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© ABSTRACT
- It-is often .considered that taking intokgcceunt'fhe;temperature,
hanéﬁthe coﬁpressibili;y, of theielectpgn?gas'in a'piasma}is-any
improvement over the cold plasma model. This'howe§er.leads-to;a
numbe: of_pgculia; an&{pa:adoxical results tha; shéwA£h¢ neéd"for«
some ;caution in applying this medel. One~resultais»that-the{Boﬁnaary
conditiéns for the warm plasma do not;reduce'torthosg forsfhé cold
plasm@ wheq;thelﬁemperatqre approaches zero. Another is tﬁat
evaluaﬁien of the impedance or.the rgdiat;en from an:antenn$jleads
to widely different results according to.the exact;size;of?the antenna.
This has led some authors toﬁdrﬁw,completely opposite conclusions as
te the . importance of .acoustic .waves. - Boﬁhtof;thése occurrences  can
be.traqed'té,thehfactﬁthat;the warm plasﬁa édu§ti0q$‘are of higher order
than-thse of the<cola,plasma and that the.extra terms éontain»a small
fgctsr of the order of‘a/c, whé;e'avis theispeed;of sound.and c,that
of ‘light.. |
This suggests.that the techniques of the-singular perturbation
theory can be applied to these p:obiems., Typigaliy thelcold,plasﬁa
model can be .applied over wide rangés;of'the,pa:ametgrs,(positién,
frequeqcies, angle of incidence) an@-only-o#gt narrov .ranges for@ing
Sofcalied'"ﬁodhdary layers' does oq# need to uaeithe.warm plasma‘mo&el.
Then again éimplified equa;ionqicaq,be-uséd and the?sintiong,matghedj
oh*both‘si@es of the. layer's boundary. A number'of simPle,gxampleé
will-;;lustrate this point of view. Theaanalysis;éonfirmsythatépome.
résulta a:e=highly:sensitivq to ;pe>§a1uesLof'éopé;paramegets; wire
radius or gap .size .for an antenné, temperature,of‘the_@edium,:and

incident angle.of a plane'wave. -As ajresult;“thevcorpespdnaing
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"resonances" cannot be;observed iniipfdctice since ‘the parameters will
never.be realized exactly enough. . The boundary layéf?can then be.
neglected.
The description of the temperature effect.by uéing the more exact:
kinetic theory is also discussed. The application of this theory is

much more complicated, and in,a'fewfsimplepcases where it ‘has been

worked out, no significantly nev, result has been obtained.
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" ‘1. ' INTRODUCTION

Most studies of electromagnetic wave and antenna problems in
plasmas are based,on~;he_c$ld plasma model .which assumes-that_the
electrons.in the plasma have no thérmélfeﬁergy and form ah incompréssible
fluid. 1In recent yeg;s, there have been many efforts to includefthé
temperature effect of the ﬁlaéma by‘using warm plasma models. Tﬁié
can.be<aéhievgd in}thé frame;offei:her.thé fluid-déspription ér_theaya_
more exact.kinetic.tﬁeory.' Thg warm_p}asma‘quelgbaseﬁvon>kipétic;tp%qry.
is quite complicated1mathemafically and, - therefore, has only beenlésgq.
in a few‘simple prqblemsf

3eqause of the inélusion'of theﬂtgmperature gffect,‘it‘is_often
believed that the wét@.ﬁlasma mpdel,ié an,improvément oveg;the coid.
plasma .model. Howevé;,.;hislhas led to.a number bf ﬁeculiar and .
paradéxical results thgt'show-the‘;eed for some‘caution in using
this model.  One resuit'is that the field in theﬁneighborbood,ggua
rigid boundary for a;low—temperatqrekwarm plasﬁa is éqt*a small .
perturbatiopqu that for cold plagga,iand conseqqéntl& dqes:ngp reduce
to the cold plasma fieldzwhen:the'tepperature_ié,feduged'to.zéro;
Another is the -evaluation of thé i@pedance'or,the radiation from an
antenha.' Widely,différent results;are obtaineﬂ dépeﬁding.pnafhé'
exact size of.the an&enna. This has -led authpfsito,dfa& completely.
opposite conclﬁsions.as to the impért;ncetpfﬁthe’acdgstic Qéﬁés.‘
Both-ofathese;occurfeﬁcgs‘cap,be-fraced(tp the;fdllpwing'twoffagts:>

- (i) The (ﬁlﬁid)"Warm plaspa quatioﬁslége of higher'o;dgr;
than-thosevof cold ?iasma, apd_tﬁe}éxtra ter@ contaiﬁs,ajfactqri

s=2 o L. @l
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where.a is the 'speed of sound andAc-;hatrof=lighg.(in‘vacuum). Assuming
the- electrons .in the plasma to form a perfect gas with ‘3 degrees of

freedoms ‘we .have .

/3KT/m - , (1.2a)

a:
or . v
5'=,2.24,x'10'5_/fa \ o - (1.2b)

where K is the Boitzman constant,-ﬁ‘is the;electron:ﬁﬁss,bandiTlis the
absolute temperat&re of tﬁe’electrons in degreesf{Keivin)} For.
plasﬁés encountered in . the ienosphere or in laboratorieé for microwave
experiments, T rarelyuexcééds several thousand degrees. Theféfqré,-
the factdryd is a vety.é@all number. | |
‘ ‘(ii) The-figid 5ound§ry condition for the vélocit&'v aﬁ the
bo&ndary with%nofﬁal fi, i.e,,z | o
a-v=0 - (1.3)
is‘enfofééd,in warm blasmé;bufvrélaxgd in cold plasma. Inzthe;fluid
description»oflpiasma,'théfgoverning equétioﬁs,aré the ‘usual Makwéll
equations plus théfeqﬁétion'bfwmotion‘for the .electrons. - Fbr5ah
visotropiéjplasﬁa;:the'latterltékes the form:

eE ,
=»f-'-imtn(1~+-\)/m)

cold plasma:. -V (1.4)

= — (1.5)

2 . :
ki (1'+ ivw) - fom(l 4+ iv/w)

warm plasma:  V + §°

where (-e), m, and v are the~charge,,ﬁéés,_aﬁd.the collision - frequency
of the eléctron, respectivély, ahdvk6_= w/c.f.ﬁbté,thét;(l;S) is a
secondfor&ér‘partiél differential equation for ¥, while (1.4) is of

zero order. In the limit T or § ~.0, the order of (1.5) is reduced




and, consequently, the boundary condition in (1.3) can no longer be
satisfied.

The above two facts lead to the creation of the so-called
"boundary layers" in the field:solutions*and;suggést the ‘application of
the singular éerturbation method to these problems.} Typically, the-
cold warm medel can be-applied over wide ranges of parameters (position,
frequency, angle of incidence, .etc.) and the result so obtained
differs from. the corresponding solution in. the warm ﬁlasma model by terms
of 0(§), which are negligible for all practical,purpbses; Only over -
narrow ranges of parameter.forming boundary layers does one need .the. ' .
warm plasma model. . Then, in -the boundary layers,.sihplified equations
can also be . used:and solutions matched on bothAsides~of.the‘1ayeris»
boundary.

In this paper we .will consider:a few-siﬁple.e#amples to.illustrate
this ‘point of view. To aveid unnecessary mathematical”complidations, .
the plasma is aséumedfto be  isotropic throughoﬁt.” Ih Section 2; the:
singular perturbation method.is -applied to a‘téxtbook—type problem
_ for the-pu:posg of demonstrating the. formation of -a ppundary'layer;for:
the ‘acoustic wave'iﬁmthe immediate neighborhood of ‘a rigid-boundary.
Ingide the layer, the:acoustic wave . contributes significantly.toathe:,
total field so that the latter may satisfytthe boﬁnd?ry conditionﬁin‘
(1.3). Outside the layer, it suffers heavy attenqafion due to the
collision loss in the‘plasma,and, thgrefore,_cén,be safely ignofed.
The singular perturbation meqhodnuses;this.factaspéqifically and,.
therefore, may'simplifi the;mathematical‘manipulatiohs in the warm-
plasma.model when applied to sophisticated problems. .

