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ABSTRACT

It is often .considered that taking into account the temperature,

hence-the compressibility^ of the-electron ,gas in a plasma is an

improvement over the cold plasma;model. This however leads to a

number of peculiar and paradoxical results that show the need for

some, caution in applying this model. One result, is that the, boundary

conditions for the warm plasma do not reduce to,those for the cold

plasma when the .temperature approaches zero. Another is that

evaluation of the impedance or.the radiation from an antenna leads

to widely different results according to the exact size of the antenna.

This has led some authors to draw completely opposite conclusions as

to the importance of.acoustic waves.. - Both of these occurrences can

be traced to the fact that the warm plasma equations are of higher order

than those of the.cold.plasma and that the extra terms contain a small

factor of the order of a/c, where a is the speed of sound;and c.that

of light.

This.suggests.that the techniques of the singular perturbation

theory can be applied to these problems.- Typically the , cold plasma

model can be applied over wide ranges of the parameters (position,

frequencies, angle of incidence) and only over narrow ranges forming

so-called "boundary layers" does one need to use the warm plasma model.

Then again simplified equations, can,be used and the solutions matched

on both sides of the-layer's boundary. A number of simple examples

will illustrate this point of .view. The analysis confirms that.some

results are highly sensitive to the values,of some, parameters: wire

radius or gap size for an antenna, temperature of the medium, and

incident angle of a plane'jwave. °As a result,—the-corresponding



: "resonances" cannot be-. ̂l?_ser̂ edi In-'iprabt'i/ĉ '-'s-Liice -the' parameters will
i^ -

neyer.be realized exactly enough. The boundary layer can then be

neglected.

The description of the temperature effect by using the more exact

kinetic theory is also discussed. The application of this theory is

much more complicated, and inra few simple cases where it has. been

worked out,1 no significantly new, result has been obtained.
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1. INTRODUCTION

Most studies of electromagnetic wave and antenna problems in

plasmas are based on the cold plasma model.which assumes that the

electrons.in the plasma have no thermal energy and form an incompressible

fluid. In recent years, there have been many efforts to include the

temperature effect of ,the plasma by using warm plasma models, This

can be achieved in,the frame of either.the fluid description or the :

more exact kinetic theory. The_ warm plasma model,based on kinetic theory

is quite complicated mathematically and, therefore, has only been used

in a few simple problems.

Because of the inclusion of the temperature effect, it is often

believed that the warm plasma model is an improvement over the cold

plasma model. However, this has led to a number of peculiar and

paradoxical results that show the need for some caution in using

this model. .One result is that the field in the neighborhood of a

rigid boundary for a low-temperature warm plasma is not a small

perturbation of that for cold plasma,;and consequently does not reduce

to the cold plasma field when the temperature is reduced to zero.

Another is the evaluation of the impedance or the radiation from an

antenna. Widely different results are obtained depending on the

exact size of.the antenna. This has led authors,to draw completely

opposite conclusions as to the importance of the acoustic waves.

Both of these occurrences can be traced,to the, following two facts:

(i) The (fluid) warm plasma equations are of higher order

than those of cold plasma, and the extra term contains a factor;

6 = * < >



r

2 .

where, a is the speed of sound and c that of light (in .vacuum) . Assuming

the electrons in the plasma to form a perfect gas .with 3 degrees. of

freedoms we .have

a = /3KT/m (1.2a)

or . ,_..... , . . -

6 = 2.24 .x 10~5 /T ;(1.2b)

where K is the Boltzman constant, m is the ̂ electron mass, and T is the

absolute temperature of the electrons in degrees J(Kelyin) . For

plasmas encountered in the ionosphere or in laboratories for microwave

experiments, T rarely exceeds several thousand degrees. Therefore,

the factor 6 is a very small number.

(ii) The rigid boundary condition for the velocity V at the

boundary with normal n, i.e.,

n ... V = 0 (1.3)

is enforced in warm plasma but relaxed in cold plasma. In the fluid

description of plasma, the governing equations are the usual Maxwell

equations plus the equation of motion for the electrons . For an

isotropic plasma, the latter takes the form:

eE'' '
cold plasma::

 v = ..+ v/a))

VV ' -V el2

warm plasma: V + 6 — r— - = - - — - (1.5)
k (1 4- ivoj) iwm(l + iv/u))o

where (-e) , m, and v are the, charge, mass, and the collision frequency

of the electron, respectively, and k = co/c. Note, that (1.5) is a

second-order .partial differential equation for V, while (1.4) is of

zero order, In the limit T or 6 -> 0, the order of (1.5) is reduced
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and, consequently, the boundary condition in (1.3) can no longer be

satisfied.

The above two facts lead to the .creation of the so-called

"boundary layers" in.the field:solutions and suggest the application of

the singular perturbation method to these problems. Typically, the

cold warm model can be applied over wide ranges of parameters (position,

frequency, angle of incidence, etc.) and the result so obtained

differs from the, corresponding solution in .-.the warm plasma model by terms

of 0(6), which are negligible for all practical.purposes. Only over

narrow ranges of parameter forming boundary layers does one need the

warm plasma model. . Then, in -the boundary layers, simplified equations

can also be,used and solutions matched on both sides of.the layer's

boundary. - '

In this paper we will consider.a few simple examples to.illustrate

this-point of view. To avoid unnecessary mathematical., complications,

the plasma is assumed^to be.isotropic throughout. In Section 2, the

singular perturbation method,is applied to a .textbook-type problem

for the purpose of demonstrating the formation of a boundary layer for:

the acoustic wave in the immediate neighborhood,of a rigid boundary.

Inside the layer, the acoustic wave contributes significantly to the. ,

total field so that the.latter may satisfy,the boundary condition ,in

(1.3). Outside the layer, it suffers heavy attenuation due to the

collision loss in the .plasma and, therefore, can be safely ignored.

The singular perturbation method uses this fact specifically and,

therefore, may simplify, the mathematical.manipulations in the warm

plasma model when applied to sophisticated problems.

In many boundary value problems in plasmas, we often are
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interested in physical quantities, such as the reflection coefficient,

power ratio, impedance, etc. In Section 3, we show with .two .

examples that these .quantities obtained in,a (low-temperature) warm
->, . .

plasma .are nearly the .same as those in cold plasma except in,

boundary layers in .parameter space. In these boundary layers, the

warm.plasma solutions vary so rapidly in'parameter space that they

cease to be physically meaningful quantities..An attempt to improve

the situation is;to use a more sophisticated model., to describe the

temperature.effect in the plasma. ThuSj in Section ,4, we turn-to the

kineticttheory. However, at least in,the example we considered
'•\

(namely, the reflection from a,plasma half-space), the same .boundary

layer exists in .both the fluid and the kinetic theory description!

