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SUMMARY

The linearized integral equation for the Foucault test of a solid
mirror is solved by various methods: power series, Fourier series,
collocation, iteration, and inversion integral. The case of the Casse-
grain mirror is solved by a particular power series method, collocation,
and inversion integral, The inversion integral method appears to be the
best overall method for both the solid and Cassegrain mirrors. Certain
particular types of power series and Fourier series are satisfactory for
the Cassegrain mirror. Numerical integration of the nonlinear eguation
for selected surface imperfections shows that results start to deviate
from those given by the linearized equation at a surface deviation of
about three percent of the wavelength of light. Several possible pro-
cedures for calibrating and scaling the input data for the integral
equation are described.
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I - INTRODUCTION

The Foucault knife-edge test method is a widely used method of
testing astronomical mirrors and other high-quality optical systems of
large aperture during the final figuring. It would appear to be espe-
cially suited for testing the mirror of a large telescope in orbit
because of its sensitivity and minimal equipment requirements and because
its essential requirement of a perfectly uniform test beam can be satis-
fied in space by pointing the telescope at a star. Even if the telescope
is free of imperfections when first built, temperature variations and
structural relaxation or creep may subsequently introduce distortions
so that some such method for occasionally testing the telescope optics
is desirable. If the primary mirror is adjustable, it would be espe-
cially desirable that the test method be capable of providing quantita-
tive information on the distortion that must be corrected.

This problem of the quantitative determination of the distortion
of the mirror by means of the Foucault knife-edge test is considered
here. The analysis is based on the work of Linfoot (Ref. 1), who derived
expressions for the distribution of the light intensity seen in the
kinfe-edge test for both perfect and imperfect mirrors as a function of
the mirror surface distortion. For a uniformly reflecting mirror with
small surface imperfections, the change in the light distribution from
that of a perfect mirror is given by a linear integral expression involv-
ing the phase distortion of the converging wave front at the mirror.
The solution for this phase distortion, which is directly related to the
mirror surface distortion, involves the inversion of this integral
expression,

Thus, the problem of the determination of the mirror imperfections
from the knife-edge observations reduces to the problem of solving an
integral equation. In the work herein reported, various methods of
solution were studied. Five function methods involving power series and
Fourier series, a collocation solution, two iteration solutions, and an
inversion integral solution are presented and compared for selected
examples. Three of the more suitable methods were applied to the Casse-
grain type of mirror, or mirror with a central hole. In addition to
describing and discussing the advantages and disadvantages of these
various methods, this report also presents some nonlinearized calcula-
tions of the knife-edge test intensities for distortions of increasing
size, in order to help the user estimate the Llimitations of the linearized
solutions,



IT - DERIVATION OF INTEGRAL EQUATIONS

The optical arrangement in the knife-edge test is shown in the
sketch, Fig. 2-1, The knife-edge passes through the focus of the mirror
and the lens focuses the mirror surface onto the image plane of the lens.
This image plane may be the location of the observers eye or may be the
location of a group of light sensors. Linfoot (Ref. 1) showed that when
the observer looks past the knife-edge toward the mirror, the observed
distribution of light intensity at the mirror along any line normal to
the knife-edge depends only on the mirror figure along that line. Thus,
with the knife-edge normal to the plane of the sketch in Fig. 2-1, only
a line of sensors in, or parallel to, the plane of the sketch is needed
in the image plane of the lens., To completely test the mirror, several
lines of sensors would be needed. Katzoff (Ref. 2) discusses possible
arrangements of the sensors for a complete test of the mirror. He also
examines the problem of precise location of the knife-edge when the

mirror has imperfections.

Mirror . .
Mirror image plane

Knife-edge

Fig. 2-1, Optical Arrangement in Knife-Edge Test
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Fig. 2-2. Definition of x for Lines on the Mirror




Since the light intensity along a line across the mirror normal to
the knife-edge depends only on the shape of the mirror along that line,
let x be the distance along this line, Let x = -1 and x = +1 represent
the points where the line crosses the edges of the mirror, regardless of
whether the line is a diameter or a chord of the mirror (see Fig. 2-2).
Linfoot (Ref. 1) derived the following basic equation for D(x), the

1
20D(x) = wE(x) + if tﬁ.(_"él ab (2-1)

complex displacement at the image plane of the lens, where E(x) is the
complex displacement of the converging wave front just as it leaves the
mirror, and t is a running variable corresponding to the variable x.
The observed distribution of light intensity along the line is

I(x) = W®]D(x)]% . (2-2)

I(x) and D(x) are functions of x in the sense that the observer looking
past the knife-edge sees I(x) as the apparent brightness at point x.

The conditions or restrictions on Egs. (2-1) and (2-2) are (see
p. 138, Ref, 1):

(a) the diameter of the mirror subtends only a small angle
at the focal point;

(b) the errors of figure of the mirror, though they may
amowunt to many wavelengths, are small compared to the

focal distance;
(c) the errors of slope in the mirror surface are small;

and
(d) the function E(x) is continuous and differentiable except

at the edge of the mirror.

Under these conditions, the equations are valid for mirrors of arbitrary
edge contour, including central piercings as for a Cassegrain arrangement,
and of variable reflecting power.

The function E(x) can be taken in the form

5Ge) = [BGx)exp [ - 2L o) (2-3)
where exp [- gii ¢(xi] is a phase function which describes the imperfec-

tions on the surface of the mirror; A is the wavelength of light., For
+the perfect mirror, ¢(x) = O and E(x) = 1, so that



2nDo(x) = n + i log < i—;]s) s perfect mirror, (2-k)
x

and

Iy = Un®|Dg(x)]|% = =% + logz( i‘—-—i——f), -l<x<l, (2-5)

where the subscript o indicates the perfect mirror. For the case of the
distorted mirror, take

n(x) = - o(x)/A
E(x) = exp[2nin(x)] = cos 2xn(x) + i sin 2xn(x) (2-6)

where 7(x) is the phase error, in wavelengths, on the converging wave
front where it leaves the mirror. It is twice the error, in wavelengths
of the mirror surface at that location. The phase error n(x) is positive
when the imperfection on the mirror surface is raised toward the observer.

If Eq. (2-6) for E(x) is substituted into Egs. (2-1) and (2-2), then

2nD(x) = x[ecos 2nn(x) + i sin 2nn(x)]

1

L
+ 1 cos 2nn(t)dt _ sin 2xn(t)dt (2-7)
4 t - x L t - x

1 2 1 2
T(x) = 12 + [ cos 2xn(t)dt | . f sin 2xn(t)dat

t - x t - x

1
+ 21 sin Zﬂn(x)f cost 2rn(t) g
- x
-1

1
- 21 cos Zﬁn(x)f 5—”%‘&)— dt (2-8)
- X
-1

If 7(x) is sufficiently small so that

cos 2xn(x) ~ 1.0, sin 2rn(x) ~ 2xn(x)

[n(x)1% ~ 0.0




then Eq. (2-8) can be linearized approximately to give

1
I - Io = Ux®n(x) log 1-X) | g2 k) g (2-9)
1+ x , t-x
This is the basic linear integral equation for n(x). Take
f(x) = ba®n(x), F(x) = I - I, (2-10)
so that the basic Eq. (2-9) is
1
F(x) = £(x) log ( 1-x ) i]n £(t) at . (2-11)
1+ x N t -x

For some of the solutions to be given later in this report, it is
preferable to write Eq. (2-11) in the form

1
Fx) = il- 513%—:—££§l at (2-12)

1

When the mirror has a central hole of radius R, the linearization
of Eq. (2-8) gives

l -xx + R\

= - =f l
F(x) =1 - I, (x) log T % x —R

1

_.[-R £(t)dt _.[ £(t)at (2-13)

)y t - x R bt -x

where

1l -xx+ R
1+ xx-R

Io = % + log® (2-14)

for any diameter. However, as in Fig. 2-2, the line on the mirror may
be any chord so that R in Eq. (2-13) may vary from R = O, the case of
Eq. (2-11) when the chord line does not cross the hole, up to R = radius
of the hole. Thus, in Eq. (2-13), x = -1 and x = 1 refer to the edges
of the mirror for any line and x = R, with R properly scaled to the x
length, refer to the edges of the hole if the line crosses the hole

(see Fig. 2-3).



Fig., 2-3. Knife-Edge Test Lines for Cassegrain
Mirror System

For later use, Eq. (2-13) can be written in the form

F(x) = -.£2 §£E%_E_£$El at (2-15)

where Ly consists of the two line segments, -1.0 to -R and R to 1.0.

The problem now is reduced to solving these integral equations for
f(x) or n(x). Since little can be done about solving the nonlinear
integral Eq. (2-8) for n(x), the work of this report is concentrated on
solving the linear integral Egs. (2-11) or (2-12) and (2-13) or (2-15)
for f(x). Some results for the exact Eq. (2-8), obtained by numerical
integration, are given in Sec., XI for assumed values of n(x). Before
presenting the various methods of solving the linear equations, some
discussion of the general restraint conditions, homogeneous solutions,
numerical integration difficulties and computer limitations for these
equations is given in the following section.




ITI - RESTRAINT CONDITIONS ON SOLUTION OF THE LINEAR EQUATIONS

There are several factors that must be considered in attempting to
solve the integral equations (2-11), (2-12), (2-13), and (2-15).
The problems of (a) point values of F(x), (b) numerical integration,
(¢) function methods with numerical integration, (4) discontinuities at
the edges of the mirror, (e) homogeneous solutions, (f) rigid body
rotations of the mirror and (g) computer limitations are described below.

(a) Point values of F(x). Since F(x) = I(x) - Io(x), the change
in light intensity due to a distortion in the mirvor and must be obtained
by sensors from the knife-edge test, it will be knowm only at selected
points on selected lines on the mirror (unless it is measured with a
scanning sensor). Thus, with F(x) given at points only, the equations
must be solved numerically. Regardless of what method of solution is
used, numerical integrations will have to be made, either directly or
indirectly. Since these equations may be singular, with the integrand
becoming infinite when the integration variable © crosses x, there may
be difficulties with the numerical integration. As the particular type
of numerical integration will depend upon the method of solubtion, the
specific problems with the integration are discussed later, where the
different methods of solution are described. Some general comments on
numerical integration are given in item (b).

(b) Numerical integration. In the numerical integration for the
variovs methods of solution described later in this report, it will be
assumed that readings of F(x) from the knife-edge test will be at equally
spaced points in a line across the mirror. For this case of equal
intervals, the Newton-Cotes quadrature formulas (Ref. 3, p. 397) are
probably the most suitable for the numerical integration. These formulas
give weight coefficients Hy, or the Cobtes numbers, to multiply the
ordinates of the integrand for the integration. Thus

1

J
f £(x)ax = 3, Hsf(xg) (3-1)
0 j=1

The two-point formuls is the same as the trapezoid rule, the three-point
formula is Simpson’s rule, The H; numbers up to a 21 point rule are
given on pages 536~538 in Ref. 3. The error in the numerical integration
using these formulas is propoitional to a certain derivative of the
integrand at some point. TFor example, the error in the trapezoid rule
is proportional to the second derivative; in Simpson’s rule, to the
fourth derivative; in the nine-point rule, to the tenth derivative.

As pointed out by Kopal, (Ref. 3), whether a higher-order rule is better
than a lower-order rule depends upon the behavior of the derivatives.
This factor is important in the solution of the subject integral equa-
tions. In some of the methods discussed later, it will be shown that




the higher order derivatives involved in the numerical integration errors
are extremely large and may be infinite at some points. This results
in the trapezoid rule giving the best results in some methods of solution.

(e) Function methods with numerical integration. The function
method of solution assumes that the unknown function f£(x) can be approx-
imated by a finite sum of known functions with unknown multiplying
constants, as

N

£(x) = % a;p; (%) (3-2)

The p; (x) functions may be x' terms, trigometric terms or any selected
group of functions. The constants a; are to be determined for the
solution. The determination of these constants normally involves the
evaluation of certain integrals containing F(x) and p; (x). In the
present case, these integrations must be performed numerically. This
introduces a second approximation into the function solution in Eg. (3-2).
Not only is there a finite number of the a;, they are also approximate
and no better than the numerical integration used to evaluate them. It
is evident that if the numericael integration is quite accurate, then

the accuracy in f(x) in Eg. (3-2) will be limited only by the number

and type of selected functions p; (x). Since the larger the number of
points used in the integration the better the results are, as many points
as possible should be used. The mumber of points used depends not only
on the behavior of f(x) but also on the selected pi(x), If the p,(x)

are cyclic, more points will be needed if the number of terms in Eq.
(3-2) is large, (p. 408, Ref. 3). In fact, the mumber of points in the
mimerical integration should be at least equal to the number of constants
in Eq. (3-2). Preferably, the number of points should be many times the
mumber of constants for cyclic p,(x), but from practical limitations of
the computer, twice as many points as constants seems to be a good com-
promise, In order to compare the various methods discussed later, the
number of points on the mirror for all numerical integrations has been
selected as

40 equal intervals, 41 points for
mirror without hole (3-3)

L0 equal intervals, 20 on each side,
42 points for mirror with hole (3-4)

The number of constants used in the function methods of solution has
been selected as

20 constants for function methods. (3-5)



Further discussion of the numerical integration in the function methods
will be given for each of the particular function methods.

(d) Discontinuities at edges of mirror. In Egs. (2-11) and (2-13)
the log terms become infinite at the edges of the mirror and the edges
of the central hole. This may mean that f£(x) must be zero at the edges
or F(x) must be infinite at the edges. Since F(x) is a change in light
intensity, it is not infinite at the edges. However, since the mirror
may have a distortion at the edge, it is not desirable to make f(x) = O
at the edges. Thus, these factors must be considered in the solutions
80 as not to restrict the solutions more than necessary. It should be
noted that this problem can be agvoided in those methods which make use
of Egs. (2-12) and (2-15).

(e) Homogeneous solutions. It is evident from Egs. (2-12) and
(2-15) that

£(x) = €y (3-6)

with Cy a constant, makes F(x) = O so that this f£(x) is a homogeneous
solution of the equations. This solution represents a uniform change in
phase of the entire wave front and has no physical significance as the
reference phase is arbitrary. However, the method of solution must
include a reference point or condition for this constant.

It can be verified that Eq. (2-15) for the hole case has another
homogeneous solubtion

£(x) =2 (3-7)

which makes F(x) = O. This is a possible physical distortion of the
Cassegrain type mirror that the kmife-edge test is unable to detect, as
no change in light intensity is produced by this distortion. The evalu~

ation of Cy by using restraint conditions on the mirror is considered
in Section X.

(f) Rigid body rotation of mirror. In Eq. (2-12), it is easy to
showr that

£(x) = Csx gives F(x) = - 2C3 > (3-8)

which indicates that a uniform change in the light intensity implies a
rotation of the line on the mirror being observed., However, since the
reference scale for the light intensity may be arbitrary, the rotation
in Eq. (3-8) may be an apparent rigid body rotation of the entire mirror
and not a real distortion of the mirror. If a group of parallel lines
on the mirror all gave the same rotation, then it would undoubtedly rep-
resent an apparent rigid body rotation. It is evident that the method
of solution for f(x) in the equations should not include restraints




at the edges or elsewhere that would keep the method from giving the
solution in Eq. (3-8). That is, the solution must handle the problem
described in item (d) above. Further discussion of the scale factor
problems on F(x) is given in Section XII.

(g) Computer limitations. Since most of the methods studied in
this report involve the inversion of matrices of large order (either
41 by 41, 42 by 42, or 20 by 20 from Egs. (3-3) to (3-5)), the question
of the accuracy of the inversion on the digital computer must be consid-
ered. On the IBM 360 system used, single precision arithmetic uses
8 digits and double precision arithmetic uses 16 digits. It was found
that the 8-digit arithmetic was insufficient for several methods, so
that it was decided to do all the calculations in the report using
16-place arithmetic. Even so, one method of solution could not be com-
pleted because 16 digits was insufficient.

The above listed factors influencing the solution of the equations
will be considered in each method of solution in the following sections.
Several function methods using power series and Fourier series, a collo-
cation method, an iteration procedure, and an inversion integral solution
are described. In each case, the solution is set up in mabtrix form using
forty (40) equal intervals across the mirror. In the solution form

[£] = [G][F] (3-9)

vhere [f] is a 41 by 1 matrix for the mirror distortion at 41 points on
the mirror, including edge points, and [F] is 41 by 1 for the same

41 points (as observed in the knife-edge test on the line). The [G]
matrix (41 by 41) is derived as a product of various matrices for each
method of solution. The results given by all the methods for selected
F(x) functions as well as the [G] matrices are compared in Section IX
for the case of no hole in the mirror. The Cassegrain type of mirror
is considered in Section X.

IV - POWER SERIES SOLUTIONS

The integration in the integral equation (2-12), or

1
P(x) = ..J f_(uii)_ dt R (4-1)

t - x

is simple to perform if f(x) is assumed as a power series

J
£(x) = z%-AdXJ (h-2)

10
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F(x)
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J
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1 Jjg-1

c,
|

J [l - (_l),j-k+l]xk-l
3—1 kZ:l j-k+ 1

J J
_ . i-1 [1 - (-1)k=d+1]a,
- 2; Sy k-j+1

AJ[l - (-l)J e

[tJ'l +6972x + eee + tx372 4+ xI~3]at

]

(4-3)

(4-h)

Note that the form for f(x) in Eq, (4-2) makes the C; constant in

the homogeneous solution, Eq. (3-6), zero.

Since Eq. (4-3) has no zeros in the denominator, it should be a
simple form to solve for the Ajy constants. Three different methods of

solution were made, as described below.
Method A, Expand F(x) in a power series
J
F(x) = ) By xi™t
J=1
so that Eq. (4-4), for like powers of x, gives

dJ

k=4+1
BJ-l = - Z [l = (-l) ] Ak

k=j k-3+1

(k-5)

(4-6)

The Ajy constants can be obtained from the Bs constants in Eq. (4-6) by

a back recursion, in which



Ay = - % Bra
AJeq = - % Brez
Ajz = - % [BJ_3 + % Aj]
Ay-s = - 2 [Brea + £ a0
Ageitr = - i[BJ—i + ii:l Lo () AJ-k+1-l (4-7)
2 = i+1-k ]

i=2,3,°°,d

In matrix form
[c1A] = [B] 1
C:is =0, j<i

- L (4-8)
Cig = - [l.- (Tl)d ] s J
jJ~-i+1

v
'_lo

[A] = [C]-%[B] )

1l

To calculate the By constants multiply Eq. (4-5) by x*~! and inte-
grate to get

1
. J _ 145-1
] #7 F()ax = 3 By = (-1) (4-9)
-1 J=1 i+3J-1
or

Wi J 1+5-1

Z X’j_l F(XJ) HJAX = Z BJ-l 1 - (-]:)

J=1 J=1 i+ -1 (4-10)

where Hy are the Cotes numbers for the numerical integration. In matrix
form, Eq. (4-10) is

ng [XJ[HI[F] = [DI[B], M equal intervals, (4-11)

12



where [B] is a J by 1 matrix for the By, B;,***; By-y constants, [D] is
J by J with the elements

g - £'§)1+i'l , (4-11a)

Dis

[F] is (M + 1) by 1 for the value of F(x) at the (M + 1) equally spaced
points, [H] is a (M + 1) by (M + 1) diagonal matrix with the H; numbers
on the diagonal, [X] is a J by (M + 1) matrix with elements

-1
X33 = X3 (4-11Db)

The matrix [D] is ill-conditioned and could not be inverted for the case
of twenty constants (J=20) using sixteen place arithmetic on the computer.
However, the [D] matrix is similar to the Hilbert matrix. By changing
the x variable to make the interval of integration from 0 to 1 rather
than -1 to 1, the resulting [D] matrix is exactly the Hilbert matrix with

1
Dis = ——
L i+3-1

From page 139 of Ref. 4, the élements of the inverse of the Hilbert
matrix are (matrix size J by J)

(-1)*"9 (gea-1)1(g45-1)1 .
(1+3-1)[(1-1)1(3-1) 213 (T-1)1(T-3)! (4-12)

IDyy =

For the case of J = 20, the numerator and denominator for some elements
in Eq. (4-12) were too large for the computer to handle, so that a
recursion multiplying factor had to be used, starting from ID;, = J=.
This gave the elements, but they varied from ID,; = 400 to

IDis,1s = 3.6(10)27 for the case of J = 20. With these elements in

[D]~+ for
[B] = [DI"Y[XIHIIF] (4-13)

it is evident that a sixteen place computer camnot produce values of By
of the order of 1.0. In fact, it gave By of order 10! as might be
expected (order 27 minus order 16 = order 11).

