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Abstract

A local-time survey of the low-energy proton and elec-

tron intensities precipitated into the earth's atmosphere

over the auroral zones during periods of magnetic quiescence

has been constructed by selecting a typical, individual sa-

tellite crossing of this region in each of eight local-time

sectors from a large library of similar observations with

the polar-orbiting satellite Injun 5. The trapping bound-

ary for more energetic electron intensities, E > 45 keV,

was found to be a 'natural coordinate' for delineating the

boundary between the two major types of lower energy, 50 £

E £ 15,000 eV, electron precipitation commonly observed over

the auroral zones at low altitudes. Poleward of this trap-

ping boundary inverted "V electron precipitation bands are

observed in all local-time sectors. These inverted 'V elec-

tron bands are typically more energetic and of greater lati-

tudinal width in the evening and midnight sectors relative

to their counterparts in the noon and morning sectors.

Equatorward of the trapping boundary the electron energy in-

flux is dominated by plasma sheet electron intensities in

the midnight and early morning sectors. Precipitation of

ring current proton intensities is most often observed in

the late evening sector and equatorward of the major regions



of electron influx. In general the main contributors to

the electron energy influx into the earth's atmosphere over

the auroral zones are the electron inverted 'V precipita-

tion poleward of the trapping boundary in late evening, the

plasma sheet electron intensities equatorward of this bound-

ary in early morning and both types .of these precipitation

events near local midnight. These observations of low-

altitude charged particle intensities are interpreted favor-

ably in terms of a current magnetospheric model and compared

with similar measurements in the distant magnetosphere.

11



I . Introduction

During the past several years or so a wealth of new

observations of low-energy particle intensities and of asso-

ciated phenomena over the earth's auroral zones as gained

with low-altitude polar-orbiting satellites has become avail-

able. Correspondingly the classification of the various

plasma regimes, e.g., 'soft1 and 'hard1 zones and 'burst'

regions, has become increasingly more complex. Often these

zones are identified by finding ratios of responses of a

particular detector at, say, two different energy channels

or by the overall variability of the instrument response

with respect to time or latitude. A collection of instru-

ments with differing and/or limited capabilities will in

turn provide a plethora of plasma regions often confusing

to all but observers directly involved in this work.

The large temporal and spatial fluctuations of low-

energy charged particle intensities over the auroral zones

are further major obstacles in interpretation of the obser-

vations. Efforts in statistical studies of the spatial

distributions of these plasmas as functions of latitude and

magnetic activity, for example, have yielded a substantial

inventory of important results. Hoffman [197lb] has recently

given a review of many of the most current of these studies .



However, many of the details and interrelationships of the

plasma regimes are unresolved in these statistical studies.

For a detailed description of auroral plasma phenomena we

need also to find the precise spatial interrelationships of

the 'trapping boundary1 for more energetic electrons (E ̂  40

keV), the plasma sheet, the ring current and the magnetosheath

as observed at auroral altitudes. Without simultaneous meas-

urements of electron and proton intensities over a generous

energy range it is almost, if not, impossible to provide this

information.

Our present interest is directed toward a local-time

survey of proton and electron intensities over the Northern

auroral zones and polar cap which has been obtained by se-

lecting an individual, typical observation in each local-

time sector during periods of relative magnetic quiescence.

As we shall see these simultaneous measurements of proton

and electron intensities, together with the local determin-

ation of the 'trapping boundary1 for more energetic electrons,

provide a unique insight into the distributions and in-

terrelationships of the plasma regimes over the auroral

zones. Although individual precipitation patterns are of-

ten complex, the overall spatial distributions of low-energy

charged particle intensities over the auroral zones are re-

latively easily associated with plasma domains of the distant

magnetosphere and its environs.



II . Observations

An array of electrostatic analyzers capable of meas-

uring simultaneously the directional, differential energy

spectrums of proton and electron intensities precipitated

into and trapped above the auroral zones was launched with

the satellite'Injun 5 into a low-altitude, polar orbit on

8 August 1968. The spacecraft was magnetically aligned with

the local geomagnetic field by means of two parallel perma-

nent bar'magnets. Over the Northern hemisphere the space-

craft was often commanded into an operating mode which pro-

vided 117-sample differential energy spectrums of proton and

electron intensities at local pitch angles a. = 0° and 90° in

a 970-millisecond sampling interval once each two seconds .