In addition to the boundary value problems, another class of

important plasma problems is the radiation from a prescribed current

source J(r). An interesting question is whether the fields computed

from-cold,plasma and warm plasma (fluid or kinetic theory) are

significantly different (an indication of the importance of acoustic

waves). This subject will be .discussed in Section 5. The conclusion

is that as long as J(r) is smooth enough this difference is negligibly

small, otherwise any sensational results are possible.



2. ATTENUATION ;OF THE ACOUSTIC WAVE

The problem under consideration is the reflection of a plane

wave from an infinite conducting plane in an isotropic lossy warm

plasma (Figure,!). Let the incident field be, an electromagnetic wave

with

(i) -ik cos6 x
H = e

ik /e~ sin6 z -o 1 o (2.1)

1

where. k = We, e. =.1 - (w /w) (1 + iv/u>) , Im /eT > 0, .u. = plasma

frequency, and v », collision frequency. The problem is to determine

the scattered fields which satisfy the wave equations.

ax
• . 2 2Q•T- + k e 1 cos 6 ;2 o . l ' o

H -'.0y (2.2)

where

no 1

9x
P = 0 (2.3)

6 = - = ratio of sound and light speeds

P = perturbed pressure in plasma

(2.4)

(2.5)

and the appropriate boundary conditions at;;x = ;0 and x •>•«. :Sirice the

scattered fields will have the same z-variation and time convention

as the incident one, the common;factor as-appeared in [.".J:'.ini'(2'.l).'.for all



worm plasma

W/Y//7////7//////////7/

Figure 1. Reflection of a"plane wave from a conducting
plane in a lossy warm plasma

H
(i)

Figure 2. Reflection of a plane wave from a plasma half space
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field quantities .will be dropped hereafter.

This simple problem, of course, has an .exact solution which can

be obtained easily. However, in order to demonstrate the existence

of :a boundary layer in the scattered field (as 6 •-»• ..0) in a convenient

manner, we will attack this problem by a singular perturbation technique.

The basic idea of this technique lies in .obtaining, two asymptotic

expansions .for the scattered fields, for the smallness of 6. One of

the .expansions is.valid in a very small region cl&se to the conducting

plane, known as the boundary layer; the .other is outside of the layer.

By matching these,two expansions at an overlapped region, we may

determine certain constants that appear in ,the expansions and.finally

derive an expression uniformly valid inside as well as outside :the

boundary layer. In the present simple problem our uniformly valid

asymptotic expression is actually the exact solution.

To apply the singular perturbation method, first let us consider .

the field expansion valid inside the boundary layer which is associated

with the limit

:: .. k'x-." .
X = -y- fixed, 6 +0. (inner limit) (2,6) ,

In terms of .the new variable, the two wave equations in (2.2) and (2.3)

become

(2.7)
a2 2, 2.

* \ J Z . " • ' I O •

9 v •
A. .

H = 0y

(2.8)
9X' ' '
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Consider (2.7) first.. We are looking for an asymptotic solution of

the form

H ^ fQ(X) + Sf-̂ X) + 62f2(X) + 0(6
3) . (2.9)

Substituting (2.9) into (2.7) and equating the terms of same order of

magnitude, this procedure results in

8 2f 2 2
• + (e.cos fl.)'f =0 .l

When the above differential equations are solved and their results

substituted into (2.9,), we have

-x, ± + C2X) + 6(C3

0(63) . (2.10)

The constants, C's, will be (determined later when the boundary

conditions are applied. The wave equation for the acoustic wave in

(2.8) is a regular one .with no appearance of the perturbation parameter

6, and its solution is, simply

T -i T
P = Be + De . (2.11)

To determine a part of the constants in (2.10) and (2,|l), we will now



apply the boundary conditions at .x = 0, namely,

E(t) (x = 0) = 0, V ( t ) ,(x = .0) =0 (2.12)
Z -; X,

where the superscript (t) signifies the total field, the incident

plus the scattered. In terms pf-.H and P, the two conditions in (2.12)

become '

q sin6o P + iE coŝ ) - - H =0 (2.13a)
° °

to 2 /e7 sine ; '
H ) - q ^- Py a£

-.0

where: . q4 -r- .
tom(l + iv/

(2-i3b)

e = magnitude of the .charge of,
an electron

m = mass of an electron .

Substitution of (2.10) and (2.11) into (2.13) leads to,

C2 = C3 = 0 . (2.14a)

co, 2 .
i ) (B ,+ D) .. (2.14b)

c, .....
= iq(B - D)tan9 (2.14c)

i/e7 cos6.
1: O

which :are four conditions for the six undetermined constants.

Next, we will consider the field expansion valid outside the

bo,undary_. layer .which is associated, with, the limit
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X=k x fixed, 6+0 . (outer limit) (2.15)

In terms of the-new variable X, the wave equations in (2.2) and (2.3)

take the form

3 2 '
—-rr + e, cos 0
3X2 l

3X

H = 0y

P = 0

(2.16)

(2.17)

and the boundary condition is

This solution of (2.16) and (2.18) is

i/eT cos6. X
H = Ae ° . , IH VeT >-0y ' • 1

and that of (2.17) and (2.18) is

P ̂  0

(2.18)

(2.19)

(2.20)

which means that the order of P is-smaller than any algebraic power

of 6.

Summarizing the results obtained so far, we have the inner

expansion in:(2.10) and (2.11) and the outer expansion in (2.19) and

(2.20), There are a total of seven constants in A, B, D, and C's in

these expansions, and four conditions in (2.14) for their determination.

The ,final step in this method for solution involves the matching of

these two expansions, which means roughly that the,inner expansion as
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f\J
X -»• °° and the outer expansion as X'-»- 0 should be in agreement.

