt

dw	
=	 W^	 (2-5)

dt

>,.. aM	 _	 1VI + Me _ :^ + M^	 (2-6)

The next step is to obtain the perturbative variations indicated above.
j:

't Two techniques are commonly used to obtain the perturbative variation f^ of an

erY element f.	 The first technique consists of developing the total variation of the element

. and then removing the Keplerian part; i. e.

df
f	 - fdt

' The second technique consists of using perturbative differentiation, which involves

taking the grave-derivative of a given expression in which only the variations due to

the disturbing forces are considered. 	 The second technique is used here to obtain the

perturbative variations of the elements. 	 (For a further discussion of perturbative

differentiation, see References 1 and 2; particularly p. 21 of Reference 1.)

2.3	 PERTURBATIVE VARIATION EQUATIONS }

It is necessary to obtain the perturbative variations B; e^, i^, S2; to and M % in

terms of the orbital elements and the perturbative acceleration vector r, resolved as

follows (Reference 2, p. 284):

r = P U+ rP V+ rb\ W

where	 U	 =	 unit vector in direction of increasing F (radial)

V	 =	 unit vector perpendicular to r in orbital plane (transverse)

W	 =	 unit vector perpendicular to orbital plane (orthogonal)



As will be seen in the next section, the perturbative acceleration components r; rV

and rli can also be obtained in terms of the orbital elements via the disturbing function

R.

Although derivation of the perturbative variation equations by the method of per-

turbative differentiation is straightforward, it is mathematically tedious; consequently,

the procedure is presented in Appendix A. The results are (also see Reference 1,

p. 22, and Reference 2, pp. 247 and 284):

131 = II (- r r' e p sin VI - 
r2 V ^p^2

P^ uP	 r	 /	 µP	
(2-7)

/	 1	 2
e l =	

r
uP \r sin VI + L

.^ 
I(P-  + 11 cos V + el	 (2-8)

r 21 cos u	 (2-9)
µP

011 	 r 21 sin ii
,111—p  sin i	 (2-10)

2.%	 `
CC% _	 -SZ  cos i - r 

e 
(p cos vl + 

up 
a \e + 1) sin V	 (2-11)

M% =	 -(1 - e2)1/2 
(WI+ 

01 Cos i + 2µp 	 (2-12)

2.4 PERTURBATIVE ACCELERATION COMPONENTS

2.4. 1 Earth Oblateness

The perturbative acceleration vector r due to an axially symmetric oblate earth

can be written as the gradient of the perturbative potential function R (per unit mass),

which becomes, in spherical coordinates,

r =OR -.
8	

1	 8 O+1OR-

	

r	 r cos 6	 r 8b

2-4
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e
r	

where (see Figure 2-1)

i = unit vector in direction of increasing F

T = unit vector in direction of increasing W

k = unit vector in direction of increasingb

and (Reference 3, p. 49)
_	 _	 (

R	
^[J2\r \2 sing b - 2

JJ
r 3 5 sin

g 6- 3 sin 631 r 1 (2	 2)

'  r+ J (e) (35 sin  b _ 30 sing b + 3
4 r	 8	 8	 8)

(NOTE:4 and J 4 are negative numbers. )

(2-13)

Y

	

	 As previously mentioned, the general expression for the perturbative acceleration

vector can be written as

:Z

If r U+r" V+rbW
a

where	 LT = unit vector in direction of increasing r (radial)

a t-

	

	 V = unit vector perpendicular to F in orbital plane (transverse)

W = unit vector perpendicular to orbital plane (orthogonal)

2-5
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Figure 2-1. Intersection of Equatorial and Orbital Planes
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The transformation between the (i, j, k) system and the (U, V, W) system is

obtained via a right-hand rotation about the i-axis through an angle P' , as seen

from Figure 2-1. Thus

r'	 1	 0	 0	 aR
ar

rv'	 0	 cos Q'	 sin ^'	 0

rb '	 0 — sin Q '	 cos o)	 1 aR
r ab

resulting in the scalar equations

i , = &
ar

ry ' = !!EL aR
r	 ab

rb' = cos R' aR
r T

Performing the indicated differentiation on Equation (2-13) yields

r' = — 2 µ J 2 re2/ 4, (1-3 sin g S) —2µ J3 re3	 , (3-5 sing b) sin b + N J4 re4r 6)135 sin4 b-3Q sin 2 S -3)	 (2 - 14)
1r 	 (r5	 1r /

	

6' = sin ^'r-3µ J2 re2(r 1 sin b cos b + 2 µ J3 re3(5) fl-5 sin 2 b)cos S	 4 /— 2 µ J4 re rs) (7 sin2 b — 3) sin b cos bl (2-15)

rb' = cos (3'I-3µ J 2 rej 4)sin b cos b + 2 µ J3 re3rr5) (1-5 sin 2 E) cos b — 21+ J4 re4( s)(7 sin2 S — 3)Isin b coe b] (2-16)

It is now necessary to express W and b in terms of the orbital elements. Referring

to Figure 2-1, from the spherical triangle ABC

sin b = sin i sin u	 (2-17)

cos b = ti 1 s^2 i sin2 u	 (2-18)

2-7



Also, from the same triangle

cos u = ctn X ctn i

or

tan X _ ctn i_
Iiut	 cos u

1 + tan2), = 1
cos2

thus	 1	 1	 cos u
coE = /^

^L-an2	1+ 1 ctn i	 ctn2cos u	 i+ cos2 u

Since ^, 90' - ( i, e, , latitude and longitude lines are perpendicular),

then

sin Q ' = sin (900—A) = cos X

or

cos u
sin

ctn 2i + cos2 u
and

ctn i
cos ^3' _

1/ ctn2 i + cos2 u
However,

ctn2

	

i+ Cos u= 
1	

cos2 _j+ cos2 u sing i	 1

	

sin i	 sin i	 1—sing i sin u

hence cos u sin i
sin Q' -

	

	 (2-19)
1—sin2 i sin 2 u

cos i
cos	 —	 (2-20)

1—sin2 i sin2 u

Substituting Equations (2-17) through (2-20) into Equations (2-14) through (2-16)

yields, after simplification, the desired results.

2-8



r' _ - 3.µ J2 re2( 4l(1-3 sin2 i sin 2 u) 2µ J3 re3 ( bl (3-5 sin2 i sin2 u) sin i sin u

+ 8 µ J4 re  ( 6) (3b 	sin4 i sin 4 u -30 sin2 i sin2 u + 3)
r

2 µ d2 re  ( !)sin 2 i sin 2 u +.1 ;u J3re3( 5) (1-5 si n2 i sin2 u) cos u sin i
r J	 \r

- 4 P J4 re4 ( -!)sin 2 i sin 2 u (7 sin2 isin2 u -3)	
(2`22)

rJ

rb ' _ -3µ J2 re  ( 4) sin i cos i sin u + 2 µ J3 re3 ( 5 ) (1-5 sin2 i sin2 u) cos i
J	 `r l (2-23)

-- 4 µ J4 re4(j)  sin 2 i sin a (7 sin2 i sin2 u - 3)

After converting to units of earth-radii and performing trigonometric-identity

manipulations, it can be shown that Equations (2-21) through (2-23) agree with

Reference 2, p.288, and Reference 4, p. 193.

2.4.2 Tangential Atmospheric Drag

The perturbative acceleration vector r due to a tangential atmospheric drag

force can be written as

•\	 -	 —
r - - DT + ON + OW -DT

where (see Figure 2-2)

T = unit vector along orbit tangent in direction of motion
(tangential)

N - unit vector perpendicular to orbit tangent (normal)

W = unit vector perpendicular to orbital plane (orthogonal)

and

D =2 (Al CD P vR2
m

2-9
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The relative velocity vR can be approximated in terms of the inertial velocity

v by (Reference 5, p. 165)

= v
we cos i

^R, 	1— n

Since the inertial velocity of a satellite in an elliptical orbit is given by (Refer-

ence 6, p. 80)
B

2=^ (1+e2 + 2e cos v) = 
µ2 

(1+e2 +2e cos v)v
P	 (1--e2 )

the drag force magnitude per unit mass can be written as

B2	 we cos i \2
D = 2 (^)

n CD p µ 2 (1 + e2 + 2e cos v) (1_ n 1	 (2-24)
  (1—e )

As discussed in the previous section, the general expression for the perturba-

tive acceleration vector is

r = r' U+rVV+rb' W

From Figure 2-2, it can be seen that the transformation matrix relating the

(U, V, W) system to the (T, N, W) system is obtained via a right-hand rotation about

the W-axis through an angle (180' + 0), i. e.,

	

cos (1800 + 0) sin (180° + 0)	 0	 — cos O — sin O 0

	

[T] _ — sin (1800 +,0)	 cos (180 0 +	 0	 =	 sin	 —cos 0 0
0	 0	 11	 0	 0	 1

Thus,

	

r'	 -cos	 —sin	 0	 D

	

n,	 sin	 —coa	 0	 0

	

r5	 0	 0	 1	 0

resulting in the scalar equations

	

r = D cos ¢	 (2-25)

	

rv' = D sin	 (2-26)

	

rb' = 0	 (2-27)

a dr.

r

g

2-11



The angle 0 is related to the orbital elements by (Reference 6, p. 83)

l+ecosv
sin 

	

(1 + e2 + 2e cos v) 112	 (2-281

—e sin v
cos _

	

	 (2-29)
(1+e2 +2e cos v) 1/2

Substituting Equation (2-24) and Equations (2-28) and (2-29) into Equations (2-25)

through (2-27) yields the desired results

µB a sin v ( + 2	 ) 1/2	 we cos i2

	

2 \m/ CD p	 2	 1 e + 2e cos v	 (1— n	 )	 2-30)

	

(1—e)	 ( 

rv' _ — 2 (m) CD p µB (1 +2 cos v (1 + e2 + 2e cos v)1/2 	
w cos i/	

2(1—e )	 )
	 (1— e n )	 (2-31)

rb ' = 0 (2-32)

2.5 DIFFERENTIAL EQUATIONS IN FINAL FORM

2.5. 1 Earth Oblateness

Expressing the earth oblateness differential equations in final form requires

substituting Equations (2-21) through (2-23) into Equations (2-7) through (2-12),

simplifying, and then substituting the corresponding results into Equations (2-1)

through (2-6). To illustrate this procedure, the final form of the differential equation

for the element i will be derived. The equations for all other elements can be

obtained in a similar manner.

Substituting Equation (2-23) into Equation (2-9) yields

i , = cos u (-3µ J2 re2 (r)3 sin i cos i sin u + 2 µJ3 
re3(-! 

(1-5 sing i sin2 u) cos i
µP L	 \	 1lr4)

— 4 µJ4 re4(.1)
 sin 2 i sin u (7 sing i sin2 u — 3) I

r	 J
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Substituting
i	

a(l—e2)	 P
r=

	

l+e cos v	 l+e cos v

and performing trigonometric-identity manipulations yields
3:^/pJ2 re2 ( 1 + e cos v)3

P7/2	
— sin 2i sin 2u

4

	

3	 J3 re3 (1 + e cos v)4	 2	 2+	
P9/2	

cos i cos u (1-5 sin i sin u)
2

	

Ak 	 5VJ4re4( 1+e cos v)5

8P
WIZ 11/2	 sin 2 i sin 2 u (7 sing i sin2 u-3)

This equation can be rewritten as

(3 J2)	 re2 (1 + e cos v 13

	

i = — \2	 /
	 sin 2i sin 2u

2-p7/2

	

3	
J,]

_' t	 (— J2)( J^,	 -re3 (1 + e cos v)4
+=--^` " ^

P 9/2	
(

cos i cos u 1-5 sin g i sin2 u)

j5 C2 J2\
l ! 24	 re4 (1 + e cos v)5

)	 2 2 —
Defining	 12 p 11/2	 sin 2 i sin 2 u ( 7 sin i sin u 3)

	

e = 2 J2	 (a small parameter) 	 (2-33)r

This equation becomes

	

y'	 fµ re2 (1 + e cos v)3

	

—e	 — sin2isin2u
2 P7 /2

^re3 (1+ e cos v)4( ^3

	

J2/	 2 
i 

2

	

+ E	 P 9/2	 cos i cos u (1-5 sin sin u)

N/A

" 	 J

	

5C
JZ

	re  ( 1 + e cos v)5

	

+	
e	

11/2	 sin 2 i sin 2 u (7 sin2 i sin2
12p	

u-3)
Y

s
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Finally, substituting this equation into Equation (2-3), noting that

1 _	 1	 _	 B2

p	 all--e2)	 (1—e2)

yields the desired result

diB7 re 	 (1 + P cos. v)3_
dt	 —C	

2(1—e2 ) 7 /2	
sin 2 i sin 2 u

J3
µB9 re3 (1+e cos v)4J2	

(1—e22 9/2	 cos i cos u (1-5 sin2 i sin2 u)+ e

5(̂ 4 	B	 r	 (1 + e cos v)11	 4	 be

eE	
J2	

2	 sin 2 i sin 2 u (7 sin 2 i sin2 u— 3)
12 (1—e2

(NOTE: An optional formulation of this equation would be one in which the higher

earth harmonics (J3 and 14 are treated as "higher-order" perturbing terms; i.e.

as E 
2 term3.	 As will be shown in the solution procedure of Section 4, however,

treating these harmonics as E -order terms yields mean orbital elements which

include long-periodic as well as secular variations. )

As previously mentioned, the equations for the other elements can be obtained

in a similar manner.	 The complete set of differential equations when considering

earth oblateness is presented on the following pages.
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2.5.2 Tangential Atmospheric Drag

Expressing the drag differential equations in final form requires substituting

Equations (2-30) through (2-32) into Equations (2-7) through (2-12), simplifying, and

then substituting the corresponding results into Equations (2-1) through (2-6). 	 To

illustrate this procedure, the final form of the differential equation for the element

e will be derived.	 The equations for all other elements can be obtained in a

similar manner.

Substituting Equations (2-25) and (2-26) into Equation (2-8) yields

1
e' _	 Ir	 cos	 rP sin v^ — rD sin	 I1	

r	
+ 1) cos v + e Im	 ^	 rF-P	 I.5

Substituting

r=	 PP	 1+e cos v
l+e cos v	 r

` the equation becomes

'
P

e1= ^ 	 Ll+e^o^
	 (I +e cog v) sin

v—1+ecosv ( 2+e  cos v) cog v —
 l+ecosvL

=
D.,/p 	

[cos	 sin v (1+e cos v) — sin 0 cos v (2+e cos v) — e sin w]vp (1 +e cos v)

Substituting Equations (2-28) and (2-29) yields

e =
^	

D^
(l+e cosv)(1+e +2e cos v)112 [ —e sing v (1+e cos v) — cos v (1+e cos v) (2+e cos v) —e (1+e cos v)]

22D^	
1/2 (e+cos v)

f (1+e + 2e cos v)

Substituting Equation (2-24) and noting that

p = a (1—e2)
B2

results in

e , — —	 2 
2

—e2 ( e
+^1 2(
	

(AM) CD	
µBS	 wenosi ^ 2

+e2 +2e(1cos v), 11—Bf(l+e +2ecosv)	 L	 (1—e )
J

A	 CD p f B (e+cos v) (1+e2 + 2e cos v) 112	 We cos i 2
1^ m	(1—e2)1/2	 n
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ri.

Since
n =VP B3

the equation can be written as

e'	 — /A \ CD p µ B4 (e+cos v) (1+e2 + 2e cos v)1/2	 /	 we cos i)2
—m	 /	 tln (1—e2)1 2	 n

`x In terms of the small parameter E as defined by Equation (2-33), this becomes

e' = — e	 A	 1	 2 CD p µ B4 (e+cos v) (I +e2 + 2e cos v)1/2	 1 — we cos i	 2
\ m ^ J2^ 3n (1 —e2 )1/2 n

Finally, substituting this equation into Equation (2-2), and defining

K* = 3 /A \ (

	

We 	 i 2

J2/ 
CD p C1—	 a	 (2-40)n—

ll I

yields the desired result

de = — E K* p B4 (e+cos v) (1+e2 + 2e cos v)1/2
dt	 n (1—e2)1/2

h, As previously mentioned, the equations for the other elements are obtained in a

similar manner.	 The complete set of differential equations when considering

tangential atmospheric drag is presented on the following page.i
2-19



Differential Equations of Motion When
Considering Tangential Atmospheric Drag

dB = e K* p B5 (1+e2 + 2e fzs v) 3/2	 (2-41)
dt	 2n (1—e2)3/2

de = — F K* p B4 (e+cos v) (1+e2 + 2e cos v) 1/2 	 (2-42)
dt	 r► (1—e2)1/2

di = o	 (since r b'= 0)
dt	 (2-43)

dSt = 0	 (since r b'= 0)
dt	 (2-44)

dw =—e K* P B4 sin v ( 1 +e 2 f 2e cos v) 1/2	 (2-45)at ne (1—e2)1/2

dM = e K* p B4 sin v (1+e2 + 2e cos P)1/2 	 +	 (2-46)dt	 n	 C e l+e^cos v}

i

r

a

i

i

t

i

i

i

t

i

i
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SECTION 3 - SPECIAL PERTURBATION METHOD OF SOLUTION

In Section. 2, the differential equations of motion for a selected set of orbital

elements were derived when considering the perturbational effects of earth oblateness

and tangential atmospheric drag. The purpose of this section is to discuss the pro-

'	 cedure by which these equations, along with a Cowell formulation of the motion

equations, are numerically solved. Included is a synopsis of the MARVES computer

fprogram which has been implemented to perform this so-called special perturbation

method of solution.

'	 3.1 GENERAI.

The term "spe:rial perturbations" refers to a technique for the prediction of an

orbit by numerical integration, so as to include the effects of various perturbative

forces that cause the trajectory to deviate from some reference orbit (Reference 2,

pp. 227-228). The basic procedure is the generation of the next step or increment

of the state variables representing the orbiting body when having a complete knowledge

of the preceding variables (Reference 7, pp. 220-221). Specifically, one begins with

some epoch state and integrates, numerically, a set of three second-order or six

first-order differential equations of motion.

The variation-of-parameters formulation involves the integration of six first-

order equations (often referred to as the Lagrange planetary equations) which are

functions of the selected orbital elements. As is evident in the literature (Reference

2, p. 243; Reference 8, pp. 235-236), there is no "best" set of fundamental elements

to employ, and the choice is dictated by the application in mind. In the Cowell formu-

lation, three second-order motion equations for the perturbative rectangular accelera-

tions are integrated to obtain the current state variables (position and velocity).

y	 3.2 VARIATION-OF-PARAMETERS FORMULATION

t"

	

	 In the variation-of-parameters formulation, six first-order element rate equa-

tions are numerically integrated; these equations reflect perturbations due to earth

obiateness (second, third, and fourth harmonics) and atmospheric drag (using a 1970
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Jacchia atmospheric density model). The oblateness equations are identically those

presented in Paragraph 2.5. 1, whereas the drag equations differ from those presented

in Paragraph 2. 5.2 in that ? three-dimensional rather than tangential drag force is

considered. (NOTE: To readily obtain analytical solutions to the equations, it is

necessary to assume a tangential atmospheric drag; however, this assumption is not

require:i when numerically integrating the equations.)

3.3 COWELL FORMULATION

In the Cowell formulation, the equations of motion are expressed in rectangular

form and integrated twice to obtain the velocity and position. These equations have

the _tandard form:

dtz

where x represents the central force term, and x; the perturbative term, represents

the accumulated effects of all perturbations acting. The perturbations included in this

formulation also consist of earth oblateness (second, third, and fourth harmonics) and

atmospheric drag (using a 1970 Jacchia atmospheric density model).

3.4 SYNOPSIS OF MARVES COMPUTER PROGRAM FOR NUMERICALLY INTE-
GRATING THE EQUATIONS OF MOTION'

A MARVES/FORTRAN double-precision special perturbations program has been

developed for the UNIVAC 1108 and is currently available through the MSFC Computa-

tion Laboratory. This program provides, on user option, either the Cowell or variation--

of-paraineters formulations.

The program is modular in design, with FORTRAN subprograms selectively

linked and controlled by two MARVES driver programs. This configuration allows

user selection from a library of simulation routines and high precision numerical

integration schemes currently operational and available to MARVES users (Reference

9). These integration schemes include a varie +y of single and multistep methods with

provisions for optimum step-size prediction based on the resultant truncation error.

I

I
t
t
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When selecting the "best" method for solving the set of differential equations for a

particular orbit, many factors must be considered, such as: required accuracy,

number of integration interrupts, frequency of computer printout, and integration

step-size limitations. Reference 9 contains a thorough discussion of the methods

currently available in MARVES, along with some generalizations that can be made

about method selection.

Many other desired features are incorporated into the program, such as critical

time events, the nearest Besselian year coordinate transformation, and the 1970 Jacchia

atmospheric density model. Also included is a solar-ephemeris computation routine

that eliminates the need for read/interpolation of Jet Propulsion Laboratory (JPL)

ephemeris tapes.

A complete description of this MARVES program (referred to as the SPERTB

program) is given in Reference 16.
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SECTION 4 - GENERAL PERTURBATION METHOD OF SOLUTION

In Section 2, the differential equations of motion for a selected set of orbital

elements were derived when considering the perturbational effects of earth oblateness

and tangential atmospheric drag. This section analytically solves these equations by

the method of two-variable asymptotic series. (To date, complete solutions have been

obtained for both oblateness 2 and J3 ) and oblateness/drag combined.) Included are

synopses of the FORMAC computer program used in obtaining the analytical solutions

and the FORTRAN program used In numerically evaluating these solutions.

4.1 GENERAL

In the method classically known as general perturbations, six first-order equa-

tions of motion can be formulated as functions of some fundamental jet of orbital

elements. The perturbation effects are expressed analytically, and the element solu-

tions are generally obtained by analytical integration of series expansions in one form

or another. These solutions are explicit functions of time, constants of the problem

and constants of integratioii. They define the vehicle state at any instant in time, as

the epoch state conditions make the problem completely determinant.

The primary difficulty in the general perturbation method has always been the

overwhelming amount of analytical labor required to obtain the solutions. However,

the state of the art in computer technology is such that automated manipulation languages,

i. e., languages for doing symbolic as opposed to strictly numerical mathematics, are

now generally available. Consequently, many of these burdensome analytical tasks,

such as series manipulations, function expansion, differ-entietion and integration, can

now be alleviated.

The language selected for use in this development is FORMAC (EORMULA

MANIPULATION COMPILER). This language, currently available through the MSFC

Computation Laboratory, was developed by IBM, and contains a wide range of ana-

lytical capabilities (Reference 11). Consequently, it has proven itself a valuable tool

for the applicatinn at hand.
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4.2	 BASIC THEORY OF THE TWO-VARIABLE ASYMPTOTIC SERIES EXPANSION
METHOD

As was indicated earlier, general perturbation techniques employ series expan-

sions for assumed element solutions.	 These expansions result in correspondingly

expanded differential equations which are then analytically integrated. 	 The type expan-

sions employed in this study are classically known as asymptotic series expansions.

It is the purpose of this section to provide an outline of the theoretical basis for such

expansions, illustrating those concepts required in the particular application at hand.

