W

ART-45

FASTER-II,
A GENERALIZED-GEOMETRY MONTE CARLO
COMPUTER PROGRAM FOR THE TRANSPORT OF
OF NEUTRONS AND GAMMA RAYS

VOLUME I-SUMMARY REPORT

by

T. M. Jordan

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NAS3-14400

DECEMBER 1970

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

gASTER 57 caRL .
6 N1TE K'E -
’ §ASA-CRT ‘%‘1210)“€‘T3§52%3T OF 1‘25 . 25
1/2—, ‘\’2532 E;E%XE ?‘I\Ll‘z’yﬁoa THE TRE 105 Ang® oS
?gOG Rkﬂ eatch Cof?' ’ .
S ~ e

(ART 9170 _ _51W
gaclaﬁs ‘\2‘“ ‘:“ AD NUN\BER\ ) ‘
0919,, a " - N

Dg#- bSTOT R



FASTER-IIT,

A GENERALIZED-GEOMETRY

MONTE CARLO COMPUTER PROGRAM
FOR THE TRANSPORT OF
NEUTRONS AND GAMMA RAYS

VOLUME I' - SUMMARY REPORT

by

Thomas M. Jordan
prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
December 15, 1970
CONTRACT NAS3—14AOO

Technical Management
NASA Lewis Research Center
Cleveland, Ohio

Millard L. Wohl

A.R.T. RESEARCH CORPORATIMN
1100 Glendon Avenue

Los Angeles, California 90024

ART-45



'
e

| PRECEDING PAGE BLANK NOT E

PREFACE

This report was prepared by A.R.T. Research
Corporation, Los Angeles, California, under
Contract NAS3-14400 and was funded by the
National Aeronautics and Space Administration-
Lewis Research Cenﬁer, Cleveland, Ohio. Inclusi&e

dates of research were - 24 June 1970 through

4 December 1970. The NASA Project Manager for

this work was Mr. Millard L. Wohl.

This report comprises two (2) volumes; Volume I-
Summary Report covers the theoretical basis for
the FASTER-III computer program and results for
sample problems; Volume II - Users Manual gives
detailed operational instructions for the computer

program,
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ABSTRACT

This volume outlines the theory used in FASTER-III,
a Monte Carlo computer program for the transport

of neutrons and gamma rays in complex geometries.
The program includes the treatment of geometric
regions bounded ‘by quadratic and quadric surfaces
with multiple radiation sources which have a speci-
fied space, angle, and energy dependence. The
program calculates, using importance sampling,

the resulting number and energy fluxes at specified
point, surface, and volume detectors. It has

the additional capability of calculating the
minimum weight shield configuration which will

meet a specified dose rate constraint.

Results are presented for sample problems involving
primary neutron and both primary and secondary
photon transport in 'a spherical reactor-shield
configuration. These results include the optimiza-
tion of the shield configuration.

The users manual for the FASTER-III program is
contained in a companion volume.
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Section 1
INTRODUCTION AND SUMMARY

The original FASTER program, Reference 1, contained a number
of new techniques which provided the capability of obtaining
accurate radiation levels at specified points in complex
geometries. The use of this program by NASA-Lewis Research
Center and other Government facilities and contractors in-
dicated the need to broaden the overall program capabilities,
automate the importance sampling, increase the computational
efficiency, and revise the users manual. This revised program
has been designated FASTER-III todistinguish it from earlier

versions.

A specific program capability developed for NASA-LeRC permits

a calculation of minimum weight shield configurations for
mobile nuclear reactor applications, e.g., nuclear propulsion
for aircraft, surface effect vehicles, and space craft.

The basic Monte Carlo transport method was extended to-include
a calculation of partial derivatives of the radiation fluxes
with respect to specified shield dimensions. These derivatives
are then used to define exponential relationships used in

the shield optimization procedure. This optional program
feature is described more completely in Section 2.

A number of program revisions had also been made'by A.R.T.
Research Corporation for various customers and to provide

an internal capability for solving a variety of radiation
transport problems. These revisions are included in the
FASTER-III program. Particularly noteworthy are the following:

(1) A calculation of optimal importance sampling
parameters based on partial derivatives of the
variance (Section 2.3).



(2) The acceptance of data in either fixed or
variable. field formats including the ANISN-DTF
format for neutron cross sections. '

(3) The calculation of time-dependent neutron
and photon transport (using time. moments and/
or time intervals)includ;ng an optional
exponential atmosphere: o T

(4) The improvement and addition of importance
sampling models with the~varieﬁ$ imporﬁahce
sampling parameters built into the’program{ .

Various program features are described in References 2-6.

The application of the FASTER-III program to a shield optimi-
zation problem is discussed in Section 3. The preblem in-
volved a spherical reactor-shield configuration and included
primary neutrons and both primary and secondary photons.
Conclusions and recommendations are presented in Section 4.

Volume IT (Users Manual) presents the detailed description
of the FASTER-III program along with all the instructions.
for operation on the IBM 7094, UNIVAC 1108, CDC 6600, and
IBM 360-gS (s8ingle or double precision) computers.



Section 2

ANALYSIS

The techniques used in calculating optimum shield configurations
and optimum importance sampling parameters are summarized below.
The discussion is given in three parts: derivatives of fluxes
with respect to shield dimensions, optimization techniques,

and derivatives of variance with respect to importance sampling
parameters. The basic Monte Carlo techniques assumed in this
discussion are summarized in Appendix A.

"'2.1 Shield Dimension Derivatives

The dose rate at a point detector y for a specified reactor
shield configuration is written as:

J
D(y) = ) RB(y) (1)
Jj=1

where J is the total number of energy groups for both neutrons
and photons (including secondaries), ¢j(x) is the particle flux
in the jth energy group, and RJ is the conversion factor from
flux to dose rate. The rate of change of the dose rate with
respect to a shield dimension is simply

T s,

200 - S T W f=12 .1 (2)
j=

j 3t
| //

where L is the total number of shield dimensions and t[ 1s the
value of the Jth shield dimension.