This result shows that a numerical function cannot be expanded
directly into a power series with large order terms by regular computers
with a limited number of digits in the calculations. Naturally, if the
function and its derivatives are known, then the expansion is the
Maclaurin series with the Bjy being given by the derivatives at x = O.

13



Since the solution could not be obtained for a sufficiently large
number of constants using the available computers, method A has not been
completed in this report.

Method B. Multiply Eq. (4-3) by x%-1 and integrate to get

J
Z KiJAJ = E:l: i= 1,2,00., J ().l._l)_l.)
J=1
where
-1
J J=ktL Ttk
K’.J = = Z‘L [l - (—l)- ][l ‘- (—l)i l:l
k= (5~k+1) (k+i-1) (4-16)

This method expands F(x) in a power series but does not calculate the
By in Eq. (4-5) directly. Instead, the A; are calculated directly from
Eq. (4-14). If desired, the By can then be obtained from Eq. (L-6).

In matrix form, Eq. (4-1k4) is

[K1[A] = [E] = = [X][H][F] (4-17)

=1

where Egs. (4-15) and (4-10) have been used. Here [A] is J by 1 for
the J unknown Ay constants, [K] is J by J with elements in Eq. (4-16),
and [X], [H], [F] are as for Eq. (4-11). Now Eg. (4-2) gives

[£] = [Y][A] (L-18)

where [f] is (M+l) by 1 for the results at the (M+l) equally spaced
points, and [Y] is (M+l) by J with the elements

Yy, = %0 (4-19)

Now, if Eq. (4-17) is solved for [A] and the result put in Eq. (4-18),
there results

[£] = [GI[F] (4-20)
[6] = ﬁ- [YI[KI~ X 1[H] (4-21)
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where [G] is (M+l) by (M+1) and operates on the (M+l) values of F(xy) to
produce the (M+l) values of f£(x;) at the same points.

For the case of J = 20 constants for the Ay in Eqg. (4-2), it was
found that the largest terms in the 20 by 20 [K]"* were of the order of
10%3, which is much better than the terms of order 10°7 in Method A.
However, with 16-place calculations in the computer, there appears to
be some round-off error in the [K]™t matrix so that 20 constants probably
represent the maximum number that can be used in a 16-digit machine for
this Method B solution.

Results for f(x) using Eq. (4-20) for selected F(x) functions or
point data are given in Section IX together with a discussion of the
results,

Method C. Take Eq. (4-3) as

J J
Fy = F(xg) = ), AyBy(x1) = ) Bishy (4-22)
J=1 J=1
where J J=k+li k-1
1 - (-1
Big = By(xa) = - L ? ) Jxi
K= jJ-k+1
(L-23)
i=1,2,0°, M+ 1 for (M+l) points

Solve for Aj directly without expanding F(x) in a power series. This
is a collocation solution for Eq. (4~3). In matrix form

[F] = [BI[A] (h-24)

where [A] is J by 1 for the J constants Ay, [B] is (M+l) by J with ele-
ments in Eq. (4-23), and [F] is (M+1l) by 1 for the (M+l) point values
of F. Unless the same number of points as constants are used [B] is a
rectangular matrix and cannot be inverted to give [A]. However, if

Eq. (4-24) is multiplied by [B]T, the tramspose of [B}, then [B]T[B] is
a square matrix with positive diagonal terms that can be inverted. Thus

[BIT(F] = [BIT(B][A]

[A] = [BYB]"[BIT[F] (4-25)

whence
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If this [A] is put into Eq. (4-18) there follows
[£] = [G][F] (4-26)
[¢] = [YI(BTBI-*[BIT (L-27)

where [Y] is defined by Eq. (4-19) and [B] by Eq. (4-23).

This procedure of using the transpose of the matrix to obtain a
solution is equivalent to solving Eq. (4-24) in the sense of least
squares. See Appendix A for the proof of this statement.

It should be pointed out that this power series Method C is the
only method of solution presented herein that does not involve a numerical
integration. -However, multiplication by [B]T is equivalent to an indirect
numerical integration using the trapezoid rule. This operation is similar
to the multiplication by x'™* in Method B, followed by a numerical inte-
gration.

For the case of J = 20 constants for the Ay, it was found that the
largest terms in the 20 by 20 [BTB]~! matrix were of the order of 101<,
which is an improvement over the Method B inverse matrix. Results given
by Eq. (4-26) for power series Method C are described in Section IX.

V - FOURIER SERIES SOLUTIONS
By making a change of variable
X=cos O , t=cos o (5-1)

it is possible to solve the integral equations (2-11) or (2-12) by using
Fourier series expansions. One procedure is to change the variable in
the power series form in Eq. (L4-3) and obtain the relation between the
constants for both f£(x) and F(x) in Fourier cosine series. Katzoff has
used this method in Ref., 2. A brief description of the procedure using
matrices is given below as Fourier series Method B. Another procedure
is to expand f(x) in a sine series and F(x) in a cosine series, in which
case the integrations for Eq. (2-11) can be made directly. This method
is described below as Method A.

16




Method A. Use the change of variable in Eq. (5-1) and take

N
f(x) = £(cos 8) = ). A, sin (nd) . (5-2)
n=1
Since
X==lgives 0 =n. , x=1gives 6 =0 (5-3)

the form (5-2) restrains f£(x) to be zero at the ends. If f(x) 40 at the
ends, then £(x) must be regarded as discontinuous at the ends, which
requires many more terms in the series to obtain convergence. Equation

(2-11) now becomes

sin @
F(8) =2 lo _— An sin (n6
©) g(1+cos.e>zln (n6)

- Z An f sin (np) sin @ dp (5-1t)
=1 cos @ - cos g
By using the identity
2 sin (ng) sin ¢ = cos (n-1) @ - cos (n+l) @ (5-5)

the integral in Eq. (5-4) can be changed to the form of the Glauert
integral (Ref. 5, p. 92-93)

J’“ cos (mp)dp _ x sin (mo) (5-6)

O cos ¢ - cos 0 sin 6

which occurs in thin-airfoil theory and finite-wing theory of aerodynamics.
This gives

.[ﬂ sin (ngp) sin @ dp _ x sin (n-1)6 -~ sin (n+l)e
0 cos @ - cos 6 2 sin 6
= - cos (n6) (5-7)

so that

F(B) =2 lo sin 6 ) An sin no + x An cos ne
(®) g(l + cos 0 n & (5-8)
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Expand F(6) in a cosine series by multiplying Eq. (5-8) by cos m@ and
integrating from 0 to . Thus

N
A, + ‘v—:‘LKmnAn:Em > m=0,l,°°+, N -1 , (5-9)
e
where i
o (*
B, =5 [ F(6) cos moas (5-10)
T 0
" in 6
K., = _2f log| —S1 O ) sin no cos mods (5-11)
7o l+ cos 6
Ao = O .

The integral for XK,, in Eq. (5-11) is evaluated in Appendix B to give

Kun =0 , form+ n odd A
y &
Kom = = —= E m=n ,
m” ) 2k
(5-12)
(mn)/2 )
-8 / 1
e th(m+n) <=1 2k - 1
| m-n)/2]
+ 8 S » for m+ n even
72 (m-n) 2k - 1 /

Since there is no A, term in Egs. (5-2) and (5-9) but F(6) may have
a constant term, it is necessary to use care in writing Eq. (5-9) in
matrix form so as to properly include the m = 0 case, If them = 0
equation in (5-9) is put in the last row rather than the first row, then
the matrix equation takes the simple form

[I+K]J[A] = [E] (5-13)

where [I] is the N by N identity matrix with element Iyy = O, [K] is
N by N with the elements in Eq. (5-12) but with row N hav1ng m=0 or

18



Kyy = O for n odd

n/2
16 1 for n even (5-1k)

n? -1 2k - 1

and [E] is N by 1 for the values of the integral in Eq. (5-10) for
m=21, 2,°**, N - 1, O, respectively. [A] represents the N unknown

constants.
The matrix form of E, for the numerical integration for point values
of F(0) is
[E] = £ [CIMH][F] (5-15)
T

where [C] is W by M (N constants and M points for the numerical integra-

tion) with elements
(5-16)

Ciy = - cos iy , cos Nz = -1,

[H] is the M by M weighting matrix for the numerical integration, and
= =1 so

[F] is M by 1 for the M point values of F. Here 6, = n for x
that the numerical integration starts at the upper limit in Eq. (5-10).

Put Eq. (5-15) into Eq. (5-13) to get the constants A, in Eq. (5-2)

[A] = f; [T+K 1~ [C 1[H][F] (5-17)
The matrix form of Eq. (5-2) is
[£] = [s][A]
where [S] is M by N with elements
Siy = sin jo; (5-18)
Finally,
(5-19)

[£] = [GlIF] -
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[¢] = = [s](+K]-2(c]H] (5-20)
i

where [G] is M by M and operates on the M values of F(GJ) to produce
the M values of £(03).

Equal AxX and Equal A9 Intervals. Since a change of variable
(Eq. 5-1) is used in the Fourier series analysis, there arises the ques-
tion of what intervals to use in Egs. (5-19) and (5-20). If equal Ax
intervals are used, then the A9 intervals will be unequal. On the other
hand, if equal AP intervals are used, then the Ax intervals will be
unequal., Since the other methods of solution presented herein use equal
Ax intervals, it is desirable to calculate f(x;) at equal Ax intervals
in order to make a direct comparison with the other methods in Section IX.
This was done by using 6; in Eq. (5-18) at the equal Ax intervals. On
the other hand, the numerical integration involving Eq. (5-15) can be
done either way by using 63 in Eq. (5-16) for equal Ax or equal AS with
the corresponding values of F(8;), either calculated in selected cases
or interpolated in actual cases. The case of equal Ax is given in
Section IX for this Method A using the trapezoid rule for the matrix [H].

Special Numerical Integration Procedure. As pointed out in paragraph
(c) of Section IIT difficulties may occur in the numerical integration
for function methods, particularly for cyclic functions. For the case
of 20 constants and 41 points used in this report, it was found that the
trapezoid rule for the matrix [H] in Eq. (5-20) gave poor results for
both equal Ax and equal AP.(see Sec. IX for Ax results). In order to
improve the numerical integration in Eq. (5-10), the cosine function was
integrated across each interval (both for equal Ax and equal A9) with
F(6) being held constant over the interval., Thus

(0148141 )/2

(8:+01~1)/2

](91+91+1)/2

F(0) cos modo = F(ei)[sin mo
= (ei'l'ei-l )/2

- F(6y) [Siﬂ g (6146141 ) - sin g ( 91"‘91—1)] (5-21)
m
The matrix [C][H] in Egs. (5-15) and (5-20) is replaced by a matrix

D] = [clH] (5-22)

where, from Eq. (5-21), the elements of [D] are (6, = x, 6y = 0)
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D = 5 (t-62) 5 Dt =3 O

1 .
DNg = - E (95+1'GJ-1) s J = 2,3,°°, M -1,

D1M=lsin(%em_l) , i=1,2,3,2%+, N -1

i
1 (5-23)
Dig = ('l) DiM 5 is= 132:33"'9 N-1
1 . 1 i
Dyy = - = [Sln -~ (93+95+1) - Sin — (e,j"'ed-l)]:
i 2 2
i#N, j#1, M
The [G] matrix in Eq. (5-20) becomes
(6] = & [sI[T+k]™*[D] (5-24)
7

where the elements of [S], [K], and [D] are given in Egs. (5-18), (5-12),
(5-14) and (5-23), respectively. Also, Iyyg = O in [I].

The matrix [D] in Eq. (5-24) can be calculated for equal Ax or for
equal AP. Results for the Ax case are shown in Section IX for Method A.

Method B. This method uses the change of variable in Eq. (5-1) in
the power series method after integration, Eq. (4-3), and relates the
Fourier cosine series constants for f£(x) and F(x). The details of the
procedure is given by Katzoff in Ref., 2. A brief outline of the method
in matrix form is given below so as to set up a form similar to the
other methods in order that results of all the methods can be compared
directly. Put Eq. (5-1) into Eq. (4~5) to get

J J-1
F(6) = ) Bj-y(cos 6)3=* =By + 3 (cos 6)IBy (5-25)
j:l j'—'—'l

Take the Fourier cosine expansion of F(6) as
Jd=1

F(8) = 2+ 3 Py cos 30 (5-26)
2 j=1
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where the Py may be regarded as known,

Py

7

2

n

F(6) cos ;jBde (5-27)

A

Now the Bjy constants in Eq. (5-25) can be obtained in terms of the

known P; constants in Eq.
in Ref, 2:

(5~26) by using the summation form of Eq. (7)

cos né = i (-l)in(n'i-l)!(2)"-25'-1(003 9)5-21 3
i=0 (n-2i)1it
K=2-1 for n odd >(5 28)
B ) ’ ) -
K = % , for n even . )

Substitute Eq. (5-28) into

the form for F(6) in Eq. (5-25).

Eq. (5-26) and equate the result for F(6) to
The coefficlents of corresponding

(cos 9)J terms on both sides of the resulting equation must be equal so

that
J-1
By = o, 1 > [T - (-1)3+1](-1)3/2 B, 3
J=-1 (_l)(«i-m)/E[l - (_l)J+m+1]2m-2(j)<.‘j-l-é;-2.>le P(5_29)
B, = -
& 1(d - m\s
o m'( 2 )
m=1, 2,°00, J -1 . ’
In matrix form, Eq. (5-29) is
[B] = [R][P] (5-30)
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where the elements of [R] are

Ry =0 , J<i , \
(-l)(é—i)/e[l - (_1)3+1+1]21_3(j_1)(j + é - %>!
e 3 -1\ > ) (5-31)
(i-l)!(“—g——)!
i>i ,
Ria = % . J

The Ay constants in Eq. (4-2) are related to the B; constants by
Eq. (4-8) as

(Al = [Q]"*[B] (5-32)
where the Qi elements are
Qg =0 , J<i
(5-33)

- - J-iti
PEENC S R
Jd = 1

Q1

Hence, the Ay constants can be expressed in terms of the Py constants
by putting Eq. (5-30) into (5-32) to get

[A) = [Q)-*[R][P] (5-34)

The numerical integration for the Py constants in Eq. (5-27) is similar
to that for the E; constants in Egs. (5-10) and (5-15) for Method A.
Thus

[P] = §-[c][H][F] = 2 [p1[r) (5-35)

for the special form in Egs. (5-22) and (5-23). However, the last row
in [D] should be transferred to the first row in the [D] for Eq. (5-35)
in order that the {P] matrix be compatible with the [R] matrix in

Eq. (5-34).
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Since it is desirable to calculate f(x;) at equal Ax intervals in
order to compare the results to the other methods, Eq. (4-2) or (4-18)
can be used for f(x) to give

[£]1 = [GI[F] (5-36)
[e] = f-[YJ[QJ-l[RJ[DJ (5-37)

where Eqs. (4-18), (5-34), and (5-35) have been combined. Here, the [Y]
matrix should be calculated from Eq. (4-19) for equal Ax intervals, but
the [D] matrix should be calculated for equal A9 intervals (Eq. (5-23)
with row N used as row 1. This requires that [F] in Eq. (5-36) be known
at equal A9 intervals. If the Fjy values are given at equal Ax intervals,
then an interpolation matrix can be used to calculate Fjy at the equal

AO intervals. For this case [G] in Eqg. (5-37) becomes

(6] = 2 [v1[a]-*[RI[D][m] (5-38)

with [IM] an interpolation matrix. Results are given in Section IX for
a straight line interpolation matrix and for exact Fy at equal A9, using
a selected F function.

To calculate f; at equal A9 intervals, as Katzoff does in Ref. 2,
a further modification can be made to the [G] matrix in Eq. (5-37).
If f£(6) is expanded in a Fourier cosine series without the constant term,
as

J
() = ). Hycosjo , (5-39)
J=1

then a relation between the Aj constants in Eq. (4-2) and the H; constants
can be obtained in the same manmer as above for the relation between the
B; and P; constants in Eq. (5-30). Thus

[A]l = [8][H] (5-40)

where
S43 =0 , for j<i , A

(—l)(d-i 2 [l - (_l)d+i+l]2!. '2(j)<j—+;_-g>! (5-41)

0 - ’ ’
(3 -1
1!( )I
2
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Put Egs. (5-40) and (5-30) into Eq. (5-32) to get

[sim] = [Ql"*[R][P]
or (5-42)

] = [s17tQl-t[RrI(P]

It can be shown that 1
[s17*[Q1I™*[R] = 5 fQl~* (5-43)

SO 1
[H] = 5 [Ql=t[P] (5-b4)

which corresponds to the relation given by Katzoff in Ref., 2. This

Eq. (5-44) gives the constants in the Fourier cosine series for £(9) in
terms of the constants in the Fourier cosine series for F(6). Thus,
for f£; at equal AP intervals

[f1] = [cos jo; 1[Hj] (5-45)
whence

[£f] = [G]IF]

[G] = % [T1[Q]"2[D] (5-46)

where the elements of [T] are
Ty5 = cos 363 (5-47)
and [Q]™t and [D] are the same as in Eq. (5-37).
In Ref., 2, Katzoff uses the same number of points as constants,

does not include the end points, and uses the trapezoid rule so that his
[D] matrix has the elements

Dyy = cos (i-1)6y , 1i,j = 1,2,3,°°*, N (5-48)

with [D] being a square matrix.
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VI - COLLOCATION SOLUTION

In Sections IV and V, function methods of solution of Egs. (2-11)
or (2-12) using power series and Fourier series have been described.
Another method of solution, which is simple to apply, is a direct collo-
cation on Egs. (2-11) or (2-12). Take Eq. (2-12) in the form

1
F(x;) = ilp £(t) - £(xy) g4 (6-1)

t - x
. 1

which gives M equations for M x; points. Now, a numerical integration
can be made on the unknown function f(t). Since f(x;) occurs under the
integral, it is necessary to use the same points in the numerical inte-
gration as in the Egs. (6-1) in order to get a determinate system (see
P. M55, Ref. 3)-

The question arises as to which of Egs. (2-11) or (2-12) to use in
the collocation. It is evident that the edge points cannot be used in
Eq. (2-11), as the log term becomes infinite at the ends. Also, the
integrand in the integral in Eq. (2-11) becomes infinite at t = x.
However, this problem can be handled by using the Cauchy principal value
for the integration. It was also found that the collocation solution
using Eq. (2-11) gave a rigid body rotation to the f£(x) solution (item
(f), Section IITI). This rotation apparently resulted from the first term
in Eq. (2-11) being exact, while the integral was approximate. Now, if
f£(x) is continuous, these problems do not arise in Eq. (2-12). This can
be shown by expanding f(t) into a Taylor's series about t = x:

£(t) = £(x) + £ (x)(t=x) + .f_§(3£l (£=x)2 4ooe (6-2)
This gives the integrand in Eq. (2-12) as

g(t,x) = M = f‘l(x) + .f_l'(i) (t-X) foee (6_3)
t -x 21t

Thus, for t = x,

g(x,x) = £'(x), t=x (6-4)

and the integrand is finite and continuous at t = x, if f£!(x) is
continuous.
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Further, from Eq. (6-3)

g (x,x) = g £ (x), g"(x,x) = % £ (x), t=x . (6-5)

This indicates that for any derivative of f(x) that is discontinuous,
the next lower derivative of g(x,x) will be discontinuous, and the cor-
responding derivative of g(x,x) will be infinite. As pointed out in
paragraph (b) of Section III, the behavior of these derivatives will
affect the numerical integration in Eq. (6-1). Further discussion of
these derivatives in the collocation solution is given for selected
functions in Section IX.

