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PREFACE

This report was prepared by A.R.T. Research

Corporation, Los Angeles, California, under

Contract NAS3-14400 and was funded by the

National Aeronautics and Space Administration-

Lewis Research Center, Cleveland, Ohio. Inclusive

dates of research were 24 June 1970 through

4 December 1970. The NASA Project Manager for

this work was Mr. Millard L. Wohl.

This report comprises two (2) volumes; Volume I-

Summary Report covers the theoretical basis for

the FASTER-III computer program and results for

sample problems; Volume II - Users Manual gives

detailed operational instructions for the computer

program.

iii

I: l

l i 

1.

11

'

...

'':'

I,

. I



ABSTRACT

This volume outlines the theory used in FASTER-III,

a Monte Carlo computer program for the transport

of neutrons and gamma rays in complex geometries.

The program includes the treatment of geometric

regions bounded by quadratic and quadric surfaces

with multiple radiation sources which have a speci-

fied space, angle, and energy dependence. The

program calculates, using importance sampling,

the resulting number and energy fluxes at specified

point, surface, and volume detectors. It has

the additional capability of calculating the

minimum weight shield configuration which will

meet a specified dose rate constraint.

Results are presented for sample problems involving

primary neutron and both primary and secondary

photon transport in a spherical reactor-shield

configuration. These results include the optimiza-

tion of the shield configuration.

The users manual for the FASTER-III program is

contained in a companion volume.
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Section 1

INTRODUCTION AND SUMMARY

The original FASTER program, Reference 1, contained a number

of new techniques which provided the capability of obtaining

accurate radiation levels at specified points in complex

geometries. The use of this program by NASA-Lewis Research

Center and other Government facilities and contractors in-

dicated the need to broaden the overall program capabilities,

automate the importance sampling, increase the computational

efficiency, and revise the users manual. This revised program

has been designated FASTER-III to distinguish it from earlier

versions.

A specific program capability developed for NASA-LeRC permits

a calculation of minimum weight shield configurations for

mobile nuclear reactor applications, e.g., nuclear propulsion

for aircraft, surface effect vehicles, and space craft.

The basic Monte Carlo transport method was extended to include

a calculation of partial derivatives of the radiation fluxes

with respect to specified shield dimensions. These derivatives

are then used to define exponential relationships used in

the shield optimization procedure. This optional program

feature is described more completely in Section 2.

A number of program revisions had also been made by A.R.T.

Research Corporation for various customers and to provide

an internal capability for solving a variety of radiation

transport problems. These revisions are included in the

FASTER-III program. Particularly noteworthy are the following:

(1) A calculation of optimal importance sampling

parameters based on partial derivatives of the

variance (Section 2.3).
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(2) The acceptance of data in either fixed or

variable.field formats including the ANISN-DTF

format for neutron cross sections.

(3) The calculation of time-dependent neutron

and photon transport,(using time moments and/

or time intervals)including an optional

exponential atmosphere.

(4) The improvement and addition of importance

sampling models with the various importance

sampling parameters built into the program.

Various program features are described in References 2-6.

The application of the FASTER-III program to a shield optimi-

zation problem is discussed in Section 3. The problem in-

volved a spherical reactor-shield configuration and included

primary neutrons and both primary and secondary photons.

Conclusions and recommendations are presented in Section 4.

Volume II (Users Manual) presents the detailed description

of the FASTER-III program along with all the instructions,

for operation on the IBM 7094, UNIVAC 1108, CDC 6600, and

IBM 360-0S (single or double precision) computers.
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Section 2

ANALYSIS

The techniques used in calculating optimum shield configurations

and optimum importance sampling parameters are summarized below.

The discussion is given in three parts: derivatives of fluxes

with respect to shield dimensions, optimization techniques,

and derivatives of variance with respect to importance sampling

parameters. The basic Monte Carlo techniques assumed in this

discussion are summarized in Appendix A.

2.1 Shield Dimension Derivatives

The dose rate at a point detector y for a specified reactor

shield configuration is written as:

J

D(y) = Rjj(Y) (1)

j=l

where J is the total number of energy groups for both neutrons

and photons (including secondaries), 0j(y) is the particle flux

in the jth energy group, and Rj is the conversion factor from

flux to dose rate. The rate of change of the dose rate with

respect to a shield dimension is simply

atD() = fRj = l, 2, ..., L (2)

where L is the total number of shield dimensions and tj is the

value of the ith shield dimension.
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The equation used by the program for determining the flux is

written as:

N

0j(Y)= Sjkn(u-kn) Kj(ZgkY), Ukn= (3)L.s~~,(u~,) K~(z~,~x)~ u -_

n=L k

where N is the total number of histories tracked via the Monte

Carlo method, k is the number of particle collisions,

Zkn is the position of the kth collision of the nth history,

Sjkn(ukn) the number of particles in the jth energy group

emerging from Zkn in the direction Ukn
of the detector per

unit solid angle, and Kj(zkn,) represents the material and

geometric attenuation kernel for particles in the jth energy

group going from Zkn to the detector.