In many‘boundary value problems in plasmas, we often are
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inﬁerested in phyéi?él-quaﬁtitieézéuchlas the reflecéioﬁ,coefficiqpt,
power ratio, impedénce, etc. In Section 3, we éhow with.twot‘
examples that these#quanfities obtained in a (low—teﬁperature) watm
plasma .are nea;ly the;same}as those in cold plasma eicept in .

boundary .layers in parameter spaée; In these boundary -layers, the.

'wafmiplasma_solutions vary so rgpidly‘inQpa:ametef s?ace;thatytheyi
cease to bé physically meahingfhl éu;ntities.,,An:attempt to impfovg‘
the situation is.to use a hore-gop?iéticated médel:to describe the 
temperature. effect in the plasgg, ?Thqs§ iﬁ-Secgioniﬁ, Wé_tﬁfh;to the
kinqtic‘pheo:y. However, ;t l;éétfin.the example.we;conSiée;ed
(namely, the reflection from aj;laéma half-space), thg.same;boundégy .
layer .exists in.both .the fluig;énd fhe'kinetic theqry'&eséri$tibn!

In addiﬁionvtoythe boundary value probléms, anothé£ élass.of
imporfant-plasma probleﬁs is thé'radiation ffém é)presbrigéd'§urreﬁt
soufce 3(;). An interestiﬁg qu;stion is whether the”figldschﬁbutedr
from3cold;p1asﬁaAand warmfﬁlas@é (fluiq or_kinet;p‘tﬁéoi§) aré;
significantly different -(an inéication of_tﬁe_imfortance-of,écbugtic
waves)@: This-subjeqtﬂwill-5e¥éiscussed in Section 5. Tﬁe conclusion
is tﬁat as long as J(r)  is smo?th enough this‘difference is nééligib1y 

vsmall; otherwise'any'sensational-results_are.possible,




2. ATTENUATION .OF THE ACOUSTIC WAVE

The problem under.consideration is the‘refléction:of a plane
wave -from.an infinite conducting plane in an isotropic loss? warm
plasma (Figure;l). Let the incident fie1d~be,én‘eleétromagnetiq wave
with |

(1)  -ik_ Ve, cos6 x[ik . Ve, sin® z'- iut (2.1)
H- = e o 1 Oe.é 1 o .

=1 - (wp/@)z(l +,:i.\)/uo)_]',vIm-/;:mvz_(),.uup = plasma

wh_ere,.ko = w/c, € 1.

1
frequency, and v =,collisibn frequency. The problem is to determine

the scattered fields which satisfy‘the\wave equations,

P9 2 2, \u <o Co I
- 2,‘+ koxglcos eé., Hy -tOI | ' (2.2)
82 k§'€112

where .

-
n

.\/,T+ i Y,) - 6zsin26 _ ‘ - (2.4)
w : (o] ) - .

6 = 2 = ratio of sound and light speeds L (2.5)

P = perturbed pressure in plasma

and . the appropriate boundary conditions at;ix =.0 énd X >, ;Since.the
scattered fields will have the same z-variatiop and_ﬁiﬁé éonﬁéntioﬁ

as.the incident one, the common:factor as' appeared in ['] ini(2.1) for all




warm plasma

A,

Figure 1. Reflection of a‘plane wave from a conducting
plane in a lossy warm plasma

Figure 2. Reflection of a plane wave from a plasma half spéce




field quantities.will be dropped hereafter.

ThisQSimple:problem, ofycourse; has:anﬁeuact solution which can
be obtained easily. Hoﬁever, inuorder‘to demonstrate-the existence
of ‘a-boundary layer-in the'scattered;field (as § >.0) in a convenient
manner, we w1ll attack this- problem by a singular perturbation technique.
The ba51c idea of thls technique: 11es in. obtalnlng two. asymptotic
expansions,for the scattered fields for-the smallnesszof 5.. One of
the expansions is valid in a very .small region clbse.to the”conducting
-plane, known as.the boundary layer, the . other 1s out31de of . the layer.
By matching these, two expans1ons at an overlapped region, ‘'we may
determine certain constants-that_appear in .the expansions and;finally
derive an expression uniformly valid inside as well as outéidetthev
boundary layer. In-the_present,simple\problem ourluniformly,yalid
asymptotic‘expression'iszactually thevexact;solution;

To apply the singular perturbation method first let us . consider
the field. expansion valid 1ns1de the boundary layer -which is associated

with the limit

=
L

N

fized, 6 > 0. (inner limit)  (2.6)

Ne,
0
o.lo

In terms of .the new variable, the twe wave equations=in.(2§2) and . (2.3)

become
Fa,z.- , . o N
) —;Ef+’6‘(elcos,002 rH§-=1O> . _— v (2.7)
3 X"
9. )
3 2.\ _ . .
7 + ,_811', P=20 . | _ (2 .8)
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Consider (2.7) first. We are looking for an agymptotic éolutiqn of
the -form. |

o £ + 65, () + e, +o0eehH . (2.9)

Substityting (2.9)'into (2.7) and equating the terms of .same .order of

magnitude, this procedure results in

azf 32f
o _ 1 -0
S S
. 82’f2.,- 2
' Y -+ (elcos eo)fo = @
X

Wheg the .above differentiﬁi équationé=aré sblved and their results

substituted into (2.9), Wefﬁave-
Hy (Cp + CX) + 8(Cy + CX) - 8 (egcos eo)_(c1 5=+ Gy )
o
+0(87). - . (2.10)

The -constants, C's, will.bé;éétermined later whe9~thé~56undéry
conditions .are applied. fﬁe wave~eduatiqn fé:wthe;%¢0ﬁ5t1é¥ﬁave.in-»
(2.8) is a regular one.with no appearance;bf:thg.perturbétioh pérameter
§, and its solutien isisiﬁily |

i¢el_T_

) -ﬂslr_
P = Be + De - .

(2.11)

To determine a part .of ‘the consténtS'inu(2.10) and (Z.ii), We_%ill now




apply the boundary.conditions at.x = 0, namely,

(t) =0 = 0: v(t) (x = M=0 | (2.12)

where the superscript (t) signifies the total field,; the incident

plus the scattered. In terms of:Hy and P, the two conditions in (2.12)

become’
o [6(/—_ q 31n6 P+ i/__'cose ) - —E' H ] _ =0 (2.13a)
X ¥ ¥ =0
G(w) m(l+Hy? qa—}-(-.P ;. O=,0 (2.13b)

e B
om(1l + 1v/w)

where: . q =

magnitude of the charge of,

e=
an electron
m=

-mass .of anﬂelectron:
Substitution of.(2.10) and (2.11) into (2.13) leads to.