On the basis of the above discussion, Eq. (2-12) or Egq. (6-1) will
be used in the collocation solution., With numerical integration,
Bq. (6-1) becomes

M
>, (ory £(xg) = £(x1) _ | p(yy) (6-6)

J: XJ = xi

where the Hy are the Cotes numbers for equal intervals in the integration
(paragraph (b), Sec. IIT). For the M points and M-1 intervals on
X=-ltOX=l,

x5 = (§-L)ax =1, x5 = (i-1)ax -1

(6-7)
px = —2
M -1
and Eq. (6-6) becomes
4 £ f
z; Hy 41— L= - Fg;i=01,2,000, M3 J # i (6-8)
J: J - 1
As j —1i, Eq. (6-L) gives
e L A PV
j=-4i
= fay = Fyy ; fasa i 41,M (6-9)
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At the end points, i = 1 and M, the three point Lagrangian differentiation
formula (p. 516, Ref. 3) gives

- 3fl + )-I-fz - f3

£ =

* 2(ax)

1 fmes -~ Ufmay + 31
£l _ Im-2 M-1 M =10
M 2(Ax) (6-10)

These Eqs. (6-8)-(6-10) can be combined into a matrix equation
[a]l£] = - [F] (6-11)

where [A] is M by M for M points with the elements

\
Ao =2H, +Ha , Ars = % (Hz-Hy)
1
Apsm-1 = -2Hm - Hpu-1 5 Amem-2 = 5 (Hm-Hm-2) >
1 )
Ay,3-1 = -Hia - > Hy
1 (6-12)
Ay,i41 = Hypa + §‘Hi
Ay =4 |, 143 , except above values,
j -3
M
Agg = - ) A;y , see Eq. (6-8) . J
J=1,3#i

Since the diagonal elements A;; are the negative sum of all other elements
in each row, it is evident that when f(x) is constant, F(x) will be zero
as required by the homogeneous solution in paragraph (c), Section III.
This result is not given exactly by Eq. (2-11), since the log term on the
diagonal is only approximated by the negative sum of the other elements

in each row.

Since all rows of the [A] matrix in Eq. (6-12) add to zero, the
matrix [A] is a singular and cannot be inverted. It is necessary to add
a boundary condition on f(x) to obtain the homogeneous solution in
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Eq. (3-6). To correspond to the power series solution in Section IV,
which made £(0) = 0, the restraint condition

£(0) = fmiv) /2 = 0 (6-13)

was selected. Now the system of equations in (6-11) and (6-13) has M + 1
equations in M unknowns, To solve such a system, multiply by the matrix
transpose, as in power series Method C above. In this case, the resulting
system of M equations for the M unknowns can be expressed as

[BI[£] = - [AIT[F] (6-1k)

(8] = [A1T[A] + [c] (6-15)

where the elements of [C] are

Cisg =0 , C(mtr)/25( m+1)/2 = 1.0 (6-16)

The [B] matrix is nonsingular so that
(£] = - [BI"*AJT[F] = [GI[F] (6-17)
[¢] = - [B]-*[a]T (6-18)

Results given by Eq. (6-17) for selected functions of F(x) are
shown in Section IX and compared to the results of the other methods.
The [G] matrix in Eq. (6-18) is also compared to the other [G] matrices

in Section IX.

VII - ITERATION SOLUTIONS

Iteration is a classical procedure for solving integral equations.
However, when numerical integration is involved in the iteration and
the equation has singular points, difficulties can arise. As pointed
out in Section VI on the collocation solution Eq. (2-11) has infinities
in the log term at the end points and has a singularity at t = x. Yet
Eq. (2-11) is in the form needed for iteration so that it should be used
rather than Eq. (2-12).
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Equation (2-11) can be written in two forms for iteration

Ta(x) = [F(X) +f —“%lft—}){dt]
log(1+ X

1
[ a2 r e s (352)

= Gm-l (X)

(7-1)

(7-2)

The form in Eq. (7-1) requires a direct integration to get the next
f.(%x) while the form in Eq. (7-2) requires the solution of a well-known

integral equation for which the inversion integral is known.

The form

in Eq. (7-1) was found to be divergent so that the following discussion

is restricted to Eq. (7-2).

The solution of Eq. (7-2) for f,(x) is given as an example in

Section VIII. From Eq. (8-40)

1 .
_X(x) | Gp-r(t)at
- f x(t) (bx) * B

(7-3)

where the possible forms of X(x) and ¢p(x) from Egs. (8-41)--(8-LL) are

1 c
X (x) = e, o () = =,
N N
f,(x) may be unbounded at x = * 1;
N D ¢ =
Xa(x) = s Qha(X) =0 ,
f,(x) may be unbounded at x = -1;
Xa(x) =4 [2FX , oy (x) = O
1 - > Yhag s
f,(x) may be unbounded at x = 1;
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Xol(x) =1 - &, tp,(x) =0 ,

(7-7)
f,.(x) is bounded, but Eq. (8-45)
restricts G,_3 (t).

Since f(x) is actually bounded in the problem under consideration, any
of the four forms in Egs. (7-4)-(7-7) may be used for X(x) and X(t) in
Eq. (7-3). For the numerical integration in Eg. (7-3), the form X (x)
will make the integrand zero at the ends while the other forms will make
it infinite at one or both ends. Necessarily, the end points must be
omitted in the calculations, but the total area in the integral must be
included. A reasonably accurate representation of the area near the ends
can be obtained for the X; form, but only a rough approximation can be
obtained for the other forms. The matrix form for all the cases is as
follows.

Start with £, = O as the first approximation in the iteration
procedure so that

1
_ X(x) F(t)dt _
1 (x) - j-; X () (bx) (7-8)

where ¢,(x) = O for all cases. In matrix form

(£ ] = i%-[XD][AI][XD]‘l[F] (7-9)

where the same points are used for x and t and

Xp(i,3) = 0 , Xp(i,i) = X(x1) (7-10)
Ap(i,3) = Agy in Eq. (6-12) , 1 #
Ap(1,1) =0 , M2 =Hz, Mo=ZHs (7-11)
Apmsm-1 = ~ Hm-15 Amom-2 = - %Hm-z

The numerical integration matrix [AI] is taken in the same form as that
for the collocation method in Section VI,
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For the iteration from Eg. (7-2) and Eg. (7-3)

-t
jl F(t)dt " £ (t) log (L_t) dtJ

%) = X(x -
fa(x) - [ X(t) (t-x) , X(t)(t-x)

- X(x) £y (t) log 1 = t)dt
x j X() (t-x)

-1

(7-12)

or

[£2] = ﬂiz Xp A7 [Xp 1 1(F] - % [Xp [A7 1[L1[Xp 125, ]

=[ﬂi2 plar)Bip] ™ - = [XD][AI][L][AI][XD]'l] (7]

- _1;2. [Xpl[I + J1[A71[Xp1~2([F] (7-13)
k1

where [I] is the identity matrix and

[a]

- ;15 [Ap1(L]

(7-1k)
Liy =0 , Ly = lO%(i—ﬁi—)
The form for fa(x) is
£a(t) log (3= )at
_ _X(x) 2 1+t
fa(x) = f1(x) = f X(6) (b-x)
or
[£a] = f.‘,- [Xpl[I + J + J21[A71[Xp]-2[F]
After m iterations,
[f.] = [G,I[F] (7-15)
[G,] = % [Xpl[I + J + J2 +eot g 1[A7][Xp]"2 (7-16)
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It should be noted that as m »« in Eq. (7-16),
[Gal —»[6] = = [XplT -~ 312 [ATI[Xp]™Y, m >e . (7-17)

However, this limit value of [G] is just the [G] for a collocation
solution of Eq. (7-3) with ¢, = O, £, = f,~3. That is, Eq. (7-3) becomes

-t
= (x) _ * F(t)at  _ TE(t) 1og(i T t)d‘t
X(x) L X(x)(t-x) ), X(£) (t-x)

or

[Xpl™t[fa] + ﬂ—lz- [A7 LI[XpI ™ [ £,] = ;15 [A7I[Xp17LF)
or, by use of Eq. (7-14),

[T - J1XpI~(£,] = ;]:2. (A7 )(Xp1"L(F]

whence

[fn] = [GI[F] (7-18)

where [G] is given by Eq. (7-17). This indicates that the iteration
solution can only approach a collocation solution of Eq. (7-3) with

Gp-1 (t) given by Eq. (7-2) and f,-; = £, at convergence. Because of the
log term and the X(t) term in Eq. (7- 3), it appears that a collocation
solution of Eq. (7-3) would be less accurate than the collocation solution
in Section VI for the original Eq. (6-1). Thus, there is little justi-
fication for using a collocation solution' on a modified equation or for
a iteration solution in this particular problem, as compared to a collo-
cation solution of the original equation. However, to get some idea of
the behavior of the iterations and of the different forms of the X(x)
function, the Eqs. (7-15) and (7-16) are used for five iterations on a
selected function in Section IX for the X; and X, forms, Egs. (7-4) and
(7-5), and the results compared to the other methods. For the X form
in which the integrand in Eq. (7-3) becomes infinite at x = 1, the (A7 ]
matrix in Eq. (7-11) was modified to include the approximate 1ntegrated
area over the interval adjoining x = 1. Examination of the powers of
the [J] matrix in Eq. (7-16) shows for both X, and Xz that up to the
fourth power, most of the elements are decreasing but some are oscillating
and some are actually increasing. Because of the approximations in the
numerical integration it does not appear that all the elements in Jm~%
will become zero for a practical number of m iterations. This error
accumulation can be avoided by using the limit form in Eq. (7-17), but
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then this is not an iteration solution but a collocation solution.,
Further discussion of the iteration results is given in Section IX.

VIIT -~ INVERSION INTEGRAL SOLUTION

- It is possible to obtain a solution for both the solid mirror,
Eq. (2-11), and the mirror with a central hole, Eq. (2-13), in an integral
form by using methods described by Muskhelishvili in Ref. 6. Although
the formula from which the solutions can be obtained is given on page 328
of Ref. 6, the definitions, conditions, and derivations leading up to
this particular formula are spread throughout the book. The derivations
are made for the complex plane and the equations are in terms of the
complex variables z and t. A brief outline of the derivation of the
solution is given below.

Consider the limiting value of the Cauchy integral

z) = L o(t)dt _
°(z) 2nif£ t -1z (8-1)

as z approaches t, on the arc or contour L. If @(t) satisfies a Holder
condition on L of the form

lo(ta) - @(t1)] < Altz - t /¥ , H condition, (8-2)

where A and k are positive constants, then Muskhelishvili (Ref. ) shows
that ¢(z) is continuous on L from the left and from the right, with the
exception of those ends at which ¢(t) # 0. Further, ¢(z) tends uniformly
to the limits

_1 1 | o(t)dt _
" (10) = L ato) + g2 [ olulat (6-3)
- 1 1 [ o(t)at i
@(to)-—gcp<to>+2ﬂi{t_to (8-1)

from the left of I. and from the right of 1, respectively. Here, L may

be a union of smooth, non-interesecting arcs or contours, Ly, Lp:+<Lg,

with definite positive directions with the + region on the left. These
equations can be written in the form
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ot (to) - 07 (to) = o(to) (8-5)

& (to) + 0™ (o) = %{g*t_),f; - 20(to) (8-6)

The function ¢(z), holomorphic in the complex plane, except possibly at
infinity, and continuous on L from the left and from the right with the
possible exception of the ends by, near which the inequality

lo()] < s o< Bl (8-7)

holds, is called sectionally holomorphic with the line of discontinuity
L or boundary L.

From Eq. (8-5), it is evident that the Cauchy integral formula
solves an important boundary value problem. That is, it is required to
find a sectionally holomorphic function #(z), zero at infinity, and
satisfying the given boundary condition

at(t) - o=(t) = p(t) onL . (8-8)

If ¢(t) satisfies the H condition, Eq. (8-2), the solution for &(z) is
given by Eq. (8-1).

In his book on "Singular Integral Equations,"(Ref. 6) Muskhelishvili
develops this procedure of solving boundary value problems and applies
it to various boundary value problems and integral equations. To arrive
at the integral equation form that is suitable for the subject problem
(Egs. 2.11 and 2.13), it is necessary to first consider the Hilbert
boundary value problem for both the homogeneous and nonhomogeneous cases.

Homogeneous Hilbert Problem

The homogeneous Hilbert problem can be stated as : To find a
sectionally holomorphic function @h(z) of finite degree at infinity
satisfying the boundary condition

oh(t) = G(t)op(t) on L (8-9)

where G(t) is a given non-vanishing function on L, satisfying the H
condition.
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Take logarithms on both sides of Egq. (8-9) to get
log o(t) - log op(t) = log G(t) (8-10)

which has the form of Eq. (8-8) above. Thus, the formal solution for
log ¢, is given by Eq. (8-1) as

2ni 7, t -2z

. oy (z) = eP(2) | P(z) = 2; { 1°tg _G(Zt) dt (8-12)

There are two difficulties with this solution for oy, (z) in Eq. (8-12).
The function log G(t) is multivalued and the solution for @, may not
obey Eq. (8-7) at the ends of the ares Ly (j = 1,°°°q) of L., These
difficulties are resolved by Muskhelishvili (pp. 230-234, Ref. 6) in
the following manner.

Near any end by(k = 1,-++, 2q), P(z) in Eq. (8-12) can be written
in the form

log G(by)

2ri

P(z) = 7 log (z-bx) + Po(z) (8-13)

where P, (z) remains bounded near by . Thus

akfick

eP(2) = (z-by) a(z) (8-11)

near bk, where ax and cix are real constants given by

- Log G(by) (8-15)

ax + iCk = o1

and Q(z) is a non-vanishing function bounded near b, . Now select
integers Ny, satisfying the conditions

Sl<ay + <1 (8-16)

and put
T(z) = (Z-bl)xl(z-bz)xz'"(Z-baq)xzq . (8-17)
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Then the function

X(z) = 7(z)eP(2) (8-18)

satisfies Egs. (8-7) and (8-9) and is a solution of the homogeneous
Hilbert problem.

Since Eq. (8-16) may permit two values of N for some k values,
the solution X(z) is not necessarily unique. TIts form will depend upon
what requirements are placed upon the solution at the end points. If
the solution is to be bounded at certain end points, then one form
results. If it is permissible for the solution to become infinite at
some end points (under condition (8-7)), then a different form of the
solution results. Muskhelishvili (p. 231, Ref. 6) divides the solutions
into classes on basis of the end point requirements and shows that the
most general solution in a certain class has the form

on(z) = X(2)R(2) (8-19)

where R(z) is a arbitrary polynomial of order depending upon the desired
behavior of the function at infinity. Thus the solution of the homogen-
eous Hilbert problem has the form

on(z) = T(z)R(z)eP(2) (8-20)

where P(z) and T(z) are defined by Egs. (8-12) and (8-17), respectively,
and R(z) is a polynomial with arbitrary constants.

Nonhomogeneous Hilbert Problem

The nonhomogeneous Hilbert Problem may be stated as: To find a
sectionally holomorphic function Q(z), having finite degree at infinity,
for the boundary condition

ot (t) = a(t)o~(t) + g(t) on L (8-21)

where G(t) and g(t) are given functions with at most finite discontinui-
ties on L and G(t) # O on L. As for the homogeneous problem, L may be
a union of smooth nonintersecting arcs.

The solution of the nonhomogeneous problem can be obtained from the
homogenecus solution. From Eq. (8-9)
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(8-22)

where X(t) is o, (t) in Eq. (8-20) with the unknown polynomial R(%t)
omitted, or

X(to) = T(to)eP(to) (8-23)

With ¢ = log G and ¢ = log X, it follows from Egs. (8-5) and (8-6) that

(1) =NG(to) X(to)

(8-24)
X-(to) = X(to)/“ G(to)
Put  G(t) from Eq. (8-22) into Eq. (8-21) to get
ot(t) _o=(t) _ &(t) on T (8-25)

xH(t)  X-(t)  xH(t)

This Eq. (8-25) is of the form of Eq. (8-8) so that from Eq. (8-1)

o(z) _ 1 g(t) )
X(z) 2ni 7, Xt(t)(t-z) dt (8-26)

Thus

L xE) [ e . ]
°(2) = 55 Ty & ) (8-27)

where any homogeneous &y, (z) has been included. By using Eq. (8-24),
the solution (8-27) can be written as

) = X(2) g(t) ” o8
o(=) 2xi j[X(t)JG(t)(t-z)dt + on(=) (8-25)

which is the general solution of the nonhomogeneous Hilbert problem with
X(t) given by Eq. (8-23).

This solution (8-28) can be used to solve various singular integral

equations, including the integral equations (2-11) and (2-13) under
investigation in this report.
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Integral Equations Solutions

! The integral equation discussed in Section 107 of Ref. 6 can be
adapted to the problems involved in this report. The equation has the
form

Alto)E(to) + BE0) [ £G) gy _ p(eo) , on 1, (8-29)
i 3, b - to

with A(t), B(t), F(t) satisfying the H condition, Eq. (8-2). If £(ty)
corresponds to ¢(ty), then Egs. (8-5) and (8-6) can be used to express
the unknown f(to) in terms of an unknown function ®(z) and the Eq. (8-29)
can be written in the form

A(to) [0 (to) - o7 (to)] + B(to)[at(to) + o~ (to)]

= F(tg) on L (8-30)

> o+ (to) = G(to)o=(to) + — _F(t0) (8-31)
A(t) + B(t)

_ A(tg) - B(to) _
6(to) = A(to) + B(tZ) (8-32)

This Eq. (8-31) corresponds to the nonhomogeneous Hilbert problem
in Eq. (8-21) so that if ¢(z) is determined for this problem then the
solution of the integral equation (8-29) is simply

f(to) = <I)—i-(t(_)) - ‘D-(to) (8'33)

From Egs. (8-28), (8-31), and (8-32)

_) - X(z) F(t)dt 2
*(z) oni L VG(t) X(t)[A(t) + B(t)1(t-z) * on(z)

_ X(z) F(t)dt ” 8.3}
2ni 1, X(t)aZ-p2 (t-z)+ on(2) (8-34)
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Use Egs. (8-3) and (8-4) for &(z)/X(z) in Eq. (8-3k) and take t5 = x,
o(t) = F(t)/X(t)VAS-B° , to get

ot (x) = L EE)F(x) X‘*(X)[ F(t)dt
2 X(x)VAZ-B®  2xi L X(t)VAZ-B? (t-x)

+ o) (8-35)
o™ (x) = - L XFx) , x~(x) F(t)at
2 X(x)VAZ-B* 2ri L X(t)./A2_B2 (t-x)

+ of(x) (8-36)

Since, from Eq. (8-24),

X++X"=(~/E+_l_>x= 2AX

G [A2_BZ s
- -2EX
X - X = T (8-37)
i - 2B
of - op = (X*-X")R(x) = - = m
it follows from Egs. (8-33), (8-35) and (8-36) that
f£(x) = AEFE) | BE)X(x) F(t)at
A%(x) - B?(x) «iVAZ-B? L X(t)VAZ-B® (t-x)
- 28) g (x) (8-38)

A 'AE_B2

This is the general solution of the integral equation (8-29) with @y (x)
given by Eq. (8-20) and X(x) given by Eq. (8-23). The solution can be
used for the particular integral equation used in the iteration method
in Section VII as well as for the integral equations (2-11) and (2-13).
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Integral Equation Solution for Iteration Method

In Eq. (8-29) take A(ty) = 0, B(tg) = -ri, and x = 1o, whence

Lot _ g (8-39)
L

t - x

is the integral equation to be solved., From Eq. (8-38) the solution is

x) = X(x) F(t) -
£(x) {X(t)(t_x) at + o (x) (8-40)

To find X(x) in Eq. (8-23) and ap(x) in Eq. (8-20), get G(t) = -1 from
Eq. (8-32), log G(by) = xi in Eq. (8-15) so that & = - 5at x = -1,
ap = % at Xx = 1 with L the line -1 £ x £ 1. Thus in Eq. (8-16),

M =0o0rl, Ag=0or -1. In Eq. (8-20), with G = -1,

P(x)=12'-log(l'x>

1+ x
whence
X(x) = (1+x)7\l(1_x)7\2\]1_-_x
1+ x
X (%) = —=— , N =0 , N =-1 (8-41)
1 - x°
Xo(x) =\[2=2% , M =0 , A=0 (8-42)
1+ x
Xa(x) =|/2EE , =1, N=-1 (8-43)
1l -x
Xa(x) =1 -%% , =1, X=0 (8-Lk)

For these four possible forms of X(x), the homogeneous solutions &, (x)
have the value O except for &y (x) = Co/~1 - =2 (pp. 240-242, Ref. 6).
For the case of X4 with both ends bounded there is a restriction on F(t)
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1

_F(B) gt =0 8L
| e (8-45)

The proper form of X(x) to be used in Eq. (8-40) depends upon the
desired behavior of the solution at the end points. For example, in thin
airfoil theory of aerodynamics where £(t) in Eq. (8-39) represents the
pressure distribution, it is desired that £(1) = 0 at x = 1 to satisfy
the Kutta condition while f(-1) may be infinite. Thus the form Xo(x) is
used in Eq. (8-40) for this problem.