The partial derivative of the flux with respect to a shield

dimension is simply:

jN () at [S 'kn([(kn) Kj(zkn')l (4)

The summations are a minor part of the calculation. Therefore,

the notation is simplified by concentrating on the elements

in the summation

atjk at Sjkn(U-kn) Kj(Zkn) (5)

where gjkn represents the contribution to the flux in the Jth

energy group from the kth collision of the nth history.
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This equation is rewritten as

t, t jk n a
atj jkn ati

= jkin t In Sjkn (Un) + nt in Kj

The second term in brackets involves the attenuation kernel

Kj (-knY) =

M

exp [ - E m aj]

m=L
2

s

where M is the total number of regions traversed from z to
-kn

the detector, sm is the path length for the mth region traversed,

ajm is the total cross section of this region for particles

in the jth energy group, and s is the total distance from Zkm

to the detector, i.e.,

M

S= Es
m=l

A substitution of this kernel gives:

(8)

In Kj(zknx) =
I i~~~~~t

M M

E Sm am. - 2 ln s
mm= m m=

m=l m=l

M 3

E jm a
m=l

M 6
N= _2J + ) ati

m5- jm (
5

(6)

(7)

(9)

2 sm

m=£

SjI kn(_kn) Kj(Zkn,)]



The partial derivative of the partial path length sm with

respect to the shield dimension t is zero unless the mth

region traversed is affected by a change in te . In particular,

if tf is a characteristic dimension of the region, i.e.,

its thickness, then

Ias,~~~~~ 1 ~~(10)
kn knm -m

a- - knm ' knm n'knm

where Mknm is the cosine of the angle measured from the surface

normal nknm, with which the particle crosses the boundary of

the region.

In the strict sense, the change of the dimension of one shield

region can affect other shield regions. In particular, for

a spherically symmetric reactor-shield configuration, an increase

in the thickness of a shield region forces a movement of all

shield regions having a larger radius. The inclusion of these

effects in the above equation unnecessarily complicates the

analysis and the calculations. The primary effect of changing

a shield region dimension is to change the number of mean free

paths which particles have to traverse in reaching the detector.

Therefore, in calculating the derivatives, only the effect of

the material attenuation is treated.

The derivatives at a specific boundary crossing m' then simplify
to:

M

in Kj(Zkn,') = - m E at
m-1

- 2 1
2) 1 - (0 + -)

= - Jm/.knm, (LL)jm nknmn

where m' is the index of a region having t2 as a dimension.
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The partial derivatives of the particle weight with respect

to the shield dimensions -- the first term in brackets in

equation 6 -- are zero at the point of origin of all primary

particles. For subsequent particle collisions, the derivatives

are calculated using the relationship between particle weights

on subsequent collisions:

Sjkn(ukn) =
i Sln )Ki (-Ln zn)Tikn

Vkn
Zkn - Zk-l,n

(12)

I kn -k-l,nI

where S* ik_,(vkn) is the number of particles coming out ofi,k-l,n -kn
the previous collision point in the direction vkn and in the

ith energy group, Ki(zk ln',kn) is the attenuation kernel be-

tween particle collision points,Ti j(zkn,vknkn) is the scatter-

ing kernel for transfer of particles from group i to group j,

and Pkn(Zkn) is the probability density function used in select-
ing the collision point.

A straightforward substitution gives

= t Ein
b in Sjkn ('k n)

iP (n)pkn (z~~kn)

(13)
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After some manipulation, this reduces to.

a * 1 *

~-~ In Sjkn(kn) vijkn at In Si,k-l,n(vkn)
Sjkn(U1kn) i 

+ In K.i( _nzkn) n kn) (14)

where

V Sik-ln(Vkn) Ki(Zk-ln'Zkn) Ti. (Zknknknu-kn) (15)

The first term in brackets in equation 14 is the same partial

derivative for collision k-l as the partial derivative now

being calculated for collision k. Therefore, it is known,

either identically zero for k=O, or as determined from equation 14

for k>O. The second term in brackets in equation 14 is similar

to the second term in brackets in equation 6 and is therefore

determined by equation 11. The last term in brackets involves

the definition of the probability density function used to

select the collision point Zkn

The probability density function for a collision point has the

form

,:

p*(-kn) = q*n(vXn) A(s)a(s) exp [ _ a(s')ds'] (16)

f]A(s')a(st) exp[f a(s")dsv' ds'
0 fos~~~~

8



where qkn(vkn) is a probability density function used to select

the particle direction, s = IZkn- k-l,nl is the distance of

the selected collision point zkn from the previous collision

point, A(s) is an importance factor for each region which

changes discontinuously at region boundaries, and a(s) is an

effective cross section which changes discontinuously at

region boundaries and which may change continuously within

a region.

The derivative of the logarithm of Pkn(Zkn) involves only

those terms which change when a shield dimension changes,

i.e.,

n P(kn) at4 [f a(s)ds ti - A(sf)a(s)a(s)exp fa(st)dskn(Zkn)- ttd 

(17)

Let s denote the distance to a boundary involving theth;

shield dimension. If the first term on the left side of

equation 17 is affected by a change in this shield dimension,

i.e. if s >s , then

at£ [ -a(s')ds' = -a(s) a 1
(18)

-a(se) I
jkn

where a(s^) is the effective cross section at the boundary

of the shield and wkn is the cosine the particle path makes

with the outer shield normal. If there is any crossing in-

volving the ith shield dimension, the second term in equation

18 will always have a non-zero derivative, i.e.,

9



n exp lf ais

[ fA(s')a(sexp a )ds"ds

fA( s)a(s:) exp [ f eadsi d3s

A(s')a(s') exp[ - a(s'!)ds",] ds (19)

Curved shield surfaces may be crossed more than once along

the path between two particle collision points. Therefore,
a summation of equations 18 and 19 over every intersection
involving the ith shield dimension is required to completely
evaluate equation 17.