The energy ranges of these electrostatic analyzers, or

LEPEDEA's, were 40 <: E £ 12,000 eV and 50 <. E <. 15,000 eV

for proton and electron intensities, respectively. In addi-

tion a complement of collimated, thin-windowed Geiger-Mueller

tubes was employed to determine the location of the 'trapping

boundary" for more energetic electron intensities with E >

45 keV. Further description of the satellite and its instru-

mentation has been given by Frank and Ackerson [1971].

We have chosen a series of eight passes over the au-

roral zones for our present summary of the local-time dis-

tributions of proton and electron intensities observed at



low altitudes. These particular series of measurements were

selected from a large library of such observations on the

basis of (1) relative magnetic quiescence for the observing

period as indicated by K and D (H), (2) continuous tele-
P O J.

metry coverage spanning the outer radiation zone through the

auroral precipitation zone and into the polar cap, and (3)

features of the plasma distributions which were commonly ob-

served during other passes in a given local-time sector. The

results of this survey are displayed in Plates la and Ib for

precipitating electron and proton intensities, respectively.

Before discussing the contents of Plates la and Ib we

remind the reader here of the nature of the E-t spectrograms

employed to display the massive body of individual intensity

measurements gained during a ten-minute observing period over

the auroral zones. The ordinate scale of each spectrogram

is electron (or proton) energy in units of eV and the ab-

scissa is Universal Time [Frank and Ackerson, 1971] . The

detector response is color-coded from blue to red (low to

high responses) at each point in the E-t plane. A color

calibration strip for the log,Q of the detector response in

counts (second)" is provided at the right-hand side of each

spectrogram. Magnetic invariant latitudes A of the satellite

position are to be found along the abscissas of the spectro-

grams . These spectrograms each span a period of ten minutes



and comprise approximately 30,000 individual intensity meas-

urements . Typical differential energy spectrums for similar

spectrograms have been previously published [Frank and Ackerson,

1971; Ackerson and Frank, 1971] . However, we are specially in-

terested here in the overall character of the proton and elec-

tron distributions over the auroral zones as gained via these

high-resolution spectrograms.

The spectrograms of Plates la and Ib are positioned

approximately according to the magnetic local time of the

observation. For example, Revolutions 3958 and 3667 encoun-

tered the auroral zone near local noon and midnight, res-

pectively. The position of the satellite for each E-t spec-

trogram in the invariant latitude-magnetic local time coor-

dinate system is given in the center panel of each color

plate. The interval between each solid circle along a given

trajectory line represents an elapsed time of one minute in

the corresponding spectrogram. The auroral oval as deter-

mined by Feldstein [1963] from ground-based observations is

indicated by the shaded area in the A-MLT grid and is in-

cluded for comparison with the .spatial coverage provided by

the E-t spectrograms.

The 'trapping boundary' for more energetic electrons

E > 45 keV as gained via a thin-windowed Geiger-Mueller tube

with collimated field-of-view directed perpendicular to the



local magnetic field is indicated by the arrows at the bot-

tom of each spectrogram and in the A-MLT coordinates of the

center panel. The width of the shaft of each arrow repre-

sents the uncertainty in the determination of this boundary.

A summary of these measurements is given in Figure 1. This

'trapping boundary' is defined as coincident with the high

latitude termination of measurable electron intensities .

! For example, this boundary is located at A = 75° for Revo-

lution 3541. The counting rates above threshold at high

latitudes during Revolutions 1486 and 1487 are attributable

to the entry of energetic solar protons into the earth's

polar cap. The intensity maximum centered at A = 76°

during Revolution 1486 is the G. M. tube response to solar

X-rays as the direction to the sun passes through its field-

of-view. Two electron precipitation events poleward of the

trapping boundary were sufficiently energetic such that the

high-energy tail of the electron spectrums was observable

in the G. M. tube responses. These two events are evident

at A =- 72 to 73.5° for Revolution 3667 and A =» 71 to 73° for

Revolution 1487. It is useful to compare these measurements

with the lower energy electron precipitation events shown

in Plate la. The well-known diurnal variation in the loca-

tion of the trapping boundary is evident even for the lim-

ited selection of examples shown in Figure 1 . This boundary



is positioned at significantly higher latitudes during local

day (Revolutions 5410, 1486 and 3958) relative to those at

local night (Revolutions 1487, 3667 and 5799) .