The discussion begins with some basic definitions and nomenclature.

Definition 1

Let f(t, () and g(E) be real-valued functions, where E is a small positive param-

eter and t ranges continuously over some set S of nonnegative reals. 	 Then, a measure

of the relative magnitudes of f(t, () and g(E) may be obtained if a real (finite) K exists

such that:

Lim f^ s K
,	 w	 g(f)Ic	 0	 g

for all t in S.	 Symbolically, the existence of this limit is denoted by writing:

f(t, E) = O(g(E))

which reads ' If (t, E) is of the order of g(E). " The existence of the limit for all t in S t

makes this relation uniform in that K can be chosen independently of t. 	 The function

g(E) is called the gauge function, and when K = 1, f(t, E) is said to be asymptotically

equal to g(E).	 If t is a function of several real variables, the relation is said to be

multivariable (Reference 12, pp. 180-185; Reference 13, pp. 1-3; and Reference 1,

16-17).pp.

For purposes of clarification, consider the following example: r^

Lci,	 t >0, 0 < E << 1, f(t, E) = E2 sin t and g(E) = E
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Then clearly,	 f(t, E) = O(g(E))

since	 Lim E2 in t S E
IE

E 40- 01 	 I
for all t > 0; i, e. , uniformly in t as c--a- 0.

Another symbol, which is often used to measure the relative magnitude of two

functions, bears a simple relationship to the order symbol of Definition 1. If f(t, E),

g(E) and E are as previously defined, then this alternate measurement is obtained

when:

Liml L_)
I 

=0
E -rG

for all t in S. Symbolically:

"CLO E) = OWE))

and is read "f(t, E) is small o of g(E). " (When both symbols are employed, f(t, E) _

O(g(E )) is often read "f(t, E ) is large O of g(E). ")

The symbol small o, though not employed herein, is related to the large O of

Definition 1 by:

O(O(g(E))) = O(g(E))

Definition 2

Let gi (E ), i = 0, 1, 2, ..., be a sequence of real-valued functions of the small

(positive) parameter E. Then, this sequence is called an asymptotic sequence for

E-o-0 if, for each i (Reference 12, pp. 182-183; Reference 13, pp. 2-3; and Refer-

ence 1, p. 17):

gi+1(E )
Lim 

g (E) = 0i

Such a sequence is illustrated in the following example:
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Let the sequence g. (E), i - 0, 1, 2, ... , be defined by

X.	 I
g i (E) = E i, Xi+1 > k  > 0

for all I. Then this sequence is an asymptotic sequence, since

g.	 (E)	 Xi+1
Lim i+1	 = Lim E

i 
=0

E-^0 gi(E)	 E-+0 E

for each I.

Definition 3

Let gi (E) and f(1) (t) be real-valued functions of the small parameter E and the

real nonnegative variable t, respectively. Then, the sequence of partial sums:

N
E 9i (Of(1)(t)
i=0

is called an asymptotic expansion to N terms of a function x(t, E) as E-0 when:

N
X(t, E) = E gi (E )f(1) (t) + 0(gi+1(E))

i=0

as E -► 0. The asymptotic expansion is said to be uniformly valid when it holds for

all t in some set S of nonnegative reals, i. e., when O(gi+1 (E)) is uniform in t. If

t is expressed, at least formally, as a function of several variables, then the ex-

pansion is said to be a multivariable asymptotic expansion. Such an expansion would

have the form:

N	 _
X(t , E) 	 E gi(E)f(1)(t, t, ...) + O(gi+l(E)^

i=0

as E-+0. For purposes of preserving the uniform validity of the expansion (Reference

13, pp. 79-82, and Reference 1, p. 17), the variables t, t, ... are taken as functions

of E multiplied linearly by t. Here, t is termed the fast variable while t is termed

4-4
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the slow variable (Reference 1, pp. 16-17). The first, second, and third approxima-

tions to x (t, E) are given as:

90 (E)f0)(t)

g
0 

(Of (0) (t ) + gi(E)f(1)(t)

go ( Of (0) (t) + g
I (O f (1) (t) + g2(E)f(2)(t

To fix these ideas, take t > 0 and x(t, E) = e E t, where E is a small positive

parameter. Let gi (E) = E 1/i! and f(1) (t) = tl, i = 0, ?., 2, .... Then

gi+1 (E)	 E
Lim —=Lim
E-+0 gi (E) 	 E-^0 1+1 = 0

so that YO, i = 0, 1, 2, ... is an asymptotic sequence. The sequence of partial

sums:

NFd Eiti

i=0 i

is an asymptotic expansion to N terms of x(t, E) = eEt.

Note that in this example the asymptotic expansion was convergent. However,

there is to be no convergence requirement imposed on such expansions, and some ex-

pansions may converge for some range of E, or may diverge for all c. The praciical

applicability of the method is not determined by convergence of the series when

i-- -, but by its asymptotic properties for a fixed value if i when E-0 (Reference

14, pp. 40-41).

Hence, an important characteristic of asymptotic expansions is that the error

made in approximating the given function by such an expansion is of the order of the

first neglected term (Reference 1, p. 17). For this reason, it is important that one

make a wise choice for the small parameter E when using this method.
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Consider x(t, E) a function that is to be approximated by a two-variable asymptotic

series expansion. Then, t will be functionally related to two variables, say t and t,

in a linear fashion through _L.  Here again, t will be termed a fast variable and t a

slow variable. Further, suppose that x(t, E) represents the solution to a differential

equation whose independent variable is t. To apply the technique, the differential equa-

tion must be expressed as a function of both t (at least implicitly) and c.

Thus, the initial value problem for an ordinary differential equation is converted,

through use of a two-variable expansion, to one involving partial differential equations
N

in t and t. The two-variable asymptotic solution of the transformed problem will

then involve certain undetermined functions which are defined by postulating that the

problem possess a consistent asymptotic solution which is uniformly valid (at least to

value. of t of the order of the reciprocal of the small parameter).

There are two concepts that aid in arriving at uniformly valid solutions, as

opposed to those which are initially valid (i. e., valid over some initial portions of

their ranges). These are called the first and second uniformity conditions, respec-

tively (Reference 1, p. 18).

The first uniformity condition states that a multivariable asymptotic solution to

a small parameter dependent differential equation cannot contain secular terms in the

fast variable t (i. e., terms proportional to T), if the solution when E = 0 does not

contain such terms. In short, if the solution to the differential equation when E = 0 is

bounded in the fast variable, the solution procedure cannot unbound the solution when

E / 0. Note that this condition is applicable only if the E = 0 solution is initially

bounded (Reference 1, p. 18).

The second uniformity condition is a result of the uniform validity requirement,

and this condition states that:

gi+1 (E) f(i+l) (t, t)

_s i

for each i and all t of some set S of nonnegative reals. Simply stated, the ratio:
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k^

f

f(i+1) t t

f(i) (t  t)
N

cannot contain terms secular in the slow variable t. This condition may be employed

to eliminate nonuniform results even when the first uniformity condition cannot be

applied (Reference 1, p. 18 and Reference 15, pp. 206-224).

In Paragraph 4.3, the two-variable asymptotic series expansion method will be

employed in obtaining solutions to the variation-of-parameters equations derived in

Section 2. Thus, the function x(t, t ^ to 1,9 approximated by these two-variable expan-

sions will represent some osculating element; .j will be a small parameter arising

through the perturbational effects, and t, t will be two time -scale variables associated

with the time t.

4.3 APPLICATION OF THE TWO-VARIABLE ASYMPTOTIC SERIES METHOD TO
THE DIFFERENTIAL EQUATIONS OF MOTION

This method assumes that the solutions to the equations of motion can be ex-

pressed as asymptotic series in two variables (t and t), i. e.,

B = B (0) (t, t) + E B (1) (t, t) + E2 B(2) (t, t) + .. .

e = e (0) (t, t! + E e (1) (t, t) + E2 a (2) (t, t) + ... , etc.

where II (0) B(1) B (2)	 e(0) e(1)	 are functions of time (i. e., solutions) as

yet to be determined and:

t = t (142 E2 )	 (fast variable) 	 (4-1)

t = E t	 (slow variable)	 (4-2)

with ot2 being an undetermined constant.

In the asymptotic series expansion for a given element, the first term is re-

ferred to herein as the first approximation to the total solution, and the sum of the

first and second terms is referred to as the second approximation. For the element

4-7



e, as an example:

e = e (0)	 (first approximation)

e = e(0) + E e (1)	 (second approximation)

L
Lsuper-one solution

super-zero solution

These approximations will now be derived for the set of elements (B, e, i, Q,

w and M). First approximations will be obtained when considering both oblateness and

oblateness/drag. Second approximations will be obtained in terms of the super-one

solutions due to oblateness only, as it will be shown that the super-one solutions due to

drag are negligible. The general prncedure for obtaining the third approximations will

be outlined.

4.3.1 Obtaining the First Approximations to the Solutions

The desired first (and second) approximations are obtained by solving the

variation-of-parameters equations (oblateness only or oblateness/drag) when consider-

ing only terms of the order of E (i. e., neglecting terms Z E2 ). Since these equations

are highly coupled, their solutions must be obtained simultaneously (at least in theory).

However, by making reasonable assumptions, the solutions for each element can be

obtained separately up to a point - this point being the formulation of a set of first-

order ordinary differential equations having t as the independent variable. To illus-

trate the procedure leading to this point, the equation for a representative element

will be considered in detail.

4.3. 1.1 Oblateness Only

The element i is taken as the representative element, s:, it is necessary to

expand each element appearing in Equation (2-36) to the first-order of E. From

Appendix B:

t
4-8	 1



t

t
t

cos i = cos 1 (0) + E [- i (1) sin i(o) I  + E2 [	
1 + ...

sin  u = sin  u (0) + E u (1) sin 2 u (0) ] + C
2[ 	 +

(1 + e cos V)= (1 + e (0) cos v (0)) + E [ ] 	 J + , , , , etc.

Therefore, to the first order of C. Equation (2-36) becomes, when considering

only J2 and '^ (the solution procedure has not yet been extended to higher harmonics):

t.

r

r

7
	 3di	 V"` r e 2 B(0) ^ 1 + e (0) cos v (0) L 	 0	 0)

2 ( 1-e(
0 )dt	 - E 	 7/2	 sin 21 	 sin 2u 	 (4-3)

r 3 B (0)9 J3 ) ( 1+ e(0)  cos v (0) ) 4
+ E	 e	 ( )? 9/2 	 Cos i	 (0)(i') cos u 	 (1-5 sin  i (0) sin  u(0))

^1-e	 )

The solution method begins by assuming that Equation (4-3) has the asymptotic

series solution:

i (t, t) = i (0) (t, t) +Ei I 1 ) (t, t) + ...	 (4-4)

where	 t = t `i + d E2 )	 (4-5)

t = Et	 (4-6)

Differentiating Equation (4-4) with respect to time Yields:

di  8i dt + 81 dt
dt 8t dt 8t dt

i$ (1) dt1	 8i(0)	 8iM	 dt(81(0)
8=_ + Eat	 + .../ dt + Cp-t — + Eg,^	 + .., dt

which becomes upon differentiating Equations (4-5) and (4-6):

di (gE 	 i(1)	 2	 i(0)84(1)
of + E g-^- + ... I (1 + 0f2 E ) + ^8t 	 W-f + ...} 1 E )
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Rearranging in ascending powers of E yields:

(0)	 (1)	 (0)

dt at + E [at —+ 8at !] + f2[ l + ...	 (4-7)

Equating coefficients of like powers of E from Equations (4-3) and (4-7) results

in the following partial differential equations:

8i(0)

0Or	 - 	 (4-8)

( 1)	 (0)	 ^r 2 B (0)7 (1 + e(0) cos v (0)13
ai	 ai	 _ _	 e	 /	 (0)	 (0)

8t + at"
	 (0)2)712	 sin 21	 sin 2u

2 (1-e

v "` 1J2 j e 
(1

r 3 B (0)9 (1 +  e(0) cos v (0)}	 .	 2 0	
2 0 4-y)

+	 - e(0) 9/2	 cos 1 (0) cos u (0) ( 1-5 sin i () sin u ( ) )

The problem has now reduced to solving these partial differential equations.

Equation (4-8) implies that i (0) is either constant or a function of t only. Conse-

quently,

8i(0)	 di(0)at -- = dam— = function of t or constant

In light of Equations (4-8) and (4-10), Equation (4-9) can be reduced to an ordi-

nary differential equation if the constant of integration is considered a function of t.

(4-10)

i
i

4
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The resulting solution in "integral form" is:

	

i(1) _ - di (0) t_ f,Ture 2 B (0)7 (1 + e (0) c;. • v	 sin 2 i (0) sin 2 u (0) dt	 (4-11)
...	 J	 2 7 /2
dt	

2(1 - e (0) )

MJ2 

	 A

	

3 	 (0)	 (0)	 (0)	 (0)	 2 (0)	 2 (0)^irn2 (0)113
r 1 + e cos v	 cos i cos a (1-5 sin i sin u ) dt+	 2

(1 - e (0) )
+ C (t)

where C(t) is the integration constant. Before proceeding to solve the above integrals,

it is desirable to transform the variable of integration from t to v (0) . This trans-

formation is taken to be the standard Keplerian transformation (Reference 6, p. 221).

dv 5(1 + e cos v)2 _ %711B3 (1 + e cos 142

dt	 3/2	 (1 - e2)3/2

Thus,

11	 e(0)2)3/ 2	 dv	 (4-12)dt	 -=	 - 	 (4-12)
B(0)3 (1 + e (0)cos v(0 12

Substituting Equation (4-12) into Equation (4-11) and simplifyi,ig yields

	

(1 ) _ _ di (0) 	

4	
(0)	 (0)	 (0)	 (0) (0)1	 N	 t 2 f	 2 (1 + e cos v) sin 2 i sin 2u dv

dt	 (1 - e (0)2 )

G
+ re3 F r	 B(o) 2 3 (1 + e(0)cos v(0))2 cos (0)	 (0)u(0)

3 (1-e(0))

2(0)	 2 (0)	 (0)i(1 - 5 sin 	 sin u ) dv	 + C (t)

(4-13)

4-11
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Ire order to perform the indicated integration, it is 	 e
(
necessary to know th

dependence of the element functions B (0), e (0) , i (0) and P (recall that u(0)

w(0) + v (01 ) upon v (0). However, these element functions are not yet known - in

fact, the determination of these functions is the goal of the present development.

Therefore, in order to proceed wit'. ► the solution development, it is necessary to

make a simplifying assumption based on the knowledge that the elements B, e, i

and w vary slowly with time as compared to the element y. Specifically, it wilt

be assumed that with respect to a dv (0) integration, the element functions B(0)

e (0) . i (0) and t^ (^ ) are constant. The effect of this assumption on the accuracy

of the resultant solutions can be minimized by periodically rectifying the orbit

and updat';.; the epoch values of the elements. (As discussed in Paragraph 4.5,

an "updating procedure" is used when numerically evaluating the solution

	

equations. )	 i

In "partial consideration" of this assumption, Equation (4-13) can be

written as:

4
d1(0) t + B(0) 

re  
2	 - (1 + e (0) cos v(0) )si,n 2 i (0)sin 2 u (0) dP ) (4-14)

	

^'	 2

	

dt	
2(1 -e (0) )

+ B (5)s J2 re3	
(0)	 0) 2	 .(0)	 (0)	 2. (0)sin (0)	 0	(0)2 3	 (1 + e	 cos	 ) cos i	 cos u (1-5 sin i sin u ) dv( )

(1-e	 )

N
+ C (t)

or in notational form as:

t + K2 (i) I2 (i)+ K (i) I3 (i) + C (t)	 (4-15)
dt

4-12	
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(0)G
K (i) _

B r e (72-)3J2
3	 (1 - e(0)2)3 (4-17)

^y

k

1

(1

where

(0)4 2

K (i) = B	 re 
2	 2 

2(1 - e (0) )

i_

!F{

(4-16)

and

I2(i) 
=J 

(1 -+- e (0)cos v(0) ) sin 2 i (0) sin 2 u(0)dv(0)
	

(4-18)

I3 (i) J (1 + e (0) cos v (0) )2 cos i (0) cos u(0) (1 - 5 sin 2 i (0) sin 2 u(0) ) dv(0)
(4-19)

(NOTE: In the above notation, the subscript on K and I indicates the earth-harmonic

under consideration; the parenthetical (i) indicates the element i. )

Since e (0) , i (0) , and w(0) are considered constant by the previously-stated

assumption, inspection of the integrals given by Equations (4-18) and (4-19) reveals

that each integral can be expanded to a series of single-term integrals of the general

form:

f(e(0), i (0) , w(0)fs in g (0) cosQv (0) (0)(0)	 ( P, Q = 0, 1, 2, ... )

which is directly integrable by "textbook" formulas. Unfortunately, such an

expansion procedure results in many single-term integrals; to solve these by

hand for each of the six elements would be an overwhelmingly laborious task.

However, by utilizing the P Aomated tecim flues of the FORMAC language, a computer

prc ram was written for the IBM 7094 to expand expressions similar to Lquations

(4-18) and (4-19) and then "solve" the single-term integrals by an identification and
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substitution procedure. Basically, the program identifies through an iteru`ion

process, the values cf the exponents Pand (gl occurring in each single-term integrand;

it then substitutes the precoded solution for that particular integral.

In general, the integrated solutions ^o Equations (4-18) and (4-19) will consist

of terms secular in the independent variable v (0) and terms non-secular in v (0);

i. e.,

I2(i) = S2 ( i) V (0) + N2 (i)	 (4-20)

I3 (i) = S3 (i) V (0) + N3 ( i)	 (4-21)

where S denotes the secular terms and N the non-secular terms. The FORMAC

program prints the answer arrays I 2, I 3 , and SS, S3 for each element; since

these arrays are very lengthy, they are presented in Appendix C.

In view of Equations (4-20) and (4-21), Equation (4-15) becomes

i(1) _ - di(0) 
t + K2 (i) S2 (i)v (0) + N2 (i) + K3 (i) S3 (i)v (0) + N3 (i) + C (t)

dt	 I	 [
(4-22)

As shown in Appendix D, the element function v (0) is secularly related to the

fast time -variable t by

V (0) = n(0)t
s	 (4-23)

Hence, the resolution of v (0) into secular and non-secular parts yields

V (0) = vs (0) + v N (0) = n(0) t + vN (0)	 (4-24)

J

i

I

1

's

(

E

i

I
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where v N(0) is the non-secular part of v (0) yet to be determined.

Substituting Equation (4-24) into (4-22) yields

i (1) _ - di (0) t + K (i) S (i)n (0) t + K 
2 

(i) 
I

S  
2 

(i) v
N

 (0)	
22	 2	

+ N (i)^-	 ,
dt

+ K3 (i) S3 (i.)n (0) t + K3(i) IS 3 (i) vN(0) + N3 (i)^ + C (t)

which becomes after rearranging

( 0 )	 l	i(1) _ - di	 + K (i) S (i) n (0) + K (i) S (i) n(0) I t'	(4-25)

	

dt	
2	 2	 3	 3

+ K2 (i)IS2 (i)v N(0) + N2 (id + K3(i) 
I 

S 
3 

(i) vN(0) + N3 (ii1 + C CO

At this point, the first uniformity condition (see Paragraph 4.2) can be imposed.

Essentially, this condition requires that any approximate solution to the element

i not contain a secular term in the fast variable t since the solution to the

differential equation for i did not contain a secular term when E= 0, In order

for this condition to be satisfied, it must be that

[ - L,
(0)

	_ 	 + K2 (i) S2 (i)n (0) + K3 (i) S3 (i)n (0)	= 0	 (4-26)
dt

In view of Equation (4-26), Equation (4-25) becomes merely

i	 K2 (i)I S2(i) vN(0) + N2 )](i+ K3 (i) IS3(i) vN`0) + N3 Od + C (t)	 (4-27)

4-15



Now, as is evident in Appendix D, one method for obtaining the non-secular

part of v(0) (1. e., vN(0) ) would be to evaluate the indicated Fourier series

This is not necessary, however, since Equation (4-24) can be rearranged as

v (0) = v(01 - n (0) tN

and v(0) and n (0)T are known. Thus, Equation (4-27) can be written as

i (1) = K2 (i) IS 2 
(i) v(0) + N2 (i] - K2 (i) S2(1)n(0 ) t + K 3 (i)1 S3 (i) v(0) + N3(i)1

-K3 (i) S3(1) n(0}t + C (t)

which becomes by Equations (4-20) and (4-21)

i (1) - K2 (i) I2 (i) - S2 (i)n (0)t + K3 (i) I3 (i) - S3 (i)n (0 t + C (t)	 (4-28)
 ] 

where K2 (i) and K3 (i) are given by Equations (4-16) and (4-17), and I2 (i), I3 (i), S2(i),

and S3 (i) are obtained from the FORMAC program (see Appendix C). It should

be noted that although the appearance oft in Equation (4-28) suggests secularity,

this secularity is "cancelled" by that appearing in I2 (i) and I3 (i). Consequently,
(1) s non secular in ^i 	 thereby satisfying the first uniformity condition.

Returning to Equation (4-26), it follows that

(0)di	 = K2 (i) S2 (i)n (0) + K3 (i) S3 (,)n (0)	 (4-29)
dt

From the FORMAC results presented in Appendix C

S2 ( i ) = 0	 (4-30)

S (i) = e (0) cos i(0)cos w(0)5	 2.(0))	
(4-31)3	 (1-4sin i

4-16
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-S.4r

Substituting Equations 4-16g q	 (	 ), (4-17), (4-30) and (4-31) into Equation (4-29) yields	 .

di (0) 
_ B(0)6 

\ J2 J ^e 3 n (0)e (0)cos i (0) cos t.: (0) 5 	2,(0)(1 - — sin i )
dt

(0) 
2 3	 4

(1 - e)

This is the first-order ordinary differential equation having t as the independent

variable which was referred to at the beginning of this section. Using a procedure

identical to that .just illustrated for the element i, the corresponding equations

for the remaining elements can be formulated. The set of equations for all elements

is presented below, along with the (approximate) solutions to the equations as

derived in Appendix E. These solutions were obtained by a method set forth in

Reference 16, whereby a and w are considered to vary simultaneously and terms
of the order of e2 (or smaller) are ignored. The constants (A, a, C 19 C 2 , ..., C8)
appearing in the solutions are defined in Appendix E.

