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ABSTRACT

Recent measurements of magnetospheric electric fields
with the satellite Injun 5 have provided a comprehensive global
survey of plasma convection at low altitudes in the magnetosphere.
A persistent feature of these electric field observations is
the occurrence of an abrupt reversal in the convection electric
field at auroral zone latitudes. The plasma convection velo-
cities associated with these reversals are generally directed
east-west, away from the sun on the poleward side of the re-
versal, and toward the sun on the equatorward side of the re-
versal. Convection velocities over the polar cap region are
normally less than those observed near the reversal region.

The electric field reversal is observed to be coincident with
the 'trapping boundary' for electrons with energies E>LS keV,.
Near local noon the region of anti-sunward convection poleward
of the electric field reversal/trapping boundary corresponds
to the low-altitude extension of the polar cusp plasma.
Intense 'inverted V' electron precipitation events associated
witﬁ auroraliarcs are also observed near and poleward of the
electric field reversal/trapping boundary. These observations
are discussed in terms of a current model of magnetospheric

convection.



I. INTRODUCTION

Recent méasurements of electric fields using the
double~-probe technique on the low-altitude (67T to 2528 km)
polar orbiting satellite Injun 5 have provided the first
extensive global survey of electric fields and plasma con-
veétion in the magnetosphere. 1In this paper we summarize the
principal observational results from the electric field
éxperiment on this spacecraft.
| The electric field experiment on Injun 5 is of the
double-probe type described by Fahleson [1967] and others.

The probes used consist 6f two conducting spheres. 20.3 cm

in aiahétér mounted on booms with a center-to-center separa-
tion of 2.85 meters. The spacecraft is magnetically oriented
by‘a_bar magnet within the spacgcraft such'that the electrie
'.antenna axis is maintainead approxiﬁgtely perpendicular (~%10°)
to the geomagnetic field. The poténtial difference between

the spheres is obtained from a high input impedance differential
amplifier and is recorded along with other data by a tape
recorder in the satellite s§ that global surveys of electric
fields and ofher geophysical phenomena.can be obtained. Various
other parameters;such as the antenna impedance and the electron
. density and temperature_gre also available to determine if the

electric antennea system 1is opérating properly. For further



details on the Injun 5 electric field instrumentation and ob-
servations the reader is referred to papers by Gurnett et al.

[1969], Gurnett [1970), Cauffman and Gurnett [1971, 1972], and
Frank and Gurnett [1971].



II. DATA ANALYSIS AND INSTRUMENTAL EFFECTS

Electric field measurements obtained for a pass over
the northern polar region are shown in Figure 1 to 1ilustrate'
the technique used in analyzing the Injun 5 electric field
data. The systematic sinusoidal variation evident in the
measured electric field Em’ shown by the light line in the top
panel of Figure 1, is caused by the spacecraft rotation in the
stﬁ field from the spacecraft motiop through the ionosphere.
At middle and low latitudes, where the ionospheric plasma is
expected to corotate Qith the earth the sti fileld provides a
. convenient reference for "ealibrating"” the overell accuracy
of fhe electric field determination. After all instrumental
effects are considered the overall accuracy of thg Injun SL
electric field measurements, as determined by comparisons with
the»#sxﬁ field, is about ¥30 mV/m. This error is primarily
cauéed by unequal photoelectron emission from the two spheres
- due to asymmetrical sunlight shadowing of the spheres by the
supporting bqoms. For certain orientations and for cases when
the spacecraft is rotating very slowly, the effects of this
asymmetrical shadowing can be eliminated and the accuracy is
increased to about *10 mV/m.

