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ABSTRACT

The stability of a self-gravitating, non-rotating, isothermal gas layer

threaded by a one-dimensional equipartition magnetic field, immersed in a

rigid isothermal layer of stars, is considered with respect to waves with motions

in and perpendicular to the Be - ge plane, where Be and ge are the equilibrium

magnetic and gravitational field vectors. When motions are perpendicular to

the Be - ge plane, the magnetic field hinders gravitational instability, increasing

the minimum length necessary to produce instability by the factor (1 + a )1/2,

where a is the ratio of magnetic pressure to gas pressure. When motions are

in the B - -e plane, no such simple analytical solution is found. However,

the resulting system of equations reduces to a single fourth order differential

equation in A O (the perturbed gas potential) that defines an eigenvalue problem

for the marginally unstable state when the four appropriate boundary conditions

are considered.
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I. INTRODUCTION

In Paper I of this series (Kellman 1972a) we investigated the equilibrium

in the z direction (i.e. above the galactic plane) of a static, isothermal, plahe-

parallel layer of gas with equipartition magnetic and cosmic-ray components,

immersed in an isothermal layer of stars. In Paper II (Kellman 1972b) we

considered the gravitational stability of the gas layer with respect to plane and

axially symmetric perturbations, neglecting the magnetic and cosmic-ray com-

ponents, with the view toward explaining the large gas structures (1 - 2 kpc,

107 M,) observed to be the principal elements of the gaseous component of

spiral arms in the Galaxy (McGee and Milton 1964). It is our purpose here to

modify the stability analysis of Paper II by including a one-dimensional equi-

partition magnetic field in the initial equilibrium state. We consider only the

modes with motions (a) in and (b) perpendicular to the Be - ge plane, where

Be and ge represent the equilibrium magnetic and gravitational field vectors.

Paper IV (Kellman 1972c) will consider the effect of a combined magnetic field

and cosmic-ray gas on the stability of the gas layer.

Field (1970) has investigated the stability of an infinite uniform self-gravitating

gas (no stars or cosmic-rays) against disturbances propagating both along (case a)

and perpendicular (case b) to a uniform magnetic field Bo . For case (b), he

found that the magnetic field increased the minimum length necessary to produce

gravitational instability by the factor (1 + 2a)1 / 2 , where a is the ratio of mag-

netic pressure to gas pressure. We will find a similar but somewhat smaller
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modification: (1 + a)1/2. For case (a), Field discovered two modes. The first

is the simple Alfven mode, and the waves travel with the Alfven velocity v
A

=

Bo/(47T p0 )1/2 . The second is more subtle and divides into two cases, depending

on the wavelength X. When X < XJ, where J = (7T (vt) /Gp 0 )1/ 2 is the

Jeans' length, the solution is stable and gives acoustic or sound waves, and in

the limit k < < kJ, the waves travel at the sound speed. When k > X , the

solution gives an unstable mode, the instability caused by self-gravitation of the

gas. This is the well-known Jeans' instability.

Parker (1966) has considered the stability of a combined magnetic field,

cosmic-ray gas, and thermal gas against disturbances propagating along the

direction of the magnetic field (case a). Equipartition of energy between the

components was assumed. However, self-gravitation of the gas layer was ne-

glected; this explains why lengths significantly smaller than typical Jeans'

lengths resulted.

II. STABILITY ANALYSIS

a) Motions in a Plane Perpendicular to the Be - e Plane

The relation between the vectors Be ge, and k and the xyz coordinate sys-

tem is shown in Figure 1. k is the wave propagation vector; Be and ge have

been defined above. The case Be I k (case b) for an infinite uniform self-

gravitating gas is particularly interesting (Field 1970). The longitudinal mode

with vX = 0, Vy finite propagates with phase velocity v = ( v 2 ) 1/2 (1 + 2 a) 1/ 2 ,
P t
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and is called, appropriately, the magnetosonic mode. The magnetic restoring

forces are not due to curvature of the field lines as is true of the Alfv'en mode,

but to pressure gradients. The criterion for gravitational instability is X 5 (1 +

2 a)1/2 XJ; the presence of a magnetic field renders gravitational instability

more difficult.

With these introductory remarks in mind, it seems appropriate to redefine

the problem at hand. We seek to determine how a simple one-dimensional equi-

partition magnetic field (along x) effects the stability criterion of waves propa-

gating perpendicular to Be (along y) in an isothermal self-gravitating gas layer

with infinite conductivity immersed in a rigid isothermal star layer.