C,=¢C,=0 | . (2.143)

2 3
zGSineo (w ) (1+ Cl) = iqt(l + i B)(B:f D) . (2.14b)
Cdv L
1 -— iq(B - D)tane _ (2:14c)
i/—_ cose : ' v

which .are four conditions for the six undetermined constants.i
"Next, we will consider the - fleld expans1on valid outside the

_bopndarydlayerﬁwhich 1s'assoc1ated“w1th"thevlimlt
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X = k° x fixed, § > O . (outer . limit) (2:15)

In terms of the new vgriablé X, the wave equations in (2.2) and (2.3)

take the form

—4—~+;el cos’® | H =0~ (2.16)
6% 8——E,+'(-:l'r2 P=20. (2.17)
X ‘ ) ’
and the boundary cendition is-
H, P>0asX>= . o (2.18)

This solution of (2.16) and (2.18) is-

ive, cosf. X
l‘ o]

H o= he L, Im fe_;>..0 (2.19)
and that of (2.17) and (2.18) is
P A0 ' (2.20)

which means that the order of P.is;smaller than any algebraic power.
of §.

'Summari?ing the results obtained so far, we héve the . inner
expansiQn in. (2.10) and (2.11) and the outer expanéion in (2.19) and
(2;20). There are a total of seven constants in A, B, D,*gnd C's in
tﬁesg expansions, and four conditions in (2.14) for their'detérminatibn.’

The final step in this method forisolution:involve5~thé matching of

these two expansions, which means roughly that the !inner, eﬁ-:pansion-as
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X > -a,nt__i- the outer.expansion as X'+ 0 should be in agreement..
To carry out 'sucﬁ a matching, we need to "stretch' the regions
of val;l.di'ty.Afor .our inner-and outer expansions so.that -they becomé'

: overl'appling,.- Introduce a.new variable

X. =
n

EE

(fixed) - | (22D

where n .is ‘a function of the perturbation parameter ¢, and is.
asymptotically larger .than 6 , explicitly.

5§, + 0, but (n/8) > . (2.22)

Note that 3\'{'=1_ (Y]/G)Xn ~+ o and X = an > 0. Using limits in (2.21) and
(2.22) -in-(2.10), we have

. . _ .9 velcosz_eo | 2;
Inner: Hy VoGt n(C4Xn;) ak e — Clxn :

+0@m% | (2.23)
where ~.(2:1%a)- has- been used .. ‘Applica.t‘ion -‘of‘the same limit-
in:(2.19) leads to

(i:;l cageo Xn?

Oufét: H. = Ae
, y :
. | g
A 2 elcos~96 AXZV
A+ n(i_/q. cos?,o Axﬂ)z -n e &
aed " ’ “
+0(m7) . (2.24)
Comparing (2.23) and - (2.;2{&) », we have
:Cl‘= A, C,-= iV €1 A co.seo: . l(2;f.,25.)_

"
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The matching of P in (2.11) and (2.20) in a similar.manner leads to

D=0 - :1_fAH; o (2.26)
The three additional-conditions in:(2.25) and,(2;26);«together:with;.
those iﬁ (2.14); deéermine the two expansions completely} "The -final. forms

of the two expansions .are

Inners: Hy_m:A [ 1 +'6(iVel-coseo~§)4-0(62):f : (2.27)
) i/EI Tk‘ . R ' o
P = Be | (2.28)
iVel coseo X _ C
- Quter: H& = Ae , ' ' v : (2.29)
PO : - - (2.30)
S 2h cotf |
where: A é=l4liﬂl . . B = 6'————“f;%f‘ ' (2.31)
"1+ 6h . iq(l + &h)
w {2 siné tand
h= [-B : ' o 0
(w ) 1+ i(y/@) T.

The inner expan31on is. valid ‘when X- deflned in. (2.6) assumes ; fixed':
value, ane the outer expansion when X defined. 1n (2 15) assumes a.
fixed«value. From the results in (2.27) through (2 . 31), we may
de:ive_the expres31ons'for other field cpmponents. In.particular,

we are interested in.the nofmal.componens ef:the velocity,‘WEich is

found.to be.

. : - ik g sing o el
Inner: - Vx N ————— A |1 + 6(i¢€1 cdsed'X) 4+ 0(8)
' we Veq _

‘:.i/EI'r% : »
' (2.32)

- 2e.




13

e oq eing /Z-‘]—_‘co“s‘e"x R
Quter: V ~ t 09 Sln'6‘0 Ae 0.
o d X —_— . (2 .33)
we Ve, '
o 1.

The final results in (2.27) through (2.33) will now be-examined.

(i) Inside the boundary layer. The acoustic wave plays .an:
important part in the .total field solution, so as to insure the
satisfaction ofethe boundary condition at x =:0.  Away from the boundary

at x.= 0, the acoustic part decays exponentially as. [see (2. 32)]

‘ " o ' Im(V T) ‘ ' :

exp [-lem(Vel'T)} = -k X'———T?T-‘ . (2.34)
Thus, we may define a "skin depth;";which is a measurement of .the
thickness of the boundary layer, namely,

x = 2 = S +o(sh . (2.35)

R o NI
_ o T . \w
At X = X s the acoustic wave is .reduced by e*l or 37 per cent cf its
magnitudelat x.‘= 0. If terms of. 0(6 ) are dropped the skln V
. depthrmis independent of the 1nc1dent angle 6 ;vand in general is-_f
a very small_numbera, As a numerical example,_we have computed x. for
three .typical sets - of - parameters encountered in. the ionosphere.: They
are-displayed'in Tables I.and II, In Table II, we note that there
exists a‘lon-frequency:and'a high—frequencyﬂllmit.
| ,a/wb", w>0 . L
"x =l ' A S O (2.36)

- {2afv , w-=*o
\

i

which are independent of w. The numerical data reveal that the1skin,
depth for .the acoustic wave is very small except er-one case discussed

below. At high frequency in_the F layer, the acoustic skin depth is
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TABLE I -

TYPICAL PARAMETERS IN IONOSPHERE -

_%*% .free space wavelength in meter.

Layer Height (kn:x)v T _ é(m/,.s) SV wp
D(day) 60 300° 1.isx;05'  j107 ‘ 6x10°
E(night) 90 200% 955x104» | 7210 10°
F 300 gﬁoe° 3x10° 163 6x107
. TABLE II
SKIN DEPTH OF ACOUSTIC WAVE x, (IN METER)
o 105- 63105‘ 108 107 | ex10 V;dB 10°
D 1.4x1071 :6L7x10‘2'l5.4x10‘25 2,6&10'2,'2.3x10f2 '2.3x1¢'2_fz.jglofz
E 9.5x107% | 1.1x1072 %1;6x;071”,2.7310_% 2.7xlofi“ 2.7§1o‘¥‘ zgzxib'l
F 5x1073 | 5x1073 5x19f3'*" 5x10;3 | *1.7 4;8£1Q2[‘ 6x10°
"xo%* ; i«9x104 3.1xio3m 1.9;5;103 192107 3.1x10° ;;9x10‘: 1.9

* at; -;plvas,ma frequenicy1
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large becausexof-the~small cqllision-loss,[segz(2.36)];' However, .
as long ash(wplq)% <«< 1,_£he*electr§9§gnetic wave .and . the acoustic
wave. are practically unéoupled and-hence ‘the skin-depth is;no longer -
a meaningful quantity for measuring tpe_importancejof thexacpusticA
wave. |

(i1); * Qutside the boundary layer. The contribution from the

acoustic“wave‘beéomestnegligibly s@éll (due to_heavy'aﬁpenuation)’ and
the total field is nearl& entirqu-ma&e of the;electrpmagneqic-wave.‘
The amplitude:.of the"reflected elécfroﬁagnetic«wavg fo;lﬂyvis-given,m
by. |

1 - 8h

A=A T+on 2.37)°

where 'h is defined.in (2,31), and Ao is,the,amplitﬁae:When:a cold
plasma model is used. Unless the .angle of inci&eﬁgé;is hearly -

»* i ) , .
(n/2) , A in (2.37) can be expanded-as.

A =’Aa [1 - oms + 0P | . :‘ (2.38)

% Npte:thgt,lforleé = (n/2) --A with A <<'1, we have.