To determine naturally occurring convection electric

fields it 1s necessary to subtract the st§ field and errors



due to shadowing asymmetries from the measured electric field.
The procedure used to determine the subtracted electric
field, E_, is to (1) compute the expected stﬁ field component
using the estimated spacecraft orientation (which is sometimes
in error by up to 10° in rotation aﬁout the geomagnetic field),
and then to (2) readjust the amplitude and phase of the sinu-
soidal stﬁ variations to provide a good fit to the observed
stﬁ field at low latitudes where no convection electric
fields are expected. The solid dark curve shown in the top
-panel of Figure 1 is the subtracted electric field, Es, de~
termined in this manner. The difference between the measured
electric field and the subtracted electric field, Ec=Em-Es,
is the ﬁest estimate of the actual convection electric field
in the ionosphere. Other readily recognizable errors due to
sunlight shadowing by the spacecraft body and wake effects
nmust also be eliminated from consideration. See Cauffman and
Gurnett [1972] for a discussion of these effects.

The plasma convection velocity Vc is determined from
the coniection electric field ﬁc using the equation [Axford,
19691 |

<> +> -+ 2
Vc = Ech/B .

The convection velocity components corresponding to the electric
field measurements in the top panel of Figure 1 are shown by
‘the arrows in the invariant latitude (INV) - magnetic local

time (MLT) poler diagram at.the bottom of Figure 1. The direction



of the arrow represents the direction of the convection velo-
city component detected and the length of the arrow is pro-
portional to the maénitude of the convection velocity. VNote
that the arrows do not indicate the vector direction of the

convection velocity. since only one component is measured.



III. SUMMARY OF OBSERVATIONS

The convection observations shown in Figures 2 and 3
have been selected to illustrate some of the general features
of tﬁe-InJun 5 convection electric field measurements. The
most promineﬁt and persistent feature of the Injun 5 electric
field data is the occurrence of an abrupt reversal or discon-
tinuity in the convection electric field at about T0° to 80‘o
invariant latitude. An example of such an electric field
reversal 1s shown in Figure 1 at 1132 UT where the convection
electric field changes sign, from about -100 mV/m to +125 mV/m.
The corresponding convection veloéity component, shown in the
'polar diagram at the bottom of Figure 1, shows a reversal from
eastﬁard (sunward) flow on the equatorward side of the reversal
to westward (anti-sunward) flow on the poleward side of the
reversal. The series of successive dawn-dusk polar p?sses
illustrated in Fiéure 2 also shows similar abrupt reversals
'in the direction of the convection velocity. These reversals
are particularly evident in the dawn local time region at about
172k:20, 192%:30, and 2123:30 UT. Smaller reversals are also
evident in the dusk region at 1734:00 and 2132:00 UT. 1In all
‘cases the reversals are consistent with a generally sunﬁard
flow on the equatorward side of the reversal and anti-sunward

flow on the poleward side of the reversal.



Usually the largest convection velocities are observed
" near, within 5° to 10° invariant latitude, the electric field
reversal location. At higher latitudes, in the polar cap
regidn, the convection velocity is usually less than the ~0.75
km/sec sensitivity 1imit imposed by the 230 mV/m uncertainty
in the.cohvection electric field determination. Orbdit 6909,
in Figure 2, however shows the occurrence of an essentially
uniform anti-sunward flow with velocities greater than 1 km/sec
along the entire satellite trajectory over the polar region
from 1724:00 to 1734:00 UT. Examples of relatively uniform
transpolar convection, such as might be inferred from cases
‘1ike orbit 6909, with convection velocities greater than
0.75 km/éec'are-not commonly observed with Injun 5.

Figure 3 illustrates the electric field observed for
an approximately noon-midnight meridonal pass over the southern
hemisphere. Near local noon, at about 0850:20 UT and 80° INV,
a clearly defined electric field reversal is observed. Over
the polar cap region, from about 0852:00 to 0857:06, the con-
veétion velécity component detected 1s very small, less than
0.25 km/sec. The spacecraft orientation and rotation rate
for this pass are such that the convection velocity can bve
determined to within about 0.25 km/sec (%10 mV/m). 1In the
iocal midnight region a large westward (anti-sunward) convection
zone is observed from 0857:00 to 0902:00 UT and a vﬁriety of

more complex variations is observed after 0902:00 UT. 1In this
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case, no discernible electric field reversal is observed in
the local midnight region. The Injun 5 electric field ob-
servations through the noon-midnight local time regions gen-
erally tend to be more complex and less ordered than in the
dawn-dusk regions, particularly near local midnight, with a
tendency for multiple zones of convection and more than one
electric field reversal or, as in the case shown, no electric
field reversal at all.