The basic equations are the continuity, momentum, hydromagnetic, Poisson,

and heat equation, and they are written as follows:

+Pg V~v~O (1)
d t P + P V-. = 0

P + Pd t v- B-VB + 1 VB2 + p Vb= O 
9 d 47T 8 +(

B - V x (v x B) = (3)

4 7T G (pg + p.) - V
2

(; g + 5) = O (4)

pg = (Vt2 z ) pg. (5)
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p, p, A, and B are, respectively, the density, pressure, gravitational potential,

and magnetic field strength. (v2z) is the mean square z turbulent gas velocity

dispersion. v is the gas velocity, a first order quantity. The subscripts g and

* denote gas and star, respectively. The perturbations in pg, pg, 0g, and B may

be written as follows:

pg = Peg + Pg (6)

Pg = Peg + Pg = (Vz) Pg (7)

(8)
~g -= eg + g (8)g

O = e + A Og =eg + fe* +Ag (9)

B= Be +AB, (10)

where the subscript 'e' denotes the equilibrium quantities and A denotes the

perturbed quantities. Retaining terms only to first order in the perturbed

quantities, equations (1)-(5) become

A Pg + P. V Peg + Peg V-v 0

(tz) VA /pg+ + Apg Ve e eg ) +Peg (12)

a A B + v-V Be + Be (V v) - (Be V) (13)= 
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47TG A pg - V 2 A ¢g = 0, (14)

where we have introduced a well-known vector identity into the hydromagnetic

equation.

The coefficients of the system (11)-(14) are all independent of t, x, and y,

enabling us to Fourier analyze in these variables, in which case a /,t - n,

6/ax - ik,, and /ay - iky. However, since k = ky ey + k
z

z for the case

under study, k
x

= 0, and equations (11)-(14), written in component form,

become

/ A p a d V =0 Z=O(15)n A pg.+ i ky Peg vy + Peg a z e (Z

e A(16)
i ky (v2z ) A pg Pe + n Peg vy + i ky Peg A g = (16)

d Oe~~ B, a a~ (17)
-v/t2z) az + n P Vz + egAB++ ABx-B +p -A ¢g0

g gdz eg ZZ 47T ' a 47 d z e z

iky Be Vy + (Bea + d B) v
z

+ n A Bx = 0 (18)

4 A- ) A (19)
-47T GAp + - k Ag =0.

Equations (16) and (17) are the y and z components of the momentum equation;

equation (18) is the x component of the hydromagnetic equation. The y and z

components of equation (13) are not written since they merely express the fact

that A By =AB = 0.
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If we write that

d
d z Peg 

=
f Peg'

then it follows that

dz 2 (21)

since Be2 /p e g is assumed to be independent of z. Equation (20) is consistent

with the presence of a stellar component. We proceed by deriving an expression

for d/dz Oe:

d 1 d
dz e : z (Peg 

+
Be/ 8 r) = -

1 ( (v2) + vA /2) d
Peg z Peg

(Vt2z) d
= - p (1 + a) d Peg = -(v 2 ,) f (1 + a),

a = B 2 /8 7T Peg (V2z) = v 2 /2 (V 2
z )'e eg tz A tz

where

(22)

(23)

Equations (20)-(23) are substituted into the system (15)-(19), with the result that

n A +k + + Vz = (24)
Peg + =

Apg n AB A_ (25)+ vy+2a + =0
Peg i ky (v2 z

) B (vBt2

6
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1 3
p za APg - f
eg 

A Pg n
(1 + a) e+ )

Pe g (V2 z )

(26)+fa + a A _ g =-0
Be (V2z )

_4+G(2 2B 

-4 TGA /g + 2 _ g 
A Pg + -k =k0.

vt2 ) , > z 2 (v2Z)

(27)

(28)

To proceed further, we need expressions for 1/Be a/az ABx and 1/Peg a/az Apg:

1 AB = (ABX/Be) - A B
x

d /
z

= (1/B) 
=

9)
Be az azdz\

1p aZ a Pg =a (A Pg/Peg) - -p a Zg
Peg Z g 

+ Ap g.
Peg

If we define e, 8 , and ¢ by the equations

e = A Pg/Peg

s = A Bx/B e

= =At g/ (V2z)

and employ equations (29) and (30), the system (24)-(28) reduces to

(30)

(31)

(32)

(33)

7
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n E + i ky V () v = (34)

e + n v +2a8 +=O (35)

i ky (V2z.)

