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FOREWORD

This report, which supersedes the interim reportdated May 1971, presents the
results of work performed by Computer Sciences Corporation's Aerospace Systems
Center while under contract to the Aero-Astrodynamics Laboratory of the George C.

Marshall Space Flight Center, Contract NAS8-26113,

The authors are grateful to Messrs. L. D. Mullins and B, S. Perrine (MSFC-
S&E-AERO-MMD) for their technical assistance and to Messrs. W. J. Elkins and
M. M. Hansing (CSC) for their programming support.
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SUMMARY

The methods of both special and general perturbation theory are employed in
solving the equations of motion for a satellite subjected to the perturbational effects
of earth oblateness and atmospheric drag. In the special perturbation method,
Cowell and variation-of-parameters formulations of the motion equations are imple-
mented and numerically integrated by means of a MARVES (Marshall Vehicle Engi-
neering Simulation System) computer program. Variations in the orbital elements
due to drag are computed using the 1970 Jacchia atmospheric density model, which
includes the effects of semiannual variations, diurnal bulge, solar activity, and geo-
magnetic activity. In the general perturbation method, two-variable usvmptotic
series and the automated manipulation capabilities of FORMAC (Forrﬁula Manipulation
Compiler) are used to obtain analytical solutions to the variation-of-parameters
equations. Solutions are obtained when considering the effect of oblateness only
J. ) and gg) and the combined effects of oblateness and drag. These solutions are
then numerically evaluated by means of a FORTRAN program in which an updating
scheme is used to maintain accurate epoch values of the elements, The atmospheric
density function is approximated by a Fourier series in true anomaly, and the 1970
Jacchia model is used to periodically update the Fourier coefficients. The accuracy
of both methods is demonstrated by comparing computed orbital elements to actual
elements (or elements computed by standard MSFC programs) over time spans of up
to 8 days for the special perturbation method and up to 356 days for the general

perturbation method.
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NOMENCLATURE

Mathematical Symbols

a semimajor axis

a.b,c a set of constants arising in the solution of the ordinary
differential equations having t as the independent variable
(explicitly defined in Appendix F)

a,b Fourier coefficients appearing in i‘ourier series
app.oximation to atmospheric density function

A a constant arising in the solution of the ordinary differential
equations having t as the independent variable (explicitly
defined in Appendix E)

(A/m) satellite arca/mess ratio

b angle measured normal to orbital plane in direction of normal
perturbative acceleration

. . -1/2

B orbital clement defined as a

Cl’ C2, cee a set of constants arising in the solution of the ordinary
differential equations having t as the independent variable
(explicitly defined in Appendix E)

C(?) integration "constant' associated with asymptotic series
solution development (see Paragraph 4.3.1)

CD aerodynamic drag coefficient

D drag force magnitude per unit mass

02 a constant arising in the solution of the ordinary differential
equations having t as the independent variable (explicitly
defined in Appendix F)

e eccentricity

h specific angular momentum
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NOMENCLATURE (Continued)

inclination relative to earth equatorial plane

coefficients of second, third and fourth harmonics, respectively,
of earth gravitational potential

constant arising in the formulation of the differential equations
of motion for targential atmosphuric drag (explicitly defined in
Paragraph 2.5.2)

mean anomaly

mean motion defined as (u /a3)1/2
semilatus parameter defined as a(l -e2)
geocentric radius vector

perturbative acceleration vector

equatorial radius of earth

perturbative gravitational potential function
time

fast time variable defined as t(1+a'2(2)

slow time variable defined as €t

argument of latitude (V+w)

inertial velocity vector

relative velocity vector

a constant arising in the solution of the ordinary differential
equations having T as the independent variable (explicitly
defined in Appendix E)
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NOTE: The subscript "0" is used to denote the epoch (or reference) value of an
element or element function (i.e., o e(()O)' eél)).

10T M TR ey T @NS s  y T T T

NOMENCLATURL (Continued)

a set of constants used to represent different linear combinations
of the Fourier cocfficients a, and gi (explicitly defined in Appendix F)

right ascension of satcllite subpoint

flight path angle (positive above local horizontal)
angle between local latitude and orbital planes
declination of satellite subpoint

small perturbative parameter defined as (s /2)J2
transformation parameter defined as e sinw
angle between local longitude and orbital planes

constants appearing in the £ and 1 solutions for oblateness/
drag (explicitly defined in Appendix F)

earth gravitational constant

true anomaly

transformation parameter defined as e cosw
atmospheric density

angle between radius and velocity vectors
argument of perigee

magnitude of earth rotational velocity vector

right ascension of ascending node

ix



NOMENCLATURE (Continued)

Flement Types and Variations

long-periodic variation - A variation periodic with respect to w or
multiples of w; for example, sinw.

mean orbital clements - The osculating clements with the short periodic
variations removed.

osculating orbital elements - The instantancous elements defining the
continually changing elliptical orbhit.

sccular variation - A steady nonoscillatory variation from the zpoch
value, i.e., a variation directly proportional to the independent
variable; for example, Ct.

short-periodic variation - A variation periodic with respect to linear
combinations of ¥ and w; for example, cos (V+w).
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SECTION 1 - INTRODUCTION

The purpose of this study is to develop techniques of orbital decay and long-
term ephemeris prediction for satellites in elliptical earth-orbit. These techniques
are to be accurate and flexible, and are to lead themselves to rapid computation.

In order to meet current needs, emphasis is to be placed on the development of
ephemeris prediction techniques for low-eccentricity, near-earth orbits when con-

sidering the perturbational effects of earth oblateness and atmospheric drag.

Classically, two general methods of attack are available for solving this
problem. These methods are known as the methods of special and general pertur-
bations, respectively. In both methods, the equations of motion may be formulated
either as three second-order differential equations (for the perturbative accelerations)
or as six first-order differential equations (for some set of fundamental orbital ele-
ments), The two methods differ in that special perturbation formulations (such as
Cowell's, Encke's, varia*ion-of-parameters, etc.) employ various numerical inte-
gration procedures (such as Runge-Kutta, Fehlberg, Shanks, etc.) to obtain the
solution, while general perturbation techniques (such as variation-of-parameters,
variation-of-coordinates, etc.) generally employ series expansions (such as Taylor's,
multivariable asympto.uc, etc,) combined with analytical integration to achieve the
desired solution. In choosing one method or the other, one must keep in mind both

the nature of the orbit under consideration and the nature of the solutions desired.

The main advantages of the special perturbation method lie in simplicity of
formulation, applicability to any type of orbit in any perturbing force field, and com-
pactness of storage requirements for program solution, This method is ideally
suited for calculaling orbits of limited duration. The main disadvantages inherent
in this method are the inducement of errors (truncation and round-off) due to the
numerical nature of the process, the resulting lack of application to orbits of long

duration, and the extensive computation time required for solution,

1-1



The primary advantages of the general perturbation method lie in its applica-
bility to orbits of long duration, its relatively rapid computer solution time, and its
ability to provide a clearer geometric conception of the effects of the various pertur-
bations. On the other hand, in applying this method one is faced with much analytical
labor in formulating the equations to include various perturbations and in obtaining

the solutions to these equations,

To achieve extended applicability in attacking the problem at hand, it was
decided to employ formulations of both methods, In the special perturbation method
both the Cowell and the variation-of-parameters formulations are employed, while
the general perturbation method consists of the variation-of-parameters formulation
using two-variable asymptotic series expansions. To alleviate the analytical labor
required, the automated manipulation capabhilities of the FORMAC {Formula Manipu-

lation Compiler) language are utilized.

1-2
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SECTION 2 - DERIVATION OF THE VARIATION-OF-PARAMETERS
DIFFERENTIAL EQUATIONS OF MOTION (LAGRANGE'S
PLANETARY EQUATIONS)

The purpose of this section is to derive, by the method of perturbative differ-
entiation, the differential equations of motion for a selected zet of orbital elements
(or parameters) when considering the perturbational effects of earth oblateness and
tangential atmospheric drag. Since perturbative forces are additive, the differential
equations for each perturbational effect can be formulated separately. This set of
differential equations will then be solved numerically by the methods of special pertur-

bation theory and analytically by the methods of general perturbation theory.
2.1 SELECTED ORBITAL ELEMENT SET
The orbital element set selected for consideration is

(B, e, i, 2, w, M(or v); t)

where B = a—l/2 (defined for mathematical simplification)
a = semimajor axis
e = eccentricity
i = inclination relative to earth equatorial plane
Q = right ascension of ascending node
w = argument of perigee
M = mean anomaly
Vv = true anomaly

t time (independent variable)

Although only one anomaly angle is needed in the element set, it is advantageous
to consider both M and v. The differential equation for M is more amenable to
asymptotic series solution; on the other hand, it is mathematically easier to derive the

differential equations for all elements in terms of ¥, Consequently, the differential
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equation for M is derived and solved; V is then obtained by a Fourier-Bessel expansion

involving M and e.
2.2 PERTURBATIVE DIFFERENTIATION

In the theory of perturbative differentiation, the variation (time-derivative) of

any element f is considered as the sum of two parts; i.e.,

df _ N
= = +
at f+f

where f_ (f-dot) is the Keplerian variation that remains if all disturbing forces are

suddenly removed and g‘ (f-grave) is the perturbative variation caused by the disturbing

forces. There are three types of variations which arise in the theory; namely,

Type 1: d—f=f, where £ = 0
dt
Type 2: %=f\, where f = 0

Type 3: gf_t =f+ f: where both parts exist

Since the velocity associated with the osculating orbit at the point of tangency is
the same as the actual velocity of the perturbed satellite, the components of g—: in an
incrtial coordinate system are of the first type. Variations of the second type arise
for elements that would be constant in Keplerian motion, such as a, e, i, , and w.
Elements referred to a perturbed reference direction, such as M and v, are of the

third type.

It follows, then, that the basic differential equations of motion for the selected

clements are

dB \

== = 2-1

dt B (2-1)

de = 2-2

at e (2-2)
2-2
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di \

it = i (2-3)
g? = o (2-4)
% = w (2-5)
%M = M+M=a+M (2-6)

The next step is to obtain the perturbative variations indicated above,

Two techniques are commonly used to obtain the perturbative variation f_‘ of an
element f. The first technique consists of developing the total variation of the element

and then removing the Keplerian part; i.e.,

The second technique consists of using perturbative differentiation, which involves
taking the grave-derivative of a given expression in which only the variations due to
the disturbing forces are considered. The second technique is used here to obtain the
perturbative variations of the elements., (For a further discussion of perturbative

differentiation, see References 1 and 2; particularly p. 21 of Reference 1.)

2.3 PERTURBATIVE VARIATION EQUATIONS

terms of the orbital elements and the perturbative acceleration vector F,\ resolved as
follows (Reference 2, p. 284):

=P T+ 'V + bW

where U = unit vector in direction of increasing F (radial)
V = unit vector perpendicular to ¥ in orbital plane (transverse)
W = unit vector perpendicular to orbital plane (orthogonal)



As will be seen in the next section, the perturbative acceleration components g‘, gg‘
and rb' can also be obtained in terms of the orbital elements via the disturbing function

R.

Although derivation of the perturbative variation equations by the method of per-
turbative differentiation is straightforward, it is mathematically tedious; consequently,
the procedure is presented in Appendix A, The results are (also see Reference 1,

p. 22, and Reference 2, pp. 247 and 284):

\ 1l r#/ p i) p\?
@l ) -l | &=
el = Lr—‘(R sin v) + rz';\ (R + 1) cosV te (2-8)
Hp \Ir vHP AT
N _ r2 3 cos u 2-9)
VHP
24 .
\ . Irbsinu _
0 \/;.Tﬁ sin i (2-10)
\ \ rr' P rzfl\ R
w = cosi - cos VY] * + 1) sin v (2-11)
VHP € \r Hp € \r
M= -f1- 32)1/2 W+ Qleosi + er P (2-12)
7 VHP

2.4 PERTURBATIVE ACCELERATION COMPONENTS

2.4.1 Earth Oblateness

The perturbative acceleration vector f due to an axially symmetric oblate earth
can be written as the gradient of the perturbative potential function R (per unit mass),

which becomes, in spherical coordinates,

o
s _ 8R - 1 8 18R -
= = + — + ==
= ar ! rcos&,g}- r86k

-
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where (see Figure 2-1)

i unit vector in direction of increasing T

]

unit vector in direction of increasing &'

k

unit vector in direction of increasing 6

and (Reference 3, p. 49)
r \3
-7 (=2) (2 sin? 5- 3) s
J3( r) (2 sin” 6 - 2)sm 6 (2-13)

(NOTE: 43 and 14 are negative numbers, )

As previously mentioned, the general expression for the perturbative acceleration

vector can be written as

P22 T+l T+ rdW
where U = unit vector in direction of increasing T (radial)
V = unit vector perpendicular to T in orbital plane (transverse)
W = unit vector perpendicular to orbital plane (orthogonal)
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The transformation between the (i, j, k) system and the (ﬁ, V \7) system is
obtained via a right-hand rotation about the i-axis through an angle 8', as seen

from Figure 2-1, Thus

r 1 0 0 9R
or

' §={ 0 cos ' sin 3 0
th) 0 —sinf"  cosf) 1l 9R
g 36

resulting in the scalar equations

i - 2R
ar
rp' =sing’ OR
r 04
p' = cosf’ AR
' T %

Performing the indicated differentiation on Equation (2-13) yields

P=—

. 1 , ) 5 41 45 a2 -
, M Iy rez( %)(1*3 sin 5) ~2u I3 re3(r—5-)(3—5 sinZ ) sin 8 ek Iyte (rﬁ)(35 sin®5—30sin°8+3)  (2-14)
¥ o

1 . 5 I\ 25 ] _
w =sin[}'[—.'}u.lzxez(—lg)sin6cos& +% uJ3rea(—5)(l—5sm26)cosB——z‘uJ4re4(r6)(7 sin® 6 3)sm6cosBJ (2-15)
r r

: 1y, 3 31 . _5 4/ 1\(7 5in2 & — 3si ] -
b’ :cosﬁ‘[—aszreT‘—“)sm6cos6+-2' BigT, (rs)(l—5§|n25) cos & 2yJ4re (re)ﬁnn 6~ 3sinbcoss| (2-16)

It is now necessary to express B' and 8 in terms of the orbital elements, Referring

to Figure 2-1, from the spherical triangle ABC

- sin8 =sinisinu (2-17)
/ . 9.
cos § =V 1—sin2 i sin2 u (2-18)



Also, from the same triangle

or
ot i
But tan A cos u
1+tan2\ =1
cos“ A
thus 1 1 cosu
cos \ = = ey Y e
1- .an2 )\ \/1 + (ﬂl—) utn2 i+ cos2 u
cos u
Since 8 - 90° - X (i.e., latitude and longitude lines are perpendicular),
then
sin ' = sin (909—X) = cos A
or
cos u
sinf’ = —
ctnzi + cos2 u
and
g ctn i
\/ ctnZ i+ cos2 u
However,
: 1 ) 5 1
Vetn2i+cos2u = sani Vcos?i+cos2usini = o V 1—sin2 i sin u
hence A
cos u sin i
sing' =
\/ 1-—sin2 isin 2 u
g cos i
cosf' = ————
1—sin2 i sin2 u

cosu=ctn A ctn i

(2-19)

(2-20)

Substituting Equations (2-17) through (2-20) into Equations {2-14) through (2-18)

yields, after simplification, the desired results,

2-8
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oo 3 2(1 2. 9.
r = =gk Jor, .(r—4)(1—3 sin? i sin 2 u) —2udg re3 (%) (83-6 sin? i sin2 u) sinisinu
(2-21)
+%pa4re4<r16) (36 sin? i sin 4 u —30sin? i sin2 u + 3)
o= =2 paoe2(LsinZisin2u +3 wdar 3( L) (1—5 sin2 i sin2 in i
2 21 A o Mdgr, r5 sin® i sin“ u) cos u sin i
5 . . (2"22)
vy ;.'J4re4(r%)sm2isin2u(7sin218in2u—3)
' = —3u dg rez(%) sinicosisinu+§ kg res(ls)(l-5 sin? i sin2 u) vosi
: ! (2-23)

'-'% Ky re4<l%-)sin2isin u (7sin? i sin? u — 3)

After converting to units of earth-radii and performing trigonometric-identity
manipulations, it can be shown that Equations (2-21) through (2-23) agree with

Reference 2, p,.288, and Reference 4, p. 193.

2.4,2 Tangential Atmospheric Drag

The perturbative acceleration vector F'due to a tangential atmospheric drag
force can be written as

s\

¥ - - DT + ON + OW = -DT

where (see Figure 2-2)

T - unit vector along orbit tangent in direction of motion
(tangential)

N - unit vector perpendicular to orbit tangent (normal)

W = unit vector perpendicular to orbital plane (orthogonal)

and

1 (A 2
D‘E (;‘) CDPVR
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Figure 2-2. Cross-Sectional View of Elliptical Orbit
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The relative velocity vy can be approximated in terms of the inertial velocity

v by (Reference 5, p. 165)

We CO5 1
RV (1—T‘)

Since the inertial velocity of a satellite in an elliptical orbit is given by (Refer-

ence 6, p. 80)
2
B
v2=£— (1+e2+2ecosp) = E—z
P (1—e%)

{1 + 2 + 2e cos v)

the drag force magnitude per unit mass can be written as

2 We €OS i

2
_1(A HBZ 2 — (2-24)
D= 2(m> CDp(l_ez)(l+e + 2e cos ») (1 = >

As discussed in the previous section, the general expression for the perturba-

tive acceleration vector is

.?‘ S U+ V+rd W
From Figure 2-2, it can be seen that the transformation matrix relating the
(I_I, V, W) system to the ('I_‘, N, W) system is obtained via a right-hand rotation about
the W-axis through an angle (180° + @), i.e.,

cos (180° + ¢) sin(180°+¢) 0O \' —cos¢ —sing O
[T]={—sin(180°+¢) cos(180°+¢) o0 | = sing —cosg 0
0 0 1 0 0 1
Thus,
r' —cos¢ —sing O —-D
11-) ‘] = sin¢g —Cos ] 0 0
' 0 0 1 ]
resulting in the scalar equations
r' = Dcos¢ (2-25)
w' =-Dsing (2-26)
' = 0 2-27)
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The angle @ is related to the orbital elements by (Reference 6, p. 83)

in ¢ 1+ecosv
sing =
(1 +e2 + 2e cosv) 1/2 (2-28)
cos¢ = ey (2-29)

(1+e2+2ecosv) 172

Substituting Equation (2-24) and Equations (2-28) and (2-29) into Equations (2-25)
through (2-27) yields the desired results

2 . i\ 2
B<e sin v W, Cos 1
__1.(&) Cp e ey (1+e2+2ecosv) 1/2 (1— _9____)

[
L}

2 \m (1__92) n (2-30)

o = —L1(A)o uB2 (1 + e cosv) 1+ 1/2 W €OS i 2
4 2 (m DP (1—?) (1+e“+2ecosv) (1— EEa— 2-31)
rb =0 (2-32)

2.5 DIFFERENTIAL EQUATIONS IN FINAL FORM

2.5.1 Earth Oblateness

Expressing the earth oblateness differential equations in final form requires
substituting Equations (2-21) through (2-23) into Equations (2-7) through (2-12),
simplifying, and then substituting the corresponding results into Equations (2-1)
through (2-6). To illustrate this procedure, the final form of the differential equation
for the element i will be derived. The equations for all other elements can be

obtained in a similar manner.

Substituting Equatior. (2-23) into Equation (2-9) yields

_ cosu 2/(1 .. . 3 3/1 . 2. .9 .
= —3udor (“) sinicosisinu+ s udgr (—) (1—5sin“ i sin® u) cosi
N/ [ 27 3 2 3e > )

—25- mdy re4(l5) sin 2 i sin u (7 sin? i sin2 u—3)]
r

2-12
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Subctituting

al—e?) _ p
T+ecosv 1+ecosy

r=

and performing trigonometric-identity manipulations yields

2 3
3/ udogr (1l +ecosv)
— \/—Ze sin2isin2u

i'=

4p 12
3 4
3 dar.® (1 +ecosv)
+ \/F 3’e 9/2 cosicosu(l1—5 sin2isin2 u)
2p
5vHdy re4 (1 +ecosv)d
- 51172 sin 2 i sin 2 u (7 sin? i sin? u — 3)
This equation can be rewritten as
\
(—?’— J2) \/Tl_rez (1 + e cos v}3
i’ 2 sin 2isin 2u
25172
J,
3 :
CE —
& 9,2 cosicosu (1—5 sin? i sin? u)
J P
3
5(5 J2)<T;') VE ! (1+ecos )’
Defini 121172 sin 2isin 2 u (7 sin i sin? y — 3)
efining
€ =% do (1 small parameter) (2-33)
This equation becomes
\/I.Trez (1 +ecos v)3
i'=—¢ 2p7/2 — sin2isin2u
I3 3 4
(3;) VEIC (1 +ecosv)
te€ 9/2 cosicosu (1-5 sin? i sin? u)
J p
5(5) Vi re4 (1 +ecos v)5
€ 1201172 sin 2isin2u (7 sin2isin2u—3)
p
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Finally, substituting this equation into Equation (2-3). noting that

1. _ 1 _ _B?
Poa1-e?)  (1—¢?
yields the desired result
di VH B? fe2 (1 + e cos v)3
a . . PR
dat 2(1—2)/2 sin 2isin2u

B}
(J—?’)\/HB9 re3 (1 +ecos vyt
2 2

cosicos u (1—5 sin
2)9/2

+€ i sin2 u)

(1—e

I4
11 4, b
5(J2> Vi B hr," (1 +ecosy)
12 (1—2)11/2

2isin2u—3)

—€ sin 2 i sin 2 u (7 sin
(NOTE: An optional formulation of this equation would be one in which the higher
earth harmonics @3 and £4 are treated as "higher-order' perturbing terms; i.e.,
2
as € terms. As will be shown in the solution procedure of Section 4, however,
treating these harmonics as € -order terms yields mean orbitul elements which

include long-periodic as well as secular variations. )

As previously mentioned, the equations for the other elements can be obtained
in a similar manner. The complete set of differential equations when considering

earth oblateness is presented on the following pages.
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dB .

dt

de

dt

Differential Equations of Motion When Considering Earth Oblateness

i B8r 21 1
e VH Te (2;,e2cosv) [esinv(1~—3sin2isin2u)+(1+ecosv)sin2isin2u] (2-34)
(1—e“)

J
Vi Blo0 ("_3) re3 (1+e cos v)5
2

e sin v sin i sin u (3—5 sin2isin2 u)—§-(1+e cosv)(1—5H sinzisin2 u)cosusini]
—_e2y11/2 4
(1—e“)

+4.
3

d
VH 812 (—JA) re4 (1+e cos V)6
2

i2 (1—e2)13/2

e sin v (35 sin? i sin? u—30 sin2 i sinZ u—3)

—2(1+e cosv) sin2isin 2u(7 si112isin2 u—3)]

- — NM:Y rez(1+ecosv)3

T [sinu(1+ecosu)(1—3sin2isin2u)+sin2isin2u(2cosu+ecos2v+e)] (2-35)
(1—e2)7/

J
\/LTBQ(T:}-) res (1+e cos )}
2

sin i sin u sin ¥ (1+e cos v) (3—5 sinZ i sin2 u) ——‘3—(1—5 sin? i sin2 u) (2 cosv+e cos? v+e) cos u sin i]
(1_e2)9/2 4

—4.
3

d
\/‘TBH (J—4) re4 (1+e cos V)5
+-2¢ 2

sin ¥ (1+e cos ») (35 sin® i sin% u — 30 sin2 i sin2 u + 3) — 2 sinZ i sin 2 u (7 sin2 i sin2 u—3)
12 (1—e2)11/2