The equation used by the program for determinlng the flux is
written as: ‘ '

¥z -
g = 5 ZZS lm(u ) Ky () ™ )

where N is the total number o'fhistorieQ tracked via the Monte
Carlo method k 1s the number of particle colllsions, N
Zyn is the pOQitlon of ‘the kth colli81on of the nth history, .
*kn(ukn) the number of particles in the jth energy group |
emerging from 2Zyn in the direction ukn of the detector per
unit solid angle, and KJ(zkn,X) represents the material and
geometric attenuation kernel for particles in the jth energy
group going from Zyn to the detector.

The partial derivative of the flux with respect to a shield
dimension is simply:

625 By
S i; z; ERSRERA

The summations are a minor part of the calculation. Therefore,
the notation is simplified by concentrating on the elements
in the summation

J ) * ' - o
atf )7 [ S 1n (Uyen)) Kj(zlm,x)] (5)

where gakn represents the contribution to the flux in the jth
energy group from the kth collision of the nth history.
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This equation is rewritten as

39,
Skn L g 3 gy [s”‘f (v, ) K, (z ,)]
2% Jim 3%y gien’Sen” g B (6)

3 * 3
Gjm[‘a“t‘g 10 S i () + 5E 1 K.J'('Z‘kn’l):,

The second term in brackets involves the attenuation kernel

exp [ -

where M is the total number of regions traversed from Ekn to

M=

®m ajm] (7)
1

Kj(ékn:x) =

2 =]
N} it

the detector, S is the path length for the mth region traversed,
5m is the total cross section of this region for particles
in the jth energy group, and s is the total distance from Zym
to the detector, i.e.,

M

S=Zsm - (8)

T m=1l

A substitution of this kernel gives:

M M
d 0
S?Z— In Kj(zkn’z) = SEZ— - :E:Sm “m T 2 D :E:Sm

m=1 m=1

M
.- S By 2%1_?5211_
B jm 3% M=l Jdty

m=1 ~

=

o8
- - (0. +2) <8 (9)



The partial derivative of the partial path length s with
respect to the shield dimension ?ﬁ is zero unless the mth
region traversed is affected by a change 1n tl . . In particular,
if tf is a characteristic. dimension of the region, 1i.e.,

its thickness, then

38, L - - - (10)
St e Mim T YD |
3ty Mynm knm ‘ m

wWhere #knm is the cosine of the angle measured from the surface

normal n, ., With which the particle crosses the boundary of
the region.

In the strict sense, the change of the dimension of one ghield
region can affect other shield regions. In particular, for

a spherically symmetric reactor-shield configuration, an increase
in the thickness of a shield region forces a movement of all
shield regions having a larger radius. The ihclusion of these
effects in the above equation unnecessarily complicates the
analysis and the calculations. The primary effect of changing
a shield region dimension is to change the number of mean free
paths which particles have to traverse in reaching the detector.
Therefore, in calculating the derivatives, only the effect of
the material attenuation is treated. '

The derivatives at a specific boundary crossing m' then simplify

to:
33
o) -
‘ 2 1 2 1
- (ajm' -S—)l-‘- ' - (O g)—“knm'
= ajd/“knm' (11)

where m' is the index of a region having ee as a dimension.
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The partial derivatives of the particle weight with respect

to the shield dimensions -- the first term in brackets in
equation 6 -- are zero at the point of origin of all primary
particles. For subsequent particle collisions, the derivatives
are calculated using the relationship between particle weights
on subsequent collisions:

*
S (Upn) = Z .
Jim*=lm — °1,k-1, 0 Ky (2 1y 1o 2en) Ty 5 (2 vy 0wy )
Pkn(_%kn)
Z = 4y _
v, = kn k-1,n (12)
-z
%yn"2k-1,n
~ where Si k-1, n( ) is the number of particles coming out of

the prev1ous colllslon point in the direction Yvn and in the

ith energy group, K. (zk 1, n’zkn) is the attenuation kernel be-
tween particle collision p01nts Tij(gkn,gknogkn) is the scatter-
ing kernel for transfer of particles from group i to group j,
and p;n(zkn) is the probability density function used in select-
ing the collision point.

A straightforward substitution gives

d

3 1n st (u.) = <
8'0[ jkn ‘=kn atl

* .
Zsi,k-l,n(lkn)Ki(ﬁk-l,n’imﬁu(zm:yl&&m)
i .
1n -

(13)



After some manipulation, this reduces to

*
2: ijkn app In 5y k-1, n(V )

3?2 In S. kn(u ) = kn(gkn

) a

o+ at[ In K, (Zk 1,n’ —kn) 1n qqu (14)
where
* .
v = Ske1,n(Me) K (Zk 1, o) N i (Zin 2 Vi U (15)
Lk - pkn(z )

The first term in brackets in equation 14 is the same partial
derivative for collision k-1 as the partial derivative now

being calculated for collision k. Therefore, it is known,

either identically zero for k=0, or asldetermined from eqpation 14
for k>0. The second term in brackets in equation 14 is similar

to the second term in brackets in equation 6 and is therefore
determined by equation 11. The last term in brackets involves

the definition of the probability density function used to

select the 0011131on point zkn

The probability dens1ty function for a collision point has the
form '

p}tn(gkn) - q;n(llm) A(‘s)a(s) exp [ _LS :(S )dS ] '
fA(s')a(s'l) exp [/; a(s")ds"J ds'

(16)



where q;n(gkn) is a probability density function used to select
t ‘ticle directi =2 -2 is the distance of
he particle direction, s |—kn Zy_1,n i

the selected collision point 2z from the previous collision

point, A(s) is an importance fggtor for each region which
changes discontinuously at region boundaries, and a(s) is an
effective cross section which changes discontinuously at
region boundaries and which may change continuously within

a region.