( a-f e) e + n v z + 2 a + f +- Z = (36)
(v tZ

ik 3, 3 2 )V:Zn=o I -(37)i ky vy + + ·v + n = (37)

(v ) + Z

The usual way to proceed is to Fourier analyze in the remaining variable z

and then set the determinant of the coefficients of the system (34)-(38) equal to

zero so as to avoid the trivial solution for e, v,, vz, 8, and p. A dispersion

relation between n and ky is then obtained, and each solution is called a mode.

However, not all of the coefficients in this system are independent of z, render-

ing Fourier analysis in z a useless exercise since-the dispersion relation would

contain unknown integrals over q and other of the variables. An alternate

approach is to derive from the system (34)-(38) a single differential equation

in the unknown . With the appropriate boundary conditions the equation would

implicitly contain the desired dispersion relation.
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We have been unable to reduce the system (34)-(38) to a single differential

equation, and therefore will restrict the analysis to the neutral or marginally

unstable state by setting n = 0:

e + 2 a +b= 0 (39)

(z-f ++2 + 8 + a + =o (40)

-47rrGPe (-- k) 2 = O. (41)
(V 2 2

Equations (34) and (37) have not been written explicitly; they merely express

that vy = v~ = 0, the expected result that all velocities vanish in the marginally

unstable state. To proceed, we differentiate equation (39) and subtract equation

(40), with the result that

(42)S = e/2.

Combining equations (39) and (42) it easily follows that

E = _ 0 (43)
1+a

and the Poisson equation (41) thus becomes

2 ¢ +[ 4rTG Peg k = o (44)

3 z2 (v2z) (1 + a)

9



Equation (13) in Paper II of this series (Kellman 1972b) defines the scale height

Hg of the equilibrium gas layer in the z direction to be

H2 vt2z (45)
g 8 7T G Pego

where Pego is the value of peg at the plane z = 0. Equation (44) may therefore

be written

a2 PI++ 1 Peg (z) k = , (46)

a 2 2 H (1 + a) Pego

with the boundary conditions

_ (z =0) =0 (47)

lim = (0.
(48)IzI-00

Equation (47) results because ~b = A ~g / (V2 ) is an even function of z; equation

(48) results because A 'g is constrained to -0 as z I- .

It is useful to recall that in Paper II we considered a problem similar in

every respect to that considered here, except that B
e

= 0. Thereforej as an

obvious check on the validity of equations (46)-(48) we require that in the limit

Be - 0 they reduce to the analogous set of equations in Paper II, equations (18)-

(20). This requirement is indeed satisfied. In fact, equations (46)-(48) differ
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from equations (18)-(20) only by the factor (1 + a)=(1 + B /8 7r P ( v )) in
eo ego t

the second term of equation (46). Since a > 0, the depth of the equivalent

potential well is reduced, and from our discussion in Paper II the eigenvalue

ky decreases in magnitude. Therefore, the radius r
I

of the marginally unstable

state in the symmetry plane (proportional to 1/ky) increases. This is entirely

reasonable from a physical point of view; the presence of a magnetic field en-

hances the difficulty of gravitational instability to result from a given disturbance.

To calculate the radius of the marginally unstable state, we recall Figure 1

from Paper II, where r
I

is plotted as a function of (V2Z) 1/2. We merely equate

(v 2 ) 1/2 (1 + a) 1/ 2 with (V 2) 1/2 and read off the value of rl; this is equivalent

to multiplying r1 by (1 + a )1/2 since r 1 is linearly related to (v 2z) 1/2. As

before, we choose p = 1 H atom/cm3 = 0.025 M./pc 3 (Weaver 1970), P*O =

0.064 M,/pc3 (Luyten 1968), and (v2
z
) 1/2 = 18 km/sec (Woolley 1958). (v 2 ) 1/2

is allowed to vary between 1 and 20 km/sec. The results are displayed in Table 1

where we compare r1 calculated with Beo = 0,uG, 3MG, and 5M/G. The r1 (O0uG)

are taken from Table 1 of Paper II. We see that the magnetic field increases its

effect as (v2z) 1 / 2 decreases. For atypicalinterstellarvalue (v2 ) 1/2 =7.5

km/sec, a 3/uG field increases r1 (0OLG) by 15%; a 5,uG field increases r i (0MG) by

44%.