Frank and Gurnett [1971] have recently shown that

the position of the trapping boundary in the local dawn and

evening sectors is coincident within observational errors

with the reversal of convection electric fields from sun-

ward convective flow (equatorward of the trapping boundary)

to anti-sunward flow (poleward of this boundary). On the basis

of recent measurements of plasmas and wave phenomena in the

distant and near-earth polar magnetosphere, we have also

interpreted the position of the trapping boundary as delin-

eating the location of the high-latitude termination of

closed field lines, i.e., all field lines above the trapping

boundary are directly connected to the interplanetary magne-

tic field [Frank, 1971b, c; Frank and Gurnett, 1971; Gurnett

and Frank, 1971a, b; Ackerson and Frank, 1971] . The useful-

ness and effectiveness of this trapping boundary as an in

situ coordinate for the above studies have led us in recent

past investigations and the present study to employ it as a

'natural coordinate1.

Returning to the observations of precipitated low-

energy proton and electron intensities as displayed in

Plates la and Ib we find a discussion most easily implemented



8

by first noting the general character of the plasma distri-

butions poleward of the trapping boundary as a function of

local time and concluding with a similar description of

observations equatorward of this, boundary . Pertinent dates,

altitudes and magnetic indices K and D (H) for each E-t
p o J.

spectrogram are given in Table I .

Poleward of the trapping boundary. As an aid to the

reader in interpretation of the series of E-t spectrograms

of Plates la and Ib a single set of proton and electron

spectrograms is first discussed in detail . Inspection of

Plate Ib reveals that a band of low-energy proton intensi-

ties is observed poleward of the trapping boundary on the

local-day sector of the auroral precipitation pattern. For

example, a band of these proton intensities is observed at

2331:00 to 2332:10 U.T. during Revolution 1486. The trap-

ping boundary was intersected at 2330:50 U.T. during this

northbound pass. These proton intensities have been pre-

viously interpreted as the low-altitude signature of the

polar cusp and hence of the direct entry of magnetosheath

plasma into the polar magnetosphere [cf. Frank and Ackerson,

1971; Frank, 1971b, c; Heikkila and .Winningham, 1970]. The

proton intensities are considerably less than those observed

in the direction of flow .within the magnetosheath. Gurnett

and Frank [1971a] have also shown previously that a strong
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ĵ* ^* LO m vo ' CT^ ĵ* r^
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eastward convection of plasma, 1.5 to 3.0 km (second) , as

measured simultaneously with a DC electric field instrument,

occurs coincident with this band of proton intensities. Meas-

urable intensities of low energy electrons are observed within

this band of proton intensities and are bounded at the equa-

torward side by the relatively intense, thin 'spike1 of in-

tensities encountered at 2331:00 U.T. (see Plate la). On

the other hand, a relatively broader electron precipitation

zone with higher average electron energies is located equa-

torward of the trapping boundary at 2327:20 to 2330:50 U.T.

No measurable intensities of precipitated protons are ob-

served equatorward of the trapping boundary for this partic-

ular series of observations . The polar cap proper was en-

countered poleward of the polar cusp at 2332^-10 U.T. during

Revolution 1486 and is characterized usually by a relative

absence of charged particle intensities within the energy

range of the E-t spectrograms. Examination of other spec-

trograms in Plates la and Ib reveals a similar void as the

trajectories penetrate into the polar cap.

An inventory of the overall character of the E-t spec-

trograms as a function of local time of the observation re-

veals the following major results for the precipitation

zones poleward of the trapping boundary.