. * N
" The derivative of the logarithm of pkn(zkn) involves only
those terms which change whenla shield dimension changes,

i.e.,
S lee] s
d * sl
SEZ In pkn(gkn)= S%Z :[ a(s')ds'| - 5%[ 1 A(s')a(s')exp./.a(s")d€W$'~
o , o .
(17)

Let s[ denote the distance to a boundary involving the[tg

shield dimension. If the first term on the left side of .
equation 17 is affected by a change in this shield dimension, P
i.e. if s:>s[ , then

s
9 0%
5T t[ a(s')ds' | = -a(s,) £
£ o L9 / (18) v
X |
= -a(sﬂ) “[kn

where a(sl) is the effective cross section at the boundary
of the shield and Hlkn is the cosine the particle path makes
with the outer shield normal. If there is any crossing in-
volving the Zgg shield dimension, the second term in equation
18 will always have a non-zero derivative, i.e.,

9



O _ 1n JwA(s')a(sTi ). ‘exp [-f | a(s")ds'"-ds"]
atl A - ‘
| A(s[)a(éﬂ)——nigg— exp[: a(s )ds '4 
s'! .

[éiA(s )a(s ) exp[ _/. a(s")dé"]d81 . {V? (19)

¢}

Curved'shield‘eurfaces may be crossed more than once albng
the path between two partlcle collision points. Therefore,
a summation of equatlons 18 and 19 over every intersectlon
involving the ﬁgg_shield dimension 1is required to completely
evaluate equation 17. -

2.2 Optimization Procedures

The shield optimiZatien‘calculatien yields the set of shield
dimensions t' = (ti, té, cee té L) such that the dose
rate, D(t'), meets the dose constraint. The Monte Carlo cal-
culation is performed for an 1n1tial set of shield d1mensions
t = (t, to, ..ﬁt?, L) and yields a set of fluxes, ¢ (t),

=1, 2, . I ‘ana derivatlves, ifJ(E)?J =1, 2, ..., J;

l =1, 2, ...; L. The assumption is made that the fluxes
vary exponentially with'respect,to‘shielq dimension ehanges
in the form ‘

B,(t") = B,(8) e‘x'g[_qj (e - _t,)] S "~ (20)

10



where a, = (ajl, 8ip +es aJ.L). It follows that

igs_i(z)

t1
&Y

i
=
.
~
fet
-
D
e
o}
[ —
)
®
~~
ct
1
jet
-
[ SE—— |
(%)
<@
—
]
<
L J
—~~
let
!
|
—

(21)

I
=
Py

ct
e
job}
<.
[N

In particular

_agi(z) .

B.(t) (22)
aez -

J¢ "
or

898,(t)
23 =—5—t—l} B;(t) (23)

The weight is also expressed as a function of the shield
dimensions. The weight is denoted by W(t') and for spherically
symmetric shields:

5%— {Pl [ (ro+ti)3-r2 ] + 32 [(Po+ti+té)3-(Po+ti)%}---}

w(t') =
b o L S
= 3 Z o ilro * PDRDLENEN 2 )’ (24)
/=1 m=1 m=1
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where p, is the density of the [th shield region and r is
the minimum shield radius ' .

The purpose of the optimization procedure is to minimize the
weight W(t') subject to the dose rate constraint D(t') =D,
where DO i3 a specified dose rate. At'this optimum, the
following equalities hold '

BD()
_ eﬁk
QZ = SW(ET) = constant, /=1, 2, ...,L
al
/

The necessary derivatives are:

and for spherically symmetric shield:

QDIQJ

¢t

-i=
Py
et
~—

; | | i-1 - ‘
1 2 ' 2 |
) = Y 1sz PJ. [ (r'o+. 21 tm) = (r'o+ mzz]_‘ tm) ] (27)

In arriving at the optimum shield, the total shield weight

is built up in increments of weight AW. Each increment in
gshield weight is always associated with a particular shield
dimension. At each iteration, the particulab shield dimension
isselected by examining the values of the shield weight quality
factors, Qf' Each factor Q[ represente the approximate change

12



" in dose rate per unit change in weight corresponding to a change
in the lgg shield dimension. Negative QK'S are the most usual
and correspond to shields for which an increase in weight --

and shield dimensions -- gives a decrease in dose rate.

Positive Q,'s can occur, however, and correspond to shields

for which an increase in weight also increases the dose rate.

If, at a particular iteration, the dose rate is above the dose‘
rate constraint, the minimum shield weight increment would
correspond to the least positive value of those Q;'s for which
" Q, >0 and for which t} > t,(min), where tﬂ (min) is the minimum
value of the fth shield dimension. If such a Q) exists, the
dose rate can be decreased while also decreasing the shield
weight the maximum amount. If there isn't such a Q,, the next
best procedure is to find the most negative of the Qp's for
which QZ< 0 and for which t, < tl(max), where tl(max) is the
maximum value of the f/th shield dimension. A change in that

, Q[ wou ld give'the maximum decrease in dose rate per unit
increase in weight.

If the dose rate is below the specified dose rate at a particular
- iteration, the minimum shield weight increment would correspond
to the least negative of those Qe's for which Q£< 0 and for which
t! > t,(min). If such a Qf exists, the dose rate can be in-
creased while decreasing the shield weight the maximum amount.

If there isn't such a Q[ , the next best procedure is to find

the most positive of those Q,'s for which Qﬂ?>o and for which

£t < ?Z(max). A change in that Qy would give the maximum
increase in dose rate per unit increase in weight.

Assuming a particular value Qm of’ the Ql 's 1s selected through
the above arguments, the corresponding shield dimension té
is changed by a maximum amount Atm where Atm is calculated as

A, = a#%yj (28)

oty

13



If this change would put t outside one of 1ts specified limlts,
the value of t would be set to that 1imit, l.e., & (min)&
t z.t (max) The shield weight increment AW 1s calculated as

DO—D(_t') | . |
AW = - 4"‘ W (29)
Q co ‘ v . . ‘

m

subject to the‘constraintythat IAWI<ZAWO‘where  Awo is'a.specified
maximum shield weight increment per iteration. Note that

AW, and therefore At , may be positive or negative depending

on the value of Qm and whether the dose rate is above or below

the dose rate constraint.