1- /0 /)] T D]a

A - -
1 +,(5/A)(wp/w)2/ Y1+ iv/w
If .(6/4) assumes.a fixed value, the value of A may'differ_considerably -
from unity. Thus, as-a function of - , A may be regarded as having a

T : ’ o A" ;
boundary layer defined by 0 <~(§ - 66) < A in parameﬁet,space Whe:e the
warm and cold plasma éolutions,do<not-agree4in‘the;léﬁutemperéturé

limit. This point will be pursued further in Sectien 3.
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Thus, A is slightly smaller than’Ab.< The:decrease.in A is dpecto the
conversion to the acoustic waves which is heavily dampéq-out;due.tq
collision; however, one must réalize that the}amount of;decrease;is in the
order .of §, and is negligibly small. Therefore, we may-coﬁglndeﬂthat,
outside the boundary layer,:the scattered field obtainable;ffbm'a,warm.

plasma model is practically identical to that*from é,cold:pkagma,model.

(iii) Uniformly valid expression.: 0ur:inner‘and¥qﬁte?;éipansions.
may‘be}combinedgpo give an.expression uniformly valid f$r aii‘x{' The
standard procedure.is toﬁadd.ﬁhesewtwo expansions and.substract out,
their common part. Take (2.32) and (2.33) as an example; the commmon:

part .(cp) is-
] RN
cp = lw+'6(ifal cos 90 X) + 0(87) .

Thus, - the .uniformly valid expression.for v, is given by

o ikbq sinéé . i{sl-coseo'x .i{el -
v = —2 - 9% Ale . © % l2ei | .(2.39)
we Ve, - c -
o 1l

s
Not .surprisingly, (2.39)atur;s;out tQ_be the-exéct‘sélﬁéiénu§§¥ ﬁhe
presgntfproblem.; We'émphas;zé the fact*that'inuprcbleis.ﬁhe?e fiéﬂ
exact solution is not;avgiigg;e, the singular pertﬁrbafion procedures

as illuétréted above may -often be useful. .

(iv) Lossless warm plasma. As may béfseen.from_(2:35), in the case

' of w >*mp, fhg formation of a.boundary'lgyer lies iﬁ thekinclusidn of:

' collision}loss,in~tthp1a3ma:model, Even though collision should be.
inevitably present in a_realiétic plasma, .many plasma problems. are
investigated by using a lossless model. - The absence .of a loss mechanism

in such an idealized model leaves the acoustic wave unattenuated when,.
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w > wp » and consequently it .plays an integral part>in’;§e'total fieid_
solution_evgrywheré. ‘Take Vg in (2.39) as - an examﬁlei -when“the‘
distgnce;along.x'ié-méasure& iﬁ:te;ms of tﬁe;usual ffee~$ﬁace'wa9eiengthz
Ao’ the-toﬁal'fieidrsoiutionnhaé—an e#tfemely rapidévaéyipg‘part:dﬁé
to theiunat;ehuéted~5c;ﬁsfic;wévé. Thus, variatiénéd%:é‘fxaétfoﬁ of;"
onéigérLéent_in;(x)Xo)hmay-résqlt in a significant change'in’ngﬂ‘Thié;M
of course, dbes not agree wiéh our observations in plasma exﬁéfimeﬁté. |
This briﬁgs‘o;t the poiﬁt that in using a ﬁarm plasm#;model.éertéin‘
field éoiﬁtion; (emg; Vk) méy éfi;icaily/dépend on‘thé‘colliéibﬁ loss
e;eﬂ thbugﬁ thekgoliision is small. In these;sitﬁations;'thé-lqsslésé

idealization may not be a jﬁstified one.,
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3. BOUNDARY -LAYER-IN-FIELD SOLUTIONS. -

The acoustic wave'in plasma,:as-illﬁst;atgdiin the previous
seétion, is heavily daméed due.to the col;ision and, therefore,u
cannot t;;velva'great distagce'awgy‘f:om fhe@bound;xy (or source).
Then the:ﬁext_qugstion;of iqterest.is;thafi.becénsg<of the énergy loss
in the acoustic wave, what is fhe ﬁo&ification qn the the;field
solutioq.for optiqal waves?.. Wevwill use'twé exampleg to illusfrate
the answer that, except for a narrowvrange!ﬁf,paramétérs,(bouﬁéary
layers), the field solutien fér.the optical wave'iﬁhwé}mrplésma differs
from thé; in cold plasma only.by tgrms:éf,order.é, Thus, for ﬁost plasma
probhmmsencouhte:ed in practice, the differeﬁce is negligibiy small.
However, for,parametéfs falling inside the boundary layers, the. field
solution for the optical wave may-be drastically modified and,-furthermore,v-
it,méy vary significantly over .a small fraction of an optical.waveléngth;'
For example,vthe evaluation of the .conductance.of a delta-source
excited cylindrical antenna in warm plasmé depends.on.the magnetic field in a
boundary layer. Consequently, the conductance.mayibavewsignificantly v
different values depending on the precisé_width.of the fee& gap. |
in,bothiof the examples to be presented below, we will not include
the collisionaeffécﬁ in- the plasma. for two reasoﬁs. First, the.
'presencé,of a small loss modifies the~b§undary layer somewhat but does not
change its basic structure. Secondly, in:analyzing many. boundary value
problems, particularly the one. of antenna impedance; it is t:aditionally
‘based on a. lossless model. By not-including the:collision here, we
perhaps can illustrate better why a variety of different results on

antenna impedance: can be. obtained depending on- the precise~width'of the

gap.
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In the first example we considered the reflection of an incident 4
H-wave (i normal to the plane of incidence) from -a warm plasma half

space . (Figure 2). The reflection coefficient'is_fognd to bez
r'= I‘oM' . - (3.1)

Here Fo.is the reflection coefficient for“cold plasma,

Ve-—sinze - ecdsé'
o v o

e 2 o (3.2)

Wfs —sinze +Aecose
. o . ?:. ol

and M is the modification term due to thekintrodnction,pf=tbe acouétic

- wave

M= e T | | (3.3)

where é‘ 
(1 - ¢)sin 6;1

7 2.2
o f}ecoeeo)J;"— <S.s:l.n_6'o

e =1 - O»p/w)z

Now let‘us'examine,M'es;a;functien of'e.and s:l:nzed° For a given

6 and § ~ 0, it may be shown that

M=1+ 4(8) ' (3.4)

* To include.the collisioh loss, simply make the follaWing two ‘replacements:

€=;l—_—2n—__ . 8 = b :

o

QT+ v/w) A 1&»/(»‘"
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‘ < L 2. <
for all 0 - 31n“e° - 1l.and e <1 except when

, 2, _ € o
81n360-—'l”+ e*+:A . (3.5

where A is a small .number. With A = 0, (3.5).gives the condition for
total transmission in cold plasma (Fo = O, but:not:T).  We will now
examine -the expression for I in (3,l) under”the-condition of (3.5),

thst is, the boundary layer of the reflection;coefficient, As indicated
in Figure 3, there are.two subdivisions‘depending on whether ¢ itself

assumes a.fixed value or a value comparable:.to §.

