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PARAMETER IDENTIFICATION USING A 

CREEPING-RANDOM-SEARCH ALGORITHM 

By Russell V. Pa r r i sh  
Langley Research Center 

SUMMARY 

A creeping-random-search algorithm is applied to different types of problems in 
the field of parameter identification. The studies reported a re  intended to demonstrate 
that a random-search algorithm can be applied successfully to  these various problems, 
which often cannot be handled by conventional deterministic methods, and, also, to  intro­
duce methods that speed convergence to an extrema1 of the problem under investigation. 
Six two-parameter identification problems with analytic solutions a r e  solved, and two 
application problems a r e  discussed in some detail. 

Results of the study show that a modified version of the basic creeping-random­
search algorithm chosen does speed convergence in comparison with the unmodified ver ­
sion. The results also show that the algorithm can successfully solve problems that con­
ain limits on state or control variables, inequality constraints (both independent and 
.ependent, and linear and nonlinear), o r  stochastic models. 

INTRODUCTION 

The field of parameter identification, that is, the problem of selecting optimal 
ralues for  parameters in a mathematical model representing some physical system, is 
rapidly expanding into all a reas  of design work, as well as into a variety of other engi­
neering contexts. Examples of the problem ar i se  in two-point boundary value problems, 
control-system design problems, dynamic-model synthesis, and network-design problems. 
The importance of parameter optimization in the engineering design process has been 
pointed out in reference 1. 

In surveying the literature available in the field of parameter identification, two 
te rms  a r e  encountered which seem to  be used interchangeably: parameter optimization 
(refs. 1to  4) and parameter estimation (refs. 5 and 6). A distinction is made between 
these two t e rms  in the present paper, as follows: 

Parameter  optimization is concerned with determining the parameter values of a 
model that define an extremum of some cost function (also referred to  as a performance 



index or objective function) which is a function of model response. Problems in the area 
of mathematical programing and optimal control generally fall into this category. Param ­
e te r  estimation is concerned with determining the parameter values of a model in such a 
way that the model response matches the response of an actual physical system or  desired 
reference system. In parameter estimation, the cost function is usually a function of the 
difference between the model response and some previously obtained test data from the 
physical system. Problems in this category can generally be subdivided into two classes. 
The first is one in which the parameters have physical meaning, such as the determina­
tion of aerodynamic derivatives f rom flight-test data; and the second is one in which the 
parameters may have no meaning in the real  world, such as curve fitting. 

In any event, the procedure usually adopted to solve problems in either subclass is 
iterative in nature, involving perturbation of the parameters,  evaluation of the cost func­
tion, a new perturbation of the parameters based on information gained from past pertur­
bations, and so  forth. Many deterministic algorithms exist in which these iterative 
methods a r e  utilized; namely, steepest descent (ref. 7) ,conjugate gradient (ref. 8), 
Newton-Raphson (ref. 5), quasilinearization (ref. 6), Kalman filter (ref. 9), and simplex 
technique (ref. 10). These methods, as opposed to the random methods, generally con­
verge well for favorable cost functions. However, as pointed out in references 4 and 11, 
if the cost function contains large higher -order derivatives with respect to the parameters,  
information gained from past perturbations will be of small  value in determining future 
perturbations. 

Perhaps more significant is the fact that deterministic methods often fail com­
pletely when physical limits a r e  present on the control variables in the mathematical 
model (i.e., limits on commanded rates f rom an autopilot) and, also, when inequality con­
straints a r e  imposed on the state variables and/or the parameters of the system. 

Random methods, on the other hand, can be applied to problems containing any of 
the above restrictions. In reference 4, sequential random perturbation, o r  creeping ran­
dom search, is suggested as a likely candidate for a successful algorithm that can be 
applied to many different classes of problems. However, the creeping-random -search 
algorithm is a brute-force method, in which many solutions of the mathematical model 
a r e  required; as such, this algorithm is limited in its application by the number of param­
eters  to be selected and the amount of time necessary to solve the mathematical model. 