In order to obtain a general idea of the average or
"typical" high latitude convection pattern a study was per-
formed [Cauffman and Gurnett, 1972] using all of the availabdle
Injun 5 electric field data. §Since only one component of the
electric field is sensed it is neéessary to utilize a large
number of observations at different antenna orientations to
deduce the general direction of the plasme flow. The method
used to determine the general direction of the plasma flow
was to analyze all of the observed electric field reversals in
terms of either east-west or north-south velocity components
on either side of the reversal. Figure & shows the results of
1nter§reting all of the observed reversals in terms of east-
west convection. Each point represents the position of an elec-
tric field reversal. The open circles indicate that the con-
vection velocity is eastward on the poleward side of the re-
versal and Qestvard on the equatorwvard side of the reversal.

The dark circles indicate the opposite, westvard on the



11

poleward side and‘eastward on the equatorward side. The half
dark circles represent cases where the electric antenna orienta-
tion was such that only the north-south component of the con-
vection velocity could be sensed.

From Figure U it is seen that for locel times from O
to 12 hours the convection &elocity is generally westward (anti-
sunward) on the poleward side of the reversal and eastward
(sunward) on the equatorward side of the reversal. For local
times from 12 to 24 hours the latitudinal variation is just
the oppoéite. A similar scatter plot obtained by analyzing
all of the reversals in terms of north-south convection com~
ponehts shows no consistent ordering of'the data, thereby
indicating that the convection velocities at the reversal bound-
ary aré primarily east-west.

The general convection pattern deduced from the Injun 5
observﬁtions is illustrated schematically iﬁ Figure 5. This
diagram incorporates the results from the statistical study
discussed above indicating that near the reversal the plasma
flow is primarily east-west, away from the sun on the poleward
gside of the reversal, and toward the sun on the equatorward
gside of the reversal., The large arrows near the reversal bound-
ary are indicative of the fact the largest convection velocities
are usually observed within about 5° to 10° invariant latitude
from the reversal boundary. The larger arrovs in the dawn
region compared to the dusk region are indicative of the fact

that the convection velocities are usually largest in the dawn
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local time region [cf. Figure 2]. The narroving of the arrows
toward loqal noon is indicative of the fact that the latitudinal
viqth.of the convection zones tends to be narrower near local
noon and wider in the local evening [cf. Figure 3]. The smaller
arrows over the polar cap region reflect the fact that the
convection velocities are generally smaller (<0.75 km/sec) over
the polar cap region than near the reversal dboundary. The
anti-sunward direction of the convection in the ﬁolar cap
region is based on the recent electric field measurements by
Maynard [1971)] with the 0G0-6 satellite which reportedly show

& general anti-sunward flow over the polar cap region with
velocities generally dbelow the 0.75 km/seé sensitivity 1limit

of fhe Injun 5 electric field experiment.

It should be emphasized that the convection pattern
illustrated in Figure 5 rgpresents a gross average of the
convection detected by Injun 5 and significant departures un-
doudbtedly occur. Since in many cases the convection velocity
is below the sensitivity limit of the Injun 5 electric field
experiment, the convection pattern in Figure 5 represents
conditions of enhanced convection (>0.75 km/sec) and may not

be representative of more quiescent conditions.
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IV. ASSOCIATION WITH CHARGED PARTICLE OBSERVATIONS