To carry out such a matching, we ;need to "stretch" the regions

of validity for our inner and outer expansions so that they become

overlapping. Introduce a,new variable

Xn = *' (fixed) (2.21)

where n is a function of the perturbation parameter 6, and is.

asymptotically larger than,6, explicitly

6, n + 0, but (n/6). * °° . (2.22)

Note that X =i (n /6)X -> ~ and X = nX -> 0. Using limits in (2.21) and

(2.22) in (2.10), we have

2
e,cos 8 -

Inner: iy * - GI + n (C^) -: n :

+ 0(n3) (2.23)

where , (2 .1?ta) , has been used . , Application of the same limit

in; (2.19) leads to

... cose x
Outer: H = Ae ° ry

A + n(i/I7 cose AX ) -1 ,0 ' 0

e n cos 6,'' o
1 ° AX22 n

0(n3) . (2.24)

Comparing (2.23) and (2.24), we have

- C., = A, C, = i/eT A cos6 . (2-25)
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The matching of P in (2.11). and (2.20) in a similar. manner leads to

.0 = 0.. .-,'. . . • • .. (2.26)

The three additional conditions in:;(2.25) and (2.26) , .together with

those in (2.14), determine the two expansions completely. The final., forms

of the two expansions .are

Inner: H/o,A 1 + 6(i/e~ cps6o X) + 0(6
?) (2.27)

'•• . i/e7 xX ' ' . ' • ' '
P = Be (2.28)

i/eT cos6 .X
Outer: H = Ae ° (2.29)

P ̂  0 , (2.30)

2h cote .
- -

6h . iq(l.+ <Sh)

,h
where: A = " . , .. • B - 6 - -- (2.31)

h =
\2 1 sine tarie'

1 + i(v/u) T,

The inner expansion is valid when X defined in.(2.6) assumes a fixed

value, and the outer expansion when;X defined in (2.15) assumes a

fixed value. From the .results in (2.27) through (2.31)̂  we may

derive the expressions for other field components. In .particular,

we are interested in.the normal component of-the velocity, which is

found to be

ik q sine
4- : TT ° O .Inner: V -v Ax i— 0(6)

2

- 2e. - (2.32)
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rt .Outer:
., . Qik q sin8,, .o Ae

cos 6 kX1 o

U)£

,0 0_N(2.33)
..

O 1

The final results in (2.27) through (2.33) will now be examined.

(i) Inside the boundary layer. The acoustic wave plays an

important part in the total field solution, so as to insure the

satisfaction of;the boundary condition at x = -Q. Away from the boundary

at x = 0, the acoustic part decays exponentially as . [see "(2.32) ]

•o i • ..... :^ .
exp -X Im(/£~ T) exp

6 (2'3A)

Thus, we may define a "skin depth," ; which is a measurement of the

thickness .of the boundary layer, namely,

+ 0(62)
T)

(2.35)
r T , ^ 4k Im 1 - — M + i -
O . . . . ' . . - -I U) / OJ

At X = X , the acoustic wave is reduced by e ;or 37 per cent of its

'. . ' - 2 • • • . ' ' • • ' ' •
magnitude at x = 0. If terms of 0(6 ) are dropped, the skin : .,

depth is : "independent of the incident angle 0 , and, in general, is

a very small number i As a numerical example, we have computed x for

three vtypical sets of parameters encountered in the ionosphere. : They

are displayed in Tables I and II. In Table II, we note that there

exists a low-frequency and a high-frequency linlit

X ==<
o

a/w , co -»• 0
P

(2.36)

2a/v 0) -*• °°

which are independent of u>. The numerical data reveal that the skin ,

depth for the acoustic wave is very small except for one case discussed

below.. At high frequency in,the,.F layer, the acoustic skin depth is
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TABLE I

TYPICAL PARAMETERS IN IONOSPHERE

Layer

D(day)

E (night)

F

Height (km) .T .

60 300°

90 200°

300 2£JOO°

a(m/s) . v .

1.16xl05 10 7

9. 5x10 4 7x10 5

3xl05 IO3

0)
P

6xl05

IO6

6xl07

TABLE II

SKIN DEPTH OF ACOUSTIC WAVE x (IN METER)

u

D

E

F

**
X
o

105

1.4X10"'1

9. 5x10" 2

5xlO~3

1.9xl04

6xl05

:6.7xlO~2

l.lxlO"2

5xlO~3

3. 1x10 3

io6

5.4xlO~2

^a.exio"1

5xlO~3

1.9xl03

; IO7 .

2.6xlO~2

2.7X10"1

5x10" 3

1.9xl02

6x10 7

2. 3x10" 2

2.7X10'1

*1.7

3. 1x10 2

IO8 .

2.3xlO~2

2.7X10'1

4. 8x10 2

1.9x10

IO9

2.3xlO~2

^xlO'1

6x10 2

1.9

* at plasma frequency,

** free space wavelengtH in meter
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large because of the small collision loss [see .(2.36)]. However,

2
as long as , (oj /w) « 1, the electromagnetic wave and the acoustic

wave are practically uncoupled and" hence the skin depth :is.no longer

a meaningful quantity for measuring the importance of the acoustic

wave. " . ' • • - . • •

(ii), Outside the boundary layer. The contribution .from the

acoustic wave becomes negligibly small (due to heavy attenuation), and

the total field is nearly entirely made of the electromagnetic wave.

The amplitude;of the reflected electromagnetic -wave for H is given _

b y ; - . - . • > = , . . . . : ; • , ; • • • ' • • • •
1 - 6h

A ~ o.l + 6h (2.37)

where h is defined in (2.31), and A is,the amplitude.when.a cold

plasma model is used. Unless the angle of inciclenpe; is nearly

(ir/2) , A in (2.37) can,be expanded as

A = A
o

- 2h<5. + 0(62) (2.38)

* Note that, for 0. = (ir/2) - A with A« 1, we have

1 - (6/A)(u /to) / /I + iv/co

1 + (6 /A) (to ./CD)'/ /I +
• • ' ' p

If .(<5/A) assumes a fixed value, the value of A may differ considerably

from unity. Thus, as a function of -8 , A may be regarded as having a

boundary layer defined by 0 < (^ ~ ® ̂  < A in parameter space where the

warm and colcl plasma solutions do , not agree in the I<DW temperature

limit. This point will be pursued further in Section 3.
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Thus, A is slightly smaller than'A. . The. decrease,in A is due.to the

conversion to the acoustic .waves which is heavily dampe4-put; due to

collision; however, one must realize that the.amount of decrease is in the

order of 6, and is negligibly small. Therefore,, we may conclude that .

outside the boundary layer, the scattered field obtainable^-from a .warm

plasma model is practically identical to that from a cold plasma model,

(iii) Uniformly valid expression. Our. inner and outer expansions,

may be,combined to give an expression uniformly valid for all x. The

standard procedure is to .add these.two expansions and substract out,

their common part. Take (2.32) and (2.33) as an example; the common

part :(cp) is

cp.- 1 + 6(i/l~cos 6Q X) + 0(6
2)

Thus, the uniformly valid expression for V is given by
X . '

V
ik q sine

x /—we veo 1 r

i/e7 cose X i/e7
e "-1 ° -2e;. l .(2.39)

Not surprisingly, (2.39) turns :out to be the exact solution for the

present.problem. . We emphasize the fact that in .problems where the

exact solution is not available, the singular perturbation procedures

as illustrated above may often be useful.