(1) The narrow intense bands of electron intensities
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observed above the trapping boundary (e.g., at 0416:40

U.T. of Revolution 3958 and at 2331:00 U.T. of Revolu-

tion 1486) increase in width and peak average energies

as the local time of the observation passes through lo-

cal evening to midnight. The signature of the precipi-

tation band at 0149:30. to 0150:10 U.T. of Revolution

1487 is that of an 'inverted V with the average

energy of electrons increasing to a maximum energy

and subsequently decreasing as the satellite traverses

this electron precipitation event. Although often

these precipitation events do not have the remarkable

symmetry or rise sufficiently in average energy to

reproduce this clear signature as for. this particular

event, the maximum directional intensities of typi-

9 10 2 -1
cally 10 to 10 electrons (cm -sec-sr) , their

position above the trapping boundary and the well-

defined 'spike-like' signature led us to classify the

entire family of these precipitation bands as inver-

ted 'V events. Correspondingly it is implicitly

assumed that these precipitation bands have a com-

mon origin and that the acceleration mechanism res-

ponsible for these precipitation events increases in

effectiveness as local time increases through local
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evening to the midnight sector. It should be remarked

here that although the peak energy fluxes within the

inverted 'V precipitation bands differ by almost three

orders of magnitude, the directional intensities of

electrons differ by significantly lesser factors/ < 10.

For example, the peak directional intensities for the

event centered at 0623:10 U.T. of Revolution 3667 are

within a factor of 2 equal to the peak intensities at

2331:00 U.T. of Revolution 1486.

(2) In the dawn sector these inverted 'V precipi-

tation bands are often more narrow with lower maxi-

mum average electron energies relative to their coun-

terparts at local evening. Examples of these electron

precipitation events in early local looming are located

at 1157:00, 1158:00 and 1201:50 U.T. for Revolution

5799. These precipitation bands do not largely differ

in character from those observed in the noon sector.

We have examined our library of these inverted 'V

events in the morning sector during periods of greater

magnetic disturbance than those covered in these series

of observations and found that these bands do indeed

develop into events similar to those reported here in

the evening sector (cf. Revolution 1487 of Plate la) .

Hence we would conclude that the acceleration mechanism
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associated with these inverted 'V events is often

significantly more effective in the evening and mid-

night sectors relative to the morning sector

(compare the event at 0343:15 to 0344:20 U .T. of

Revolution 1561 with that.of Revolution 5799 at 1201:50

U.T.) ̂

(3) Multiple inverted 'V precipitation bands of

electron intensities are most frequently observed in

the late evening, early morning and midnight sectors

of the auroral precipitation pattern. For example,

there are three inverted 'V bands in the spectro-

gram for Revolution 1487, centered at 0148:10, 0148:40

and 0149:50 U.T.

(4) Often, but not always, an inverted 'V electron

precipitation band is positioned at or slightly pole-

ward of the trapping boundary for more energetic

electron intensities (eg., 2331:00 U.T. of Revolution

1486, 0624:30 U.T. of Revolution 3667 and 2126:00 U.T.

of Revolution 3541) .

(5) Measurable, but relatively weak, magnetosheath

proton intensities are observed above the trapping

boundary in the local day sectors almost without

exception. (Refer to Revolution 3541 at 2125:20 to

2126:30 U.T. and Revolution 3958 at 0415:40 to 0417:00

U.T., Plate Ib.)
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(6) Less frequently, magnetosheath protons are ob-

served within the early morning and midnight sectors.

Examples of these events are evident at 0623:15 to

0623:40 U.T. of Revolution 3667 and the more diffuse

band at ~ 1201:00 to 1203:00 U.T. of Revolution 5799.

Proton intensities precipitating into the evening

sector are also present in the corresponding spec-

trogram for Revolution 1561.

(7) Low-energy'proton precipitation bands are also

o'ften located at the trapping boundary in the midnight

and early morning sectors, e.g., at 0624:20 U.T. of

Revolution 3667 and 1203:20 U.T. of Revolution 5799.

Although it is possible that these intensities are

of 'ionospheric origin their spatial location and iso-

tropic angular distributions (i.e., intensities

within factors of 2 or 3 for a = 0° and 90°) lead us

to conclude that these proton bands are also to be

identified as having their origins within the down-

stream magnetosheath, perhaps at a stagnation point

in convective flow located in the vicinity of the

trapping boundary.

(8) When well-defined bands of relatively high pro-

ton intensities, such as those centered at 0345:15

U.T. of Revolution 1561 and 0623:20 U.T. of Revolution
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3667, are discernible in the proton spectrograms,

their position is not coincident with the location of

maximum average electron energy, and peak energy fluxes,

in an inverted 'V event but is observed to be directly

adjacent to or seemingly detached from the position

of maximum electron energy fluxes. Relative to the

-highly variable character of the electron spectrums,

there appears to be no signature of an equally ef-

fective acceleration mechanism for protons.