This report wi l l  introduce a modified version of the creeping-random-search algo­
rithm that reduces the possible number of cost-function evaluations and still has the 
advantage of being applicable to many different types of problems (in particular, to those 
problems containing limits o r  inequality constraints). In addition, some of the various 
strategies available within the algorithm fo r  speeding convergence to an extrc num a r e  
evaluated and shown to be highly problem dependent in regard to successful a rplication. 
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Another method for speeding convergence, which utilizes the interactive features pro­
vided by a computer facility, is introduced and demonstrated. The algorithm was devel­
oped for use on the NASA Langley Research Center's CDC 6600 real-time digital simula­
tion subsystem described in reference 12, in both an all-digital mode of operation and a 
hybrid mode of operation, in conjunction with a GPS 10 000 iterative analog computer. 

SYMBOLS 

A, stored flight data (normal acceleration) 

normal acceleration of attacking' aircraft  

Fj arbitrary functional 


FP penalty function 


g gravitational constant 


J(01902) scalar cost function dependent upon parameter values 


K4 constant 


n number of parameters (see table I) 


P probability (see table I) 


PA roll rate of attacking aircraft  


R relative displacement between two aircraft  


r number of t r i e s  (see table I) 


S Laplace operator 


t time 


U out -of -plane displacement 
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VA velocity of attacking aircraft 


VT velocity of target aircraft 


V horizontal displacement 


Vin horizontal displacement at entrance of magnetic field 


vout horizontal displacement at exit of magnetic field 


xA range of attacking aircraft 


'IA range rate of attacking aircraft 


XT 	 range of target aircraft 

range rate of target aircraft 

YA 	 lateral displacement of attacking aircraft 

lateral velocity of attacking aircraft 

lateral displacement of target aircraft 

lateral velocity of target aircraft 

Z vertical displacement 

'"("in) out -of -plane slope at Vindv 

dz(v0ut) vertical slope at vout
dv 

9 unknown parameter 

6a aileron-deflection command 

6; limited aileron-deflection command 
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A line-of -sight angle from horizontal 


2 ,m, i,rh dummy variables 


@A roll angle of attacking aircraft  


4A rol l  rate of attacking aircraft  


@c,A roll-angle command of attacking aircraft  


+A yaw angle of attacking aircraft  


+A yaw rate of attacking aircraft  


+c ,A yaw-angle command of attacking aircraft  


Qc,A yaw-rate command of attacking aircraft  


0 ’ .  

@c,A limited yaw-rate command of attacking aircraft 

QT yaw angle of target aircraft  

ANALYSIS OF CREEPING-RANDOM-SEARCH ALGORITHM 

The basic algorithm is illustrated with the two-parameter contour plot shown 
in figure 1. This basic algorithm, devoid of any strategies, operates in the follow­
ing manner: In this simple problem, where the cost function to be minimized is 
J(al,a2)= cy12 + a2, constant values of the cost function are represented as concentric2 

circles in the two-parmeter  plane. From an arbitrary starting point, a random step is 
taken and the cost function is evaluated. If the step has improved the cost function (a 
success), the present parameter values a r e  used as a new starting point and a new step 
is taken. If the cost function was  not improved (a failure), the original parameter values 
a r e  retained and a new step is taken. Thus, a walk over the contour is generated. 

In conjunction with the basic algorithm, four strategies (to be explained in more 
detail later) were used: 

(1) Last successful direction first; after each success, the next step is taken 
in the same direction 

(2) Variable step size based on runs; the step size is increased after several  
successes in a row or decreased after several  successive failures 
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(3) Correlation on past history; future steps favor the general direction in which 
past improvements were obtained 

(4) Correlation on last success; future steps favor the general direction in which 
the last improvement was obtained 

CY 1 


-1 0 1 

0 2  

Figure 1.-Two-parameter contour plot of basic algorithm. 


In explaining the basic algorithm in more detail, attention is directed to figure 2. 
As illustrated in figure 2,  there a r e  nine possible directions that can be taken from a 
given starting point in the two-parameter plane. These nine directions a re  obtained by 
plus, minus, and zero perturbations of each parameter. (Note that one direction is no 
movement at all.) The eight directions that involve movement a r e  stored in an a r r ay  

20 21 22 

00 01 02 

Figure 2.- Details of basic algorithm. 
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which the algorithm samples randomly (ref. 13) without replacement until a success is 
obtained or all directions are exhausted, at which point the a r r ay  is reinitialized. The 
storage designations for the directions a r e  shown in figure 2. Note that the designations 
for  opposite directions sum to 22. This fact was used to eliminate one direction from 
consideration whenever a success occurred; namely, the direction opposite to that which 
obtained the success (which is automatically a failure). Naturally, this direction is 
returned to consideration when the table is reinitialized. 