Solution of the Foucault Test Integral Equation

The Eq. (2-11) for the solid mirror is the same as Eq. (8-29) with

A(x) = log 1-x , B(x)=-ni , x=15 , (8-46)
1+ x

and the solution from Eq. (8-38) is

1 -x
- Fx) log(l + X) + X(x) ’ P(t)dt N oy, (x)

f(x) =
D* (x) D(x)J); X(£)p(t)(t-x)  D(x)
D(x) ='\/ﬁ2 + 1og2<ll - x) (8-47)
1+ x

To find X(x) in Eq. (8-23) and @, (x) in Eq. (8-20), start with
(see Eq. 8-32)

(53)- -
log + wi

G(t) = 1+t
(1 - t) _
log 1+ 4/" i
- &216(%) (8-48)
where
o(t) = arctan | — % —— (8-49)

()
8\ + ¢
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e

Now 6(t) = 0 at-t = =1, and 6(t) = n at t = 1 so that in Eq. (8-15)

log G(-1) =0 , log G(1) = 2xi

whence g3 = O at x = -1, ap =1 at x = 1L, From Eq. (8-16), M. = 0,
Ao = -1 and from Eq. (8-17) _

T(z) = (L-z)"* (8-50)

In Eq. (8-12) N
P(x) = 1[ 2i6(t) gt

2ri t - x
1

= Lf 8(t) 40

), t-x

1
= ;L—r [G(t) log ('t_x)]'_:'i _ 2[ log (t-x)dt —
" e e (150)

= log (1-x) + Q(x) (6o51)

where

1
Q(x) = -2f log (t-x) at

2
< + log 111

To evaluate Q(x), differentiate and change variables:

da(x) _ 2[1 dt
=L @[+ 106 (150 e)

T 1+t

(2]

du

o (ﬂewz)(l - e x)

1+ el
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where

L+t
dt = - = sech® ¥ du L (8-52)
2 2
1 - 1t2 = gsech® ¥
2
Take
ev=lox (8-53)
1+ x
whence

dg 1 (1+ev)

[oe]
= = du
ax 1+ x[m (eu-eV) (xx=+u?)

1 f du + 2 J’w du
1+ xdy % (14x)% L, (eB%-eV)(nZ4+u?)

1 [larctan%:l + 8(x)

l+x|=x —oo

1
1+ x

+ s(x)

The integral S(x) has poles in the upper plane at

u=ix , u=v+2nix , 0<n<w»

so that

2

(——)—2 2rni 3 Residues
1+x

S(x)

i

Ygi 1 s+ L § 1
(14x)2 | -2xi(1+eV) €V n=0 n% + (v+2nin)~

[o+]

-1 Yri 1
+ z Y
1+x 1-~x°,75x°+ (v+2nix)
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where Eq. (8-53) has been used to simplify the results. Use partial
fractions and evaluate the sum to get

=]

S(x) = - —L & byl > i [ 1 _ 1 ]

1+x 1-xp02clv+ Cn+l)ei v + (2n-1)xi

—_ 1 + 2 ( 1 )
1+ x 1 -x°\v - xi

1 2 v + i

14 x 1 -x®ve+x®

Thus daq 2 v + xi

dx 1-x2 v +x°

or by Eq. (8-53)

. dv
Q= f%d‘f”lf’z——z
1 + vV k19 + v

= log Nn%+v® + 1if + Cp

and from Eq. (8-51)

P(x) = log (1-x) + log\Az + log2(:]l_' _: i) + Cq (8-54)

where the ni6 term has been dropped from the real P(x); this term
represents the G(t) term already included in Eq. (8-24). Now from
Egs. (8-23), (8-50), (8-54)

X(x)

€2 (1-x)~ fx® + 1og? <'-——l - X
1 -x 1+x

CoD(x) (8-55)

where D(x) is defined in Eq. (8-47). In this case, the only homogeneous
solution for f(x) is a constant (see paragraph (e) in Sec. ITI) so that
in Eq. (8-20)
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CsX(x)
CaD(x) (8-56)

op (%)

The solution (8-47) now becomes

1 -
fx) = Px) log<l + X>+f _F®) Ca

D2 (x) D2(t) (t-x)
DF(x) = =% + logz(l—i> (8-57)
1+ x

which is the inversion integral solution of Eq. (2-11).

There may be a question about this solution (8-57) since A(x) in
Eq. (8-46) for this problem does not satisfy the H condition at the end
points x = £ 1, as required in Eq. (8-29). Also, this A(x) term in
D=(x) in Eq. (8-57) forces the first term to be O at x = + 1, which is
a undesired restriction on f(x). To avoid these difficulties,
log (1-x)/(1+x) can be taken as some finite value at x = * 1, or £(x)
can be calculated up to + 1 ¥ Ax. Since F(t) is known only at specified
points, it is necessary to use numerical integration in the calculation
of £(x) in Eq. (8-57) so that the end points can be omitted or approxi=
mated. Since the log (1-x)/(1+x) term is almost bounded and has a rapid
change to infinity for a very small Ax at the end points any approximation
for the end points will have little effect on the values of f(x) at other
points.

Numerical Integration for Tnversion Integral

For the calculation of f£(x) in Eq. (8-57) by numerical integration,
the same procedure, except at end points, as for the collocation method

in Sec. VI was used. The trapezoid rule was used and all log (1l-x)/(1+x)
terms in Eq. (8-57) were approximated by

log i;ﬁ ~ - Agg (8-58)
as given in Eq. (6-12). Thus

D;% = 7% + (Ag4)° (8-59)
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ek

and y Plxy) , Flxy)
2
£(xy) = Y Hy| 24 Di” lax) + ca (8-60)
=1 X5 = X1

In matrix form, Eq. (8-60) is

(£} = [Gol{F} + Call] (8-61)
1 L
Ap=Hz , M3 = > Hz , Amm-Lr = - Hm1 > Amm-2 = - > Hme2,
Gory = Bag 3 Gogg = - =t , [1] = column of ones L
D5 ¥
d i
Df = 30.0 = DF , J

where A; 5y and A;; are defined in Eq. (6-12) except as noted above. To
evaluate the constant C4, the condition £(0) = O was used so that

Ca = = [Gosor,51{Fs} (8-63)
and
(£} = [G1(F) (8-64)
with
GiJ = GoiJ = Goa-?l;d H
Grp = 0.2032 = -Gmm > (8-65)
Goy = -0.0250 = ~Gp-1sm -«

The special values of DF, Gy, and Gp; Were arrived at by a special
integration over the interval -0.975 to -1.0. At x = -1, the integrand
in the integral in Eq. (8-57) becames infinite as t — -1. The value for
Gp1 s Which represents this area from -0.975 to -1.0 with F = constant
was obtained by a numerical integration from -0.975 to -0.999 and by

f_o,999 at 1 )] "0.99%9 = 0.132 ,

(1t 1+t
! (1+t) log log >

2 -1
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where the n° term in (8-57) was dropped as small compared to the log?
term, The same result holds at x =1, t = 1. For all x; points % 1,
as t -+ 1, the integrand is 0. The integration over -0.975 to -1,00
for %hese)points was approximated by the Df in Eq. (8-62) and by Gpy in
Eq. (8<65).

It should be noted that the solution in Eq. (8-57) is not necessarily

unique. A more restricted solution, making f(x) zero at both ends, can
be obtained by taking X(x) = constant in Eq. (8-55). This gives the

solution
1 -
£(x) = F(x) log(l e §)+ 1 f F(t)dt (8-66)
D% (x) D(x)J, D(t)(t-x)

which differs from that in Eq. (8-57). This constant value for X(x) can
be obtained by considering G(t) in Eq. (8-48) as a real variable expres-
sion so that, with log(-l) = xi,

1 -t

log (-L)(T5+)
(L 1 -1
log \ =11 + ¢

Thus, 6 = O in Eq. (8-49) and X(x) is constant.

G(t) =1 (8-67)

If £(x) is actually zero at the ends, then both solutions (8-57)
and (8~66) may be the same. This was found to be true in the example
of the hump discussed in Section IX,

IX - COMPARISON OF THE VARIOUS SOLUTIONS
FOR SELECTED EXAMPLES

In Sections IV~VIII various solutions of the integral equations
(2-11) or (2-12) have been obtained. All of the solutions have been
expressed in the form

[f] = [G][F] (9-1)

where [G] is a matrix that operates on a set of known values of the F(x)
function to produce a set of values of the unknown f(x) function. The
elements of the [G] matrix depend upon the method of solution. Since
all of the solutions are approximate because of numerical integration or
because of a finite functional representation or because of both of these
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approximations, there is no reason to expect the [G] matrix to be unique
or to expect any two solutions to have exactly the same elements in the
[G] matrix. However, if the solutions given by the various methods are
to agree for a broad class of F(x) functions, then there should not be
much variation among the elements of the [G] matrices for the same
boundary conditions on f£(x).

In order to evaluate the various solutions, several examples have
been selected for which the exact solutions are known. The solutions
given by the various methods are then compared to each other and to the
exact solution for these examples, The methods of solution that do all
the examples the best and which appear to cover the largest class of
F(x) functions may then be considered to be the better methods of solutior
Also, a comparison of two selected rows of the [G] matrices is made for
the methods in order to establish criteria as to which method of solution
may be better.,

In order to identify all of the methods of solution, a summary
(Table I) is presented below, which gives the form of the [G] matrix for
each method and gives the reference equations for each matrix in [G].
Reference will be made to this table in the following discussion.

To compare results given by the [G] matrices in Table I when
used in Eq. (9-1), all calculations were made for 40 equal intervals on
the line across the mirror, giving 41 points. Thus the [G] matrices are
all 41 by L4l (except method 8, iteration, where the end points were
omitted, and method 6 which was not calculated as it gives results at
unequal Ax intervals). Examples using method 6 are given in Ref. 2.

Example of Hump. Assume that on a line across the mirror, an
imperfection in the form of a local hump occurs with the shape given by

fx) = 1 -2%)% , 2°g1 ,
=0 , z2>1 (9-2)
_X -3

5 , a and b are selected constants .

This particular type of imperfection was used by Linfoot in Ref. 1,
except he assumed a symmetrical case with two humps. Substitute this
f(x) into Eq. (2-11) and integrate to get
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Table I - Summary of [G] Matrices for All Solutions

Method [¢] Matrix Reference Egs. for

No. Title Eg. No. Formula, Matrices in [G]

1 Power Series B (L-21) D% Y11~ x1H] h-19, 4-16, 4-11b, 3-1

2 | Power Series ¢ (s-27)  [Y1(BTB)"*[B]T 4-19, L4-23

3 Fourier Series A, (5-20) % [s1[T + KI7*[Cc1H] 5-18, 5-12, 5-13,
trapezoid rule B 5-14, 5-16, 3-1

I Fourier Series A, (5-2’4-) -22— [S1[T + K]_l[D] 5'183 5-12, 5-13,
special rule n 5-14, 5-23

5 | Fourier Series B, (5-38) = [¥1[QI"*[RI[DI[TM] 4-19, 5-33, 4-8, 5-31
special rule n 5-23, 5-35, 5-38

6 Fourier Series B, (5-46) E [T1lQI™*[p] 5-47, 5-33, 4-8, 5-48
Katzoff procedure T

7 Collocation (6-18) - [B]":[a]T 6-15, 6-12

8 Tteration (7-16) _3__2_ (XpI +J+J%+ +++ | 7-10, 7-14, 7-11

T4 gmm]lAr 1Xp )t
9 Inversion Integral (8-65) Goyy - GOEl’J 8-62, 8-59, 6-12




Flx) = -22% + 22 - (1-2%)% log [T 222X | 2oy
3 1+2 1 -x

z=+1 , respectively, ) (9-3)
z + 1 J

The form for z© > 1 has been changed from that given by the integration
in order to obtain a form which is more accurate for large values of z.
Graphs of Egs. (9-2) for f£(x) and (9-3) for F(x) with a = 0.6 and

b = 0.2 are shown in Fig. 9-1.

=2 42 _(z21)2l24 2 4 10g
3z 3z° z 3z°

Because of the numerical integration in the various methods, as
has been pointed in paragraph (b) of Section IIT and in Eqs. (6-4) and
(6-5), the derivatives of the function f(x) in Eq. (9-2) should be
examined, Now from Eq. (9-2)

af

dx

- L_LTZ (1'22) ) z® <1 ,
(9-k)

o , z>1 ,

whence f£'(x) is continuous for -1 = x £ 1. Thus, from Eq. (6-4), the
integrand in Eq. (2-12) is continuous. However, the second derivative
is discontinuous at z = * 1,

a=f 4 122° 2
o e e 2 TSt
(9-5)
=0 , z€>1 ,

whence from Eq. (6-5), the first derivative of the integrand in
Eq. (2-12) is discontinuous at z = * 1, and the higher derivatives are
infinite at z = = 1.

In order to examine the derivatives of the integrand

g(t,x) = Eiﬁl_:_ﬁizl (9-6)

t - x
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——Exact f(x),£q.(9-2)

=
0 =X
4 6
20—
Exact F(x), Eq.{(9-3)
= =" = Moadification to F(x),
< See Fig. 9-2 for f(x)
T lo— \
-1.0 -.6 -4
.0
-10 —
20—
30—

Fig., 9-1. Exact F(x) and £(x) for Hump Case



J
i in BEgq. (2-12) for the f(x) in Eq. (9-2) in the neighborhood of z = *+ 1,

18 take
z=t;a , y=Ez2 (9-7)
so that
amm=mmw=“ﬂii'$fﬁ , B<1l , y*<l , (9-8)
z-y
-_—(_;'('_Zi)Lz , z2<l1l , y¥¥>1 , (9-9)
z-y
=-(_bl(;¥.2)_; , 22>1 , y¥<1 , (9-10)
2=y
=0 , z2>1 , y¥>1 . (9-11)

Take the case of Eq. (9-10) and differentiate with respect to t, whence

dg _ (1-y®)=
at  bZ(z-y)<
g _20-y7)°
at= b3 (z-y)3
d’ _ (_pyntr _ni(1-y®)*® 12
ats ( ) bn+l(z_y)n+l (9 )
d’g = (.p)ntr _ni(l+y)® -1
I = (9-13)
d“g] _ _ntQ-y)® (9-14)
Pz = -1  bAi(1y)rTt

These results in Egs. (9-12) - (9-14) show that the higher order deriva-
tives of g(t,x) are very large at and near z = + 1 for all y° < 1. This
implies that a lower order numerical integration rule may give better
results than a higher order rule (see paragraph (b) in Section III) for
this particular example. To check this implication, several different
rules were used for some of the methods in the calculations for this
example.
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The matrix [F] in Eq. (9-1) was calculated for 41 values of x at
intervals of Ax = 0.05 for -1 < x < 1 using the Eq. (9-3) with z = 5x -3
(a = 0,6 and b = 0.2 in Eq. (9-2)). The [G] matrices as defined in
Table I for the various methods were then used to give f3; at the same
41 points. The results are shown in Table II.

A1l of the methods located the hump and all methods, except method 3,
Fourier Series A with trapezoid rule, and method 8 using Eq. (7-5) in
the iteration, gave a satisfactory representation of the hump. However,
a study of the Table II indicates that some of the methods gave smaller
maximum deviations than others. Method 9, the inversion integral, appears
to give the best results with the trapezoid and Simpson's rules giving
essentially the same results. Method 1, power series B, shows slightly
larger deviations in the region of the hump for a 5-point integration
rule as compared to the trapezoid and Simpson's rules. This indicates
that even the large higher order derivatives of Eq. (9-12) - (9-14) do
not have much effect on the accuracy of the integration rules in this
case, However, in this method 1, the end point values are much improved
by the higher order rules. This occurs because the spacing of the points
is too large to give a fair representation of x* (n of order 20) when x
approaches + 1 at the ends. A higher order rule will naturally improve
this representation near the ends. In method 5, Fourier series B, the
equal Ax answer corresponds to using an interpolation matrix [IM] to
convert the F; values in the Table II to equal A6 values needed in the
calculations, while the equal A9 answer corresponds to calculating F;
at equal A9 intervals directly from Eq.. (9-3) and deleting the [IM] matrix
in [G]. The latter answer appears to be slightly better in this example.

Since methods 3, Fourier series A with trapezoid rule, and 8,
iteration, did not produce answers as good as the other methods in the
hump example, and since these methods have other drawbacks already
discussed in the description of the methods, Sections V and VII, no
further consideration will be given to these two methods in the remaining
examples and discussion. Also, only the equal Ax case will be used for
method 5, Fourier series B, in the following examples.