(a) € is fixed. One mayﬂshow-

2. A
r oA (1+ s)(e- - 1) A
o 2
4e

L Sy 2 e \3/2
Movl+ Q) 13 G-

€

Thus,  the teflection;coefficient~for warm plasma .is of 0(ec) when
(6/4) » =, orvoffO(A) whea (§/4) - 0. In‘either case, the difference
between I and T is negligibly small.-

(b) € is comparab1e7to'6; The situation 1s more complicated

Let us-concentrate on the;case'ofne = 62 6 and b are the variables
The mainpresults of our stud§ are'summarized-in'Table“III where the
values.oi r o’ M; T, R, and. n for different orders of (A/G) are listed
The -parameter n is the ratio of acoustic power.in the plasma and the
incident power from the free Spaceo_ The numerical values-in<Table III
indicate- ,the‘ extremely rapid variation of the field solutions in

the boundary layer. For example, when sinze_un 62 = 10 = (corresponding

to A = 64; T =.20009 and § = ), the reflection coefficient I is
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TABLE III

FIELD SOLUTIONS .IN BOUNDARY -LAYER

A ‘I’éz ' M : r . n
06> |0 | 1/3 479,
st | a1 0 o | 1
0(s7) 1 1. 1 | o

zero and the total incident power.is ﬁotallyjpumped into the acoustic
waves (n = 1). Thus, it can bé.said that:the warm plasma model gives a.
completely different result ffém that of the:cold‘plasma}(P°'=‘—l).
However, if we vary the incident angle,by 5:x¢10_71radians so that
sinaeé =,62'+ 6? (correspondiﬁg-to,A*s_é%); the :xeflection coefficient
F;becomes-unity, in agreement.withfﬁthresultminﬂcold plasma. Thus,
total transmission and tgtal,gefleétion-are-separateé'by,mefely
5 x}lo-.'7 radians of the incident angle!

In conclusion, . in thevpréblemqof reflection from a warm plasma
half space, the field'solution ié;pragtically the same ‘as .that .
obtainable from a cold plasma_model'exgept_whenfthé parametérs (e,eo)
fall inside a boundary layer. . As'indiéated iﬁ Figure 33(not;to scale),
the boundary layer is a region around € = 1 —miw#/w)2= 0,having a
dimension in the~o:der of76 in ;he'parameterwspacelﬁe - Goplane)s The
field solution for parameters.in the boundary. layer varies extremely
tapidly,vand, the:éfore, has -a dubious.physical significance:

In some electromagnetic boundary value problems, the physical
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Figure 3. In the dotted region (not to scale), the cold
- and warm plasma solutions differ significantly
for the problem sketched in Figure 2

Figure 4. An infinitely 1dﬁg cylindrical antenna in-a’
warm plasma
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quantity of 1nterest falls exactly within the- bonndary layer of the
parameter Space, and ‘this: may lead to a variety«of different . conclu51ons.;
Such .situations will be illustrated in the second.example, namely, the.
caleulation of the .impedance-of aaiipfinitely,langaeylindricalvantenna_
immersed in an isotropicilossless'warﬁ-plasmaemmlﬁe-geopetry_of»the
antenna,is shown in Figure 4; it-ie‘excited byia.delta'sourcelwith,
unit»yoltage amplitude  located at.z = 0. The;exﬁreesien-forvthe‘

induced current on .the antenna has been obtained by aanu@bervoft

_‘autho;s3’4 and is duplicated-below
e;?;zda. '
I(Z) . '; ‘. _ i_...'” . A (3,6)
(1)(C Q2 LW 2a2 . ,(p‘ za) |
—m—— R Al paaen B
(r; a) '
where . r = V.2 2 =+4iv 2 2 n =:e,p.
n k - o o -k, .

Fe =X 1- (w /w) * -kol= w{q.

k = ké/G , § = ratio of acoustic speed and
P ' light speed o
The integtation contour in .(3.6) is elightly above,tbe real axis for
a <‘0'and.belaw fqr,d > 0. The admittance of the antenna is defined-

as .
=-¢’+vi3'= I(z = zé) - ’ (3-7)

where z is a suitably smallldiStance from tha {dealized feed at év;’o
and. may .be- identified with the half-gap’ width of the actual feed._IWe‘

recall that -even .for an antenna situated An the free space, the imaginary
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part. of I(z) for z close,to Fhe gap -has aflégariéhﬁic-singulafity, and,
therefore, has.a boundary layer. In_o?@er‘nogrto,chfusg-that-boqndagy
layer (because of thé?delta source),witﬁ'thgiboundary layer.to be.

" discussed below (because of .the acoustic wave);.we*will éoncegtrate
on the real part of I(z) or the'evaluation;of;the conductance .G (for
w > wp)- Fufthegmore,-ﬁo.faéi;itaté the estimation of cértain integrals,

we will assume that the parameter .

A=ka=kal ;'(w /w)z

. e o ' p
is reasonably large so that Hél)(A) can be well<approximated by its_firétb
asymptotic term.f Summarizing, our task-is fo.evaluate;the real part of
I(z = zo),given in (3.6) under the.assumptions |

§>0 , A> _-l . (3.8)
There are two subdivisions, ‘depending on thé,relative:magnitudq of
Z and . the acoustic and optical wavelengths .

k z, r——s fixed (inner 1limit) (3.9)
0o o. 2 B .

(1) 7 = 22" —_(wP/w)»

r
oy
e~

(ii) z

I
ta
o
N
1

fixed (outer limit) . (3.10)

orleee -

We will first concéntrate on .the inner. limit, whexe the gap width is

so small that it has.to be,measured:in'térmSAOf the acougtic wavelength,
Under . the assumptionS'ini(368) and.(3;9);"thé real part of I(zoi,in
(3.6) may be.approximately evaluated with the result

GN G M | ' (3.11)

* The error.is less thali-5 per .cent when A =.3,




25
Here G_ is the‘well—known (approximate)'coldfplasma'solutipn for a

thick antenna-
o =120 | (3.12)
and M is the modification factor

o 2. 712 LS CQS(%éine)
M(z) =1+ 2 (" - 1) cos(8Z) + =] -— 3
: , z Jo" (w/u,)” + tan’s

de

4+ 0(8) . (3.13).

The second term in-(3.13) is due to a. surface wave contribution. coming
from a simple real .zero, of the denominator of the integrand in . (3 6a).
Under .the condition in (3. 8) the surface wave ‘has a propagating constant

(along z) approximately given by

a¥ ke =k [—i (3.14)
P Hi1ic (u /o)™
o ) P
provided that (w /w) is notutoo‘small Thesthird'term in (3 13)
comes - from the portion of ‘the integral in (3 6) in the range
k, <o < kp,, f o ) o @as)

In the cold plasma model, . there is ‘no_surface wave and ‘there is ne
contribution te G ‘from the integral range k <a (invisible range) Thus,
the deviation of- M(%) from unity . is the special feature of the warm

plasma model. The following observation is made regarding M(%) in
(3.13). L 1 3 g f

(1) M .does not reduce to unity as.§ > .0, Thus when the gap width
falls Ainside the boundary layer [f.e. (3.9)]," the cold plasma solution

cannot be recovered from the Mwarm plasma solution G by letting

cold

the _ temperature (or 8) go to, zero,' The same conclusion holds even . if -
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a small loss.in the;medium.is-introducéd;. B

(ii) M-is:an_extremély rapid-varying function .of ke:zé ='k$ za)l—(wp/w)z
(thelgap width measured in terms.of the opticalqwavelengtﬁ~in;the;plasma).
This follows from the fact thac-fz;irké 'z;/§:and:6:> 0, . Thus, ‘the
conductance .of ‘the antenna.depends critically on the precise gap width
in tgrmsiof the optical‘wavelengthr'

Next, let us considé?ithe~outer limit in-(3.10). "It may be.shown
that the .expressions in (3.11) and (3.12) are stilinvalidn Now note that
the third term in (3.13) behaves.as

m/2

cos (S Z_Sine')dg~ = 0(8) . ‘ . (3.16)

0-(w/dp)2:4-tan~e, ]

()

3

Then M(Z) .becomes

’ 52+ 0(8) . (outer limit) (3.17)

M(Z) =1+ 2(52 = 1) cos

The sécond,term is a rapidly oscillating tetm,"and'M(Z)-can’dssuﬁe any
vaiue.betweeh_KZSz'— 1) and (3 - 232)-du¢ toﬂa+smali (;flordér )
varié:ion;in~keTzo. However, we note further:that the second term in
(%.17)hi§ thé contribution of.the surface wave. ﬁhen“agiittle iéss is:
intrg@uéed, if becgmesiapprqximétely | |

:sZ.'