If failures should occur in all possible directions from a given point, the algorithm 
has either converged to an extremum, overstepped an extremum, or  overstepped a pass 
(a pass  is analogous to  a ridge in a maximization problem). Figure 3(a) illustrates the 
case of overstepping an extremum; a reduction in step size would be necessary in order  
to continue convergence. Figure 3(b) demonstrates the case of overstepping a pass; and 
again a reduction in step size is necessary in order to continue convergence. 

Thus the event of failures in all possible directions from a given point requires a 
reduction in step size. This fact led directly to the comparison of two concepts of the 
basic algorithm; namely, a redundant algorithm (as proposed in ref. 4 for use on a highly 
specialized hybrid computer) and a nonredundant algorithm (the modified-creeping -search 
algorithm). In the redundant algorithm, no memory of past  directions used from a given 
point is available; and, therefore, the same direction may be tried several times. The 
nonredundant algorithm has memory and never t r ies  the same direction twice with the 
same step size. Table I shows a Comparison of the number of t r ies  necessary before a 
reduction in step size can be made between these two basic concepts (ref. 14). 

Again, a reduction in step size is necessary when overstepping has occurred or ,  
equivalently, when failures a r e  encountered in all possible directions. With the redundant 

a!2 

(a) Extremum. (b) Pass.  
Figure 3 . - Overstepping. 
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algorithm, there can never be the certainty that all possible directions have been tried. 
Therefore, a 90-percent confidence level on exhausting all of the directions has been 
set as the basis for comparison. 

Examination of table I reveals that the number of tries necessary for both algo­
rithms increases rapidly with an increase in the number of parameters. More impor­
tantly, the ratio of redundant to  nonredundant tries also increases. Use of a variable 
step-size strategy (i.e., cut the step size after a number of failures in a row), which is 
employed in reference 4, may reduce the number of tries necessary when an overstep is 
encountered. However, this strategy can slow convergence significantly when a success 
could have been obtained in only a few of the many possible directions. Also, the suc­
cessful use of this strategy is highly problem dependent, as will be demonstrated in the 
next section. 

PERFORMANCE ANALYSIS OF NONREDUNDANT ALGORITHM 

Two distinct groups of example problems (all two -parameter optimization problems 
with analytic solutions) were solved by using the nonredundant algorithm, with various 
combinations of the available strategies, in order  to  evaluate the performance of the 
method. The first group consisted of two.static problems (algebraic equations) and one 
dynamic problem (differential equations). The problems of this first group were used 
for  strategy evaluation. The second group consisted of three nonlinear programing 
problems (inequality parameter constraints and a nonlinear cost function), two of which 
a r e  static problems and the third is a dynamic problem. The problems of this second 
group were used to demonstrate the application of the algorithm to  constrained problems. 

Strategy Evaluation 

The problems of the first  group were used to evaluate the different strategy com­
binations available, as well as any strategy parameters (Le., the number of successes in 
a row to be required before increasing the step size under the variable step-size strat­
egy). Conventional deterministic methods handle these problems readily. 

Before discussing the problems and results, however, some description of the 
strategies and their interaction should be presented. Table 11lists the combinations of 
strategies used. The first strategy, pure random, is simply the basic algorithm. The 
second strategy, last successful direction first, is the basic algorithm with the rest r ic­
tion that the first direction tried immediately following a success is in the same direc­
tion previously used. If use of this direction results in a failure, the remaining direc­
tions are sampled in the standard manner. The third strategy, variable step size based 
on runs, has no influence on the directions selected but, rather, controls the step size of 
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the parameter perturbations and the reinitialization of the a r ray  of directions. Whenever 
a step-size change occurs, the a r ray  is reinitialized. The fourth and fifth strategies, 
correlation on past history and on last success, respectively, operate essentially in the 
same manner as strategy 2,  except that several directions (the correlated directions) are 
tried before returning to standard sampling in the event of failures. The correlated 
directions include all directions that are less than *90° away from the general direction 
of past improvements for strategy 4 and the last successful direction for strategy 5. 