Example of Modified Hump., In order to examine the behavior of the
solutions when a large slope change occurs in F(x), a modification to
the above hump example was made by taking F(x) = -2.0 at the points
x = 0.40, 0.45, 0.50, 0.55 and 0.60 (see Fig. 9-1). Such a modification
not only gives an extreme change in the F(x) slope at x = 0.40 and
X = 0.60, but also could represent a physical situation in which the
light intensity is too weak to show a variation for F(x) < -2.0. The
results for f(x), the mirror surface deviation, given by the various
methods for this modified F(x) are shown in Fig. 9-2. The graph covers
the range of 0.2 < x< 0.8. For the remainder of the mirror line, all
methods gave small values, £(x) < 0.05, except for power series B, which
gave larger values at x = + 1, the end points. The exact answer for
f(x) is not known, but if the inversion integral is accepted as being
the closest to the correct result, then the function methods, power series
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Table II, FExample of Hump Case (Eq. 9-2)
Method o o @ ® ® ® ® ) @ [9) ©) ®
T f T f f t b4 f 4 f £ £
£(x) Power Series Power Series Power Series Fower Series Fourler Series Fourier Series Fourier Series Fourier Serles Collocation Coallocation Iteration Iteration Inversion Inversion
x F(x) Exact B B B c A Integral Integral
(Equal ax) (Equal Ax)  (special rule) (special rule) Eq. (7-4) Eq. (7-5)
Trapezoid Simpson 5-Point Trapezold Special Rule Equal Ax Equal A9 Trapezoid Simpson th Iteration S5th Iteration Trepsroid 6.
-1,00 - A3k 0 - 066 - 024 - 017 - .015 Q 0 .003 003 .005 .007 034 k2 000 000
-.95 -.138 0 001 - .00L - 000 013 06 -,011 . . . 2006 002 .030 000 +,001
- .90 -.h43 o 014 016 020 - .00k 097 -.017 -.001 -.002 005 006 .020 021 -.000 +.000
-85 - .48 o .022 ,018 017 - .003 J0l5 ~.005 005 .005 .005 006 029 037 -,000 +,000
-.80 -.5 o ,003 003 002 006 o7 -.0L% .003 .003 005 1006 .028 . -.000 000
-5 =-.159 0 .008 . oL - .003 .10k -.021 -.002 - .00k 4005 006 026 . -.000 000
- .70 -.165 0 021 019 022 ~ 007 075 -.012 000 -.001 .005 006 .02k 039 -,000 000
-.65 -.A7L  © .018 017 017 .000 043 -.005 006 006 .005 006 022 .038 -.000 000
- .60 -.178 o0 007 007 . 005 .058 -.010 006 006 .005 006 1020 035 -4000 000
- .55 -.a8 o0 JO004 R 005 000 0% -.020 -.001 -.001 005 2006 .018 .033 -.000 000
- .50 =-.,9 0 012 oL .01k ~ 007 104 -.020 -.004 -,005 . 006 016 030 -4000 000
- A5 - 208 0 .021 .19 021 - 007 076 -.012 001 -.001 005 006 0Lk 027 -.000 000
- 40 -.215 o 020 .018 019 001 045 -.004 .007 007 .00k 006 013 SO24 =000 000
-.35 -.226 0 010 010 009 006 LOlk -.005 .008 .009 005 006 011 02 -.000 000
-.30 -.239 O .003 003 .003 .002 A074 -.016 .002 .002 .00k 4005 009 018 -.000 000
-.25 -.353 0 2005 005 007 - 008 .106 -.023 -.005 -.006 006 007 00T 017 -.000 4000
- .20 -.269 0 015 013 017 ~ .010 .108 -.020 -.004 -.005 .003 00k 006 .012 -.000 000
-.5 -.281 0 .023 021 .023 ~ .00k .075 -.009 .003 002 .007 007 .00k 009 -.000 000
- ,10 - .308 0 021 .020 ,020 006 .029 -.001 010 011 .002 +003 003 -007 =,000 .000
- .05 -.,333 0 010 010 009 .009 000 -.004 009 011 .008 008 4] 0 -.000 .000
0 =30 o 0 0 0 [} .00¢ -.017 0 0 0 0 -.002 -.002 1] 0
05 =.39% 0 000 - .00L 002 - 012 037 -.028 -.009 -.01L 011 ,010 -.003 -.006 000 -.000
A0 - 37 0 013 .o 015 - 014 .070 -.024 -.007 -,010 -.003 =004 =005 «.008 000 =.000
25 - 488 o 029 .027 .030 000 087 -.006 007 005 .015 012 -.006 -.010 000 =,000
20 - .55 0 032 030 ,030 016 .081 .009 ,018 .020 -.008 -.010 -.008 -.012 1000 «,000
25 - 62 0 012 011 008 .013 051 -.000 ,010 .03 022 017 -,010 -.013 000 ~,001
30 -.765 0 - .017 - .020 - 021 - ,016 <Ok -.032 -.015 -.015 -.016 -.021 2010 ~.013 4000 -.001
35 - 9% 0 - .020 - .02k - .019 - 035 056 -.048 -.022 -.030 .039 031 -.015 -.009 =002 ~.005
L0 <1333 0 055 .053 062 .023 A3 .019 -.051 .036 =030 -.038 «,003 027 <005 004
A5 .22 s .2h7 249 .25 218 .307 .216 248 .233 193 .200 1684 173 200 206
50 2,653 . 542 547 545 535 587 526 547 543 573 573 532 k39 561 563
.55 -2.338  .879 .850 854 843 .858 +900 .836 .81 .853 890 .893 845 703 874 .87
.60 <1,386 1.000 1,020 1.019 1,010 1,004 1.091 987 977 .999 1,013 1.020 970 8% .993 997
65 - 12 L8719 .925 .922 2926 .889 1.006 872 .862 .88 883 684 862 768 n BT
0 1,059 . +576 .579 595 o5hh 642 .5h0 2546 .549 572 .583 568 543 556 560
5 1,656 LigL 79 1685 196 .188 228 186 21 .201 165 AT .220 249 2190 193
L0 1.333 0 - ,000 - .008 - 016 .009 056 -.000 .026 016 018 017 034 048 .018 015
.85 9% 0 JOU6 .030 019 - 005 22 -0l -.003 -.003 007 008 026 Ok =003 -.003
90 .65 0 007 029 2040 001 . -.010 +004 4006 005 007 <001 040 «,000L -.000
.95 B2 0 - .019 - 029 - .027 - 2002 ~.019 -.016 000 «,000 .005 006 -.096 =191 .002 «,003
1.00 55 0 - .27 - 104 - 076 - ,003 [+ (4] 002 002 005 007 - - 000 +.000
Max, + deviation + .056 + ,058 + ,065 + 027 +.131 +.025 +.057 +.0k2 +,039 +.031 +,034 +.142 +,018 +,015
Hax, - deviation - ,272 - 104 - ,076 - .035 -.019 -.048 -.05L -.030 -.030 -.038 =096 =191 -,008 -




f(x)

See Fig.(9-1) For Modified F(x)
Power Series B (trapezoid rule)

Power Series C
Fourier Series A (special rule)

Fourier Series B (equal Ax)
Collocation (Simpson's rule)
--@-Inversion Integral (trapezoid rule)

b o ogp

Fig. 9-2. f(x) for Modified Hump Case
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and Fourier series, appear to oscillate about the inversion integral
curve and thus represent it approximately. The representation appears
to be as good as could be expected with twenty constants in the function
solutions. The collocation solution appears to represent the inversion
integral solution with a high frequency large amplitude oscillation.
Since the collocation method has no smoothing function effect in it, it
may be expected to oscillate on functions with large slope changes or
with discontinuities. Further discussion of this deficiency of the
collocation method in given below in the G matrix paragraph.

Example of Straight Line. As pointed out in paragraph (f) of
Section ITII, the method of solution should properly solve the case of a
constant F(x), which produces a rotation of the mirror or a straight
line deviation across the mirror. To examine this case, [F] in Eq. (9-1)
was taken as F; = -40.0 at all Ll points so that the exact slope of f(x)
is 20.0 with f£(-1) = -20.0, f(x) = 20.0, and foq = 0, fop = 1.0, etec.
Methods 1, 2, 4, 5, 7, 9 in Table I were used with the following results.

Method 1, power series B with trapezoid rule, gave a large oscilla~-
tion with deviations of order of * 2.0 from the straight line and with
¥ 38,78 instead of ¥ 20.0 at the ends. As pointed out above in the
discussion of the hump example, this failure of the Power series B method
is due to the poor representation of xM near the ends. This affects the
G matrix, which shows large effects when f(x) has its largest value at
the ends. See discussion of the G matrices below.

Method 2, power series C, gave the straight line to five significant
figures at all 41 points.

Method 4, Fourier series A with special rule, did not give the
straight line. It has large oscillations with deviations as large as
* 10.0, with * 20.0 deviations at the ends. This failure of Fourier
series A is due to the restraints imposed by the sin nx functions being
zero at the ends. This restraint gets into the G matrix, which means
that for £(x) odd and not zero at the ends, the method will give poor
results, In this case, the series must represent a function with a
discontinuity at both ends. See discussion of the G matrices below.

Method 5, Fourier series B with special rule and equal Ax's, gave
the straight line to four significant figures at all L4l points.

Method 7, collocation with Simpson's rule, gave the straight line
to at least eight significant figures (only eight digits were printed
out) at all L1 points.

Method 9, inversion integral with trapezoid ruie, gave the straight
line to four significant figures at all 41 points.

The above three examples of the hump, the modified hump, and the
straight line show that all of the methods except possibly the inversion
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integral, appear to have deficiencies. Some methods do better on one
type of function than on other types. Althougn power series B and
Fourier series A did satisfactorily on the hump and agreed with the other
function methods on the modified hump, they failed completely on the
straight line. The collocation method did very well on the hump and the
straight line, but did poorly on the modified hump. The power series C,
the Fourier series B, and the inversion integral methods appear to be
the most consistent in the three examples considered. In order to
determine which may be the better methods for all types of possible
functions f(x) and F(x), an examination of the G matrices was made for
the various methods.

The G Matrices. To study the behavior of the G matrix in Eq. (9-1)
for the various methods of solution, graphs of two typical rows of the
G matrices were constructed. Figure 9-3 shows row 16, which gives f1¢
at x = -0.25, and Fig. 9-4 shows row 33, which gives fas3 at x = 0.60.
Methods 1, 2, 4, 5, 7, 9 in Table I are shown in Figs. 9-3 and 9-4.
Method 1, power series B with trapezoid rule, method 2, power series C,
and Method 4, Fourier series A with special rule are too close to dis-
tinguish on the graph, except at the ends. For row 16, at x = -1,
point 1, power series B gives 0.0077, power series C gives 0.,0000, and
Fourier series A gives 0.0538; for row 16 at x = 1, pt. 41, power series B
gives 0.0191, power series C gives 0.0001, and Fourier series A gives
0.0520.

Since these differences in the end values occur in all the rows of
the G matrices for methods 1, 2, and 4, it appears that these large end
values in power series B and Fourier series A are the cause of the failure
of these two methods to give the proper results in the straight line
example above. Since the power series C has small end values in the
G matrix, agrees with the power series B and Fourier series A elsewhere,
and gives the proper stralght 1line, it would appear to be the best of
these three function methods.

In Figs. 9-3 and 9-4, the Fourier series B deviates slightly from
the other three function methods and has small values at the ends
(Gigs1 = 0.0003, Gyesa1 = =0.0028). On the whole, it should give results
similar to power series C.

In Figs. 9-3 and 9-U4, it appears that the function methods are
actually representing the inversion integral curve as well as they can
with twenty constants, The inversion integral G matrix, which is limited
in accuracy only by the numerical integration for each row, should be
the best overall matrix (except possibly the first row and last row).

The peak values in the rows of the G matrix occur on either side
of the origin (x = '0), which is the restraint point for the solution to
make £(0) = O, and on either side of the f; point being calculated
(Gres1s and Gig,17 in Fig. 9-3 for row 16 giving fig). Since the form
of the integral Eq. (2-11) gives large values in the integrand for
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t near x, the point at which f(x) is being calculated, it is evident
that these adjacent values should be emphasized in the solution. Of
necessity, the function methods must smooth out these peak values and
fail to give proper emphasis to them. For these reasons, the inversion
integral method is considered to be the best method for all types of
possible functions.

The entire G matrix for the inversion integral method using the
trapezoid rule for the numerical integration is given in Appendix C.
It may be noted that the inversion integral G matrix with Simpson's rule
has slightly larger peak values than those shown in Figs. 9~3 and 9-4
for the trapezoid rule,

The collocation method shows a high frequency oscillation, with
large amplitudes, about the inversion integral curve in Figs. 9-3 and
9-4k., It is evident that if F(x) has .a sharp change or is discontinuous,
then the large values in the collocation G matrix can magnify the dis-
continuity and give incorrect values for f(x). Thus, the collocation
method, in spite of its performance on the straight line and the hump
example, it is not a good method for all types of functions, particularly
those with discontinuities.

Evaluation of the Various Methods. On the basis of the above
examples and examination of the G matrix, an evaluation of the nine
methods of solution listed in Table I can be made. Although all the
methods can solve certain problems, the best methods are those that can
solve the largest class of problems. Since F(x) must be measured at
points, and f(x) may represent any conceivable deformation of the mirror,
it is essential that the method of solution handle almost any type of
function, whether continuous or not. From this viewpoint, the following
evaluation is made:

1. Method 9, the inversion integral, is the best overall
method. It will handle most any case.

2. Power series C, method 2, and Fourier series B,
methods 5 and 6, are the best function methods. They
will handle most any case.

3. Collocation, method 7, is simple and satisfactory for
smooth functions, but is no good on discontinuous
functions. A violent oscillation in the solution
indicates the method has failed.

Yy, Power series B, method 1, and Fourier series A,
methods 3 and 4, are unsatisfactory because of end
points representations and restrictions,

5. Iteration, method 8, is unsatisfactory because of end
point restraints and numerical integration difficulties.

Up to this point the discussion and evaluation of the various

methods has been concerned with the solid mirror. Section X takes up
the Cassegrain mirror, or the mirror with a central hole.
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X -~ SOLUTIONS FOR CASE OF A CENTRAL HOLE

The integral equations to be solved for the Cassegrain mirror are
given in Egs. (2-13) or (2-15). Take Eq. (2-15) in the following form

F(x) = [f [R ][f(tz - £(x) dt] (10-1)

where R is defined in Fig. 2-3. Theoretically, this Eq. (10-1) can be
solved by any of the methods described in Sections IV-VIII. However,

on the premise that the evaluation of the methods for the solid mirror

in Section IX holds for the Cassegrain mirror, only the better methods
will be used for this case. The power series C, collocation and inversion
integral methods of solution, as modified for the hole case, are described
below. The Fourier series B, method 6 in Table I, is described in Ref. 2
for the hole case, together with examples. It will not be covered here.

Power Series C for Hole. As in Section IV, take

J
£(x) = Y Agx (10-2)
=1

in Eq. (10-1) and integrate to get

-1

F(x) = - Z A Z [l - Rd- k+l] [l - (-1)¢- l<+1]x _ (10-3)

J-k+1
h

whence 3 3
F(xi) = F; = 2, AsBy(xy) = 2. Bijshs (10-k4)

j=1i j=1

J - Re-k+IL o (o1 )d-k+1]x, k=1
_ 2%-[1 R ] [1 - (1) JEN (10-5)
K= J~k+1

These Egs. (10-4) and (10-5) correspond to Egs. (4-22) and (k-23) so
that from Egs. (4-26) and (4-28),

[f] = [GI[F] (10_6)

(6] = [Y][BTB]-*[B]T (10-7)

where the elements of [Y] and [B] are given in Egs. (4-19) and (10-5),
respectively.
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Results using power series C for several examples with a hole are
given below and compared to the results of the other methods.

Collocation Method for Hole. For 2R as the width of the hole on

‘the particular line on the mirror (see Fig. 2-3), take (M/2)-1 = 20

equal intervals on each side. This gives 21 points on each side, or
M = L2 total number of points, including four edge points. Take

P_M_E(l-R) , M points, (10-8)
whence M-2
xg = =L+ P(I-1) 5 G=1, 2,000 2,
(10-9)
xJ=R+P(j-l-L—4), j=Mi1 ,eeem
2 2
As in Section VI, take Eq. (10-1) in matrix form
[A1[£] = - [F] (10-10)
where, by using Egs. (10-9) and (6-12),
A.i,i-3.='H1-:L'-2]:Hi > A1,1+1=H1+1+%H1 > )
. M M
17éla§'a-2-+l:M:
Mo =2H +H , A13='%(H1-H3) s
M M 1 [ /M M A
(2029150 (3-2)]
2’ 2 2[(2 2 2) ’
M M 1 [./M M
A(_+l —+3>=-—[H(—+l>-}[(— )]
> > 2 > L\ > 3 |, (10-11)
M M M M
A(—- —-l):-2H(->—H(—-
2’ 2 2 >~ 1) >
A(M+l 5 M+2)=2H(M+l)+H(M+2) s
2 2 2 2

A(M,M=2) = % [E(M) - B(M-2)]

A(MM-1) = - 2H(M) - H(M-1) |,
Ayy = —LaP . :
¥ 5 -1 except above and i # j
M
Ayg = - ) Ay
j=l,j7éi .



Now, from paragraph (e) of Section III, there are two homogeneous
solutions for the hole case. Thus two points must be fixed on the mirror
in order to obtain a solution by the collocation method. Any solution
thus obtained will include the homogeneous solutions (3-6) and (3-7) or

f, = Cp + 22 (10-12)
X

The value of C; is of no consequence as it represents a translation of
the reference for f£(x), but the value of Cs should be as small as possible
to keep the apparent distortion Cz/x small, In most cases the smallest
value of Co will be given by fixing the two points at the edges of the
hole. However, if f(x) is larger at the edges of the hole than at the
ends, then the ends would give a smaller Cp. Note that Cz = O for f(x)
even,

Use the conditions

M\ _ =
f(E) = f(-R) = 0
(10-13)
1 M = =
(2 + 1) f(R) = 0
so that, corresponding to Eq. (6-15),
[B] = [ATT[A] + [s]
Sg_d =0 Py except (lO-lLL)
This.gives (see Section VI)
[£] = [GI[F]
[G] = - [BI"*[a]T (10-15)

where [A] is defined in Eq. (10-11) and [B] in Eq. (10-1k4).

Results using the collocation method are given below.
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Inversion Integral for Hole Case. The integral Eq. (2-13) for the
Cassegrain mirror is the same as Eq. (8-29) with

A(x) = log '1 —xx+R , B(x) = - ni
l+xx-R
(10-16)
Xx=%t , L =lines -1 to ~-R and R to 1
and the solution is given by Eq. (8-38) as
LN
£(x) = F(x) log ,l -xx+ Rl X(x)_[ F(t)dt
D= (x) 1l+xx-R D(x) I, X(£)D(t)(t-x)
oy (x) L
+ 10-17
D2(x) = 5% + ]_og2 k_i x+ R . )

1l+xx~-R

To find X(x), Eq. (8-23), and o,(x), Eq. (8-20), to use in the above
Eq. (10-17), start with Eq. (8-32) for G(t), whence

log ll;:_z.f;i_ﬁl + i
a(t) = 1+tt-R - c2ie(t) (10-18)
|1 -t t+ RI )
log Ty ¢t -grl -
where
6(t) = arctan “ (10-19)
1l -tt4+ Rl
log —_—
1+tt-R

From Egs. (8-15), (8-16), (10-18), and (10-19), values of 6,
log G(by), ax, and N, at the edge points can be obtained as follows:

x ) log G 8y Ne )

-1 0 0 O 0

R = oni 1 -1 P (10-20)
R 0] 0] 0 0

1 i1 2xi 1 -1
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Thus, Eq. (8-17) gives

T(z) = (z+R)~1(1-z)~* (10-21)
From Egs. (8-12) and (10-18)
P(x) = = J.QLEQQE ) (10-22)
T(Lt—x

where L is -1 to -R and R to 1 and 6(t) is given by Eq. (10-19). By
analogy to the integration of the corresponding Eq. (8-51) for the solid
mirror with the result in Eq. (8-54), the solution for Eq. (10-22) was
deduced as

p(x) = log [,L&:zliziﬁll\/; + log2|t =X X +33ﬂ+-c1 (10-23)

l+xx-R

This result was verified very closely by a numerical integration of
Eq. (10-22) using the trapezoid rule and the [A] matrix in Eq. (10-11).
That is,

(P] = - % [Alle1 , 42 points , (10-24)

where A;; = O.

Put Egs. (10-23) and (10-21) into Eq. (8-23) to get

X(x) = Co(1-x) " (x+R) "1 (1-x) (x+R) x~*D(x)
=z 22, (10-25)

where D(x) is defined in Eg. (10~17). 1In this case, the homogeneous
solution for f(x) is given by Egs. (10-17) and (8-20) as

£ (x) = op(x)  D(x)

2(x) T (Cax + C4)

(10-26)
= g + C4

X
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‘ which agrees with the homogeneous solution given in paragraph (e) of
ﬁj Section IIT. Equation (10-17) now becomes

_ F(x) 1-xx+R 1 tF(t)dt Ca _
£(x) D= (x) tog 1+ xx -~ R, * x 1, D®(t) (t=x) *Ca (10-27)

D2 (x) = x2 +hg,l'x£15 (10-28)
l1+xx~-R

which is the general inversion integral solution of Eg. (2-13).