Element e

B(0)6 (L3) rc3 n(0) cos J O) sin i(0)
de(0) _	 32	 ^5 sin 2 i (0) — 1^

	

dt	 (1_,(0)2)2	 4	 (4-32)

	

/	 1
2 1/2

e(0) = C
A2 + 2 

C1 A sin (C2 i+ a) +( C2

Element w

1 J
	 (4-33)

L	

`

\

dw(0)	 B(0) 4 re2 
n(0) l2 — 

5̀	
B(0)6	 3	 3 n(0)

dt	 (1—e(0)2)2	 sing i (0) ) +	 (32 
2 e	 25— e(0) sin i(0) sin w(0) cos2 i(0)

	

(1 e( ) ) 3	 L 4
(4-34)

—e(0) csc i(0) sin w(0) + —
L

sin i(0) sin JO) (1-4sin2 i(0) )

^ [ A sin 'C2 t+a) + Cl 1

	

('(0)= tan 1	 C2 
1	

(4-35)
A cos ( C2 t+a)

Element i

di(0) _ B(0)6 (33 )
 re  n(0) e(0) cos i (0) cos JO)

	

d t	
2	

(1—e(0)2)3	
r 1— 4 sin2 i(	 (4-36)

tY:ti'

n
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M

i( 0 ) = (o) + C3 (
a
(o) emi w ro)	 (o) i 

J0 ►\	 (4-37)i	 C
2 	

— e 0 in0

Element 0
(0) 

4
(0)6 (0)	 (0)6 J3(o)	 B	 re2 n	 cos i	 B	 ^^ re° n(0) e(0) in w (0)

d52	 _	 2	 (ctn i (3) - 15 sin 2 i(0)) (4-38)
d t	 (1—e(0)2)2	 +	 (1—e(0)?)3	 8

(0)(° ►
 C5 (e(0)

	(0)	 (0)	 (0 ►1	 r	 Cl	 (4-39)SZ = 52 0	 2 	 cos w — e 0 cos w 0 + I C5 2	
C4/ 

\ t— t0)

Element B
dB(0) = 0	 (4-40)
d 

B( 0 ) = a ( o )	 (4-41)

NOTE: Since

n =,Iµ B,

it follows tnat

(0)(0)3	 (0)3	 (0)
n = 3uB =fu B0 =n0 (4-42)

Element M

d1(0 )	 B(0)4 r 2 n(0)	 4B(0)61 J3Le3.(0)

d t	 (1—e(0)2)3/2 (1 — 2 sin g i (6)) -	 3e( 1`? (0)2) 5!2 [-3e(0)2 sin i (0) sin w(0) (1- 4 sing i(0))° (1—e

+ 4 sin i (0) sin w(0) (1— 4 sing i(0))1	 (4-43)
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(4-44)1((1	 (0)	 (1))t^l^^x	 t 1`;
M	 = n (t - t o )	 M 0	 (('^.	 l	 - 4 C	 ) (t - ► 0

	

2	 2

-	 (o co y m

NOTE: The first term on the right-hand side of Equation (4-44) is the Keplerian

change in M that takes place during the time interval (t-t0 ). When applying the

asymptotic series solution method to Equation (2-39) to obtain Equation (4-43),

the Keplerian variation is ignored since this variation can be solved in a straight-

forward manner from the Keplerian equation

dM

dt - n

Consequently, the Keplerian change must be added to the solution of Equation (4-43).

Element y

As mentioned in Paragraph 2. 1, the element y is obtained by a Fourier-Bessel

expansion involving M and e. To the order of e2, this expansion is (Reference 6,

P. 89)

(0)	 (0)	 (0)	 (0)	 5 (0)2	(0)v = M + 2e sin M + 4 e	 sin 2M	 (4-45)

i
4.3.1.2 Oblateness and Drag

The element a is taken as the representative dement, so it is first necessary

to form the composite differential equation for a when considering oblateness and

drag. Since perturbative forces are additive, this is done by merely adding

Equation (2-35), J2 and J3 terms only, to Equation (2-42). it is then necessary to

expand each element in the composite equation to the first order of E. Using the

expansions presented in Appendix B results in
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de	 f g(0)7 re  (1 + e(0) Co. v (0) ) 3
(1—e(0)2) 7/2 	 [sin v(0) (1 + e(0) cos v (0) ) (1 — 3 sing i(0) sin 2 u(0))	

(4-46)

+ sin2 i(0) sin 2 u (0) ( 2 cos v(0) + e (0) cos2 v(0) + e(0))l
JJ

4	 VVIA
J

g(0)9 	,e3 (1 + e(0) cos v(Oh4
3 e	 (1(0)2)9/2	 I rsin i (0) sin u(0) sin v(0) ( 1 + e(0) cos v (0)) (3 -- 6 sin2 i(0) sin 2 u(0))

— 4 (1-6sin2 i(0) sin2 u(0) )(2cosv(0) +e101 cov'— v(0 )+e(0 )) (cog u(0) gin i(0))l

K*P g(0)4 ( e(0) + cosv(0) ) I I +e(0)2 +2ej 0 ) Co. v(0) ) 1/2	 J
n(0)(I—e(0)2)1/2

The solution method begins by assumingthat Equation (4-46) has the asymptotic
series solution

e(t,t)=e(0)(t,t)+Ee(1)(t,0+...

Following the procedure outlined in the previous section for the element i, the

solution in "integral form" is obtained (corresponding to Equation (4-14):

e	
de(0) _	 g(0 ►4 ^ 2

	

I11--
d t̀ t + (I—e(0)2 	

(1+v(0 ) cos y(0) )reinv (0) (1^e(0) cosv(0 ))(1 3sin 2 iO) sin2 u(0))

+ sir.2 i (0) sin 2 u (0) (2 cos v(0) + e(0) cos2 v(0) + e(0) )l dv(0)	 (4--47)

4 810161 
J3 r 3

+ 3( 1 —e(0)2) 	l3 e I — (1 + e(0) cos v(0) ) 2 (sin i(0) sin u (0) sin v(0) (1 + e(0) cos v(0))

(3 -- 6 sin2 i101 sin 2 u(0))

q (1 — 6 sin 2 i (0) sin2 u (0))(2 co, v (0) + e(0) cos2 v(0) + e(0) cog u (0) in i(0), dv(0)

	

+ K + I1—e(0)2 1	 P(e(0j +cosv(0))(1+e(0)2 +2e(0) Cog v(0)) 1/2
+	 MB(0)2 I-	 (I+e(0) CUB v(0))2	 dv(0) + clt)
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or in notational form as

e(1) _ _ e(0) t + K
2(e) I20) + K3(e) I 3(e) + KD(e) ID(e) + C (t)	 (4-48)

d 

where

$(0)4 re
 2

K2(e) _ 
(1—e

(02) 2	 (4-49)

4 B(C)6(y-3
J 

r 3
2	 e

K (e)	
3

g	 3 
(1—e(0)2)
	 (4-50)

K* (1—e( 0)2)
KD(e ) = 	 µB(0)2	 (4-51)

and

'2(e)=f—(1+ e(0) ,,,,(0))     rsin v(0) (1 + e(0) cos v (0)) (1 — 3 sin 2 i ( ^ ) sin 2 u(0))``	 (4-52

+ sin i(o) sin 2u(0) (2 cos v(0) + e( ^ ) cos2 v(0) + e(0) )] dv(0)

I 3(e) - f —(1 + e(0) cos v(0) ) 2 sin i(o) sin u (0) sin v(0) (1 + e(o) cos v(o)) (3 — 5 sin 2 i(0) sin2 u(0))

— 4 (1 — 5 sin i(0) sin u (0)) (2 cos v(0) + e ( ^ ) cos2 v(0) + e ( ^ ) ) cos u ((' ) sin i(o)1 d,(0) (4-53)

f- P (0 ) + cos 0 ) ) (1 + e(0)2 + 20 ) cos v ( o )) 1/2
I D(e) =

	

	 dv
( 1 +e(o) cos v(p))2

(NOTE: In the above notation, the numerical subscript on K and I indicates the

earth-harmonic under consideration, the subscript D indicates drag, and the

parenthetical (e) indicates the element eo )
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Since e (0) , i (0) , and w(0) (recall that u (0) = w(0) + v(0) ) are considered constant

by the previously stated assumption, inspection o f the integrals given by Equations

(4-52) and (4-53) reveals that each integral can be expanded to a series of single-

term integrals of the general form

f(e (0), i (0) ,	 w(0) )
J

sin v(0)cosQv(0)dti,(0)	 (P^ Q = 0, 1, 2,.....

which is directly integrable by "textbook" formulas and, therefore, the FORMAC

program.	 However, in order to readily integrate Equation (4-54), it is convenient

to employ the binomial series approximations

(0)2 	(0)	 (0) 1/2(0)	 (0)	 (0)2	 2	 (0)+	 + 2e	 1 + e	 cos	 + 1/2 a	 sin	 +...(4-55)(1	 e	 cos v	 )	 -	 v	 v

2
-2	

2 v (0)(1 + e (0) cos v (0) ) = 1 - 2e (0) Cos v(0) + 3e (0) Cos	 + ....(4-56)
x,

It is also necessary to know the functional. dependency of atmospheric density

upon true anomaly v(0) , In the past, this dependency has been established by
s

using very p imple models of atmospheric dersity, such as an exponential model or

a power-law model.	 Though convenient to work with, these types of models do not

} provide realistic simulations of the actual environment since they are structured

to represent the variation of density with altitude only. 	 Density actually varies
`Lr

with solar and geomagnetic activity, time of year and position rela^ive to the

sub-solar point (diurnal bulge), as well as with altitude.
Ik

Realistic simulations of long-term satellite motion must include these additional

variations in the density model.	 For example, using a simple density model (the

1959 ARDC) to compute the lifetime of Satellite 1961E results in a lifetime of 179.1

days.	 The actual lifetime was 525.5 days - an error of 66%! On the other hand,

using a realistic model (the 1970 Jacchia) produced a lifetime of 537.9 days; an

error of only 2.4%.
r

The difficulty with using a realistic density model is in express{ng density as

a function of true anomaly. An examination of the 1970 Jacchia model shows
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how complex a realistic model is and, consequently, how difficult it would be to

implement directly inte .a general perturbation technique. Yet, in order for the

general perturbation technique to be as accurate as numerical solutions, it is

desirable to use the 1970 .Jacchia model.

A rather unique approach to the use of a realistic density model is taken in

this study.	 Specifically, the variation ofd, with v 	 approximated by the Fourier

series

40	 0
p = 1/2 a0 +^ [ ak cos kv ( ) + b 	 sin kv ( )]	 (4-57)

k=1

where a ,	 and b	 are Fourier coefficients deter,..ined in the following manner:
-0	 -k

- A table of density values is computed for intervals of true anomaly around one

orbital revolution by numerically evaluating the 1970 Jacchia model. 	 Integrals

associated with determination of the Fourier coefficients are then computed by the'

Ft
Trapezoidal Rule.	 (It was found that the Fourier series using coefficients

through a4 and b4 give sn excellent approximation to the functional dependency of

density upon true anomaly. )

Because of the dynamic nature of the density function, the series approximation
R.

will not hold for long periods of time. 	 (In fact, this is one area in which further

study is recommended - see Section 6.) The length of time depends somewhat upon

the amount of resolution in the density input data (solar flux, geomagnetic index,

tetc. ) and upon the orbital conditions.	 For instance, if daily values of solar flux

and heating parameters are used, the series would need to be evaluated at least

daily.	 If the orbit is in a state of rapid decay, the series could require more

frequent evaluation.	 As discussed in Paragraph 4.5, the Fourier coefficients are

tupdated at required intervals when numerically evaluating the solution equations.

4-23

6



Returning to the solution procedure and substituting Equations (4-55) through

(4 -57) into Equation (4-54) yields

0	 0	 0	 0

	

TD (e)(1/2 a0 + al cos v( ) + ...+ b4 sin4 v( )	 )1 (e ( + cos v )) (4_58)

(1 + e (0) cos V(0) + 1/2e (0)2 sin 2 v(0) 1 (1 - 2e (0) Cos v(0) + 3e (0)2 Cos 2 v(0) } dv(0)

The FORMAC program is utilized to expand Equations (4-52), (4-53) and (4-58)

and then "solve" the single-term integrals. In general, the integrated solutions

will consist of terms secular in the independent variable v (0) and terms non-secular

in v(0) -. i.e.,

I2(e) = S2 (e )v(0) + N2 (e )	 (4-59)

(0 ).,,	 I3(e) - S3 (e)v	 + N3 (e)	 (4-60)

(0)
ID(e ) = SD(e )v( + ND(e )	 (4-61)

where S denotes the secular terms and N the non-secular terms. The FORMAC

program prints the answer arrays I2, I3, ID and S2, S3, S D for each element;

since these arrays are very lengthy, they are presented in Appendix C.

In view of Equations (4-59) through (4-61), Equation (4-48) becomes

(1)	 de(0) -	 (0)	 (0)
e = -	 t + K2(e) S2(e)v + N2 (e)+ K3 (e) S3 (e)v + 

N3 
(e)

dt

+ KD(e) SD(e)v (0) + ND(e) l + C (t)	 (4-62)
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As shown in Appendix D, the element function v (0) is secularly related to the

fast time-variable t_ by:	
P s(0)= n(0) t	

(4-23)

Hence, the resolution of v(0) into secular and nonsecular parts yields:

v(0) = v( 0 ) + v(N = n(0) i + v(0)	 (4-24)

where 'V(0)N is the nonsecular part of v(0) yet to be determined.

Substituting Equation (4-24) into Equation (4-62) and rearranging yields:

(4-63)
re(1) = 11— dad

(0) + K2 (e) S2 (e) n(0) + K3 (e) S3 (e) n(0) + KD (e) SD (e) n(0) l t

• K2 (e) [S2 (e) v(N + N2 (e) + K 3 (e) S3 (e) v(N + N3 (e)I	 I
• KD (e) I SD (e) ° N + ND (e) I + C (1)

At this point, the first uniformity condition (see Paragraph 4.2) can be imposed.

Essentially, this condition requires that any approximate solution to the element e

not contain a secular term in the fast variable t ; since the solution to the differential

equation for a did not contain a secular term when e = 0, In order for this condition

to be 

(

satisfied, it must be that:	

lI de(o)  + K2 (e) S2 (e) n(0) + K 3 (e) S3 (e) n(0) + KD (e) SD (e) n(0) I = 0
J	 (4-64)

In view of Equation (4-64), Equation (4-63) merely becomes:

(4-65)

e(l) = K2 (e) t S2 (e) v( N + N2 (e) I + Kg (e) Sg (e) v(N + No (e) I

+ KD (e) 
I 

SD (e) v( N0) + ND (e) I
J 

+C 6)
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Now, as is evident in Appendix D, one method f or obtaining the nonsecular

part of v(0) (i. e. , v(N ) would be to evaluate the indicated Fourier series. This is

not necessary, however, since Equation (4-24) can be rearranged as:

V 
N 

(0) = v (0) - n(0) F

and v(0) and n(0) t are known. Thus, when considering Equations (4-59) through

(4-61), Equation (4-65) can be written as:

e(1) = K2 (e) I2 (e) — S2 (e) n(0) i + K3 (e) I3 (e) — S3 (e) n(0) t	 (4-66)

F:
+ KD ( e) I ID ( e) — SD (e) n(0) t + C (t)

It should be noted that, although the appearance of in Equation (4-66) suggests

secularity, this secularity is cancelled by that appearing in I
2
 (e), I

3
 (e), and

1I D e). Consequently, e ( ) is nonsecular in t . , thereby  satisfying the first uniformity

condition.

Returning to Equation (4-64), it follows that:

de(0) = K (e) S2 	 n(0) + K	 (0) +	 ()	 4 67
dt	 2	 2	 3 (e) S3 (e) n	 KD (e) SD (e) n 0	 (	 )

From the FORMAC results presented in Appendix C:

S2 (e) = 0	 (4-68)

S3 (e) =-Is in i(0) cos w(0) (1 —e(0)2 ) (5 sing i(0) — 1)	 (4-69)

SD (e) _ (— .!a1 + 2 b3) + (— 4 ao +4	 a2) e(0 ) 	 (4-70)

(Recall that a0, a 1 , a2 , and b3 are the Fourier coefficients appearing in the density

function approximation.)
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Substituting Equations (4-49) through (4-51) and Equations (4-68) through

(4-70) into Egpiation (4-67) yields:

de( ) 

__ B(0)6 ( 
I re n(0) sin i(0) cos w(0)0	 .2	

5 sing i(0) —1dt	
-	

(1—e(0)2)2	 4

n(0) K* (1—e(0)2)+ — (0)2	 ( 2a1+2}31+(-4a0+4a2)e(0)

This is the first-order ordinary differential equation having t as the independent

variable which was referred to at the beginning of this section. Using a procedure

identical to that just illustrated for the element e, the ^orresponding equations for
the remaining elements can be formulated. The set of equations for all elements

is presented below, along with the (approximate) solutions to the equations as derived
in Appendix F. The constants (a, b, c, X 1 , X2 , C 19 C2, ... , C8' D2' '0' s1' b-1'
b0 and b1 ) appearing in the solutions are defined in Appendix. F.

I tF It
Element e

de(0) 
B(0)6(J3 ) re3 n(0) sin i(0) cos w(0)is	

2Zt	 dt =	 (1—
e(U)2)2	 ( sin2 i(0)

4
(4-71)

0+ n^ ) K B110)Ze(0)2) — 
2 a

1 +
2	

b3) + (--Lao
4 

	
+ 1 a2/

e(0
µ 	 / 	 /

ar

z:

I
	 e(0) = (E2 + ,n2)1/2	

(4-72)i
1

L

where = exp 1X 1 cos c t + X2 sin c t ] — ab
b2 + c2

bt
'? = eXp [— Xi sin c t + a2 cos c t ] — ac

b2 + ^2
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Element w

	4	 B(0)6 \ 
3 r 

3 n(0)
dw(0) $ B(0) re2 n(0) ( 

2-b sing i(0), +	
J2 

a	 35 e(0) sin i(0) sin w(0) cos2 i(0)
dt	 (1-e(0)2)2	 \	 2 (1-e(0)2 )3	 ( 4

	

_ (0 )	 (0 )	 (0) 
e1	

(0)	 (0) (	 ^ 2 (0)t^	 (4-73)
e csc i sin w +— sin i sin w	 1--sin i/

+ n(0) K* (1-e(0)2) -1 b - 3 b +-I b2

	

B( 0 )2 e(0)µ	 2 1 2 3 4 2	 1

w(0) = tan-1 ^/

	

T	 (4-74)

where g and n are given on the previous page.

Element i

B(0)6 (±3) r 3 n(0) e(0) cos i(0) cos w(0)

di	 (1-e(0)2J2 a (0)2 3	
(1 _4 in2 i(0)/
	

(4-75)
(1-e	 )

( 0) = •(0) C3	 ( 0 )	 (0) - (0 )	 (0)1	 (4-76)
i	 1 0 + C2 a sin w	 e 0 sin w 

0 (
Element t?

(p)	 B(0)4 r 2 n(0) cos i(0)	
B(0 )

6 ( J3) re 3 n( 0) e(0) sin w(0)	
(4-77)

/

	

do	
- -	

e (
	 +	

J2	 tctn i(0) - 1-5 sin 2 i(0)
	di	 (1 e()2 ) 2	 (1-e(0)2 ) 3

St(0) _ n ( ^)- CZ
\

e(0) cos w(0) - e( 0) co s w(^) l +(C5 CZ - C4 (t- t0)	
(4-78)
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Element B

°	 1	 -

	

dB( 0
) 26(O Kµ [2 0

+a1 2b3 (0)	 479

	

) a 
JJ	

(	 )

(0)
	 0	 (

B(0) • 2 2 (Q0 +01 e( p ) (i — i 0 ) + B(0)	 4-80)

NOTE: Since
n ,u B3

'	 it follows that

n(0) =V-,u-B(0)3
	

(4-81)

Element M

4B(p)6 (J3
,LM(0)	 B( O)4 re2 n(0) 1-3 sin	

—e(0)i
g i(0)1—	 J2^ a 3 n(0) ( 3e(( sin i(p) sin w(0) (1-4 in i(p))

di i (1—e(0)2 )3/2' 2	 / 3e(0) (1 )5/2 L—

4 sin i(0) sin w(0) ^1 — 4 sing 
i(0)/ J + n(0) K B(0)2 µ0)2L l ( 2 b1 + 2 b3) a O) + ( 2 b1 + 4 b2 + 2 b3/

+ `16b1 2b2+16b3/e(0)I (4-82)

(yl(0) . rn(0) (t_b)^ + M(0) + [C6 +(4C7 — Cg) 2 + 2 + D2b (0) +b 0 +b 1 e( p )^  1ep

ebt	
(4-83)

—(4 C1—C8)Ib2p 2 i(x 2 c—a 1 b) sin ci+0 2b+X jc) cos ctj

b tp	

l— exp I(x2c—alb) sin ct 0 +02b+X 1 c) Cos ctll
b2 + c2 (	 J

11OTE: The first term on the right-hand side of Equation (4-83) is the Keplerian

change in M that takes place during the time interval (t - t0).
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Element v

As mentioned in Paragraph 2. 1, the element v is obtained by a Fourier-Bessel

expansion involving M ana e. 	 To the order of e?,	 , expansion is (Reference 6,

v(0) = M(0) + 2 e(0) sin M(0) + 5 e(0)2 sin 2 M(0)	 (4-84)
4

4.3.2.	 Obtaining the Second Approximations to the Solutions

It so happens that the second approximations are very nearly obtained during

the process of deriving the first approximations, since the super-one solutions are

merely functions of the super-zero solutions and an integration constant.	 The pro-

cedure for completing the derivation of the second approximations will now be

illustrated.	 As mentioned at the beginning of Paragraph 4.3, and as will be more

thoroughly discussed at the end of this section, drag need not be considered since

the super-one solutions due to drag are negligible. i

The element i will again be considered in detail as a representative element.

Recall Equation (4-28):

P ) = K2 	I2 (i) — S2 (i) n(0) t	 + K3 (i) f I3 (i) — S3 (i) n(0) t	 + C (t )2	 ^	 ^	 ^	 (4-28)
11

0
where K2 (i) and K3 (i) are given by Equations (4-16) and (4-17), n () is given by

Equation (4-81), anJ I2 (i), I3 (i) , and S3 (i) are obtained from the FORMAC program j

(see Appendix C). 	 Hence, once the first approximations are known, i (1) can be

computed from Equation (4-28) after the constant of integration C (t) has been deter-

mined.	 In theory, a second application of the first uniformity condition (see Para-

graph 4.2) would provide a means of determining C (t); unfortunately, this requires

at least a partial formulation of the third approximation (see Paragraph 4.3.3).
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To readily proceed with the solution development for i (1) , it is convenient to

make a simplifying assumption based on the supposition that C(), being a function

of the slow time-variable t , is slowly varying itself. Specifically, it will be assu med

that C(t) is a constant, C. The effect of this assumption can be minimized by periodi-

cally rectifying the orbit and updating the epoch value of this constant. (As discussed

in Paragraph 4. 5, an updating procedure is used when numerically evaluating the
N

solution equations and, as shown in the plots of Appendix H, the C(t) for each element

remains sufficiently constant over time intervals which are not extreme. Further-

more, as discussed in Appendix G, these plots well describe the functional form of

the C(t)'s obtainable when considering the third approximation.