Strategy combinations obey the following heirarchy now presented: 2, 4 or 5, 3. 
For example, strategy 11, consisting of the combined strategies 2,  3, and 4, would operate 
in the following manner after a success: 

(1)The first direction tried would be in the same direction as that in which the 
success was obtained. 

(2) If the first direction tried resulted in a failure, the next direction to be tried 
would be the direction in which past improvements were obtained (the trend direction). 

(3) If the second direction resulted in a failure, the remaining correlated directions 
would be tried. 

(4)If a success had still not been obtained, random sampling of the remainder of 
the directions would begin. 

(5) If at any point in the above procedure, the number of failures in a row exceeds 
the run parameter of strategy 3, the step size is cut, the a r ray  is reinitialized, and 
strategies 2 and 4 are discontinued until a success is obtained. 

Table III displays the rank each strategy achieved, the rank being based on the 
average number of iterations required for acceptable convergence for each of the fol­
lowing problems (the average presented is based on 10 trails from the same point for 
each strategy, although averages were obtained from more than one starting point for 
dynamic problem I): 

Static problem I (fig. 4): 

2 2min J(a1,a2)= al + cy2 

a1’a2 

which is subject to 

-1 5 ai 5 1 (i = 1, 2) 
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I 


" 1 


-1 0 


cr2 


Figure 4 . - S t a t i c  problem I 


Static problem I1 (fig. 5): 

(a1+ 0.1)2 (CY2 - 0.2)2

min 


V a ! 2  
J (a!1'a!2, = 0.25 

+ 
10 


which is subject to 

-1 2 ai 5 1 (i = 1, 2) 

Q 1 


-1 0 


"2 


Figure 5 .  - S t a t i c  problem 11. 

1 

1 
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Dynamic problem I (fig. 6): 

2 1min J(al,a2)= lo10.8 cos 3t - a2 cos 10alt)2 + 2(0.3 - a , ) jd t  
'a2 

which is subject to 

-1 5 a.5 11 ­ 


-11­
-1 

(i = 1, 2) 

1 -. I I 
0 1 2 

ff2 

Figure 6.-Dynamic problem I. 

It should be mentioned that dynamic problem I was  solved in a hybrid environment. The 
only difficulty arising in the hybrid implementation was  one of resolution. Either rescal­
ing the analog portion of the program in vastly differing regions of cost-function values 
is necessary, o r  some minimum resolution on the parameter values must be accepted and 
the minimum step size allowed for parameter perturbations must be limited. 

A review of table 111demonstrates that strategy performance is problem dependent. 
However, strategy 2 (last successful direction first) and strategy 3 (variable step size 
based on runs) appear to be effective when used in combination with themselves and/or 
the other strategies. 

Table IV lists the results of the run-parameter studies for the two static problems. 
Again, the results (number of iterations to  convergence based on averages from 10 trials) 
appear to be highly problem dependent, even in the two-parameter domain. This situa­
tion would logically be intensified in a multiparameter domain. 

Due to the high degree of problem dependence exhibited by both the run parameters 
and strategy performance, another strategy that utilizes analyst -algorithm interaction to 
speed convergence will  be introduced later in the present study. 
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Constrained Problems 

The problems of the second group were attempted in order  to  demonstrate the 
application of the algorithm to  problems subject to  inequality constraints. Before dis­
cussing the problems, however, it is necessary to clarify the use of the te rm "inequality 
constraints." All three problems of the first group were subject to  inequality constraints 
of the type shown in the equation 

Random-search methods handle this type of constraint without difficulty (steps across  
boundaries a r e  simply not allowed), even in the region of a boundary where deterministic 
methods using a pemlty-function approach have difficulty. For  the purposes of this 
paper, a constraint in the form of equation (1) is referred to  as an independent inequality 
parameter constraint; whereas a constraint in the form of the equation 

is referred to as a dependent inequality parameter constraint. The dependent constraint 
may be termed linear o r  nonlinear, depending on the functional form of Fj. 