2.2 Optimization Procedures

The shield optimization calculation yields the set of shield

dimensions t' = (t1, t2, ..., t , ...tL) such that the dose
rate, D(t'), meets the dose constraint. The Monte Carlo cal-
culation is performed for an initial set of shield dimensions
t= (t t2, ... t ,...,tL) and yields a set of fluxes, 0.(t),
j = 1, 2, ... , J and derivatives, = 1, 2, .. , 

6 ti= 1, 2, ... , L. The assumption is made that the fluxes
vary exponentially with respect to shield dimension changes
in the form

j(t' = 0j(t) exp[a t' - t) (20)

10



where a. =
-3

30 (t)
Itfi

(ajl, aj2, ... ajL). It follows that

=0(t) exp j. (t -t) a-E a j

= 0(t')aif

In particular

a (t)

at2

ajU

= ae 0j(t)

a0 (t (t)
atj 3

The weight is also expressed as a function of the shield

dimensions. The weight is denoted by W(t') and for spherically

symmetric shields:

41T

W(t') 3

4w
3

P (o+t + P2 ro+tl+t2)3-r] +(ro+tL) 2

L

2=1
P (roI~

Q 1-1
+ - t, )3 - (r+ 
m=l m=l

tm)3m (24)

11
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where P is the density of the ith shield region and ro is

the minimum shield radius.

The purpose of the optimization procedure is to minimize the

weight W(t') subject to the dose rate constraint D(t') = Do

where Do is a specified dose rate. At this optimum, the

following equalities hold

Qe2

aD (t')

a W(t,)
at,

= constant, j = 1, 2, ...,L

The necessary derivatives are:

aD(t, )
p 

J a0-(t')
= Rj aat'
j=l e

J

j=l

and for spherically symmetric shield:

L l
aw(t') = 4Tr L (r+ t,)2 -(ro+L+ t)at, m i =I i&i m=l m

(27)

In arriving at the optimum shield, the total shield weight

is built up in increments of weight AW. Each increment in

shield weight is always associated with a' particular shield

dimension. At each iteration, the particular shield dimension

isselected by examining the values of the shield weight quality

factors, Q~. Each factor QQ represents the approximate change

12

Rj ajl 0J(t) exp aj.[ (t'-t)](26)



in dose rate per unit change in weight corresponding to a change

in the eth shield dimension. Negative Qj's are the most usual

and correspond to shields for which an increase in weight --

and shield dimensions -- gives a decrease in dose rate.

Positive Q 's can occur, however, and correspond to shields

for which an increase in weight also increases the dose rate.

If, at a particular iteration, the dose rate is above the dose

rate constraint, the minimum shield weight increment would

correspond to the least positive value of those Q.'s for which

>O and for which ti > t1 (min), where t, (min) is the minimum

value of the eth shield dimension. If such a Q~ exists, the

dose rate can be decreased while also decreasing the shield

weight the maximum amount. If there isn't such a Q£, the next

best procedure is to find the most negative of the QI's for

which Q< 0 and for which t' < ti(max), where t(max) is the

maximum value of the eth shield dimension. A change in that

QB would give the maximum decrease in dose rate per unit
increase in weight.

If the dose rate is below the specified dose rate at a particular

iteration, the minimum shield weight increment would correspond

to the least negative of those Qg's for which Qe< 0 and for which

t' > t(min). If such a Q~ exists, the dose rate can be in-

creased while decreasing the shield weight the maximum amount.

If there isn't such a Q, , the next best procedure is to find

the most positive of those Qy's for which Q >0 and for which

t' < t(max). A change in that QQ would give the maximum

increase in dose rate per unit increase in weight.

Assuming a particular value Q of the Qe 's is selected through

the above arguments, the corresponding shield dimension t'
m

is changed by a maximum amount at
m
where at

m
is calculated as

dtm -w= _h. (28)

at1
13



If this change would put tm outside one one fits specified limits,
the value of tm would be set to that limit, i.e., tm(min)4

! m
tm Ltm(max). The. shield weight increment AW is calculated as

D_-D(t')

aW = (9)

m

subject to the constraint that AWI < AW
o
where AWo is a specified

maximum shield weight increment per iteration. Note that

AW, and therefore Atm, may be positive or negative depending

on the value of m and whether the dose rate is above or below

the dose rate constraint.

Once a shield dimension is changed, the dose, weight, and their

derivatives are re-evaluated and the entire process is repeated.

The optimization would be discontinued in several ways. If

the dose rate equals the dose rate constraint within the relative

error of the original Monte Carlo dose rate calculation, the

program will proceed to the next problem -- which may be identi-

cal except with more histories to tighten the convergence of

Monte Carlo calculations. Similarly, if all shield dimensions

have reached their minimum or maximum values, and if the optimum

shield cannot be determined with these contraints, the program

would again proceed to the next problem. Finally, if the dose

rate and dose rate constraint are decades apart in value, the

program would reevaluate the fluxes and their derivatives by

Monte Carlo every time the dose rate changed by more than a

specified factor during the optimization procedure.