(iv) Lossless warm plasma. As may be>seen from (2.35), in the case

of cu >-oi , the formation of a boundary layer lies in the inclusion ofp • • .

collision ,loss,in.the plasma model, Even though collision should be

inevitably present in a realistic plasma, many plasma problems are

investigated by using a lossless model. The absence ,of a.loss mechanism

in such an idealized model leaves the acoustic wave unattenuated when.
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a) > oj , and consequently .it plays an integral part in the total field

solution everywhere. Take V in (2.39) as an example. When .the
A

distance along x is measured in terms of the usual free space wavelength

X , the total field, solution has an extremely rap id-? vary ing part due

to the .unattenuated .acoustic .wave. Thus, variation of a'fraction of,

one per cent in ,(X./A ) may result in a significant change in V . This,

of course, does not agree with our observations in plasma experiments.

This brings out the point that in using a warm plasma model certain

field solutions (e.g. V,) may critically depend on the collision loss
X

even though the-collision is small. In these.situations, the lossless

idealization may not be a justified one.
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3. BOUNDARY LAYER-IN-FIELD SOLUTIONS.

The acoustic wave in plasma, as illustrated^in the previous

section, is heavily damped due,to the collision and, therefore,

cannot travel a great distance away from the~boundary (or source).

Then the^next .question of interest is•that, because of the energy loss

in the.acoustic .wave, what is the modification on the the field

solution for optical waves? We will use two examples to illustrate

the.answer that, except for a narrow range;of.parameters (boundary

layers), the .field solution for the optical wave in warm plasma differs

from that in co.ld plasma only by terms .of order .6. Thus, for most plasma

problems encountered in practice, the difference is negligibly small.

However, for parameters falling inside the boundary layers, the,field

solution for the optical wave may be drastically modified and, furthermore,

it may vary significantly over a small fraction of an optical wavelength.

For example, the evaluation of the.conductance of a delta-source

excited cylindrical antenna in warm plasma depends, on,the magnetic field in a

boundary layer. Consequently, the conductance may•• have .significantly

different values depending on the precise width of the feed gap.

In.both.of the examples to be presented below,.we will not include

the collision effect in the plasma for two reasons. First, the

presence:of a small loss modifies the boundary layer somewhat but does not

change its basic structure. Secondly, in analyzing many boundary value

problems, particularly the one of antenna impedance, it is traditionally

based on a lossless model. By not including the collision here, we

perhaps can illustrate better why. a variety, of different results on

antenna impedance can be obtained depending on the precise width of the

gap.
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In the first example we.considered-the reflection of an incident

H-wave (H normal to the plane of incidence) from a warm plasma half
'• ' ' 2

space (Figure 2). The reflection coefficient is found to be

F = F M • (3.1)o

Here T is the reflection coefficient for'cold plasma,

V- - 2
sin 6 - ecos8o • o

(3.2)

Ve -sin 6 + ecosQo • :o ;t. :o

and M is the Codification term due to the introduction of the acoustic

* •
wave

1 + 6h
M = - --' "''' (3.3)

1-.+ 6h

where 2
(1 - e)sin' $"

f*\j ».£*.' i _ _ _ / \ . \ ' l r* ̂  • ^+ ecos6 >S/e - 6 sin 6o - • o * o

e =,1 - (w /u») .

2
Now let us examine M as a; function of e and sin 9.. For a given

6 and 6 -»• 0, it may be shown.that

M = 1 + C|(6) (3.

* To include,the collisioii loss, simply make the following two replacements:

(to /to)2

e =:1 --*^E , j^°_J --1- ^
(1 + iv/to) ! /I + iv/o)
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for all 0 - sin 6 - 1 and e. <1 except .when

sin29o = -j-|— -KA (3.5)

where A is a small .number. With A = 0, (3. 5) ; gives the -condition for

total transmission in cold plasma (T » ,0, but;not r). We will now

examine the expression for T in (3d) under the condition of (3.5),

that isj the boundary layer of the reflection, coefficient. As indicated

in. Figure 3, there are two subdivisions depending on whether e itself

assumes a, fixed value or. a value comparable, to <$.

(a) e is fixed o One may -show

r
0

Thus, the reflection .coefficient for warm plasma is of 0<(e) when

(6/A) -*• °°, or of 0(A) when (6/A) + 0. In either case, the difference

between T and T is negligibly small. .....
:

(b) e js comparable to 60 The situation is more complicated.
2 • '• ' ' '•'•' • : '

Let us concentrate on the case of .e = 6 ; 6'iaa.d A:aife the variables.

The main results of our study are sunimarized in Table III where, the

values of r , Mi T, R, and n for different orders of (A/6) are listed.

The parameter n is, the -ratio of acoustic power. .in the, .plasma • and the

incident power from the free space,. The numerical .values in ,: Table m

indicate .the extremely rapid variation of., the field .solutions in

2 2 ! -5
the boundary layer. For example, when sin 9 « 6 = 10 (corresponding

to A = 6 ; T =2000° and 6 = 10~ ), the reflection coefficient sr is
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TABLE III

FIELD SOLUTIONS,IN BOUNDARY LAYER

i

0(65)

64 !

0(63)

• r ;

o

0

-1

1

M ;

00

0

1

T

1/3

0

1

n

4/9

1

0
j

zero and the total incident power is totally pumped into the acoustic

waves (n = 1). Thus, it can be said that the warm plasma model gives a

completely different result from that of the cold plasma (F = ,-1).

However, if we vary the incident angle by 5 x.10 radians so that

2 2 3 ' 3sin .9 =6 +6 (corresponding to A =» 6 ), the^reflection coefficient

T .becomes unity, in agreement with the result in cold plasma. Thus,

total transmission .and total .reflection are separated by merely

5 x 10 radians of the incident angle!