In considering this assumption, Equation (4-28) can be written as:

P)i(1) = K2 0) [ I2 (i) — S2 (i) n(0) t 
J + 

K3 0) 113 0) — S3 (i) n(0) t + C	 (4-85)

The constant C can now be evaluated from initial (or epoch) conditions. From Equation

(4-14), it can be seen that C is the constant associated with a dv(0) integration in

which all other element functions are considered constant. So, at epoch time to,

Equation (4-85) becomes:

i(1) = K M l I (i) -- S (i) n(0) t l+ K0	 2	 2	 2	 3 0) 
1

13 ( i ) — S3 0) n(0) t 
t0 + C (4-86)

1	 I

where
- -t0

indicates that the functions of v (0) within the bracket are to be evaluated using the

epoch value v (0 ). Functi -)ns of the other elements (such as sin Jo) ) are evaluated

using current values. For example:

[sin w(0) cos v(0) )
ti 

= sin w(0) cos v(0)
0
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(The FORTRAN program discussed in Paragraph 4.5 employs a procedure for

updating this epoch value.)

In view of Equation (4-86), Equation (4-85) becomes:

i(1) = i( 0) + K2 (1) 112 (i) — S2 (i) n(0) t I + K3 (1) 113 ( i ) — S3 ( i ) n(0) t,	 (4-87)

I
K2 0) 1 12 0) — 82 (1) n(0) t ' + K3 (1) 13 (1) — S3 (i) n(0) t 

IJt0

Since K 2 and K 3 are not functions of vp (0) , Equation (4-87) can be written as:

i(1) = i(0)+K20)  112 (i) — 52 (1) n(0) t + K3 (i) 113 
(i) — 

S3 (i) n(0) t

— K2 (i) 
I12 (i) — S2 (i) n

(0) t I t — K3 (1) 	 (i) — S3 (i) n(0) t -0 	 1 13	
I t0

or more concisely as:

i(1) = i(10) + K2 (i) 112  (i) — 82 (i) n(0) t 
I t + K3 0) ( I3 (i) — 53 (1) n(0) i 

J 
t	 (4-88)0

J 0

where K 2(1) and K 3 (1) are given by Equations (4-16) and (4-17), n (0) is given by
Equation (4-31), and I 2(1), I 30), S 2(1) and S 3(1) are obtained from the FORMAC
printout (see Appendix C).

To this point, the solution for 0 ) has been considered in notational form. For

a more revealing look into the actual solution, it is necessary to substitute Equations

(4-16), (4-17), and (4-81) and the FORMAC results I 2(1), I 30), S2 (I), and S 3(1) into
Equation (4-88). The solution resulting from these substitutions is presented in
Equation (4-89).

Using a procedure identical to that just illustrated for the element i, the cor-

responding equations for the remaining elements can be obtained. The equations for

all six elements are summarized in r,,tational form following Equation (4-89).

4-32

1
1
1
i
1
1
1
1
1
1
i
1
1
1
1
1
1



Q
^

..,
a

O

•^
o

0
o

,^
c

• Ĉ
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Element e

e(1) = e(0)+ K2(e) [I2 (e) — S2 (e) n(0) t J o+ K3 (e) [I3 (e) — S3 (e) n(0) t]t 	(4-90)
0

8(0)4 , 2
K2 (e) = (1 _e(0)2)2(4-91)

4B(0)6 J3) r 3

K3 (e) =	 1 J` e

	

3 (1—e(0)2)3	 (4-92)

Element w

w(1) = w(1) + K (w)

	

	 w n(0) - t	 t[I0	 2	 2 (w) — S 2 ( )	 t JtO+ K3 (w) 1I3 (w) — S 3 (w) n(0) t] t0 (4-93)

B(0)4 r 2K2 (w) = 
e(0 )	 (0)2)2	 (4-94)

(1—e

_ 

B(0)6 LJ3)
K3(w)_ 	 e

	

d(0) (1—e(0)2)3	 (4-95)

Element i

i(1) = i(l ) + K,) (i ) iI ( i) — S (i) n(0) t t + K	 (0) _ t2	 ] t	 3 ( i ) [ I3 ( i ) — S3 (i) n	 t] L	 (4-96)0 0

B(0)4 r 2K2 (1) =	 e _	 (4-97)2 (1—e(9)2)2

B(0 )6 J3 ` r 3

K3 ( i ) °	
J2^ 

a	
(4-98)(1—e(0)2)3

Element

S20) _ f2(0 ) + K2 (^) [ I2 (SZ) — S2 (SZ) n(0) t] t + K St I. SZ — S S2 n(0) t0 3 ( ) [ 3 ( )	 3 ( )	 t]t	 (4-99)
0

2B(0)4 r 2
K2 (2) =	 e	 (4-100)

(1—e(0)2)2

(0)6 J3 	 3

K3 	 = B

	
J2 ) re	

-3	 (0 2 3	 (4 l_i)1)
(1—e ) )
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Element B

B(1) = B(0) + K2 (B) [12 (B) — 82 (B) n(0) 
t]t 

+ g3 (g) [ 13 (B) - S3 (B) n(0) t] t	 (4-102)
0	

t0

B(0)5 r 2K2 (B) _
	 ( 0)2)3	

(4-103)
(1—e

4B(0)7 1 _u 	 r 3

K3 (B) _	 ^ J2  e (4-104)
3 0. —e(0)2)4 

Element M

M(1) = M(0 + K2 (M) 1I2 (M) — S2 (M) n(0) t] t + K3 (M) 1I3 (M) — S3 (M) n(0) t] t (4-105)
0	 t0

B(0)4 r 2
K2 (M) =	 e	 (4-106)

e(0) (1—e(0)2)3/2

4B(0)6(M)
K

	

	 re3(M) = — 3	
(0)	

(4-107)

3e (1—e(0 )2 )5/2

As discussed in the beginning of Paragraph 4.3, the second approximations to

the solutions are then formulated as

e = e(0) + e e(1)	 (4-108)

w = w(0) + e w(1)	 (4-109)

i = i(0) + e 1(1)	 (4-110)

S2 = S2 (0) + e S2(1)	 (4-111)
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B = B(0) + e B( 1 )	 (4-112)

}

M = M(0) + e M( 1 )	 (4-113)
The second approximation for true anomaly v is obtained by a Fourier-Fessel

expansion involving M and e. To the order of a 2 , this expansion is (Reference 6,

p. 89)

v=M+2e sin M+4 e2 sin 2M	 (4-114)

where a and M are given by Equations (4-108) and (4 -113), respectively.

As mentioned at the beginning of this section, the super-one solutions due to

drag are negligible. This fact is illustrated by the following consideration. The

second approximation to the total solution has the form:

E = E(0) + e E(1)

where E represents any orbital element in the set (B, e, i, C2, w, and M). The eE(1)

terms are short-periodic (see Paragraph 4.3.4) and are composed of integrals of the

form:

E(1) = K2 	(0)	 (02 ( ) J [Periodic] d v + K3 (E) j [Periodic) d v ) + KD (E) j [Periodic] d P(0)

where K2 (E)is the constant associated with J 2 effects, K
3
 (E)the constant associated

with J 3 effects, and KD(E) the constant associated with drag effects. Since

the above integrands are composed of trigonometric functions which do not

yield overall solutions secular in v (0) , the integrated terms will be trigonometric

functions having amplitudes proportional to the respective constant K2(E), K3(E) or

KD(E). An order-of-magnitude analysis has revealed that KD(E) is considerably

smaller than K
2 
(E)and K3 (E) for each element. Specifically, for a low-eccentricity

orbit (e = 0.0055) and a C D(A/m) of 0, 02 rn /kg, the relative magnitudes of these

constants were found to be approximately:
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1

1
1
1
1
1
1
i
1
1
1

E eK2(E) eK3(E) eKD(E)

B 1x10-5 2x10-8 0.8x10-16

e 1x10-3 1x10-6 0.9x10-14

X, 8. 8 deg 0.009 deg 0.9 x 10-10

M 9.0 deg 0.009 deg 0.9 x 10-10

Because eK D(E) is 10 to 11 orders of magnitude less than eK 2(E) and 8 to 9

orders of magnitude less than eK3 (E), it would appear that drag effects can justi-

fiably be neglected in deriving the super-one solutions. To verify this, a computer

run was made for the elements B, e, and Lu in which even the super-one solutions

due to J were neglected. As expected, there was very little difference in the super-

one solutions with and without the effects of Jam . Consequently, there would be even

less difference in the super-one solutions with and without the effects of drag.

4.3.3 Procedure for Obtaining the Third Approximations to the Solutions

The third approximation of the soluticn for any element E has the form:

E = E(0) + e E(1) + e 2 E(2)

Procedures for obtaining the E (2) solutions have been established when considering

oblateness only, but as yet have not been executed to the point of completely deter-

mining the third approximations. These procedures are outlined in this section.

Included within their development are the steps necessary to obtain expressions

for C(t); a detailed discussion of these steps is given in Appendix G.
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The procedure begins by further expanding the basic differential equations of

satellite motion (Equations (2-34) through (2-39)) to the order of E These equations

will have the form:

dE = e f ( E(0) ) + e2 8 ( E(0) , E(1))dt

Specifically, for the element is

dt = e fi (B(° ) , e (°) , i(°), w(°), v(0)) + e2 gi (B(0) , B(1) , e(0) , e(1) , i(0) , i(1) , w(0) , w(1) , v(0), y(1))

(4-115)

which is a functional extension of Equation (4-3). The asymptotic series solution for

i has the form:

i (t) = i( °) ( t) + e i(1) (t, t) + e2 i(2) (t, t)	 (4-116)

where	 t = t (1+a2 e2)

t =et

Differentiating Equation (4-116) with respect to time yields

+e a i(1) + a i( °) + e2 a i(2) +a , a i( °) + a i(1)I

	

dt_ -	 -	 at	 at	 t at	 at I	 (4-117)

	

a t	 at	 l	 `

which is an extension of Equation (4-7). Equating coefficients of like powers of e

from Equations (4-115) and (4-117) results in three partial differential equations to

be solved (two of which are the same as before):

-Li(0)  = 0	 (4-8)
at
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a i(1) +_3 i(0) = f.	 (4-9)
at	 at	 '

a i(2) + "' a i^ (0) .4 a i(1)
a t	 t a t	 a t	 g'	 (4-118)

Solving Equations (4-8) and (4-9) produced second approximations in which it was

necessary to assume the integration constant C(t) to be a true constant (see

Paragraph 4.3.2). Solution of Equation (4-118) will permit the functional determina-

tion of C(t), as well as a partial determination of i (2) . (Thus, the process of obtain-

ing the higher-order solution E (2) serves to complete the E (1) solution.)

Equation ;4-118) will now be considered in more detail. Equation (4-8) implies that

i (0) is a function of t only, thus:

a i( 2) + a i(i) 
= 91	

(4-119)

at at

The solution for i (1) is composed of terms nonsecular in t and a function which depends
N

only upon t, i.e., from Equation (4-28):

P ) = fN ( E(0) ) + Ci (t)

where	 fN - K2 ( i) f 12 ( 1) — S2 (i) n(0) t I + K3 (i )
113 (1) — S3 (

i ) n(0) t
JL

Equation (4-119) can, therefore, be written as

ai(2) + afN +dC_..M=9.	 (4-120)
at	 ac	 dt
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The solution of Equation (4-120) can he obtained by the same procedure used to solve

Equation (4-9). Thus:

af	 d Ci Mi(2)	 f 'N d t	 j + f gi d i + C- ( i)	 (4-121)
at d

where C! (t) is a constant of the t integration associated with the i (2) solution. At

this point, It Is necessary to again apply the first uniformity condition. Terms

secular In t are collected in Equation (4-121) and set equal to zero, yielding:

d Ci (t)	 a f
t=f gi dt-f	 dt	 (4-122)

d 	 sec.	 seC77t
N

This equation allows the functional determination of C(t), and its solution is discussed

in Annendix G.

The 
1 
(2) solution thus becomes only a function of terms nonsecular in t and the6r . 	-

!tf, - inteeration constant. I. e-.

i(2)	 f 1—fN d i + f9i d i + C ( t )	 (4-123)
N.S. a t	 N.S.

These nonspeular terms can be evaluated by the same technique used to arrive at

Equation (4-28). Again, the integration constant, C,' (t), must be assumed truly con-

stant or determined from the E (3) solution.

The procedure for computing the complete E(2) solutions, as outlined above,

is relatively straightforward; however, it involves many long expressions and taxes

even the capabilities of FORMAL. It is uncertain at this point what benefits would

be derived, in relation to the work involved, by obtaining the complete E (2) solutions.

As will be discussed in Paragraph 4.3.4, element solutions are composed of

short-periodic, long-periodic and secular components. Secular and long-periodic

terms are the most important in long-term ephemeris prediction, and these terms

tre presently contained entirely within the E ( 0) solutions. The short-periodic terms,A6
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on the other hand, are contained entirely within the E (1) solutions. It is anticipated

that the C(t)s will add t secularity to the E (1) solutions; however, the E (2) solutions

will be purely periodic until the E (3) solutions are evaluated, at least to the point of

determining C'(t). 'Thus, the E(2) terms will, most likely, only add terms on the

order of e 2 to the periodic solutions. Since these indications have not been com-

pletely verified, it is recommended that the nature of the E(2) solutions be further

investigated before undertaking the laborious procedure of completely solving for

them.

Undoubtedly, carrying the E(2) solution procedure to the point of determining

C7 for each element would yield certain benefits. For instance, having a functional

expression for each C(t) would eliminate one requirement for periodically updating

the epoch values of the elements and associated parameters. (Since each C(t) is

presently assumed constant, it is one of the parameters that must be periodically

updated.) A second benefit would result from the fact that second-order J2 and JJ

secular effects could most likely be represented in the overall solutions via C(t).

(The importance of these eff-cta is discussed in Section 5.)

4.3.4 Physical Interpretation of the Solution Components

The analytical investigation of perturbational effects on a satellite shows that

(Reference 3, pp. 361-362):

1. Certain elements experience secular variations from their epoch

values, as well as periodic variations about these epoch values

2. Other elements have only periodic variations.

Earth oblateness, for example, causes secular variations in the elements n,

w and M, and very small periodic variations in all the elements. Similarly, atmos-

pheric drag causes secular variations in B (or ^, a and M, and very small periodic

variations in all the elements.

i

i

t
0
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Among the periodic variations, a distinction is made between long-periodic

variations (periodic v^th respect to u, or multiples of x) and short-periodic variations

(periodic with respect to linear combinations of v and w). To visualize these effects,

	

i
	

consider Figure 4-1. The superposition of all variations depicted in Figure 4-1 yields

what is referred to as the osculating element. Consequently, the set of osculating (or

	

i

	
instantaneous) elements defines the continually changing elliptical orbit.

	

t	 (disregarding, for the purpose of this discussion, the Keplerian variation in M(0))

Inspection of the solution equations for c(0), w (0) , i (0) , 2(0), B(0) and M(0)

reveals that these solutions are secular with respect to_ 	 periodic with respect

to W. Consequently, these solution components represent a superposition of the

secular and long-periodic variations depicted in Figure 4-1, and, as such, represent

the mean elements. (A mean element is normally defined as the osculating element

minus the short-periodic variation; however, as discussed in Appendix I,. there are

	

i	 other convenient definitions for a mean element.)

Inspection of the solution equations for e(1), w(1) , i (1) , 0(1), B(1) , and M(1)t
reveals that these solutions are short-periodic. Consequently, these solution components

represent short-periodic variations of the elements about their mean values.

In summary, letting E denote any element in the set (B, e, i, il, uu and M), the

physical interpretation of the solution components is as follows:

E	 E(0)	 +	 cE(1)
i

short-periodic variation about the mean

mean value of the element

osculating value of the element

(NOTE: Since the E (2) solution components have not been derived, they are not depicted

above. As discussed in Paragraph 4.3.3, it is anticipated that the F. (2) component will

add secularity (with respect to the slow time-variableD to the E 	 through

t	 the constant of integration C(-t).)
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Figure 4-1. Typical Orbital Element Variations
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4.4 SYNOPSIS OF THE FORMAC PROGRAM USED IN OBTAINING THE ASYMPTOTIC
t'	 SERIES SOLUTIONS

As was indicated in Paragraph 4. 1, general perturbation methods require a

great amount of analytical labor in formulaUng and integrating the equations of

motion. Equations such as (4-18) and (4-58), for example, involve a large number

of integrals of the form:

j sin P x coo Q xdx	 (P,Q=0,1,2,...)

While these integrals are basic, each generally requires several tedious

recursions in its analytical evaluation.

In addition, more complex integral forms may arise, such as

K f sin P x cos Q x dx (N-1,2,...)
(1+e cos x)N

(
4a	 To alleviate the analytical labor required in performing numerous evaluations

of both integral forms, an IBM 7094 FORMAC program (IDIGTE) was developed which
f

provides the required expansion and integration capabilities. This program consists

of a FORMAC driver and a set of subroutines which effect the required integrations.

The driver performs all required manipulations of each input integrand, determines

the integration parameters P. % N and the "constant" IS and then transmits these

quantities to the driver routine of the integration package (the set of routines which

perform the required integrations). The integration package driver then identifies

the integrand involved, makes any necessary variable transformations, and calls

upon the proper subroutine to carry out the integration.

The complete solution of an integrand usually requires solving several s:!b-

integrals (special cases), and each integration package subroutine is designed

to integrate a given type of subintegral. Basically, each integration is carried

out by substituting the prederived and precoded solution fur that particular integral

4-45



I
	

i

t

(I. e. , the integral determined by the values of Pand N,. These "integrated"

results are then transmitted back to the integration package driver (where inverse

transforms are performed, if necessary), and the results passed on to the FORMAC

driver for simplification and output.

A detailed description of this program is provided in Reference 17.

4.5 SYNOPSIS OF THE GENERAL PERTURBATION FORTRAN PROGRAM FOR
NUMERICALLY EVALUATING THE ASYMPTOTIC SERIES SOLUTIONS

A FORTRAN double-precision computer program (GENPUR) has been developed

for the UNIVAC 1108 to numerically evaluate the analytical solutions derived

In Paragraph 4.3. Currently, the program reflects only those perturbations due 	 =

to earth oblateness (J2 and Jam) and tangential atmospheric drag, but it is structured

to readily accommodate additional perturbations, such as higher-order harmonics,

low-level thrusting, solar radiation, etc. At user option, asymptotic series

solutions, through the second approximation, can be eva: rated when considering

	

	 R

t
either earth oblateness or the combined effects of oblateness and drag.

As indicated in Paragraph 4.3, certain assumptions were made in order to effect
1

the integrations involved and to evaluate the corresponding integration constants.

These assumptions appear to be physically reasonable, if they are considered to

hold over time intervals which are not extreme. With this in mind, the program is

structured to make use of an updating scheme, whereby the solutions evaluated over

a 6 ven time interval (At) are expressed in terms of constants and epoch values of

the elements (both osculating and mean) computed at the beginning of that time

interval. These solutions are then used to recompute the constants and epoch
t

values prior to the solution evaluation over the next time interval. Included in this

scheme is a procedure for updating the Fourier coefficients appearing in the series

approximation to the atmospheric density function (see Paragraph 4.3.1.2). At the

beginning of each time interval, these coefficients are evaluated by using the 1970

Jacchia atmospheric density model.
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Even though the asymptotic solutions do not yet include J 4 and second-order J2

perturbations, estimates of these effects for the eleif ents w , P and M were

temporarily implemented using Brouwer's solutions (see Section 5) to make meaning-

ful comparisons with actual satellite data.

A complete description of this program (referred to as the GENPUR program) is

provided in Reference 18.
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SECTION 5 - COMPARISON OF RESULTS FROM THE GENERAL
PERTURBATION PROGRAM

The asymptotic series solutions through the second approximations have been

implemented into a computer program (GENPUR).	 Output of the GENPUR program

consists of mea.i elements (E (0) ) and osculating elements (E (0) + E E (1) ).	 (As dis-
c 3^

t.c:.
cussed in Paragraph 4. 3.4 and shown in Appendix H, the mean elements contain the

very important long-periodic and secular effects, while the osculating elements result
T`.±

,ff~ from adding short-periodic effects to the mean elements.) The purpose of this sec-

tion is to thoroughly discuss and compare the results obtainable from GENPUR.

The comparison of GENPUR results is conducted in two parts. 	 First, the

validity of the mean element solutions over long time periods is established by a

;	 . comparison with mean elements derivea "rom Smithsonian tracking data, along with

corresponding solutions from the MSFC Orbit Lifetime Program.. 	 Numerical integra-

tion programs such as COWELL and ENCKE would have been ideal for this comparison,

but they are restricted in their application to relatively short time intervals (20 days).

On the other hand, use of elements derived from tracking data provides the opportunity

of observing the actual behavior of an orbit, since there are usually small forces in an

a=
actual environment that are never modeled. 	 In the second part of the comparison,

osculating element solutions from GENPUR are compared to the results of two numeri-

cal integration programs, COWELL and SPERTB.	 These solutions are analyzed for

only 8 days, since they are merely short periodic additions to the mean elements.

5.1	 COMPARISON WITH SMITHSONIAN TRACKING DATA

The Bakc -Nunn system operated by the Smithsonian Astrophysical Observatory

(SAO) is a source of very accurate satellite tracking data.	 The purpose of this

detailed	 SAO	 datasection is to present a	 comparison of GENPUR results with 	 tracking

for three satellites, namely: Explorer 7, Explorer 1 and SA-5.
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The Baker-Nunn carnera is an instrument with very high accuracy individual

measurements.	 The timing accuracy of observations is approximately 0. 001 second (^

L(corresponding to an in-track error of 10 meters for a satellite at a 1000-km altitude).

Average positions are accurate to within 3 to 4 seconds of arc. 	 The camera takes a

time exposure of a satellite which is in sunlight, while the camera is in darkness. 	 The

exposure is interrupted by a rapid operation of the shutter so that the photograph

appears as a dashed streak of light. 	 The time of the middle interruption is recorded

with an atomic clock. 	 Appearing on the photograph with the dashed streak (which is

the satellite) will be point sources of light, which are known stars. 	 The locations

(right ascensions and declinations) of these stars are accurately predetermined so that

the photograph provides a recorded history of where the satellite was in relation to

known references.	 The processing of these pictures is done with extreme care, requir-

ing as long as several weeks to get the final results.

A series of these measurements are then analyzed by the SAO Differential Orbit

Improvement program (DOI). 	 The DOI program determines, through a least-squares

procedure, the set of orbit elements that most accurately represents the satellite

motion during the period of observation. 	 These elements are published for some satel-

lites in SAO Special Reports. 	 An example is given in Figure 5-1 (taken from Reference

19) which shows the elements for the initial history of Satellite 1964-5A (SA-5). 	 The

elements are given in 1-day increments of Modified Julian Date (MJD); however, they

are not exactly in the form desired. 	 The analysis of this report uses semimajor axis t

a, eccentricity e, inclination i , right ascension of ascending node Q, argument of

perigee w, and mean anomaly 	 .	 Columns 2, 3, 4, and 6 of Figure 5-1 give W, SZ ,

and i in degrees, and M in revolutions.	 Column 5 presents the history of eccentricity,

and Column 9 the history of perigee radius in megameters. 	 Semimajor axis is

obtained from r
a =	 l pe

Anomalistic mean motion (in revolutions per day) and its first derivative are given in

Columns 7 and 8.	 Information pertaining to the number of observations on which each
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set of elements is based and accuracy of these observations is given in Columns 10,

11 and 12.