Equatorward of the trapping boundary. The largest

intensities of precipitated low-energy protons and electrons

equatorward of the trapping boundary are generally observed

in the late evening, early morning and midnight sectors of

the auroral precipitation patterns. These Charged particle

intensities delineate the low-altitude projection of the

distant plasma sheet and its earthward extension, the pro-

ton ring current [cf. Ackerson and Frank, 1971; Frank, 1971a].

The major features of the precipitation patterns equatorward

of the trapping boundary as displayed in Plates la and Ib

are summarized as follows.

(1) Examination of the electron precipitation zones

for the series of measurements for local midnight

through local morning to noon reveal that these zones

progressively become weaker in intensities with in-

creases in average electron energies. Several partial
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segments of this electron precipitation zone are

characterized by increasing average electron energies

with decreasing latitude (e.g., the intervals 2329:00

to 2330:50 U.T.. of Revolution 1486 and 1240:10 to

1241:00 U.T. of Revolution 5410). We interpret these

observations of electron intensities as the signature

of injection of plasma sheet electrons into the mid-

night sector of the magnetosphere and their subse-

quent eastward drift accompanied by energization and

dissipation into the atmosphere. Hoffman [1971a] has

recently arrived at a similar conclusion with obser-

vations of electron intensities within several energy

bandpasses at E ^ 700 eV. It is of interest to com-

pare the peak electron energy fluxes into the atmos-

phere for the plasma sheet zone equatorward of the

trapping boundary and the most energetic of the in-

verted 'V events displayed in the spectrogram for

Revolution 3667 in Plate la. These maximum energy

2 1fluxes were 6 ergs (cm -sec-sr) at 0626:30 U.T.

(plasma sheet) and 20 ergs (cm -sec-sr) at 0623:08

U.T. (inverted 'V event). The reader is cautioned

here that the contents of individual spectrograms

should not be taken as 'average values' but as a guide

to the relative magnitudes and spatial relationships.

These particular energy fluxes were probably higher
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than the average intensities observed in this local

time sector. In the evening sector of the precipi-

tation zone equatorward of the trapping boundary the

measurable electron intensities are restricted to a

relatively narrow zone adjacent to the trapping bound-

ary (e.g., at 0150:10 to 0151:00 U.T. of Revolution

1487) .

(2) Precipitation of 'ring current1 proton intensi-

ties is most often observed in the late evening sec-

tor. An example of this precipitation is given in

the E-t spectrogram for Revolution 1487 at ~ 0150:30

to 0151:10 U.T. in Plate Ib. A comparison of Plates

la and Ib shows that the ring current is observed to

extend to slightly lower latitudes than the electron

intensities of the plasma sheet in this local time

sector in agreement with surveys at the magnetic

equator [cf. Frank 1971a, Ackerson and Frank, 1971] .

Utilizing a similar argument as that applied to the

electron intensities in the morning sector, we inter-

pret these 'ring current1 proton intensities in terms

of the westward drift and subsequent energization of

plasma sheet proton intensities from the midnight

sector. An example of proton intensities in the

midnight sector is given in the spectrogram for
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Revolution 3667 at 0625:00 to 0626:10 U.T. Precipi-

tation of proton intensities equatorward of the trap-

ping boundary in the afternoon sectors is discernible

at 2123:50 to 2124:40 U.T. of Revolution 3541 and at

0412:00 to 0413:00 U.T. of Revolution 3958. (The

band at 2118:00 to 2120:00 U.T. of Revolution 3541

is attributable to the detector's background response

to large intensities of outer zone energetic electrons.)

The two proton bands, one equatorward and the other

poleward of the trapping boundary, often observed in

the local-day sector of the precipitation pattern are

almost certainly to be identified with the two proton

zones previously reported by Sharp and Johnson [1968] .

The E-t spectrograms for Revolutions 3541 and 3958

represent two useful examples.

(3) Low-energy proton precipitation is found also

in the morning sector, e.g., at 1236:50 to 1238:40

U.T. of Revolution 5410. This proton zone is coinci-

dent with a diffuse band of low energy electrons dis-

played in the corresponding spectrogram of Plate la.