In conclusion, in the problem of reflection from a warm plasma

half space, the field solution is practically the same as that,

obtainable from a cold plasma model except when the parameters (e,6 )

fall inside a boundary layer. As indicated in Figure 3 (not.to scale),
2

the boundary layer is a region around e = 1 -..Xu' /to) = 0,having a

dimension in the order of 6 in the parameter, space (e - 6 plane). The

field solution for parameters in the boundary layer varies extremely

rapidly, and, therefore, has a dubious physical significance.

In some electromagnetic boundary value problems, the physical
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0.5
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Figure 3. In the dotted region (not to scale), the cold
and warm plasma solutions differ significantly
for the problem sketched in Figure 2

;wtirhi
•plasma

* • • • •%• •, /* * • • •

Figure 4. An infinitely long cylindrical antenna in a
warm plasma
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quantity of interest falls .exactly within5 the 'boundary layer of the

parameter space, and this .may lead' to a varietŷ  of different .conclusions,

Such situations will be illustrated 'in the secoiuL' example, namely, the

calculation of the impedance of an infinitely- long; cylindrical antenna

immersed in an isotropic lossless warm plasma* ..... -The geometry of the

antenna. is shown in Figure 4; it is excited by- a delta source with

unit voltage amplitude ; located at z = CL The ̂express ion for the

induced current on the antenna has been obtained by a number of .
o /

authors ' and is duplicated -below

1(2);

iaz,e da

a

5.

.. (3.6)

where. t, = /. 2 2n k - an
T 72 n =,e,pa - k :: , • '*n '

k - = ,k /, t , N2 , k = lo/ce o 1 - (a) /oj) o
P '

k - k /Sp ey 6 = ratio of acoustic speed and
light speed

The integration contour in (3.6) is slightly above,the real axis for

a < 0 and below for a > 0. The admittance of the antenna is defined

as

Y = I(z - z.)
O

C3--7)

where z is a suitably siipalll distance from the,,idealized feed at z •= 0

and may be identified with, tlie half-gap width, of the actual feed. We

recall that even .for an antenna,situated in>the free space, the imaginary
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part of I(z) for z close ,to the gap has a logarithmic singularity, and,

therefore, has,a boundary layer. In order not_ to. confuse that boundary

layer (because of the ;delta source) with the boundary layer to be

discussed below (because of the acoustic wave) ,-we will concentrate

on ,the real part of I(z) or the evaluation of—the conductance>G .(for

ui > u ).. Furthermore, to facilitate the estimation of certain integrals,

we will assume that the parameter

/ - 2
A = k a =.k a.l - (to /w)e o p

is reasonably large so that H (A) can be well-approximated by its first

*
asymptotic term. Summarizing, our task is to evaluate the real part of

I(z = z ) given in (3.6) under the assumptions

6 ..-> 0 , A » .1 • . ' (3.8)

There are two subdivisions, depending on the relative magnitude of

z and the acoustic and optical wavelengths

fixed (inner limit) (3. 9)
2 = k z =-V°-

/l - (U /a))
2

p o o P

^
(ii) Z = k z = j fixed (outer limit) . (3.10)

We will first concentrate on.the inner limit, where the gap width is

so small that it has to be , measured in terms of the acoustic .wavelength i
*

Under. the assumptions in1 (3. 8) and (3.9), the real part of I(z ) in

(3.6) may be approximately evaluated with the result

G £ GQ M (3.11)

* The error is less thati 5 per cent when A =3.



25

Here G is the well-known (approximate) cold'plasma solution for a
O '' - ' ;'s •• " ' " ' ' ' ' L- •-

thick antenna

*o " 120 (3.12)

and M.is the modification factor

, 2 -•* ....2.-. cos(2sine)
M(Z) = 1 + 2 (s' - 1) cos(§Z) + - .-. - — - — =- d9"

+ 0(6) . (3.13)

The second , term in (3.13) is dufe to a -surf ace wave contribution coming

from a simple real .zero, of the Denominator of the integrand in , (3. 6a) .

Under the condition in (3.8) , the surface wave has a propagating constant

(along z) approximately given by

a k s - k -: — — — -T (3.14)

4provided that (co /oj) is not.tpo small. The-. third ter̂  in (3.13)

comes from the portion of the integral in (3.6) in the range

k <a < k ; . (3.15)
e' P ' . . .

In the cold , plasma model, there is ; no surf ace wave and there is no

contribution to G from the integral range k < 'a (invisible range) . Thus,

the deviation pf M(̂ ) from unity is the special feature of the warm

plasma model. The following .observation is made regarding M(Z) in

(3.13). •• ,' /;

(i) M .does not reduce to unity as 6 -*• 0. Thus when -the gap width

z falls .inside the boundary layer [i.e. (3.9)], the cold plasma solution

G . - . cannot be .recovered from tĵ e .warm plasma solution G by letting

the_ temperature (or 6) go to, zero. The same conclusion hplds even if
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a small loss,in the medium is introduced. . . . .

/ ~̂~2
(ii) M is an extremely rapid-varying function.of k z = k z ~\Al~(w /to)• ' " " e . o o oV p

(the gap width measured in terms of the optical wavelength in,the plasma).

This follows from the fact that %•='k z /6 .'and::.&.;-> 0. Thus, the• e o •, •

conductance of the antenna.depends critically on the precise gap width

in terms of the optical.wavelength.

Next, let us consider the outer limit ,in-̂ (3.10) . It may be shown

that the .expressions in (3.11) and (3.12) are still .valid. Now note that

the .third term in (3.13) behaves as

-TT/2

cos((S Zsin6)d9 .

0 (to/u )2 + tan29,p

Then M(Z) becomes

M(Z) = 1 + 2(s2 - l)cos |£-+ 0(6) . (outer limit) (3.17)

The second term is a rapidly oscillating term, and M(Z) can assume any

2 2
value between .(2s '- 1) and (3,- 2s ) due to a.vsmall (of order 6)

variation in k z . However, we note further that the second term in
e •• o

(3.17) is the contribution of,the surface wave. When a little loss is

introduced, it becomes approximately

• ' . sZ.
ro, 2 1N sZ, ~T 6,[2(s - 1) cos ,j-J e

where

1 + 2(u /u)2

T - .
1 + (oo /u) -

P

which is exponetially sinall and therefore .
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=-1 + 0(6)

for lossy plasma. Thus, an agreement between .the warm and cold plasma

is obtained.,

The conclusion of this antenna problem may be stated as follows.