Once a shield d1mension is changed the dose, weight and their
derivatives are re-evaluated and the entire process is repeated
The optimization would be discontinued in several ways. If

the dose rate equals the dose rate constraint within the relative‘
error of the original Monte Carlo dose rate calculation,‘the
program will proceed to the next problem. -- which may be identi-
cal except with more histories to tighten the convergence of
Monte Carlo calculations. Similarly, if all shield dimensions
have reached their minimum or maximum values, and if the optimum
shield cannot be determined with these contraints, ‘the program -
would again proceed to the next problem Finally, if the dose
rate and dose rate constraint are decades apart in value, the
program would reevaluate the fluxes and their derivatives by
Monte Carlo every time the dose rate changed by more than a
specified factor during the optimization procedpre.

2.3 Importance Parameter Optimization

The optimization of the importance sampling must be performed
for some function, e.g., dose rate, of the energy-dependent

L4



fluxes since there is a different optimum for every initial
particle energy. Therefore, assume that a minimum variance
calculation of the dose rate is required where

1
D = § D (30)

where N is the total number of histories and Dn is the dose
rate from the nth history and ﬁN is the average value of the
dose rate after N histories. The relative error of this dose

rate_is given by

N 2
1 1 — o <2
By = 5— | > E DS - N Dy (31)
N N e

Taking the logarithm of this equation and then performing a
formal calculation of the partial derivative with respect to
an unspecified parameter a yields

) N
By - _ 9 1.5 _29 13 z; 2 =2
da lnEN = Sa 1In DN f—gz-ln N + 33a 1n Dn - NDN
n=
N 5 aDn Nﬁz 3 N
3 ]_j Z n aa N a
- . 90a N b=l
= 2 —2
DN Dn - NDN
n=1

N°D



Thus the partial défivative of the rélative error with respect
to the parameter a is: -

SE 1 ‘ 3D P |
N _ = n 215N
=l RN D R« S U Ye ) S IRE )
N™N n=1 ‘ n=1

The dose rate from the nth history is given by

. |
D, = ZRJ Zk¢3kn '. / | (34)

=1

where J is the total number of energy groups, k is the number
of particle collisions, Rj 18 the flux to dose rate conversion
factor forhthe Jth energy group, and ¢jkn is the flux in the
Jth group from the kth collision of the nth history. Since

3By

1 s~ D |
=~ n ‘
3a ~ N ;é; Ja , ' (35)

the calculations required to evaluate equation 33 all involve
the summation of terms which involve

J ' J |

3D 3 . 5

38 " _552(RJZ¢JM)= 22 (36)
3= K ~ |

The remainder of the analysis, therefore, can be concentrated
on the partial derivatives of the fluxes. All other operations
which must be performed are given above,

16



The fluxes typically depend on the detector position y, so
the equation for the particle flux is written as

The transport kernel K (z ) does not involve any importance

1’ L
sampling parameters so that

8., (¥) *
= = S (@ _) Ky (Z¥) (38)

This equation can also be written as

380 () ,
aa : B Sjkn(gkn> Kj(gkn,z) %%E In Sjkn(Ekn) - (39)

Without going into great detail, it turng out that the particle
weight kan(gkn) is composed of a purely analytical numerator,
Jkn( and a denominator which is the product of all the
probablllty density functions used to select the collision

.points, i.e.,

S (W) = 39{—-@“-’—(—‘;’;—1‘—”—) - (40)
e pén(_ln)
Thefefbre
K
1n sjkn( ) = In v, (u_) gno pzn( o (41)

N



Since ijn( ) does not explicitly involve any importance

parameters, it follows that

_8_2; In Sjkn(y-lm) =‘A-"a—a"' In ) O Pzn(EEn) o

(42)

I
1
oqo/
2]
'—l
o
>
=
T~
L
)
p —

Therefore, equation 39 can‘beHre-written‘as

Pig ‘;-‘ (x)Z 1n p[n(z T =)
a o N B

Moreover, the partial derivatives are energy independent so
that equation 36 becomes

aD J | ok | l* | : o
5 = Z R ﬁ,]kn(z) B Z -a% In p, (2, ) (L)
| A A )

The evaluationcﬁ‘the partial derivatives of the probability
density functions can be written as '

~

| k-1 ‘ |
_13% n p;n(_z{n) = ) oa—aa- tn p* ( ln) lln pkn(zkn) (45)

18



At the kth collision, the first term on the left side of equation
45 is known, identically zero if k=0. Therefore, the analysis 1is
completed after examining the calculation of the secondAterm.

At this point it is necessary to identify the particular
importance parameter a. Since most of the importance sampling
parameters have fairly involved roles, the technique will be
applied here to a set of parameters which can have a reasonably
simple role. These parameters consists of the relative importance
Ir of each region. Normally these parameters are all equal.
However, in asymmetric problems, it turns out that some regions
are much more important in terms of their scattering ¢ontributions
to a detector. Therefore, these important regions have a

larger value of Ir

The region importance enters into the selection of a collision
point through the following probability density functiqn:

* I o (s
o (2 ) = —f—ﬁ-’-f-«-—} | (16)
h; ThPn

where r is the region in which the collision occurs (selected
at random), p:(s) is the piecewise continuous probability
density function in this region at the selected collision

point (a distance s from the previous collision point), H is
the total number of regions 1in Whlch the collision could have
ocecurred,and Ph is the integral of ph(Q') over the partial path
length in region h.