Comparisons of the low-energy charged particle measure-
ments from the LEPEDEA instrumentation oﬁ Injun 5 and the
.electric field data have shown that the electric field reversal
corresponds closely with the position of the 'trapping
boundary' for electrons with energies E>L5 keV [Frank and
Gurnett, 1971]. (See Frank and Ackerson [1971a] for details
of the LEPEDEA instrumentation.) An example of this association
is illustrated in Figure 6 which shows the electric field and
selected charged particle measurements for a dawn-dusk pass
over the northern polar region. Because of the favorable an-
tenna orientation and very slow rotation rate on this pass
the convection electric field can be determined to an accuracy
of about 10 mV/m. A clearly defined electric field reversal
is observed at about 14L43:20 UT in the dawn local time region
and a smaller, less distinct, reversal is observed at about
1453:10 UT in the dusk local time region. These electric field
reversals are seen to be essentially coincident with the high
latitude termination of measurable intensities of electrons with
energies E>45 keV (indicated by the dashed vertical lines in
Figure 6). This termination is commonly referred to as the
'trapping boundary' and represents a natural coordinate for

investigating high latitude magnetospheric phenomena [see recent
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discussions by Frank and Ackerson, 1971b}. On the basis éf these
and other measurements, Frank and Gurnett [1971] have inter-
preted the trapping boundary and associated electric field
reﬁersal as delineating the high-latitude termination of
closed field lines, with the sunward plasma flow occurring on
closed field lines within the magnetosphere, and the anti-
sunward piasma flow occurring on open field lines which connect
into the solar wind.

Low-énergy electron precipitation events associated
with auroral arcs are also observed near and sometimes
poleward'of the trapping boundary/electric field reversal lo-
cation. These low-energy electron precipitation events often
have a characteristic 'inverted V' energy-time signature with
the average electron energy ihcreasing from less than 100 eV
to a maximum of several keV, or more, subsequently decreasing
as the satellite passes through the precipitation region [Frank
and Ackerson, 197la)]. 1Inverted 'V' precipitation events have
been directly associated with auroral arcs [Ackerson ﬁnd Frank,
1971). The low-energy, 325SES570 eV, electron fluxes shown
in the bottom panei of Figure 6 provide a coarse indication
of the location of inverted 'V' electron precipitation events
occurring during this pass. In the local morning region a
single inverted 'V' event is observed at approximately 1LkL3 UT,
nearly coincidenf with the trapping boundary/electric field‘

reversal location. 1In the local evening region two inverted
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'V' events are observed, one at about 1453 UT, near the trapping
boundary, and the second at about 1452 UT, poleward of the
trapping boundary.

| The relative locations of the inverted 'V' events and
the trapping boundary in this case are consistent with the
general survey results of Frank and Ackerson f1971b] wvhich
show that the inverted 'V' precipitation events occur on open
field lines near 6r poleward of the E>45 trapping boundary
and in a region of generally antis=sunward convection [cf.
Figure S5]. Equatorward of the E;hs keV trapping boundary,
in the region of sunward convection, significant electron
precipitation and associated auroral light emission are also
observed during the local midnight and morning hours. However,
thefelectron precipitation in this region generally has a
harder energy spectrum and lower intensity than the inverted
'V' events and 18 identified by Frank and Ackerson [1971b] as
originating from plasma sheet electrons injected onto closed
field lines in the local midnight region.

| Near local noon the convection electric fields observed
by Injun 5 can be directly associated with the entry of magneto-
sheath plasma into the polar magnetosphere through the dayside |
polar cusp region identified by Frank [197la], Frank and
Ackerson [1971la)], and Heikkila and Winningham [1971]. An
example of such en observation is shown in Figure 7, from
Gurnett and Frank [1972]. The intense fluxes of low-energy

electrons (325%E£570 eV) and protons (290<€E<L55 eV) occurring
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from 1511:30 to 1513:45 UT on this pass, poleward of the E>LiS

keV trapping boundary, identify this region as the polar cusp.
The separation of the polar cusp into an equatorward 'electron
sheet' and a poleward 'proton sheet' is directly comparable

to Frank's [1971a] IMP-5 observations of the polar cusp at

much higher altitudes, ~5 R The simultaneous observation

E*
"of broad-band VLF hiss generated by the polar cusp plasma,
éhown in the top panel of Figure 7, provides further evidence
of the polar cusp location én this pass. The electric field
data for this pass shows a negative perturbation from the stﬁ
field of about 36 mV/m in the polar cusp region. This electric
field corresponds to a westward (anti-sunward) convection of
about 1 km/sec in the polar cusp region. From this gnd other
similar observations it is concluded that the polar cusp region
is_directly associated with the region of enhanced anti-sunward

convection on the poleward side of the electric field reversal/

trapping boundary [ecf. Figure 5].
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V. DISCUSSION