The first approach taken in presenting the comparison of computed orbit elements

to SAO elements was to simply plot the histories of SAO elements with a solid line and

the computed elements with points. In this manner the actual behavior of the element

could be observed, as well as how closely the mathematical simulation duplicated it.

However, the angular elements St, ce, and M revolve through several hundred degrees

(and in the case of M, several thousand revolutions). Thus, a small deviation of the

computed from SAO would be unnoticed, so a second method of presentation is used -

a plot of the difference of computed minus SAO. These are much more revealing for

the three angles 0, w, and M, and are the only ones presented for them.

Also, the computed results of the MSFC Orbit Lifetime Program (Reference 20)

are shown in the comparisons. This program is indicative of the current state-of-the-

art in long-term ephemeris prediction, and, as such, provides a standard basis for

evaluating the GENPUR results.

As discussed in Appendix I, there are various ways of defining a mean element.

The GENPUR definition is essentially osculating minus short-periodic, whereas the

Orbit Lifetime Program and the SAO DOI program use Kozai's mean elements. The

essential difference is that in defining mean a, Kozai subtracts an additional term (see

Appendix I). In the following comparisons, this term is added back to the Lifetime

Program solution for a and to the SAO definition of a so that all are equivalent.

The GENPUR program is in a developmental state; consequently, it presently

lacks, among other things, representation of second-order J 2 and J4 effects. These

effects are very important for the elements P and w, and have a slight effect on M.

To illustrate their importance, orbits of two satellites were simulated by GENPUR, with

and without an approximate solution for these effects. The approximate solutions were

obtained from Brouwer's theory (Reference 21) and are in the form of corrections
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added to the GENPUR mean elements at each time point. These corrections are

(b	 1 - e(0)2):

4

AD = n(0)t J 3 J 2 re	 2	 (0)	 2	 3 (0)l32 2 (p) [(-5 + 126 + 96 ) cos i	 -(35 + 366 + 56 )Cos i

(5-1)
/r 4

32 14 1 p	 (5-362) cos i (0) (3 - 7 cos2 i (0) ) j

(	 r	 4

(0)	
2

^ = nt ! 3	 J	 e 	 + 246 + 2562 +	 2	 2i 0
128	 2 (p)	

1-35(90 - 1926 - 1266) cos i()
^

+ (385 + 3606 + 456) cos i

r	 415	 e 1 	I	 2	 2	 2,(0)	 2	 4.(0)l f.
- 128 J4	 /	 121 - 96	 + (-270 + 1266) cos i 	 + (385 - 189b )cos i	 Jp

r	 4
AM = n	 t }	 1-1

55 + 166 + 256	 + (30-966-906  ) cos i(J2 (128	 p
t	 (5-3)

+ (105 + 1446 + 2562 ) cos4i(0)I
}

J
°.

4	
2	 }

128 J4 	 p	 e (0)	 f 3 - 30 cos2 i (0) + 35 cos4i(0)l l
1	 l 1

Figures 5-2 through 5-5 show the GENPUR errors in 0 anci ce for the Explorer 7 and

littleExplorer 1 satellites with and without these approximations. 	 (There was	 notice-

able difference in M_.) For Explorer 7, the approximations unfortunately increase the

decrease the	 in	 fromerror in Q from 0.3° to -0.7°.	 However, they	 error	 ce	 a secular

1. 10 to a random +0.2°.	 For Explorer 1, the effects are much more drastic. 	 The

in 0 from	 5°	 0.45%	 in	 from	 toapproximations reduce the error	 6.	 to	 and	 w	 -8.3°	 -0.2 .

. Because these second-order J2 and J4 effects are so important, the Brouwer approxi-,

mations given above presently remain in the GENPUR program and will be included in

A

all subsequent comparisons.
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5. 1. 1 Explorer 7 Comparison

A 344 -day history of the orbit elements for Explorer 7 beginning on 31 March

1962 was computed by the GENPUR and Orbit Lifetime Programs. Initial mean elements

and ballistic coefficients for each program are given below in Table 5-1. The m/CDA

values were adjusted in each program to yield the best overall simulation of the decay;

in this case, the resultant values were the same (40 kg/m2 ). (Note the difference of

1. 1 km in initial semimajor axis due to the definition of Kozai's mean elements used by

the Lifetime Program. ) 	 I
Table 5-1. Initial Conditions for Explorer 7

MEAN ELEMENTS	 GENPUR	 ORBIT LIFETIME

a	 (km)	 7193.0	 7191.9

e	 0.03545	 0.03545

i	 (degrees)	 50.305	 50.305

0 (degrees)	 344.40	 344.40

u' (degrees)	 232.44	 232.44

M (degrees)	 179.46	 179.46

m/CDA(kg/m2 )	 40.0	 40.0

The histories of semimajor axis and eccentricity are shown in Figure 5 -6. The solid

line is a connection of each SAO element point (given at 4-day intervals). The

asterisks represent simulation results from the GENPUR program, and the circles 	 5

are results from the MSFC Orbit Lifetime Program. Both simulations are nearly

coincident for a and e, and both show extremely good agreement with the SAO elements.

(Recall that the output of the Lifetime Program and the SAO values of semimajor axis

nave been adjusted to remove the Kozai correction.) Semimajor axis decays only

slightly (0. 5 km) during this interval, so that the orbit is essentially free of significant

drag effects. The long-period variation in eccentricity due to J3 is very evident, having

a period of approximately 110 days and an amplitude of 0.0008. Note also the relatively

rough nature of the tracking data, especially for a. There seems to be bad tracking

f
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data points in the values of a at 48 and 252 days. (These characteristics are evident

for each element and each satellite. )

Figure 5-7 shows two different types of plots. The top figure prese.its SAO

tracking values of inclination, along with individual values of inclination from the

GENPUR and Orbit Lifetime Programs. Tracking values of inclination are fairly

rough, at least on the scale being user. The Lifetime Program holds inclination con-

stant at the initial value (50. 305°). The GENPUR program simulates the secular

change in inclination due to drag, not evident in this figure, and the periodic change

due to J 3 , which can be seen. (The advantage of having inclination vary is not apparent

for Explorer 7, but will be for Explorer 1. )

The bottom half of Figure 5-7 shows the error in ascending node produced by

each program, i. e. , computed value minus SAO value. Again the results of each

program are nearly identical and both show fair agreement with the SAO elements.

There is a secular buildup of error in ascending node to -0.7° for each program.

(Recall that the GENPUR program uses Brouwer's equations to approximate the J 4 and

second-order J2 effects in 0, ce, and M. )

In-track position of a satellite is primarily a function of argument of perigee

(w) and mean anomaly (M). The mean anomaly typically undergoes 5000 revolutions

in 340 days. It is extremely sensitive to small changes in semimajor axis. For

example, an error of only 0.4 km in semimajor axis can result in an error of 170°

in mean anomaly after 340 days. Mean anomaly is very sensitive to gravity and drag
perturbations; thus, it provides a significant measurement of the accuracy of a

simulation. Figure 5-8 shows the errors of both programs in W and M. Both have

almost identical simulations of W with no apparent secular error, but only a random

error of +0.2% These differences may, in fact, be due to limitations on the accuracy

of the tracking data, rather than inaccuracy in the simulations. The simulations of

mean anomaly are somewhat different. The Orbit Lifetime Program shows a periodic

and secular error buildup of nearly 75 0 . The GENPUR program, on the other hand,

exhibits only a secular error buildup of 400 ,

5-14
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5.1.2	 Explorer 1 Comparison

A 356-day history of the orbit elements for Explorer 1 beginning on 2 January

1964 is shown in Figures 5-9 through 5-11. 	 Elements derived from SAO tracking data

are shown along with computed solutions from the GENPUR and Orbit Lifetime pro-

grams.	 Initial mean elements and ballistic coefficients for each program are given

below in Table 5-2.	 Again, the m/CDA values were adjusted in each program to yield

the best overall simulation of the decay; in this case, the resultant values were

different .	 It is thought, that the reason is due to the fact that short-periodic pertur-

bations in altitude were not considered when determining the Fourier coefficients of the

GENPUR program.	 (The difference between the two definitions of a amounts to 5. 0

km for this orbit.)

a Table 5-2.	 Initial Conditions for Explorer 1

MEAN ELEMENTS	 GENPUR	 ORBIT LIFETIME

a	 (km)	 7368.14	 7363.14

e	 0.08747	 0.08747

i	 (degrees)	 33.198	 33.198

SZ	 (degrees)	 34.01	 34.01

cc'	 (degrees)	 151.27	 151.27

M	 (degrees)	 50.112	 50.112

2m/CDA(kg/m) 	 22.28	 25.0

The histories of semimajor axis and eccentricity are shown in Figure 5-9. 	 The same

plotting symbols as before are used, so that the straight line is a connection of SAO

elements, asterisks represent GENPUR. results and circles are Orbit Lifetime results.

Both simulations are nearly coincident for a and show reasonably good agreement with

the SAO elements.	 The simulations are initially about 0.8 km higher than actual and

then fall about 0.6 km below actual after 350 days.	 The reason for this behavior is

due to omission of daily values of solar flux F10.7 and geomagnetic index Ap in the

:.i density model.	 (The Lifetime Program, when using the daily values, showed nearly

5-15
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perfect agreement. ) As yet, input of daily F10. 7 and A  values is not available for

GENPUR; hence, both programs were run in a simulated preflight condition using only

mean values of F 10. 7 and regression values of A p . Note that this orbit is affected

considerably more by drag due to the lower perigee than was the orbit of Explorer 7.

Semimajor axis decayed 24 km, rather than the 0.5 km for Explorer 7.

The lower half of Figure 5-9 depicts eccentricity. Both simulations agree well

with SAO elements, but they are not coincident. Long-period effects of J 3 are again

clearly evident with a period of 48 days and an amplitude of 0.006. A secular decrease

in the magnitude of a due to drag tQ also noticeable.

i	 The upper half of Figure 5-10 shows the computed simulations and SAO values of

inclination. The long-period variation due to J 3 is clear, and is reasonably well simu-

lated by GENPUR. In the Lifetime Program, however, inclination is held constant.

Therefore, the GENPUR program shows a significant advantage over the Lifetime

Program in simulating inclination.

The lower half of Figure 5-10 shows the errors of GENPUR and Orbit Lifetime

in simulating ascending node. Both programs show very similar results, having

maximum errors of 0.45°.

Errors in the critical in-track angles w and M_ are shown in Figure 5-11.

GENPUR results are better than the Lifetime Program for ce. GENPUR errors grog-

to a maximum of only 0.3° whereas Orbit Lifetime errors in cc grow to 0.6°. Errors

in mean anomaly for GENPUR are smoothly varying with a maximum of -75% Maximum

error in the Lifetime Program is also -75°, but note the peculiar periodic nature that

it exhibits (which was also evident in Explorer 7). The error in mean anomaly from

the GENPUR program is easily explained in terms of the error in semimajor axis.

Simulations of mean anomaly are very dependent upon an accurate value of a. (Recall

that there were small errors in the simulations of a for Explorer 1, Figure 5-9.)

Initially, computed a was too large, which means theoretically that the orbital rflean
3 1/2motion (equal to (p/a ) ) would be too slow and mean anomaly would not change as
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rapidly as it should. Figure 5-11 shows that this is, in fact, what actually happened.

The GENPUR value of mean anomaly initially falls below actual. Then, as the computed

a becomes close to the actual a at 260 days and falls below actual at 275 days, the

error in mean anomaly levels off at the maximum -750 and returns to only -18 0 . There-

fore, had the GENPUR simulation of a been better, the error in mean anomaly would

have been much less.

5.1.3 SA-5 Comparison

A 334-clay history of the orbit elements for the SA-5 satellite beginning on 1

February 1964 is shown in Figures 5-12 through 5-14. Elements derived from SAO

tracking data, at 2-day intervals rather than the 4-day intervals of the previous satel-

lites, are shown along with computed solutions from the GENPUR and Orbit Lifetime

Programs. Initial mean elements and ballistic coefficients for each program are given

in Table 5-3. (The difference between the two definitions of a amounts to 5.64 km for

this orbit. )

Table 5-3. Initial Conditions for SA-5

MEAN ELEMENTS GENPUR ORBIT LIFETIME

a	 (km) 6889.68 6884.04

e 0.0358 0.0358

i	 (degrees) 31.4561 31.4561

0	 (degrees) 161.797 161.797

w	 (degrees) 150.01 150.01

M	 (degrees) 34.56 34.56

m/C DA (kg/m2 ) 88.22 106.0

The histories of semimajor axis and eccentricity are shown in Figure 5-12.

Plotting symbols and notation are the same as before. Both simulations are nearly

coincident for the element a, but neither agrees very well with the SAO values. The

simulations agree reasonably well for the fi: st 60 days, but rise above actual by 2 km

at 100 days and then fall below Lctual by -3 km at 334 days. This error was encountered
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in a previous study and is believed ;;o be due to an inaccuracy of the 1970 Jacchia

density model at lower altitudes. Since the semimajor axis is not well simulated, it

is anticipated at this point that there will be relatively large errors in the simulations

of C1, w, and M. Of the three satellites investigated, drag had the most significant

effect on SA-5. The initial perigee altitude was only 270 km (versus 340 :;m for

Explorer 1 and 560 km for Explorer 7) so that the atmospheric density at ►perigee was

significantly greater than for the other satellites. In 334 days, the semimajor axis of

SA-5 decayed by 64 krn versus 24 km for Explorer 1 and 0.5 km for Explorer 7.

The lower half of Figure 5-12 depicts eccentricity. The two simulations are

nearly coincident, but again do not agree well with SAO values. The reason is the

same as for the discrepancy in a. Long-period effects in a are clearly evident with a

period of 36 days and an amplitude of 0. 0008. A secular decrease in the magnitude

of a due to drag is also noticeable.

The upper half of Figure 5-13 shows computed simulations and SAO values of

inclination. 1,ong period 3ariations are not evident in the SAO values. In fact, the

random fluctuations in the SAO data are larger than the amplitude of the long-periodicity,

implying that the resolution of the SAO data was not accurate enough to show the long-

periodicity. The SAO elements also show a very interesting phenomena at 150 days,

where the average value of inclination seems to change from 31.456° to 31.465% It is

hard to imagine what physical force could cause this change other than a powered

plane-change maneuver; however, no such maneuver was performed by SA-5. It can

be concluded that the GENPUR simulation of inclination for SA-5 is as accurate as the

SAO elements.

The lower half of figure 5-13 shows the errors of GENPUR and Orbit Lifetime

Programs in simulating 0. The two programs agree with each other for the first 210

days, but then the errors diverge. The error of the Lifetime Program decreases more

rapidly than does that of the GENPUR program. The reason is that, at this point, the

Lifetime Program simulation of a falls slightly below that of GENPUR. Neither pro-

gram shows particularly good agreement with SAO values, both having a maximum

error of nearly 0.7 This was as expected, since a was not well simulated.
0
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Errors in the critical in-track angles w and M are shown in Figure 5-14. The

two programs are not coincident in simulating ce, but it would be hard to say which is

better. Both show errors ranging from -1. 00 to +1.2°. Again the trouble is due to a

poor simulation of a.

Errors in mean anomaly are very dependent upon the simulation of a. Thus, the

poor simulations of a by both programs are very evident in their large errors in M.

The GENPUR error in M ranges from -80° to more than +180 0 . The Lifetime Program

error ranges from -1350 to more than +180 0 . Simulations of the elements of SA-5

clearly demonstrate the importance in orbit ephemeris prediction of having a good

simulation of semimajor axis (which depends upon the use of an accurate density model).

5.1.4 Summary of Tracking Data Comparisons

More than 300 orbit days for Explorer 7, Explorer 1 and SA-5 have been simu-

lated by the GENPUR and Orbit Lifetime Programs. A summary of the errors of the

simulations for each orbit element and each satellite is shown in Table 5-4. (Recall

that the GE NPUR program does net yet contain asymptotic expansion solutions for

second-order secular effects of J2 and J4 , but uses Brouwer's equations. ) A + sign

indicates that the error was more or less random, and is the type desirable for all the

errors. A single number means that the error steadily increased to the value given,

whereas two numbers indicate that the error grew to the first number and then reversed

direction and attained the level of the second number. For example, the error by

GENPUR in a for Explorer 1 first grew to 0.8 km and then reversed direction to -0.6

km.

In general, the errors of both programs are nearly equal with one or two exce p

-tions. Having the J3 effects on inclination included in GENPUR results in only a

-0.003° error rather than the -0, 008 0 to 0.004° error of the Lifetime Program (for

Explorer 1). The argument of perigee for Explorer 1 was better simulated by the

GENPUR program, as was the mean anomaly for Explorer 7.
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5.2 COMPARISON WITH NUMERICAL INTEGRATION PROGRAMS

Once an accurate history of mean elements is available, the osculating elements

can be obtained by adding short-periodic terms. These short-periodic terms are

primarily functions of the mean elements. It is not necessary to verify osculating

elements for long time intervals, providing the mean elements are good. (If the

osculating elements are good for short periods of time, they will be good throughout

any given interval providing the mean elements remain satisfactory.)

st

Y

SAO tracking data do not contain osculating elements. Therefore, a different

method of comparison was necessary to verify osculating element solutions. The

MSFC COWELL and SPERTB numerical integration programs use osculating elements

exclusively; therefore, Table 15-5 shows a comparison of GENPUR osculating elements

to those from the COWELL and SPERTB programs. Initial conditions are the initial

SAO elements for Explorer 7. A period of 8 days was simulated, so that the GENPUR

mean elements experienced little error.

In Table 5-5, 'whe osculating element : -!utiens are shown at the end of 1 day and

8 days. Four simulations were run, namely: the COWELL program, the SPERTB

program with and without J 4 effects, and the GENPUR program without J4 (and second-

order J2 ) effects. The GENPUR results are within the differences between the COWELL

and SPERTB programs; thus, the GENPUR osculating element solutions are excellent.

r
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SECTION 6 - CONCLUSIONS AND RECOMMENDATIONS

The basic objective of this research project has been to develop, through applied

research in general perturbation theory, perturbation techniques that provide an

accurate and rapid long-term ephemeris prediction capability for satellites in earth

orbit. The approach taken was to use two-variable asymptotic series in obtaining

approximate solutions to the Lagrange planetary equations of orbit motion. This

technique constitutes a relatively new approach to the ephemeris prediction problem

and, while it is not yet on a rigorous mathematical basis, offers several potential

advantages (as discussed in Paragraph 4.2). In this study, it was found that two-

variable asymptotic series can be successfully applied to the problem of artificial

satellite motion under the combined influence of gravity and drag. The first and

second approximations of element solutions derived by asymptotic series agree in

form to those derived in other established theories.

Of the potential advantages which the asymptotic series method offers, two were

found to be of significant aid thus far. Since the method employs two time scales,

the solutions obtained tend to group naturally by physical effects, i. e., they group

into secular, long-periodic and short-periodic components. Therefore, it is not

necessary to use a procedure such as Kozai's in which the disturbing function is

resolved into secular, long-periodic, and short-periodic parts. Second, the error

involved in a given series approximation is of the order of the first neglected term.

Consequently, the asymptotic solutions are naturally structured to include the

dominating effects of each perturbation in the initial approximation. Furthermore,

a control of the expected error is provided by selection of the expansion parameter e.

Currently, the asymptotic solutions have been obtained through the second

approximations when considering earth oblateness and tangential atmospheric drag.

In these approximations, it was found that t: a E (0) solutions contain the very important

secular and long-periodic effects, while the E (1) solutions contain the short-periodic

effects. The E (0) solutions were derived by first obtaining simultaneous solutions to

y
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the differential equations for the elements a (0) and w (0) ; these solutions were then used

to obtain solutions for the remaining elements. These solutions were carried only

through the first power of eccentricity. Because of the importance of the E (0) com-

ponents n the total solution, it is recommended that they be investigated further.

Specifically, extension of the simultaneous solutions to include more elements and

retention of higher orders of eccentricity are recommended.

As indicated in Paragraph 4, 3.2, functional forms of the integr,, .tion "constants"

C(t) have not been analytically determined, and are currently evaluated by use of an
N

updating procedure. If the functional form of each C(t) was available, one require-

ment for using the update procedure would be eliminated; furthermore, the see-ind-

order secular effects of oblateness perturbations would be contained in these functions

(see Paragraph 4, 3. 3). Analytic determination of these "constants" requires partial

development of the E (2) solutions. It is anticipated that the E (2) solutions, themselves,
N

will be purely periodic except for their integration "constant", C'(t). Therefore, it

is recommended that the E (2) solutions be investigated, at least to the point of deter-

mining the functional forms of C(t).

During the study, it was found that some form of automated manipulation capa-

bility is absolutely essential to the accurate and timely solutions of the equations

involved. Many operations on very lengthy expressions are required, such as expan-

sions, integrations, substitutions, simplifications, etc. Furthermore, an automated

method for uniform presentation of results is highly desirable. Therefore, the

FORMAC language was used to write a computer program that performs these opera-

tions and presents the results in a convenient manner. As a result, a great deal of

experience was gained in t c use of FORMAC; and limitations of the language, such as

lack of identity recognition, core storage requirement, problems in subroutine com-

munication, etc., were encountered. (A thorough discussion of these problems is

given in Reference 17,) The necessity of this automated manipulation capability in

providing accurate and timely analytical results cannot be overemphasized, and the

development of the FORMAC program is considered to be a major accomplishment

of the project.
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The second approximation solutions of orbital motion usinc;two-variable

asymptotic expansions have been implemented into a I?NIVAC 1100' comp'.ter program

(GENPt1R).	 A comparative ,study of the results obtained using this program showed

it to be very accurate, especially when Brouwer's approximations (Reference 21) of

the second-order J 2 and JJ	 effects are used.	 (As yet, these effects have not been

determined by the methods of asymptotic expansion. ) 	 For example, errors in the

solutions for the short-period effects in mean anomaly for Explorer 7 were less than

0, 09 degree during 8 days, which was less than the difference between the standard

COWELL and SPERTB (Reference 10) numerical integration programs. 	 Furthermore,

errors in the long-term solutions (i, e, , mean element solutions) were generally less

than or equal to the errors of the MSFC Lifetime, Program (Reference 20). 	 (These

errors in the long-term solutions may possibly be reduced when the approximations

of i ana J 2 effects are replaced by the asymptotic series solutions, )

The run time required for an ephemeris prediction program is always of utmost

importance.	 The GENPUR program is extremely fast and has the potential of being

even faster.	 For example,	 the run time required for the simulation of the Explorer 7

= satellite over a 360-day period was 94. 5 seconds when using an update interval of 24

' hours,	 Increasing this interval to 96 hours resulted in no noticeable loss of accuracy,

and the run time was reduced to only 23.4 seconds. 	 In comparison, the run time

required for the same orbit using the MSFC Lifetime Program (with a 2-day step)

was 148.9 seconds.