The overall character of this precipitation region

suggests that these charged particles may not have

been convected in from the plasma sheet in the mid-

night sector but instead have gained entry along the
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flanks of the magnetosphere. With regards to local

morning-evening asymmetries it is of interest to note

that proton precipitation is often found equatorward

of the major electron precipitation events in the

evening sector (Revolutions 1487, 1561 and 3541) and

generally, but not always, within the overall elec-

tron precipitation at local morning and midnight

(Revolutions 3667, 5799 and 5410) . This feature,

along with the pronounced local-time asymmetry of the

two major electron precipitation zones, will tend to

confuse any statistical study of proton and electron

aurora from ground-based and aircraft measurements

which is directed toward deducing the corresponding

source region in the distant magnetosphere [cf.

Bather and Mende, 1971] .
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III. Discussion

We have presented a survey of the spatial distribu-

tions of low-energy proton and electron intensities precipi-

tating into the earth's upper atmosphere over the Northern

hemisphere as constructed by selecting a typical, individual

measurement in each local-time sector for periods of rela-

tive magnetic quiescence from a considerably larger library

of such observations. This series of individual satellite

passes over the auroral zones has been organized as a func-

tion of local time and displayed in Plates la and Ib. A

detailed discussion of results has been given in the pre-

vious section.

Briefly, and partially with the expense of oversimpli-

fication, the overall character of the charged particle dis-

tributions over the auroral zone can be described in terms

of two major precipitation zones, one located poleward and

the other located equatorward of the trapping boundary for

more energetic electron (E > 45 keV) intensities. Poleward

of the trapping boundary the electron precipitation pattern

is dominated by inverted 'V precipitation bands which are

characterized by increasing average electron energies to a

maximum energy with a-subsequent decrease in average energy

as the satellite passes through these precipitation events.
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These inverted 'V bands are characterized by a narrow width,

~ 10 to 50 km, and lower peak average electron energies,

~ several hundred eV, in the noon sector relative to

their counterparts in the late evening and midnight sectors.

These inverted 'V events display an increasing peak average

energy, latitudinal width and multiplicity as local time

increases from noon through evening to midnight. Inverted

'V electron precipitation bands are also observed poleward

of the trapping boundary in the morning sector. However, a

dawn-dusk asymmetry is evident with the inverted "V bands

at local morning typically characterized with lower peak

average electron energies and lesser latitudinal width rela-

tive to those located at local evening during periods of

relative magnetic quiescence. Often an inverted 'V precipi-
)

tation band is located at.or just poleward of the trapping

boundary. Low-energy protons of magnetosheath origin are

observed poleward of the trapping boundary in the sunlit

hemisphere of the proton precipitation patterns. These pro-

ton intensities are also often observed in the local night

sectors and are frequently accompanied by substantially more

intense bands of intensities with latitudinal widths ~ 50 to

150 km. These relatively intense proton bands are not coin-

cident with the inverted 'V electron precipitation events.
e

Equatorward of the trapping boundary, the most intense
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electron precipitation occurs in the midnight and early

morning sectors. These electron intensities are identified

with those of the plasma sheet by means of their spatial lo-

cation, overall intensities and average energies, and rela-

tively broad energy spectrums. This electron precipitation

zone becomes less intense with increasing average electron

energy as the local time of the observation increases through

morning to local noon. The origin of this precipitation zone

almost certainly is identified as injection of plasma sheet

electrons in the local midnight sector and as subsequent

eastward drift accompanied by energization and by dissipation

into the' atmosphere. On the other hand, the precipitated

electron intensities in the evening sector are confined

to a relatively narrow, ~ 1° to 2°, band located adjacent to

the trapping boundary. Ring current proton intensities are

most often observed to precipitate in the evening sector and

can be observationally identified with the earthward exten-

sion of the plasma sheet. A coarse interpretive diagram of

these major features of spatial distributions of low-energy

proton and electron intensities and their relationships to

the trapping boundary, magnetic field topology and convection

zones is given in Figure 2. The inverted 'V precipitation

events occur above the trapping boundary in the zone of

strong anti-sunward convection and the precipitation of plasma
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sheet charged particle intensities is located equatorward of

this boundary in the region of sunward convection. The reader

is reminded here that the convection diagram represents the

'average1 spatial distributions of convection electric fields

measured with the Injun 5 DC electric field instrument. The
t

polar cap proper is a relatively small region usually charac-

terized with an absence of low-energy charged particle inten-

sities and with weak convective flow. However, examples of

strong convective flow over an entire trajectory over the

polar cap have been also reported [Cauffman and Gurnett,

1971a, b; Maynard, 1971] . Further observational evidences

which lend support to the various interpretive features of

Figure 2 have been previously presented [Frank 1971a, b, c;