It should be noted that this solution in Eq. (10-27) is not unique.
Other forms for X(x) in Eq. (10-25) are

X(x) = C2D(x) and X(x) = C> (10-29)

whence other solutions are

pla) = B jo, [L-xx+R J’ F(6)at o, Cs | (10-30)

" D2 (x) I+xx-Rl 1 D2(t)(tx)
g) = E&®) j o J1-xx+R 1 F(t)dt c )
£(x) D4 (x) t ,1 + X X - R, * D(x) 1, D(t)(t-x) *Cr+ f (10-31)

It was found that the particular integrals in the solutions (10-27),
(10-30), and (10-31) behaved as if two restraints were present, or

f(+a) = 0, for x = * a points on the mirror. The value of a is different
in each solution for the same function. For these reasons the mirror
was restrained at the edge points, x = + R, or f(#R) = O, which corre-
sponds to the restraints used in the collocation method. Note that by
replacing t by t - x + x in the integrand in Eq. (10-27), the solution
in Eg. (10-30) is obtained with a term (Cg/X) added. Since the solution
in Eq. (10-31) makes f£(1) = £(-1) = 0, it is more restricted. However,
for the "hump" example given below, all three solutions are essentially

the same.

The numerical integration in Eq. (10-27) was carried out in the
same manner as for the solid mirror, Eqgs. (8-58) - (8-65), where all log
terms are approximated by -As; in Eq. (10-11). Thus

fx;) = % Hy (Ax) XJF(XA) _LD}?_)].;. Cs + Ca (10-32)

5=1 x5 - x L xDj Xy
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Df = n® + (Ag1)° ' (10-33)

[£] = [GoI[F] + Cal1] + 04[.:% (10-3%4)
1
Gorg = Etﬁ%} , Gogg = - é%}
XiDJ Dg_
(10-35)
(1] = column of 1's , [Jk] = column for -
X3 X3

where from Eq. (10-11) and from special integrations for the edge values
(see Egs. (8-62) and (8-65) and discussion after Eq. (8-65)):

H,P
Ayy = —— i43
X3 - X 3
1 M
As y3~3 = - Hyeq - zH o, 1 #1, §'+ 1,
10-36)
1 M o (
Ay s34 = Hygy + > Hy , 1# 5 M,
M
A=-2A i, 88N
ii y id > LY ’ y,
j=1,3#1
D¢ = D2 = 28.0 , DZ(M)— DE(M + 1) = 11.0 , -
2 2
G'Oll = =- GOMM= 0.2060 s
M M M M
G (——-): - o(—+ 1,4, 1): -0.3180
°\ 2’2 Go\2 o 3190, ‘
(10-37)
Gy(2,1) = - Go(M-1,M) = -0.0283 ,
GO(M- - 1,M)= -GO<1‘_4 + 2,8+ 1) = 0.0432,
2 2 2 2
M M M M
G- —_- - = 4 == .- (— + —)= -O. 1
0(2 1, 1) Go(3 + 22 003 ]
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As noted above in the collocation method, the smallest value of
C4/x in most cases will occur if the two points at the edges of the hole
are fixed, Thus from Egs. (10-13) and (10-34)

C
0 = [éo %,j)[Fq] + Ca - Eﬁ

0= [GO(IE’I +1,j)] [FJ] +Ca+ 2

whence ¢a = - % [Go<%aj)+ Go(%'+l’j)][Fq]
_ (10-38)
e [t o2
Now, Eq. (10-3Lk) becomes
[£] = [¢][F] (10-39)

= _i _Rl 1\_4 _i( _R._> M+ '>l_
Gig = Gouy 5 <l -X_i Go <2:J) ) 1+ X Gg 5 1,] ( 0 )-I-O)

where Goij is defined in Egs. (10-35) - (10-37).

Results for the inversion integral method are given below and
compared to the other methods.

Comparison of Solutions for Cassegrain Mirror for Selected Examples.
The three methods, power series C, collocation, and inversion integral,
described above were applied to several examples and the results compared.

1. The example of a hump used above in Section IX for the solid
mirror was also used for the Cassegrain mirror., TIn this case

£(x) = (1-2%)° , z2f<g1
=0 , z2>1
z = x—;—a’ , a=065 , b=0.175 , (10-41)
R = 0.125 ,
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whence
F(x)

|
n
N
0]
+

- - o)
l~-z1l+xx~-R ! , 22<¢n1
14+21~xx+R

= z - (1-2%)% log

= * 3 z =1 , >(10 42)

2 2 ) 212 2 (Z-l) )
2 42 (32-1)2 |24 & 4 10g(E= L >1
3z 32> (z%-1) [z 3z3 & z + 1 > B

J

This F(x) was calculated at 42 points (20 equal intervals on each side)
(R = 0.125) and the G matrices used to calculate f(x) at the same 42
points., The results were similar to those in Table IT for the solid
mirror with the following maxirmm deviations from the exact answer in

Eq. (10-41):

P.S.(C) Collocation Inversion

Integral
Deviation +0.065 +0,033 +0,017 (10-43)
-0.,048 -0,030 -0.009

It should be noted that the restraints in the power series C solution

are that £(0) = O, which is not on the mirror, and f(x) be continuous
across the hole. This means that this solution may have to be translated.
In fact, a translation of + 0.08 was used for the power series C solution
to get the best results at the hump. Even so, the power series C solution
deviated more than the other two solutions. Since f(+#R) = O was true

in this example, it appears that the restraints of f(#R) = O used in the
collocation and inversion integral solutions had essentially no effect.

2., However, in the example of F(x) = -C = constant, the restraints
will affect the f(x) solution. With no restraints or no homogeneous
solutions

F=-C gives £f(x) = - C (10-k44)
2(1-R)

On the other hand, with restraints f£(#R) = 0, and

fx) = —C _ x + Cy + Ca (10-45)
2(1-R) x
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it follows that

R2
C,Lb =0 , Cg=w—"1__ ¢ , (10-46)
2(1-R)
whence
c R®
£ P S, - . 10-4
(x) 2(1-R)(x x ) ( 7

The three methods were used for F(x) = -35 or C = 35, and R = 0.125,
whence

H
1l

20x in Eq. (10-4Lk) , (10-L48)

£ = 20x - %22 in Eq. (10-47) (10-k49)

The power series C method gave f£(x) in Eq. (10-48) to three places.
The collocation method gave f(x) in Eq. (10-49) to four places. The
inversion integral method gave Eq. (10-49) to three places.

The above example of F(x) = constant has other implications. In
paragraph (f) of Section IIT, it was pointed out that the reference scale
for F(x) may be arbitrary so that a constant change in F(x) may be only
an apparent rigid body rotation of the mirror and not a real distortion
on the line, If an apparent rigid body rotation is occurring, then the
collocation and inversion integral methods will show not only the rotation
but also an apparent distortion of the form Cg/x, due to the two fixed
points on the mirror surface used in these methods. The power series C
and Fourier series B methods will show only the rotation, as these methods
do not restrain points on the mirror, If the function methods were set
up to give two restraints, they would also show the apparent Cg/x term
for a constant change in F(x), whether real or apparent.

On the other hand, if a real Cg/X type of distortion occurred in
the Cassegrain mirror on some line, it is not evident that any of the
methods of solution can detect it, since F(x) = O in this case. Appar-
ently, some other method of measurement would have to be used to detect
such a distortion. However, it seems unlikely that a distortion of the
form Cz/x would occur on a mirror with R relatively small. The inherent
large stiffness in the circumferential direction would tend to restrain
the mirror from such a distortion.

3. The three methods were applied to the example of F(x) = - 35.0
for x £ -0.125 and F(x) = 35.0 for x = 0.125, a case similar to one used
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by Katzoff in Ref. 2. 1In this case, £(x) is an even function and the
Co/x term in the collocation and inversion methods is zero. After
translating the power series C solution, it was found that all three
solutions agreed within *+ 2 in the third place. The shape of the curve
is the same as that in Ref. 2.

4., The three methods were applied to the example of

F(x) = lx—“ , f£(x) = Xig (10-50)

Here £(#l) = 1.0 and £(#0.125) = 64.0. After translation of all three
solutions to give £(+l) = 1.0, the maximum deviations from 1/x* for the
42 points were +0.1 and -0.4t for inversion integral, +0.2 and -2.1 for
collocation, +4.9 and -1.2, with considerable oscillation, for power
series C. As might be expected the power series C did poorly on this
negative power function. On the other hand, since f(x) is even in this
case, power series C was able to translate and do a reasonable represen-
tation of f(x).

5. To further investigate the representation of a negative power
deviation by power series C, the example

_ b _ 3 )
Px) =2, 20 = & (10-51)

was solved. Since this is an odd function, and power series C must be

O at x=0, it is a difficult function to represent, going from

f(1) = 1.0 to £(0.125) = 512.0. As expected, it did a very poor job,
giving f£(1) = 126, £(0.125) = 472, £(0.16875) = 510 instead of 208.1,
£(0.3) = 370.0 instead of 37.0, etec. Thus, it would appear that the
function methods, both power series and Fourier series, cannot handle

odd negative power type deviations. Of course, if desired, negative
power terms could be added to the power series methods so that they could
represent these for the Cassegrain mirror.

This example 5 in Eq. (10-51) takes the form
14
2

Px) =22 , @)=L -& (20-52)
X X X

when the points x = #R are restrained in the collocation and inversion
integral methods. 1In this particular example, the Co = -64 would be
much smaller (Cp = -1) if the end points x = * 1 were restrained instead
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of the points at the edges of the hole, However, since the G matrix for
the inversion integral was set up for the edges x = + R restrained,

Eq. (10-52) was compared to the inversion integral solution. The maximum
deviation was at x = 10.16875, where f(x) = 7183 instead of F172 in

Eq. (10-52). By changing Cz = -6L4 to Cz = -65.9, the maximum deviation
was less than ¥1.0. This indicates there are slight errors in the

. M M
approximations for the elements Gj (%,%) and Go('é t 15+ l)

in Eq. (10-37), which are introduced as a C/x error through Eg. (10-40)
for the restraint conditions.

The conclusion is that example 5, Egs. (10-51) and (10-52), is a
rough shape to calculate numerically. It is also unlikely that the
mirror could experience such a deformation. The power series can not
get £(x) in Eq. (10~51), but the inversion integral gets the f(x) in
Eq. (10-52) satisfactorily.

G Matrices for Cassegrain Mirror. To better understand why the
power series C solution was very poor in some of the examples considered,
the G matrices for the three methods were examined. Figure 10-1 shows

a graph of row 33 for the three methods. The inversion integral row 33
in Fig. 10-1 is nearly the same as that in Fig. 9-4 for the solid mirror
case. The collocation row 33 in Fig. 10-1 is quite different from Fig.
Fig. 9-4, having much less oscillation. In fact, the collocation graph
follows the inversion integral quite closely, except near column number
33 where it overemphasizes the local effect for point 33. Apparently,
the restraint of two points in this case as compared to one point at the
origin in the solid mirror case produced a damping effect on the colloca-
tion G. matrix. The power series C row 33 in Fig. 10-1 is radically
different from Fig. 9-4, having much larger oscillations and failing to
follow the inversion integral around column 33. This difference, which
occurs in all the rows of the G matrix, explains why power series C does
a poor Jjob on certain types of functions in the hole case.

The reason why the power series C method has the large change in
the G matrix from the solid mirror to the Cassegrain mirror appears to
be in the restraints for the hole case. No points are fixed on the
mirror. Only the origin, which is off the mirror, is fixed. With no
points being specified in the hole, the power series C functions appear
to be insufficiently defined to produce the proper G matrix. Also, it
appears that the frequency of the oscillation in Fig. 10-1 is determined
by the hole size, rather than the mirror size. This may indicate that
the number of points and the value of R, or the ratio between R and
interval size, affect the behavior of the G matrix for the power series
C method as well as for other function methods.

Evaluation of Methods for Cassegrain Mirror. From the above
examples and discussion of the G matrices, an evaluation of the three
methods of solution used for the hole case is as follows:




For a specified f(x) take

glxg) = 2n(x)
S; =sin g (%)
Cy = cos g(x;) ) (11-3)
[Ty] = [A][8:] , and
[0y] = [Al[C:]

where the matrix A is the numerical integration matrix in Eq. (10-36)
with rows 1, M/2, (M/2) + 1, M omitted. Since the integrals become
infinite at the edge points, F(x) at x = £+ 1 and x = £ R cannot be
calculated. However, these points are included in the numerical inte-
gration for F(x,) at all interior points. At x;, Eq. (11-2) gives

F(x;) = U12 _ log2 l - % % + R
1 +x3 x4 -R

+ 2xS;Uy - 2xC3Ty + T (11-L4)

Assume g(x) to have the form of Eq. (9-2) as used in the linear case
above

g(x) = p(1-2%)* , 2% < 1; W
=0 , z2>1; and
> (11-5)
z = % ; 2 , a=0.6 , b=0.2 ,
R=5/M1 , m=2/l1 |,

)

where p is a factor for the magnitude of the error. Note that

p = (2x)(max. error in wavelengths) (11-6)

or

Mmax = M@X. error in wavelengths = p/2x . (11-7)
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For the linear case used above p = 1/2x and this case was used in
Eq. (11-4) to compare to the linear results. Figure 11-1 shows the
comparison for F(x) using 38-point numerical integration. The linear
numerical integration and the nonlinear numerical are quite close,

Figure 11-2 shows results of Eq. (11-4) for several values of p; i.e.,

1 1 .
= = = —=_~ 0,025 linear; )
P ow Mmax L2 ’ >
10 _ 10 .
P o 2 Tmax Tz T 002 ,
(11-8)
P=2t , Ty =13 and
J

D =625t , Ty = 3.12 .

It can be concluded that large changes occur in F(x) in the neighborhood
of a £(x) hump.

For large values of p, g(x) is large and sin g(x) and cos g(x) will
oscillate with many cycles over the non-zero range of g(x). For the
cases in Eq. (11-8) and Fig. 11-2, the approximate number of cycles in
sin g(x) and cos g(x) for 0.4 < x < 0.8 is 1/2 for p = 1/2 xt and
p = 10/2x, 2 for p = 2x, 6 for p = 6.25xr. These cycles are unequal in
width, with the smallest width for p = 6.25¢ being Ax = 0.045. Since the
interval used for the numerical integration in Fig. 11-2 was Ax = 0.05,
it is evident that the results for the p = 6.25x case may not be very
good. Either a smaller interval must be used or the numerical integration
modified.

To investigate this numerical integration difficulty, g(x) was

approximated over any interval x; - Aé—x < X< Xi+ éé’ﬁ by
g(x) = g(x) + m(x-x1) , (11-9)
where éx Ax -
gyxg + o) - g\Xgy - =
m = (11-10)
X

If the average of t - x in Eq. (11-2) is used for the interval Ab, then
sin g(t) and cos g(t) can be integrated across the interval using the
approximation in Eq. (11-9). The results are

7



8L

f(x)

0.0

20—
Linear (Exact)
a Linear (38 pts. Trapezoid Rule)
1.0 b— o} Nonlinear (38 pts. Trapezoid Rule)
-1.0 -8 -6 -4 -2 Hole

X

-20 b——

ol

Fig, 11-1. Numerical Integration (Nonlinear Case), Comparison to Linear
Case
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j,ti + (at/2) sin g(8)d = - M]ti + (at/2)
ty - (at/2) no b - (at/2)

o [cos g(t,_ + Aai) - COS g(ti - Azt):,

st + §) - et - §)

= (at)D; (11-11)
Jti + (at/2) cos g(t)dt = A&[éin g(fi + %?) - sin g(ti - %;)]
ty - (at/2) g(ti + %?) - g(ti - %?)

= (at)Es . (11-12)

The term D; replaces S; in the calculation of T; in Eq. (11-3) and E,
replaces C; in the calculation of U;. With these terms, the results for
the p = l/2ﬁ, 10/2ﬂ, and 2n cases are essentially the same., However,

for the p = 6.25¢ case, the peak at x = 0.4 is about one-half as large
and more cycles appear to be present. When twice as many intervals are
used with the D; and E; terms, the p = 6.25x case shows about six cycles
in F(x) of various amplitudes and occurring in the range of the g(x)
hump. See p = 6.25¢ (modified integration) case in Fig. 11-2. A similar
cyclic result for F(x) was obtained for p = 100.

From these results it would appear that, if F(x) shows a cyclic
shape in a region, then there is a large deviation in the mirror in that
region,

In Section III for the linear case it was found a linear f(x) = Cix
produces a constant F(x) = -2C;. Two cases for the nonlinear equation
were calculated by Eq. (11-4) with

<ng=§xmuwgm=-§x (11-13)

which is equivalent to fp,, = * 1/4 at the ends. For case (a), F(x)
varied from -8.0 at edges of the hole to -14.8 at the ends, being
approximately constant over the middle half of the mirror. For case
(v), F(x) varied from + 19.6 at edges of the hole to + 4.3 at the ends,
being approximately constant over the middle half of the mirror.
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XII - SCALE FACTOR PROELEMS

I, is calculated for the
If X converts I to

Above, F(x) = I - I, is assumed known.
T is measured on the actual mirror,

perfect mirror.
scale of Iy, then
(12-1)

I
F(x) == =I5
% o

It appears that K depends on the intensity of the light source and on
To calibrate the perfect mirror with a

the instrumentation to read I.
given light of intensity, Q.
[ 1pas
_LF (12-2)

Fx) =0 , Ke = ——r
i I at

For a different light intensity Q
(12-3)

_Qq
K=-22X
U@

Thus, if Ko can be determined for the finished mirror ( as perfect as
possible) using the specified instrumentation and known light Qcs then

if the light Q can be determined, Eq. (12-3) would seem to hold, whence

I
Foe g, (12-)
Q Ke
A procedure to check K may be based on Eq. (i2-1). If
F(x) = Fi(x) - C
fL F(x)ax
e i (12-5)

f Fp(x)dx=0 , C=
2(1-Rr)

L
then from Section III, a rotation of the mirror through a slope change
Thus a check K is

of -C/2(1-R) will change I and make the new F be Fy.
(Ig read after rotation),
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K - IL TR (12-6)

.L‘Iodx

It may be possible to determine K directly by giving a small known
rotation to the mirror or an equivalent displacement of the knife-edge
and measuring the change in I at several points. Since the change in
F(x) can be calculated (linear case) as -2C;, C; is slope, then

_ (8Dneas (12-7)
(AI )ca_']_

at each point, If AT is constant, then the K may be satisfactory.

It should be noted that an error in the origin for I shows as a
rotation of f(x) and also an error in K shows a rotation in f(x). Thus,
if f(x) shows a large rotation, it probably means I and K are not
compatible, or the knife-edge is not central,

Finally, in the Egs. (12-2) and (12-6)

1
f Iodx =
-1

n® , no hole,

|
W |co

(12-8)

ER
2¢2(1-R) + %f‘ log? ll - XX+ Rldx ,
R l+xx-R

for hole of radius R.

XIIT - CONCLUSIONS AND RECOMMENDATTIONS

The linear integral equation for the Foucault test of a mirror,
solid or Cassegrain type, can be solved by several different methods.
Since the methods of solution are approximate due to numerical integration
and/or finite function representations, they are not unique. Although
the methods may agree on results for some examples, they disagree on
other examples. The inversion integral method appears to cover the
largest range of possible problems with good results for both the solid
and Cassegrain mirrors. The collocation method does well on many examples,
particularly for the Cassegrain mirror, but it fails for functions with
discontinuities, The function methods, power series and Fourier series,
do well on some functions but have various deficiencies, particularly
for the Cassegrain mirror. The iteration method is very poor and is not
recommended.
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There appears to be several possible procedures for calibrating
and scaling the input data for the integral equation solutions. The
simplest procedure may be to give the knife-edge a small displacement
and measure the change in the light intensity. Since the change can be
calculated in the linear case, the scaling can be made by comparing the
measured and calculated results.

For various assumed functions for the errors on the mirror, the
light distribution on the mirror can be calculated from the nonlinear
equation by numerical integration. Large changes occur in the light
intensity in the neighborhood of a local surface deviation, whether
linear or nonlinear. However, for a large nonlinear deviation, large
changes may occur in other regions somewhat removed from the local
deviation.