(2cosv+ecoszv+e)]



91-2

aQ . _,, \/ITB7l‘e2(1+ecosv)3

7.2 3

- VB 1+ y
di. _ VEB rem(dtecosy) o cin 2u (2-36)
dt 2 (1—2)1/2

J
Vi 39(353) re3 (1+e cos u)4
€

+ cosicosu(l-—551n2isin2u)
—a2y9/2
(1—e“)
J
Vi gll (—ji) re4 (1+e cos V)5
_5 2 P 2. .2
126 (1_e2)11/2 lsm 2i sin 2u (7 sin“ i sin“ u — 3)

9
sin2 u cos i (2-37)

dt a —62)7/2

J
\/FB9 (1_3-) re3 (1+e cos v)4
“2

+e€ PR ctn i sin u (1—5 sin? i sin2 u)
-—e
—pll/J4) 4 5
VuB (T) Ie” (1+e cosv)
—-5-5 2 cosisinzu(7sin2' in2 -3
3 (1—e2)11/2 1sin®u-=3)

el o {— — — - — ——d i — J—




L1-3

dw = . \/EB7 re2(1+eoosv)3

aw [2esin2ucoszi+cosV(l+e cos v) (1—3 sin? i sin2 u) —sin v sin? i sin 2u(2+ecosv)] . (2-38)
dt e (1—e2)1/2

J

u89 3 r 3(I'O»ecosu)4
J e - '

€ 2 l(1—5sin2isin2u)(—ectnicosisinu+sinvcosusini‘2+ecosv )+i(1+ecosv)

e (1—e2)9/2 773

l

+

(3—5 sin? i sinZ u) cos v sin i sin u]

J
Vi Bll(-"i) 'e4 (1+e cos v)5
2
€

+5 (7 sinzisin2 u—3) (e coszisin2 -—lsinzisin 2usiny ‘2+e cos v ! )——1-(1+e cos V)
e (1—e2)!1/2 2 l 1
(355in4isin4u—30sin2isin2u+3)cosu]
7.2 3
B 1+
aM . . VK Te” (1*ecosv) [(1—3 sin? i sinZ u) (—2e+cos v e (:osv')—sinusinzisin2u(2+e cos v)] (2-39)
dt e(1—e2)3 ! |

(108

J
VH B9 (J—s) 1'e3(l+ecosu)4
€ 2 sinisin u (3—5 sin2 j sin2 u) (—2e+cosv | 1+e cosv') +§-sinvcosusini(2+ecosv)(l—5 sin? i sin2 u)]
e (1—e2)? { b7

d
Vi pll (:li) re4 1+ecos v)5
2
e(l—ez)5

€

sl

(35 sin? i sin? u — 30 sin? j sin2 u + 3) (—2e + cos v }l+ecosv: )+ 2sinZ i sin 2 u (7 sinZ i sin2 u—3)

sin v (2+e cos v)]



2.5.2 Tangential Atmospheric Drag

Expresszing the drag differential equations in final form requires substituting
Equations (2-30) through (2-32) into Equations (2-7) through (2-12), simplifying, and
then substituting the corresponding results into Equations (2-1) through (2-6). To
illustrate this procedure, the final form of the differential equation for the element
e will be derived. The cquations for all other elements can be obtained in a

similar manner,

Substituting Equations (2-25) and (2-26) into Equation (2-8) yields

e'= 71;' [I'DCOS¢ (—‘:sinv)—rDsind:%(% +1) cosv+e”

Substituting
r=__P P = 1+ecosv
l+ecosv r
the equation becomes
. D cos ¢ . sin i
e = — [ P (1+ecosv)smu————-p ¢ (2+ecosu)cosp—_—.——pesm¢]
Vvup Ll+ecosv 1+ecosv l+ecosv
D
= \/—’—T(T::—:_(;V—) [cos ¢ sin v (1+e cos v} —sin ¢ cos ¥ (2+e cos V) — e sin o]

Substituting Equations (2-28) and {2-29) yields
D\p

e'= JE(1+e cos u)(1+e2+ 26 con V)I/Z [—e sinzv(1+e cos V) —cos v (1+e cos v) (2+e cos ) —e (1+e cos V)]

2D\/p (e+ )
= — e v
\/';T(l+e2+2e cos v)1/2 cos

Substituting Equation (2-24) and noting that

p=a(l —e2) = Sl__Lzl
82
results in

2

. 2 l—ez(e+cosv)[1 (A) c u B2 Lee2e s ] ( W, €os i )
e'= — = _
B\fﬁ(1+e2+2ecosv)1/2 Z\m Dp(]—eg)( € ecosv)f\1 n

m

- — (_6_) CDp\/;TB(e+cosV)(1+e2+2ecosv)1/2 (l_mecmi)2
n
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Since

n=y/uB3

the equation can be written as

e-._(A) Cpprn B% (e+cos ») (1+e2 + 2e cos v)1/2 (1__ W, cosi)2

m n (1—e2)1/2

n

In terms of the small parameter € as defined by Equation (2-33), this becomes

e'=—e (A)( 1) 2CDpuB4(e+cosu)(1+e2+2ecosv)1/2( 1__(.-Jecozzi)2

m/\Jg 3n (1—e2)1/2 n

Finally, substituting this equation into Equation (2-2), and defining

sy 2
K+ = 2 (A\(1 (_“’e°§_‘) )
T (B)) cor == 2-40)

yields the desired result

de - . K*p B4 (e+cosv) (1+e2 + 2e cos v)1/2
at n(1—e2)1 /2

As previously mentioned, the equations for the other elements are ubtained in a
similar manner. The complete set of differential equations when considering

tangential atmospheric drag is presented on the following page.
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Differential Equations of Motion When
Considering Tangential Atmospheric Drag

dB - . K*p B (1+e2 + 2e ro3 v)3/2
dt 2n (1 —92)3/2

de . _K*p B4 (e+cos v) (1 +e2 + 2e cos v)1/2
dt n (1_e2)1/2

—3—=0 (sincer b ':: 0)

aQ - (sincert;‘=0)

_cL_w_ =—¢ K* 0 BYsinv (146 + 26 cos 1)1/2
t ne (1—e2)1/2

dM_ _, K*pB4sinV(1+e2+2ecosy)1/2(1 . R
dt n e l+ecosv)

(2-41)

(2-42)

(2-43)

(2-44)

(2-45)

(2-46)

W



SECTION 3 - SPECIAL PERTURBATION METHOD OF SOLUTION

In Section 2, the differential equations of motion for a selected set of orbital
elements were derived when considering the perturbational effects of earth oblateness
and tangential atmospheric drag. The purpose of this section is to discuss the pro-
cedure by which these cquations, along with a Cowell formulation of the motion
cquations, are numerically solved. Included is a synopsis of the MARVES computer
program which has been implemented to perform this so-called special perturbation

method of solution.
3.1 GENERAL

The term "'special perturbations' refers to a technique for the prediction of an
orbit by numerical integration, so as to include the effects of various perturbative
forces that cause the trajectory to deviate from some reference orbit (Reference 2,
pp. 227-228). The basic procedure is the generation of the next step or increment
of the state variables representing the orbiting body when having o complete knowledge
of the preceding variables (Reference 7, pp. 220-221). Specifically, one begins with
some epoch state and integrates, numerically, a set of three second-order or six

first-order differential equations of motion.

The variation-of-parameters formulation involves the integration of six first-
order equations (often referred to as the Lagrange planetary equations) which are
functions of the selected orbital elements. As is evident in the literature (Reference
2, p. 243; Reference 8, pp. 235-236), there is no "best'" set of fundamental elements
to employ, and the choice is dictated by the application in mind. In the Cowell formu-
lation, three second-order motion equations for the perturbative rectangular accelera-

tions are integrated to obtain the current state variables (position and velocity).
3.2 VARIATION-OF-PARAMETERS FORMULATION

In the variation-of-parameters formulation, six first-order element rate equa-
tions are numerically integrated; these equations reflect perturbations due to earth

obiateness (second, third, and fourth harmonics) and atmospheric drag (using a 1970
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Jacchia atmospheric density model). The oblateness equations are identically those
presented in Paragraph 2.5.1, whereas the drag equations differ from those presented
in Paragraph 2. 5.2 in that 2 three-dimensional rather than tangential drag force is
considerad. (NOTE: To readily obtain analytical solutions to the equations, it is
necessary to assume a tangential atmospheric drag; however, this assumption is not

required when numerically integrating the equations, )
3.3 COWELL FORMULATION

In the Cowell formulation, the equations of motion are expressed in rectangular
form and integrated twice to obtain the velocity and position, These equations have

the standard form:

d2x
= % (X—»y, 2)
dt
where X represents the central force term, and x, the perturbative term, represents
the accumulated effects of all perturbations acting. The perturbations included in this
formulation also consist of earth oblateness (second, third, and fourth harmonics) and
atmospheric drag (using a 1970 Jacchia atmospheric density model).
3.4 SYNOPSIS OF MARVES COMPUTER PROGRAM FOR NUMERICALLY INTE-
GRATING THE EQUATIONS OF MOTION
A MARVES/FORTRAN double-precision special perturbaticns program has been
developed for the UNIVAC 1108 and is currently available through the MSFC Computa-
tion Laboratory. This program provides, on user option, either the Cowell or variation-

of-paraineters formulations.

The program is modular in design, with FORTRAN subprogr=mns selectively
linked and controlled by two MARVES driver programs. This configuration allows
user selection from a library of simulation routines and high precision numerical
integration schemes currently operationai and available to MARVES users (Reference
9). These integration schemes include a variety of single and multistep methods with

provisions for optimum step-size prediction based on the resultant truncation error.
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When selecting the '"best'" method for solving the set of differential equations for a
particular orbit, many factors must be considered, such as: required accuracy,

number of integration interrupts, frequency of computer printout, and integration
step-size limitations. Reference 9 contains a thorough discussion of the methods
currently available in MARVES, 2long with some generalizations that can be made

about method selection.

Many other desired features are incorporated into the program, such as critical
time events, the nearest Besselian year coordinate transformation, and the 1970 Jacchia
atmospheric density model. Also included is a solar-ephemeris computation routine
that eliminates the need for read/interpolation of Jet Propulsion Laboratory (JPL)

ephemeris tapes.

A complete description of this MARVES program (referred to as the SPERTB

program) is given in Reference 10.




SECTION 4 - GENERAL PERTURBATION METHOD OF SOLUTION

In Section 2, the differential equations of motion for a selected set of orbital
elements were derived when considering the perturbational effects of earth oblateness
and tangential atmospheric drag. This section analytically solves these equations by
the method of two-variable asymptotic series, (To date, complete solutions have been
obtained for both oblateness @2 and J 3) and oblateness/drag combined.) Included are
synopses of the FORMAC computer program used in oi:taining the analytical solutions

and the FORTRAN program used :n numerically evaluating these solutions.
4.1 GENERAL

In the method classically known as general perturbations, six first-order equa-
tions of motion can be formulated as functions of some fundamental set of orbital
elements. The perturbation effects are expressed analytically, and the element solu-
tions are generally obtained by analytical integration of series expansions in one form
or another. These solutions are explicit functions of time, constants of the problem
and constants of integration. They define the vehicle state at any instant in time, as

the epoch state conditions make the problem completely determinant.

The primary difficulty in the general perturbation method has always been the
overwhelming amount of analytical labor required to obtain the solutions. However,
the state of the art in computer technology is such that autornated manipulation languages,
i. e., languages for doing symbolic as opposed to strictly numerical mathematics, are
now generally available. Consequently, marny of these burdensome analytical tasks,
such as series manipulations, function expansion, differentiction and integration, can

now be alleviated.

The language selected for use in this development is FORMAC (FORMULA
MANIPULATION COMPILER). This language, currently available through the MSFC
Computation Laboratory, was developed by IBM, and contains a wide range of ana-
lytical capabilities (Reference 11). Consequently, it has proven itself a valuable tool

for the applicatinn at hand.
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4.2 BASIC THEORY OF THE TWO-VARIABLE ASYMPTOTIC SERIES EXPANSION
METHOD
As was indicated earlier, general perturbation techniques employ series expan-
sions for assumed element solutions. These expansions result in correspondingly
expanded differential equations which are then analytically integrated. The type expan-
sions employed in this study are classically known as asymptotic series expansions.
It is the purpose of this section to provide an outline of the theoretical basis for such

expansions, illustrating those concepts required in the particular application at hand.
The discussion begins with some basic definitions and nomenclature.
Definition 1

Let f(t, €) and g(€) be real-valued functions, where € is a small positive param-
eter and t ranges continuously over some set S of nonnegative reals. Then, a measure
of the relative magnitudes of f(t, €) and g(€) may be obtained if a real (finite) K exists

such that:

Lim i, ©) s K
i) g(€)

for all t in S. Symbolically, the existence of this limit is denoted by writing:
f(t, €) = O(g(9))

which reads "f(t, €) is of the order of g(€)." The existence of the limit for all t in S
makes this relation uniform in that K can be chosen independently of t. The function
g(€) is called the gauge function, and when K = 1, f(t, €) is said to be asymptotically
equal to g(€). Ift is a function of several real variables, the relation is said to be
multivariable (Reference 12, pp. 180-185; Reference 13, pp. 1-3; and Reference 1,
pp. 16-17).

For purposes of clarification, consider the following example:

Ley t>0,0 < €<< 1, f(t, €) = €2 sin t and g(e) = €
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Then clearly, f(t, €) = O(g(e))
2 .
since Lim [ S':_n : <€
€—»()

for all t > 0; i.e., uniformly int as e—0,

Another symbol, which is often used to measure the relative magnitude of two
functions, bears a simple relationship to the order symbol of Definition 1. If f(t, €),

g(€) and ¢ are as previously defined, then this alternate measurement is obtained

wher:
Liml-f-(%s—;)l =0
e~; &

for allt inS. Symbolically:

i(t, €) = o(g(e))

and is read "f(t, €) is small o of g(¢)." (When both symbols are employed, {(t,¢€) =
O(g(€)) is often read "f(t, €) is large O of g(e).")

The symbol smal! o, though not employed herein, is related to the large O of
Definition 1 by:

0(O(g(€))) = o(g(€))
Definition 2

Let gi(e ), i=0, 1, 2,..., be a sequence of real-valued functions of the small
(positive) parameter ¢. Then, this sequence is called an asymptotic sequence for
¢—0 if, for each i (Reference 12, pp. 182-183; Reference 13, pp. 2-3; and Refer-

ence 1, p. 17):
gir1(€)
g.(€)
i

Lim

Such a sequence is illustrated in the following example:




Let the sequence gi(e), i=0, 1, 2,..., bedefined by

A,

i
g,(€) =€ Ai+

>
172 >0
for all i. Then this sequence is an asymptotic sequence, since

81 (¢) ) i+1

e—~o Fi €0 i
for eachi.

Definition 3

Let gi(e) and f(l) (t) be real-valued functions of the small parameter ¢ and the

real nonnegative variable t, respectively. Then, the sequence of partial sums:
N .
1
T g0
i=0
is called an asymptotic expansion to N terms of a function x(t, ¢) as ¢—=0 when:
N

Xt €)= X g (O
i=0

') + of,,, ()

as ¢ —=0. The asymptotic expansion is said to be uniformly valid when it holds for
all t in some set S of nonnegative reals, i.e., when O(gi+1(€)) is uniform int. If

t is expressed, at least formally, as a function of several variables, then the ex-
pansion is said to be a multivariable asymptotic expansion. Such an expansion would

have the form:

~

= i
Xt e) = X gOf 't t,...)+ Ofg

(€))
i=0 /

i+1
as €e—~0, For purposes of preserving the uniform validity of the expansion (Reference
13, pp. 79-82, and Reference 1, p. 17), the variables f, t,... are taken as functions

of € multiplied linearly by t. Here, t is termed the fast variable while t is termed
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the slow variable (Reference 1, pp. 16~17). The first, second, and third approxima-

tions to x(t, €) are given as:
g, (t)f(o)(t)

£©) (D

g, (O ) +g (F " ®)

(D

g @00 + g, @) + gy 0P

To fix these ideas, take t > 0 and x(t, ¢) = eE t, where ¢ is a small positive

parameter. Let gi(t) = el/i! and f(l)(t) = tl, i=0, 1 2,.... Then

B4p (©

€
Lim ———— = Lim ——=
. i+l
€~=0 gl (e) €—=(
so that gi(e ), i=0, 1, 2,... is an asymptotic sequence. The sequence of partial

sums:

N oy
2, <t

]
im0 1

is an asymptotic expansion to N terms of x(t, €) = eEt.

Note that in this example the asymptotic expansion was convergent. However,
there is to be no convergence requirement imposed on such expansions, and some ex-
pansions may ccnverge for some range of ¢, or may diverge for all ¢. The practical
applicability of the method is not determined by convergence of the series when
i—=o, but by its asymptotic properties for a fixed value if i when e—=0 (Reference

14, pp. 49-41).

Hence, an important characteristic of asymptotic expansions is that the error
made in approximating the given function by such an expansion is of the order of the
first neglected term (Reference 1, p. 17). For this reason, it is important that one

make a wise choice for the small parameter ¢ when using this method.




Consider x(t, €) a function that is to be approximated by a two-variable asymptotic
series expansion. Then, t will be functionally related to two variables, sayt andt,
in a linear fashion through ¢. Here again, i will be termed a fast variable and ’f a
slow variable. Further, suppose that x(t, €) represents the solution to a differential
equation whose independent variable is t. To apply the technique, the differential equa-

tion must be expressed as a function of both t (at least implicitly) and €.

Thus, the initial value problem for an ordinary differential equation is converted,
through use of a two-variable expansion, to one involving partial differential equations
in i and 'E The two-variable asymptotic solution of the transformed problem will
then involve certain undetermined functions which are defined by postulating that the
problem possess a consistent asymptotic solution which is uniformly valid (at least to

value: of t of the order of the reciprocal of the small parameter).

There are two concepts that aid in arriving at uniformly valid solutions, as
npposed to those which are initially valid (i. e., valid over some initial portions of
their ranges). These are called the first and second uniformity conditions, respec-

tively (Reference 1, p. 18).

The first uniformity condition states that a multivariable asymptotic solution to

a small parameter dependent differential equation cannot contain secular terms in the
fast variable £ (i.e., terms proportional to i ), if the solution when € = 0 does not
contzin such terms. In short, if the solution o the differential equation when ¢ = 0 is
bounded in the fast variable, the solution procedure cannot unbound the solution when
€ # 0. Note that this condition is applicable only if the ¢ = 0 solution is initially
bounded (Reference 1, p. 18).

The second uniformity condition is a result of the uniform validity requirement,

and this condition states that:

)—~

(i+1
gi+1(€)f (t, t) o

Lim @ - =
=0 g (0f Y& B

for each i and all t of some set S of nonnegative reals. Simply stated, the ratio:




D ¢ 5

D 6,
cannot contain terms secular in the slow variable Z This condifion may be employed
to eliminate nonuniform results even when the first uniformity condition cannot be

applied (Reference 1, p. 18 and Reference 15, pp. 206-224).

In Paragraph 4. 3, the two-variable asymptotic series expansion method will be
employed in obtaining solutions to the variation-of-parameters equations derived in
Section 2. Thus, the function x(t, .\ to he approximated by these two-variable expan-
sions will represent some osculating element; ¢ will be a small parameter arising
through the perturbational effects, and f, Ewill be two time-scale variables associated
with the time t.

4.3 APPLICATION OF THE TWO-VARIABLE ASYMPTOTIC SERIES METHOD TO

THE DIFFERENTIAL EQUATIONS OF MOTION

This method assumes that the sclutions to the equations of motion can be ex-

pressed as asymptotic series in two variables (f and 1), i.e.,

0y @)

B=BO¢§+eBVEH+ EBPE T ...

{ -~ -~ -~
e = e‘O)(t, t)+ee(1)(t, t)+€2e(2)(t, t)+..., etc.

1 L@ @ @

(0), B, B, ...,e ', e, ... are functions of time (i. e., solutions) as

where B

yet to be determined and:

t=t (1+a'2€2) (fast variable) 4-1)

t=et (slow variable) 4-2)

with a'z being an undetermined constant.

In the asymptotic series expansion for a given element, the first term is re-
ferred to herein as the first approximation to the total solution, and the sum of the

first and second terms is referred to as the second approximation. For the element




e, as an example:

e= e(O) (first approximation)

+ € e (second approximation)

(0)
L l—super-one solution

suner-zero solution

These approximations will now be derived for the set of elements (B, e, i, Q,
w and M). First approximations will be obtained when considering both oblateness and
oblatencss/drag. Second approximations will be obtained in terms of the super-one
solutions due to oblateness anly, as it will be shown that the super-one solutions due to
drag are negligible. The general procedure for obtaining the third approximations wiil

be outlined.

4.3.1 Obtaining the First Approximations to the Solutions

The desired first (and second) appreximations are obtained by soiving the
variation-of-parameiers equations (oblateness only or oblateness/drag) when consider-
ing only terms of the order of € (i.e., neglecting terms 2 62). Since these equations
are highly coupled, their solutions must be obtained simultaneously (at least in theory).
However, by making reasonable assumptions, the solutions for each element can be
obtained separately up to a point - this point being the formulation of a set of first-
order ordinary differential equations having E as the independent variable. To illus-
trate the procedure leading to this point, the equation for a representative element

will be considered in detail.
4.3.1.1 Oblateness Only

The element i is taken as the representative element, so it is necessary to
@xpand each element appearing in Equation (2-36) to the first-order of €. From

Appendix B:

o iemrn
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cosi = cosi(o) + € [- i(l) sin i(o)] + ez[ + ...

sin2u=sin2 u(o) + € [u(l) sin Zu(o)] + €2[ ] e

(1+ecosv)=(1+e(0)cosu(o))+€[ ]+€2[ ]+...,etc.