Even in its present developmental state, the GENPUR program has clearly

demonstrated the soundness of the approach taken herein to compute long-term satel-

lite ephemeris.	 Before being placed in a production status, however, there are

certain additions to the program which should be made.	 Errors in the element solu-

tions for S,, w, and M could possibly be reduced by an accurate representation of J 2

' and J 4 effects.	 Even with the approximations now being used, the GENPUR error is

comparable to, or less than, that of the Lifetime Program.	 Since two-variable

asymptotic series represents a different approach to ephemeris prediction, it is

o	 ,3
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quite possible that this method could result in more accuracy than existing solution

methods.

Another addition recommended for GENPUR, which could result in much faster

run times than even the 23.4 seconds mentioned previously, is the use of analytical

expressions for the Fourier coefficients. One innovative feature of the GENPUR

technique that contributes to its speed has been the use of Fourier series expansions

to represent drag effects. The Fourier coefficients are presently determined by use

of the 1970 Jacchia density model at frequent intervals. If the variations of these

coefficients for periods of 20 or 30 days could be established analytically, a run time

of only 6 seconds would be a possibility. Furthermore, the successful development

of such a model would represent a significant advancement in the state-of-the-art of

satellite ephemeris prediction.

An increase in the flexibility of the GENPUR program is also recommended. A

wide variety of input coordinate systems, as provided in the Lifetime Program,

would be advantageous. The satellite physical characteristics (mass, drag coefficient,

and area) must now be held constant in the program. Providing input options for these

items which allow variations with time and/or orbital position would be extremely

useful in orbit analyses. Also, it would be desirable to have an input option for daily

values of solar flux and heating parameters. This flexibility could be easily achieved

within GENPUR by incorporating many of the corresponding routines of the Lifetime

Program.

Once the GENPUR program has been extended as recommended above, it will

represent an even more valuable tool for conducting astrodyna.mic investigations. For

example, King-Hole has stated that the upper atmosphere rotates at a faster rate

than the earth, but other investigators have failed to confirm this finding. By using

the GENPUR program to study the long-term evolution of inclination for various orbits,

an independent estimate of upper atmosphere rotation could be made. Another problem

which has received little attention is the exact nature of the final decay of eccentricity.

I
i

I
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It is well-known that an eccentric orbit becomes nearly circular before its ultimate

decay, but whether it becomes zero or reaches a limiting value is uncertain. Further-

more, because of its extremely fast run time, GENPUR is ideal for parametric

studies to identify characteristics of various classes of orbits to aid in mission

planning activities.

In summary, this study has demonstrated the successful application of twu-

variable asymptotic expansions and the automated manipulation capabilities of

FORMAC to the satellite motion problem. The resulting GENPUR computer program,

although in a developmental state, has clearly exhibited the potential of being more

accurate and much faster than any existing long-term ephemeris prediction program.
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APPENDIX A - DERIVATION OF THE
PERTURBATIVE VARIATION EQUATIONS

To illustrate the procedure for obtaining Equations (2-7) through (2-12) by the

method of perturbative differentiation, the equation for a will be derived.

The polar equation for an ellipse is

k^ µ	 (A — 1)
r — (I+ e C"-J)	 ( 14- e L,, V) 

where the specific angular momentum is given by

h = r'v	 (A -2)

Taking the dot-derivative of Equation (A-1) results in

or, after substituting Equations (A-1) and (A-2)

r = .^ e ^:. v	 (A -3)
h

Substituting Equation (A-2) into Equation (A-1) yields

It is now necessary to take the grave-derivative of this expression, 	 1

MICROCOPY RESOLUTION TEST C''ART
	 remembering that r = 0 (see Paragraph 2.2). Thus,

e cu^y— ev.,v = r yy = 	 I P I	 (A-4)

Similarly, substituting Equation (A-2) into Equation (A-3) yields

ems ,,_ r^.y



i
i
i

i

i
t
1

l'

1

1

1

d

which becomes, after taking the grave-derivative

r 2	 .\	 \.	 2.\
en v+ ev^co-Jv = ^ry + rV^= jr ^^ -V_	 ^ 1 (A-5)

P	 P ^/

Multiplying Equation (A-4)by cos v and Equation (A-5) by sin V and then adding the

results yields

M Ce
"N +

4	

^• l /	 P

s
Since

this becomes

^ r ^^ p	 r2v^

e = ^,^r'L'^^y^'^ ^, ^(^t i^G. ^v tee]	 (2-8)

(NOTE: Equation (2-8) agrees with Reference 2, p. 247)

The perturbative variation equations for the remaining elements can be

derived in a similar manner.
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APPENDIX B - ASYMPTOTIC EXPANSION OF 'TRIGONOMETRIC
AND EXPONENTIAL FUNCTIONS

To illustrate the procedure for asymptotically expanding trigonometric and

exponential functions, the functions

	

41z^ X	 (1+ e c.- Y.)"

will be cansidered, where x is used to denote any angle element.

Begin by assuming the asymptotic series

X = X (*̂ + E x(')+ &"xC + ... = x^'+ 6
b

Cos x

C'.' X - c.-' (X -04 1) = c.^ X^ ^ 6 - .4Z^ x<, 0.- 6

But	
c..., 6 = 1- b- t ... = I- (Ex t ^^

) )2
= 

1-fE
sX

0
 +...

	

b3 	 XCII 4 62 ()

Thus,	
`

co X =	 X' (1- 2 E xo 2) - ,aZ. X C k XO+ E'XOJ

= Ge-̂ X0-+ECX0'4zr. X(0)1 + &2C ,f...

sin x

B-1

i

i

t

t

r



2xsin

Note that sin x has the form

4w• X = 0- 1 -+ a2 E + a3 E2

X= `(a^-tazE^+cz.3E^J^= ^a^ + a? E^ f 2(ca i + as E,a.362+a3Ey

0.,2 ♦ E `-2CL 0.2 
+62c J ♦ ...

Thus,
-2 (0)	 C2 X (I)A Z a	 -1	 2C j 4.

X 46

(1 + e cos x)3

From the previous expansion for cos x,

= I +	 9 Q + E e^^^ X Oa ^. Y, + & e	 X C'14-

Note that ( 1 + e cos x) has the form

4 e C`	 c%I + a I E + CA3 Ez

^I+ eG.^X^3=^(0.^+ a2 E)+a3E2^^= Q̂ ^ +a?^^+	 0.3 6Z-i

= G 1s + E C30ii 027 + r=Z C 7 + ..

B-2
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Thus,

6 + e cow X^3 = ^1+ ec"k., x(') 
3+ 

E(3(!f c O- L, e)?(e n,, xn eIIX(')4.:—X-'^^

(1 - e2)-7/2

(e-(0'+	 +E^en+...^2= (-C(e(-)+Ee(o)+EZe^^J2

_ (- (e () + 2e^^enE + E^e 	 - (e6+ be (^ e2CC2) c-

= 0 - c CO) 2 j + C- & 2e (-"E C'] + (--'z C eol 	 + . . .

UI-eoz I +{,(2e e^+E (-c - 2e e )}]

L) ^/`+^^̂CI- e(^2)-Z(^ 2^e^)^+EZ^e^? 2eI'eI

Q
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APPENDIX C - PRESENTATION OF THE INTEGRATION RESULTS OBTAINED
FROM THE FORMAC PROGRAM WHEN CONSIDERING EARTH

OBLATENESS (J2 AND J 3) AND DRAG

As mentioned u, Paragraph 4.3. 1, a FORMA 	 computer program is used to solve

integrals of the form given by Equations (4-18), (4-19), (4-52), (4-53), and (4-58)

for each element. 	 The program prints the totai integrated results I 2, I3 , and I D

for each element, as well as the secular (with respect to v (0) )parts S2 , S3 , and SD

(see Equations (4-20), (4-21), (4-59), (4-60), and (4-61)). 	 These answer arrays are

presented on the following pages. 	 As discussed in Paragraph 4.3.2, it is not neces-

sary to consider drag when formulating the second approximations to the solutions

since the super-one solutions due to drag are negligible. 	 Consequently, I D for each

element is not required and, therefore, is not presented.

To maintain consistency with the assumptions made in solving the set of ordinary

differential equations having t as the independent variable (see Appendices E and F),

-= the arrays generally include only terms through the order of a (i.e., terms on the

order of e2, or smaller, are ignored).

Recall that the numerical subscript on I and S indicates the earth harmonic under

consideration, the subscript D indicates drag, and the parenthetical (x) indicates the

element x.	 For example,

rI2 (^) = Total integrated result for the element 0 when considering

the second harmonic (J2)

S3 (e) = Secular part of the total integrated result for the element e

when considering the third harmonic (J3)

SD(e) = Secular part of the total integrated result for the element e

when considering drag

Also, recall that in the SD array for each element, ak and b are the Fourier

coefficients appearing it the atmospheric density function approximation (see

Equation (4-57).
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Element B

4,.WP;)L,- J44	 C,,'V(O] 4'

Sz 06) o

eC)C

+

+f)) I P	 CoL A-.V C#-.7V

0	 0)

	

6, CA	 LOL^— C-(LvC)4

4— VC1

+ 
15q

o

N2-CL 2
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^4.

Element e

'SZ ^p j = ¢<)^^ i

	

(,Is;— V%L— c 	 v,) c.,F) L/	 c"r.)a^vr+

+G A•-;v.a:,.. ca •̂)Le-• vc.^ w 	 t^^o.^y^^ w^+3o:.: t``4.:.,^v^^ .:.^v(•' J

ILI

+ j .) ^ . aM..) y ,., w ^ w at 3 aw. C ,o..., ca to ^ v - Tr .a:. < <..^ v + c..- v

f,	 7p (P) = o

P̂)	
)ry	 roj	 tot	 (^)	 fo) .: C) ',

WO) 	 (°)	 r) . 3v(.)	 <°1
) = e	 ? A.— % A:,rJ cs, w	 A: i1. y /L. 	 Go v — y Aµ. ( /1 w. GH w

3-

"^S,a.:..- ^ ,e.w-w co-,v -
n

om .a.:.._ ^ ,l.w.v q,,... w Gr•, w _ 23.1:..., c .s,^• v •a'-- w G.+ 17

+ fl
y

;c^y; 'V^O^a:..3i.r^co'v^O^+ ?y a^.^^^0)iiwV^a, zwraCa-,c.^^^C^l^^°)frnw^`)

-+ y' ,a...,.. ^^a,:,.^V^i1r...wC^Go•^v(°^ X74" <<•^a"..4V^•iuM w^^L°-.V(•^ ?7, y;,, 
1

;i ^
^

^.,...s^{`^i1:...- w(°)c°•^w(^

+ y /1;.;^^.L.... v^yLn-^w ĵ /^: ^£	 w ^ce . vrg ^rl:,-3L (p 	c.^t^^Co-,y°^ .1

ro-^	 .. c Co, wv 4,.^- c Ce^w + y 4 L /2....., U C*-^ v Ce-• w- y A,(. ^i^.-v,a,..`. w

— 2 /^:.^. c i1:^v ,a,.,., w co-, v cv, w — ^(^ '^" c /lk.v Cs-. v Lo ^ w — Z M.- ^ ^. J ,e.+%,- !v

+ ^j /k^ 3̂ C v(•,^,;,, [ a ^)+ 2: i tOa:.3U(•)	 w ^^G.•j, ti' (o}G.-^ L.^ -?-	 ^r^. , y
(o

^Ca-,vv̂ co^c .lJ

+ 1. 3G io n Vim .• 
W o) 

2 A 
3L +^-4v •̂ W I o)

I
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I

I

Element i

12 	 rl
T^..- c ^•+	 Lws v + .1..-	 a.. V ..w Lrs-	 w -	 4.... w

e ^z) =

e

^i1.,. c /yG V /L:^ w Cr, i tr. v Cr. w • f •y o.	 .e.^-V Ce + CO-•v Cs-s w

Ge+. + /^,Q... c ^: `. V	 . w u-+ c

+ /D4.r .7 C °^3y 
r̂ LJ^1J(O-fC )̂LMVLH Lift .	 L ^ ^1^^b^ L^`f 1^LH Jo,

+ 2 A c AL-- v A--G)	 A;— V /5 .... w C.. , C	 ', u. v. Ge V Cry w

A. c )̂ — Spy:.. (wit =^ ^J ^^a to ^^G..s t r̂^Gr+ w^'^

- ^A:-. c 13••- V /1A— W Gs^ L GtiV -^' ! i7.^ ^ l .Q.^^- V y.,. W C. s L Co-•V

+ 3 Z^ 	 yr°>^Wrn^VG.-.wrO^	 /1 E^^ y^Le-^C^Ge-51w^j

s 2 ,C.)	 C)^^	 C•^	 ()	 God	 (off	 (°
4Z: w Gs7 i_ c..,V -* il:.•V Cw^ % Ga-^ W f	 w c. 7 & 44-, V

e(^d.%-'I i ( L..-. L (0) Gs-s w ^^ a (°KGs-+ i ry 4-+ w r^^
S c

: l,(6=0

t ^

C-4



I
i

Element 0
^Oj	 Z ri!	 .r`ol 2 2 (o)	 (^1	 ^^	 (o)Fl t 	 3 (v 4 (^, .CO)

ŷ  ^.rL) = e ^q.M.V ^:.. w Goy c - 3 .a:.^ V n^.c., {,r, i. Cr,v LDe w + 3 .a.,,. V ^ co (r, ^

f	 ! (o •	 ^d	 {o) .la► 	 (►̂ 	 (o) 1 i^°){.aoli)	 V^-/_:.^1Ca^^o)Ls+i(Go^.V^o^. V	 40•7W

1 7Z /li..^ir^^Lvs ^)C^s y^i)— ^7.^+. V { A"— cJ rolC•e O_(i►̂ I o Gi(9^

Sa( ^ 
_ _ 2 c.-, L r.^

(01 l^ (is  lro)	 4,	 ;oI	 r6, (all(-)	 (S	 re 	 o) 
Sx ẑa = e -tv ^••. ^ ^. w ^ ^ ^ v 	 C 

o) ce--•v

— ^vM•^^ /1.:,..`f /}..,. W C.°^^ Lo...V — ^5/J^.^l i1.^+V /L^^- W C.o+^ Lo-► W 1

- 4`^- c, .^- /l:n. W G^ C e+ V t /D.C++.	 ,G- V

(d	 4 ôJ 2 `^.	 '`1	 ors	 .^o)	 4 (o)	 dpi	 •°i	 ^). io ), (o)
C.-I ^)

+!O /^ C	 4 -.L.:. V A.+- W C.y t Lrs :u	 ,' `: •L •a•:•• V Ge+ l Gv...) ♦ 	 c ,dw„v	 w 

+ C r A— V )L.7 Wr" J — 54.. i 0:^.vt^ 3 ^(-)^ L^^ 3 ^1^.lr V(^)i1+^+.1[.^ o Ga+ i )G^^v(yGo) W ^^

+ 3 il:.^. L (̂  v^^ ^ Gay v^Ge-^w i S/J•;,. ^{-).2".;vim ̂ .. w^Lo^ i. OI

+	 q... i ^iL^+sV ^^:.. G.^ o" Gr 9+ 3	 a4,4 —i c.i ^Cr- v ^C.*. + (0i

+	 /3k^-C (oGr^C	 V(o)43+
W^or-F C	 l */L:..v	 G-+{-)_ tk..	 (.t` v(olCv^ 4i -i

,s

7

I
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Element W

► ^[ s C•J , z.^+► 	 b)	 z,(•)	 Hu z CJ	 CJ s z_b ► 	 lay2^cu) = E C '^1► /L^,`. + ?v -4ai.. /J:...v /L.:.. w cr v + -^.`:I.	 qw. v C.-.N 9

- I I ar. c .•- v ^,.,.- w c,e-. w + ^ .^,:,. ^ 

+ G .s.:..t` ^.e.iw.	 ^:^. c.^GO-, (, ^+ ?/j.:`.y0+vW(aL,^, Vra+ ^^u s^(+aM. c,J C', w'a]

34:,.. Z 4•L.. V ice... W - -^'a:.. ^ w.... V ab.. W 4-• V G.-. w +-^-Il:^. t ,o,,w, v ,a,w. W

Sz 64)Ve- - cr° ,o) , -2,C ()s

:r-3 CWJ _ er^^34+i.^il cr.v( w^ S ^) ^3 () 2	 F) 3 (^	 (	 i

)G.,vr`^c.+w°)
-- 3 ^.`, t .a:^. v .L.^, c.,b,_ +fo;^. Z^°^o,."..zwC•)c.-sv^^c.^, t,^CJ- ^oi.^. t ^.-..^^c.-^ w 9

	

3	 1
-:^	 — cat ^^4.;,v^a.:.- w )4- 4c Ĝr•V ^^ w9 ?5^:.,. t mac.. v ^),a+",^3a,,C°^

z
-147 	 Fig v	 l )tom. v^	 - 3 -n i F) n	 (3

y
_ X13sL

^ ̂ `?V^^Oti..W A. Z îlwutv 'J,dA;w w^ 9ti.+.3C^A.:.4v^jc.^vr^l..7c.1°J

+ 36 ^s :^.^t^°J tin . z ^o)	 n	 ^)	 s r.)	(.^

- 3G ^^^' ^.:, s^^^swr)-f 6^:...?^'°J,c,,:^`wC')fw-,1,,^°JGr^ w + ^ a:+3 i (°Gr, °trwrOJ

+^ ^ i(•^ w(^i .^ 1^^o)yt...3^ 
r1̂  wb'-^ 3^- i. n o,.:,,. v ^^iL.'^. w^ c..-, vim+ 34.^ ^ °r^y;..zv^ u,^ wrO)

+ S is:,.31 r y ^)	 C•)	 (^1 3 3 -C^ ^(•^ 	 N)	 (d^	 3 ion	 (•J 1 °^	 (•i

	

^	 Tj	 ^ w c..-, v	 n.^ c a:.. .s:-'3W 

	

-r.,...^ i^^,..c.Ge-, VgJ-+.,:..3^ ^°le:,.^vIC•) 3 ÔJ	 ^j ^y s-<^. 4

+ 3 'J"`sc ray` ̂ a^%.-Zw^°JG.+ w^°)

- -Y 6, - 4- 63 + * 62 ea
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Element M

y2 (M)= ev^ v (°)44;- L	 2 -1- 4.(O,

- G a : ^.~z	 NJ A_ c. La-. v ll)+ 3^.:.2c(°^ - ; CN	 ^^	 z .n	 ^+ _ t6i	 (j

-,^^; co-,v( 1+ 3,y"„ _ ,),,;,.v ,y.:- w +	 .s:- c s..%r v .^..%^-w Go-.v Ge-^ w- )

-	 ^1 ^,..` {	 3v(D'/ -IL. °' 3 /y: ,.^ [ ^Q i+r.3 °^ -^^ a:`.Z L ^.1:.. c.i ^c°-^ v `O^ c.7 (..i ° ► -,a :._ v^°^

E

(0) 203 7-60 z ^o, 2 (°)	 ,cl v

- T	 Ge-^lr Go-^w	 Z e.."...

p	 /^ 

y /a^A• W Grs v Lam ^.; - -^i1:	 AA,. V Ce'I'J Gr7 W

^..	 + 1̂ ^^3C `.9 s (=)/	 '^ _'p,	 I °)	 3 (q+	 3 _ CO) 2 (°l

	

/1A- V	 + LJ - ?7^1:." L ,1.:^. V ,QA%.- t.^	 12it;.., C 4, _ W u-, V ^W
C^	 3 )	 +^	 (^I 1.-^.3c ^ v ^Ge, w	 + -^ V r°
	

;^, W	 T v6')  -3C 16)4, _

+ S z:.... ^ n	 r)	 (q	 () 9	 ^ ^ ^)	 (^ ^S	 a _^°, _ ^) - ray /°.1^=^•v .d..n- w Gs^ v + -^ /1A;. C .d.=^- 1^ cow w + ^ ^..- c ,a..• V a^^- W cv^V J

3C
 ro

AA ̂ V e(,)..%^.. W Co-- It) ^+ 2 Qn:,.3^ IOq ;, . 3V A; _ W(0)Go-, li °)
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1-
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^' I	 APPENDIX D - DERIVATION OF THE SECULAR PART OF V(0 ) WITHRESPCT TO t
^A

From Equation (4-12)

;.	 d t 	 (1- e ') I&
or

	

d v (9
	 __ ,/.►̂  (313, J

(If a °ice-, v °)Z 	(1 	 3/2

Since e (0) and B (0) are considered constant with respect to a fast time-variable

integration, then

(tf1 *	 ^1-e ^' 3^z t (1- eU9gh	
(D-1)

It can be shown that (Reference 1, p. 201)

dv Ĉ 	 __ E ms- eUo:^. CIO)
LS)1 	

_ C	 (D-2)

where E is the eccentric anomaly and C is the integration constant, Equating

Equations (D-1) and (D-2) yields

^j

secular	 nonsecular

From Reference 1, p. 209 (or Reference 6, p, 89)

6) + 2	
A'	 E 	 CA- 1- e e a	 (D-4)

periodic Fourier series

D-1



Substituting Equation (D-3) into Equation (D-4) yields

ti ^)— MCA t + e, E0 + C- (I e 	 1/2 + Z A' ; E^)	 (D-5)
secular	 ^ 3

nonsecular

The general resolution of v (0) into secular and nonsecular parts can be indicated

as

v^ = 1>^+ Vv	
(D-6)

Equating Equations (D-5) and (D-6) results in

vs) = n^^ t	 (4-23)

Inspection of Equations (D-3) and (4-23) shows that v (0) and E (0) have the same
secular part.
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APPENDIX E - SOLUTION OF THE SET OF ORDINARY DIFFERENTIAL
EQUATIONS HAVING AS THE INDEPENDENT VARIABLE WHEN

CONSIDERING EARTH OBLATENESS ONLY

E.1 INTRODUCTION

The following set of ordinary differential equations to the order of e(0) , as

derived in Paragraph 4.3. 1. 1, will now be solved:

ô)	 ^ 6 sg	 3 ^	 • (^^	 Cod

dt =	 ^2\ Z	 (y ^^^^ L 	 (4-32)

Vc- Al

(i- e J
ra	 o)`'	 C')

dt	 (^-e	 ( r -e° ^	 1,

(4-34)
W4- L ̀a: cu Cg+ 	 ) ŷ;̂ . C)^:.- w

Cl(''	^` ^) \1 

o^	 l^ S3	 3 Q° C°7 . to	 (o)d^^ _ Q ^ ^^Z ^e M e ^^ caw 	 ^ .
dt	 (J-ens 3	 (^— 

:E 	 `6)\	
(4-36)

4°):	 +	 1=(0<2 ^^ a	 cam. ^^ ^.. 2Z

(4-38)

Y ^

dz	 (I—c- 32 ` I` 2	 C

	 (4-43)
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The method of solution is based on one set forth in Reference 16, whereby e(0)
and w (0) are considered to vary simultaneously and the solutions for the remaining

elements are obtained as functions of e (0) and ^,,^ (0) . In consideration of this, the
following ( assumed) constants are defined:

(I-e^IYL	 4	 0	 (E-1)

C2 _ 6^ ^,^^ rep (2- z ^:.^ L^)^

(1- e^^z^z	
( E -2)

P^ 3

C2 __
	

^z 3 
re 

Cr
y„" `

°^^.c^ ts.- ^^))	 (E-3)(	 l	 °
0

P1
1
O l @) 3 _ 40 l ^/m o <e 4%.. o	 s ^ C) _ _ C,C^	
(1-e, 2)3	 ^""' CO)- 0- CO.`) (E-4)

4
(? r3M & Lam C 

C^	 (/-elaia 3	 (^- fa:,^ ^o^)	 (E-5)
e

Y
0

_	 Bo 	 r2 C^o^ <<)	 (E-6)

Op.	 3 ^,
CS :
	

o^^— e° 
ae 3 ,-o '(r.zC) — 	(E-7)

F. r^ mC)a	 3 z•6)	 (E-8)

0

f 3N	 o

E-2



Note that these constants are expressed in terms of the epoch values of the element

functions, i. e. , B00) , i0 ), e00) , and n00) . The effect of this assumption on the

accuracy of the resultant solutions can be minimized by periodically rectifying the

orbit and updaCag the epoch values of the elements. (As discussed in Paragraph 4. 5,

an "updating , rocedure ll is used when numerically evaluating the solution equations.)