It is recommended that further investigation of the nonlinear
equation be conducted, particularly with regard to

(a) input of a nonlinear F(x) solution into the linear
equation and comparison of solution to original assumed
f(x) in the nonlinear equation;

(b) scaling and calibration in the nonlinear case; and

(c) possible iteration solutions of the nonlinear equation.
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APPENDIX A

Approximation in the Sense of Least Squares
for a System of Simultaneous Equations

Consider the system of simultaneous equations

N
Y asxyg=by , i=1,2,°""M (A-1)
=1

or in matrix form
AX = B (A-2)

If M = N, the A matrix is square and, if it is nonsingular, the system
of equations can be solved directly.

If M > N, the A matrix is rectangular, as there are more equations
than unknowns. This system of equations can be solved in the sense of
least squares in the following manner (see p. 8 of Ref. 7).

Let Xj be a column vector that does not identically satisfy Eq. (A-1),
but gives a residual error vector e; in

N

2: aid}_{d -b; =e , 1=1,2,°°",M (a-3)
J=1

M M N N
_Z ef =) <Z a;3¥3 - by (Z By Xy = bi (A-k)

Now

3 (e =)\ — N
S?(Z e,,) D ai,,(Z aik Xy -bi>

i=1 k=1

i=1

M N
+ Z ai,,(Z aiJEJ - by
=

M N .
2 L a,-_,,(Z a;3X3 = by ] =0 (A-5)

i=1 j=1

- 1,2,".,M

o)
|
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This set of equations for a minimum of the square of the error can be
written in matrix form as

2[aT(ax - B)] =0
or
(4-6)
Afax = ATB

Since ATA is a square matrix, symmetric, positive diagonal elements, and
nonsingular, it can be inverted to give

X = [ATA]-1aTB (A=7)

as the solution of the system in the sense of least squares.

As a simple example, consider the system

2X1+3X2=O

2X1-LI-X2=1

Xy =X2 =0
Equation (A-7) gives Xy = 8/L45 and X» = - 6/45 with the residuals
2 5 1h
e = e —— e = e e3 EE —
1 )+5 H 2 )+5 ] )+5 H
ef + e2 + e§ = %

None of the three equations are satisfied exactly, but the X; and Xo
values are the best values in the sense of least squares. Any other
values of ¥X; and Xy will give

ef + e + &% >

O |+

It is evident that if one or more of the equations have mistakes
in them, these mistakes will affect all the results and residuals. The
mistakes or errors are spread out over all the results. Such an effect
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can occur if incompatible conditions or restrictions are present in the
system of equations. For example, suppose the third equation in the
simple example above is

1000%; - Xz = O.

Then, there results from Eq. (A-7) X; ~ - 4/25,000 and Xz ~ - 4/25,
Thus the equation with the large change is still approximately satisfied,
but the solution is completely changed.
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APPENDIX B
Evaluation of an Integral in Fourier Series Solution¥

The integral in Eq, (5-11)

2 7 s fa)
K. BI log(-—SL)sin no cos mo do
L o 1+ cos @
can be written as
2 &4 > 2]
% Kpn = [ 208 (—Z2 lsinGmn)e - sin (a-n)olao
2 o 1+ cos 6

Now consider the integral

I3 —f log ( sin 6 sin 218 9 , i =1,2,3,**°,X
: 1 + cos 9

Introduce the constant l/2i and integrate by parts to get

[}

. . 7 o .
Toi 1 - cos 2i8 1, sin @ ] lf 1 - cos 218 44

o1 T+cos 0dg 21) " sine

It .
21 4 sin 6

Consider the difference form

2ifoy - (21-2)Tpi_n

fr cos 219 - cos (21-2)6 44
fe) sin 6

b3
-2 f sin(2i-1)edp
o]

]

[1 - cos (2i-1)x]

2i - 1
__k
2i - 1
*Thanks are due to Dr. Keith Stewartson, Visiting Professor at

The Ohio State University, Summer 19569, and Goldsmid Professor of

(B-1)

(B-2)

(B-3)

(B-4)

Mathematics and Joint Head of Mathematics Department, University of

London, for this integration.
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Since I, = O, 1t follows that

I,=0 ,
Io=-2 ,
L ori, 1 L
R ol R R
i 2i i
Ini = - £ B-6)
21 ik};lak-l (

Put this result in Eq. (B-6) into Eq. (B-2) and use 2i = m + n or
m - n to get

(m+")/2 ’(m-n)/el
_ 8 1 8 1 _
e 72 (mn) 2=:1 2k ~ 1 ¥ %2 (m-n) kgl 2k ~1 (B-7)

vhere m + n is even. If m = n, Eq. (B-2) gives

m

Kom = = )-2*. = » B =1 (B'8)
n“m k=1 2k - 1

For m + n odd, sin (mn)6 is even in the interval O to x. Since the
log term in Eq. (B-2) is odd on the interval O to x, the value of the
integral is zero for m + n odd, or

Kpn =0 , form+n odd . (B-9)
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APPENDIX C

G Matrix for Inversion Integral Method

-G MATRIX

ROW__1

0.20320 0.04411 0.02977

0,02417

0.02123

_,;*_QLQLIQQ_“Q-Qll&ﬁ_nﬂlﬂlllz__ﬂiﬂl305*~Q;Ql869
. 0.02322 0.02632 0.03114 0.03937 0.05606
-,u;ZQ11&1Q1_30104581~:0.OZQIQ;:Q;QZQléer-DLSYQ

~0,00843 —-0.00709 —-0.00602 -0.00514 -0.00442
-0.00196 -0.00157 —-0.00113

-0.00279 —-0.00236
ROW 2

_..~0,02500_ 0,15891

0.01984 0.01918

 0.02376 ._0.02679. ..

~0.146717

~0.04565

=0.00831 _-0.00697.

_0.08337  _0.03444_ 0.02689

0.01894 0.01906 0.01953

0.03156__0.03974_.0.05639 .

-0.,02890 -0.02058 -0.,01563
-0,00505 ~-0.00433

-0,00591

——— e B2

~0.00273 -0.00230 -0.00191 —-0.00153 —0.00110

ROW_.3 -

_0.06065 0.16187 0.09606 0.03821

0.02438 0.,02733 0.03203
- :Q;Jiﬁﬁg_:Q;Q&ﬁﬁlwzgpQZ&Q&;:QLQZQQQ-:Q;OIE4S

0.02255%__0.02120_ 0.02050_.0.02031

0,04016

0.02056
0.05676

~0.00817 ~0.00685 —0.00580 ~0.00495 -0.00424
.,%.ngOQZb§“f0.00225,r0.00186,tQLOOLQQ_-0;00107

ROW 4

_ ~0,00472 -0,01875 -0.07741. 0.15901 0.10615

0.02662

0002512 _0.02797 ..
~0.14620 -0.04514 -

- —=0s00803 -0.00672
~0.00259 -0.00219
ROW 5. S

~0.00333 -0.01176

- 0.0334] 0.02826
0.02601 0.02872

... =0.14587 -0,04485
~0.00787 -0.00658

0.,02402

- :'QQ 00252__-0.0 002 12

ROW © :

—.=0.00250 =0.00827.

0.04698

. .0.02709 .. 0.02961

0.,03533

0.02259

~0+14550 ~0.04452 —0.02789

. =0e00770.
-0.00244 —-0.00205

ROW . T._

Z0.00194 ~0.00618
0.12842

0.02845

-0.14508-

-0.00751
_ =0.00235

-0.00642

0.04946
0.03071
-0.04415
—-0.00626

0.02192

0.02184

Qe03258__ 0.04063  0.05718
0.02844 -0.,02017 -0.01526

~0,00568 —-0,00484 —0.00%41%
-0.00181 -0.00145 -0.00104
-0.02382 -0.08881 0.15386
.0,02551. 0.02407 0.02349
0.03322 0.04119 0.05766
-0,02818 —-0.01993 -0.01504
-0.00555 -0,00472 -0.00404
~0.0Q0176 —0.00140.-0,00101
~0.01489 -0.02719 -0.09766.
0.02990 0.02708 0.02570
0.03397 0.04183 0.05822
-0.,01967 -0,01481

-0.00542 —-0.00460 -0.00393
-0.00170 -0.00135 -0.00097
-0.01042 -0.01692 -0.02972
0.03721 0,03159 0.02878
0.03488 0.,04259 0.05886
~0.02756 —0.01938 -0.01455.
-0.00527 -0.00447 -0.00380
-0.00164 ~0.00130 -0.00094

o1

0.01951
.. 101968
0.15715
~0.01250
~0.00380

0.02317
0.02039
0.15745
-0.01235
-0.00372
-0.00041

0.02926
0.02125
0.15778
~0.01219
-0.00364
—-0.00039

0.04146
0.02230
0.15815
-0.01201
-0.00355
-0.00038

0.11462
0.02361
0.15858
-0.01182
-0.00346
-0.00037

0.14748
0.02530
0.15906
-0.01161
-0.00336
-0.00036

-0.10486
0.02755
0.15961

-0.00325

-0.00034

0.01848
0.02112
0.00507
-0.01017
-0.00326

0.02106
0.02174
0.00533
~0.,01003

0.02494
0.02247
0.00563
-0,00989
-0.,00312

0,03141
0.02334
0.00596
-0.00973

0.04434
0.02441
0.00633
-0.00955
-0.00296

0.12195
0.02574
0.00675
~0.00936
~-0.,00287

0.14033
0.02746
0.00724
-0.00915
-0.00277



RO¥ 8

=0.0Q155
0.13268

-0.,14460

Row -2 :
~0.00125 —0. 00378 0 00595 —0.00870 —0,01274
— .=0a11590 0,12470  0Q.13953 . .0.05416 . 0.04111

0.03251-

-0.00478 -0.00774 -0.01178.

0.13424 0.05183
- . --0203019 .0
—0.04373 -0.02719 -0.01905
— . =0,00731 -0.00607 ~0.00510 -0.00432 =0,00367.
~0.00226 - -0,00190

0.03912

).03208. 0.03599 ..0.04350

-0.01840
0,03340
0.05963

-0.01426

-0.00157 ~-0,00125 -0.,00090

0.03384 0.03737
e =051440% —0.04325 —0.02677 -0.01869 -0.01394%

0004462

0.06055

-0,00708 —-0.,00587 —0.00492 -0.,00416 -0,00353
-0.00217 -0, 00182 -0.00150 -0.00119.

ROK 10
_“_M:Q&00102_7Q100303 —0. 00468 -0, 00665

-0.03446 -0-12011
0003576 0.03619 0,03915 _0.04601.

0.11653

0014443

~0,14339 —-0,04269 =0,02629 -0,01827

.. =0020683

~-0,00206

-0,00083
-0.02088

-0.12359
0.04152

—0.00565--0.00473 -0.00399
-0,00173 -0.00142 -0.00113
_ROW 211 L :

~0,00245 -0.00372 -0.,00518
-0,03533
0.04064. 0.03948
- .70614263 -0,04205 =0002574 -0.01780.

0.10826
0.04781

-0,00656 —0,00541 -0.00451 -0.00380
e =0,00195 ~0,00163 _-0.00134 -0-,00106
TROW 12
~-0,00068 -0.00199 —0 00298 -0,00408

-05,01410 -0.02120 -0.03588 -0.,12637

0.04877

0.,044%442 .0.04485.

.0.05020

~0.14171 -0,04128 ~0,02510 —0.01725
~0.,00625 -0-00514 -0,00428 -0,00359

-0.00183

ROW 13

~-0,00056
-0.,01Q02

0.06502
-0.14058
~0.00590

_.=0,00170

ROW 14
—.~0.00045

~-0,00731

0016255

~0.,13918

——-=000551

~0.00155

_ROW_ 15

-0.00036

-.~QOQ0537

0-076566

~0.13737
~-0.,00506

~0.0013¢6

=0,00153 -0.,00125 -0.00099

~0,00160 —0,00238 -0,00322
-0,01413 -0,02126 -0,03611

0.05264 0.,04983
-0.04036 -0.0243%4 -0.01661
-0,00484 —0.00401 -0.,00336
=0,00142 -0,00116 -0,00092

0.05354

-0,00129 -0.00189 —0.00254%
-0,00989

-0.01395 -0.02106

0.06910 0.,05813
-0,03924 -0,02342 —-0,01585
—0.00450_-0,00372 -0,00310
-0.,00129.-0,00106 -0.,00083

0.07474

0.05856

-0.00102 -0.00149 -0.,00198
=-0.00707 -0.00957 -0.01354%

0.16781
-0,03784 -0.02231 -0-01495
-0.00%£11 -0.,00339 -0,00281
-0,00116 -0.00095 -0,00074%

0.06693

92

~0,00085

~0.00934
0,05653

_0001357
-0.00338
-0.,00081

-0.00708
0.14903
0.06307

fQoOlBlb

-0.00321

~0.00076

—=0.00546
0.10000
0.06487

—0.01269

-0,00303

-0.00071

—0.00425

~0,12848
0.06727

-0.01215

-0.00283

—Qg00065

-0.00330
-0,03597

0.0T7064%
-0,01152
-0.00260
-0.,00059

-0,00255
-0.02056

0.07568
'0001077
-0,00236
-0,00053

- 0.06161

~0.,03170
0,03069
0.16026
-0,01112
~0.00313.
-0,00033

~0,01951
0.03542
0.16103

—OaQLOG&.

-0.00301
-0.00031

=-0.01341
0.04329
0016195
~0,01052
-0,00287
-0.00030

-0.00975
0.05903
0.16307

-0.01016

-0,00272

-~0,00028

-0,00732
0.15347
0.16448

-0.00975

‘0000256

—~0.00026

-0.00557
0,09187
0.16629

-0.00929

~0.00239

~-0.00024

-0.00427
-0.12986

0.16870
'-Oo 00875
-0.00219
-0.,00022

-0,00325
~0.03542

0.17207
-0,00813
~-0,00198
-0.00019

‘0011086
0.02975
0.00779

-0.00892

.—0000267

-0.03326
. 003295
0.00844%
-0.00867
-0,00256

~-0,02032
0.03776
0,00921.

-0,00839

-0.00244%

-0,01386
0.045T77
0.01013

”0000808

-0,00231

-0,00998
0.06179
0.01126

-0,00772

-0.,00217

-0,00739
0.15790
0.01267

~-0,00732

-0.,00202

-0.,00554
0.08402
0.01447

-0.,00687

-0.00185

-0.00416
-0,13044%

0.01689
-0.00634%
-0.,00166



S

~0.00028 ~0.00079
. =~0.00392 -0.00505
- —=0.13004 Q.07019.
-‘0013496;‘0.03604-
.. ~0.00454 —-0.00367
, ~0.00122 -0.00101
: ROH 17 -
0. 00021 -0.00059
~.. 000278 -0.00353.
~-0.03251 -0.12832.
. . ~0.13158 -0.03364
. =0,00394 -0.00316
. -0.00103.-0.00085.
ROH 18 '
.-TQ.QOOlﬁ-'Q.OOO4l
~0.00188 ~-0.00236
-0.01626 f0002961
~0.12652 -0.03027
~-0,00322 -0.00257
~0.00081 -0.00067
RQU 19 . .
~-0.00009 -0.00026
. -0.00114 -0.00141
~0.00813 -0.013156
-0,11809 -0.02523
-0.00236 -0.00187
e Q200057 ~0.00047
ROW 20 :
.. =0.00004 ~-0.00012
-0.00052 -0.00064
- . ~0.,00325 -0,00494
-0.10122 -0.01682
-0.00131 -0.00103
-0.00030 -0.00025
_ROW 21 _
0.0 0.0 -
- . 0.0 . 0.0
0.0 0.0
.00 . . 0.0
0.0 0.0
0.0 - 0.0
ROW 22 :
0.00004- 0.00011
0.00045. 0.00054
- 000232 0.00329
-0.16196 0.10091
0.00169 0.00128
0.00035 0,00028
_ROW 23 . -
0.00008 0.00021
e .. 000084  0.00101
.0.00406 0.00564%
—...:=0+30366 -0.,07071
000394
. 000075 .0.00061

-ROW - 16

-0.,00115 -0.00151
0.17440 0.08366
~-0.02091 -0.01384
-0.00301 —-0.00249
-0.00082 -0.00065
-0.00085 -0.00112
-0.00456 -0.00602
0.06534 0.18405
-0.01912 —-0.01246
-0.00258 -0.00213
~0.00069 -0.00054
-0.00060 -0.00078
-0.00299 -0.00387
=0.12457 0.06382
i-0.01673 -0,01068
-=0.00208 -0.00171
-0.00054 -0.00043
~0,00037 -0.00048
-0.00177 -0.00226
-0.02491 -0.11712
-0.01339 -0.00830
-0.00150 -0.00123
-0.00038 -0.00030
-0.00018 =-0.00023
-0.00080 -0.00100
-0.00830 -0.01673
-0.00837 -0.00498
-0.00082 -0.00066
~-0.00020 -0.00016
0.0 0.0
0.0 0.0
-0.0 0.0
- 0.0 . 0.0
0.0 0.0
0.0 . _ 0.0
0.00016  0.00020
000066 0.00082
000498 _0.00837_
0.01673 0.00830
0.00100 0.00080
0.00023 0.00018
0. 00030 - 0.00038
0+00123  0.0Q150.
0.00830 0.01339
0.11712 0.02491

0.00294 -0.00226 0.00177

. 0.00048

_o.ggo37

-0.00193
~-0.01285

0.08409
-0.00987
~0.00208
~0.00046

~0.00142
~-0.00822

0.10091
-0.00877
-0.00177

~-0.00038

—~0.00098

-0.00514

0.20182
-0.00740
-0.00141
-0.00030

-0.00061

0.07071
-0.00564
-0.00101

-0.00021.

-0.00028
-0.00128
-0.10091
-0.00329
-0.00054
-0.00011

0.0

OO0O0OO0O
o & 8 o o
[eRoRoNeRo

0.00025
0.00103
. 0.01682
0.00494
. 0.00064
0.00012

0.00047

~.0,00187

0.02523
0.01316
0.00141
0.00026

-0.00244
-0.01968

0.17713
-0.00739
-0.00174

-0,00177
-0.01181

0.18557
-0.00650
—0.00147
-0.00014

-0.,00122
-0.00708

0.20244
-0.00542
-0.00117
-0.00011

-0.00075
-0.,00394

0.30366
-0.00406
-0.00084
~-0.00008

-0.00035
~0.00169

0.16196
-0.00232
—-0.00045
-0.,00004

s & 8 o o o
[oNeRoRoNoNe)

COOOOO

0.00030
0.00131
0.10122
0.00325
0.00052
0.00004

0.00057
0.00236
0.11809
0.00813
0.00114
0.00009

-0.00308
-0.03433

0.02026
~-0.00572

-0.00222
-0.01831

0.02533
-0.00499
-0.00123

-0.00151
-0.01030

0.03377
-0.00098

-0.00092
-0.00549

0.05066
-0.00305
-0.00069

-0.00043
-0.00229

0.15198
-0.00172
-0.00037

[eReNoNaNo]
e« & o o o
[oNoRoRoNe)

0.00037
0.00172
-0.15198
0.00229
0.00043

0.00069
0.00305
-0.05066
0.00549
0.00092



ROW 24

e . 0200011 -

0.,00117
0.00542

| ~0.20244-

0.00708

0.00122.

ROW 25,

0.00014

- 0.00147
0.00650

. =0.18557.

0.01181
ROW 26
0.00017
0.00174
0.00739
-0.17713

0.01968.

0.00244

ROW 27
0.00019
0.00198
0.00813
~0.17207
0.03542
. 0.,00325

ROW 28
0.00022
0.00219
..0.00875
~0.16870
0.12986
0.00427

ROW 29
0.00024
0.00239
0.00929
-0.16629
-0.09187
_ 0.00557

ROW 30
0.00026
0.00256
0.00975
-0.16448
-0.15347
0.00732
OW 31

0.01016
-0.16307
'-0.05903
0.00975

0.00177.