Therefore, to the first order of €, Equation (2-36) becomes, when considering

only gz and ~ 3 (the solution procedure has not yet been extended to higcher harmonics):

7 3
/_ r (1 + e(o) cos u(o))

( (0)2) 7/2

o}
.

|

sin 2 1(0) sin 2 u(o) (4-3)

[}
-

2

~ 4
ﬁres B(O)Q(.;_g) (1+e(0) cos u(o))

{(0) g 2 (0)
(l_e(O)?)s/z %)

cos i(O) cos u(o) (1 5 sin i

+ €

The solution method begins by assuming that Equation (4-3) has the asymptotic

series solution:

it D=1 @%@ (4-4)
where t :t(1+oz2 62) (4-5)
t=et (4-6)

Differentiating Equation (4-4) with respect to time yields:

di_ axdt+gi__d_t':
dt 8t dt = 8t dt

{9 (1) T (0) (1) =
Q dt 8i 8i dt
(at ) at " <0t t et +)

which becomes upon differentiating Equations (4-5) and (4-6):

ai
at

(ai(0)+e-§-i-(i)+...)(1+a;€) (2 ‘°’+< o ) fe)

et ot




Rearranging in ascending powers of € yields:

(0) (1) (0)
di _ai ol _, o 2 4-7
at ot +‘[a€ *g'?'_]”’[ J+ -

Equating coefficients of like powers of € from Equations (4-3) and (4-7) resulis
in the following partial differential equations:

210

st 0 (4-8)
g 0 o)
() Vi 2B (14 cos v )
ai ) MU € in 2 1(0) sin 2 u(o)
= + T - 0)? 7/2 8
8t ot 9 (l-e( ) -
33y, 350° (1,0 ,,<0))4 9
VEG)Te ° {© o5 @ (1-5 sin? i® i @)
+ 0)2 9/2 cos i cos u 1-5sin 1 sin u
(1-¢@%)

The problem has now reduced to solving these partial differential equations.
Equation (4-8) implies that i(o) is either constant or a function of E only. Conse-
quently,

8i(0) 3i©® ~
A - function of t or constant (4-10)

In light of Equations (4-8) and (4-10), Equation (4-9) can be reduced to an ordi-
nary differential equation if the constant of integration is considered a function of E
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The resulting solution in "integral form" is:

7 3
e ¥ E:/:/'ilrezB(O) 1+ e u(o)) sin2i¥ sin 20 @ & (4-11)
S~ 27/2
dt 21 - e(o) )

A
t[ﬂr 3 (0) (JZ) 1+ e(o) cos v(o)) cos i(o) cos '1(0)(1-5 smzx(o,sin u(o))

29/2
- o0 )

+C (D)

where C(?) is the integration constant. Before proceeding to solve the above integrals,
0)

it is desirable to transform the variable of integration fromttov' ', This trans-

formation is taken to be the stendard Keplerian transformation (Reference 6, p.221).

dv _ JHE(1 + e cos vf _ @Bsﬂ + e coslo2
- 3/2 B 2.3/2
d P’ 1l-e) /
Thus,
23/2
0
of = {1 - ( ) ) dv(o) (4-12)
g3 (0) 0)2
JaB @+ e¥%cos v )5
Substituting Equation (4-12) into Equation (4-11) und simplifying yields
0 a® 2 g © _ (0) ) 0) . (0)
i == t--;zi- -———72*(1+e cosV )sin2i sin 2u’ " 'dv
dt a- e(0) )
3 (J3 B(O)6 (0) (0.2 0 0
+ re (E) 2% (1+e ‘cos 0 ) cos i( )cos u( ) (4-13)
1- e(o) )
(1 -5 sin 1( smzu(o)) © )+ C (?)
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In order to perform the indicated integration, it is necessary to know the
dependence of the element functions B(O) , e(o), i(o) and QSO’ (recall that u(o) =
w(O) + v(m ) upon V(O). However, these element functions are not yet known - in
fact, the determination of these functions is the goal of the present development.
Therefore, in order to proceed with the solution development, it is necessary to
make a simplifying assumption based on the knowledge that the elements B, e, i
and w vary slowly with time as compared to the element vy, Specifically, it wili

(0) (0)

integration, the element functions B' ,

be assumed that with respect to a dv

e(o), i(o) and w(o) are constant. The effect of this assumption on the accuracy

of the resultant solutions can be minimized by periodically rectifying the orbit
and updati:-z the epoch values of the elements, (As discussed in Paragraph 4,5,

an "updating procedure' is used when numerically evaluating the solution

equations. )

In "partial consideration' of this assumption, Equation (4-13) can be

written as:
© o 2
i(l) = - di t+ B re 5 2 -1+ e(o) cos U(O))sin 2i (O)Sin 2 u(o) d:ﬁo) (4-14)
dt 20 _e(O) )
(O)G(Q) 3
B J2
+ 5 I:;e 1+ e(o) cos 1}0))2 cos i(o) cos u(o)(1-5 sinzi(o)sinzu(o))dv(o)
1- e(o) )
+C (?;‘)
or in notational form as:
.(0)
(1) _ _ d_~ - . . . . ~ -
i = t + K2(1) 12(1) + h3(1) 13(1) + C (t) (4~15)

dt

4-12
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where

4
. B(O) r 2
K (i) = . (4-16)
21 -e )
6 J3'
©0)°_ 3(=
Ky (1) = B—rﬁﬁz (4-17)
a-e7
and
1) =/:- a+ e(o)cos V(O)) sin 2 i(o)sin 2 u(O)dv(O) (4-18)

I3(i) =f(1 + e(o) cos V(O))Z cos i(O) cos u(O)(l -5 sinzi(o)sinzu(o)) dv(o)

(4-19)
(NOTE: In the above notation, the subscript on K and I indicates the earth~harmonic

under consideration; the parenthetical (i) indicates the element i.)

0) .(0) (0

Sincee ', i' ', and w ' are considered constant by the previously-stated
assumption, inspection of the integrals given by Equations (4-18) and (4-19) reveals
that each integral can be expanded to a series of single-term integrals of the general

form:

f(e(o), i(O), w(o) sin% cos v

0 Q (O)dv(o) (P, Q=0, 1, 2,...)

which is directly integrable by "textbook' formulas. Unfortunately, such an
expansion procedure results in many single-term integrals; to solve these by

hand for each of the six elements would be an overwhelmingly laborious task.
However, by utilizing the e itomated tecnr. jues of the FORMAC language, a computer
prcgram was written for the IBM 7094 to expand expressions similar to rquations

(4-18) and (4-19) and then "solve' the single~term integrals by an identification and
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substitution procedure. Basicelly, the program identifies through an itera.'ion
process, the values <f ithe exponents Pand Q occurring in each single-term integrand;
it then substituies the precoded solution for that particular integral.

In general, the integrated solutions io Equations (4-18) and (4~19) will consist

(0) (0),

of terms secular in the independent variable v' ° and terms non-secular in v ’;

i.e.,

(0)

Iz(i) = Sz(i) v T+ N2(i) (4-20)

(0)

Is(i) = Sa(i)l/ + N3(i) (4-21)

where S denotes the secular terms and N the non-secular terms. The FORMAC

program prints the answer arrays 12, _1__3, and §2, _S_3 for each element; since

these arrays are very lengthy, they are presented in Appendix C.
In view of Equations (4-20) and (4-21), Equation (4~15) becomes

(0)

M4tk g [s i@ N i) k0 Bav® N i) @
~ 2 2 2 3 3 3
dt
(4-22)
As shown in Appendix D, the element function v(o) is secularly related to the
fast time-variable t by
0 0
vs( ) - n( )f (4-23)
Hence, the resolution of v(o) into secular and non-secular parts yields
©_ ©, ©O_ 0 @
v —us +VN =n t+vN (4-24)
4-14
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where v (0) (0

N is the non-secular part of v

yet to be determined.
Substituting Equation (4-24) into (4-22) yields

.(0)
di - . .
=~ = t+ K2(1) Szu)n

dt

;@ ) (0)

T+ K, () [Sz(i)vN + Nz(i)]

20 (0)

+ K3(i) Ss(i) t+ K3(i) [83(i) VN + N3(i)] +C (t)

which becomes after rearranging

-

+ Kg(0) S, () n(® ] t (4-25)

(0)
i@ [- A ik, 8,0 n®
dt

(0) (0)

+ Kz(i)[Sz(i)uN \+ Nz(i)] + K3(i) [S3(i) VN + N3(i)] + C (Tf)
At this point, the first uniformity condition (see Paragraph 4. 2) can be imposed.
Essentially, this condition requires that any approximate solution to the element

i not contain a secular term in the fast variable t since the solution to the
differential equation for i did not contain a secular term when €= 0, In order

for this condition to be satisfied, it must be that

~

.(0)
4 ik ms im @k s an®| <o (4-26)
@ 2" %2 3" 3

In view of Equation (4~26), Equation (4-25) becomes merely

)
i(l) O, Nz(i)] + Ks(i) [83(i)vN‘ )

= K, (i) [Sg(i) Yy + N3(i)] +C (t) 4-27)
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Now, as is evident in Appendix D, one method for obtaining the non-secular
0) (0)
( (d.e., vy

This is not necessary, however, since Equation (4-24) can be rearranged as

part of v ) would be to evaluate the indicated Fourier series

©) _ (0) 0) -
UN =V "-n t

V(O) and n(o)'f are known. Thus, Equation (4-27) can be writiten as

1) .. (0) N I (0)_ . .. (0) )
i =K, () [szu)v + N2(1)] K, () S,(n" T + K3(1)[ S,V + N3(1)]
i o (0)- ~
-K3(1) 83(1)n t+ C (1)
which becomes by Equations (4-20) and (4-21)
1y _ . . (0 e . (0 » ~ )
iv = Kz(l)[lz(l) 8, (i)n ] + K, (D) [13(1) S (1)n ] C (t) (4-28)

where Kz(i) and K3(i) are given by Equations (4~16) and (4-17), and Iz(i), 13(i), Sz(i),
and S3(i) are obtained from the FORMAC program (see Appendix C). It should

be noted that although the appearance oft in Equation (4-28) suggests secularity,
tl(111)s secularity is ""cancelled" by that appearing in Iz(i) and I3 (i). Consequently,

is non secular inf_, thereby satisfying the first uniformity condition.

Returning to Equation (4-26), it follows that

dl(o) (0)

— =K (1) S (1)n +K_(i) S (i)n(o) (4-29)
dt 33

From the FORMAC results presented in Appendix C
Sz(i) =0 (4-30)

(0) 2.(0)

() i@ a- Z sin’i' ) (4-31)

Sg(i) =e "cosi ‘cosw
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Substituting Equations (4-16), (4-17), (4-30) and (4-31) into Equation (4-29) yields

cosi " cos a - 4§ sinzi(o))

6 ,J3
di(O):B(O) (35) 0@ @ o 1) (0)

dt 0)2 3

This is the first-order ordinary differential equation having?;_' as the independent
variable which was referred to at the beginning of this section. Using a procedure
identical to that just illustrated for the element i, the corresponding equations
for the remaining elements can be formulated, The set of equations for all elements
is presented below, along with the (approximate) solutions to the equations as
derived in Appendix E. These solutions were obtained by a method set forth in
Reference 16, whereby e and w are considered to vary simuitaneously and terms
of the order of e2 (or smaller) are ignored. The constants (A, a, Cl’ C2 ceey C8)
appearing in the solutions are defined in Appendix E.

Element e
B(O)ﬁ (J’}) l'pa n(m cos w(O) sin i(o) .
del® _ 2 (é sinZ i(0) — 1) (4-32)
dt (1—-e(0)2)2 !
- . 2_1/2
' - C
S0 - [A2+2fc_l Asin(C2t+0)+(El) J (4-33)
2 2
Element w
4 6 (I3
a® BOY 2 0 B(0 (T) + 34(0)
dt = (l_e(0)2)2 (2 -3 sin? i(o)) + %0)283 [1—5 (0) sin i(0) sin w(®) cos2 i(0)
(1—e )
(4-34)
— el s i) gin (0) 4 TO-) sin i(0) sin (@) (8} —-Z—sin2 i(o))]
- A sin ‘C2t+a)+_i
(0 = tan1 (4-35)
A cos (Cz t+u)
Element i
(0) 8(0)6 (jg.) 'e3 n(0) ¢(0) cos i(®) cos w(®
d—l.-" = Jz (l - lﬂn2 0)) (4'36)
dt a _9(0)2)3 4
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0 0) C
i( )- i(0)+ (% <e(0) sin u(o) - e(g) 8in w(g)) (4-37)
Element §}
4 6 /4 .
(0) B(o) r 2n(0) cos iw) B(o) (-J—‘!) r” nl0) () gin o, (O
a : + 2 0173 (ctn it ‘lg- sin 2i(0)) (4"38)
d.f (l—e(mz)2 (1—e'V)y
=
C 0 0 c ~ ~ 4+=39
Qw)gn(g)_’%Gw)m SO0, u(())) . (Cs Ci 704)(1*%) ( )
Element B
a®_ (4-40)
dt
=
8O - 5O (4-41)
NOTE: Since
n=\/u B®
it follows that
0)3 03 (0 -4
"0 e - v s L (4-42)

Element M

6 J3
dam(0) B(0* 12 nl0) 4p(® —J;) rd nl0)
at "~ eomym 17

3 Gin2i(0) . [_
g Sn®i) 3e(0)(] — ¢(012) 5/2

+ ‘% sin i{0) gin (,(0) (1— % sin? i(Ol)]

4-18

.'ie(o)2 sin i(9) gin ,(0) (1—% sin? i(o’)

4-43)

-




= M(m_[«n H] R TI ,(1_(“__4EL7.)&_7, (4-44)
: =r - o 0 [ c, Cz o

A ) 0 0
DA & (v“ )cns w(() - vn‘ ) o8 wn( ))

)

NOTE: The first term on the right-hand side of Equaticn (4-44) is the Keplerian
change in M that takes place during the time interval (t-to). When applying the
asymptotic series solution method to Equation (2-39) to obtain Equation (4-43),
the Keplerian variation is ignored since this variation can be solved in a straight-

forward manner from the Keplerian equation

dM

dt
Consequently, the Keplerian change must be added to the solution of Equation (4-43).

Element v

As mentioned in Paragraph 2.1, the element V is obtained by a Fourier-Bessel
expansion involving M and e. To the order of ﬁ, this expansion is (Reference 6,
p. 89)

(0) © 5 (0)°

0 sin M +Ze

)

v © sin 2M (4-45)

=M + 2e

4.3.1.2 Oblateness and Drag

The element e is taken as the representative eclement, so it is first necessary
to form the composite differential equation for e when considering oblateness and
drag. Since perturbative forces are additive, this is done by merely adding
Equation (2-35), J 9 and J 3 terms only, to Equation (2-42), it is then necessary to
expand each element in the composite equation to the first order of ¢, Using the

expansions presented in Appendix B results in
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gs(m-’r 2 l¢¢(°'c0l »(0) 8
d_e._ e ( )

dt

1 02) 772 [lin W0 (1 4 ¢(0) coq,(0)) (1 - 34in? i(0) in2 (0}
e

+4in2 i(0) 4in 2 4(0) (2cos A0 4 o(0) 02 (0 e(o‘)J

J
Vi 8(0)9<321) rea (1+ el0) oy u(o))(.
T3 (1-=(12)972

- %(1 — 6 3in2 i(0) gin2 u(o))(Z cos r0) + 6(0) (6,2 ,(0) 4 e(o)) (cos ul0) zin i(o))J

K*p 8(0)4 (e‘-o) +cos V(O))\l + e(o)z +2¢(0) cos v(o,) 12
¢ n(0}(1 (032172

The solution method begins by assumingthat Equation (4-46) has the asymptotic

series solution

e (—f,?) = e(0) (_t,:} +ee(1) (?,?) +...

Following the procedure outlined in the previous section for the element i, the

solution in "integral form" is obtained (corresponding to Equation (4-14):

(0)4 2
1y, _del®_  BO" g ‘ .
e(l) i (—;7))%)2_[ (14 {0 05 ,(0)) [lln WOV (1 + (0 o5 P01 - 3 4in2 100 4in2 4(0)

+35in2 i(0) gin 2 u(0) (2 cos (0] 4 £(0) (5,2 ,(0) , 9(0))] al®

6/ d
0)°( 3} 3
43(’(.,2:9

2
+ 3(1 (0)2)3 ‘f ~(1+e(0) go5 V‘O)) [sin i0 gin 4(0) gip ,(0) (1+el® ¢o5 v(o))
—e

(3 65in® i(0) 4in2 4 (0))
- 23< (1 - 6 5in2 {(0) 4jp2 u(o))(Z cos pf0) + ¢(0) cos? (@ .« e(o') cos u(0) sin iw)] dvl0)

K* !1-8(0)2! - (10 + cog v(o)) (1+el02 4 2010} W(0)) 172 (0) ~
uBl02 (1 +¢(0) coy 1(0)) 2 ATt
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(4-47)
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or in notational form as

0) _ ~
e(1)=—‘:& t +Kog(e) Ig(e) + Kg(e) Ig(e) + Kple) Ip(e) + C (t) (4-48)

where
B0 | 2
K s e,——— 4- 9
29 " 1022 )
4p©8(23) 3
Ka(e) = J2) ° 4-50
gle) = 3 (1—e(02)3 (4-50)
_ K*(l—e(o)z)
Kp(e) -W (4-51)
and
Iote) =f—(1 +el0) co5 v(o))[sin U(O)(l +e(0) cos v(o)) (1 — 3 sin2 i(0) 4in2 4(0)) (4-52

+ sinZ i(0) gjp 24(0) (2 cos 1(0) + £(0) 0552 ,(0) 4 e(o))] av(0)

I3(e) =f—(l +e(0) ¢o5 (0)) 2 [-sin i(® sin u(0) gin u(o)(l +el0) cos v(o))(3 — 55in2 i(0) 5in2 4(0))

- ‘%(1 —55in2 i(0) 5in2 u(0)) (2 cos p(0) + e(0) 52 1(0) 4 o(0)) o6 () gipy i(o)] (0 (4-53)

In(e) = /‘_ p (e(o) + cos u(o)) (1+e(0)2 + 2¢(0) cos u(o)) 1/2 a0 (4-54)
D (1+e(0) cos u(o))2

(NOTE: In the above notation, the numerical subscript on K and I indicates the
earth-harmonic under consideration, the subscript D indicates drag, and the

parenthetical (e) indicates the element e. )
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(0 0 _ (0 (0)

\
(0) i(o), and w ~ (recall thatu' ' =w @ +v 0 ) are considered constant

Since e,
by the previously stated assumption, inspection of the integrals given by Equations
(4-52) and (4-53) reveals that each integral can be expanded to a series of single-

term integrals of the general form
0 0
f(e(o), i(o), w(o))./;;inpv( )cost( )dv(o) (B Q=0,1, 2,..... )

which is directly integrable by ''textbook' formulas and, therefore, the FORMAC
program, However, in order to readily integrate Equation (4-54), it is convenient

to employ the binomial series approximations

2 2
+ 26 608 yOV2 11 L O g O g5 O

2 (0)

(0) sin y° " +...(4-55)

1l+e

2
1+ e(o) cos u(o))-2 =1- 2e(0) coSs v(o) + 3e‘0) coszv(o) + .. (4-56)

It is also necessary to know the functional dependency of atmospheric density p

upon true anomaly U(O)

. In the past, this dependency has been established by
using very simple models of atmospheric dersity, such as an exponential model or
a power-law model. Though convenient to work with, these types of models do not
provide realistic simulations of the actual environment since they are structured
to represent the variation of density with altitude only. Density actually varies
with solar and geomagnetic activity, time of year and position relative to the

sub-solar point (diurnal bulge), as well as with altitude,

Realistic simulations of long-term satellite motion must include these additional
variations in the density model, For example, using a simple density model (the
1959 ARDC) to compute the lifetime of Satellite 1961¢ results in a lifetime of 179.1
days. The actual lifetime was 525.5 days - an error of 66%! On the other hand,
using a realistic model (the 1970 Jacchia) produced a lifetime of 537, 9 days; an

error of only 2.4%.

The difficulty with using a realistic density model is in expressing density as

a function of true anomaly. An examiration of the 1970 Jacchia model shows
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how complex a realistic model is and, consequently, how difficult it would be to
implement directly intc 2 general perturbation technique. Yet, in order for the
general perturbation technique to be as accurate as numerical solutions, it is

desirable to use the 1970 Jacchia model,

A rather unique approach to the use of a realistic density model is taken in
0 .
this study. Specifically, the variation of pwith v( ) is approximated by the Fourier

series

- ©) )
p=1/2 a0+2[ak cosky " + by sinkv'] (4-57)

k=1

where 2{)’ a and Ek are Fourier coefficients deter..ined in the following manner:
A table of density values is computed for iatervals of true anomaly around one
orbital revolution by numerically evaluating the 1970 Jacchia model. Integrals
associated with determination of the Fourier coefficients are then computed by the
Trapezoidal Rule, (It was found that the Fourier series using coefficients

through a 4 and 94 give an excellent approximation to the functional dependency of

density upon true anomaly, )

Decause of the dynamic nature of the density function, the series approximation
will not hold for long periods of time. (In fact, this is one area in which further
study is recommended - see Section 6.) The length of time depends somewhat upon
the amount of resolution in the density input data (solar flux, geomugnetic index,
etc.) and upon the orbital conditions. For instance, if daily values of solar flux
and Leating parameters are used, the series would need to be evaluated at least
daily. If the orbit is in a state of rapid decay, the series could require more
frequent evaluation, As discussed in Paragraph 4.5, the Fourier coefficients are

updated at required intervals when numerically evaluating the solution equations,
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Returning to the solution procedure and substituting Equations (4~55) through

(4-57) into Equation (4-54) yields

=f- (0) : 0), , (0) (0)
ID(e) f [(1/2 a, +a1 COSV "+ ...+ b4 sindv Y "+cosv ) (4-58)

2 0 2

0
(0) (0) 2 ( (0) ©°, 2,0 ] a©

l+e "cosv '+ 1/26(0)

0)
sin v ))(1-2e cosu()+3e cos v

The FORMAC program is utilized to expand Equations (4-52), (4-53) and (4-58)

and then "'solve' the single-term integrals., In general, the integrated solutions

(0)

will consist of terms secular in the independent variable v’ ° and ierms non-secular

0
in v( ): i.e.,

(0)

Iz(e) = Sz(e)v + Nz(e) (4-59)
- 0) -

Ia(e) = S3(e)u + N3(e) (4-60)
_ (0) _

ID(e) = SD(e)v + ND(e) (4-61)

where S denotes the secular terms and N the non-secular terms. The FORMAC

program prints the answer arrays 1, -1{3’ ID and _S2, §3

since these arrays are very lengthy, they are presented in Appendix C.

. §D for each element;

In view of Equations (4-59) through (4-61), Equation (4-48) becomes

(0)
1 __de - (0) (0)
e = & t+ Kz(e)[ Sz(e)v + Nz(e)] + K3(e) [Ss(e)u + N3(e) ]
vk @ s ev@in @ sc® (4-62)
D D D
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(0)

As shown in Appendix D, the element function V' ' is secularly related to the

fast time-variable t: by:
WO n(0) ¢

§ (4-23)

(0)

Hence, the resolution of V' ' into secular and nonsecular parts yields:

0 -
w(0) = V(s) + V(g) =n(0¢+ v(g-) (4-24)

(0) (0)

where V N is the nonsecular part of V'’ yet to be determined.

Substituting Equation (4-24) into Equation (4-62) and rearranging yields:

(4-63)

1)_ |_de(®
e(1)= [ -:;_E_ + Ky (e) Sq (e) n(0) 4 K3 (e) S3 (e) n(0) 4+ Kp (e) Spy (e) n(o)J t

+Kg(e)

0
+ Ko (e) |82 (e) V(N) + N2 (e) S3 (e) V(g) + N3 (e)J

' 0
+Kp (e) | Sp (e) u(N) +Np (e) | +C ()

At this point, the first uniformity condition (see Paragraph 4.2) can be imposed.
Essentially, this condition requires that any approximate solution to the element ¢
not contain a secular term in the fast variable t, since the solution to the differential
equation for e did not contain a secular term when € = 0, In order for this condition

to be satisfied, it must be that:

(0) ,
—‘:iet. +Kg (e) Sy () n(0) + K 3 (e) S5 (e) n(®) + K[y (e) Spy () n{®) | =0
(4-64)
In view of Equation (4-64), Equation (4-63) merely becomes:
0 (©0) (4-65)
ell) = Ko (e) [ Sq (e) V(N) +No (e)l +Kg(e) [S3 (e)v Ny +Ngl(e) J

+Kp (e) l Sp (e) u(g,’ +Np (e)l +C (t)
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Now, as is evident in Appendix D, one method for obtaining the nonsecular

(0 0

part of V. e. , v(N)
not necessary, however, since Equation (4-24) can be rearranged as:

0) - ,,(0) _ (0)
VN v n'’t

) would be to evaluate the indicated Fourier series, This is

(0) ()

and V' ' and n' ' t are known. Thus, when considering Equations (4-59) through

(4-61), Equation (4-65) can be written as:
e(l) =Ko (e) [12 (¢) — Sg (e)n(?) E] +Kg(e) [13 (e) —Sg (e) n(®) E] (4-66)

+Kp (e) [ID (e) — Sp (¢) n(®) El +C(f)

It should be noted that, although the appearance of 1: in Equation (4-66) suggests
secularity, this secularity is cancelled by that appearing in Iz(e), I 3(e), and
1)

ID(e). Consequently, e’ is nonsecular in E, thereby satisfying the first uniformity

condition.