The question of interest is whether the conductance of an infinitely,

long cylindrical antenna in a warm plasma is a perturbation of that in

a cold plasma, and whether tjiese two solutions agree with each other

in the zero-temperature limit. Our analysis shows that the answers

depend on z , the width of the feed gap. If the gap .wid.th is small

compared .with the optical wavelength (so that k z is fixed),,the

warm plasma solution cannot be reduced to the cold one when,the

temperature approaches zero. Furthermore, the conductance in warm

plasma is an extremely rapid-varying function of k z , and, therefore,

is not a physically well-defined quantity. If the gap is comparable

to the optical wavelength and if the plasma has small collision loss,

the warm and cold solutions for the conductance then become almost the

same. However, .in solving antenna problems, k z is usually assumed

to be so small that k z is fixed. This explains why a variety of

different values for the conductance can be obtained, depending on the

exact value of k z .o o.
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4. THE WARM PLASMA MODEL .-BASED 'ON THE'KINETIC THEORY

In addition to the (fluid) warm plasma model,used in the previous

section, the temperature effect can be also described by the more

sophisticated kinetic theory at the expense of the mathematical,

simplicity. To date, one of,the few electromagnetic wave boundary

value problems that have been solved by using the kinetic theory is the

reflection from a plasma half space. In Section 3, we have examined

the solution of the problem based on the fluid theory and have found

the existence of the boundary layer in the parameter space for the

field,solution (e.g. reflection coefficient). In this connection, an

interesting question is whether the more sophisticated kinetic theory

can rescue us from such a,singular behavior in the field solution for

a low-temperature plasma.

As in the fluid model, a crucial boundary condition at the plasma

free space interface is one regarding the velocity of the electrons.

Referring to Figure 2, .instead of the rigid condition on.the mean

velocity of all .electrons used in the fluid model

• • ' - . " V ( x = .0,z) = 0 (4.1)
X'

the condition of specular reflection is commonly employed in the

kinetic theory, namely,

f(vv,vj = f(-v ,v-) at x = 0 (4.2)
X Z X 2

*. Alternative names are "transport equation model'/ and ."hydrodynamic thoery."
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where f is the perturbed distribution function for the electrons,

Recalling that

V (x = 0,z) - J v f(v ,vx x x' z x = 0
dv dvz ;(4.
A &

the enforcement of (4.2) implies (4.1).'

Using the linearized collisionless Boltzman-rVlasov equation and

the usual Maxwell equations, the reflection coefficient for an incident

H-waye (H , E , E ) from.a plasma half space subject to the .condition

in (4.2) is found to be5,6,7

z cos'e - z
o o

z cos2e + zo o

(4,4)

Here Z = /p./e , and Z is the surface impedance of the plasma
0 ' 0 O ; ' . • '

half space defined by

and is given by

Z = -H .
y 0+ (4.5)

Z = lim -r^—
n. iirex -*• 0+ o

kx

c2k4BT(k) (k)

ik
dk (4o6)

where k = k x + k z, and k = |k| i The two functions X and Ê  (k)

are plasma dispersion relations for transverse and longitudinal waves,

respectively. They are given by

2
fo(v)

k • v - to
d2v (4.7)
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DT(k)=.l-u>
2 f fo(v) d2v (4.8)

L P / _ _ 2
(k • v - u>)

where f (v) is the unperturbed distribution function for the electrons,
o " ' • '•'

/2 2
and is assumed to/be isotropic (depending on v =\/v + v , not on v) ,

" s y X Z •-.' '

At this point, it is interesting to mention that if .we use the .plasma

dispersion relations obtained in the fluid model, namely

2 2
0) -. U)

DT(k) =1 - P
2 2 (4.9)

c k

\2 ' ' •
u '

P
••! - (4.10)

a) - a k

in (4.6), then the integral ;can be evaluated explicitly to yield the

result ;

1̂ .
e /e - sin26' + ^ ~

- h—v?
e) sin 6

0

sin2 6o

(4.11)

Substitution of (4.11) into (4.4) recovers .(3.1), as expected.

Return to the solutions obtained by the kinetic theory as given
; i

in (4.4) through (4.8). Before,trying to evaluate (4.6) for some

assumed f (v), let us first point out the;general features of the present

solution which ;are different .from the fluid solution

(i) In addition to zeros, the functions B_(k) and DT(k) may
: ; • ' L Li

have branch cuts in the complex k.-plane. The location of the possible
'. X

branch cuts is.determined by the condition

k • v - oj « 0 . (4.12)

Since in the present problem k = k sin9 , this condition becomes
>: - Z O O '
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co - .v .k : .sin8z o a
vx
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(4.13)

If we assume the unperturbed electron velocity cuts off beyond a fixed

number vo

f (v) « 0, for v > vo o (4,14)

Im k
X

RTF"
X

_ 2 -A
v i

0

3m w

Re to

i:-
V

O

c

2

sin2 6o «* o .o

then we may show,-that the branch cuts in the ; complex k.-plane for a given
3£

a) (with Inuo > 0) is determined by two equations (Figured)

(4.15a)

(4.15b)

In evaluating (4*6) by deforming the contour in , the upper,half,k plane,

we note that the contribution to Zjnot only includes those.from the

zeros of D and D but also from a branch-cut integral. The addition of
'• 1 ; JLi '. .-

the branch-cut integral in the kinetic theory accounts for the existence

of the .van Kampen modes (modes with continuous spectrum) in the plasma

half space.

(ii) In the limit Imu -> 0+, the dispersion functions in (4.7)

and (4.8) may assume complex value. Let us concentrate on (408), which

may be .rewritten as

p (k) - 1 - u* 'L p dv
(kv., --v . 1o

1, (4.16)

where (v.,v2) are the components of.v (parallel, perpendicular to k)»

and
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Imk

Rek,

x = pole

= branch cut

Figure 5. Branch cuts in the complex k-plane for the
integrals in (4.7) and (4.8)

Imv,

Re v,

Figure 6. Contour of integration in the complex v1-plane
for the integral in (4.16)
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>rr~. r
v (V - V-\ o 1

. .nr r- v-o 1

fo(v) dv2

Referring to Figure 6 the integral in (4.16) can be broken up

into a principal value^integral and a possible residue contribution

dv- + inBH(|kJvQ - oj) (4.18)

where,the bar on the integral sign signifies the principal value integral
\

and
, x > 0

, x < 0

R - residue of [F (v.)/(kv. - w)2]
at vx - (w/k)°

The (positive) imaginary oart in (4.18) indicates that the,longitudinal;

wave with wave number |k| > (oj/v ) suffers a (Landau) damping even in a

collisionless plasma. An interesting consequence of,Landau damping is that
2

when (CD/OJ ) < 1 (cut7off .condition for plasma), the surface impedance

Z in (45) still has a real part and hence th^ total reflection (|F| := 1)

can never be obtained. Similar comments apply to.the transverse wave and

its dispersion relation.