In terms of these constants, the differential equations become

de(b)_	
W^^	 (E-10)

cl F - ' 
Go-1

F)	 o
= 62 + C, e^.y:• c.,ro)+ G e ``'-	 (E-11)

d^ = C e C•)C-.^ c,^ 	 (E-12)
d^	

3

^ ►

C 	 - - 
Cy + 6-!rP- J,. l CA-1^) 	 (E-13)

d M0
`

_	 e	 6

d^	
C(. y C 7 e niL:..., w()-+ C-7 'a--^̂)	 (E-14)

Equations (E-10) and (E-11) will now be solved simultaneously. The solutions to

Equations (E-12) through (E-14) will then be obtained as functions of e(0) and c,;(0).

E.2 SIMULTANEOUS SOLUTION FOR e (0) AND w(0)

To effect the simultaneous solution for e (0) anti w (0) , the following transforma-

tion parameters are used

E-3
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= e ^„ r.uC)	 (E-15)

= ens,;,,. cwt 	 (E-16)

Differentiating with respect to yields (where the "dot" indicates t differentiation)

= e^ cry w^>_ e C) w^. wC,	 (E-17)

C>	 ^^,	 Cam) . O	 f^= e .L;,r, w t e w	 w	 (E-18)

Substituting Equations (E 10^ (E-11), (E-15), and (E-16) into Equations (E-17) and

(E-18) yields after simplification

To the order of e, i. e. , ignoring terms of the order e 2 (or smaller), these equations

become merely

= Cz + C^	 (E-19)

^2	 C2 Ft
	 (E-20)

(NOTE: These equations agree in form with Equation (14) of Reference 16.)

In terms of the operator D = , , Equations (E-19) and (E-20) can be expressed as

-9(E) _ 
C— — 

.1	(E-21)
2

i
i

i

i
	 i,

t
i
t
i

E-4



^, 	 (E-22)

To solve these equations simultaneously (Reference 22, pp. 198-200), t will first be

eliminated. Substituting Equation (E-22) into Equation (E-21) yields

Cz - Z - IL 2 ^ ^L) - O

or

072-+ Cz )'► = C 1 6 

As can be seen, this is a linear nonhomogeneous equation in 9U. It has the standard

solution

rL = K,	 + KZ ,a;.,, C, + L	 (E-23)
2

where K 1 and K 2 are undetermined constants.

To obtain the solution for	 77 will now be eliminated from Equations (E-21) and

(E-22). From Equation (E-21)

- ^- CZ-P(k)
implying

(E-24)

Equating Equations (E-22) and (E-24) yields

or

a
i

t
i

t
i
i
t

^I

E-5



F3..

^i

r

As can be seen, this is a linear homogeneous equation in 	 It has the standard

solution

= K3	 2t + Ky 4;—	 (E-25)

where K 3 and K4 are undetermined constants.

Now, the constants K 1 , K2 , K 3 , and K4 have to be "adjusted" so as to make Equations

(E-23) and (E-25) satisfy the original equations. This can be done by substituting

Equations (E-23) and (E-25) into Equation (E-20) and seeking relations between these

constants. Performing this substitution yields

which implies

_KCz ^:w Ct+Kx CZ c.. Cz-GaK3 ^Cz - L2 Ky Gt 	 p
This equation is true only if

K, = KZ
and

K14 = — KI

Furthermore, it is convenient to express K 1 and K2 as

K^ : A .i.=r. ec

where A (a positive number) and a are constants yet to be determined. Thus,

Equations (E-23) and (E-25) become

= A 4-' (ICa	 (E-26)

= A A;. (cz t+ .l) t	 (E-27)

E -6

t
t

i
t
i
i
i
i
i S n

i
i
i
i

a



Since, from Equations (E-15) and (E-16)

C-0

it follows that the desired solutions are

A	 -33)A	 ?e* -o + oeo2 I'z 	 C. (4

it -^)	 L	
(4-35)

(C

It now remains to determine the constants A and a. This can be done by evaluating

Equations (E-26) and (E-27) at the epoch time t 09 resulting in

-28)Cc	 E

(E -29)

Multiplying the first equation by sin (C 
2 

t 
0 

+ ce), the second by -cos (C 
2 

t 
0 

ct), and

then adding yields

+ +	 0

or merely

Define

which becomes by Equations (E-15) and (E-16) evaluated at 
to

yy
^^ ' (C.n,.. moo' -	

C,

E-7

(E-30)

(E-31)

(E-32)

50



P

fi

Then Equation (E-30) can be written as

to^.^(Cs^,+.c^s ^*

d=
i l ^'i(` }_Czto = •f-̂ ... ^^ i1:..GUe^C2^r-e	

(E-33)
G a Goy ^

Multiplying Equation (E-28) by cos (C 210 + a), Equation (E-29) by sin (C 2t0 +a), and

then adding yields

CL

A = ^'o Co—^^^1^p+^)t ^110^w.(L1T^'+^(^— C-1-4z, (^ L 0^^JC2

l	 A

AZ ° ^o f '10 - 2"1 0 ^ +

Cto,2-1-/1^
O

	^ 2 c, C
	 w^'1^i( C	 Ei Co 	 o

E.3 SOLUTION FOR i(0)

By Equations (E-15) and (E-26), Equation (E-12) becomes

dc r)
= ^3 (^ L^ l C T -F o(,

which yields upon integration

gin=	 A ...(C1t +.c) + K

where K is the integration constant. Substituting Equation (E-27) yields

C Z ^'^ G^)	 Gz	 C%

ii

(E-34)

E-8



i
i
i
i

i
i

i
i

i

w

The constant K can be determined by evaluating this equation at the epoch time t Of
resulting in

o cZ Ce, Gua G^

Hence, the desired solution is

^ (03: 4A)t (e6.M..w^^ ev^4z..wo•1,	 (4-37)

E.4 SOLUTION FOR n (0)

By Equations (E-16) and (E-27), Equation (F-13) becomes

do°I
d^ - Cy { CS A tz-(Car+.t) t CS G

which yields upon integration

where K is the integration constant. Substituting Equation (c.-26) yields

^^^s(CS -Ly)- fx-C +K

CL

t
t

The constant K can be determined by evaluating this equation at the epoch time t ,
-	 -0

resulting in

K = -r% - (^s ^ - Cy^ tot ŝ e r'c,..., ^,,, N^

	

z a	 o

Hence, the desired solution is

161

= XL o -(^c.^'_ eo te w-+^Cs - Cv-o,	 (4-39)

E.5 SOLUTION FOR M(0)

From Equation (E-14)

._(•^_	 (•^	 (•1	 G ()
	 (y
AI CA>

d	 7	 e^z

E-9



F"r

This equation can be linearized by approximating e (0) by its epoch value e^0) (referred

to as , backlining' , e(0) ), resulting in

:	 d mr)

d	
_ ^` + (fig _ y^'\ eC^ wC)	 (E-35)

where

(f-7

C91= 2n 2
0

Then, from Equation (E-16)

d M(°)

a t — 'f, + Cc^- y ^^^ 't
so that

M(0). C` +(CQ-9C,^ 'rZd^ 4 K

where K is the integration constant.

From Equation (E-27)

MC.) = C6 4 ('<p-yc,)fCA ♦.c^+ C	 K
resulting in the solution

M`') = (C4 + —z:: — y"'ti7 )t- ^-$c Z^ e. awn+ Kz

(E-36)

E-10



^k•.3^.	 .`	 _ x4..'"-€'+£'.*`. `R^`. . ,. .. I..... ..,	 : e?4' w^, ea.,c.:' d.,f, 	`s.	 ro_, a	 ..	 ^	 . ^ !^. f .., ..,	 .

Evaluating K at epoch time t 0 yields

^z	 6z ^l tJ	 (4-44)

(e ^c.y w^^— e	
w^)r	 ^

Gz	 o	 0

As mentioned in Paragraph 4.3.1.1, the Keplerian change in M taking place during

the time interval ( t - t0) must be added to the above equation.

E-11
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APPENDIX F - COMPOSITE SOLUTION OF THE SET OF ORDINARY
DIFFERENTIAL EQUATIONS HAVING TAS THE INDEPENDENT VARIABLE

WHEN CONSIDERING EARTH OBLATENESS AND ATMOSPHERIC DRAG

F.1 INTRODUCTION

The following set of ordinary differential equations to the order of e(0),

representing the combined effects of earth oblateness and atmospheric drag

(Paragraph 4.3.1.2), will now be solved:

r± e6`)n
	 3 11	 (o_	 )	 (°^

d_ ( J1) 	 (4-71)

^^ K	 l  - e`
°^^

+ "	 J--C3	 ' '	 L°' 1

d t	 /-e e 
2 (2- 2 a	 J+	 t)3	 ^y e^.d.'..,t 4.^c,s c e-, c

(I-e

— e	 4 ^ ,J.r t /^w Gc ^l- ^ a., c 	 (4-73)

a (o,^	 ? ^^- 2 ^3 Lr b, e-
,U

C! ^ _	 2 rC' ^n e Gs^J l ,ten^ ^.J	 S	 1 (mil
2	 <^--,^,,.^,	 >	 (4-75)

d t	 (1-e(4) =^	 y

d 1 _ _ (3 rem 40-1 c + (j	 /1^ rQ h^ e J— Ca i	 (o) S	 (off

(4-77)

M	 °

ja

F-1



._ {4 ^^• r
	 ^^P.:..Y f ?k 4 .. ..	 1.. ^ ^	 -r^e+'^a'Y,.y.{k- ^	 _^^fy -^	 5

d t	
C-) z) 3/2	 Z A..,. c )	 (4-82)

(I- e

+ y Bn`(1,3/10 3 	 n? C)	 r)
3eC°)(I-e^°^')s1z 	 3e AZ-i.^a:..C.^°(1-^a^y^<<')

^I

Again, the solution procedure will be to solve simultaneously for e (6) and w(0),
employing the same transformations and similar approximations as in Appendix E.

These solutions will then be utilized to obtain solutions for the remaining elements.

In consideration of this, the following constants (in addition to those given in
Appendix E, i.e., C 1 - C 8) are defined:

/2 
B°o aµ	 (F-1)

do - 2 a^ + ^3 	(F-2)

°^^ _ - y c"of y cat	 (F-3)

Xo ` 2 0	 (F-4)

_	 _ 3
^I	 ° ? ^3	 (F-5)

^	 3

(F-6)

2 6 3 	 (F-8)

F-2



^-tF.:.

(F-9)

^^ = Z -0, - ^ ^X ( b 3 	 (F-10)

In terms of these constants and those defined in Appendix E, the differential

equations become

de"
C, c, C', 	 ^2^d°+.t,e^^	 (F-11)

^° 	 it	 ^o,	 -p
dc^i 	 C + C e A, , W^ ^+ 	 +	 +12	 eC^^``	 (F-12)
dt - a 2	

e---T -"	
'^^' ^^ J

^o.
e

dn`° .^ _ 
C y 4 CS er 4Z- .^' %	 (F-14)

dt

d gro _ 3^°'^
z // p

,J	 2 CC+ il^ 	 (F-15)

e	 od	 c)	 r
d{:
	 CG - c(C7 er°4i -C ;"+ ^^e ^- + - l--^°)	 (F-16)

C

Note that these equations are extensions of the oblateness -only equations (Appendix E)

and are obtained by adding the drag perturbations to the respective oblateness

perturbations.

F. 2 SIMULTANEOUS SOLUTION FOR e(0) ANDw (0)

Applying the transformation equations

( = e (-;) 
C.v - Cu (0)	 ( E-15)

''2 = e &Z C',,)	 (E-16)

t	
F-3

B

^r

: 

A;

r:
Av_.



to Equations (4-71) and (4-73) results in
4_j r
c1	

// p	 1^- CI- C^ ^^^21°tlFe-^^+ do^-^AY1 Jdt	 e •^
(F-17)

(F-18)

These equations can be linearized by approximating e (C) by its epoch value e(00

(referred to as "backlining" e(0) ), resulting in

C1
	 a+	 +c-rt	 (F-19)

d" =-c^+ b,Q
	 (F-20

where

0. = CI

b = ^z ^°' e^' a ^^ le,

ear ^`.c=-	
o

Differentiating the first equation, substituting from the second, and employing

the differential operator notation of Appendix E yields

cyz 
?6Y + (V+C-)] C = - CLb

	
(F-21)

The characteristic solution for this nonhomogeneous second-order equation is

given as
^ = e^ ^7► , cow c t + -A 2 AZ— c V

where ^ and k2 are the integration constants, and the particular solution is
- - ab

P — ba+cz

F-4



c ,
i

a£

t

Hence, the complete solution to Equation ( F-21) is given as

ebt	 b
XP C	 7^, C"G Z + ^►+- G ' —

a

b tc
(F-22)

t

/a

.I
L

rt

z

The solution for ±1 is similarly obtained as

br	 a^ c'^'t = Q%e C T 1	 + -T.zc., e-	 — 
b2

+cz	 (F-23)

The integration constants X 1 and 2 can be obtained by evaluating Equations (F-22)

and (F-23) at the epoch time t 0 resulting in

-A a Ct^Co f 
-2L-- ) 6" G - C'^,+ b 4CL ^ Az. 

e_t	 (F-24)

O `
r	 b

^Z= e P al+ ;r4TL),m,;, CZ + 61o t k6 ^^ t+^ c^o ^	 (F-25)

From Equations (E-15) and (E-16), the desired solutions are

2 C-)$ (r 2,4-'ql) '/Z	 (4-72)

where 4 and rl are given by Equations (F-22) and (F-23), respectively.

Recall that Equations (F-22) and ( F-23), even though exact simultaneous solu-

tions to Equations (F-19) and (F-20), are still approximate solutions to Equations

(F-17) and (F-18) since these equations were linearized by backlining e (0) . The

validity of this approximation is demonstrated by the data in Table F-1, which con-

sists of time -point comparisons between numerical integrations of Equations (F-17)

and (F-18) and numerical evaluations of Equations (F-22) and (F-23). The data

span a 60-day time period with an integration step size of 128 seconds and a print/

evaluation step size of 0.5 day. The orbit eccentricity is 0.036.

In Reference 16, plots of the motion in the ^, 11 -plane are given when considering

oblateness only. The L, rr solutions presented there are of the same form as those

derived in Appendix E, i.e.,

F-5
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Y`

^ = A c.., (Kt- -,- -0
	

(F-26)

'q = A /y:_ (Kt- 4 + CIK
	

(F-27)

Plots of these solutions are circles centered at (0, C/K). The magnitude of

e(0) (t) is given by the length of the line segment from the origin to the point

(^(t), ?(t)) on the circle, and the angle turned by this line ( relative to the +

axis) measures w (0) (t).

Since drag perturbations tend to diminish e, it was expected that the correspond-

ing plots for f vs, a, as given by Equations (F-22) and F-23), would depict this

decaying effect while retaining the basic characteristics of the oblateness-only

plots. Figure F-1 reveals that this is, indeed, true. The plot shows a 360-day

variation of  wither for the orbit of 0. 03 64 eccentricity.

The solutions for El, _I given by Equations (F-22) and (F-23) represent the

combined effects of oblateness and drag. Although these solutions are functionally

different from the corresponding solutions for oblateness -only (as given by Equations

(E-26) and (E-27)), they are identical in the limiting sense, i.e., as the drag

perturbations tend to vanish. This can be seen by allowing b (or D 2 ) to vanish in

Equations (F-22) and ( F-23).

Lim	 e,F& _ Lin.	 `^^GoyG +71= •GL]- QL'. =
br,o	 `.pp	 b +c

which reduces to the oblateness solution

'C - A C.--1 (C.2 Z7 -a- -c)

Similarly,

4i
i

t 

F-7
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e btr	 ac

6-)o b +o	 b .^c

+loo- ^) c,tDJ^;,.ci^

which reduces to the oblateness solution

= A ^:^. (Cz 	^ .^^ + C, k

F.3 SOLUTION FOR i ( 0) 	 ^(0)

ri Since drag does not affect i and n ( at least when the drag model is tangential),

=. the solutions for these elements remain the same as in the case for oblateness-

only	 nd are given b	 Equations 4-37 and 4-39	 respectively.Y	 gi	 Y	 q	 (	 )	 (	 ).	sP 	 Y•

•i

F.4 SOLUTION FOR B(0)

'

The solution for B (Q) is obtained by approximating e(0) and B(0) by their epoch

values on the right-hand side of Equation (F-15). 	 The resulting equation can be

directly integrated to yield

0	 4-80

a
(NOTE: Numerical results have verified the accuracy of using the backline epoch

value to effect the integration.)

F. 5 SOLUTION FOR M(0)

Equation (F-16) can be rewritten (using Equation (E-15)) to yield

=[4-(4"7- CC) I+ ^z^e	 +d, eOT^^o

The epoch value of e (0)	 i.e. a 09 will again be employed, and the solution

form is given by

P1^'= [64"	 2 ^ r+ ô +4, e o')]	 -(4C,-Cgk 4;e+ K

where K is the integration constant.

^	 FA

t

i ,



mijf

From Equation (F-23)
^yy	 bI

i.

= eK. ^^1M`c.t+	 C	 0.0

61+ c'^-

so that
bt

j'1	 i,2+ t L( ^^ C- 71,4Z,Ct + (-A ^+ T, C) l+^ c ] - L zb +c

	

Hence,	
r

	

^'	 ^^ !	 i	 G C,	 d-.	 o-+ {^`+(vc,-
e8)b=4C=  ^^ C e^ t, ô f die Q .]^(t-^o)

0

,-Cj,SxP	 ct+ ^^,6i-A,G)G.^c^

e b to

where the integration constant K has been evaluated at epoch time 4. As mentioned

in Paragraph 4.3.1.2, the Keplerian change in M that takes place in the time

interval (t-t0) must be added to the above equation.

F-10
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APPENDIX G - PROCEDURE FOR DETERMING FUNCTIONAL FORM OF C(t)

G.1 INTRODUCTION

An outline of the procedures necessary for obtaining the E (2) solutions was

given in Paragraph 4.3.3. 	 Inherent within these procedures are the steps necessary

for determining expressions for C(t). 	 In this appendix, the details that must be

considered in implementing these steps are discussed. 	 Each step is illustrated

by working out the solution of CCtt) for the inclination i, denoted by C.(t).	 Because

of the complexity encountered in solving for C(t), a number of simplifying assump-

tions are made.	 However, the final expression for C i(t) is shown to agree re-

>; markably well with computed values from the GENPUR program, thereby indicat-

ing that highly refined equations may not be necessary in determining the functional

form of C(t).

It G.2 SECOND-ORDER EXPANSION OF THE BASIC DIFFERENTIAL EQUATIONS

The first step in the procedure is to expand, to order E2 , the basic differential

equations of perturbed motion. 	 These equations for the gravity perturbation

are Equations (2-34) through (2-39). 	 Consider, for instance, the J portion of the

equation for i, Equation (2-36).

3 (2-36a)
d	 _-	 E^ re gj'(i+ec.^v^(I-e^ ,a;r2t ,^;^ 2^. 

The required expansions may be obtained using the methods of Appendix B i.e.,^	 xP	 Y	 g	 Pp

g ' = 
are 

+ E 76`̂ ^ g^'

(!t ec. ,v^3= ^/^ e^^^,v^'^3+ 6C3^l' oco-^v^)Z^e^c.,v^^ e ^v nti:̂  v A

12 =	 (- eC1^ -^/: + E	 7	 -e 	 F) G'	 G-1

Jl 	 - ^ L x G -r.: , n- + E 12 0L., :2 (c)

i	 G-1



These expanded expressions can be written in the form of binomials

E `l.
(It a CO-V) _ X 2 -+ y2	

(G-2)

(I- e- )--7/2 = 95+61 5

^.^. 2 t= X y+ 6 `l y

U. Xs t ^ GIs

where

X, = g^')

and	 \I	 7 QC^ "8 p

y3 = 7 ^I-ells-4/: eC)eG)

`ly = 2 < 	 2, (J

ys =	 C.

The basic differential equation expanded to order E, in terms of these binomials,

is merely

(2-36b)
dr

G-2



2
The same equation expanded to order C	 is

0(, )(.,. 9 " x	 + X, \17 X3XyXS
(G-3) 

+ X1 X j i q X 4 X 5, 4 9 1 X-z X3 ,/,, Xf + X, X,)( I X"

or, in more concise notation

6 C
CL r 

= 	
^: +	 2

which is equivalent to Equation (4-115).

(NOTE: Equation (G-3) illustrates a convenient method for expanding the basic

2
differential equation to order C .

	
First, convert the expansion of each term

to the binomial form of Equations (G-2). 	 Then, insert the y part of each binomial

2
into the differential equation, one-at-7i-time, to get the c	 expansion.)

The complex nature of Equation (G-3) is veiled by the notation.	 For instance, Y	 is

(6A	 01 	
+	 77	 (3c'	 766 	 CS) — 52 (6, P j 4 (,s

-2	 C01

-7	 [K. (13)

4 -; ,2^ 	 2	 1-^	 0)
C*--1 CA3

-,10	 *)4Z+	 OL	 +	 VMA^-- W C-)L-1 V

+	 (0)4,z—	 2	 -)4 	-2c co)V (0 z^

The remaining	 terms are equally complex. 	 Some simplification Is possible,
.44

depending upon accuracy required, by neglecting terms containing certain powers

of e ( 0 ) and by holding certain elements constant, such as I.	 (Use of the FORMAC

program would allow retention of these terms in the expansion.)