Returning to Equation (4-64), it follows that:

0 -
d;tf ) . Ky (€) Sg (¢) n{0) + K (e) S5 (e) n{®) + Ky (e) Spy (e) n(®) (4-67)
From the FORMAC results presented in Appendix C:
Sp(e)=0 (4-68)
S3(e) =%sin i0) cos wl(0) (1—e(0)Z) (%sinz (0 —q) (4-69)
Sp () = (=g a1 +$bg) + (—fag + Jag) (4-70)

(Recall that a, a_, and 133 are the Fourier coefficients appearing in the density

-a-l ’ _2 ?
function approximation, )
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LAl i, 2

Substitutirg Equations (4-49) through (4-51) and Equations (4~68) through
(4-70) into Eqnation (4-67) yields:

50° (28) 130 sin i cos (0
ael®) _ o) (.ésinz i(o)—l)
dt (1—e(0)2)2 4

n(o) K* (l—e(o)z) ‘
* u B(0)2 [(‘%al +%'—‘3) +(“%“o *i—az) e(®

This is the first-order ordinary differential equation having E as the independent

variable which was referred to at ihe beginning of this section. Using a procedure
identical to that just illustrated for the element e, the corresponding equations for
the remaining elements can be formulated. The set of eyuations for all elements

is presented below, along with the (approximate) solutions to the equations as derived

i i A, A 5
in Appendix F. The constants (a, b, c, Y Cl' cz, eer, C8’ D_, BO’ Bl’ »
50 and 51) appearing in the solutions are defined in Appendix F.
Element e
6/4d
0)°/<3\_3 (0). (0 0
de(0) B(%) (J_) Te n(9 in i(0) co5 (0 (4-71)
t - 2 54in2i(0) — 1
dt (1—e(02)2 .
e ] (SRR NSRRI
——aq + byt |{—an +
u B0)2 21753 707 p32)¢
(4-72)
bt . i
where £ = e Mycosct+rgsinci) — -ab
b2 + c2
n bt [Aysinct +2A i] ac
=ex - lsmc 2COSC —
’ b2 + 2
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Element w

6/d
4 3(0) (_3), 3 ,(0)
dwt® _ B 2n(® (2—§sin2i(o)) . Ip) ¢ 35 o(0) 4in i(0) gin co(®) cos2 i(0)

at (1—e(0)2)2

- e(o) csc i(o) sin w(o) + -ﬁ sin i(o) sin w(o) (1 —%sin2 i(o

e

(1—e(02)3 4

))] (4-73)

+ n(0) k» 11—e(0)2) I—-l-bl _%b3 +%b2 e(0)]

B3(0)2 (0) , 2

(4-74)
where £ and 7 are given on the previous page.
Element i
B(0)6 (J_3) 'ea n(0) (0) ¢os5i(9) cos (D
dail® _ ) (1__5_si,,2 i(O)) (4-75)
dt (1—e(0)2)3 4
=
4-76
i(0) = i(g) +.(_:.§ (e(O) sin w(0) — e(g) sin w(g)) ( )
Ca
Element Q
4-77)
0% 2 1(0) 04 (0) BO° (ﬁ) red (0 & sin ()
aq® _ _ BV r“ni"icost ) (ctn i(0) 15 sin2i(o))
at (1—e(0)2)2 (1—e(0)2)3 8

C . -
a0 =g~ (ew) cos 0® — Y cos ) ) +(c5c_;- c, ) (i~ig)

2
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Element B
aB®) _ O ke [ _3,.\ .(0) -
o 250, [?‘0"( $b) ¢ (4-79)
=>
020’0 © 4-80
80 - g 2(50*5100)&—50)* B(g) (4-80)
NOTE: Since
n-\/Fﬂa
it follows that
n(® = /703 (4-81)

Element M

48(0)6 ( ;2) re3 n(o)

4
‘-’M(O) = M (l —3.5in2 i(o))— ——— [— 30(0)2 sin i(®) sin (@) (l—-5-sin2 i)
dt (1—¢(0)2)3/2 2 3e(0) (1—¢(0)2)5/2 4

(0) —el0)2)3/2 3.\ 1 ufle o3y 43
w2 {0 sin () (1 ~Suin? iw>)] e l(_; by +Jvg) g +{Lby 2302 +3bg)

9 _1p 4+274.).0)
*(T51 2" Tebs)e ] (4-82)

b_
M0) = [n(o)(t—to)] + M(g)., [Cf,+(4C7 - ziccz + Dz( e(o) Tl+bp+ 8, e 0 )] It --toj
0
(4-83)

2 |

—(4Cy— CB)[ ___2_ ‘(xz = b)sinct #(X2b+)\1c)coscti

bto
- xp ‘(ch— Aqb) smcto*()\zb+)\lc)cosct‘
b2 +c2

NOTE: The first term on the right-hand side of Equation (4-83) is the Keplerian
change in M that takes place during the time interval (t - tO).
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Element Vv

As mentioned in Paragraph 2.1, the element V is obtained by a Fourier-Bessel
expansion involving M ana e, To the order of g_z_, "~ expansion is (Reference 6,
p. 39):

U0) = M(©) + 20) sin m(0) 4 3 (02 G 2 M(0) (4-84)

4,3.2, Obtaining the Second Approximations to the Solutious

It so happens that the second approximations arc very nearly obtained during
the process of deriving the first approximations, since the super-one solutions are
merely functions of the super-zero solutions and an integration constant. The pro-
cedure for completing the derivation of the second approximations will now be
illustrated. As mentioned at the beginning of Paragraph 4.3, and as will be more
thoroughly discussed at the end of this section, drag need not be considered since

the super-one solutions due to drag are negligible.

The element i will again be considered in detail as a representative element.
Recall Equation (4-28):
r
i1 =Ky (i) | Iy (i) — Sg (i) n(O)E] +Kg (i) ll3 () —S3Mn@T| +c(d)  (4-28)
(0)

where K2(i) and K3(i) are given by Equations (4-16) and (4-17), n' ' is given by

Equation (4-81), ani 12 i), Is(i) , and Ss(i) are obtained from the FORMAC program
(see Appendix C). Hence, once the first approximations are known, i(l) can be
computed from Equation (4-28) after the constant of integration C (B has been deter-
mined. In theory, a second application of the first uniformity condition (see Para-
graph 4, 2) would provide a means of determining C(’{); unfortunately, this requires

at least a partial formulation of the third approximation (see Paragraph 4.3.3).
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(1)

To readily proceed with the solution development for i'"’, it is convenient to
make a simplifying assumption based on the supposition that C(?) , being a function

of the slow time=-variable E, is slowly varying itself, Specifically, it will be assumed

that C('tv) is a constant, C. The effect of this assumption can be minimized by periodi-

cally rectifying the orbit and updating the epoch value of this constant. (As discussed
in Paragraph 4,5, an updating procedure is used when numerically evaluating the
solution equations and, as shown in the plots of Appendix H, the C(?) for each element
remains sufficiently constant over time intervals which are not extreme. Further-
more, as discussed in Appendix G, these plots well describe the functional form of

the C(B's obtainable when considering the third approximation. !

In considering this assumption, Equation (4-28) can be written as:
i(1) = Kq (i) | Iy (i) — 84 (i) n(®) E] +Kg (i) [13 (i) —S3)n@t[+c  (4-85)

The constant C can now be evaluated from initial (or epoch) conditions. From Equation

(0)

(4-14), it can be seen thai C is the constant associated with a dV' ' integration in
which all other element functions are considered constant. So, at epoch time t_O,

Equation (4~85) becomes:

1 _ (0=
{5 = [ Kz 60 { I, (i) ~ Sq (i) n{®) T : +Kg (i) %13 (i) — S5 (i) n(®) tHEO +C  (4-g6)

where [ 1-
to

indicates that the functions of Vv

0
epoch value V( 0).

()

within the bracket are to be evaluated using the

(0)

Functinns of the other elements (such as sin @' ') are evaluated

using current values. For example:
[sin w(0) cos V(O)]E = sin w(0) cos V(g)
0
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(The FORTRAN program discussed in Paragraph 4. 5 employs a procedure for
updating this epoch value.)

In view of Equation (4-86), Equation (4-85) becomes:
i1 = i((1))+ Ky (i) [12 ()~ Sy () (O ¢ ] +Kg (i) [ I (i) — S (3) n(®) E] (4-87)

~ [k () {12 () =50 n‘°’i} +Kg (i) ;xa () — S3 (i) n(o)E”Eo

Since K 2 and K 3 are not functions of uo(o), Equation (4-87) can be written as:

. (1 . . -
D=0+ Ky ) | 15.00- 85 ) nO7 | 4150 | 1360~ 85 () n(®]
—Kp () [Ig() =S )0 E| . —Kq (i) [1a (i) =S (1) n(0) §
2 [2 2 (1) n ‘to g () '3(0 g (i)n tlio

or more concisely as:

1 gt ' 1t
i(l)-i(o)+K2(i) ,Iz(i)—sz(i) n(o)tl 50+K3 (i) ,13(i)—S3 (i)n(o)tJ;o (4-88)

where K 2(i) and K 3(i) are given by Equations (4-16) and (4-17), n(o) is given by
Equation (4-31), and Iz(i), I3(i), Sz(i) and Ss(i) are obtained from the FORMAC
printout (see Appendix C).

To this point, the solution for i(l) has been considered in notational form. For
a more revealing look into the actual solution, it is necessary to substitute Equations
(4-16), (4-17), and (4-81) and the FORMAC results 12(1), 13(1), Sz(i), and 83(1) into
Equation (4-88). The solution resulting from these substitutions is presented in
Equation (4-89).

Using a procedure identical to that just illustrated for the element i, the cor-
responding equations for the remaining elements can be obtained. The equations for

all six elements are summarized in r.tational form following Equation (4-89).
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0t 2
m_ B

(1) .
i~ Solution (4-89)

——t__ | —2¢(® gin 2i(0) gin L(0) i, (,(0) cos w(0) + —e(o) sin 2i(0) sinZ (0 42 (,(0) o ,(0) 2 (0} in 2 {(0) 4in2 ,(0) cos #(0)
2 (1—e(0)2)2 3

+ -i;-e(o) sin 2i(0) sin3 (0) sin (0 cos w(0) — 4 0(0) sin 2i(®) sin2 w(® cos (0 + 2 0(0) sin 2i(0) cos (0 — 2 sin 2i(0) sin »(®) sin w(0) cos W(0)
3 3

(0)

cos (% —sin 2(9) in2 10) 4 2 5in 2i(0) 5in2 WO) GinZ ,(0) 4 24(0) G 2 4(0) gin u(g) sin w(0) cos ,(0) —‘;—e(”) sin 2i(® sin2 ')’ sin? ()

(0) (0)

cos u(g) +2e05in 2i05in2 5 coss'y’ — $ (@ sin 2(0) 5in3 u(g) sin w(0) cos w(0) + 2@ sin 2i(0) 4in2 (0) coy O 2@ sin 240

0 0 0
cos "'(0) + 2 sin 2i(0) in "(0) sin w{9) cos v(g) cos w(0) + sin 2i(0) sin? v‘g) —2sin 2i(0) sin? "(0) sin2 (0

€ /3
B(0) (i) re3

+ ———W i —5 sin2 i(0) sin v{0) gin2 w(0) cos {0 cos w(0) — 5 sin2 it0 sin2 »(0) sin w(® cos (0 cos w{0) 4 20 3 sin 1(0) sinZ 4(0) sin® (0)
(1—e™)%)

cos i(?) cos »(0) + 20 'y sin2 i(0) 5in3 (0 Gin2 (0} (o {(0) cos w(0) — ssm 2(0) in3 b(0) 05 i(0) cos ,(0) — §-sm 20 5in3 (D) o5 (0) (o5 1(0)
+5in 1(0) co8 i(9) cos () + gin 10) cos i(0) cos v(0) _%9(0) w(0) 4in2 ;(0) 05 i{0) cos WD) + &(0) (0} (0 {10} (oo 19) _ 10 (D) 4in2 i(0) Giy (D)
sin2 w(?) cos i(0) ¢os p(0) cos w(0) + %e(o) sin? i(0) sin 1(0) cos i(0) cos () ¢os (0 — 10 (@) 5in2 i(0) 5in2 4(0) g ((O) cos i(®)
+15¢(® 4in2 {0) 12 ,(0) 13 (0) o0 (0}, 10 {0 5in2 §(0) in3 1(0) (12 (0) (06 i(0) o6 (0 oo w0 — %,(0) sin2 i(0) 4in3 (0}
c08 #0) cos 12" cos w(0) + 15.¢(0) 5inZ i0) sin 1(0) sin (9 cos i) + 10 &0) in2 (0) sin? 10D i3 ,10) coq i) 4 o(0) g ,(0)

cos i(o) cos »(0) cos {0 — el0) sinZ »(0) sin w{0) cos 1(0)



i(l) Solution (continued)

(0)

(0 sin3 {0 cos (0} coq 1

@ sin () cos i(0) cos S - 20 5in? i sin? 0

0 2 ® 008 i(0) cos 0 + 5 5in? (0 in2 (0

+ 552 (0 gn »Q

- -2_32 sin2 i(o) sin3 v(g)sinz (0 cos i‘o) cos w(®) + %sin2 i(® sin3 u(g) cos i(o) cos wl(0) + % sin2 it0 sin3 w(o) cos i(o) cos v(g) —sin v‘:) cos i(o) cos w!(0)

0) o

o, 5.0) /0 1in2 190 con 0 cos ) — ¢(0),(8) o, (0) oy (101 4 10 (0) in2 0) i o sin 0)

= sin w(0) cos i(®) cos » w(o)eosi‘o)cosv(g)cosw(

0)

= 5.¢9 02 €0) in 10 cos 10V cog 115 cos 1) 4 10 1) sin? 1) in2 1D i (0D cou i0) 15 £(0) 02 iO) n2 o 5in3 w(0) o5 i(0)

— 10 ¢{0) gin2 if0) 4in3 v‘g) sin? w(® cos it®) cos v‘:) cos w(0) #%e(o) sinz (0 sin3 v(g) cos i(o) cos v‘g) cos w(0) — 1?50‘0) sin2 i(m sin? v(g) sin w(o)

cos i(0) — 10 ¢(® 4in2 (0) sind v‘g) sin3 w(0) cog i(0) — &(0) gy v(g)cos i) cos v‘g)ms w(0) 4+ £f0) 4jn2 v(g)sin w(0) cos i(0)

—nO7F (-%e(ol 5in2 () cos i(0) cos W(0) + &(0) o i(0) cos w(@)) + (0 [ (—%e‘o) 5inZ i(?) cos i(0) cos () + &(0) cog (0 cos »(0))



Element e

(1 .t -t
1) = e‘o) +Ko(e) [Ig () — Sy (e) n(® § ]fo+ K3 (e) I3 () =S (¢) n(0) t]{o

Element w
o = 00+ Ky (@) [y () — 8y () 0O § u + K3 (@) [13 () =S () n(® 1
to
BO*, 2
e(0) (1 _¢(0)2)2
p(0)8 (&) 3

&0) (1—¢(0)2)3

Ko (w) =

K3 (w)=

Element i

1(1)—1(0)+ Ko () {I (i) — Sg () n(0 § t] +K3 (i) [13 (i) — Sg (i) n(®) t]i
£
(0, 2
Xg (i) = B "
2 (1-e(N2)2
5(0)° ( -'3) .3
3,) e
(1—e(0)2)3

Kz(@)=

Element C
‘-.‘) _ - -
o) =0 5"+ Ky () [15(2) - 55 (2) n0) t]; +Kg () [13(2) — S5 (2) n(®) E];
0 0
2p(0)* 2
p(0)8 ( ﬁ_) 3
Jg) e
(1—-e(0)2)3
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Ko (R2) =

K3 ()=

(4-90)

(4-91)

(4-92)

(4-93)

(4~-94)

(4-95)

(4-96)

(4-97)

(4-98)

(4~99)

(4-100)

(4-1.01)



Element B
B0 =50 4 Ky (B) 11y (B)— 5, B n® i) +x ' 7 (4-102)
2 2 f 3(B) [I3(B) =85 (B)n )tlE
0
(05, 2
Ky (B)= — e (4-103)
(1—e(0)2)3
4B(0)‘7 (.Jﬁ) r, 3
K3 (B)= \J2 (4-104)
3(1—e(0)2)4
Element M

(1) ot t
M =Mo"+ Ky (M) [1, (M) — Sy (M) n(0) tj.:. +Kg3 (M) [I3 (M) — Sq (M) n(0) E]; (4-105)
0

0
04, 2
Ky (M)= — e (4-106)
e(0) (1—¢(0)2)3/2
4B(0)° (—"—3-) rd
K3 (M)=— g/ (4-107)

3¢(0) (1—¢(0)2)5/2

As discussed in the beginning of Paragraph 4.3, the second approximations to

the solutions are then formulated as

e=el0) 4 ¢ell) (4-108)
w=w0) 4¢ (1) (4-109)
i =i(0) 4 ¢4(1) (4-110)
Q=00 4 1) (4-111)
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B=B(0) +¢ (1) (4-112)

M=M(® 4 o m(1) (4-113)
The second approximation for true anomaly V is obtained by a Fourier-Bessel

expansion involving M and €. To the order of e 2, this expansion is (Reference 6,

p. 89)

V=M+2esinM+%e23in2M (4-114)

where e and M are given by Equations (4-108) and (4-113), respectively.

As mentioned at the beginning of this section, the super-one solutions due to
drag are negligible. This fact is illustrated by the following consideration, The

second approximation to the total solution has the form:
E= E(o) +¢ E(l)

where E represents any orbital element in the set (B, e, i, 2, w, and M). The e:E(l)
terms are short-periodic (see Paragraph 4.3.4) and are composed of integrals of the

form:

E() =K, (E) / [Periodic] d »(0) + K (E) f [Periodic] d »(0) + Kp (E) f [Periodic] d »(0)

where KZ(E) is the constant associated with gz effects, K3(E) the constant associated

with J_ effects, and KD(E) the constant associated with drag effects. Since

3
the above integrands are composed of trigonometric functions which do not

yield overall solutions secular in v(O)

, the integrated terms will be trigonometric
functions having amplitudes proportional to the respective constant K2(E), K3(E) or
KD(E). An order-of-magnitude analysis has revealed that KD(E) is considerably
smaller than Kz(E) and K3(E) for each element. Specifically, for a low-eccentricity
orbit (e = 0,0055) and a CD(A/m) of 0,02 m2,/kg, the relative magnitudes of these

constants were found to be approximately:
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€

E K,(E) eK,(E) eK (E)

B 1x107° 2x1078 0.8 x 10 16

e 1x10°° 1x10°8 0.9 x 10714
-10

w 8, 8 deg 0.009 deg 0.9x10
-10

M 9.0 deg 0.009 deg 0.9x10

Because eKD(E) is 10 to 11 orders of magnitude less than eKz(E) and 8 to 9
orders of magnitude less than eK3(E), it would appear that drag effects can justi-
fiably be neglected in deriving the super-one solutions. To verify this, a computer
run was made for the elements B, e, and  in which even the super-one solutions
due to QB were neglected. As expected, there was very little difference in the super-
one solutions with and without the effects of 43 Consequently, there would be even

less difference in the super-one solutions with and without the effects of drag.

4.3.3 Procedure for Obtaining the Third Approximations to the Solutions

The third approximatior. of the soluticn for any element E has the form:
E=E0 +e gD +2E2)

Procedures for obtaining the E(z) solutions have been established when considering
oblateness only, but as yet have not been executed to the point of completely deter-
mining the third approximations, These procedures are outlined in this section.
Included within their development are the steps necessary to obtain expressions

for C(?:'); a detailed discussion of these steps is given in Appendix G.
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The procedure begins by further expanding the basic differential equations of
satellite motion (Equations (2-34) through (2-39)) to the order of ;2. These equations

will have the form:

Specifically, for the element i:
_%ti_= €f; (B(0) &(0) (0) (,(0) ,,(0)), (2 g (B(0), B(1) &(0) (1) §(0) (1) w(®), (1) ,0), (1)

(4-115)
which is a functional extension of Equation (4-3). The asymptotic series solution for

i has the form:

i) =i @ +eiV @, +e2i? &, D) (4-116)
where i =t(1+aye?)
f =€t

Differentiating Equation (4-116) with respect to time yields

di2i® , [ai) L 2i0), 2542 +ag 2i(0) L2l 4-117)
dat 5 i 3t at | ot at at (

which is an extension of Equation (4-7). Equating coefficients of like powers of €
from Equations (4-115) and (4-117) results in three partial differential equations to

be solved (two of which are the same as before):

2i(0) =0 (4-8)
ot
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i1 20 _ , (4-9)
at  at !

3@ 4 2i® ai® _
3T 291 af G (4-118)

Solving Equations (4-8) and (4-9) produced second approximations in which it was
necessary to assume the integration constant C('E') to be a true constant (see
Paragraph 4.3.2). Solution of Equation (4-118) will permit the functional determina-

@

tion of C(?), as well as a partial determination of i (Thus, the process of obtain-

ing the higher-order solution E(Z) serves to complete the E(l) solution.)

Equatior {4-118) will now be considered in more detail. Equation (4~8) implies that

(0

i'" is a function of t only, thus:

63

The solution for i

only uponz, i.e., from Equation (4-28):

i =ty (EO) + ¢ ()

where fy = Ko (i) | I (1) — So (i) n(®) ]+ Ky (i)[l3 (i) ~ S5 () n(0)

Equation (4-119) can, therefore, be written as

212 ,0fn,d Ci.(f)

Y Y T =g (4-120)
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The solution of Equation (4-120) can he obtained by the same procedure used to solve

Equation (4-9). Thus:

L (t) - - .
(@ a2 g5 -8G0 g pgatecid (4-121)
ot dt
where C; (?) is a constant of thez integration associated with the 1(2) solution, At

this point, it is necessary to again apply the first uniformity condition. Terms

secular inE are collected in Equation (4~121) and set equal to zero, yielding:

dC;(t)- _ Y
i gai—y 2N g3 (4-122)
dt sec. sec. ot

This equation allows the functional determination of C('F), and its solution is discussed

in Appendix G,

The i®) solution thus becomes only a function of terms nonsecular in E and the

integration constant, i.e.,

(D _iilidhlfvs g di+C} (D (4-123)

These nonsecular terms can be evaluated by the same technique used to arrive at
Equation (4-28). Again, the integration constant, C; (?), must be assumed truly con-

stant or determined from the E(3) solution.

The procedure for computing the complete E(z) solutions, as outlined above,
is relatively straightforward; however, it involves many long expressions and taxes
even the capabilities of FORMAC. It is uncertain at this point what benefits would
(2)

be derived, in relation to the work involved, by obtaining the complete E'~’ solutions,
As will be discussed in Paragraph 4.3.4, element solutions are composed of
short-periodic, long-periodic and secular components, Secular and long-periodic
terms are the most important in long-term ephemeris prediction, and these terms

4re presently contained entirely within the E(o) solutions. The short-periodic terms,
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on the other hand, are contained entirely within the E(l) solutions, It is anticipated
that the C(t)s will addf secularity to the E(l) solutions; however, the E(z) solutions
will be purely periodic until the E(s) solutions are evaluated, at least to the point of
determining C'(B, Thus, the E(Z) terms will, most likely, only add terms on the
order of € 2 to the periodic solutions. Since these indications have not been com-
pletely verified, it is recommended that the nature of the E(z) solutions be further
investigated before undertaking the laborious procedure of completely solving for

them.

Undoubtedly, carrying the E(z) solution procedure to the point of determining
C('f) for each element would yield certain benefits, For instance, having a functional
expression for each C(?) would eliminate one requirement for periodically updating
the epoch values of the elements and associated parameters. (Since each C(B is
presently assumed constant, it is one of the parameters that must be periodically
2, 0d 4,
secular effects could most likely be represented in the overall solutions via C(t).

updated.) A second benefit would result from the fact that second-order

(The importance of these eff:cts is discussed in Section 5.)