2.3 Importance Parameter Optimization

The optimization of the importance sampling must be performed

for some function, e.g., dose rate, of the energy-dependent



fluxes since there is a different optimum for every initial

particle energy. Therefore, assume that a minimum variance

calculation of the dose rate is required where

N

DN 1 (30)

where N is the total number of histories and D is the dose
n

rate from the nth history and DN is the average value of the

dose rate after N histories. The relative error of this dose

rate is given by

1 I 2 -2
EN= N Dn N DN (31)n=l

Taking the logarithm of this equation and then performing a

formal calculation of the partial derivative with respect to

an unspecified parameter a yields

pa lnE N = - I-n DN - In N + In D 2 - ND

N b Dn -2 ~N5
=n - ND 

24 D 2 2 DN
.3. Dn ND

NNN a n (3N2

n= n=l

15



Thugs the partial derivative of the relative error with respect

to the parameter a is:

aEN a [IN 1 I aDn
N N L n~l ] (33)

The dose rate from the nth history is given by

Dn

J

= Rj E jkn
j=l k

(34)

where J is the total number of energy groups, k is the number
of particle collisions, Rj is the flux to dose rate conversion
factor for the jth energy group, and 0jkn is the flux in the
jth group from the kth collision of the nth history. Since

aDN I
7- N (35)

the calculations required to evaluate equation 33 all involve
the summation of terms which involve

n --~) -)(RjZ1 jkcn
k

(36)
J) = k

The remainder of the analysis, therefore, can be concentrated
on the partial derivatives of the fluxes. All other operations
which must be performed are given above.

16
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The fluxes typically depend on the detector position y, so

the equation for the particle flux is written as

0j (x) = sjkn(kn) Kj(z,) (37)

The transport kernel Kj(zkny) does not involve any importance

sampling parameters so that

ajkn(X)
a

= a (u ) KJ(z.KmJ)

d a

This equation can also be written as

=Skn(kn) K.(z , ) In Sj*a I (39)

Without going into great detail, it turns out that the particle

weight S.(kn(_kn) is composed of a purely analytical numerator,

Vjkn(uknJ and a denominator which is the product of all the

probability density functions used to select the collision

points, i.e.,

(38)

Sjkn (Ukn )
Vjkn(ukn)
k

, O = (z)

Therefore

k
In S*jk kn)-n p* (z )ln S (kn) =n Vjkn(u) n( fn)

L7

(40)

(41)

ajk,(Y)
a



Since Vj _n(Uk' ) does not explicitly involve any importance
parameters, it follows 'that

k
In =S*( In p' P*(z

a Ln sj(I,,e=o_ n =-n

(42)
k

- aIn P* (z
aaa n

Therefore, equation 39 can be,, re-written as

k

jki rjkn () Z in p n(z n) (43)

Moreover, the partial derivatives are energy-independent so
that equation 36 becomes

n Fk (j=l ) ( (44

k k-l

fiaa ln P;n(\ n) c E aa PIn Pn( n)+ aa in Pkn(kn) (5)



At the kth collision, the first term on the left side of equation

45 is known, identically zero if k=O. Therefore, the analysis is

completed after examining the calculation of the second term.

At this point it is necessary to identify the particular

importance parameter a. Since most of the importance sampling

parameters have fairly involved roles, the technique will be

applied here to a set of parameters which can have a reasonably

simple role. These parameters consists of the relative importance

I
r

of each region. Normally these parameters are all equal.

However, in asymmetric problems, it turns out that some regions

are much more important in terms of their scattering contributions

to a detector. Therefore, these important regions have a

larger value of Ir.

The region importance enters into the selection of a collision

point through the following probability density function:

Pkn(--n) =Irp p (s)
Pkn= H (46)

E Ih P hh=l

where r is the region in which the collision occurs (selected

at random), Pr(s) is the piecewise continuous probability

density function in this region at the selected collision

point (a distance s from the previous collision point), H is

the total number of regions in which the collision could have

occurred,and Ph is the integral of Ph(s') over the partial path

length in region h.

Calculating thelogarithm of each side of the equation yields:

H

in Pkn ) = in Ir + In Pr(s) -n IhP
h

- hhY (4y7)
h=1

19



The partial derivative of equation 47 with respect to the
specific importance parameter Ig -- the relative importance

of region g -- yields

H .

h 1high

In 'h=l (48)aiI In Pkn(z k n ) I gr (
alg g ZIhPh'h=l

where gh = 0 if region h is not region g and gg= i.gh gg

Thus equation 48 is evaluated during the random selection of

the kth collision point and the final term necessary to evaluate

equation 45 and all preceding equations has been determined.

The above analysis is used to calculate the partial derivatives

of the relative error of the dosue rate with respect to the

relative importance Ir of each geometric region, and a similar

analysis is performed for the other importance sampling para-

meters. The result of the complete Monte Carlo calculation

is a set of partial derivatives which, for the region importance,

are given by

=l n=Il

aD
n

where is obtained from equation 44 using equations 45

and 48. r

After the calculation is completed, optimal values of the im-

portance sampling parameters are calculated by'requiring that

the relative error be zero--not actually achieved of course.