In summary, if rI (O0uG) is the length for which a non-magnetic,

self-gravitating, isothermal gas layer (immersed in a rigid isothermal

star layer) just becomes gravitationally unstable, then the introduction
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of a one-dimensional equipartition magnetic field increases r I (0/-tG) by the factor

(1 + a)1 /2 = (1 + v/2 <vtz))1 / 2 ,where the relation betweenB

e

, g e, and k is

as shown in Figure 1. This result is similar to the modification (1 + 2a)1
/ '2

induced by the presence of a uniform one-dimensional magnetic field in an

infinite uniform self-gravitating gas (no stars) when disturbances propagate

across Be (Field 1970).

b) Motions in the Be - ge Plane

The relation between Be ge, and k and the xyz coordinate system is shown

in Figure 2. As in Section IIa, the basic equations are the continuity, momentum,

hydromagnetic, Poisson, and heat equation. Only the momentum equation need

be rewritten here, since we have chosen to write the magnetic force in a slightly

different form:

Pg d v + V pg - 47 (V x B) x B + pg V = 0. (49)

Introducing the perturbations from equations (6)-(10) and retaining terms only

to first order in the perturbed quantities, equations (1), (3), (4), (5), and (49),

written in component form, become

t APg + Peg a y+ (Peg + d Peg)z = 0 (50)

12



(vt) axA pB XA B ye A _.ABx+P a. A g =0 (51)

t(Vz) A pg + Peg bt vY - 44 f Bz e Peg A g = (52)
Z egtd 4z T e + eg yg

( a2 d 1 d
(VtZ) a p + A Pg z e + Peg B Vz + B eBa~~~z ~4*r b z YP 4vT rZ Ydz

A Be +p -A -= (53)
4 7r by eg z

AB-B -a 0 (54)

ABy + (Be + d B v =0 (55)

4t -· G a z_ V2 z= 0 (56)-a (56)-atnB, -Be- a V,=0

4Tr GApVag = V2 A 0. (57)

Equations (51), (52), and (53) are, respectively, the x, y, and z components of the

momentum equation; equations (54), (55), and (56) are, respectively, the x, y, and

z components of the hydromagnetic equation.. Since we restrict the velocity vector

to the y-z plane, v, = 0 and from equation (54) it follows that ABx = 0.
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The coefficients of the system (50)-(57) are all independent of t, x, and y,

allowing us to Fourier analyze in these variables (@/3t - n, V/-x - ik, a /a y

- ik ). However, since k = k e + k z , k = 0 and equations (50)-(57) simplify
y y y z x