4.3.4 Physical Interpretation of the Solution Components

The analytical investigation of perturbational effects on a satellite shows that

(Reference 3, pp. 361-362):

1. Certain elements experience secular variations from their epoch

values, as well as periodic variations about these epoch values
2, Other elements have only periodic variations,

Earth oblateness, for example, causes secular variations in the elements ,
wand M, and very small periodic variations in all the elements. Similarly, atmos-
pheric drag causes secular variations in B (or a), e and M, and very small periodic

variations in all the elements.
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Among the periodic variations, a distinction is made between long-periodic
variations (periodic wiih respect to w or multiples of w) and short-periodic variations
(periodic with respect to linear combinations of ¥ and w)., To visualize these effects,
consider Figure 4-1. The superposition of all variations depicted in Figure 4-1 yields
what is referred to as the osculating element., Consequently, the set of osculating (or

instantancous) elements defines the continually changing elliptical orhit,

(0 (O (O (0 L0

0
Inspection of the solution equations for e' ', w' /', , £ 0

and M
(disregarding, for the purpose of this discussion, the Keplerian variation in M(O))
reveals that these solutions are secular with respect tof and/or periodic with respeet
to w. Consequently, these solution components represent a superposition of the
secular and long~periodic variations depicted in Figure 4-1, and, as such, represent
the mean elements. (A mean element is normally defined as the osculating element
minus the short-periodic variation; however, as discussed in Appendix I, there are

other convenient definitions for a mean element.)

M D D (D

Inspection of the solution equations for e'™’, '™, (1)

B (1)

, and M
reveals that these solutions are short-periodic. Consequently, these solution components

represent short-periodic variations of the elements about their mean values.

In summary, letting E denote any element in the set (B, e, i, Q, wand M), the

physical interpretation of the solution components is as follows:

o (1)

E E eE
]
short-periodic variation about the mean

mean value of the element
osculating value of the element

(NOTE: Since the E(z) solution components have not been derived, they are not depicted

above. As discussed in Paragraph 4.3.3, it is anticipated that the E(Z)

component will
add secularity (with respect to the slow time-variablez) to the E(l) component through

the constant of integration C(?).)
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Figure 4-1. Typical Orbital Element Variations
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4.4 SYNOPSIS OF THE FORMAC PROGRAM USED IN OBTAINING THE ASYMPTOTIC
SERIES SOLUTIONS
As was indicated in Paragraph 4.1, general perturbation methods require a
great amount of analytical labor in formulaiing and integrating the equations of
motion. Equations such as (4-18) and (4-58), for example, involve a large number

of integrals of the form:

P

fsinPxcos¥xdx  (P,Q=0,1,2,...)

While these integrals are basic, each generally requires several tedious

recursions in its analytical evaluation,
In addition, more complex integral forms may arise, such as

P

Kfﬁ‘x_ms?_’s. dx (N=1,2,...)

(1+e cos x)

To alleviate the analytical labor required in performing numerous evaluations
of both integral forms, an IBM 7094 FORMAC program (IDIGTE) was developed which
provides the required expansion and integration capabilities. This program consists
of a FORMAC driver and a set of subroutines which effect the required integrations.
The driver performs all required manipulations of each input integrand, determines
the integration parameters P, Q, N and the "constant" K, and then transmits these
quantities to the driver routine of the integration package (the set of routines which
perform the required integrations). The integration package driver then identifies
the integrand involved, makes any necessary variable transformations, and calls

upon the proper subroutine to carry out the integration.

The complete solution of an integrand usually requires solving several su b~
integrals (special cases), and each integration package subroutine is designed
to integrate a given type of subintegral. Basically, each integration is carried
out by substituting the prederived and precoded solution for that particular integral
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(i.e., the integral determined by the values of P, Q and N). These "integrated"
results are then transmitted back to the integration package driver (where inverse
transforms are performed, if necessary), and the results passed on to the FORMAC

driver for simplification and output.
A detailed description of this program is provided in Reference 17,

4,5 SYNOPSIS OF THE GENERAL PERTURBATION FORTRAN PROGRAM FOR
NUMERICALILY EVALUATING THE ASYMPTOTIC SERIES SOLUTIONS
A FORTRAN double-precision computer program (GENPUR) has been developed /
for the UNIVAC 1108 to numerirally evaluate the analytical solutions derived
in Paragraph 4.3, Currently, the program reflects only those perturbations due
to earth oblateness (J 2 and _.13) and tangential atmospheric drag, but it is structured
to readily accommodate additional perturbations, such as higher-order harmonics,
low-level thrusting, solar radiation, etc. At user option, asymptotic series
solutions, through the second approximation, can be eva. rated when considering

either earth oblateness or the combined effects of oblateness and drag.

As indicated in Paragraph 4.3, certain assumptions were made in order to effect
the integrations involved and to evaluate the corresponding integration constants,
These assumptions appear to be physically reasonable, if they are considered to
hold over time intervals which are not extreme, With this in mind, the program is
structured to make use of an updating scheme, whereby the solutions evaluated over
a given time interval (At) are expressed in terms of constants and epoch values of
the elements (both osculating and mean) computed at the beginning of that time
interval. These solutions are then used to recompute the constants and epoch
values prior to the solution evaluation over the next time intervai. Included in this
scheme is a procedure for updating the Fourier coefficients appearing in the series
approximation to the atmospheric density function (see Paragraph 4.3.1.2). At the
beginning of each time interval, these coefficients are evaluated by using the 1970
Jacchia atmospheric density model.
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Even though the asymptotic solutions do not yet include g4 and second-order g2
perturbations, estimates of these effects for the elements w, Q and M were
temporarily implemented using Brouwer's solutions (see Section 5) to make meaning-

ful comparisons with actual satellite data.

A complete description of this program (referred to as the GENPUR program) is

provided in Reference 18,
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SECTION 5 - COMPARISON OF RESULTS FROM THE GENERAL_
PERTURBATION PROGRAM

The asymptotic series solutions through the second approximations have been
implemented into a computer program (GENPUR). Output of the GENPUR program

© © 4 M), (as dis-

consists of mean elements (E' ') and osculating elements (E
cussed in Paragraph 4. 3.4 and shown in Appendix H, the mean elements contain the
very important long-periodic and secular effects, while the osculating elements result
from adding short-periodic etffects to the mean elements.) The purpose of this sec-

tion is to thoroughly discuss and compare the results obtainable frcm GENPUR.

The comparison of GENPUR results is conducted in two parts. First, the
validity of the mean element solutions over long time periods is established by a
comparison with mean elements derivea “rom Smithsonian tracking data, along with
corresponding solutions from the MSFC Orbit Lifetime Program. Numerical integra-
tion programs such as COWELL and ENCKE would have been ideal for this comparison,
but they are restricted in their application to relatively short time intervals (20 days).
On the other hand, use of elements derived from tracking data provides the opportunity
of observing the actual behavior of an orbit, since there are usually small forces in an
actual environment that are never modeled, In the second part of the comparison,
osculating element solutions from GENPUR are compared to the results of two numeri-
cal integration programs, COWELL and SPERTB. These solutions are analyzed for

only 8 days, since they are merely short periodic additions to the mean elements,
5.1 COMPARISON WITH SMITHSONIAN TRACKING DATA

The Bake.-Nunn system operated by the Smithsonian Astrophysical Observatory
(SAO) is a source of very accurate satellite tracking data. The purpose of this
section is to present a detailed comparison of GENFUR results with SAO tracking data

for three satellites, namely: Explorer 7, Explorer 1 and SA-5,
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The Baker-Nunn camera is an instrument with very high accuracy individual
measurements. The timing accuracy of observations is approximately 0, 001 second
(corresponding to an in-track error of 10 meters for a satellite at a 1000-km altitude).
Average positions are accurate to within 3 to 4 seconds of arc. The camera takes a
time exposure of a satellite which is in sunlight, while the camera is in darkness. The
exposure is interrupted by a rapid operation of the shutter so that the photograph
appears as a dashed streak of light. The time of the middle interruption is recorded
with an atomic clock. Appearing on the photograph with the dashed streak (which is
the satellite) will be point sources of light, which are known stars. The locations
(right ascensions and declinations) of these stars are accurately predetermined so that
the photograph provides a recorded history of where the satellite was in relation to
known references. The processing of these pictures is done with extreme care, requir-

ing as long as several weeks to get the final results.

A series of these measurements are then analyzed by the SAO Differential Orbit
Improvement program (DOI), The DOI program determines, through a least-squares
procedure, the set of orbit elements that most accurately represents the satellite
motion during the period of observation. These elements are published for some satel-
lites in SAO Special Reports. An example is given in Figure 5-1 (taken from Reference
19) which shows the elements for the initial history of Satellite 1964-5A (SA-5). The
elements are given in 1-day increments of Modified Julian Date (MJD); however, they
are not exactly in the form desired. The analysis of this report uces semimajor axis
a, eccentricity e, inclination i , right ascension of ascending node (3, argument of
perigee w, and mean anomaly ¥, Columns 2, 3, 4, and 6 of Figure 5-1 give w, Q ,
and i in degrees, and M in revolutions, Column 5 presents the history of eccentricity,

and Column 9 the history of perigee radius in megameters, Semimajor axis is

obtained from

ao —B

1-e

Anomalistic mean motion (in revolutions per day) and its first derivative are given in

Columns 7 and 8, Information pertaining to the number of observations on which each
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Figure 5-1.

Example of Orbit Elements from SAO Reports




set of elements is based and accuracy of these observations is given in Columns 10,

11 and 12.

The first approach taken in presenting the comparison of computed orbit elements
to SAO elements was to simply plot the histories of SAO elements with a solid line and
the computed elements with points. In this manner the actual behavior of the element
could be observed, as well as how closely the mathematical simulation duplicated it.
However, the angular elements 2, «, and M revolve through several hundred degrees
(and in the case of M, several thousand revolutions). Thus, a small deviation of the
computed from SAO would be unnoticed, so a second method of presentation is used -

a plot of the difference of computed minus SAO. These are much more revealing for

the three angles §), «, and M, and are the only ones presented for them.

Also, the computed results of the MSFC Orbit Lifetime Program (Reference 20)
are shown in the comparisons, This program is indicative of the current state-of-the-
art in long-term ephemeris prediction, and, as such, provides a standard basis for

evaluating the GENPUR results.

As discussed in Appendix I, there are various ways of defining a mean element.
The GENPUR definition is essentially osculating minus short-periodic, whereas the
Orbit Lifetime Program and the SAO DOI program use Kozai's mean elements. The
essential difference is that in defining mean a, Kozai subtracts an additional term (see
Appendix I). In the following comparisons, this term is added back to the Lifetime

Program solution for a and to the SAO definition of a so that all are equivalent.

The GENPUR program is in a developmental state; consequently, it presently

lacks, among other things, representation of second-order J_ and J 4 effects. These

2
effects are very important for the elements Q and «, and have a slight effect on M.

To illustrate their importance, orbits of two satellites were simulated by GENPUR, with

and without an approximate solution for these effects. The approximate solutions were

obtained from Brouwer's theory (Reference 21) and are in the form of corrections
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added to the GENPUR mean elements at each time point. These corrections are

(6 EV 1- e(0)2):

0-{3

r\4
AD = t J 2(—5) [(-5 + 126 + 962) cos i(o) -(35 + 366 + 56 ) cos 1(0)

|32 “2
' (5-1)
r
) ;g J4(P ) (5-36") cos 1 3-1 coszi(O))g
4
Aw = 0713 2(le , e
7 t‘m—st P -35 + 246 + 2567 + (90 - 1926 - 12667) cos”i
(5-2)

+ (385 + 3600 + 455 ) cos l( )]

4

Tr
15 9 .
i ﬁJ‘l(f) ‘21 - 96" + (<270 + 12667) cos?i® + (385 - 18962) cosi? :
0= 3 . 2(%e\" \
=nt S 2 2(0
AM =n 't %1—25‘]2 (p_) [—15 + 166 + 256 + (30 - 966 - 906°) cos l( )

(5-3)

+ (105 + 1446 + 2562) cos4i(0)}

2
—58— 4( e\ (0) [3 - 30 coszi(o) + 35 cos4i(0) 2

Figures 5-2 through 5-5 show the GENPUR errors in  and w for the Explorer 7 and
Explorer 1 satellites with and without these approximations. (There was little notice-
able difference in M.) For Explorer 7, the approximations unfortunately increase the
error in  from 0. 3° to -0, 7°, However, they decrease the error in w from a secular
1.1° to a random 10.2°. For Explorer 1, the effects are much more drastic. The
approximations reduce the error in § from 6. 5° to 0.45°, and in w from -8, 3° to -0, 2°,
Because these second-order J 2 and J 4 effects are so important, the Brouwer approxi-
mations given above presently remain in the GENPUR pregram and will be included in

all subsequent comparisons.
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5.1.1 Explorer 7 Comparison

A 344-day history of the orbit elements for Explorer 7 beginning on 31 March

1962 was computed by the GENPUR and Orbit Lifetime Programs. Initial mean elements

and ballistic coefficients for each program are given below in Table 5-1. The m/CDA
values were adjusted in each program to yield the best overall simulation of the decay;
in this case, the resultant values were the same (40 kg/mz). (Note the difference of
1.1 km in initial semimajor axis due to the definition of Kozai's mean elements used by
the Lifetime Program.)

Table 5-1. Initial Conditions for Explorer 7

MEAN ELEMENTS GENPUR ORBIT LIFETIME

a (km) 7193.0 7191.9

e 0.03545 0.03545

i (degrees) 50. 305 50.305

) (degrees) 344,40 344.40

w (degrees) 232.44 232. 44

M (degrees) 179.46 179.46
m/CDA(kg/mz) 40.0 40.0

The histories of semimajor axis and eccentricity are shown in Figure 5-6. The solid
line is a connection of each SAO element point (given at 4-day intervals), The
asterisks represent simulation results from the GENPUR program, and the circles

are results from the MSFC Orbit Lifetime Program. Both simulations are nearly
coincident for a and e, and both show extremely good agreement with the SAO elements.
(Recall that the output of the Lifetime Program and the SAO values of semimajor axis
nave been adjusted to remove the Kozai correction.) Semimajor axis decays only
slightly (0.5 km) during this interval, so that the orbit is essentially free of significani
drag effects. The long-period variation in eccentricity due to J 3 is very evident, having
a period of approximately 110 days and an amplitude of 0. 0008, Note also the relatively
roug_h nature of the tracking data, especially for a. There seems to be bad tracking
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Figure 5-8. Errors in Argument of Perigee and Mean Anomaly for Explorer 7
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data points in the values of a at 48 and 252 days. (These characteristics are evident

for each element and each satellite. )

Figure 5-7 shows two different types of plots, The top figure preseats SAO
tracking values of inclination, along with individual values of inclination from the
GENPUR and Orbit Lifetime Programs. Tracking values of inclination are fairly
rough, at least on the scale being use¢. The Lifetime Program holds inclination con-
stant at the initial value (50. 305°). The GENPUR program simulates the secular
change in inclination due to drag, not evident in this figure, and the periodic change
due to J g which can be seen. (The advantage of having inclination vary is not apparent

for Explorer 7, but will be for Explorer 1.)

The bottom half of Figurc 5-7 shows the error in ascending node produced by
each program, i.e., computed value minus SAO value. Again the results of each
program are nearly identical and both show fair agreement with the SAO elements.
There is a secular bvildup of error in ascending node to -0, 7° for each program.
(Recall that the GENPUR program uses Brouwer's equations to approximate the J 4 and

second-order J_ effects in 2, w, and M.)

2
In-track position of a satellite is primarily a function of argument of perigee
(w) and mean anomaly (M). The mean anomaly typically undergoes 5000 revolutions
in 340 days. It is extremely sensitive to small changes in semimajor axis. For
example, an error of only 0.4 km in semimajor axis can result in an error of 170°

in mean anomaly after 340 days. Mean anomaly is very sensitive to gravity and drag

perturbatioris; thus, it provides a significant measurement of the accuracy of a
simulation. Figure 5-8 shows the errors of both programs in w and M. Both have
almost identical simulations of w with no apparent secular error, but only a random
error of +0.2°, These differences may, in fact, be due to limitations on the accuracy
of the tracking data, rather than inaccuracy in the simulations, The simulations of
mean anomaly are somewhat different. The Orbit Lifetime Program shows a periodic
and secular error buildup of nearly 75°. The GENPUR program, on the other hand,
exhibits only a secular error buildup of 40°,
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5.1.2 Explorer 1 Comparison

A 356-day history of the orbit elements for Explorer 1 beginning on 2 January
1964 is shown in Figures 5-9 through 5-11. Elements derived from SAO tracking data
are shown along with computed solutions from the GENPUR and Orbit Lifetime pro-
grams. Initial mean elements and ballistic coefficients for each program are given
helow in Table 5-2. Again, the m/CDA values were adjusted in each program to yield
the best overall simulation of the decay; in this case, the resultant values were
different . It is thought, that the reason is due to the fact that short-periodic pertur-
bations in altitude were not considered when determining the Fourier coefficients of the
GENPUR program. (The difference between the two definitions of a amounts to 5.0
km for this orbit,)

Table 5-2, Initial Conditions for Explorer 1

MEAN ELEMENTS GENPUR ORBIT LIFETIME
a (km) 7368, 14 7363.14
e 0.08747 0.08747
i (degrees) 33.198 33.198
0 (degrees) 34.01 34,01
w (degrees) 151.27 151.27
M (degrees) 50.112 50.112
m/CDA(kg/mz) 22.28 25.0

The histories of semimajor axis and eccentricity are shown in Figure 5-9, The same
plotting symbols as before are used, so that the straight line is a connection of SAO
elements, asterisks represent GENPUR results and circles are Orbit Lifetime resulis,
Both simulations are nearly coincident for a and show reasonably good agreement with
the SAO elements. The simulations are initially about 0,8 km higher than actual and
then fall about 0. 6 km below actual after 350 days. The reason for this behavior is
due to omission of daily values of solar flux F

10.7
density model. (The Lifetime Program, when using the daily values, showed nearly

and geomagnetic index Ap in the
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perfect agreement.) As yet, input of daily F and Ap values is not available for

10,7
GENPUR; hence, both programs were run in a simulated preflight condition using only
mean values of F 10. 7 and regression values of Ap. Note that this orbit is affected
considerably more by drag due to the lower perigee than was the orbit of Explorer 7.

Semimajor axis decayed 24 km, rather than the 0.5 km for Explorer 7.

The lower half of Figure 5-9 depicts eccentricity. Both simulations agree well
with SAO elements, but they are not coincident, Long-period effects of J 3 are again
clearly evident with a period of 48 days and an amplitude of 0. 006, A secular decrease
in the magnitude of e due to drag s alsn noticeable,

The upper half of Figure 5-10 shows the computed simulations and SAO values of

inclination. The long-period variation due to J_ is clear, and is reasonably well simu-

3
lated by GENPUR., In the Lifetime Program, however, inclination is held constant.
Therefore, the GENPUR program shows a significant advantage over the Lifetime

Program in simulating inclination.

The lower half of Figure 5-10 shows the errors of GENPUR and Orbit Liietime
in simulating ascending node. Both programs show very similar results, having

maximum errors of 0, 45°,

Errors in the critical in-track angles w and M are shown in Figure 5-11,
GENPUR results are better than the Lifetime Program for w. GENPUR errors grow
to a maximum of orly 0. 3° whereas Orbit Lifetime errors in « grow to 0.6°, Errors
in mean anomaly for GENPUR are smoothly varying with a maximum of -75°, Maximum
error in the Lifetime Program is also -75°, but note the peculiar periodic nature that
it exhibits (which was also evident in Explorer 7). The error in mean anomaly from
the GENPUR program is easily explained in terms of the error in semimajor axis.
Simulations of mean anomaly are very dependent upon an accurate value of a. (Recall
that there were small errors in the simulations of a for Explorer 1, Figure 5-9.)
Initially, computed a was too large, which means theoretically that the orbital mean

3.1/2

motion (equal to (u/a”)" ") would be too slow and mean anomaly would not ﬁchange as
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rapidly as it should. Figure 5-11 shows that this is, in fact, what actually happened.
The GENPUR value of mean anomaly initially falls below actual. Then, as the computed
a becomes close to the actual a at 260 days and falls below actual at 275 d=2ys, the

errcr in mean anomaly levels off at the maximum -75° and returns to only -18°, There-
fore, had the GENPUR simulation of a been better, the error in mean anomaly would

have been much less.

5.1.3 SA-5 Comparison

A 334-day history of the orbit elements for the SA-5 satellite beginning on 1
February 1964 is shown in Figures 5-12 through 5-14. Elements derived from SAO
tracking data, at 2-day intervals rather than the 4-day intervals of the previous satel-
lites, are shown along with computed solutions from the GENPUR and Orbit Lifetime
Programs. Initial mean elements and ballistic coefficients for each program are given
in Table 5-3. (The difference between the two definitions of a amounts to 5. 64 km for
this orbit. )

Table 5-3. Initial Conditions for SA-5

MEAN ELEMENTS GENPUR ORBIT LIFETIME

a  (km) 6889. 68 6884. 04

e 0.0358 0.0358

i (degrees) 31.4561 31.4561

0 (degrees) 161,797 161,797

« (degrees) 150,01 159. 01

M (degrees) 34, 56 34.56

m/CpA (kg/m?) | 8. 22 106. 0

The histories of semimajor axis and eccentricity are shown in Figure 5-12.
Plotting symbols and notation are the same as before. Both simulations are nearly
coincident for the element a, but neither agrees very well with the SAO values, The
simulations agree reasonably well for the fiz st 60 days, but rise above actual by 2 km
at 100 days and then fall below wctual by -3 km at 334 days. This error was encountered
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in a previous study and is believed o be due to an inaccuracy of the 1970 Jacchia
density model at lower altitudes. Since the semimajor axis is not well siniulated, it
is anticipated at this point that there will be relatively large errors in the simulations
of Q, w, and M. Of the three satellites investigated, drag had the most significant
effect on SA-5. The initial perigee altitude was only 270 km (versus 540 .um for
Explorer 1 and 560 km for Explorer 7) so that the atmospheric density at nerigee was
significantly greater than for the other satellites. In 334 days, the semimajor axis of

SA-5 decayed by €4 km versus 24 km for Explorer 1 and 0.5 km for Explorer 7.

The lower half of Figure 5-12 depicts eccentricity. The two simulations are
nearly coincident, but again do not agree well with SAO values, The reason is the
same as 10r the discrepancy in a. Long-period effects in e are clearly evident with a
period of 36 days and an amplitude of 0. 0008, A secular decrease in the magnitude

of e due to drag is also noticeable.

The uoper half of Figure 5-13 shows computed simulations and SAO values of
inclination, Y.ong-period variations are not evident in the SAQ values, In fact, the
random fluctuations in the SAQ data are larger than the amplitude of the long-periodicity,
implying that the resolution of the SAO data was not accurate enough to show the long-
periodicity, The SAO elements also show a very interesting phenomena at 150 days,
where the average value of inclination seems to change from 31, 456° to 31, 465°, It is
hard to imagine what physical force could cause this change other than a powered
plane-change maneuver; however, no such maneuver was performed by SA-5, It can
be concluded that the GENPUR simulation of inclination for SA-5 is as accurate as the

SAQ elements,

The lower half of Figure 5-13 shows the errors of GENPUR and Orbit Lifetime
Programs in simulating §§, The two programs agree with each other for the first 210
days, but then the errors diverge, The error of the Lifetime Program decreases more
rapidly than coes that of the GENPUR program, The reason is that, at this point, the
Lifetime Program simulation of a falls slightly below that of GENPUR, Neither pro-
gram shows particularly zood agreement with SAO values, both having a maximum

error of nearly 0,7°, This was as expccted, since a was not well simulated,
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Errors in the critical in-track angles w and M are shown in Figure 5-14. The
two programs are not coincident in simulating w, but it would be hard to say which is
better. Both show errors ranging from -1, 0° to +1,2°, Again the trouble is due to a

poor 3imulation of a.