Whether the above two differences between the kinetic theory and

the fluid theory can lead tp significantly different field .solutions
', ' ''•-. ' J

depends.largely on the assumed unperturbed distribution function f (v).

Commonly, the Maxwellian distribution is, used for f (jy), namely
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f (V) = =^»
0 \ 2ta'

(4.19)

where

v -
2 , : 2

a = sound speed in thf electron gasi

Foir such a f (v), the refiectipri coefficient T,given in (4*4) has been

apprbximately evaluated by Westbtto His result,is given below

F7 + 0(6), if,e is fixed

jjrg^ > if 6: « 1 (4.20)

where T. is the reflection coefficient obtainable by using a cold plasma

model and is given ;expiiciely in ( 3 i 2 ) j and

sin?9

- sin 8_ + ecosS:
p ™ ' o

(4.21)
9

This result,is ̂ raetieally identical to the solution obtained;by the

field model in Section 3i fhuSi the boundary layer also exists in

(4.20)j the reflection coefficient obtained by using the kinetic theory!

* Co^aring (4*21) and (3*3) we note that g^ = h+ + 0 (e) i



35

5 o RADIATION IN WARM PLASMA

The creation of the, boundary layers in the field solution of warm

plasmas is attributed to the fact of small .6 and to, the enforcement of.

the rigid boundary conditiono An interesting question in this connection

is whether the warm plasma model can give any significantly different

' ' : I . •
result -when.the rigid boundary condition is not enforced„ An important

problem belonging to this category is the radiation from a prescribed

current source J(r) in an unbounded warm plasma; it will be studied in

some detail in this section.

89 *It has been shown by several authors ' that the Fourier transform

of the electric field E(r), denoted by I(k) is related to J(JO through,

the general relation

kDT(k) cD L(k)

The above expressions are valid for both,(isotropic) cold and warm

plasmas (fluid or kinetic theory). For wann plasmas, the explicit forms

of D and D are given in (4»7) and (4.8) for the .model based on the
1 L . • "

kinetic theory, and in (4«9) and (4.10) for the model.based on the fluid

theory. For the expressions of DT and D in cold plasma, we may simply
* ' ' ^ ^ { , i

set the sound speedra = 0 in (4.9 ) and (4«10).

The result of ,E(k) as computed from (5.1) may be classified into two

types, according to the smoothness .of J(r). The first type occurs

when J(r) is smooth enough so tha.t J(k) is nonrzero only when (6k/k )« 1

In such a case I (k) in (5.1) depends,.on the values of DT(k) and BL(k) only

-^—The--Fourier-trans form7is--F(k)-=—/ F-(f)-e"lk °r d~
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in the range

(<5k/k ) « 1o (5.2)

It may be shown that, under,the condition in (5,2),

D(k)
warm cold

where D stands for either D or D . . Explicitly-we have
L , Li . • .

10

(5.3)

cold plasma:

DT(k) «;1 -

2
0)

0)

(5.4)

DL(k) = 1 -
OJ

warm plasma (fluid theory):

DT(k) = 1 -
0)

(5.5)

DL(k) = 1 - .Jl
0)

w

warm plasma (kinetic theory):

"2
0)

1 -t-
_ _ ^
3> k

o

k

(5.6)

«v . _ _ _ - . . . . _ r~~:~—*—~—

In the formulas in (5,6)j 6 = a/c and a;=Y3KT/m is consistent with
those in (5.4) and (5.5).



37

A study of (5.4) through (5i6) reveals that

(5.7)

except when

or

1 -

to
_E
tu

CO
_E
0)

0(62) (5.8)

•0(1 /6) (5.9)

When condition (5.8) is satisfied, DT (k) .for warm plasma may bejj

significantly different_from DT(k) for cold,plasma; while the,LI

satisfaction ,of (5»9) implies a remarkable deviation between the D_(k) in

the kinetic theory.model and DT(k) in the other two models. Except for

these two very special cases, we conclude from (5,7) that there is

no essential difference between the.radiation field produced by a

given smooth .current source whether.a cold or a.warm plasma model is

used. This conclusion is established on a.general term with no

particular reference on the current source, as long as it is sufficiently

smooth so that (5.2) is satisfied..

A special feature of the(kinetic theory model, as has,frequently

been mentioned in the literature, is the fact that D̂ k) and DT (k)~"~~\ ' ' ' l ; LI ,

defined in (4.-7), (4.8), and (4.9) have an imaginary part even for real

*
k in a lossless plasma, accounting for the Landau.damping effect. Take

Recall the .problem of reflection from a plasma half space discussed
in Sections 3 and 4., This.scattering problem is equivalent to that
of a current sheet radiating at the interface. This explains why
a boundary layer exists in the field solution when (5.8) is satisfied.
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D (k) as an example: its imaginary part is given, for real k, by
•*-< .

k \o
k6

3
exP - |(kQ/ k5)

2 (5.10)

A direct; consequence of (5»1Q) is that when u <.u> , the complex power

radiated from the source

J(r)* d3r, (5.11)

may still have a real part, indicating dissipation in a lossless plasma.

However, we must note that when the condition in (5.2) is satisfied,, the

imaginary part of DT (k) in (5.10) is exponentially smaller" than its
L • • . " ; ! ; :i •' .

real part in (5.6),. Thus, with a lightly lossy plasma [ i^e. ,

.2
(u /u) -»• (u /oj) / (1 + iv/w), and 6 -> 6/ /I + iv/to with v being the

p • p ; • ' • ' . ' . ' I . -P-r ; ; "
collision frequency ], the effect .of the Landau damping is not as

important as that of the collision.

The other type of result which may be obtained from (5.1) is the

one associated with J(k) which does not cut off.fast enough and may

assume finite values in .the neighborhood of k = k /6. In such a case,

E(k) computed from the warm plasma model may be significantly different

from the corresponding E(k) computed from the cold plasma. This may be

illustrated by the following example.