One assumption that will be made at this point in working cut the solution for

the element 
I 
is that all terms involving powers of e (0) will be ignored (i.e., e (0),

(0)2
e	 , etc.).	 Thus,

X^

—0
27
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The f , and functions become

rcz (X, X2 Xaxs)

i = - z ^' <<Z ^Y^ XzXy XS + X. Ys X ti XS + X. X2 yy Kr + X, Xz Xy Ys)
where, recall, f is the expansion of the basic differential equation to order E,

and gi is the expansion to order E2 . To further simplify for later analysis, let

C1 , = y, x2 Xq )Cr

dz = X, '1z Xy XS

d y = X 1 X2 Y4 Xs

ds = X,X'2XyYs

so that

^C =- Z6.^"r,,A +d,'dy+ds)

G.3 PARTIAL DERIVATIVE OF E(1)

The next step in the solution process is to compute the partial derivatives of

the E(1) solutions with respect to 	 Recall from Equation (4-28) that these solutions

have the form

E (-I)= K2 ('0(S(E) - 5...' 	i ] + ... + 'C' a)

or merely

The partial derivative is then

-	 + dZg

so that the crux of this step is in determining 8fN/8t'. For those E (1) solutions
that have no secular terms in I 2 (E) (or I3 (E)), such as B, this step is relatively

G-4
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v#p

t.

1-
J

t

straightforward, but tedious. The element i has no secular term in I2(1).

Neglecting J3 terms, its super -one solution is

< <^ = K1 C^) zz (c) 4 C_

such that

^N <<> = K^ C^) sz Ct)

The partial derivative of fN(i) is merely

d-^`) - ^ CKz (<) <, (^)aZ_	 AE

One question that arises at this point is whether
^Qc) y rlo z

can be considered constant. The B(0) term is constant if gravity perturbations

only are being considered, and can be treated as constant for fairly long intervals

even when drag is present. The e(0) term, however, has an important long-

periodicity due to j3 . It has not yet been determined whether the e (0) vaVation

with t should be included. However, since the example is neglecting e (0) terms

and is considering only gravity perturbations, K 2(1) will be treated as a constant.

Evaluation of 8I2 ( i)/8t requires further analysis. I 2(1) is composed of

terms such as

so that the partial derivative involves determining de (0) /dt, di (0) /dt, dw(0) /dt, and

du(0) /dt. The first three of these derivatives are available from Equations (4-32),
U

(4-36), and (4-34), respectively. Determining dv ) /dt is more complex, however,

since the explicit expression. for v(0) is not immediately available. To obtain such

an expression, the Fourier-Bessel expansion may be used, 1. e. ,

G-5



V (°) = M (°) + 2e	 M(°)-+ & . .

The dv(0) /dt derivative can then be expressed in terms of dM(0) /dt and de(0)/dt'

dt	 d (i+2e N^c a, M^)^^ 
dt 

} ?^:^.M °̂) +...	 (G-4)

If only the - gravity perturbation is being considered (de(0) /dt = 0) and terms
involving e() are neglected, then

dye° '_ d^^^)

An expression of dM (0) /dt is provided by Equation (4-43). Notice that Equation (4-43)
does not include the Keplerian variation of M (0) , which is dependent on t rot -̀er than t.

Even with these simplifications, the partial derivative of only one term of

I2 (i) is very complex, i.e.,

dam) - - ^•. r. 2 - (°) 2 w	 ^) ^) (1	 °	 o
v	 - 2e c^., 2 cam).• 2d	 -	 d

dE	 d
Substituting Equations (4-32), (4-36), (4-34), and (G-4) yields

t, a	 = ilw 2 c aw 2w ^:,.v (^ ) (^3^^^ re Mr^ ^^-e^°)1)-2	 c C C.e-scare
V:
^c

- 2	 2<<°^^.^i..v^°^`^&^13^Si^rcM^e^°^^-e^°)Z^_^^
- 2e(6)^^c.-, ?c,^'°^°^^(j^'^ rziv^n^l-e^^2^-2r^-2^^+Qk+)^^^7^^M°)

	

e	 3	 e ^

(i
^)2\ 3 3seC°) , rot .

	

	 r^^ :.r^^ C.	 -	 ^)	 - t

	

- e l (y e....i ,a . ` w C-&1 L - e cal C tZ ca ° + 	 ,2,^, t °)A.:— w

() \^1 - e
(°)i1.^ ?i rOiJ.. 2car°^Go^ v^^^^+ 2enCti /`7 N^,^g 1̂ re M(^l

+ aw C ^)•: w^°^<^- ^,a,^' C ro) ^7^

+ derivatives of 8 more terms.

G-6
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As noted, this is only the expansion of one term in nine. Thus, evaluating the

derivative of even the simple type I2(E), which has no secular terms, quickly

becomes very involved.

To return to the more general form of an I2(E) integral, which contains secular

terms also, consider the equation for 0 (1) , i, e.,

The terms within brackets are an expression of nonsecular (with respect to

parts of an integration. For the element i, there were no secular terms in

I2(i) so that S2 (i) was equal to zerc. For the element 0, however, the I2(Q

integral contains a secular term, - 1/2 v(0) cos 1 (0) . To remove this secularity

from the brackets, S2(n) is

52 CrO=- ^^<<-'

Assume for the moment that I2 (n) was composed only of the secular term, and call

it I 12(C^. Then

To compute 8fN(0 )/at, the partial derivative of the right-hand side of this equation

must be evaluated. Substituting Equation (4-45) for v(0) yields
^I

Next, using a functional form of Equation (4-44), i.e.,

M(°) = /V,C°'t + M0(^O

(G-5)

(4-44a)
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y5

N Substituting Equation (4-44a) into Equation (G-5)

v -r+ t M t± M (t +2c	 :2 +... M

	

= MC-) )+ 2eCO)4^„MR4 -S e C)Z
A.,^ 2MC'^+...	

(G-6)

and taking the partial derivative of Equation (G-6) with respect to 't

d 
OMC't) 

d r*)^l+2enc.-7M 6))-f dc(')2a.:... Mn+
dt	 ...

s	 which is the same as Equation (r-4). Thus, the presence of secular terms within

an I2(E) integral presents no new problems, but merely adds similar terms.

Performing the differentiation of all terms of each E (1) solution with respect

to t and making the necessary substitutions will result in extremely long expres-

sions. (The need for an automatic manipulation language such as FORMAC in this

step is indeed evident.)

To continue with the example for i, neglect terms of Equation (4-89) of order

e(6 ' (and higher) and omit the J^ terms

^)	 1 0)	 CQ)	 Co)	 ry	 C^	 C1 - z - .^ = K2(Z)r ^ AZ- ?c /J..^. w	 W ,o.:.,.. v cow v	 ,1: ^. 2 a .,.

+ 2	 2L-	 z w^° .z„^^I + << (Z)

Assume also that

a('
(IF

dt(^) = o

The 8fN(i)/9t derivative is then

G-8
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tw

Y

a^	
= Kz (^ ^ i `2 ^.:.., a ^ ^.a', 2 c.^ ^,,,,,, v c.^ v ^+ 2a^.. ?r ^^^1.w.'v ^ a,.,..2 w )]

C	 (G-7)

ar ^

(To facilitate work in the next step, expressions for dw(o) /dt and du(o) /dt will not
be inserted at this point.)

G.4 SECULAR PARTS OFT INTEGRALS

A second application of the first uniformity condition requires determination of
secular parts of the integration of V and dfN 	 t/at with respect to T. However, & and
BfN/8-t are primarily functions of v(0) rather than t. Thus, it is more convenient
to change the variable of integration from t to v (o) by the relation

dt 
VrZ' BFI (14 ece v^°^)Z

The following integrals must now be evaluated and the secular parts determined

f-3

I&
 at ') 5	

(I-e	 d-V
d^j3 (I +	 2

^L f ^" - (I-e)z) 3/z-

This step is straightforward, but very tedious if no simplifying assumptions are

made. FORMAC has been modified to evaluate these types of integrals and to
then extract the secular terms.

G -9
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r'

3. To continue with the example for the element i, consider the integral of gi

"c2(d^td2 +dy+ds)

There are some terms common to the ddwhich may be extracted, i.e.,

where

	

<)	 - (-)A	l°) (t)	 (°)	 (°) n	 0i

Then,

	

L	 o6f 5^ cat = - ^' r^ ^^^ 1(^•1e(-)^-.d	 /^^ f ^ 2 f ^y + -*S) cif (G-9)i	 JJ	 l

(0)2 3/2

	

Neglecting the (1-e	 )	 term in Equation (G-8) and substituting into Equation (G-9)

yields

l	 y^
To evaluate integrals of each z term, without the use of FORMAC, all terms

containing e(0) and higher powers of e(0) are ignored. The expression for 11

becomes

G-10



In obtaining the value of e(1) to be used in z1 , only the  portion is considered, i.e.,

92 (e) 11 0 + Cie (!F)

aCJy ê :^ [^ 2^^) .v`^iLH-w^^c.h WW+ -UL Lw.Z [ ^.^i.'w.IVCO)... 2w(OL&.1V0)

— 3 ^:...zC r 
^? v, ^

}c.+ v ^•)+ 3 .^:w,a c f°)^ 9 vC=1̂ .:.^ w^'^ c.a-^ c,^^°^

+ C-e ^-)

The expansion of cos v(0) sin 2u(0) is

w,vF. . ?^•F^ = 2 C.-Y ^w^
)̂ ^."^.v(^' aC.-^v^^+A:.

Hence,
s ^F)	 ?^2 w,?w,'1..,vc. 2v^+ a:.Y. --2W(°)c.r,vFl 2.e:. 2J-14--v""4-.j j^, = 3^^

C- -1 CA^.v(*x.211"+ 3 /l:wtC^ 	 zl^(-,[^+v^l

+ a:.' ^a.:. y^^i^"r ? w(^)2^^^z^l^^ v^)_ /'^^ F^[^-, v F^+ C. •V'^J

Bc, 4rc2

Hereafter, only those terms which are secular in v (0) , after integrating with

respect to J O) , will be retained. Such terms are of the form cos v (0) sinNv(0)I

where M and N are even integers (or zero). Thus, the secular terms in z1 are

iA

t^

G-11
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1
I

t

t

1

^' S E( = 3 r^^ 8 ^'' '̂d"'.r.Z t r°) C ^ cw! ? w^,/bu.. 25,.^(•)/^,;n. i [ ^,/^,;,., a 1^(• )c,,, ^,(•/

+ 3 c.•,?wN^,s;,,, ?^.^°)1;^1c^'^^...yLC^%—^av(6)+ ^3 A:^.T^^ 	w^ Â 2c.^r•av^^^ v(e)

) ,,.. W .tM, ? ca t o s V

4;.- 2w c.-. u if	 w. w .L..•.?w

+
	 & `̂ A%ow ? w^)Ls— 1J ^^4v Cl.+ a:ti.a^ ^.}ww1 c J ^Alo-• ?w y 42V ^

)
.y,'r %drs)

^. 3 ,a•^+^=C^°^iiw.2w^^G«^^v^°^iL...^v^°)— ?,s,:..-?^.a^^Go--,Zy^)M,.,^v (e^J

Integration and simplication yields

f^, d^ = g fc ^Q•"^..?tii•:. 2w(2-
SEC

By similar procedures, it is found that

of = O

fer.e- C1 Z- = 0

SEC

where in the z5integral u(1) = v(1) + w(1) . The secular part of the t integration of gi
i s then

J gt dt = -	 mac"	 4;—?t r.^i.'.. ^ca^^(2- 3.s:.^.Z ^ F ')^, 	 (G-10)

stc

Next, consider the integral of afN/at with respect to t. Assume in Equation
(0) —	 r6)

(G-7) that dw /dt and dv /dt are constant with respect to a t integration .f	
-

Referring to Equation (4-34), it is obvious that the secular rate of change of

W (0) with respect to t does not depend upon 1. It is not so obvious for dv ( 0)/dt,

G-12
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!V-

r

f
f ^.

^°:=	 -^..	 yam_

since v has a Keplerian variation that depends upon t. In functional form

VC)- M(o)t+ ^(t)

However, its derivative with respect to t is not a function of , i. e. ,

1 '_ 4- t)
dt

Consquently, dv(0) /dt is constant for the t integration.

It is again convenient to change the variable of integration from t to v(0) by

using Equation (G-8), where the e(o) term is neglected, i.e.,

cA -o(°)

The integral is then
a^N	

K^^^ {fiT
(:2d,..^.:..-?c`°'?c..,^°i^,;.,'v— :2a.:.,. 2 ^cr,2 w`°).s.:..,vu)c.a,v^°^)dt}°;

d ,
	 J}

Eliminating all but the secular terms gives

dt
	 (G-11)

SEC

G. 5 INTEGRATION WITH RESPECT TOT

The differential equation for C(t) from Paragraph 4.3.3 is Equation (4-122)

t	 ^A :E- - ^	 (4-1-22)

dit	 )W	 sFc

G-13
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The final step in the solution procedure is to solve this equation for C(t). Sub-

stituting Equations ( G-10) and (G-11) into Equation (4-122) and then integrating yields

o

	

K2 <<)	 (°J	 °j	 .^ uJ awl dt

CA z

To evaluate the integrals, substitute

V (°	
/V_' 6°)

K i )= _J_ 6 (°' 9 ^- zz	 C

so that

	

T<<g^	 ^<<Oil:,_?cJo1^ ?-3s:,^t°)n.^°'c^

(G-12)

At this point, the E (0) solutions for each element (Equations (4-33), (4-35), (4-37),

and (4-44)) should be substituted into Equation (G-12). The resulting integrals will

be complex and very difficult to evaluate. For instance, the sin 2 w (0) term would

have the form

/kM?C,^°j= .J.r y2^:r C A 1,:— (6 -1 t - L)4 
Gc/Cx 7

which must be combined with other functions of t and then integrated.

For the inclination example, a different approach was taken. All elements

within the integrals were assumed constant, except 

f

w (0) . Then, from Equation (G-12)

l°) 4 Z	 (	 WrO 1^

dZF

G-14
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In the first integral it is easier to express dt in terms of dw (0) than to express

sin 2 w(0) in terms oft Using the JJ portion of Equation (4-34),

dt = d2.)
13614 c 
	 2Z

In the second integral, the dt s̀ cancel. Thus,

L ft) _ -- l^2gC°^y a;,y,2[(?-3,^.^.^t) I'.:r. Zw 6ib	 ^2-	
a... c k')

f4;— W

Integrating and collecting terms gives

<<C^) = - gC°) rezo^:`.2<<^c° 2w °'^- (
 2- 	= \ + (] + 1<

	 (G-13)
2_,fjr,;,- C.) f

where K is a true constant of integration. Equation (G-13) is the final expr"sion

for Ci(t).

To test the validity of this solution, it will be compared with results from the

GENDUR program. Appendix H presents solution components and associated

constants as computed by GENPUR.

The plot of EC I (t) is reproduced from Appendix H and shown in Figure G-1 for

the low-eccentricity orbit case. Evaluating the constant K and inserting proper values

for the initial conditions in Equation (G-13) results in

Cz OT) a 0.27 cs-s ;2 w (D' (,-AA)

1
In Figure G-1, the values of CI(t) have been multiplied by €and expressed in degrees.

The corresponding solution equation would be

ECt (t) - 0.02.< C,•-, 2Go(*) (A e.0

G-15
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f

k

'; The dashed line in Figure G-1 is a plot of this equation. It matches the GENPUR

solution extremely well.

F In summary, results of the simplified analysis to obtain the functional form of

C i {t) are very good.	 These results bring up the question of how much improvement

is really needed or desired, especially since a great deal more effort would be

=r required to eliminate the simplifying assumptions.

Y

X:

z

I

i
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APPENDDi H - PLOTS OF SOLUTION COMPONENTS AND
ASSOCIATED PARAMETERS

The second approximation solutions to the equations of motion result in ex-

pressions of the form

E (t) = E (0) + E 
E(1)

where E is any element in the set (e, i, Q, w, B, or M). The E (^ ) solutions are mean

elements and contain the secular and long-periodic variations. The E(t) solutions

(i.e., E (0) + E E (1) ) are osculating elements and contain short-periodic in addition to

secular and long-periodic variations. This appendix presents plots of these solution

components for each element when considering a low-eccentricity orbit. The initial

conditions for this orbit are shown in Table H-1.

x Asymptotic series solutions were first derived when considering only the oblate-

<` ness perturbation (J2 and J ,l first-order effects).	 Later, combined solutions for
-3

oblateness and drag were obtained. 	 Therefore, two sets of plots are presented in

i this appendix; one for the oblateness -only solutions and one for the combined solu-

tions.	 In both sets, Brouwer ' s equations are used for second-order secular effects
z

of J2 and -4 on SZ, w, and M.

Deeply involved in the solution procedure are assumptions that various param-

eters remain constant, at least relatively so for short intervals of time (2 or 3 days).

It is known that some of these parameters (the C(t)'s) contain important secular and

long-periodic variations. 	 Other parameters (C 1 through C 8) remain fairly uniform,

at least for the oblateness -only solutions.	 Plots of these parameters are also pre-

sented in this appendix.

Figures H-1 throL ;_;h H-12 show the solution components and associated param-

eters for the oblateness -only solutions to the low-eccentricity case. Figures H-13

through H-24 show the corresponding solution components and associated parameters

for the combined oblateness and drag solutions. Interesting differences can be seen

in the behavior of some of the parameters when drag is added to the solution. Many

H-1



Mean Elements

B -1/2)(km 0.012340 t4

a (kra) 6566.5731

e 0.00559414

i (deg) 50.01120

tl (deg) 152.47131

W (deg) 52.62626

M (deg) 2.91685

State Vector

x (km) -4872.6530

y (km) -1364.7471

z (km) 4124.7041

z (km/sec) 4.41679

y (km/sec) -5.51029

z (km/sec) 3.39451

Date

April 1, 1971

CD(A/m)

0.0002 m2 /kg

Table H-1. znitial Conditions for the Low-Eccentricity Orbit

H-2
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of the parameters are functions of B (0) , which is constant for oblateness only but has

a secular variation when drag is added. Thus, the parameters take on a secular

variation which was not present in the oblateness-only solutions.

In the plots of the solution components, the secular and long-periodic trends

are easily recognized. However, since these are plots of points at 6-hour intervals,

short-periodic trends cannot be distinguished because they appear as somewhat random

fluctuations about the mean.

The units of the element solution components depicted in Figures H-1 throw

H-7 and H-13 through H-19 are as follows:

e - unitless

W, i, SZ, M, v -deg

B - km-1/2

The units of the constants and functions depicted in Figures H-8 through H-12

and H-20 through H-24 are as follows:

C 19 C2 , ... , C7 - rad/hr

a - rad

C e(t) - unitless

C w(t), C i (t), CO), CM (t)- deg

C B(t) - km-1/2

1I
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Figure H-1. Eccentricity Solution Components
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Figure H-2. Argument of Perigee Solution Components
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Figure H-4. Ascen ling Node Solution Components
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Figure H-5. Reciprocal Square Root of Semimajor Axis Solution Components
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Figure H-7. True Anomaly Solution Components
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OBLATENESS AND DRAG
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Figure H-13. Eccentricity Solution Components
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APPENDIX I - DISCUSSION OF OSCULATING AND MEAN ORBITAL ELEMENTS

There are two basic types of orbit elements, osculating and mean. A set of

osculating elements represents an exact definition of one point on the orbit and, there-

fore, is equivalent to cartestan coordinates of position and velocity at that point.

Though osculating elements may often be difficult to obtain, there is no ambiguity in

their definition.

Mean elements, on the other hand, are not so well defined. As a satellite

travels in its orbit around the earth, the osculating elements at each point in the orbit,

when plotted versus time, will exhibit periodic fluctuations. These fluctuations may

be either long-period (of the same period as &,) or short-period (of the sar_le period as

v ). A mean element, as the name implies, is an expression for the average value of

the osculating element (without periodic fluctuations). Usually, a mean element is

defined as the osculating minus only short-period fluctuations.

In engineering activities other than astroc hrnamics, the standard working elements

are osculating elements; for instance, the powered flight trajectory analyst will usually

present insertion conditions in terms of a position vector and a velocity vector.

Various theories, therefore, have been devised to compute mean elements from a set

of osculating elements. Some of these theories have peculiarities in that their defini-

tions of mean elements are tailored towsrd use in a specific general perturbation

i^

	 theory. Consequently, these elements are not truly mean elements but, rather,

starting conditions for that particular theory. The definition of "mean" semimajor axis

by Kozai (Reference 23) is a good example of this type of definition. Assume that are

initial osculatinh' value of semimajor axis, a, has been provided. To compute the mean

sernimajor axis, a, according to Kozai, first subtract short-period fluctuations:

a p =a- dws

where

das_ 11	 2,S o- •^- • } (r)-o- e 	 + (^)A. 7i [ems ^ (1^+ W4



At this point, one would have the standard value of mean semimajor axis (oscu-

lating minus short-periodic). However, Kozai continues and "conveniently" defines the

mean value as

which he needs for use in his general perturbation theory. The equations presently

being used within the MSFC Orbit Lifetime Program (Reference 20) require the Kozai

a element. Moreover, it is believed that the "mean" elements given by SAO in their

reports on past satellite histories (Reference 19) involve the Kozai a definition. The

GENPUR program, on the other hand, requires use of the 4 type definition, as do

most other general perturbation theories. it might also be noted that output of the

MSFC transformation program for "mean" elements uses a 0 as the definition of semi-

major axis.

Another theory which has been used to compute mean elements is that due to H.

Small (Reference 24). For the sake of identification, results of his theory have been

termed "smoothed" elements. Small's theory involves removing short-period fluctua-

tions from the radius and velocity vectors. If r, YR , and IL are initial val ues of the

osculating radius ; radial velocity component, and normal velocity component, respec-

tively, then the mean values are

r= ^-dc

Va = VR - Avg

VI 	 dVL

These mean values are then used in a standard coordinate transformation pro-

cedure to compute mean (or rather "smoothed") elements. For instance,

r^
0.s	

2.k- ^"74i

s

i

i

i
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where
z	 2	 2

^► = V j; t VL

In Reference 25, it was found that the essential difference between the Kozai a0

and the Shull a is
-s

Qo — QS — 72 A` ^— 1"^ ^Ll

The "smoothed" elements of Small are those used by the MSFC Orbit Lifetime

Program for integration. However, it must be remembered that the A-E-P (Reference

26) equations within the Lifetime Prograr:; require the Kozai a given by Equation (I-1).

Other methods for computing mean elements are given in Reference 26. Initial

mean elements for Brouwer's equations are computed by the following procedure.

Sets of osculating elements over some time interval are required. The long-periodic

and short-periodic variations are computed for each element in every osculating set by

using Brouwer's equations. Then the secular motion is computed referencing every

set to an arbitrarily chosen epoch time. Mean value sets are obtained by subtracting

the secular and periodic terms from each respective osculating element set. These

sets are then averaged, yielding one initial mean element set. Notice that, if only one

set of osculating elements is available, the procedure is similar to that of Kozai. For

instance, initial mean value of semimajor axis is

a = a —D,?

where	 Z

'^ J^^-_A1'C/^ r/ 6J L	
C-)3

The Brouwer expression for a in fact, is equal to the Kozai expression for

da . However, there are no further steps in the Brouwer procedure, so his mean is
s

truly osculating minus short-periodic terms.
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The importance of having well-defined mean values cannot be overemphasized.

For example, it has been found that an initial error of only 0.4 km in the initial mean

value of semimajor axis can cause a 360 0 error in mean anomaly at the end of 330

days.
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