N —T—
'[Z(Sg - 1) cos,%z] e 6f

where

1+ Z(wp/w)z

~
1
g'l<

1+ (wP/m)?‘

which is exponetially 'small and therefore.
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M(2) =1+ 0(8)-

for lessy plasma. Thus, an_agreement betweenithe*warm,and cold plasma
is obtained-i A | | |

The conclusion of this antenna problem may. be. stated .as follows.
The question of interest is whether the conductance of .an infinitely
“long cylindrical antenna in a warm plasma..is a perturbation of . that in»'
a cold plasma, and whether these ‘two .solutions agree with each other
in the zero—temperature limit Our analysis shows ‘that the answers
depend on . Zs the w1dth of the feed gap. If the gap w1dth is. small
.compared with the optical wavelength (so that k 2, is fixed), the
warm plasma solutien cannot be reduced to the cold one when .the
: temperature approaches zero i Furthermore, the conductance in warm
plasma is an extremely rapid—varying function of k. zo;iand;<therefore,
is not a. physically well—defined quantity,, 1f the gap is comparable
to the optical .wavelength and if the plasma has small collision 1oss,
the'warm'and cold solutions for the,conductance then become almost the
same. howewer;,in solving antennazproblems, ko z, is. nsually'assnmed
to be so small that kP 26 is fixed. This explains why.a Variety:.ofv
differentvalues for the conductance can be obtained, depending on.the

exact value of kozo.
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4. THE WARM PLASMA MODEL :BASED "ON' THE KINETIC THEORY

In additioen to}the'(fluid) warm plasma modeliusedvin~the_preyious
section,* the temperature effect can be also described:by- the mere
sophisticated kinetic theory at -the . expense of .the mathematical.
s1mp11city To date,-one of, the few»electromagnetlc wave boundary
value problems that-have been solved by using the kinetic theory is the.
reflection from a plasma half sPace In-Section,3 we have examinedv
the solution of the. problem based on the fluid theory and have found
the existence of the boundary layer in- the parameter space for the
fleld;solutlon;(e;g, reflection coefficient), In-th;s connect;on,ban
interesting question,islwhether the more”sophisticated kinetic theory.
can rescue us from such a,singular behavior in the field solhtion for
a‘low—temperature plasna :

As in the fluid model a crucial boundary conditien -at -the plasma
free space. interface is one- regardlng the veloclty of .the electrons.
Referrlng to'Flgure 2,_1nstead of the :rigid condition on,the mean

velocity of all;electrons.used in the flyid model -
R Vx_(k = 0,z) =0 R ‘ ‘ (4.1)

the condition of specular reflection'is commonly employed in the

kinetic theory, namely,

f(vg,vz) =,f(—vx,vz) c.at x=0 | (4.2)

* Alternative names are ''transport equation model and,"hydrodynamic thoery."
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where f i1s the .perturbed distribution fundtioh-for,the electrons.

Recalling thét-.
. -

ngg;é 0,2) =. ka(vx,vz) i dvx dvz 3(4.3)

-

the enforcement .of (4.2) implies (4.1).

i,

Using the linearized collisionless Boltzman-Vlasov equation and
the usual Maxwell equations, the reflection coefficient for an incident.

H-wave‘(Hy, Ex’ Ez) from.a plasma half space subject to. the condition

in (4.2) is -found tqbes"e’7

.Zocoszeo - 2.

T = 2 - ° (404) .
Z cos 6. + 2 :

o o

H,ere._Zo = Vucleo_, anq-Z is the .surface impedance of thg plasma

half space.defined by

E, |
Z =" -
y |®=0+ ‘ (4.5)
and is given by
L U
Z=lim - - . e dk_(4.6)
x> O+ ine0 o 'c2k4DT(k) _kaZDL(k) X

where k ?_kxx.+~kzz; and k = |k|. The two functions-bi(k) andibL(k)
are plasmaidispersion relations for transverse and,lohgitudinhliwaves,

respecgiVely; They are given by

w 2 | £ (v)
Dy(k) = 1-¢9% - 2 | —2 v (4.7)
kev-ow
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D () = 1- “’12:- £, 2, @

E - v-w?

where fo(v) is the unperturbed'distributian.fuqction for the. electrons, -

and is assumed to. be isetrepic (depending on V;EN/vi +~v§_, th~on.;)ﬁ

At this point, it is interesting to mention. that if we use theiplaéga

dispersionurelations-obtained in the fluid model, némely |

W - w
=1 - P
4DT(k)‘ 1 VYR ‘ | (4.9)
¢’k
2
w?
. P
DL(k),=-l‘— 5 773 (4.10)
w = ak

in (4;6), then the integral can be evaluatéd'explicitly to.yield the

result .

— - .gin"H
62 o)

° ‘ \/@‘ 2
Substitution of (4.ll)linto-(4.4) recovers .(3.1), as expected.

Return to the solutions obtained by the kinetic thgqry as given
in (4.4) thrqﬁght(4.8). -%efore,trying to .evaluate . (4.6) for some.
assumed fé(V); let us fi:;t poiﬁt out the.general features‘9£ the present
solution which :are different from.the fluid,solhtipn,

(1)  in additiéq to zeros,:thé;functions DT(k) and DL(k) may

have branéh cuts iﬁ the;&ompiex kx—plane.f The location of’theapogsible
branch -cuts ‘is.determined By‘the condition - |

k*v-w=0 .  (4.12)

Since in the present probiem k2>= ko sineo, this condition becomes
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. (4.13)

If we assume the unperturbed-electron .velocity cuts.off beyond a fixed

number v
o
fé(v).mwof for v > A (4.14)

then we may show. that-the .branch cuts in the complex kxfplane for a given.

wx(Qith Imw > 0) is determined by two equations (fi@ure:S)

Im kx Inw :
™k, Rew . (4-152)
{ . LR B} .
w : vo . 132~ .
[k | > |27\/1.-[=] sin“e 0. . (4.15b)
% el e ° '

In evaluating (4.6) by deforming the contégr in the upper,half;kx plane,
we note that the contributiqn to Z not only includes those from. the
~zeros of DT:and DL but-alsonf¥om~a branch-cut integral° The addition of
the branch-cut integral in the kinetic theory,accountélfor the existénce
of theEVQnIKampen modes-(mddgs with continuous_spéctrum)'in the plasmaa.
half .space. | |

(11) in the limit Imw +~0+,'the dispersion;functidng in (4.7)
and (4.8) may éssume éompleklﬁélué.' Let us concéntr%qa-éﬁufégé), which

-may be.rewritten as

v \
; 2 °-F (v.)) ;
D (k) = 1= g o'V1l  dv (4.16)
LT T - e b
.

where (vl,vz) are the;components-of,G‘(parallel,hﬁerpendigular to k),

and




32

Imky
'y
X
w X
Im('c—) s — e e ——— |
!
> L S—-— — Rek,
X w
ss™ Re(%)
\fr(’vo
X
X = pole
X . ~~~ = branch cut

Figure 5. Branch cuts in the complex k-plane for the
integrals in (4.7) and (4.8)

Im v,

- \® / + Re v,

Figure 6. Contour of integration in the complex v
for the integral in (4.16)

l—plane
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" fé(v)-dv2 . ﬁ4.17)

Referring -to Figure q the integral in (4.16) can. be broken wp
into a principal valuegintegrai;end;a»possible;residue contribution

v
o E
Fo(vlzﬂ dv, + iﬂRH(lleé - w) (4.18)

: 1,
-v (kvl
o . "

D (k) =1 - w

e = N' — .