Ccalculating the logarithm of each side of the equation yields:
H

* * *
1n pkn(zkn) = 1In I, + In pr(s) - 1n Eg;IhPh (47)

19



The partial derivative of eduation 47'w1th respect to the

specific importance'parameter‘Ig,__lthe relative importance
of region g -- yields ' ' . S .
) L‘ H *
. L 2 n%n |
a i ST bt e
8T, In Py () = T Cer 5 L (48)
D o 4 v |

n=1 '

>

where 6 ., '= O if region h is not region 'andué i.
. bgh | g , ‘ g g ag

]

Thus equation 48 is evaluated during the random selection of
the kth collision point and the final term‘necéSsary to evaluate
equation 45 and all preceding equations has been determined.

The above analysis 1s used to calculate the partial derivatives
of the relative error of the dose ‘rate with rerect to the
relative importance Ir of each geometrlc_reglon, and a similar
analysis is performed for the other importance 'sampling para-
meters. The result‘of the compiete Monte Carlo calculation

is a set of partial derlvatives which, for the reglon importance,
are given by

, ‘ . - | . “ B
Sl DRI O3 D - )
%l NDyE N n 5T, A
’ - “NTN ‘ n=1 T ) n=1 - on=l .
8D | | o
where —= — ' is obtained from equation L4 using equations 45

and 48, T ’ | y

After the calculation is completed, optimal‘values‘bf‘the im-
portance sampling parameters are calculated‘byfreqU1ring»that
the relative error be zero--not actually achieved of course.

20



By a first order expansion

EN = 0 = EN + &~ gf; (IF_IF) (50)

where R is the total number of regions. A simple gradient
H
ana lysis says that Ir - Ir should be proportional to
OEN 5o that

. 3Ey,

IF = If + C —ST; | (51)

where, by substitution into equation 50,

- EN

C = e (52)
> \oI,
r=1 '

t
The program prints the optimum values of Ir and other importance

parameters after completing the Monte Carlo flux calculation.
This analysis is performed for every response function.

After more experience is obtained with the technique, the

" program could be modified to change these parameters internally
corresponding to a specified response function.

21
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Section 3

SAMPLE PROBLEM RESULTS

Two problems were investigated using the shield optimization
capabilities of the FASTER-III program. Both problems involved
a spherical reactor-shield configuration and included primary
neutrons and both primary and secondary photons.

The two problems were similar except for the power level,

375 MW and 600 MW respectively. Both problems used a flat
radial distribution for the primary neutron and photon source
distribution. The primary photon source included an infinite
operation equilibrium fission product term.

The core radii for the two problems were 82.38 and 96.38 cm
respectively, corresponding to a power density of 4.53 MW/ft3.
Following the core was a 7.62 cm Be reflector; a 5 cm depleted
uranium shield; three depleted uranium-borated water shields

of 57, 15, and 15 cm thickness and 6.4, 4.6, and 2.8 gm/cm>
density respectively; and a 117 cm borated water shield.

This base line shield configuration was based on parameters
obtained from SANE-SAGE calculations and subsequent calculations
using the UNAMIT program, Reference 7. The reactor-shield
compositions are given in Table 1.

The primary neutron transport calculation utilized multigroup
cross sections for 26 energy groups. Fifteen energy groups
were uytilized for both primary and secondary photons. The
~secondary production cross sections included both inelastic
and capture gammas.

These initial configurations were each analyzed for a point
detector 30 feet from the core center by following approximately
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SPHERICAL REACTOR-SHIELD CONFIGURATION

TABLE 1

COMPOSITIONS (10°" atoms/cm3)

0.0

CORE REFLECTOR , -
y238 MIX 1 MIX 2 MIX 3 H,04B.
Eloment SHIELD SHIELD | SHIEID SHIELD | SRIEID |
H - 0.01976 | 0.0 0.0 0.0451 0.0516 0.0580 £ 0.0645
Be” 0.0 0.120 | 0.0 . 0.0226 0.0258 0.0290 +0.0337
B 0.0 0.0 0.0 0.000671 o.ooo%66 0.000862 46;6§0958
0 0.01184 0.0 0.0 0.0 o 0.0 B b.o | d.é
;éAl 0.0512 | 0.0 0.0 0.0 0.0 0.0 0.0
Zr 0.01744 | 0.0 0.0 0.0 0.0 0.0 0.0
y?35 0.000979} 0.0 0.0 0.0 0.0 0.0 0.0
238 0.000078 0.0482 | 0.01446 o.00964 0.00:82 0.0



500 energy-dependent packets of primary neutrons and photons
and approximately 7000 packets of secondary photons. The
dose rates obtained from these calculations are tabulated in
Table 2 including a breakdown by secondary source region.
Each of these problems required about 28 minutes on the
UNIVAC 1108 computer.

The basic calculated dose rates and dose rate derivatives weré
also used by the FASTER-III program to calculate the minimum
weight shield configuration which would give a dose rate of
0.25 mr/hr at the specified detector point. The final shield
configurations following the optimization are given in Table 3.

In both cases, the optimum shield configuration is significantly
different than the base line configuration. Since the base
line configuration was not generated by the FASTER-III program
it is difficult to discuss many factors entering into that
calculation which would account for the different optimal
configuration. It is noted, however, that the base line
configuration was generated using parameters corresponding

to a calculated dose rate an order of magnitude below the
specified dose rate constraint, Reference 8. As such; the
base line configuration used in the FASTER-III program was
determined from an extrapolation of a different base line
configuration.

A more critical critique can be made of the FASTER-III results.

~independently. First it is noted that néither problem saw a
significant contribution from photon sources in the core
region. In fact, the 600 MW reactor dose rate from this source
was about a factor of two less than it was for the 375 MW
reactor. This difference is ascribed to the problem statistics
since core photon sources see approximately 30 mean free paths
. of shield material. Therefore, it is doubtful if this dose rate
component is converged even with a factor of two after only
500 packets.
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. TABLE 2
 RESULTS OF BASE LINE CALCULATIONS. . .