Errors in mean anomaly are very dependent upon the simulation of a. Thus, the
poor simulations of a by both programs are very evident in their large errors in M,
The GENPUR error in M ranges from -80° to more than +180°, The Lifetime Program
error ranges from -125° to more than +180°, Simulations of the elements of SA-5
clearly demonstrate the importance in orbit ephemeris prediction of having a good

simulation of semimajor axis (which depends upon the use of an accurate density model).

5.1.4 Summary of Tracking Data Comparisons

More than 300 orbit days for Explorer 7, Explorer 1 and SA-5 have been simu-
lated by the GENPUR and Orbit Lifetime Programs. A summary of the errors of the
simulations for each orbit element and each satellite is shown in Table 5-4. (Recall
that the GENPUR program does nct yet contain asymptotic expansion solutions for
second-order secular effects of J 2 adJ " but uses Brouwer's equations.) A * sign
indicates that the error was more cr less random, and is the type desirable for all the
erwors, A single number means that the error steadily increased to the value given,
whereas twe numbers indicate that the error grew to the first number and then reversed
direction and attained the level of the second number. For example, the error by
GENPUR in a for Explorer 1 first grew to §.8 km and then reversed direction to -0, 6
km,

In general, the errors of both programs are nearly equal with one or two excen-
tions. Having the J 3 effects on inclination included in GENPUR results in only a
-0.003° error rather than the -0,008° to 0.004° error of the Lifetime Program (for
Explorer 1). The argument of perigee for Explorer 1 was better simulated by the

GENPUR program, as was tlie mean anomaly for Explorer 7,
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Maximum Error EXPLORER 7 EXPLORER 1 SA-5
During the Full
Simulation in: GENPUR Lifetime GENPUR Lifetime GENPUR Lifetime
a (km) *e.3 10.3 0.8,-0.6 0.8,-0.6 2.0,-3.0 2.0,-3.0
e -0.0002 -0.0002 $0.0003 $0.0002 -0.0006 -0.0006
i (deg) %0.01 *0.01 -0.003 -0.003,0.004 -0.01 -0.01
[%4]
é’, Q (deg) -0.7 -0.7 0.45 0.45 0.7 0.7
@ (deg) ¥0.2 ¥0.2 0.3 0.6 -1.0, 1.2 -1.0, 1.2
M (deg) 40 70 -75 -75 -80, 180 -135, 180

Table 5~4, Summary of Evrors by GENPUR and Lifetime Programs
in Simulating Orbits of Three Satellites

Note: The GENPUR simulations
contained Brouwer's approxima-
tions of second-order J_ and J

2 4
effects,



b

5.2 COMPARISON WITH NUMERICAL INTEGRATION PROGRAMS

Once an accurate history of mean elements is available, the osculating elements
can be obtained by adding short-periodic terms. These short-periodic terms are
primarily functions of the mean elements, It is not necessary to verify osculating
elements for long time intervals, providing the mean elements are good. (If the
osculating elements are good for short periods of time, they will be good throughout

any given interval providing the mean elements remain satisfactory.)

SAO tracking data do not contain osculating elements. Therefore, a different
method of comparison was necessary to verify osculating element solutions, The
MSFC COWELL and SPERTB numerical integration programs use osculating elements
exclusively; therefore, Table 5-5 shows a comparison of GENPUR osculating elements
to those from the COWELL and SPERTB programs. Initial conditions are the initial
SAO elements for Explorer 7. A period of 8 days was simulated, so that the GENPUR

mean elements experienced little error,

In Table 5-5, the osculating element ¢ lutivns are shown at the end of 1 day and
8 days. Four simulations were run, namely: the COWELL program, the SPERTB
program with and without J 4 effects, and the GENPUR program without J 4 (ard second-
order J 2) effects. The GENPUR results are within the differences between the COWELL
and SPERTB programs; thus, the GENPUR oscul ating element solutions are excellent.
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8¢-6

AFTER 1 DAY

AFTER 8 DAYS

Osculatingg COWELL| SPERTB SPERTB GENPU COWELL | SPERTB SPERTB GENPUR
Elements w/oJg) |w/ol &%) (w/ody) |w/ody & .J%)
e 0.035699 | 0.035698 | 0.035698 |[0.035679 10.035456 }0.035460 0.035453 ]10.035432
w (deg)] 235.734 235,733 235.733 235,713 260.436 260,352 260,428 260. 353
i (deg)] 50.299 50.299 50.299 50,299 50.304 50. 304 50. 304 50.305
Q (deg){ 340.188 340. 188 340,188 340.192 310.865 310.869 310.865 310.900
a (km)| 7192.741| 7192.735}] 7192.737} 7192.812 | 7194.044 7193.997 | 7193.980 | 7194.032
M (deg)] 263.862 2R3.861 263,866 263.827 133.290 133.45G 133.459 133.377

rr

Table 5-5. Short Term Comparisons of Osculating Elements
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SECTION 6 - CONCLUSIONS AND RECOMMENDA TIONS

The basic objective of this research project has been to develop, through applied
research in general perturbation theory, perturbation techniques that provide an
accurate and rapid long-term ephemeris prediction capability for satellites in earth
orbit. The approach taken was to use two-variable asymptotic series in obtaining
approximate solutions to the Lagrange planetary equations of orbit motion, This
technique constitutes a relatively new approach to the ephemeris prediction problem
and, while it is not yet on a rigorous mathematical basis, offers several potential
advantages (as discussed in Paragraph 4, 2), In this study, it was found that two-
variable asymptotic series can be successfully applied to the problem of artificial
satellite motion under the combined inﬂueﬁce of gravity and drag, The first and
second approximations of element solutions derived by asymptotic series agree in

form to those derived in other established theories,

Of the potential advantages which the asymptotic series method offers, two were
found 1o be of significant aid thus far, Since the method employs two time scales,
the solutions obtained tend to group naturally by physical effects, i, e., they group
into secular, long-periodic and short-periodic components, Therefore, it is not
necessary to use a procedure such as Kozai's in which the disturbing function is
resolved into secular, long-periodic, and short-periodic parts. Second, the error
involved in a given series approximation is of the order of the first neglected term,
Consequently, the asymptotic solutions are naturally structured to inclqde the
dominating effects of each perturbation in the initial approximation, Furthermore,

a control of the expected error is provided by selection of the expansion parameter ¢,

Currently, the asyraptotic colutions have been obtained through the second
approximations when considering earth oblateness and tangential atmospberic drag,
In these approximations, it was found that the E(O) solutions contain the very importaut
(1

secular and long-periodic effects, while the E'* ' solutions contain the short-periodic

effects, The E(O) solutions were derived by first obtaining simuitancous solutions to
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(0) (0)

the differential equations for the elements e’ and w ' '; these solutions were then used
to obtain solutions for the remaining elements, These solutions were carried only
through the first power of eccentricity. Because of the importance of the E(O) com-
ponents *n the total solution, it is recommended that they be investigated further,
Specifically, extension of the simultaneous solutions to include more elements and

retention of higher orders of eccentricity are recommended,

As indicated in Paragraph 4, 3, 2, functional forms of the integr:.tion '"constants"
C(t) have not been analytically deiermined, and are currently evaluated by use of an
updating procedure, If the functional form of each C(T) was available, one require-
ment for using the update procedure would be eliminated; furthermore, the second-
order secular effects of oblateness perturbations would be contained in these functions
(see Paragraph 4, 3, 3). Analytic determination of these ""constants' resuires partial

(2)

development of the E'~’ solutions, It is anticipated that the E‘z) solutions, themselves,

~

will be purely periodic except for their integration ""constant", C'(t). Therefore, it

(2)

is recommended that the E'~ solutions be investigated, at least to the point of deter-

mining the functional forms of C(?).

During the study, it was found that some form of automated manipulation capa-
bility is absolutely essential to the accurate and timely solutions of the equations
involved, Many operations on very lengthy expressions are required, such as expan-
sions, integrations, substitutions, simplifications, etc. Furthermore, an automated
method for uniform presentation of results is highly desirable, Therefore, the
FORMA C language was used to write a computer program that performs these opera-
tions and presents the results in a convenient manner, As a result, a great deal of
experience was gained in tke use of FGRMAC; and limitations of the language, such as
lack of identity reccognition, core storage requirement, problems in subroutine com-
munication, etc,, were encountered, (A thorough discussion of these problems is
given in Reference 17,) The necessity of this automated manipulation capability in
providing accurate and timely analytical results cannot be overemphasized, and the
development of the FORMA C program is considered to be a major accomplishment

of the project,



The second approximation solutions of orbital motion using two-variable
asymptotic expansions have been implemented into a UNIVAC 1108 computer program
(GENPUR)., A comparative study of the results obtained using this program showed
it to be very accurate, especially when Brouwer's approximations (Reference 21) of
the second-order 12 and £4 effects are used, (As yet, these effects have not been
determined by the methods of asymptotic expansion,} For example, errors in the
solutions for the short-period effects in mean anomaly for Explorer 7 were less than
0. 09 degree during 8 days, which was less than the difference between the standard
COWELL and SPERTB (Reference 10} numerical integration programs, Furthermore,
errors in the long-term solutions (i, e, , mean element solutions) were generally less
than or equal to the errors of the MSFC Lifetime Program (Reference 20), (These
errors in the long-term solutions may possibly be reduced when the approximations

of 14 ana J 2 effects are replaced by the asymptotic series solutions,)

The run time required for an ephemeris prediction program is always of utmost
importance, The GENPUR program is extremely fast and has the potential of being
even faster, For example, the run time required for the simulation of the Explorer 7
satellite over a 360-day period was 94, 5 seconds when using an update interval of 24
hours, Increasing this interval to 96 hours resulted in no noticeable loss of accuracy,
and the run time was reduced to only 23,4 seconds, Ian comparison, the run time
required for the same orbit using the MSFC Lifetime Program (with a 2-day step)

was 148, 9 seconds,

Even in its present developmental state, the GENPUR program has clearly
demonstrated the soundness of the approach taken herein to compute long-term satel-
lite ephemeris, Before beiag placed in a production status, however, there are
certain additions to the program which sheould be made, Errors in the element solu-
tions for &, w, and M could possibly be reduced by an accurate representation of J Z
and J 4 effects, Even with the approximations now being used, the GENPUR error is

comparable to, or less than, that of the Lifetime Program, Since two-variable

asymptotic series represents a different approach to ephemeris prediction, it is



quite possible that this method could result in more accuracy than existing solution

methods,

Another addition recommended for GENPUR, which could result in much faster
run times than even the 23, 4 seconds mentioned previously, is the use of analytical
expressions for the Fourier coefficients, One innovative feature of the GENPUR
technique that contributes to its speed has been the use of Fourier series expansions
to represent drag effects, The Fourier coefficients are presently determined by use
of the 1970 Jacchia density model at frequent intervals, If the variations of these
coefficients for periods of 20 or 30 days could be established analytically, a run time
of only 6 seconds would be a possibility, Furthermore, the successful development
of such a model would represent a significant advancement in the state-of-the-art of

satellite ephemeris prediction,

An ircrease in the flexibility of the GENPUR program is also recommended, A
wide variety of input coordinate systems, as provided in the Lifetime Program,
would be advantageous. The satellite physical characteristics (mass, drag coefficient,
and area) must now be held constant in the program, Providing input options for these
items which allow variations with time and/or orbital position would be extremely
useful in orbit analyses, Also, it would be desirable to have an input option for daily
values of solar flux and heating parameters, This flexibility could be easily achieved
within GENPUR by incorporating many of the corresponding routines of the Lifetime

Program,

Once the GENPUR program has been extended as recommended above, it will
represent an even more valuable tool for conducting astrodynamic investigations, For
examrle, King-Hele has stated that the upper atmosphere rotates at a faster rate
than the earth, but other investigators have failed to confirm this finding, By using
the GENPUR program to study the long~term evolution of inclination for varivus orbits,
an independent estimate of upper atmosphere rotation could be made, Another problem

which has received little attention is the exact nature of the final decay of eccentricity,
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It is well-known that an eccentric orbit kecomes nearly circular before its ultimate
decay, but whether it becomes zero or reaches a limiting value is uncertain, Further-
more, because of its extremely fast run time, GENPUR is ideal for parametric

studies to identify characteristics of various classes of orbits to aid in mission

planning activities,

In summary, this study has demonstrated the successful application of two-
variable asymptotic expansions and the automated manipulation capabilities of
FORMAC to the satellite motion problem, The resulting GENPUR computer program,
although in a developmental state, has clearly exhibited the potential of being more

accurate and much faster than any existing long-term ephemeris prediction program,
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APPENDIX A - DERIVATION OF THE
PERTURBATIVE VARIATION EQUATIONS

To illustrate the procedure for obtaining Equations (2-7) through (2-12) by the

method of perturbative differentiation, the equation for § will be derived.

The polar equation for an ellipse is

v = b/ = —2£ (A-1)
(I+ecerv) (1+ e V)
where the specific angular momentum is given by
h=r?v (A-2)
Taking the dot-derivative of Equation (A-1) results in
.r = "\2 [4 \.J ALY
s (I+ € ev)?
or, after substituting Equations (A-1) and (A-2)
‘." = 28 Ay (A-3)

Substituting Equation (A-2) into Equation (A-1) yields

r?\-)a
e Coo ) = o~ - ’

It is now necessary to take the grave-derivative of this expression,

remembering that ¥ = 0 (see Paragraph 2.2). Thus,

N N 21- o\
€ tosy-evainy = <YV

-2 ()

(A-4)

Similarly, substituting Equation (A-2) into Equation (A-3) yields

r.2

AA

Y

)

e AA A




which becomes, after taking the grave-derivative

2 20\ .
Nk ' L ENAINEATA DR VI ) L
e SVt eVl Vv=E—— ey +ry)= Ll A (A=5)

Multiplying Equation (A-4)by cos V and Equation (A~5) by sin V and then adding the

results yields

2.\ 2N . 2
e\=———a"\) (%')Co/)\)‘f‘ TV Eae Y

A AW
e /¢ * e (B

= ‘/L;.(—F:>,Mv + i/_;?-—):_[&:\)(a‘% -e WV)-P e]

“

Since

g Conr v = —‘g:-'

this becomes

o\ 2 *\
- o (B Z [(E4)ervve] 2-9)

(NOTE: Equation (2-8) agrees with Reference 2, p. 247)

The perturbative variation equations for the remaining elements can be

derived in a similar manner.
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APPENDIX B - ASYMPTOTIC EXPANSION OF TRIGONOMETRIC
AND EXPONENTIAL FUNCTIONS

To illustrate the procedure for asymptotically expanding trigonometric and
exponential functions, the functions

-7,
Coo X PR (- ) a
2 X (1+e wsx)’

will be ennsidered, where x is used to denote any angle element,

Begin by assuming the asymptotic series

x= X% exO+ex®% .. = x®b
N it st
b

CO8S X

rox = cor (L) = o Kb = s xCainb
But bz , 6') 2 )2 L e 6)2

csb = ~F+...= I——z'(ex +é& x@) =l-fex’+...

ainb = b--‘{—+... =ex®y 2xOs ..
Thus, . .

o= cor X201 X0 = 0z x e x4 &x®)
= oo x®4 eEan;..x@] +e*[ ]+-..

8in x

2imx =i (% 0) = 02+ e xPainb
= pnX (‘)(I— £+ ExP* Y 4+ o x(')(é Xm—i» ézx@)

= 2 x4 e [XOurx® T4 [ ]+...



sinzx

Note that sin x has the form
X = oy +a, e+a3ez

=
22k = [(otag€)+ a3 €] = (a,40,6)% 2(a,+a,6)0,4€ +aze”

=a‘2+é[-2°~,‘lz]+é2[ ]"'---
Thus,
M’xe_-,;;,,"x@-o-éfjxowx co—»xo]-fez[J*...

=AA'~?K°+6LX ‘&*?x@] +é"[]+...

(1 +ecos xzs
From the previous expansion for cos x,
(I"'QMX) I+(e +é€, -+, )(CMX +6[X0 - X()])

=1+e%, x®+ ¢ e@(— x@wx@)-r et x@+-

= [1+ e®u-x®] + e[ea)c”xg- e@x%x@]"'éz( J+...

Note that (1 + e cos x) has the form

(H el-o-ox) =Qa, + 0,& -+¢:x3£-l
=

(’+ 2.607)(); =E&|"‘ Qq 6)+C\; 61]3=: (Ou"f' Gg‘r)’-'- 3(0,“'0\96)"&; él-f--.-

=02+ eBatos |+ e[ J+...

.
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Thus,
(I+ecw X)B::[/-i- e@wx@]3+ e[3(7+ e@amx@)z( () () e@)(()dmx(')]
+ é’[ ] +oes

1 - e2 -7/2

(1=€*) = 1- (¥4 ¢ Vv 2@ .. )2 = [(e® ee®) 1 7™ [ *
= [ (9% 2¢%0¢c + €7e®) = 2(cP4 ce®) 2e@- 1eP?
= [’/-e@”]+e[/-2e“ O +e* [P 2647 ]+...
Then,
(- ™. [T+ fe(2e )+ 2L O 2 e@eﬁ')}]—vh
= (- e (B (e [ 20 ]+ 7L 92 2656 )

(-1 e 3-8y fe0 T 2 7o



APPENDIX C - PRESENTATION OF THE INTEGRATION RESULTS OBTAINED
FROM THE FORMA C PROGRAM WHEN CONSIDERING EARTH
OBLATENESS (J2 AND J3) AND DRAG

As mentioned in Paragraph 4,3,1, a FORMAC computer program is used to solve
integrals of the form given by Equations (4-18), (4~19), (4-52), (4-53), and (4-58)

for each element. The program prints the totai integrated results I, I, and I.

0) =2' =3’ D
for each element, as well as the secular (with respect to v' ') parts S_, §3, and §D

(see Equations (4-20), (4-21), (4-59), (4-60), and (4-61)). These answer arrays are
presented on the following pages. As discussed in Paragraph 4. 3. 2, it is not neces-
sary to consider drag when formulating the second approximations to the solutions

since the super-one solutions due to drag are negligible, Consequently, I__ for each

D
element is not required and, therefore, is not presented.

To maintain consistency with the assumptions made in solving the set of ordinary

differential equations having?_ as the independent variable (see Appendices E and F),
the arrays generally include only terms through the order of e (i.e., terms on the

. 2 .
order of e , or smaller, are ignored).

Recall that the numerical subscript on I and § indicates the earth harmonic under

consideration, the subscript D indicates drag, and the parenthetical (x) indicates the

element X, For example,

Iz(ﬂ) = Total integrated result for the element {} when considering

the second harmonic (J 2)

83 (e) = Secular part of the total integrated result for the element e
when considering the third harmonic (J3)

SD(e) = Secular part of the total integrated result for the element e

when considering drag

Also, recall that in the §D array for each element, _a;K and EK are the Fourier

coefficients appearing ir the atmospheric density function approximation (see

Equation (4-57).
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APPENDIX D - DERIVATION OF THE SECULAR PART OF V' 'WITH RESPCT TO t

From Equation (4-12)

dv® = 821+ i ®)?

—— gy

dt (1-e®?)3

or

dv® - A& 623 Je
(4 €O = (18D %

Since e(o) and B(O) are considered constant with respect to a fast time-variable

integration, then

4y . = 8% £ _mOF (D-1)
(142~ (1-PD% T T (120D

It can be shown that (Reference 1, p. 201)

@ &__,0,- e
dv” _ _£T-e’e-EW (D-2)
(1+ €@ v®)? (I- ¢9*)3/2

where E is the eccentric anomaly and Cis the integration constant. Equating

Equations (D-1) and (D-2) yields

5 2 -
E\)= ZOF +e®u @, c(1- ®) (D-3)
Nt — N .
secular nonsecular

From Reference 1, p. 209 (or Reference 6, p. 89)

V- Py 2% —?—-M;E@ [A= L‘@i] (D-4)

3
W
periodic Fourier series

[y

D-1



Substituting Equation (D-3) into Equation (D-4) yields

o, o) T o o0 3 . 0
\)O'—‘ M()t + e@/‘;’“ E@)+ C(I_e()')?/z +22 ‘%“*3 E() (D-5)
N p— ~ 3" -
secular v
nonsecular

(0)

The general resolution of V'’ into secular and nonsecular parts can be indicated

as

0 0] @)
\)O =V + N (D-6)
Equating Equations (D-5) and (D-6) results in
V=P F (4-23)

Inspection of Equations (D-3) and (4-23) shows that V(O) and E(o) have the same

secular part,

D-2




APPENDIX E - SOLUTION OF THE SET OF ORDINARY DIFFERENTIAL
EQUATIONS HAVING t AS THE INDEPENDENT VARIABLE WHEN
CONSIDERING EARTH OBLATENESS ONLY

E.1 INTRODUCTION

The following set of ordinary differential equations to the order of e(o) as

derived in Paragraph 4, 3,1, 1, will now be solved:

° /3 °) . .(o °)
cle() _ 30 ( %,a re!m()ML( )m P ('5_&:‘:@_ ') (4-32)
dz ~ (I- @72 4
: o 3 .
o PRACNG /- 5.,1,;2-6)) e? 1;/52)@,“@[ IR
~ 2\2 \ ¢ + _e®2
d¥ (- ea ) (i-e
. . . @ . 2.@ (4-34)
e P __&)%L)A*w <~ P )]
o) ¢ /4. ® 3 )
—-Ai‘ = 36 ( ’/:Tz ‘/E_M@e((»—u_‘ w“ | .2; n) 4-36
d¢ ({‘e()a 3 - " ( )
(0) q o) (4 j 3 (s
d_ﬂ. = - 66)( 1/“6)40/' -+ 66) ( ;/‘1)(2 moe@)/.vl.. w@(cﬁ‘ .@_ %&”2569
d€ (1-®?)? (1-e®%)3 ¢
(4-38)
- 4 2
am®_ %% © (I- 2 22¢®) (4-43)
d¥ ~ (1-e®M)%

i 6@‘(j712 "e;m@ - 1 4 °
30(-c05) 7 (3920 % O £ 227 )
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The method of solution is based on one set forth in Reference 16, whereby e(o)

andw( )

are considered to vary simultaneously and the solutions for the remaining

elements are obtained as functions of e(o) and ¢ (0) In consideration of this, the

following (assumed) constants are defined:

6 /1.
88 () mg 42 2 (, 2206

(- eﬂﬂ)l

Ca= g9 (2 5420
(l—eE")‘

(4
AEINREN i )
cie EESL (ot wd)

cl- s (é')me\‘eamco (I . 1(9):_(’(‘

(-8)? -¢%")
Ca = 6 (:f \"m?(-o-scc ( { '5))
3 (I e@l)?
C - 60 mo(t w'()
gy - (l e?l 2

&(F) > m? (28 - sfazn2:2)

(1-e9%)3

9 2 @
G B (-3 )
@6(‘%‘)@%?&‘:? (I- %4:“155))

(I-e?'j 52

O
]

N
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E-2

(E-1)

(E-2)

(E-3)

(E-4)

(E-5)

(E-6)

(E-7)

(E-8)

(E-9)




Note that these constants are expressed in terms of the epoch values of the element

(0) ,(0) . (0) (0)

functions, i.e,, B , andn The effect of this assumption on the

0’ 0 i 0 0"
accuracy of the resultant solutions can be minimized by periodically rectifying the

orbit and updat:ag the epoch values of the elements,

(As discussed in Paragraph 4.5,

an '"'updating .,

rocedure' is used when numerically evaluating the solution equations, )

In terms of these constants, the differential equations become

E c, s ® (E-10)
do®_ 'O @ w®
.()

«_j‘ = (5% ® (E-12)
Q]

.i_%‘_:-(‘,+ C;eomw (E-13)
) o % . (o)

é_’:’_= CG—‘/C7QOA;—MW()-+ C7MO.7 (E-14)

d e®

Equations (E-10) and (E-11) willnow be solved siinultaneously,

Equations (E-12) through (

E.2 SIMULTANEOUS SOLUTION FOR e(O) AND w
(0)

To effect the simultaneous solution for e

tion parameters are used

E-3

E-14) will then be obtained as functions of e

(0)

and

The solutions to

(9 ond w(O).