_,w)z

where the bar on the in;egral;sign signifies-the principai.value;integral
and - : : . :

1 , x >0
H(x) =

0 , x7<0

R = residue of [F (Vl)/(kv - w) ]
at v, =. (/K

The (positive) imaginary. qart.in~(4.18) indicates that the;longitudinaln
wave with wave number |k| > (w/v ) suffers a- (Landau) damplng even in a
collisienless plasma.  An interesting consequence of, Landau damplng is that
‘when (w/wp) <1 (cut-off condition for plasma), the surface 1mpedance
Z in (45) still hes a real part and hence'the tqtslureflecqionj(|P1:= l)
can ‘never be.obtained;' Si%;lar‘commencs applyitoztne trsnsverse wave and .
itsvdispegsion reletionn | E |

Whether the above two differences between the-kinetic tneory_and
the_fluid theery.can iead tp'significantly ddfferent fieldmsslutions |
depends largely on the. assumed unperturbed distributlon functlon f (v)

"Commonly, the Maxwelllan distribution is used for £ (v), namely
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£,(v) = (12 )e za | (4.19)

where

o
[}

= sound speed .in -the electron gas.

For such & fé(v), thé=féfléctipn coefficient I' . given in (4.4) has been

apprXimaﬁély,évaluated by Westongﬁ' His result is given below

fé + 0(6), if e 18 fixed

(4.20)

where T_ is the reflection coefficient obtainable by using a cold plasma

model and is giVéﬁ;éXpliéitly~iﬁi(3:2); and

g (4:21)

e B L
This tesult is practically identical to the .solution obtained by the
field model in Section 3. Thus, the boundary layer also exists in

(4.20); tﬁé reflection coefficient obtained by using the kinetie theory!
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5. RADIATION IN WARM PLASMA

The creation ‘of the boundary layers in thezfie1d~solution of werm
~plasmns~is,attributed to,thebfect of smallxs.and~toﬂthe enforqenent of .
the rigid»boundary.condition,' An interesting question in this eonnection
is whether- the warm plasma model can give any significantly different
result when . the rigid. boundary condition is not enforced°‘ An important
problem belenging te this category is the radiation_fromza presgribed'
_current source . J(T) in<en‘unboundeddWarm plasma; it will be stgdied’in
some detail in this section;h

It has been, shown by several authorss’g‘that~the Fourier transform*
of the electric field E(r) denoted by E(k) is related to J(k) through

the general relation

o) 2.2

, - 1. ‘
E(K) = 1uou k Tofhe |3, o (5D
k D (k) wk D (k)

The -above expressions?are;valid for:both{(isotropic)kcold and warm
plasmas. (fluid or'kinetic;theory).,nror warm-plaémas, the-explicit forpe '
of D and D are given in- (4.7) and (4.8) for the model based on the
kinetic theory, and in (4.9) and (4.10) for the model .based on' the fluid
theory. For the .expressions of D and D in cold plasma, we may simply
set the sound speed.a = 0 in. (4 9 ) and (4 10)

The result of E(k) as computed from (5.1) may be elassifiediinto.two

types, according to the'smoothnessuof 3(?)e The -first type. occurs

when J(r) is smooth enough so that j(E) is nen-zero only 'When~(6k/ko)<< 1,

In such a.case.ﬁ(i) inu(S.i) dependeton'the_values of DT(k) and DL(k)»only

The-Fourier-transform -is F(k)— “t{;—“F(r)—e ik-x d7r s

-0
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in .the range
(Gk/ko) <1l
It may be shown that, under the condition in-(5.2), "
: 2
, = . o | kS
D(k)lwarm - D(k)|COld +0 kb)
where D stands for either'Df'or D, . - Explicitly we haﬁgle
cold plasma:- B
_ ‘ ko 2 w2,
Ppll) = ‘-(k— ey
w
, . SE 2
DL(k) =1 -(w ’
warm plasma (fluid.theory): .
.,ko 2 w 2
Pl = AT {1 )

w 2] 42 4 -
: =1 |2 ko kS I
?L(k) 1 (w ) [ 1+ k. + k. + J.

A ” ®
warm plasma (kinetic theéry):"

k 'ER 2.
‘ ’(1 -

by (k). = l’(k_

. T . . .
In - the formulas in (5.6); 6 = a/c and a,=
thosé in (5.4) and (5.5).

(5.2)

(5:3)

(5.4)

(5.5)
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A study of (5.4) through (5:6) reveals that-

== o ks V¥
E(k) “wamf" .‘E:(-k)'.‘éold +0 ( F) (5.7
o
except when
w \Z 9. ' o
1 -(;B) =.0(5%) (5.8)
or
W,
;R)=A0<1zs> : (5.9)

When,cﬁnditiqn (5.8) is-satiéfied, DL(k).for,warm plgsma may .be -
significantly different\from.DL(k) for-cpld,plasma;*‘while.the‘
satisfaction .of (5.9) implies -a remarkable ’.deviat:l.ori between the_—: DT(k) in
the kinetic theory .model and'DT(k) in the other two medels. Except for
these two very Special.cases,;we conciuae from (5,7) that there is
no essentialWdifferenqe'betweenvtheiradiatioh fiéié'preduch'by,a
given smooth current source whether;a cold or a warm plasma model is‘
used. This éonclusion is establishgd on a.geﬁe§g1 term with no
particular reference on the.current.sourcé, as~}dng as it 1s sufficiently
smooth so that (5.2) is satisfied.,

A special feature of theikiﬁetic theory model; as has. frequently
begg;men;ioned in the literéture,‘is the -fact that'DT(k) and‘DLgk)
defined in.(4:7), (4.8), and (4.9) have -an imaginary part even fgr feal

, *
k in a lossless plasma, accounting for the Landau.damping effect.. Take

, *‘“chgll the problem of reflection from a plasma half -space discussed.
in Sections 3 and 4., This:scattering problem is equivalent to that

of a current sheet radiating at the interface. This explains why

a boundary layer exists in the field solution when (5.8) is satisfied.
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DL(k) as an example: its imaginary part is given, . for real k, by’

- [%p)?
Im D (k) =3 _2—"((».

A direct consequence -of (5.1Q) is-that-when-w <1wp, the complex power

1k \3 I
(;—g—)exp »[’”,‘g‘(k'o/ ks)z} (5.10)

radiated from the source
: e ek
P;=.—J’E(r) 3@ &, ©(5.11)

may still have -a real part, indicating dissipation in a_lossless;plasna.
However, we must note that when theicondition in (5.%) is satieiied,kthe
imaginary.part,of'b (k) in~(5h10) is exponentially sﬁ;iléf than its, |
real, part in (5. 6) Thus, with a lightly lossy plasma [ i.e. . let‘”ﬂ
(w /m) > (w /w) / 1+ iv/w), and §+ 68/ /Ef$'1375' With v being the
collision frequency ], the effect of the Landau damning is not as_»»
important -as that, of the collision. ( .