A popular method in evaluating antenna impedance in plasma

JL • • '

It is known that the longitudinal.wave, not,the transverse wave,
suffers Landau damping in-a plasma Ds,(k) also ha^ in imaginary part
because the relativistic effect has. noc been included in ,the Ma^wellian
distribution in (4.19) * '. •. ' : ;'



39

is the so-called ''included e»m<,f. method" which entails an assumed:

current distribution and then computes the antenna-resistance through

the formula

R =* ̂  Re'/E(r) - J*(r) d3r (5d2)7 «•'/'
o

where I is a normalization factor,, For the case of a, linear antenna with

radius a and half length h, J(r) is commonly assumed to, be "triangular, "

for |z|. _<_ h (5 = 13)

The Fourier transform of the Current is

fi
siri(khcoss)

J(k). ^
(khcoŝ ).

2

JQ(ka sin8)z (5.14)

where (k,6,())) are the .spherical components of k, and J is the zerpth .,.

order Bessel functipno The r^te'of cut, off of J(k) for large k depends

on the , value of h and a? In the following, let us concentrate on two

special cases 9

(A) kQ h -,0(1) and k6 a- Q ( S ) (5.15)

(B) k h - 0(51/2) and k a « 0(62/3) (5,16)
O ' ' O

The choice of the .above parameters is designed to make the results.

physically illuminating as well as mathematically simple „ For large k

such that
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k6 -. ,K = r— , fixed
o

we have

J(k)

, for case A

0(6),.for case B

(5.18)

(5.19)

As we will shpw next, J(r) in case A is sufficiently smooth so that there

is no appreciable difference between the cold and the warm plasma

solutions for resistance.!* in (5.12), but J(r) for case B is not, Under

the condition that

k e h '" , r -*-
0 ' •••• >> 1 and h » a, where e = VI - ( w , / u > ) - (5.19a)

.. ' 0 ; ' . ., p

an approximate expression for R is found tab e

R - R M (5.19b)

where R is the resistance;for cold plasma and

- e
M = 1 +. 3/2 k o h

koae
(5.19c)

Then it i-s a siniple matter to verify .that

1/2 •
M » 1 + 0(6 ' )i for the case A (5.20)

which is •.essentially unityi Hpweyer, for the other, case we have

w * / i 6(1 - e) r 6 T . ..2
M 'w .i. T - 'c./'o' , o' " ' cos

v ^/" 1 / i - i - \ "*1- • 1E (k h) k. aL 0 0 J

k ae

• 6 . 4 (5.21)

which is a rapidly oscillating function;, If the radius of the antenna
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is changed by a small fraction

(5-22>.
A/,4 VI - , N(u> /w)

where X is the free space wavelength, M in (5 „ 21) may vary from unity

to an extremely .large number [in the order of 0(<5~ -• ).]. • In other

words, the acoustic wave "can contribute from zero tp nearly 100 per

-3 ••cent of the total radiation resistance by a variation of>10 X or,

10~4 ;X in radius!o
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6. CONCLUSION,

The warm plasma model based on the fluid theory has been used

extensively in the literature. In the last-several years there seemed

to have been a.trend toward treating by this model>every electromagnetic

boundary value problem previously solved by using the,cold plasma model.

The primary motivation for doing that is to study the effect of the

acoustic wave which is not accounted .for in the cold,plasma description.

However, this effort, does not seem to have ,led to a definite conclusion

on the importance,of the acoustic wave. Oftentimes, in closely related

or even identical problems authors have drawn completely opposite

conclusions, depending on their choice of parameters. In the present

study, we have discussed an.explanation of this, based on boundary layer

theory. The main results of our study concerning the (fluid) warm plasma

model may be summarized as follows:

(1) In a low-temperature plasma, the;acoustic wave constitutes

an important part of the total'field only in narrow-layered regions close

to the rigid boundary. Outside the layers, even a small collision frequently

produces an attenuation of the acoustic,wave much larger than that of the

electromagnetic wave. Therefore, the total field consists almost

exclusively of electromagnetic ̂aves.

(2) Due to the excitation of the acoustic.waves (dissipated

in collision loss or not), the solutions of physical quantities which

are of interest in electromagnetic studies are modified. Examples .of

such physical quantities are the reflection coefficient of an incident

electromagnetic wave, radiation power from a current source, input

impedance of an .antenna, etc. The modification is such that, except
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for a.few isolated regions in the parameter space forming the so-called

"boundary layers," the solutions ob'tained-by using warm and cold plasma

descriptions differ only by a negll'gib-lyasmall amount. However, inside

the, boundary layers the warm plasma.solutions vary so rapidly in the

parameter space that they cease to be physically meaningful quantities.

(3) The existence of the'̂ boundary layers accounts for an

important fact that warm plasma solutions may be extremely sensitive to

the ;exact value of the parameters. Thlsrperhaps is the main explanation

for contradictory conclusions about the.importance of.the acoustic waves.

Thus, in the study of electromagneti'c problems by using the warm plasma

model, a systematic investigation of the'solution dependance on parameters

is essential. This is particularly so when the solution is .not given in

a simple analytical form and numerical computations are necessary.

Results based on spot calculations may be very misleading.

(4) Those sensationally different results in the^boundary

layers of the warm plasma solution probably cannot be observed in,

practice .since the parameters will never be realized exactly enough.

Furthermore, the warm plastiia model itself perhaps is not a .good .description

of physical plasma when tHoge,situations arise.

(5) Another attempt to assess the importance of temperature

effects is to use the .more . ekact kinetic theory. The ^application of

this theory is much more cpmblicated and in the few simple cases,

where, it has been worked .,out, it- has not,produced,significantly

new results. In a problem (i.e. , reflection from a plasma ..half ; space)

for which an .explicit solution can be found, the solution has practically

the same boundary layers in the parameter space as those found in the

fluid model. Outside the boundary layers, the solution from the.
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kinetic theory is again approximately the cold plasma result.

In addition to the Boundary value-problems, we have also considered

the radiation in.an unbounded plasma from̂ a given current, a problem

in which the rigid boundary condition on the .electron velocity is not

applied. As long as the,current is-so-smooth; that it does not vary

significantly over an acoustic wavelength-,- the radiation field in cold

plasma and in warm plasma .(fluid or kinetic theory) are practically

the same., Furthermore, the often mentioned Landau.damping in such cases

is not as important as the other loss mechanism such as collision.

However, if the current is not smooth, the ;warm plasma solutions may

be significantly different and, in some cases, highly implausible.
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