to

nAp + i ky Peg vy+ 'a p + d Pe Vz = 0 (58)
9g Peg ~y ea zg d e y 

1 d (59)
i ky (v2 z ) A pg + n Peg Vy - 47T aB d z B e + i ky Peg A qg = O

- i ky 4 7T B + Pe z g (6

2 + d vz + n A By =(61)
~~~~~~~Be ~~~~(62)

iky Be vz - n A B =0 (62)

47TGApg -a2 k Ag0. (63)

If we write as before d/dz Peg = f Peg' then it follows that d/dz Be = 1/2 fBe,

since Be2 /peg is assumed to be independent of z. These equations are consistent

with the presence of a stellar component. We proceed by recalling equations

(22), (29), and (30) for the quantities d/dz O$, 1/Be a/z AB , and 1/p e/gz Ap.' e y ~~~eg A g.

14



Equations (58)-(63) now become

n + f)z = (64)
Peg(z

n , n A B A q g
i ky +- v - f a B + i ky ( (65)

Peg (v~2 e

(vt2 

(a 2) 
v z +2naB. (67)Pe (V2 ,A z (a q Be

A B_ 0 g (66)
-i ky 2 a- + = 

+ Vz+n =0
Be

A Bz
i ky vz -n B. = 0 (68)

e

4 7 G A pg 32 k = 0. (69)
(vtL2 z2 (V2z.~tz tz

As we found in Section IIa, the coefficients of the system (64)-(69) are not all

independent of z, rendering Fourier analysis in z a useless exercise. We proceed

as before by setting n = 0, which restricts the analysis to the marginally unstable

state. If we make the substitutions

= A Pg/Peg (70)

= A By/B
e

(71)

15



= A Bz/Be (72)

P = A g / (V2.), (73)

equations (64)-(69) become

i ky e- f ay + i ky =O (74)

(d -)f aE)+2 e+ ( f) T- 2 i ky + =O (75)

4 7TGeg e - = O. (76)

Equations (64), (67), and (68) are not presented here; they merely express that

vy = vz = 0, a result already expected for marginal stability.

We proceed by attempting to obtain from the system (74)-(76) a single

differential equation in 0i, which together with the appropriate boundary conditions

would implicitly contain the solutions for ky. It appears at first glance that we

have three equations (74)-(76) in the four unknowns e, T, y, and q. T and y

are not, however, independent. From equations (67) and (68) it follows that

_ = -i, (77)
ik ky 2-z + T,

and equations (74)-(76) reduce to

i ky - f a + i ky = O (78)
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/aZ - f a)
2a

e-iy

4 7 G Peg

(vt2z)

(79)

(80)( 2u- k) = o.

e and y are eliminated from the system (78)-(80), and the result is a single

fourth order differential equation for ib:

1 a4 a3f + +,
f z4 a z 3

/4 7T G Peg

f(v2 )t z

2 k2

f
f a f a2

a z2

(4 7 G PegZ

tz

27rf GPeg 47 k 2 G Pe f ak 2

f eg 2

f (v2) 2

f kY k4\
2 + _I= 0.

The appropriate boundary conditions to consider with equation (81) are the

following:

-a (z = 0) = 0

P (Z = 0) = 0
a z3

lim 'b = 0
IZI-0D

lim a = O.

3z 2

I zl-.
17
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(84)

(85)
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Equations (82) and (83) result because P = Akg/ (V2z) is an even function of z.

Equations (84) and (85) result because A }g and ' 2 / z2 A'Pg are constrained to

O0as Izl-a)

Equations (81)-(85) form an eigenvalue problem similar to that described

by equations (18)-(20) of Paper II and by equations (46)-(48) of this paper. Only

certain discrete values of ky will result in ' that satisfy (a) equation (81) and

(b) the boundary conditions imposed by equations (82)-(85). Each discrete ky

corresponds to a mode of the marginally unstable state; since ky c 1/A, where

y is a length in the y direction, each mode is characterized by a length y . The

numerical solution to this problem will be treated in a later paper of this series.

III. DISCUSSION

In Paper II we discussed in some detail the observations of McGee and

Milton (1964) relating to the existence of large-scale structure in the gaseous

component of spiral arms in the Galaxy. Typical dimensions were observed to

be 107 M o and 1-2 Kpc. We also discussed Lin's (1970) recent proposal concerning

the excitation of density waves in the galactic disk by classic Jeans' type inr

stabilities in the gaseous component of the Galaxy beyond the corotation distance.

The inclusion of an equipartition magnetic component to the stability analysis

should improve its applicability to both of these topics.
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APPENDIX

MOTIONS IN THE Be -ge PLANE (ALTERNATE DERIVATION):

THE USE OF A VECTOR POTENTIAL

When k and B are constrained to lie along the y axis and v lies in the y-z

plane (Figure 2), Parker (1966) and Field (1970) have found the vector potential

A to be a useful quantity, where

B=Vx A. (Al)