The other type of result Which ‘may be obtained from (5 l) is the
one "associated w1th J(k) whlch does not cut off. fast enough and may -
assume finite values in the neighborhood of k‘ k /6 _ In such a case,
E(k) computed from the warm plasma model may.be significantly different
from the . corresponding E(k) computed from the cold plasma.' This may be.
illustrated by the‘following exampleé |

A popular method. in . evaluating antenna, impedance in plasma

. It is: known that the longitudinal wave, not. the transverse wave,

suffers Landau damping in a plasma, (k) also hag" an imaginary . part .
becduse: the ‘relativistic effect. has. nog ‘béen 1ncluded in the MaxWellian o
distributlon in (4. 19) .
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is the so—called "1nc1uded e.m.f. method" ‘which entails an assumed.
current dlstrlbutlon and - then computes the antenna resistance -through
the - formula
- —_ % -
R= —% Re'_fE(r) - IT® & - (5.12)

I
0 .

whel;:e'I0 is a normalization factor. For the case of a linear antenna with
radius a.and half length‘h,'j(g)'is commonly assumed to.be "triangular,"
I |z}
J(r)=-§w—a— 1 - — h G(D‘a)z [

for IzIA:i h . _ (5.13)

The Fourier transferm of the  current is

_ sin(khcos ) -

J(k) = T ____________ Jéka sin6) z (5.14)
(khcos ). ‘ :

where (k,8,¢) ‘are the;spheticai components. of E; and Jé\islthe zeroth ..

order Bessel functien. The rdte of cut off of J(k) for large k .depends

en the value of h.and a. In the foiléwing,let us .concentrate on two

special cases,
&) k_h=0(1) and k, a = 0(s/?) | (5.15)
® K, h=0(sM?) and k. a= 0?3 (5.16)

The choice of the above parameters is designed to make the results
physically illuminating as well as mathematically simple. For large k

such that
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K =’§§ fized ~ (5.,17)
o
we have ’ .
0¢5°/%), for case A. © (5.18)
E(E) =0 . o
0(8), .for.case B : (5.19)

As we will show next, J(r) in case Agis-Suffigiently smooth .so that there
is no appreciable differeﬁcerﬁetWeen the ‘cold’'and the warm.plasma
solutions for resistance:R in (5012i, but 3(;) fo:case-B'is nét,. Under

the condition that.

k. e h ‘ :
9 >> 1 and h >> a, where € = ©(5.19a)
an approximate expression for R'is -found-to be
3~=fgon (5.19b)
where Ré is thie resistance for cold plasma and.
3l =€) 3 k_ae
TS R B Y 2 "o
Ms _‘k h) 3y ( 2 . (5.19¢)
e o ° .
Then it 1s a simple matter to verify that-
. . A.Al/zn. PR o
M= 1+.0(68 _ ); for the ¢ase A (5.20)
which is essentially ﬁgity; However, for the otheér,case we have-
o N R . k_ ae ~
ML+ §§%§*~gl 'f4~f§3; — | cos? - %-) (5.21)
- (k)R a: :

which is & rapidly oscillating function: If the radius of the antenna
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is changed by a.small fraction

Aa =,€~j-v1r6 s S 2

P —————
° 1t N1 - (mp[m)z ~

where;lo_is the -free space Wavelength,'M in-(5.21) may ‘vary from unity

(5.22)

to an extremely large number [in the order of_0(6-2/6)]. In other

words, the -acoustic wave “can contribute from zeroe to nearly 100 per

cent of the total radiation -resistance by a variation of110—35A or

1074 A, in.radius!.




42

6. CONCLUSION

The warm plasma model based on the fluid theory has been used
extensively in the literature. In the last-several years there seemed
to have been a.trend toward ﬁreating by this model\eVefy electromagnetic
boundary value problem previously:soived by using thegcold,plasmé model.
The primary motivation }of doing that is to study the effect of the
acoustic wave which is-not éccouﬁted;for in the cold .plasma description.
However, this effort does not seem to have .led to a definite conclusion
on the‘impor;ancetpf'the acoustic wave. Oftentimes, in closely re;ated'
or even identical,problems‘aﬁtﬁors'hqve drawn completely opposite
conclusions, depending on théir choice of parameters. In the preseht
study, we have discussed an!explanation‘of this, baséd on bdundary iayer
theoryf Theqmain,;esﬁlts of our .study concerning the»(flﬁid) war@ plasma
quelrméy'be summgrizéd.as follows:

(1) . In:a léw—tempérqture’plasma,.the:acoustic(wave;censtitutes
an important part of,the‘total,field only in nafrow—layered regions .close
to the rigid boundary.. Outsidé the'layefs,-even'a small collision frequently
produces an.attenuation of theEacoustic;wave,much.larger than5that'§f,the
electromagnetic wave Therefore,-the\totél field consists élmost.
exclusively of elécﬁromagneticgwaves.‘

(2) Due:to the excitation of.the;acouéticxwaves:(dissipatedi
in -collision - loss. or not); the 'solutions of physiqal quantities ﬁhich:
are of intgfésc in electroﬁggnétip~studie3<are.modified, Exgpples.pf
such physical quantities aré,tbe reflection coefficient of an.incident
electromagnetic wave, radiaﬁion power from a.current source, input

impedance.of ‘an antenna, etc. The:mgdification is such that, e#cept'

/



43
for a.few isolated tegions in-the”parameterAspace-forming thebso-called_

"boundary layers, ﬁhe solutions obtained by using warm and cold plasma
descriptions differ only by a negligiblyvsmall amounto‘ However, inside
the, boundary layers the warm plasma.solutions vary soArapidly in . the
parameter space that they cease'toﬁbe“physicelly'meaningful'quantities.

(3). The existence,of'the“boundary’layers,account; for an
important fact that warm plasma solutions may be extremely semnsitive to
the :exact value of.the parameters.  This-perhaps is the main~explenetion
forzcontradiotofy conclusionslaboﬁt'thegimportancefofythe aqouétiolwaves.
Thus, in the study of elecfronagnétit”problens'Bﬁ,using the warm plasma-
model, a systematic in&estige;ion,of”the“solution dependanee on per?meﬁers

" is essential. This ié‘pefticularl§lso when the solution ié:notxgivenxin
a simple analytical form and:nnmerihhl'computations'ere necessary.
Results based.on spot: calculations may’be very“misleading°

(4) Those sensationally different results in the bonndary
layers<of-tne warm plasma solution probably cannotjbe-observeQ-in,
practice since the(parameéerslwill never be realized exactly;enough;
Furthermore, the warm-ples&alnodel itself perhaps is;not’a‘éood.desoription
of physical.plasma wnen thoeb,sinuaﬁions arise..

(5) ‘Anather attempt éo assess the;importanqe'of:tempetatnre
effects ‘1s to use the more:eiact kinetic-theory, The application of
this theory is much more cpmplicated and in the feww simple cases.

where. it has been. worked . out, it~has notlproduced significantly
new results. In ‘a problem (1.e.. :eflection from a plasma.half :space)
for which an explicit solution can be”found; the solution hae:preetically
the same boundefy layers in»the parameter space as those;found,in the

fluid model. Outside -the boundary layers, the_Solution from the
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kinetic theory is againiapproximately'the”cold;plasma result.

In additien go the5boundaryfvaiueuﬁreblems,‘wé‘héve;also considered
the radiation in.an-unbounded plasma froma’given current, a problem
in which the rigid boundary conditiéh on the electron velocity is'not
appliéd. As long as the current iSLSO"smpoth%that it does ﬁot'vafy
"significantly over an acoustic waveléngthj'the'raAiation‘field in cold
plasma and in warm plasma.(fluid or kinetic theory) are practically
the same., Furthermore, the oftenwmenfioned Landau damping in such cases
is .not as important as the other.losSzmechanism such as collision.
However, if the current is not smooth, the warm plasma solu;io@s mnay

be gsignificantly different aﬁd, in some cases, highly implaﬁsibie;
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