20



By a first order expansion

RaE
E = O = E

N
+ 0 = (50)

where R is the total number of regions. A simple gradient

analysis says that I - I should be proportional to
r r

6EN so that

aTr

EN
I r = Ir + C -I

r
(51)

where, by substitution into equation 50,

- E
N

C= R aE (52)

r=l

The program prints the optimum values of Ir and other importance
parameters after completing the Monte Carlo flux calculation.

This analysis is performed for every response function.

After more experience is obtained with the technique, the

program could be modified to change these parameters internally

corresponding to a specified response function.
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Section 3

SAMPLE PROBLEM RESULTS

Two problems were investigated using the shield optimization

capabilities of the FASTER-III program. Both problems involved

a spherical reactor-shield configuration and included primary

neutrons and both primary and secondary photons.

The two problems were similar except for the power level,

375 MW and 600 MW respectively. Both problems used a flat

radial distribution for the primary neutron and photon source

distribution. The primary photon source included an infinite

operation equilibrium fission product term.

The core radii for the two problems were 82.38 and 96.38 cm

respectively, corresponding to a power density of 4.53 MW/ft3 .

Following the core was a 7.62 cm Be reflector; a 5 cm depleted

uranium shield; three depleted uranium-borated water shields

of 57, 15, and 15 cm thickness and 6.4, 4.6, and 2.8 gm/cm3

density respectively; and a 117 cm borated water shield.

This base line shield configuration was based on parameters

obtained from SANE-SAGE calculations and subsequent calculations

using the UNAMIT program, Reference 7. The reactor-shield

compositions are given in Table 1.

The primary neutron transport calculation utilized multigroup

cross sections for 26 energy groups. Fifteen energy groups

were utilized for both primary and secondary photons. The

secondary production cross sections included both inelastic

and capture gammas.

These initial configurations were each analyzed for a point

detector JO feet from the core center by following approximately

23



TABLE 1

SPHERICAL REACTOR-SHIELD CONFIGURATION

COMPOSITIONS (1024 atoms/cm3)

CORE WEFLECTOF
U238
SHIELD

MIX 1-
SHIELD

MIX 2
SHIELD

MIX 3 
SHIELD

i I l l l -

0.01976

0.0

0.0

0.01184

0.-0512

0.01744

0.0009791-

0.000oo78

0.0

0.120

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0. 0482

o.0o45 

0.0226

0.000671

o.o

0.0

0.0

0.0

0. 01446

0.0516

0.0258

0.000766

0.0

-0.0 

0.0

0.0

o.00964
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500 energy-dependent packets of primary neutrons and photons

and approximately 7000 packets of secondary photons. The

dose rates obtained from these calculations are tabulated in

Table 2 including a breakdown by secondary source region.

Each of these problems required about 28 minutes on the

UNIVAC 1108 computer.

The basic calculated dose rates and dose rate derivatives were

also used by the FASTER-III program to calculate the minimum

weight shield configuration which would give a dose rate of

0.25 mr/hr at the specified detector point. The final shield

configurations following the optimization are given in Table 3.

In both cases, the optimum shield configuration is significantly

different than the base line configuration. Since the base

line configuration was not generated by the FASTER-III program

it is difficult to discuss many factors entering into that

calculation which would account for the different optimal

configuration. It is noted, however, that the base line

configuration was generated using parameters corresponding

to a calculated dose rate an order of magnitude below the

specified dose rate constraint, Reference 8. As such, the

base line configuration used in the FASTER-III program was

determined from an extrapolation of a different base line

configuration.

A more critical critique can be made of the FASTER-III results

independently. First it is noted that neither problem saw a

significant contribution from photon sources in the core

region. In fact, the 600 MW reactor dose rate from this source

was about a factor of two less than it was for the 375 MW

reactor. This difference is ascribed to the problem statistics

since core photon sources see approximately 30 mean free paths

of shield material. Therefore, it is doubtful if this dose rate

component is converged even with a factor of two after only

500 packets.
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TABLE 2

RESULTS OF BASE LINE CALCULATIONS..

AT 30 FEET FROM CORE CENTER

DOSE RATE
COMPONENT

:.,I 375 MW
;. . : REACTOR

(mr/hr)

Photon Source Region

Core

Reflector

Depleted Uranium

Mix 1 Shield

Mix 2 Shield

Mix 3 Shield

Borated Water Shield

Total Photons

Neutrons

Total

O. 009

3.5xlO
-
6

3.2x.10- 5

0.018

0.062

0.017
0.011

0.120+0.034

0.020+0.002

0. 140

0.004

6.3xlo- 6

1.3xlO
-
5

0.026

0.075
O.063

0.022

0.187+0.054

0.027+0.003

0. 214.
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TABLE 3

RESULTS OF SHIELD OPTIMIZATION

(0.25 mr/hr at 30 feet)

375 MW 600 MW

Quantity REACTOR REACTOR

Initial Final Initial Final

Dose Rate (mr/hr)

Photon 0.120 0.126 0.187 0.153

Neutron 0.020 0.124 0.027 0.097

Total .140 0.250 0.214 0.250

Shield Weight (103 kg)

Depleted U 10.2, 12.6 ' 13.8 0.0

Mix 1 71.2 0.0 89.2 6.6

Mix 2 22.1 52.4 26.4 52.4

Mix 3 16.1 12.2 19.0 63.1

Water 86.7 80.3 97.7 85.3

Total 206.3 157.5 246.1 207.4

Shield Thickness (cm)

Depleted U 5.0 6.1 5.0 0.0

Mix 1 57.0 0.0 57.0 7.0

Mix 2 15.0 57.3 15.0 48.4

Mix 3 15.0 13.5 15.0 51.4
Water 117.0 120.8 117.0 98.4
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The small contribution from core photon sources decreases the

amount of high Z shields required around the core. Therefore,

both problems gave a significant change in the first two

shield dimensions during the optimization. In the 375 MW pro-

blem, the first mixtu:re of depleted uranium-borated water

(P= 6.4 gm/cm3 was eliminated entirely. In the 600 MW problem,

the depleted uranium and most of the first mixture were

eliminated.