The general pattern of low-altitude convection can be
interpreted using the magnetospheric model ehown in Figure 8,
from Frank and Gurnett [1971]. This model uses the process
of merging of the geomagnefic field with the solar wind mag-
netic field proposed by Dungey [1961, 1968], along with the
usual 'frozen field' model of plasma flow, to explain the
coupling of the solar wind convection into a magnetosphere,
but differs from Dungey's model in the details of the flow
over the polar cap region. Magnetic merging along the sunward
'surface of the magnetosphere allows the direct coenection ef,
geomagnetic field lines with the solar wind magnetic field.

On the day side of the magnetosphere, these field lines con-
stitute open field lihes through the polar cusp, such as B

and b in Figure 8, and provide for the direct entry of magneto-
Asheeth plasma to low altitudes within the magnetosphere.

Since the plasma convection away from the sun on the day side
of the magnetosphere is usually limited to a relatively narrow
zone on the poleward side of the trapping boundary [cf. Figures
-3 and 7) the convective flow in the polar cusp region is believed
to follow fhe east-west extension of the polar cusp into the
‘dawn and dusk flanks of the magnetosphere as indicated in

Figure 8. The width of this convection zone, which is initially
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only a few degrees wide in invariant latitude near local noon,
incfeases considerably in the dawn and dusk regions. Subsequent
anti-sunwvard convection carries the field lines into the

distant plasma sheet (field lines B' and b') where they again
merge to form closed field lines (such as A) in the near earth
plasma sheet. The reader is referred to Frank [19T71b] for a
discussion of the various plasma regimes involved in this model.
After merging occurs at the neutral sheet the field lines are
then convected sunward, toward the front of the magnetosphere
v(field line A') to complete the flow pattern. This flow

pattern for magnefospheric plasma qualitatively accounts for

the principal features of the observed convection pattern at

lov altitudes [cf. Figure 5]. It is to be noted that in this
modél the electric.field reversal, which is .the boundary between
the regions of sunward and anti-sunward flow, occurs on field
lines which are in the merging regign. Since magnetic merging
conétitutes'a basic process by which energy is dissipated within
fhe magnetosphere, it is understandable that intense electron
acceleration and precipitation are associated with the electric
field reversals, although the details of these processes rémain

to be resolved.
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FIGURES
Figure 1 Method of subtracting the stf electric field,
Es’ from the measured electric field, Em’ to

determine the convection electric field, Ec=Em-Es,
and a polar plot of the associated convection

velocity component.

Figure 2 A series of dawn-dusk orbits showing the persistent
occurrence of reversals in the convection electric
field in both the dawn and dusk regions, and one
case (orbit 6909) having nearly constant anti-
sunward convection along the entire satellite

traJectory over the polar cap region.

Figdre 3 A néon-midnight pass showing a distinct reversal
o near local noon at about 80° invariant latitude,
relatively low convection velocities over the
polar cap, and & large zone of westward convection

in the local midnight region.

Figure b . Locations of reversals observed by Injun 5, coded
to indicate the -east-west direction of the convection

poleward and equatorward of the reversal.
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Figure S Qualitative sketch summarizing the 'average'
convection pattern obtained from the Injun 5

electric field measurements.

Figure 6 Simultaneous electric fields and low=-energy
| plasma measurements showing the correspondence
between the electric field reversal, the E>L5
keV trapping boundary, and inverted 'V' electron

precipitation events.

Figure T Simultaneous VLF; electric field and low-energy
plasma observatibns showing the occurrence of
anti-sunwvard (westward in this case) convection

in the polar cusp region.

Figﬁre 8 Scheﬁatic diagram showing the proposed model of
| magnetospheric convection. The glectric field
reversal and the E>45 keV trapping boundary
occur at the boundary between opeh.(B-b and B'-b')

and closed (A and A') field lines.
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