Frank and Ackerson, 1971; Gurnett and Frank 1971a, b; Ackerson

and Frank, 1971; Frank and Gurnett, 1971; Cauffman and Gurnett,

1971a, b].

We have used the term 'soft electrons' for the elec-

tron spectrums observed poleward of the trapping boundary.

However, it is quite apparent from the observations presented

here that the peak average electron energies in the center

of inverted 'V events, more specifically those located in

the late local evening and midnight sectors, can exceed

average electron energies for the plasma sheet electron in-

tensities positioned below the trapping boundary. Plasma
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sheet electron spectrums are typically broader with integral,

directional intensities less by factors of ** 10 relative

those of the inverted 'V1 precipitation bands. Ackerson and

Frank [1971] have suggested recently that the plasma sheet

proton and electron intensities can be interpreted as the

accumulated 'debris' from inverted 'V electron events in

the vicinity of the trapping boundary. This 'debris' becomes

trapped on recently reconnected field lines along the magne-

totail and is subsequently convected earthward.

The trapping boundary for electron (E > 45 keV) in-

tensities has been employed herein as a 'natural coordinate'

due to its coincidental position with respect to that of the

reversal in convection electric fields and of the demarcation

line between the two major types of low-energy electron pre-

cipitation as identified with the present series of measure-

ments. This low-altitude trapping boundary is not observa-

tional ly identical to the equatorial trapping boundary re-

cently utilized by Frank [1971] in his survey of the earthward

edge of the plasma sheet near local midnight with the satel-

lite OGO-3. The equatorial boundary was identified with the

position of the major rapid decrease of electron intensities

with increasing radial distance. The directional intensities

of electron (E > 45 keV) beyond this boundary and in the

plasma sheet typically exceed the intensity thresholds of the
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G, M. tubes flown on both OGO 3 and Injun 5. This equatorial

trapping boundary was assumed to be coincident with, or in

the near vicinity of, the position at which the local mag-

netic field begins to largely differ from a dipolar

field. Hence the low-altitude trapping boundary, defined

here as coincident with the high-latitude termination of

measurable intensities, is located poleward of the positions

of field lines threading the plasma sheet.

With regard to ground-based observations of aurora

it is of interest to note briefly the dominant sources of

the precipitated electron intensities in the local-night

sector. During periods of relative magnetic quiescence the

principal energy influx is provided by inverted 'V electron

events poleward of the trapping boundary in the late evening

sector and by plasma sheet electrons equatorward of this

boundary in the early morning sector. Near local midnight

both types of precipitation are often competitive with the

inverted 'V events located poleward of the latitudinally

wider plasma sheet precipitation zone.
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Figure Captions

Plate la . Typical E-t spectrograms of electron intensities

precipitated into the earth's atmosphere during

periods of relative magnetic quiescence. These

eight spectrograms have been ordered with respect

to the local time of the observation with the

noon and midnight sectors in the center top and

bottom panels, respectively. The corresponding

trajectories and Feldstein's auroral oval in

A-MLT coordinates are displayed in the center

panel.

Plate Ib. Continuation of Plate Ib for simultaneous obser-

vations of low-energy proton intensities precip-

itated into the upper atmosphere.

Note: Plates la and Ib to be published in color.

Figure 1. Directional intensities of trapped electrons

(E > 45 keV) as functions of invariant lati-

tude A for each of the eight spectrograms of

Plates la and Ib. These measurements were

used to delineate the trapping boundary as

denoted by heavy arrows in the two color plates.

Figure 2 . Interpretive diagram for the auroral zones and

polar cap, including the low-altitude signatures
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of plasma in the distant magnetosphere, the ma-

jor convection zones and the field topology.

(See text.)
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