The main difference. between the two FASTER-III calculations

was the shift in the placement of lighter shield mixes towards

the core for the 600 MW problem. An examination of the sec-

ondary photon dose components indicates that the contribution

from the outer two shields was about 25% for the 375 MW reactor

and almost 50% for the 600 MW reactor. Since these sources

depend on the neutron attenuation through the closer regions

and since lower effective Z materials are better neutron

attenuators on a weight basis, the 600 MW problem tends to

replace high effective Z material with a lower effective

Z material.

The differences in the contribution from secondary sources

in the outer shield regions is greater than expected for the

nominal difference in the core region. Therefore, much of the

difference in these sources must be ascribed to statistical

variations. In fact, both problems had approximately 25-30%

calculated relative error in the total photon dose rate.

It should be noted that the FASTER-III program includes a

number of importance sampling techniques which could be used

to decrease this error. However, both problems were run

using the built-in definitions of importance parameters.

Alternatively, more histories could have been used although
the computer time requirements would have become excessive.
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Section 4

CONCLUSIONS AND RECOMMENDATIONS

The FASTER-III program was developed to calculate neutron and

photon fluxes at specified points in complex geometries.

Alternatively, it can also calculate fluxes averaged over specified

surfaces and volumes. The program was designed such that data

preparation is simple and so that very little judgment is

required to set up the importance sampling for most problems.

The FASTER-III program satisfies these requirements very well.

The shield weight optimization capability included in the

FASTER-III program permits the calculation of both base line

radiation levels and optimal shield thicknesses all in a single

computer run. However, the very large attenuation factors

involved in the demonstration problems yielded some questionable

results. In particular, the statistical differences in the

relative contribution from various secondary source regions

caused corresponding variations in the relative distributions

of shield materials. Of course the statistical variations

would be less in problems with less overall attenuation.

The effect of statistical differences on the shield optimization

can be reduced by following more packets. However, the computer

times start to get excessive if this is the only approach used.

It would be more fruitful in terms of the routine application

of the program to expend some effort towards altering the im-

portance sampling.

The FASTER-III program has the capability of calculating optimal

importance parameters based on partial derivatives of the

variance. This feature can be used in determining better im-

portance sampling parameters for shield optimization problems.

In fact, the overall program efficiency could be improved if

this feature was utilized on a wide variety of problems with

the results being used to improve the built-in importance

sampling models and parameters.
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The relative expense of using the FASTER-III program in a

somewhat iterative:,fashion ,todo 'the initial sizing of a shield

configuration should be considered. The least expensive

procedure suggested for the initial'setup of a problem would

involve either hand calculations and/or point kernel calculations.

In view of this sizing problem, it is recommended that a point

kernel option -- removal and/or moments data for neutrons,

buildup factors for photons.,-- be built into the FASTER-III

program. This option would also include a calculation of

secondary photon contributions.' This option could be used in

conjunction with the shield optimization procedure and permit

relatively accurate sizing with an order of magnitude or more

reduction in computer time when compared with the use of

Monte Carlo. A very positive advantage of this option is

that most of the data cards used in a point kernel problem

would be used directly in the corresponding Monte Carlo problem.

The incorporation of a point kernel option in the FASTER-III

program does not involve very major modifications. In fact,

a similar option was used in one modification of the original

FASTER program for calculating secondary photon dose rates.
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Appendix A

MONTE CARLO METHOD

The Monte Carlo method as used in the FASTER program is

described in this appendix. The development starts with the

order-of-scatter (Neumann series) solution of the transport

equation. The Monte Carlo method is then applied to the

spatial integrations. The presentation is of a summary

nature and no proofs are given.

1. The Transport Equation

The particle energy is immediately cast into a multigroup

framework where the ith energy group includes all particles

with energies E between the group boundaries E
i
and Ei+l.

In the conventional manner, higher group indices will indicate

lower particle energies, i.e., the energy group boundaries are

monotonically decreasing, Ei > E
i +
l.

The differential angular source of particles in the ith energy

group which have had exactly k interactions or collisions

since being emitted from a known independent source is denoted

by Sik(x,_u), the number of particles in group i per cm3 per
steradian coming out of a collision at x and proceeding in

the direction u.

The differential angular flux of particles in the jth energy

group due to source particles which have had k collisions is

denoted by jk(yIv) the number of particles in group j per
2 -

cm per steradian crossing a detector at y while heading in the

direction v.