AT 30 FEET FROM CORE CENTER -

L S 375 MW 600 MW
DOSE RATE ** . .- 7% . REACTOR - - - REACTOR,
COMPONENT ” : \ {mr(hr}‘ . : (mr/hr)

Photon Source Region

Core I 'd.oog'é S 0.004
Reflector | 3.5x10" | 6.3x107°
Depleted Uranium - 3.2x107° . 1.3x107°.
Mix 1 Shield - 0.018 - 0.026
Mix 2 Shield 0.062 1 0.075
Mix 3 Shield - o0.017 " . - .  0.063
Borated Water Shield 0.0ll | - 0.022
Total Photons , ., 0.120+0.034 - 0.187+0.054
Neutrons 0.020+0.002 0.027+0.003
Total [ 0. 140 . 0.21h4
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TABLE 3

RESULTS OF SHIELD OPTIMIZATION

(0.25 mr/hr at 30 feet)

375 MW 600 MW
Quantity REACTOR REACTOR
Initial Final- Initial Final
Dose Rate (mr/hr)
Photon 0.120 0.126 0.187 0.153
Neutron 0.020 0.124 0.027 0.097
Total 0.140 0.250 0.214 0.250
Shield Weight (lO3kg)
Depleted U 10.2 12.6 13.8 0.0
Mix 1 7L1.2 0.0 89.2 6.6
Mix 2 22.1 52.4 26.4 52.4
Mix 3 16.1 12.2 19.0 63.1
Water 86.7 | 80.3 9r.7 | 8.3
Total 206.3 157.5 246.1 207 .4
Shield Thickness (cm)
Depleted U 5.0 6.1 5.0 0.0
Mix 1 57.0 0.0 57.0 7.0
Mix 2 15.0 57.3 15.0 48.4
Mix 3 15.0 13.5 15.0 51.4
Water 117.0 120.8 117.0 98.4

27




The small contribution from core photon sources decreases the
amount of high s shields required around the core, Therefore,
both problems gave a significant change in the first two
shield dimensions during the optimization. In the 375 MW pro-
blem, the first mixture of depleted uranium- borated water -

(= 6.4 gm/cm3)was eliminated entirely. In the 600 MW problem,‘
the depleted uranium and most of the first mixture were
eliminated. ‘

The main difference between the two FASTER- III calculations
wag the shift in the. placement of lighter shield mixes towards
the core for the GOO‘MW problem. ‘An examination of the sec-:
ondary photon dose components indicates that the contribution‘
from the outer two shields was about 25% for' the 375 MW reactor
and almost 50% for. the 600 MW reactor Since these sources
depend on the neutron attenuation through the closer regions
and since lower effective Z materials are better neutron
attenuators on a weight basis, the 600 MW problem tends to
replace high effective Z material~with a lower effective

Z material. ' |

The differences in the contribution‘from secondary sources

in the outer shield regions is greater than expected for the
nominal difference 1n the core regilon. . Therefore, much of the
difference in these sources must be ascribed to statistical
variations. 1In fact, both problems had approximately 25- 307.
calculated relative error in the total photon dose rate.

It should be noted that the FASTER-III program includes a‘.'
number of" importance sampling techniques which could be used
to decrease this error. However, both- problems were. run
using the built-in definitions of importance parameters.
Alternatively, more histories could have been used although
the computer time requirements would have become excessive.
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Section 4

CONCLUSIONS AND RECOMMENDATIONS

The FASTER-III program was developed to calculate neutron and
photon fluxes at specified points in complex geometries.
Alternatively, it can also calculate fluxes averaged over specified
surfaces and volumes. The program was designed such that data
preparation is simple and so that very little judgment is

required to set up the importance sampling for most problems.

The FASTER-III program satisfies these requirements very well.

The shield weight optimization capability included in the
FPASTER-IITI program permits the calculation of both base line
radiation levels and optimal shield thicknesses all in a single
computer run. However, the very large attenuation factors
involved in the demonstration problems yielded some questionable
results. In particular, the statistical differences in the
relative contribution from various secondary source regions
caused corresponding variations in the relative distributions

of shield materials. Of course the statistical variations

would be less in problems with less overall attenuation.

The effect of statistical differences on the shield optimization
can be reduced by following more packets. However, the computer
times start to get excessive if this is the only approach used.
It would be more fruitful in terms of the routine application

of the program to expend some effort towards altering the im-
portance sampling.

The FASTER-III program has the capability of calculating optimal
~importance parameters based on partial derivatives of the
variance. This feature can be used in determining better im-
portance sampling parameters for shield optimization problems.

- In fact, the overall program efficiency could be improved if
this feature was utilized on a wide variety of problems with

the results being used to improve the built-in importance

sampling models and parameters.
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The relative expense of using the FASTER-IIT program in a
somewhat iterativleashion,tofdo'the initial sizing of a shield
configuration should be considered. The least expensive
procedure suggested for the initialfsetup of a problem would
involve either hand calculations and/oh point kernel calculations.
In view of‘this sizing problem, it is recommended that a point
kernel option -~ removal and/or moments data for neutrons, '
buildup factors for photons.-- béﬁﬁuilt‘into the FASTER-III
program. This option would also. include a calculation of
secondary phétdn contributions. ' This option could be used in
conjunction with the shield optimization procedure and . permit
relatively accurate‘Sizing with an order of magnitude or more
reduction in computer‘time when compared with the use of

Monte Carlo. A very positive advantage of this option is

that most of the data cards used in a point kernel problem
would be used directly in the corfesponding Monte Carlo problem.
The incorporation of a point kernel option in the FASTER-III
program does not invélve'éefy major modifications. In fact,

a similar option was used in one modification of the original
FASTER program for calculating secondary photon dose rates.
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Appendix A
MONTE CARLO METHOD

The Monte Carlo method as used in the FASTER program is
described in this appendix. The development starts with the
order-of-scatter (Neumann series) solution of the transport
equation. The Monte Carlo method is then applied to the
spatial integrations. The presentation is of a summary
nature and no proofs are given.