Written in this way, the requirement V B = 0 is automatically satisfied. The

hydromagnetic equation thus becomes

V X [b A - (v x By=0, (A2)

from which it follows that

_ A = v x B + VS. (A3)
At

S is an arbitrary scalar potential and will be set equal to zero. A is a useful

quantity because it is a constant of the motion.: To see this, we introduce the

following vector identity:

vx]~= v x (V x A)= - v VA + V(v .A)-A.Vv - Ax (V x v). (A4)

v .A vanishes since v is constrained to the y-z plane and A has only an x com-

ponent. Similarly, both A Vv and A x (V x v ) vanish. Equation (A3) therefore

becomes

20



A + v VA = o,

or more simply

dA=o,A = 0,
dt

and thus it follows that A is a constant of the motion.

In terms of A, the continuity, momentum, hydromagnetic, Poisson, and

heat equation may be written as follows:

-tPg Vp + Vpg +pg = 0

Vp + p dv + 1 V2A (VA) + p Vq = 0

A-vxB=O

47rG(pg + P.) _ V2 (g + +) = 0

Pg = (v 2 ) Pg

where A = Ae and
x

(V x B) x B = - [(V x V x A) x B] =
417z 41

I (V2A)xB= IV2A(VA).

21
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Recalling the perturbations in pg, Pg, qkg, and B from equations (6)-(10) and

writing the additional equation

A = Ae + AA, (A13)

equations (A7)-(A11) become

a +P -V + + pv v=0 a(A14)Atpg eg ay + Peg 
+

z Peg (A14)

-. 1 A
e (VAA)

(V:z) VApg + APg Ve + Peg T v + 4 [(V2A-) (VA)

+ (V2AA) (VAe)] + Peg VAqg = O (A15)

AA - v x B = O0 (A16)

47GApg - V 2A = 0. (A17)

We have retained terms only to first order in the perturbed quantities.

The nonvanishing component of v x B is just - B v e . In addition, we

may write as before that d/dz peg = fp and d/dz B
e

= 1/2 fB Since

d
Be = -x A - A e e' (A18)

it follows that

B d A (A19)e dz e
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and

d 2 d 1
V2 A =- A =B = fB. (A20)

e dz 2 e dz e 2

Because the coefficients of the system (A14)-(A17) are independent of x, y, and t,

we Fourier analyze in these variables (3/-x - ik
x

= 0, /y . i ky, a/at -. n),

and equations (A14)-(A17) written in component form become

n + ik v + + = 0 (A21)
Peg

AP n fa g =
Ag+ v + AA + _= 0 (A22)

Peg iky (v2t) Be (v2 z )

- - f( +pf(l + v
Peg g Peg ( 2

2a Ag _ a2 2 -a AV) z
+ - AA +(_ - k2 AA + _- o (A23)

Be L2 Z z2 Y Z(V2

B v + nAA = O (A24)

47TGAp -- k A(32 .2) (A25)

We have used equation (22) for d/dz be. Equations (A22) and (A23) are, re-

spectively, the y and z components of the momentum equation; equation (A24)

is the x component of the hydromagnetic equation.
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We recall equation (30) for 1/peg g/Dz Apg and eliminate vz from the

system (A21)-(A25), with the result that

APg
n. +

Peg

Ape

ik vy - n +

n
Peg iky (v 2 ) 

y tz 

Peg

f)

+ fa A +
B
e

(A26)A= 0
e

AOg

(v2 )tz

(A27)= 0

n 2

-_ _ AA
(v2 ) B

tz e

2a [a
B 2 aZ

e

47G Ap -
(V2 z)

( 
\a~z

k2)]
Y,

/ az2

\aa Z 

We proceed by substituting the variables

AA+ =0
aZ (vi)

E = A/Peg

q = Aog/(V2 )

into equations (A26)-(A29) and by restricting the analysis to the marginally unstable

state (n = 0). Equations (A26)-(A29) reduce to

e +a A + I = 0 (A32)
B

e
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(A28)

= 0. (A29)

(A30)

(A31)

9

k2 g
-_ky2 Aqvg(V2 t )



(3 _ f a) e + 2 a(-+ 2 a - k2 nA + 0 C = ° (A33)

47rTGp,.eg (2 - 2 =0 . (A34)
(vt2 z ) z22Y

E and AA are eliminated from equations (A32)-(A34), and again the result is a

single fourth order linear differential equation for qb:

2 (4GP 4k 2

f af4 f 2

- 87rG k 2 p 47G f p 2k4 

+ f (v eg + fcak2 - fk 2 = 0. (A35)

This result may be compared with equation (81) derived above. The appropriate

boundary conditions are expressed by equations (82)-(85).
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TABLE 1

RADIUS OF THE MARGINALLY UNSTABLE STATE AS A

FUNCTION OF (V2 )1/2 AND Btz eo

(Vtz) / re (B o = 0 1 G) r (B =3uG) r (Be 5puG)

(km/sec) (kpc) (kpc) (kpc)

2.5 0.318 0.67 1.00

5.0 0.635 0.87 1.13

7.5 0.953 1.10 1.37

10.0 1.270 1.40 1.60

15.0 1.905 2.03 2.12

20.0 2.540 2.61 2.71
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FIGURE CAPTIONS

1. The relation between Be', e , and k and the xyz coordinate system when

motions are perpendicular to the Be - ge plane.

2. The relation between Be, ge , and k and the xyz coordinate system when

motions are in the Be- ge plane.
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