The differential angular flux is directly related to the diff-

erential angular source by a simple line integral over the

space points which can contribute in the fixed direction v.
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Allowing for the application of this development to charged

particle transport, the relationship between flux and source

is written as:

( v ) = Sik(Y-tv.,)Kij (-tvvy)dt (Al)

In general, the kernel Kij(x,y) is the probability that a
particle starting at x in group i will arrive at y in energy

group j. For neutral particle transport, this kernel is simply:

Kij(x'Y) = exp [- (x+su)ds aij (A2)

t = -x , u = (-x)/t

where Zi(z) is an appropriately averaged total cross section
for energy group i at the point z. The quantity bij is the

Kronecker delta function, 6ij = if i j, 6ij = 1 if

i = j.

The'hext collision" angular source, Si k+i(xu)' is, in turn,

determined from the angular flux as:

STis c l r equir k(X-')T ji ( x uir vi d
2o v (A3)Si, k + l

(x -'u )
ZT

J 4

This calculation requires an integration over all initial

directions v (differential solid angle df = d2v) which can

be scattered into the direction u. A summation over all initial
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groups j for which particles can scatter into group i is also

required. The kernel Tji(x,m) is the probability per unit path

length per steradian that a particle at x will scatter from

group j into group i while being deflected through an angle
-i

COS I.

2. Monte Carlo Integration

The Monte Carlo method is used to reduce the integrations

above to one-point numerical quadratures where the point is

selected at random. Assuming the most desirable solution

is represented by the scalar flux at a specified point y,
then this point solution is composed of contributions from

the many orders-of-scatter:

·J(x) = Z jk(y) (A4)
k

where Ojk(y) is the scalar flux in group j at y from particles

which have had exactly k collisions. Each order-of-scatter

component of the flux can be written as volume integration

over the kth scattered source since:

jk(Z) = Jk(Yv)d2 (A5)

4w

= ff|ik(y-tt,vv)Ki (y-tv,y)dt d2 v (A6)

Jjo'-- t
4ir
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The differential volume element t2dtd2v is written in the

more general form d3 x where x represents the space point

i-tv. The directionality of the source is changed from v
to the more general uby including an appropriate delta function

in the integrand. The final form of the equation for the kth

scattered flux in group j at y is:

I (A8)
k (

y

=) = E Sik(X'U)Kij(xy(u-vY ) d
i t2 I3x

t = Iy-x . 'v = (y-x)/t

This equation is unchanged if the integrand is multiplied and

divided by the probability density function (pdf) p*(x):PkX)

p*(x)d3 x

kp (x). >O for all x

pq(x) > 0 ifi fSik(x,u)d2u > o
i

47 ,

fp(x)d3x = i

(A9)

(A10)

(All)

(A12)
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Equations AD andA12 are necessary conditions in defining a

pdf; it must be non-negative and must integrate to unity.

The condition in equation All is stronger than is required

for calculating the flux at y -- as written, the same pdf can

be used for calculating the (k+l)th scattered source for the

next order scalar flux component.

The quantity in the first set of brackets in the integrand

of equation A9 represents a modified source density denoted

by:

xSik(X,_) (Al3)
ik*Sik(X' -)

k (A13)

The second bracketed quantity in equationA9 depends on the

particular point y at which the scalar flux is being calculated.

EquationA9 is integrated by selecting a single point Zk at

random from the probability density function p*(x). The

mechanics of the random selection process will not be discussed

here. It suffices for this discussion that a value Xk,

obtained at random from pk (x), gives a one point quadrature

estimate of the value of the integral in equation Ag. This

estimate is denoted by %.k(y) and is given by

jk(XY) = i u)K ji(Zk'y-) 2 (A14)

i tk

tk = IY-Zkl , vk = (y-zk)/tk
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Of particular interest is the fact that equation A14 holds

for all detector positions y and all energy groups j. It

is true that there is a particular pdf pk;(x)."that is best,
for calculating the kth scattered scalar flux in group J, at
yj namely

S ,ik(X,_U ) K(+ )(-k) ;
*p*(x) = -. t2 , ' (AL5)

= Sik(xU) K (x
)

u
-

v
k' _ ) d _

3

t 2

Sampling of this pdf to obtain the discrete point 'k will
give an exact solution' for..the kth scattered scalar flux in
group j at y. However, there are several reasons for not
doing so. Foremost is the fact that in defining the pdf
through equation AI5 it is nec'essary to essentially calculate
the flux analytically since the' denominator is the desired
answer. Second, itis virtually impossible to define and then
sample a pdf as complicated as equation A15. Furthermore,
it is usually more economical to approximate equation A15
for the dominant energy group and'then use the selected

point zk in the calculation of fluxes for all the energy groups
simultaneously as implied.in equation A14. Finally, this
optimal pdf only holds for the kth scattered flux, and the
next step after calculating the'kth scattered flux is to
use the source strengths Sik(zk,u) in defining the (k+l)th
scattered source for the next order of scatter. There is a
different and much more complicated prescription for defining
an optimal pdf to be used in the selection of z

k
for.this

next step.

After these negative comments, there are several features

of equation A15 which are quite useful. It does provide insight
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into the functional form of the optimum last collision pro-

bability density function. Furthermore, the more complex pdf

to be used for future orders-of-scatter can be approximated

by equation A15 by simple alterations of the transport kernel

K1i(x,y). Finally, it does include the l/t2 singularity in

a manner which obviates any difficulties in calculating

accurate, finite variance fluxes at a point.