1, The Transport Equation

The particle energy is immediately cast into a multigroup
framework where the ith energy group includes all particles
with energies E between the group boundaries E. and E1+l
In the conventional manner, higher group indices will indicate
lower particle energies, i.e., the energy group boundaries are
monotonically decreasing, EiE:E +1°

The differential angular source of particles in the ith energy
group which have had exactly k interactions or collisions
since being emitted from a known independent source is denoted
by Sik(z,g), the number of particles in group i per em3 per

- steradian coming out of a collision at X and proceeding in

~ the direction u.

The differential angular flux of particles in the jth energy
group due to source particles which have had k collisions is
denoted by ¢3k(x,y), the number of particles in group j per

cm per steradian crossing a detector at Yy while heading in the
direction wv.

The differential angular flux is directly related to the diff-
erential angular source by a simple line integral over the
space points which can contribute in the fixed direction v.
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Allowing for the application of this development to charged
particle transport the relatlonship between’ flux and source
is written as:

%k(z,x) =-Z/osik(x-tg,g)Kij‘(x-tg,x)qt | | (‘Al,)

In general, the kernel Kij(g,x) is the probability'that a
particle starting at X in group i will arrive at y in energy
group j. For neutral particle transport, this kernel is simpiy:

Ky 5(%3) = exp -/;i(ysza)ds b3 5 | - (a2)

(o)

t = |¥x| u o= (g-x)/t

where Zi(g) is an appropriately averaged total cross section
for energy group i at the point z. The quantity 6ij is the
Kronecker delta function, 613 =0 if 1 #£ j, 6ij = 1 if
i=j. |

The "next collision" angular source, Sy k+I(§’E)’ is, in turn,
) ‘ R
determined from the angular flux as: ‘

Si,k+1(§:H) =H:£: 5/%k(E:X)TJi(E:E'X)d2! R L (A3)
J g

This calculétiohfrequires an integration over all initial
directions v (differential solid angle dQ = dzg) which can
be scattered into the direction u. A summation over all initial
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groups j for which particles can scatter into group 1 is also
required. The kernel TJi(E,#) is the probability per unit path
length per steradian that a particle at x will scatter from
group j into group i while being deflected through an angle

cos mu.

2. Monte Carlo Integration

The Monte Carlo method is used to reduce the integrations
above to one-point numerical quadratures where the point is
selected at random. Assuming the most desirable solution
is represented by the scalar flux at a specified point y,
then this point solution is composed of contributions from
- the many orders-of-scatter:

%) = Z"’Jk(l) L (ad)
k

where ¢3k(x) is the scalar flux in group j at y from particles
which have had exactly k collisions. Each order-of-scatter
component of the flux can be written as volume integration

over the kth scattered source since:

*5x(Z) = /fjk(x,x)dzz (A5)
lir
- /)Z/sik(z-tx_r,g)xij(z-tx,z)dt dzx (A6)
4 1o

® 1
/ [ 285t 00Ky (y-tw,y)—5 t7ata®y (a7)
gn”°
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The dlfferential ‘volume element . t2dtd2v is wrltten in the

more general form d3x where Xx represents the space point

Yy-tv. The directionality of the source is changed from v

to the more general u by including ‘an appropriate delta function
in the integrand. The final form of the equation for the kth
scattered flux in group J at y is: ‘

" (A8)

]

| ‘ ("“ - ;5(2‘!) . f
¢jk(1) =Zi:fsik-(§,g)KiJ(5,z)__€g__ d3__-

o I A (z-x)/¢ ”

This equation is unchanged if the iﬁtegrand is multiplied and
divided by the probability density function (pdf) p;(x):

(1) =j‘z pi:(i ul) Ky (x,z) _Lg_x)( P (Jc)d3 VI(A9)
where

g (x).20 for all x (a10).

pE(x) > 0 ifosi*k(gc_,E)dZE > 0 o S .' ‘ (All)

./I;f;(é)d?’_%“= ’l’ - R - (ar2)
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‘Equations AlDand A12 are necessary coanditions in défining a
pdf; it must be non-negative and must integrate to unity.

The condition in equation All is stronger than is required

for calculating the flux at y -- as written, the same bdf can
be used for calculating the (k+l)th scattered source for the
next order scalar flux component.

 The quantity in the first set of brackets in the'integrahd
of equation AQ represents a modified source density denoted
by:

s# (x,u) = 2K
L k (A13)

‘The second bracketed quantity in equation A9 depends on the
'particular point y at which the scalar flux is being calculated.

Equation A9 is integrated by selecting a single point gk'at
random from the probablllty density function pﬁ(x) The —
mechanics of the random selection process will not be discussed
here. It suffices for this discussion that a wvalue Xy
obtained at random from pﬁ (5), gives a one point quadrature
estimate of the value of the integral in equation A9. This

 estimate is denoted by ¢3k(x) and is given by

o (y) = z % (z.,u)K. . (2 x)f-(iglﬁl (A
ik Tl 2o 0K, 502, 2

i ‘k
tk = |Z—-Z-k| ) Yk = (X'Z )/t
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or particular interest is the fact that equation A14 holds
for all detector pOSltlonS x and ;all energy groups j »It
is true that there is a particular pdf p (x) that is Dbest.
for calculating the kth scattered scalar flux in grcup J at
1, namely ) ' ~ ‘