- 0.00030.
0.00141-
. 0400740.
-0.20182
0.00514
0.00098

0.00038
Q.00L77
0.00877
-0.10091
0.00822
0.00142

0.00046
0.00208
0.00987
-0.08409
0.01285
0.00193

0.00053
0.00236
0.01077
-0.07568
0.02056
0.00255

0.00059
0.00260
..0.01152
-0.07064
0.03597
0.00330

0.00065
0.00283
0.01215
-0.06727
0.12848.
0.00425

0.00071
0.00303
_0,01269
-0.06487
-0.10000
- 000546

0.00028 -
0.00272.

-0.,00321
0.01316
-0.,06307
-0.14903
0.00708

0.00076

.0.00043

0.00171
0.01068
-0.,06382
0.00387
0.00078
- 0.00054
0.00213
0.01246
-0.18405
0.00602
0.00112

0.00065
0.00249
0.01384
-0.08366
0.00903
0.00151

0.00074
0.00281
0.01495
0.01354
-0.00198

0.00083
0.00310
. 0.01585
-0.05856
0.02106
0.00254

0.00092
. 0.00336
0.01661
-0.05354
0.03611
0.00322

0.00099
0.00359

0.01725 .

0.12637.

0.00408

0.00106
0.00380
0.01780
-0.10826

0.00518

0.00054
0.00208
0.0L673
0.12457
0.00299
0.00060

0.00069
0.00258
0.01912
-0.06534
0.00456
0.00085

0.00082
0.00301
0.02091
~0.17440
0.00664
0.00115

0.00095
0.00339
0.02231
~0.07474
0.00957
0.00149

0.00106
0.00372
0.02342
-0.05813
0.01395
0.00189

0.00116
0.00401
0.02434
—0- 04983
0.02126
0.00238

0.00125
0.00428
_0.02510
-0.04485
0.03588
0.00298

0.00134

0.00451

0.02574

-0.04152

0.12359

. 0.00372
ol

0.00067
0.00257
0.03027
0.02961
0.00236
0.00041

0.00085
0.00316
0.03364
0.12832
0.00353
0.00059

6.00101
0.00367
0.03604
-06.07019
0.00505
0.00079

0.00116
0.00411
0.03784
—-0.16781
0.00707
0.00102

0.00129
0.00450
0.03924
-0.06910
0.00989
0.00129

0.00142
0.00484
0.04036
~0.05264
0.01413
0.00160

0.00153
0.00514
0.04128
-0. 04442
0.,02120
0.00199

 0.00163

0.00541
0.04205

~0.03948

0.03533
0.00245

0.00081
0,00322
0.12652
0.01626
0.00188
0.,00015

0.00103
0.00394
0.13158
0.03251
0.00278
0.00021

0.00122
0.00454
0.13496
0.13004
0.00392
0.00028

0.00139
0.00506
0.13737
—0.07666
0.00537
0.00036

0.00155
0.00551
0.13918
—0.16255
0.00731
0.00045

0.00170
0.00590
0.14058
-0.06502
0.01002
0.00056

0.00183
0.00625
0.14171
~-0.04877
0.01410
0.00068
0.00195
0.00656
0.14263
—0. 04064
0.02088
0.00083

0.00098
0.00412
-0.03377
0.01030
0.00151

0.00123
0.00499
-0.02533
0.01831
0.00222

0.00146
0.00572
-0.02026
0.03433
0.00308

0.00166
0.00634
~0.01689
0.13044
0.00416

0.00185
0.00687
~0.01447
-0.08402
0.00554

0.00202
0.00732
-0.01267
-0.15790
0.00739

0.00217
0.00772
-0.01126
-0.06179
0.00998

0.00231

0.00808
~-0.01013
~0.04577

0.01386




32
T o 00287

_=0,04329.-0,05653 ~0.14443 -0.11653  0.12011 _
0.01341.
33

_ROW,
1 0.00031

0.00338.

+00030. . 0. 00081_ 0.00113

0.00399

0.00142 0.00173 0.00206 0.00244

' _ ) 0.00473 0.00565 -0.00683 0.00839
_...001052 0,01357__0.01827 0.02629 0.04269 0.14339
~0.16195 -0.06167 -0.04601 -0,03915 ~-0.03619

0.00934

0. 00085

0400665

0.00119

0.00468

0.00150

0.00303

' 0.00182

000301 _0.00353__0.00416 _0.00492_ .0.00587..
. -0.01084 0.01394 0.01869 0.02677 0.04325
. =0.16103 —0.06055 =0.04462 =0.03737 -0.03384%.

- =0e03542 ~0.04111 -

) N 01951 ..0,01274...0.00870_ 0.00595__ 0.00378.
.ROH 34
0400033 . 0;00090__0 00125 _0.00157 _. 0.00190
0.00313 0.00367 0.00432 0.00510 0.00607
0401112 0.01426: _0.01905._.0.02719__ 0.04373. .
~0.16026 -0.05963 ~0.04350 -0.03599 —0.03208
=0.03069 -0.03340 -0.03912 -0.05183 -0.13424
: 0.03170 0.01840 0.01178 0.00774 0.00478
ROW 35 S — ..
0.00034 0.00094 0 00130 0.00164 0.00198
0600325 0.00380 _0.00447 0.00527 .0.00626..
. 0.01138 0.01455 0.01938 0.02756 0.04415
o ...70.15961 -0.05886 ~0.04259 -0.03488 -0.03071
=0.02755 -0.02878 -0.03159 -0.03721 -0.04946
... 010486 0.02972 0.01692 0.01042 0.00618
ROW 36 -
— 0400036 0.00097 _0.00135 0.00170 _0.00205
0.00336 0.00393 0.00460 0.00542 0.00642
e 20601161 0.01481 0.01967 . 0.02789 0.04452
-=~0.15906 ~-0.05822 -0.04183 -0,03397 -0.02961
ern=0.02530 -0.02570 ~-0.02708 —-0.02990 -0.03533
~-0.14748 0.09766 0.02719 0.01489 0.00827
ROW 37 . _ L e e
~ 0.00037 O. 00101 0.00140 0.,00176 0.00212
. 000346 0.00404 0.00472 0.00555 0.00658
0.01182 0.01504 0.01993 0.02818 0.04485
. .=0.15858 ~0.05766 —-0.04119 -0.03322 —-0.02872
~0.02361 -0.02349 ~0.02407 -0.02551 -0.02826
o =0s11462 -0.15386 0.08881 _.0.02382  0.01176.
ROW 38
— “Q_OOQlﬁ.mﬂgﬂﬂlQé_womQQl45 "0.00181 . 0.00219
0.00355 0.00414 0.00484 0.00568 0.00672
0.01201  0.01526 ©€.02017 Q.02844 0.04514

0.05416 -0.13953 -0.12470

 =0.15815.-0.05718 —0.04063 —-0.03258 ~0.02797

~0.04146 -0.10615 -0.15901

ROW 39 _
0.00039

O 00107

0.00149

_000364 . 0.00424 0.00495

" 0.01219

0.01545

0.02038

0.07741

0.00186

-0..00580.
0.02868

—.m002230 -0,02184 —0.02192 -0.02259 -0.02402.

0.01875

0.00225

0.00685
0.04541

-0,15778 -0.05676 -0.04016 -0.03203 -0.02733
-0,02125 -0.02056 —0.02031 -0.,02050 -0.02120
~0.02926 —0.03821 —-0.09606 —-0.16187

95

0.06065

-0.03576
0.00102

0.00217
D.00708
0.14404
~0.03251
0.11590

0.00125.

.0.00226 .

0.00731

-0.03019

0.00155

0.00235

.0.00751

0.14508
~0.02845
-0.12842

0.00194

0.00244

0.00770
0.14550
-0.02709
—-0.04698
0.00250

0.00252
0.00787
0.14587
—0.02601
-0.03341
.0.00333

0.00259
0.00803
0.14620
~0.02512
-0.02662
0.00472

0.00266
0.00817
0.14650
~-0.02438
~0.02255
0.00750

003446

O0el4460.

-0.00921
-0.03776
0.02032

0.00256
0.00867
~-0.00844
=0.03295.
0.03326

000267
0.00892
-0.00779..
-0.,02975
0.11086

0.00277
0.00915
-0.00724
-0.02746
-0.14033

0.00287
0.00936
-0.00675
-0.02574
-0.12195

0.00296
0.00955
-0.00633
-0.04434

0.00304
0.00973
-0.00596
-0.0233¢4
-0.03141

0.00312
0.00989
-0.00563
-0.02247
-0.02494



ROW 40 - o . -
 0.00041  0.00110_ 0.00153 _0.00191 _0.00230_.0.00273_ 0.00319.
T0.00372. 0.00433 0.00505 0.00591 0.00697 0.00831 0.01003
0.01235. .0.01563 0.02058 _0.02890 _0,04565 _ 0.14677. —-0.00533

. .=0.15745 ~0.05639 ~0.03974 -0.03156 —0.02679 —0.02376 —-0.02174

_«_M‘Q,OZQQﬁ,ﬁD.Q1953_~O 01906 ~0.01894 -0.01918 -0.01984 -0.02106_
- ~0+402317 ~0.02689 -0.03444 -0.08337 -0.15897 0.02500

ROW 41 . = . . . : R e —

S ¢ I 00042 0.00113 0 00157 1 0.00196 0.00236 .00279 0.00326
0.00380 - 0.00442 0.00514 LQQQ_Z__Q”QQIQQ.J01998&3~MQ‘Q1Q11
0.01250 - 0.01579 0.02076 0.02910 0.04587 0.14701 -0.00507

~=0e15715 =0,05606 _~0.03937 -0.03114 -0.02632_-0.02322 -0.02112

-0.01968 ~0.01869 ~0.01805 ~0.01772 -0.01766 -0.01790 -0.01848

.70.01951 =0.02123 ~0.02417 ~0.02977 -0,04411 -0.20320




APPENDIX D

Computer Program for Inversion Integral
Method (Cassegrain Mirror)

The computer program listed here is a Fortran program written for
the IEM SYSTEM 360~75. The program solves the integral equation for the
Foucault Test using the inversion integral method of solution for the
case of a mirror with a central hole, All operation are performed in
double precision (approximately 16 decimal places).

The main program reads in M and MODE under a (215) format. M is
the number of evenly spaced points on the mirror and must be even, The
end points and points on the edge of the hole are among these M points.
MODE determines which method of numerical integration is to be used
(MODE = 1, trapezoid rule; MODE = 2, Simpson's rule; MODE = 3, 5-point
rule). Also in the main program R, the radius of the central hole, is
read in under a (E 12.8) format. Next the subroutine GMAT is called.
GMAT generates the G matrix which is stored in G(I, J). The subroutine
GMAT calls subroutine AMAT, which calculates the A(I, J) matrix
(Eq. 10~36). AMAT in turn calls the subroubine HMAT, which calculates
the numerical integration matrix H(I). H(I) is used in A(I, J) and
A(I, J) is used in calculating G(I, J), Egs. (10-35), (10-33), (10-37),
and (10-40). Control then returns to the main program where NRUN, the
number of cases to be solved, is read in under an (I5) format. Next the
subroutine CAPF is called. CAPF calculates the light intensity differ-
ence F(x) from a functional representation at the M points on the Mirror
(Egs. 10-42, 10-4%4, 10-50, 10-~51). The M values of F(x) are stored in
FBIG(I) in the main program and F(I) in subroutine CAPF, Subroutine
DGMPRD then matrix multiplies F into FBIG to return FLIT, Eg. (10-39).
The matrix FLIT contains M values of the surface error f£(x) calculated
at the same points as F(x). DGMFRD is an external IEM subroutine con-
tained in the Scientific-Subroutine Package., If the "hump case" for
f(x) is to be run, as in case 4 of this listing, A and B, the location
and size of the hump, must be given values in CAPF, If F(x) is to be
inputed data rather then functionally represented, then CAPF may be
replaced by a READ statement,

o7




109
101
102
107
104

7

103

iin

—
>

[ANLEV IRV

]
2

IPLICIT AFAL#& (A-yN-7)

DIMENS NN A(42,42) M (42) 3G (42,42) s FATG(42) 4 FLIT(47)
FINVERS IO TMTEGRAL +£THAN FOR HALE CaSEx:

HMRITZ(6+4109)

FORMSAT (/9103 5 1= TVERSTNN TNTREGRAL

REAND(5,101) 1,#NDE
FORMAT(215)

READ(5,102) R

FORNAT (3F12.%)

URITELGINT) ik 4WNDELR
FORHAT (/// 10X, M0, 11F PAINTS =
s F16.8)

CALL GMAT (8 ,i4NDF ,G4R)
URITR{6,104)

FORWMATA{/// 210X, 'G WATRIXY)

NN 2 I=1,°

VRITE(6:193) T,(G(T,0),J=141)

FORVAT(LH 25X, 1M1, 123/ (10X ,5F18&,8))

READ(5,101) “RUN
VMRITE{6,110) NRUN

FORDAT (10X, '8N, NF CASFS RUN =
NOD 3 I=1 4MRUN

CALL CAPE (i1sFRIG,R,1)

CALL DG PAN(G,FRIG,FLIT M iu,1)
HRITE(65103)
FORSAT(/// 510X, 'LITTLF F')
MRITS(65106) (FLIT(J),J=1,i)
FORMAT (1H 5 (10X,5F16.8))

STOP

FaD)

98

FETHOD FCR

191545/ 10X, %i NHE

1515)

HOLFE CASEsckzt)

1,155,130, 'R



SUBROUTINE GMAT (M,MODE 4G 4R)

IMPLICIT REALS
DIAEMSION 6 (424,42),H{42)4D(42),GT(42),A(42,42),X(42)

8(A-H,0-7)

PI=3.,1415926535897¢D0

PI2=PI*P1

CALL AMAT(M,MODFE A H R X)

NN 1 J=1,HM

1 DOJ)= PIZ+{AlJ,J))%%2

FH=11/2
MH1="H+]1
Fil=t=-1

M =i iH~1
MH2=j1H+2
N{1)=28.000
D(i)=28,000Q
N(H)=11.0D0
D{iHL)=11.0D0
PN 5 I=1,1
Do 2 J=l.i

IF(J RO, I) GO TO 2

G(IaJ)=X{JYHRA(TLJ)/ (X(I)ED(J))

2 COMTINUE
GlIs1)==A(I,T1)
5 COMTINURE

/D)

G(1,1)=0.2060D0
G(Hsl)==0,2060D0
G(iHsliH)==0.3180D0
G (iAH1 4FH1)=0,3180D0
G(2,1)=~0,0283N0 '
G(iil,71)=0,0283N0
G(HHiGL 4iiH)=0,0432D0

GlinH2 3 HL)=-0,

043200

G(rHiil ¢ H)L)==0,002100
G(HH2 3 H)=0,0031D0

DO 9 I=1,4%
H(I})=G("Hs1I)
9 GTIT)=G1HL,T)
DN 8 I=1,.h
N 8 Jd=1,71
3 6(13J)=6G(T,J)
%)) /2,000
RETIR
EH)

L1.0N0-K/{ XTI ER (D)

99
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W

l—l
(A%

=
-2

SUBRDUTIME AMAT (M,,MODE,A,H,R$X)
IMPLICIT REAL*8 {A-H,D-2)

DIMENSTION A(My#),H{N) 3AT(42:42) 9B(42:42) X (42)
riH=M/2

CALL HMAT(HHMONF 3 H)

W]l=ii—1

M= =2

FHl=5H+1

MH2=1H+2

HH3=0RE3

FHMI=H=-1

SHM2 =i -2

P=2%(1.0D0~-R)/DFLOAT (7i2)

Na 1 Jd=1,iH

X(J)=~1.0D0+P(U-1)

DN 2 J= HL,i°

X(J)=R+Px(J=itH1 )

NN 3 I=1,F

Do 2 J=1,0

IF(J EQ., I) GN TN 3
AlTd)=(PxH(J))/(X(I)=X(I))

CONMT INUE

NN 4 1=2,"11

IP]l=1I+1

IMl=1-1

A{T 41711 )==H{I#1)=0530%H(1)
A(I¢IPIY=H(IPL)+N,.5N0=H (1)
ANN=0.0N0

D5 J=1,i

IF(T FO, J) GO TH 3

ADDR=a0N+A(T1,J)

COINT Tril)=

5(1,1)=—ANN

AlpHe SRl I=(PERHCTTHL) )/ (X (THHY Y =X (MH))
A(GHHYL 90 )= {PEH(YH)Y Y/ (XUHE) =X (iYH)) )
Al H, A1 )= (PRE(HHNL) ) /(X (AHL) =X (H))
Ala)y H2Y= (PN (THH2) )/ (X (B2 )= (L))
Alls1)=1.0NN

Af 197)=1.000

VRITR(E,102)

FORRIAT(//7/,10X,04 BATRIXDY)

D10 I=3 .w

HRITZH{6.1I01) T4 (A{I,J),d=1,77 )
FORMAT (13 485X 1Pn 1, 13,/(10X35516.8))
PETHRG

£14)

100




SUBROUTIHNE FRNAT (N NB=,04)
TOPLICIT REALRB{A=F,N=7)
NIHENSTOE F(T1)

“l=ii=1

2=l=-2

Gt TN (1,2:32)'D0E

N 10 T=24it)

H{I)=1.010

F{1)=n.500

i) =0,.4500

GN 713 7

RO 11 I=24ii142
F{I)=&,0n0/3,0D0

NN 12 1=3,i12,2
H{I)=2,.000/3,0D0
E(1)=1.0D0/2,00H0
F)=1,000/2,.0D0

GO T 7
nnN 16 1=2

NN 18 1=54/1444
H(I)=14.000/75,0D0

H{l)= 7.0D0/45,0N0
H{i)=T7.0600/45,0D0

COMT TR

NN 4 T=1 471

Al ="1+1

H{1)=H(1)

fa2 =t

URITE(64101)
FORMAT(/// 10X YH DATRIX?'Y)
HMRITE(6,102) (H(I),I=1,i:2)
FORMAT(1H 4 (10X45E16.8))
RETUHIN

END

101




SUIRAUTINE CADE (' =y15J)
TAPLICIT REAL®SR (ﬂ—”:“—Z)

NINENS IO F{8)
fa2=N/2
0=2 ,0N03 (1 ,O0NO=R) /(=2 ,0N()
A==1.000-P
A=0,65N0
=), 17500
NATTE(6,103) Aa,R8
103 FORMATI// ¢10X et A = VaF16,8: /410X = T,R1A,07)

N 52 I=1."
H=X+P
G T (V42 32334 35,647) 4

1 F{I)==345,000

GO TN 52
2 F(I)==35,0Nn%Y
(207 Ty 52

3 OF(1)==35.0D05)=X
G Ty B2
L 1= (A=2)/B
TE (7352 JGF, 1.00001) N 7N 573
IF (Z%3%2 olTe 1.0000]1 o p0N, 735582 05T, 0999“) o T by
FlI)==2,07%%24+(10.0/3 ():4—((1,0—,. <2 )3 2 ) NG IDASS({(1.0=-71/(1,
ln+Z))*((1,\-k)/(loﬂ—A)) ((X=1) /7 {X+2)) ))
GN TN 52
q3 E(I)=20/(2,057)42 0N/ {2, 0073383 ) = (735021, 0)5%2)%(2,0/7+2.0/(3,)%7
H3)HDLNGIDARS{(7-1.0)/(7+1.0))))
GH TH 52
F{I)=NSIG((4N/2.000)47)
G TO 52
B F(I)=14.00/%
G TN 52
6 FII)=nNSIGrH{35,0N0,3%)
GN TH 52
FUI)=14,000/7 (X5=X)
IF(I oFEN, M2) X=R-P
HRITEZ(65101) (F(I),I=1,")
101 FORSAT(// 10X 'RIG F',/453(8N16.83))
EFETHRE
/ Fiun

N
Si

N~

J3

102 NASA-Langley, 1971 —— 23 CR-1906