As discussed above, the pdf pk(x) is used to select a discrete

point Zk which is then used 'via equation A14 to estimate scalar

fluxes at the point y. The point source defined at Zk can

actually be used in the estimate of angular fluxes since

the source strengths Sik(zku) can be evaluated for 'various
directions.Thus, the angular flux at any point y can be

estimated, using these same sources, as:

t Kij(kx)6(Y-yk) (16)
k(Y = S ik(Zk) 2i(Zk )6(V-k)

i tk

tk = IY-Zkl k = (y-zk)/tk

Of course, if the point y lies in the kth scattered source

volume, a pdf which includes a dependence on y should be used

in selecting zk. However, if y lies outside this source volume,

there is no difficulty.

In addition, these point value flux estimates can be area or

volume averaged. The equations are simply
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k (A, v_)

and 0ik(Vv)

In both cases,

coordinates so

=- /is*fk(Zk V) Kij(Zk y) b(v-k) dA

tk

(A17)

(AL8)

the integrations are transformed to spherical
2 '2

that dA tk d vk where'n is the normal to

lk d

the area, and dV = tk d2 kdt
k

so that

Sik(ZkV)Kij (Zkk+tk(v)v) b(v-vk)t d

t k IVk n I
k 

(A19)

S;k(Zkv) Kij (Zk'Zk+tk(v)v)

' I

tik(V,'v) = V
i

Si (Zkv)Kij(k',k+ tkV) ( tkd2 kdtk

A-8

. k(A, _) i
i /4r

A
i



,,

.~~~~~~' · .... ·~,~~·· ·. ....
'I'

Sik(z,,v)f,"K" (z",,,zk+t'v)dtk ("o

h~~t, Ist ' -P o' z Iu o' e ,, *1

·.,·i·~~~~~~~~~~~~~~~~,.

where tk(v) is, the disance famZ along vutoheaea

~~~i k", ik =k,,k-.,k·)

or volume, and .rvisthedis.tance'" thr"u'ghevle

·~~~~~~~~~~~·~~"'''"" 
'~"

/1V .Sik'V· ~ · r* K':ik'l 'k~t~·lb, "/ ~ : , - ,,A'b j

Any summations ov mt 'en"daefrom'uz
k al'0eg,,ter 'ectons o th,"'the lie' .t 'kV

with the area or ,',volume are' imp'ic'iti'n the" abo'Ve e"uations.

The point angulari"fluxes defined by equation"Al6 ,are ·u sed to
define the (k'+l)th`'scattered source: ,

f xv) ;'T.., (x, Vu) d2 v (A21)Si,k+l(x'~u k;~"i

, ........... ". , , ,

~~~~~~~~,This reducesto.:''.. ..

'j ' ·/[' ....

Si,k+ l(- I ax,v,) T" i(x, vk _U), (A22)... ?i .k:l jk ..- .. 

since the angu Iar fluxe sae a "defined, asbeing i the datheirection
vk only, where :vk = x'X'' ,-./"- k. ' 

'

I

ththen sampled to obtain,,,a discrete' value 'zk of' x. The source
strength at this point'is' then denoted.byS' k+(zk+lu) and is
givefn byie -k~l~th~.sc~tter~d s~burcik·l.'kl"'
given by ' .',: '
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Si,k+l(k+l u) = Si,k+ l(k+l'u) (A23)

p*k+l(Zk+L )

=EjIk(Zk+lk) TJi(Zk+lVk.) (A24)

k+ P l(Zk+1)

Since flux estimates may require evaluation of Sik+l(Z+l lu)

for various directions u, it is expedient to define point mono-

directional values of the flux going into the point Zk+l:

k (lk+l'-k) = k(Zk+l Vk) (A5)

P;+l(Zk+l)

The angular point source Si, O (zk+l,u) is determined from input

only for the independent source. In all other instances, it is

determined from the equation

Si,k+l(Zk+l'u) = Ijk(Zk+l,yk)Tij(zk+l3 Y ) (A26)

The process of reducing each volume-distributed order-of-scatter

source to a point representation by random sampling, of using

the same point representation to give the volume-distributed source

for the next order of scatter is continued until all the

particles at a given order of scatter no longer yield a
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significant contribution to the flux estimates. The estimate

of the total angular flux at a point y from this procedure

is then obtained by summing the individual order-of-scatter

components:

,j(y,v) = L Ijk(YV) (A27)
k

E S k(Zkv) Kj(zk') 6(-vk ) (A28)
k i 2

-The total scalar flux is obtained by a simple integration over

solid angle which yields

j(Y) = E ESk( ZkVk) Kij(zkY) (A29)
k i 2tk

This process gives a single, inaccurate, estimate of the total

flux. Therefore the process is repeated a specified number of

times and the average of all the estimates is accepted as the

best estimate of the total flux. Introducing the subscript

n to denote the iteration index, then 0Jn(y) is the estimate

of the flux in the jth energy group at y of particles obtained

on the nth iteration. If N is the total number of iterations,

then the total flux is estimated by:

N

(Y=) AN E v(Yn) (A30)
n-l
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Since each iterant ,represents an independent estimate of the

flux, it is possible to approximate the standard deviation

of the total flux by:
* X q X~~~~~~~~~~~~~~1

[ l4 I|N

N

E in(
n=l ,
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-2 ~ 12

4i (Y ]
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