3 (al5)
/ Zs k(xU) Kil(x,x)a(u v )d -

Sampling of this pdf to obtain.the discrete point z, uill
give an exact solution for.the kth scattered scalar flux in
group J at y. -However, there are seueral reasonslfcr not '
doing so. Foremost is thepfactvthat'inwdefining‘thetpdf
through equationluﬁ it is "nedesséry to ‘essentially calculate
the flux analytically since the denominator is the desired
answer. Second, itis virtually impossible to define and then
sample a pdf as complicated as equation Al5. PFurthermore,
it is usually more economical to approx1mate equation Al5
for the dominant energy group and’ then use the selected
point 2z in the calculation of fluxes for all the energy groups
s1multaneously as implied in equation All, Finally, this
optimal pdf only holds for the kth scattered flux, and the
next step after calculating the kth scattered flux is to
use the source strengths Sik(gkfu) in defining the (k+1)th
scattered source for the next order of scatter. There is a
different and much more compllcated prescription for defining

an optimal pdf to be used in the selection of zk for this
next step. ~

After these negative comments, there are several features
of equation Al5 which are quite useful. It does prcﬁide,insight"'
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into the functional form of the optimum last collision pro-
bability density function. Furthermore, the more complex pdf
to be used for future orders-of-scatter can be approximated
by equationAl5 by simple alterations of the transport kernel
Kij(z,x). Finally, it does include the l/t2 singularity in

a manner which obviates any difficulties in calculating
accurate, finite variance fluxes at a point.

As discussed above, the pdf pﬁ(ﬁ) is used to select a discrete
point Zy which is then used via equation Al4 to estimate scalar
fluxes at the point y. The point source defined at %, can
actually be used in the estimate of angular fluxes since

the source strengths Sﬁk(gk,g) can be evaluated for various
directions.Thus, the angular flux at any point y can be
estimatéd, using these same sources, as:

2(L¥) = ngk(zk,z) Ky 3 (2o x) 8(v-yy) (A16)

i tk
-tk = IX"_Z_kI ’ Xk = (X—_Z.k)/tk

. Of course, 1f the point y lies in the kth scattered source
volume, a pdf which includes a dependence on y should be used

in selecting z, . However, if y lies outside this source volume,
there is no difficulty.

.In addition, these point value flux estimates can be area or
volume averaged. The equations are simply



t2

¢jk(A;!—l | = Z [ k(zk’v) Kij(zk’x) B(V—_k) dA | (Al7)
\ ‘ v |

and ¢, (V,¥) = Z

i

<r

o o s(v-vy ) av .
/ka(jz-k’!) Ki:l(g‘k’x) ——tz—l'{— - (A18)
v o - -k

In both cases, the integrations are transformed to spherical
2 2 -

coordinates so that dA = tk d Vie 'where n is the normal to.
V.* n
|0 n|
th -} |
e area, and dV = t, d"v,dt, so that
1
¢3k(A,x) = EE:K- S* k(zk,v)K j(zk,zk+tk(v)v) 6(V;_k)t a° Yy
| St Che [Ben
L S (a19)
= K ik (_Z_k,Y_) Kij(zk’z +tk(V)V) ‘
i | . n| s :
()
i S¥ (2, v)K. (20,20t v) 8(x-m) tfa’y at
¢ (Vsv) =Zv Tk Zer 200 5V 20 Bt B A
i ek (v) | k.
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T
= z:v Sixlzew) | Kk(zk’zk O

i ‘ o
where t (v) is. the dlstance from z :

.....

or volume,‘and

Any summations over mU1tlplevintersections of the line zk+tk A“fﬁf

,Wlth the area or'volume are 1mplic1t 1n‘the aboveenuations.‘ o
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'The point angular flukes deflned by equat10nAi6 are used to
define the (k+l)th scattered source.

Sy, k+1(x u) (k21

This reduces;to;éf““‘ " L
‘ s Wy f“u.:"" )

S3 k1 (%00) , o (Az2)

A i3 \ [ +

since the angular fluxes are defined as”belng 1n the‘dlrection‘rfl
¥, only, where v (x k)/lx kl AT
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As before,‘a pdf pk+l(x), the (k+l)th source is deflned and

then sampled to obtainua dlscrete value zk i‘of x. ' The source R
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¥ a1 (Zyy1o0) 84 %1 (Zps108) (A23)
p§+l(5k+1)

E :11( Zyei12Yy) Ty (Bepr Gy ) (A2h)
pite1(Zcen)

¥*
Since flux estimates may require evaluation of Si k+l(5k+1’3)
>
for various directions u, it is expedient to define point mono-
directional values of the flux going into the point.§k+l:

¢;k (Z,10%) = o2y, 159 (A25)

P, 1(Z,1)

The. angular point source Si 0 (gk+l,u) is determined from input
only for the independent source. 1In all other instances, it is
determined from the equation

st .1 ) =D 4 -
1,k+1'Fgs18/ = (B, 19Ty 5 (2, 1570 0) (A26)
Cd v

The process of reducing each volume-distributed order-of-scatter
source to a poiht representation by random sampling, of using

the same point representation to give the volume-distributed source
for the next order of scatter is continued until all the

particles at a given order of scatter no longer yield a
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‘significant contribution to the flux estimates. The estimate
of the total angular flux at a point y from this procedure
is then obtained by summing the individual order-of-scatter

components:
o;(y,¥) = kz:¢3k(x,y_)  aer)
) Z D stz Kiy(z,y) i(e-g) (428)
k i tﬁ

+The total scalar flux is obtained by a simple integration over
solid angle which yields

4’.1'»(55) = kz: z :S?{k(zk’yk) Kij;—z-k’z) (A29)
. i &
Kk

~This process gives a single, inaccurate, estimate of the total
flux. Therefore the process is repeated a specifiied number of
times and the average of all the estimates is accepted as the

best estimate of the total flux. Introducing the subscript

'n to denote the iteration index, then ¢jn(x) is the estimate

of the flux in the jth energy group at y of particles obtained
on the nth iteration. If N is the total number of iterations,
then the total flux is estimated by:

N
5@ = § D@ (430)
n=1



S "
TE e, T

Since each iterant r'epresents an independent estimate of the
flux, it is possible to approximate the standard deviation
of the total flux by: '

5 Zd’?n(‘x)‘_ (x)‘ ]% . (a31)
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