(0), the following transforma-
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£ =% @ (E-15)

m = s B (E-16)

Differentiating with respect to Z yields (where the ""dot" indicatesfdifferentiation)

é = é@m w@)— e@ (JJ@A«CM w@ (E-17)

(6) q o o@ ©
4;,,,@(’-1- eow uawo (E-18)

m=e

Substituting Equations (E-10), (E-11), (E-15), and (E-16) into Equations (E-17) and
(E-18) yields after simplification

<, [g‘— E-gt+ m”

° ’ 2
fm-an-ane NGZED)

&

n = CzE*"Czlﬁ"l‘C: T%E-

To the order of e, i.e., ignoring terms of the order e 2 (or smaller), these equations

become merely

£=-GM+< (E-19)

m = € | (E-20)

(NOTE: These equations agree in form with Equation (14) of Reference 186,)

In terms of the operator D = gT , Equations (E-19) and (E-20) can be expressed as

[ < -
2—;37(5) Z5-" (E-21)
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=P()=§ (E-22)

To solve these equations simultaneously (Reference 22, pp, 198-200), £ will first be
eliminated, Substituting Equation (E-22) into Equation (E-21) yields

S -m-HrEr)=0

CiCa - C; "1"71(”1) = 0
or

(P Cn= ¢ ¢

As can be seen, this is a linear nonhomogeneous equation in 5. It has the standard

solution

N =Kt T + K, an GE+ 'CZZ (E-23)

where }51 and K 9 are undetermined constants,

To obtain the solution for £ , n will now be eliminated from Equations (E-21) and
(E-22)., From Equation (E-21)

C { e
M= -5 PO
implying
P)= 9(E)-9(E78)= -, P(E) (E-24)
Equating Equations (E-22) and (E-24) yields
6(2 = = EL;' yl(—g)

or

(72“ C21>€ =0



As can be seen, this is a linear homogeneous equation in £, It has the standard

solution

E=Kycon G + Ky2in (2T (E-25)

where K 3 and K 4 are undetermined constants,

Now, the constants 51, 52, 53,

(E-23) and (E-25) satisfy the original equations., This can be done by substituting

and K 4 have to be "adjusted" so as to make Equations

Equations (E-23) and (E-25) into Equation (E-20) and seeking relations between these

constants, Performing this substitution yields

4 . ~
F(Kier GE 4K GE+ S (K G E 4 Ky 2 G2 ) = ©

which implies

_[(l(_l/b:w C,_%-#-KIC-IC&-, C-;_?—C, K; C&’Cz? —C-‘_Kg‘ 4:& Ci? a O

This equation is true only if

K; = KL
and

Kq == Kl
Furthermore, it is convenient to express _Igl and K 2 as

K‘ - R Aann o,
KZ = A Co ol
where A (a positive number) and a are constants yet to be determined. Thus,

Equations (E-23) and (E-25) become
E= A cor (CGE+) (E-26)

m= A el (Ca€+a)+ L (E-27)

ooed ) bwmy  weeew boned et weed  eees o sued e Gwesd e

hy




Since, from Equations (E-15) and (E~16)
e@) - (————""&,4 T
@) - AU
' toam € )
it follows that the desired solutions are

e@= [Az* 2 %‘; Arin(CT+)+ (%;>= ] il (4-33)

. ~ < /¢
AMCC:‘:‘*.‘) + / bl ] (4-35)

*)_ -
W = tax [ A s (CaT+a)

It now remains to determine the constants A and @, This can be done by evaluating

Equations (E-26) and (E-27) at the epoch time t 0’ resulting in

.= A (T, +u) (E-25)

lrwd C
Mo = Pat- (T +u)+ EJ: (E~29)

Multiplying the first equation by sin (C 2?0 + ), the second by -cos (CZTO + o), and
then adding yields

& tim (Ca T+ )= Moo (CE+) + SLton (G F +) = O

or merely
)
Tan (CE+0) - Z(”IQ— %‘-__) (E-30)
Define
¥ = -'-;(ﬂr &) (E-31)

which becomes by Equations (E~15) and (E-16) evaluated at _t_o

C3 C
%= (tar o, - ‘ ) (E-32)



Then Equation (E-30) can be written as
Com(C:E+ )= P

= Ta'(P¥)-C, & = tal [&"““:;;‘C /C‘] T (E-33)

Multiplying Equation (E-28) by cos (C t + a), Equation (E-29) by sin (C ot a), and
then adding yields

£, (T +2)+ 'r)o/z”(cgcw.o.) A+ S 4,~.(C-,-t +ei)

A 6 (M(C:to +")+ n M(LI?"‘“) 4vv (C'L? '5‘)

a- _c,,_m,(_i&) & :t__‘_'Lc_t)
SEremd - 27, 8+ (&)

A~ [e«»)z+( C. S)A;“ w@ ] ih (E-34)

E.3 SOLUTION FoR i¥

By Equations (E-15) and (E-26), Equation (E-12) becomes
(o)

I = GA cor (C2 T+ )

which yields upon integration

P= S A (G +2) 4K

where K is the integration constant, Substituting Equation (E-27) yields

= é‘i‘(’l- S)+K = -gf(caixw@- %’;)+ K
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The constant K can be determined by evaluating this equation at the epoch time t 0’
resulting in

. @) Cs @ ~ C
K"'(Q - E(e,amwo - _f-‘_;)
Hence, the desired solution is
.® .G ¢ e _ . @
(Pe iyt 2 (% o i) (4-37)
E.4 SOLUTION FOR §} ©

By Equations (E-16) and (E-27), Equation (¥-13) becomes
®

-%‘é—L—- = - C‘,,-+ C5 AA‘:—(CQ?."*‘GL)-k C5 %‘;

which yields upon integration

r'e) ~
_Q@- (C5 Z‘; - Q;)t - % Ates(CE+) + K
where K is the integration constant, Substituting Equation (%-26) yields

. <
nPw(Cs F-C)T- %’:—5**'(

c &)
=(C5E‘;_‘ «4)% -2-e u—;wg-'..l(
The constant K can be determined by evaluating this equation at the epoch time t 0’

resulting in

K= -f'L (Cf-"- Cq)t'f‘é—'i-e(,a—awé)

-]

Hence, the desired solution is

[
0% =0 - GO el )4 (s S ) (2- () (4-39)
E.5 SOLUTION FOR M(O)
From Equation (E-14)
(3 e . ®
dm® N . & e s
d% —Cc Ll(*,e don O + er‘)z



This equation can be linearized by approximating e(o) by its epoch value e

to as "backlining" e(o)), resulting in

where

Then, from Equation (E-16)

dm(’)
4z - Gt (Ce-4c)n.

so that

MO =, +(ce-qcv)fnd$ + K

where K is the integration constant,

From Equation (E-27)

MO= ¢, + (cg-qc,)f[A 2 (GE+) s LT 4+ K

resulting in the solution

(0)

0 (referred

(E-35)

(E~36)

®) _ ¢ C Y&\ e-4cC G
M = (C;,"‘ 'c: - C'l-’)t‘ Co-4 C.@Coamo+/<

Cz

E-10



Evaluating K at epoch time t 0 yields

o (6 Y C )(? tg) (4-44)

w(e 2r o Omwi’)

As mentioned in Paragraph 4,3.1,1, the Keplerian change in M taking place during
the time interval (t - tO) must be added to the above equation,

E-11



APPENDIX F - COMPOSITE SOLUTION OF THE SET OF ORDINARY
DIFFERENTIAL EQUATIONS HAVING T AS THE INDEPENDENT VARIABLE
WHEN CONSIDERING EARTH OBLATENESS AND ATMOSPHERIC DRAG

F.1 INTRODUCTION
(0)

The following set of ordinary differential equations to the order of e' ',
representing the combined effects of earth oblateness and atmospheric drag

(Paragraph 4. 3.1, 2), will now be solved:

‘—,Q: = 6@6(3’,/3& \’ca.hﬁ}aini@)w w(” £ A l) (4-71)
4c (1-e®D73 S
@ ¥ | _? § o
+ mAA 6@(1 < )[(’é'a"'%b?')"'(‘_‘%o"’*#Q‘L)@\_-]
A (a‘f ‘L ( @,/ I, )3 (o)
‘(AJ - ﬁ (2 ) 6 ( /3/‘1 em EX () ) o,
N A R A I St
—-QG’)CJC (-’0)4/;“ co ““ é(L)/JWL wa(o,(/ —q’»d'vv- (('o‘)] (4-73)
® KX (,_ @2) -
m e ! { (e
+ G(E‘.':qu (-Tb'-%b3+ ] b2€ .]
[

.(e) e 3 I o
dc( _ 6” (f’/il:)(e m@)etcma ?,o_«w( £ .2 (o 4-75
4% (1)~ (1- §ae7e") (=)
o q 0 / ‘o (-] o
_A_ﬂi‘__ 66) o m toslC e~ 6[3(’/3'1) o )e(}ww( e ® 5 (o)
dE (1-e®*)* (1-e®*)? ¢ e )
(4-77)
48" 6 Kg* (o~
= 2 [’:"Oo‘“(?a.‘%b;)@ J (4-79)

4t 2690

F-1



dmf")_ 6@)4 im® “
d€ (I- @) 3/ (" ERE ) (4-82)

,_,6@‘(3'3/3')‘,3”\6) &2
2e®( l-ez(")’)zh [3e ""‘“"‘0‘““"’(’(’ G as-te ())

= F 20 Ot e (1- a0 @)]

(') % / ©)2
Kg@l ) Z(J-L-";E;)JZ) +(’Lb ""‘qb ""}’b,)

+ (‘?(: 191— flz—bz + ?;%bg)e@]

Again, the solution procedure will be to solve simultaneously for e( ) and w(O)'
employing the same transformations and similar approximations as in Appendix E.
These solutions will then be utilized to obtain solutions for the remaining elements,
In consideration of this, the following constants (in addition to those given in

Appendix E, i.e., C, - CS) are defined:

1
Pa = 6%‘(;;5—; (F=1)
Ao =0, 4 Z by (F-2)
i =~ aer fas (®-
4= 5o -
—6, = o, ~Fb, (F-5)
Y, = ‘5"51‘;“’3 (F-6)
Y = by (F-7)
§,=Eb+tFb, (F-8)




do=bb+2b,+Zb, (F-9)

di=-Teo - Th-Tzbs (F-10)

In terms of these constants and those defined in Appendix E, the differential

equations become

{0,
£ - cor 4 Ty (o + <1€”) (F-11)
‘A

{o A "o, ’(5.
ig ~ ot & i i Zer(¥o+ ¥, ) (F-12)
4 S
5= G e o™ (F-13)
o9
da™ Y
—;‘E—:—:—(q-f C5Q A~ > (F-14)
46c 3P , .
MY 27, (Bt £ie”) (F-15)
d W‘(m o (®) g .’("/ o
_a,?- =C6“IC7€()AL\-L.J + _C_-’_:A(,,:_c:—.(..»yz(-i—.—é--r&-{»c(;e() (F-16)

Note that these equations are extensions of the oblateness-only equations (Appendix E)
and are obtained by adding the drag perturbations to the respective oblateness
perturbations.

(0) (0)

F.2 SIMULTANEOUS SOLUTION FOR e’ *~ AND¢ -

Applying the transformation equations

E=e® e " (E-15)

M=e 2iw’ (E-16)



to Equations (4-71) and (4-~73) results in

B G- E-vm s 2o (F-17)

B Gl TR E _:*o_n_;r\';é_> (F-18)

These equations can be linearized by approximating e(c) by its epoch value e(%)

(referred to as 'backlining" e(o)), resulting in

.3%3 a+bf +cm (F-19)
dm _ _ -20
NES <&+ b‘rl_ (F
where
o= C'

®
b= '7:('—'_&0_‘_—‘ ee‘; e )

e (i) ]

Differentiating the first equation, substituting from the second, and employing
the differential operator notation of Appendix E ylelds

571- 27+ (Bt+c1)_] £=-eb | (F-21)

The characteristic solution for this nonhomogeneous second-order equation is

given as Ve
€. = exp [A, 00T+ agaim e T ]

where )‘1 and A are the integration constants, and the particular solution is

_ _ ab
69‘ b2+

F-4



Hence, the complete solution to Equation (F-21) is given as

5‘ exe [’7\, Losc T+ 7\14-4%J (F-22)

b2ec f."'
The solution for 7 is similarly obtained as

m = < [7« Gine® +np st ] - (F-23)

b’-‘-c."'
The integration constants 2\1 and _)_‘2 can be obtained by evaluating Equations (F-22)

and (F-23) at the epoch time t_ resulting in

i
[l ef'f(ﬁ.* Z) o B - (m+ ) £ | (F-24)
-bE,
2= &xp [(Eo* ,,z+ 2ame B+ (n+ 25 ) e £ ] (F-25)
From Equations (E-15) and (E-16), the desired solutions are
e®= (€% "11) v (4-72)
w®= ' (F) (4-74)

where § and N are given by Equations (F-22) and (F-23), respectively.

Recall that Equations (F-22) and (F-28), even though exact simultaneous solu-
tions to Equations (F-19) and (F~20), are still approximate solutions to Equations
(F-17) and (F-18) since these equations were linearized by backlining e(o). The
validity of this approximation is demonstrated by the data in Table F~1, which con-
sis‘s of time~point comparisons between numerical integrations of Equations (F-17)
and (F-18) and numerical evaluations of Equations (F-22) and (F-23). The data
span a 60-day time period with an integration step size of 128 seconds and a print/
evaluation step size of 0.5 day. The orbit eccentricity is 0, 086.

In Reference 16, plots of the motion in the §, n -plane are given when considering
oblateness only. The £, 7 solutions presented there are of the same form as those
derived in Appendix E, i.e.,



t(days)

Numerical

Analytical

Numerical

Analytical

10

20

40

50

60

-0.17073717x10
-0.32414059x10 "~
-0.32363856x10
0.41330305x10
0.30369370x10"
0.87856799x10"
-0.23692851x10

-0.15714644x10"

1

1

1

2

1

2

1

1

-0.17073717x10
-0.32415405x19'
-0. 32367086x10
0.41331292x10"
0.30377385x10
0.87895328x10
-0.23703570x10"

-0.15727037x10"

1

1

1

2

1

2

1

1

0.32146791x10 "
0.13637429x10"
-0. 9799636 7x10 "
-0.31283737x10
-0.10532703x10 "
0.27998938x10 "
0.13433323x10 "

-0. 18930974x10"

1

1

2

1

2

1

1

1

0.32146791x10"
0.13638160x10
0. 98002792x10 "
-0.31290135x10"
-0. 10545750x10
0.28007781x10"
0.13440617x10"

~0. 18943342x10

1

1

2

1

2

1

1

1

Table F-1. Comparison of Numerically Vs. Analytically Integrated Values of £, n




€= B cwr(Kt+a) (F-26)

m = A ai- (Kt 2) + (F-27)

Plots of these solutions are circles centered at (0, C/K). The magnitude of
e(o) (t) is given by the length of the line segment from the origin to the point
(4(t), m(t)) on the circle, and the angle turned by this line (relative to the + £

axis) measures w(O) (t).

Since drag perturbations tend to diminish e, it was expected that the correspond-
ing plots for £ vs. M, as given by Equations (F-22) and F-23), would depict this
decaying effect while retaining the basic characteristics of the oblateness-only
plots. Figure F-1 reveals that this is, indeed, true. The plot shows a 360-day
variation of { with 1 for the orbit of 0. 0364 eccentricity.

The solutions for £, n given by Equations (F-22) and (F-23) represent the
combined effects of oblateness and drag. Although these solutions are functionally
different from the corresponding solutions for oblateness-only (as given by Equations
(E-26) and (E-27)), they are identical in the limiting sense, i.e., as the drag
perturbations tend to vanish. This can be seen by allowing b (or 22) to vanish in
Equations (F-22) and (F-23). i

Li = Lim € € simc E]- 2R
b'-:oe b-,:; e [7\'&”( * 72 ] biec?

= [504-’ G+ (M- %)%Caa] o
+L/c04:-- C‘I.Eo_(")o- %‘Ll)a"cz E‘o]‘"“* Cag

which reduces to the oblateness solution

§=A W(Cg%'-‘--i)

Similarly,
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Lim™ = Lim e\p [7\ aim € +Aq Lo c?]-

b0 b»o bisct

=[£o Coo Ci%‘o + (n:;‘ %)‘;*C'x?o]a:—u Cze

“[E 0GB+ (- @) G ]wnCaT + G
which reduces to the oblateness solution

M= A ain (GE) + C/C

F.3 SOLUTION FOR 1(0), Q(O)

Since drag does not affect i and Q (at least when the drag model is tangential),
the solutions for these elementa remain the same as in the case for oblateness-

only and are given by Equations (4-37) and (4-39), respectively.

F.4 SOLUTION FOR B(O)

© is obtained by approximating e(o)and B(O) by their epoch

The solution for B
values on the right-hand side of Equation (F-15). The resulting equation can be

directly integrated to yield

) B8°7 CoNjr
67= BeZa (g, + £ e0)(2-E) (4-50
(NOTE: Numerical results have verified the accuracy of using the backline epoch
value to effect the integration.)
F.5 SOLUTION FOR M(o)

Equation (F-16) can be rewritten (using Equation (E-15)) to yield

&
‘3‘?"@ (4¢3- )+ B (<325 ‘-' sdoehe®)

(0) 0

The epoch value of e’ | i.e. 0, will again be employed, and the solution

form is given by
PR

where K is the integration constant.



From Equation (F-23)

"l— exp [7\ Amc_t+726mct]-

b* +c’—
80 that
fnd? r{‘,\,c A,b)aimcE + (A, bt 7«,c)c.—,¢?—'J :,if
Hence,
NCIRySP {:ﬁ(qc,-ce)-::i? T[S Lov die JJ(E-F) (4-83)

‘/“Cv (G){ [(%,C ),b)wc't‘* (7\15*7\,4)(*)&2:]

b,
- 2 () s T4 (aho+ ac) (,,,,Cg:‘]}

where the integration constant K has been evaluated at epoch time Y, As mentioned

in Paragraph 4.3.1.2, the Keplerian change in M _that takes place in the time

interval (t-to) must be added to the above equation,

e



APPENDIX G - PROCEDURE FOR DETERMING FUNCTIONAL FORM OF C(f)

G.1 INTRODUCTION
(2)

An outline of the procedures necessary for obtaining the E*~° solutions was
given in Paragraph 4.3.3. Inherent within these procedures are the steps necessary
for determining expressions for C(). In this appendix, the details that must be
considered in implementing these steps are discussed. Each step is illustrated

by working out the solution of C(f) for the inclination i, denoted by Ci(?). Because

of the complexity encountered in solving for C(t), a number of simplifying assump-
tions are made, However, the final expression for Ci(?) is shown to agree re-
markably well with computed values from the GENPUR program, thereby indicat-
ing that highly refined equations may not be necessary in determining the functional

form of C(?).
G.2 SECOND-ORDER EXPANSION OF THE BASIC DIFFERENTIAL EQUATIONS

The first step in the procedure is to expand, to order 52, the basic differential
equations of perturbed motion. These equations for the gravity perturbation
are Equations (2-34) through (2-39). Consider, for instance, the g_z portion of the
equation for i, Equation (2-36).

. 3 7k
—3%_ =-5"é\f,«7 r,f@"(ﬂeu—,v)(l-e‘) w2t 22 (2-36a)

The required expansions may be obtained using the methods of Appendix B, i.e.,
g7 = BP7, 760 @
(i+ euﬂ\,)": (1+ € v®)i1 ¢ [3(14 €orn®)? (B e @v@Mv@’)]
(l—e_’)"’/z = (- C@z)—*r/z v é[_,(l_e@:)—a/zeg)em] G
2w i = 2294 200, 2:®

L D = Al Qu6)+62u(;)c,r’ QL\(O)



These expanded expressions can be written in the form of binomials
6""" X, €Y,
(1+ e conv s X+ e
) 2+ €2 (G-2)
(I- )2 X3 +ENs
Al = )(q+ & \"i

Amdu= Xgt+t&\Nsg

where
X, = 87
Ko = (l-‘»c@)-mv@))g
X3 = (I_e@)i’ -2
X, = 22-20®
x; = 4/;\- 7\.\@

and

Vi = 76@666)

Va 3(,_‘25)@“6))2(36)%\)6)_e@)\)ﬂm\’@)
Y3 = 7(1-e® ) " 0¥

Ny

\s = .7«46)6&729\@

Qémco-—».?z €

The basic differential equation expanded to order ¢, in terms of these binomials,
is merely

el _%2_ ™ rgi(xx X2 Xz X¢, x5) (2-36b)




The same equation expanded to order 5_2 is
d¢ *
T6 = =T €I (X0 KXo Xy Xs) - €3 e (Y, Xy KXy X+ KXoV Xy Xy X
(G-3)
+ X, X2 Ny Xy Xg + X, X2 X3Yy, Xg + X.XzX;Xq\[;)

or, in more concise notation

d¢
dt" C‘(’ +&<3‘_

which is equivalent to Equation (4-115),

(NOTE: Equation (G-3) illustrates a convenient method for expanding the basic
differential equation to order 52. First, convert the expansion of each term
to the binomial form of Equations (G-2). Then, insert the y part of each binomial

into the differential equation, one-at-:a-time, to get the 52 expansion. )

The complex nature of Equation (G-3) is veiled by the notation. For instance, Y—l is
© 1) o er T~ ()
Y= 789¢80 « 780 [ @)+ C1(¥) [= 76 f{Hz(s)Bz(e)- S OnOE] + ce(s')}

6 e, o © ;
= -7 6(0) [K:(B)[e@) (é A:»?“- ()4.,:-\)( ,)L:m C!J( )“ﬂ w(o)— 6 4;,..2" 6)4\M7v(.)4;~‘1 wmc,"’\)\“)

43,0 2,0 2 ey @ 2 36 O

+ 342 @m’cuoco—;v( mv@)>+ 2 a2 O < @M:..w@wv@u—aw@

+ AXan —(o)qu (O) 24«-\- (’)4AA~1V(°)4AM w()] -+ CG(E)}

The remaining Y terms are equally complex. Some simplification is possible,
depending upon accuracy required, by neglecting terms containing certain powers

(0

of e’ and by holding certain elements constant, such as i, (Use of the FORMAC

program would allow retention of these terms in the expansion.)

One assumption that will be made at this point in working cut the solution for
(0)

the ele ment i is that all terms involving powers of e( 0 will be ignored (i.e., e
( ) , ete,). Thus,

)(3 = (l—e&)g)- 7l =1

N3 7 ©



The f, and g1 functions become
=i

({: = —’12' m r¢1(K, x? XqX5)

~ * - - 2 ‘
Qi = =V e (Y, Xa Ky K + X, Y Ky X + X, Xa s Ke + XX XyYs)

where, recall, gi is the expansion of the basic differential equation to order ¢,
and g1 is the expansion to order 52. To further simplify for later analysis, let

dy= Y, X2 Xy X s
da = X Ya Xy Xs
dy = X Xy Yy Xs
ds = X, XK2Xy Vs

so that

¢ = -Jz—f,«T'rct(J'-f da+ cl.,+c15>

G.3 PARTIAL DERIVATIVE OF E

The next step in the solution process is to compute the partial derivatives of
the E(l) solutions with respect to Z Recall from Equation (4-28) that these solutions

have the form
EC- K@ [5,(6)- 4.EPE]+...+ ()

or merely

Emt L; (E)-f- CE(E")

The vartial derivative is then

aE® g, 4@
A T I Y aF

so that the crux of this step is in determining afN/a?. For those E(l) solutions

that have no secular terms in IZ(E) (or I3(E)), such as B, this step is relatively

G-4
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straightforward, but tedious. The element i has no secular term in 12(i).

Neglecting gs terms, its super-one solution is

Ok (D2, + ¢, (')

such that

£ (D)= KDz

The partial derivative of fN(i) is merely

£,
13 & (K ORE]

One question that arises at this point is whether

D= @@q e
K, ()= OV OE

can be considered constant. The B(O) term is constant if gravity perturbations

only are being considered, and can be treated as constant for fairly long intervals

even when drag is present, The e(o) term, however, has an important long-

periodicity due to gﬁ It has not yet been determined whether the e(o)

with_?should be included. However, since the example is neglecting e

variation
(O)El

terms

and is considering only gravity perturbations, K2(i) will be treated as a constant.

Evaluation of 812(1) /a?requires further analysis. Iz(i) is composed of
terms such as

(')w w@s/}‘._%v

~ 2@ 20 0 ®

so that the partial derivative involves determining de(o)/dt, di(o) /dt, dw(o)/da and

dv(o) /dt. The first three of these derivatives are available from Equations (4-32),
0 ~
(4-36), and (4-%), respectively. Determining dv( )/dt is more complex, however,

(0)

since the explicit expression for V' ' is not immediately available. To obtain such

an expression, the Fourier-Bessel expansion may be used, i.e.,




involving e

\)(o) = MO 2e®,L.. MO,

The dv (0) /dt derivative can then be expressed in terms of dM( )/dt and de(o) /dt

dv® @
3z " AM (I-I-Qe@w"’)@))-o- -%@)QMM@) t... (G-4)

If only the J gravity perturbation is being considered (de(o)/dt~= 0) and terms
)

are neglected, then

dy® d M@

2

An expression of dM(O) /d?is provided by Equation (4-43). Notice that Equation (4-43)

does not include the Keplerian variation of M(O), which is dependent onE rather thanf.

Even with these simplifications, the partial derivative of only one term of

Iz(i) is very complex, i.e.,

A£ (L) (c)

e% :‘AAMQL @ de()

C) o ©) '()

226200 2:®, 20, @ 3%2@}_ 102680, 208, ,,© %

Substituting Equations (4-32), (4-36), (4-34), and (G~4) ylelds

r.:\_??(_‘) i 2% 200800 L@ ¢b><-(13/5z)(esm(a(,_eron)-2 PR L IR
-2 e(O)w 289, 2 (.) NS o) € (:r;/:f)(’ @) ()(/_c(c)z)-z_’;(e) ()(’ o2 @)
-Qe 20, e pin @){66)4 2,.9(- O’)’i&-%&‘-"i +66’ ﬁ‘,/a’;)\%m('”
(,_ @:)-3 [35 e(,);.,., L(‘:)’;A_ w""m FON e@ ‘(",’;; @ é@,ﬂ*i(a) w(o,

(- 52O TY - €% 2080 268 014 2P0y 1P){@EL 0
(I-e®) 3/1(,_ 3 an20®)_ _;6@‘(1, /72 (:mm__(_ (I- ¢®? )-5/1

5366/1&»((0)4“. ()“ 4 PO @ +3 0 ()/qu)(), —1‘:(0)
. T

+ derivatives of 8 more terms,

i--------‘-¢.—n



As noted, this is only the expansion of one term in nine, Thus, evaluating the
derivative of even the simple type IZ(E)’ which has no secular terms, quickly

becomes very involved.

To return to the more general form of an I_(E) integral, which contains secular

2
1
terms also, consider the equation for Q( ), i.e.,

0= [T -5 @OE ] +... « (7

The terms within brackets are an expression of nonsecular (with respect toz)
parts of an integration. For the element i, there were no secular terms in
Iz(i) so that Sz(i) was equal to zerc. For the element {3, however, the 12(0)

(0 Los (O

integral contains a secular term, - 1/2 V' ' cos i To remove this secularity

from the brackets, S 2(Q) is

52(_(1)= - Jz'éoﬂ‘,’(")

Assume for the moment that I 2(0) was composed only of the secular term, and call

it 1'2(0). Then
[3:.—: (n)- % @l)m@?'] =-b i OG-, P F)

To compute afN(Q )/ a?, the partial derivative of the right-hand side of this equation
(0)

must be evaluated. Substituting Equation (4-45) for v' ' yields
@) = MO 264 £ s omBy A0 (G-5)
Next, using a functional form of Equation (4-44), i.e,,
MO = WO Z 4 MMOCE) (4-44a)



Substituting Equation (4-44a) into Equation (G-5)
QO mPEY 2 mOF + MO+ 2% MO _.g_ O aMO4 | - OF
= MO(E)+ 2P £ %2 MO,

and taking the partial derivative of Equation (G-6) with respect to ?_

S 4@ 7)) = dm® Y I LA PRI )
A%‘(\)(M f) Az [/'#QQ Cen M) )+&:2MM +...
which is the same as Equation (3-4). Thus, the presence of secular terms within

an IZ(E) integral presents no new problems, but merely adds similar terms.

(1)

Performing the differentiation of all terms of each E'"’ solution with respect

tofand making the necessary substitutions will result in extremely long expres-
sions. (The need for an automatic manipulation language such as FORMAC in this

step is indeed evident.)

To continue with the example for i, neglect terms of Equation (4-89) of order

3\
e(o' (and higher) and omii the :;3 terms

= Kl(i)EQA&?é(” 2 0@ os 0@t v® o L O 4 20€0, 3

+ 2402000220007 4 ¢, (2)

Assume also that

d¥

The afN(i)/aFderivative is then

(G-6)
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(3
J“F ( = K (‘){[24‘*2 W"Qw AR Y) uan)()q- 24&..’.7‘@ v ’\,@) Qw@)]_d.k'
AT 7nim

(G-7)
&
—[4,\,.. 2 (4.“. 26w®0 29O% 42 200000290, , 2¢ ,(°)] dv® }

(To facilitate work in the next step, expressions for dw(o)/dFand dv‘o)/d?will not
be inserted at this point.)

G.4 SECULAR PARTS OF t INTEGRALS

A second application of the first uniformity condition requires determination of
secular parts of the integration of g and di/at with respect to t However, g and
af /d are primarily functions of v( ) rather than t Thus, it is more convenient

to change the variable of integration from 1 to v( ) by the relation

(-9 4O

(G-8)
Vs BO%(1h e®lror @)

dt =

The following integrals must now be evaluated and the secular parts determined

@)z) s/e
fﬁ It = {% Jax 66)’ (1+e®ror1(2)2 dv®

af 3 (1-) ®
f"’gid AT /T B3 (14 @, )2 dv

This step is straightforward, but very tedious if no simplifving assumptions are
made. FORMAC has been modified to evaluate these types of integrals and to

then extract the secular terms.



To continue with the example for the element i, consider the integral of g1

‘3,: =-—‘5‘f;—' (C‘L(d'-f- dg"' dq+ d;)

There are some terms common to the gi which may be extracted, i.e.,

2 ¢
qi = -5 v e (1+e@corn®) (2, + 2o+ 2, + Zs5)

where
2,=28%,0.20% 20 (@ e@v i v®)
2,=780(14 ¢®rn® ) 4o 206000 2.8
Z, = 2 6@)5 n("‘ eé)co—:v("),,;,‘gu@&,_, 2:@
2, = 262U (14 P4 ) ac 2:® o0y 206
Then,

N o, 6 .
fqedE = 403 & 8° f (e0®)? (2,4 2,4 24+ Z5) dE  (G-9)

3/2

(0)2) term in Equation (G-8) and substituting into Equation (G-9)

Neglecting the (1-e
yields

{3; AZ = - ‘-i’(ei 6@)3{[2_‘+ Z,+ ?q -+ %5] d\)(")

To evaluate integrals of each Ei term, without the use of FORMAC, all terms
containing e(o) and higher powers of e(o) are ignored. The expression for 31
becomes

© °
Z= 326 )AA;Q[@AL» the‘nc‘n\)()

G-10




In obtaining the value of e(l) to be used in Z only the 412 portion is considered, i.e.,
eV Ky (e) Ty () + Co ()
- 6()‘4'_,e [ qwz 6)4‘*\1()4;‘_“ mw@) __‘j_‘w‘l e . 1\)(.}15-2@#)(")\7(‘)

~ 14.._2‘(‘4:.. v c,,v”*- ——“- Ly '6)4-*3\104:,‘. wr Co> w(")

%AL.-‘L()M w(au-,v(')- -;—-Aafmzc.ocryvo-c- c.o-,\)ﬁ):]

(0) (0)

The expansion of cos v ' sin 2u’ ' is
e 208 2 20052000V i 20V 20002 et g
Hence,

Z,= 3 B@ 2 r’[zcn:)w"’ w0 st 20O 2400 2P u(’_]

[7 Vi 20+ J'AM JFUTANOY PRI 1-4...2‘@ O
1() 3()- o £ -2 @, - &) & ®r 0 W%
.,..} A~ 20 Fawil ZIS IR IR —;—m... 3 N+ \J‘

e (B)
Bf‘)“ 2 ]

(0)

Hereafter, only those terms which are secularin V' ', after integrating with

respect to v (0 ) will be retained. Such terms are of the form cost(o) .va(O)'

where M and N_are even integers (or zero). Thus, the secular terms in 51 are

G-11
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+__%_ 249, . R RN N 10_ APl P 2o 2,0

. 6) .2,.0

” 6
+ 9 a2 ")Am.?w e P 2 e 200180 10 J
3

Integration and simplication yields

f 2, 4T = ,‘é_ RO - 2:0,c. 2¢2(2- Zaintc 5;)\,@)

8By similar procedures, it is found that

(zz th (o]
(2, dE =0
f‘t‘uc d€ = o
Q_ M, 1) e
where in the gsinteg'ral u "=V " +w . The secular part of the t integration of &
is then
- e
fa: dF = - 2 e 8900 2000 20,9(2- 3002 B )P (G-10)
s&¢

Next, consider the integral of of /at with respect tc t Assume in Equation
(G-T) that dwo)/dt and d\‘ ) /dt are constant with respect to a t integration .
Referring to Ecuation (4-34), it is obvious that the secular rate of change of

w(o) with respect tofdoes not depend upon [. It 18 not so obvious for dv(o)/d?,

G-12
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since v'*) has a Keplerian variation that depends upont. In functional form

VO = WOF 4 £(F)

However, its derivative with respect to Iis not a function of ?_, i.e.,

Consquently, dv(O) /d? is constant for the ?_ integration,

It is again convenient to change the variable of integration from f_ to v(o) by

(0)

using Equation (G-8), where the e' ' term is neglected, i.e,,

©)

: . dv
d & = 66);
The integral is then
A‘N dt (L) ( 2; (o) . D e 2 (') . - (o) o) . (o) o\
A'E /:__2_65’ 24020 2im - 2202w 2w av® c»-q\) )ql\}

) o ‘ 2 (o o . _
- d—dzl' ((4;4.?(")4;. Qw‘olg- 2 2 \)( )] + 24;*9':( )W ?w( )MV(’)W\)(e))A\)(‘}
/

Eliminating all but the secular terms gives

Af (L) —_ K (Z (o) - {o) Y d (
P . AJ\ G_ll
SYam d¢€ = 60),\) e 2 e 2 —Ld%' ( )
sEC

G.5 INTEGRATION WITH RESPECT TOt

The differential equation for C(?) from Paragraph 4.3.3 is Equation (4-122)

- () _
6@ (. gx o ( 299 (4-122)
T sec sEC

G-13



The final step in the selution procedure is to solve this equation for C(B. Sub-

stituting Equations (G-10) and (G-11) into Equation (4-122) and then integrating yields

c(®E =‘(- e 1B 20 2w (D=3 022 )V JE

(" ‘0 . o
,)_jiom’.\‘.?w}d&) dt

- y/‘;‘ g3

To evaluate the integrals, substitute

{o (& —
Yooyt

K ()= + g2

so that
0 = [~ Fp v 8 T 2 20N D=3 PO dE

(G-12)

(o
{J‘ 6 f/( W?L AA.»-QLA.‘ ’ dw

55 47

At this point, the E(O) solutions for each element (Equations (4-33), (4-35), (4-37),

and (4-44)) should be substituted into Equation (G-12), The resulting integrals will
be complex and very difficult to evaluate. For instance, the sin 2 w(o) term would

have the form

Mgw(ol_ ain {2 6 AM(CQ?-&,l) + &i/ey }
{ [ A Lo—o(sz"*'-Q) ]

which must be combined with other functions offand then integrated.

For the inclination example, a different approach was taken. All elements

(0

within the integrals were assumed constant, except w

Ce(E)= = 2@ e 20 (2.3 ‘”)m("(m 20 &

Then, from Equation (G-12)
Y ) l o
7 e 200 i 2e de g

G-14
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In the first integral it is easier to express dt in terms of dw (0) than to express

sin 2 w‘ ) in terms of 1. Using the gz portion of Equation (4-34),
dw(‘)
OF 8 (2- a0 P)

In the second integral, the dis cancel. Thus,

. .@) .1—@)
Ce(@®)=-F e 60"1»(;& @-32 = ) fam 26 de®

4 3
-5 B@ (gld,;..:’f.@l(u 2 dw()

Integrating and collecting terms gives

df =

4 3 o 2- 342
Co(E)= 4 B® el 2:®,2 (‘[%- Far v @>+ |_J+l( (G-13)

where K _is a true constant of integration. Equation (G-13) is the final expr«ssion
for Ci(B.

To test the validity of this solution, it will be compared with results from the
GENPUR program. Appendix H presents solution components and associated
constants as computed by GENPUR.

The plot of eCi(?) is reproduced from Appendix H and shown in Figure G-1 for
the low-eccentricity orbit case, Evaluating the constant K and inserting proper values
for the initial conditions in Equation (G-13) results in

C:(B)~ 0.27 cr 2®  (end)

In Figure G-1, the values of C i(?) have been multiplied by ¢ and expressed in degrees.

The correaponding solution equation would be

eC(®) = 0.025 com 2c® (Jeﬁ)
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The dashed line in Figure G-1 is a plot of this equation, It matches the GENPUR

solution extremely well.

In summary, results of the simplified analysis to obtain the functional form of
Ci(B are very good. These results bring up the question of how much improvement
is really needed or desired, especially since a great deal more effort would be

required to eliminate the simplifying assumptions.
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APPENDIX H - PLOTS OF SOLUTION COMPONENTS AND
ASSOCIATED PARAMETERS

The second approximation solutions to the equations of motion result in ex~
pressions of the form

(0) (1)

E(t) = E' ' + €¢E

(0)

where E is any element in the set (e, i, Q, w, B, or M). The E' ’ solutions are mean

elements and contain the secular and long-periodic variations. The E(t) solutions

E(o) + € E(I)) are osculating elements and contain short-periodic in addition to

(i' €. ’
secular and long-periodic variations. This appendix presents plots of these solution
components for each element when considering a low-eccentricity orbit. The initial

conditions for this orbit are shown in Table H-1.

Asymptotic series solutions were first derived when considering only the oblate-
ness perturbation @2 and J 3 first-order effects). Later, combined solutions for
oblateness and drag were obtained. Therefore, two sets of plots are presented in
this appendir; one for the oblateness-only solutions and one for the combined solu-
tions. In both sets, Brouwer's equations are used for second-order secular effects

Q w .
of_‘_I_2 andg4 onil w, and M

Deeply involved in the solution procedure are assumptions that various param-
eters remain constant, at least relatively so for short intervals of time (2 or 3 days).
It is known that some of these parameters (the C(f)'s) contain important secular and
long-periodic variations. Other parameters (C 1 through C8) remain fairly uniform,
at least for the oblateness-only solutions. Plots of these parameters are also pre-

sented in this appendix.

Figures H-1 throuv . h H-12 show the solution components and associated param-
eters for the oblateness-only solutions to the low-eccentricity case. Figures H-13
through H-24 show the corresponding solution components and associated parameters
for the combined oblateness and drag solutions. Interesting differences can be seen

in the behavior of some of the parameters when drag is added to the solution. Many



Mean Elements

B (km'l/ 2) 0.01234044
a (kra) 6566.5731
e 0.00559414
i (deg) 50.01120
0 (deg) 152.47131
w (deg) 52.62626
M (deg) 2.91685
State Vector
X (km) -4872.€530
y (km) -1364. 7471
z (km) 4124, 7041
X (km/sec) 4,41679
y (km/sec) -5.51029
Z (km/sec) 3.39451
Date_
April 1, 1971
CD(A/m)
2
0.0002 m" /kg

Table H-1. Initial Conditions for the Low-Eccentricity Orbit

H-2



(O), which is constant for oblateness only but has

of the parameters are functions of B
a secular variation when drag is added. Thus, the parameters take on a secular

variation which was not present in the oblateners-only solutions.

In the plots of the solution components, the secular and long-periodic trends
are easily recognized. However, since these are plots of points at 6~hour intervals,
short-periodic trends cannot be distinguished because they appear as somewhat random

fluctuations about the mean.

The units of the element solution components depicted in Figures H-1 throush

H-7 and H-13 through H~19 are as follows:
e - unitless

w, is sz, M, v -deg

B - km™ /2

The units of the constants and functions depicted in Figures H-8 through H-12
and H-20 through H-24 are as follows:
Cl’ C2’ oo, C7 - rad/hkr
o - rad
Ce(ﬁ ~ unitless

~ . =1/2
CB(t) -~ km
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Figure H-14. Argument of Perigee Solution Components
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Figure H~15. Inclination Solution Components
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Figure H-16. Ascending Node Solution Components
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Figure H-17. Reciprocal Square Root of Semimajor Axis Solution Components
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Figure H-18. Mean Anomaly Solution Components
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Figure H-19. True Anomaly Solution Components

H-24



B
E.J

PR

el
iy

frishe

TR~

WO

N O

1
g
- .00180 Mt
-
~~\
a
-
- .0016g
L.
0 30 « )
ORBI!T TIME (DAYS)
t.1e L1
|41
-
-
L]
t.160 11
-l
-1 i
- 20 30 [ )
ORBIT TIME (DAYS)
001940 ]
-
0019820 -t
Lot1
—4 “ﬁ
001900
-
BRI 4
0 30 40 [

ORBIT TIME (DAYS)

Figure H-20. Cl’ C2, and C3 Ccnstants

H-25




+ - 4 - ‘i
T
b 4
L4000
)
-]
s ot
+—11 ”
4880 b
"]
L | -
10 I [3) 0 40 0
ORBIT TIME (DAYS)
—— =
ooes ]
C
5
ooes
-
-
0084 -
-
-
-
- 10 3 30 40 %
ORBIT TIME (DAYS)
4 T3t
g.04
C -
4 -
2.4¢ —ut
W
bt
-
...n.-‘»—a. -
= = 10 T IJO. 0 40 )

ORBIT TIME (DAYS)

Figure H-21. C4, C5, and C6 Constants
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APPENDIX I - DISCUSSION OF OSCULATING AND MEAN ORBITAL ELEMENTS

There are two basic types of orbit elements, osculating and mean. A set of
osculating elements represents an exact definition of one point on the orbit and, there-
fore, is equivalent to cartesian coordinates of position and velocity at that point,
Though osculating elements may often be difficult to obtain, there is no ambiguity in
their definition.

Mean elements, on the other hand, are not so well defined, As a satellite
travels in its orbit around the earth, the osculating elements at each point in the orbit,
when plotted versus time, will exhibit periodic fluctuations, These fluctuations may
be either long-period (of the same period as &) or short-period (of the same period as
V). A mean element, as the name implies, is an expression for the average value of
the osculating element (without periodic fluctustions). Usually, a mean element is

defined as the osculating minus only short-period fluctuations.

In engineering activities other than astrotvmamics, the standard working elements
are osculating elements; for instance, the powered flight trajectory analyst will usually
present insertion conditions in terms of a position vector and a velocity vector.

Various theories, therefore, have been devised to compute mean elements from a set
of osculating elements. Some of these theories have peculiarities in that their defini-
tions of mean elements are tailored towzrd use in a specific general perturbation
theory. Consequently, these elements are not truly mean elements but, rather,
starting conditions for that particular theory. The definition of ""mean' semimrajor axis
by Kozai (Reference 23) is a good example of this type of definition. Assume that an
initial osculating’ value of semimajor axis, a, has been provided. To compute the mean

semimajor axis, a, according to Kozai, first subtract short-period fluctuations:
a,=a-dag

where '
dae 35 {3050 O(D-0-) " T4 (Pt n 26 )



At this point, one would have the standard value of mecan semimajor axis (oscu-
lating minus short-periodic). However, Kozai continues and ''conveniently" defines the

mean value as

G- ao[l- %D (-l ie ] (I-1)

which he needs for use in his general perturbation theory. The equations presently
being used within the MSFC Crbit Lifetime Program (Reference 20) require the Kozai
a element, Moreover, it is believed that the "mean'' elements given by SAO in their
reports on past satellite histories (Reference 19) involve the Kozai é definition. The
GENPUR program, on the other hand, requires use of the kN type definition, as do
most other general perturbation theories. it might alzo be noted that output of the
MSFC transformation program for '"'mean'" elements uses a, as the definition of semi-
major axis.

Another theory which has been used to compute mean elements is that due to H.
Small (Reference 24). For the sake of identification, results of his theory have been
termed "smoothed" elements. Small's theory involves removing short-period fluctua-
tions from the radius and velocity vectors. K, Ypo and v, are initial values of the
osculating radius, cadial velocity component, and normal velocity component, respec-

tively, then the mean values are

= V—A\’

il

= Vq- AVR

<
o
1

VL = VL - dVL

These mean values are then used in a standard coordinate transformation pro-

cedure to compute mean (or rather '"'smoothed") elements, For instance,

5 = T AL
* 2a-7V2

I-2

N



where s 2
N 2= —\7g + V.
In Reference 25, it was found that the essential difference between the Kozal a 0
and the Small a_is
=s

Q= aj =T, %(l- %11@15)
The ""smoothed'" elements of Small are those used by the MSFC Orbit Lifetime
Program for integration., However, it must be remembered that the A-E-P (Reference

26) equations within the Lifetime Prograr. require the Kozai E given by Equation (I-1).

Other methods for computing mean elements are given in Reference 26. Initial
mean elements for Brouwer's equations are computed by the following procedure.
Sets of osculating elements over some time interval are required. The Iong-periodic
and short-periodic variations are computed for each element in every osculating set by
using Brouwer's equations. Then the secular motion is computed referencing every
set to an arbitrarily chosen epoch time, Mean value sets are obtained by subtracting
the secular and periodic terms from each respective osculating element set. These
sets are then averaged, yielding one initial mean element set. Notice that, if only one
set of osculating elements is available, the procedure is similar to that of Kozai, For

instance, initial mean value of semimajor axis is

Q= C\—Ck?

where s e \3 2V 72 7
o= £ T L3I ) ]

TN G Iy @}

The Brouwer expression for ip , in fact, is equal to the Kozai expression for
das. However, there are no further steps in the Brouwer procedure, so his mean is

truly osculating minus short-periodic terms,



The importance of having well-defined mean values cannot be overemphasized.
For example, it has been found that an initial error of only 0.4 km in the initial mean
value of semimajor axis can cause a 360° error in mean anomaly at the end of 330

days.
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