The problems of the second group will now be discussed. Figure 7 displays the 
contour plot and the feasible region of solution for  nonlinear static problem I as follows: 

min J
(
a1,a2)= (a1- 0.5)2 + (a2 - 0.2)2 

a17a2 
which is subject to  

-1 s ai 5 1 (i = 1, 2) (independent constraints) 

a1 + 2a2 5 0.6 (linear dependent constraint) 

The creeping-search algorithm was  implemented by using a penalty function for viola­
tion of the dependent inequality constraint as follows: 

min J(a1,aZ) = (al - 0.5)2 + (a2 - 0.2)2 + Fp 
('14 2  

where 

5,  cyl + 2a2 > 0.6 

F p =  {0, cy1 + 2a2  20.6 
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Figure 7.- Nonlinear s t a t i c  problem I .  

The algorithm converged, not to an extrema1 of the constrained problem, but rather to 
some point on the boundary formed by the dependent constraint; the reason for this 
behavior can be deduced from figure 8. Obviously, no matter what step size is used in 
the indicated convergence region of figure 8(a), steps in the eight possible directions will  
result in either constraint violations or larger  cost-function values. However, if the 
boundary encounter had occurred outside of the region as shown in figure 8(b), conver­
gence would be possible as long as the walk approached the optimal from below. 

region Q.1Q 

\\Constrained 

.4 t 1
\-

Optimum /
/ 

I 
.31 - .  ~ I 1- L . . .~ 

0 .1 .2 .3  .4 

“2 (Y2 

(a) O v e r d l  view. (b) Enlargement of convergence r eg ion .  

Figure 8.- Boundary convergence. 

13 


1 



A simple adaptation of the algorithm that solves the above difficulty is to allow the 
algorithm two additional directions once a boundary is encountered; that is, one step in 
one direction along the dependent constraint, and the second step in the opposite direction 
along the constraint. This adaptation proved successful in solving this problem, as well 
as the following problems: 

Nonlinear static problem I1 (fig. 9): 

2min J(a l p 2 )= al - 2 a l  - 2 a 2  
a1'a2 

which is subject to 

C Y i  2 0 (i = 1 ,  2 )  (independent constraints) 

(linear dependent constraints) 

ffl 

0 1 2 

"2 

Figure 9.- Nonlinear s t a t i c  problem 11. 

Nonlinear dynamic problem I (fig. 10): 

10.8 cos 3t - a2 cos 10alt) 2 +,i(0.3 - a l ) l d t  

which is subject to 

-0.5 5 a 2  5 1 

0 5 al 5 0.4 1 (independent constraints) 

. 
CY 2 

2 +2CYl 51 (nonlinear dependent constraint) 
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“1 0. 


I-1I- _ _ _  . _ ~ ~ _ _  .I I 
-1 0 1 2 

cy
2 

Figure 10.- Nonlinear dynamic problem I. 

Again, the dynamic problem was solved in a hybrid environment, with an additional 
resolution problem added by the necessity of being able to detect convergence to the 
boundary in order to  allow the addition of the two directions along the boundary. Con­
vergence to the boundary was possible only to within the neighborhood of the boundary 
dictated by the minimum step size allowed. Therefore, detection of a boundary encounter 
was  considered accomplished when convergence to  within the neighborhood took place. 

It should be noted that solutions to nonlinear static problems, with o r  without 
inequality constraints, a r e  well documented in the literature (ref. 15). 

Applications 

Two investigations which have been made using the algorithm a r e  a five -parameter 
human transfer function piloting an aircraft  in a simple aircraft-pursuit problem (param­
e ter  estimation) and a five-parameter beam-transport-design problem (parameter opti­
mization). Before discussing these problems and some results,  however, a description 
of the strategy utilizing analyst -algorithm interaction should be presented. 

The intended emphasis of the description is on the generation of the a r r ay  of direc­
tions and on the cathode-ray-tube (CRT)display capabilities. These two features are 
used jointly, hopefully to speed convergence, in the following manner: The analyst may, 
during algorithm operation, display on the CRT a history of the cost-function behavior 
versus number of iterations (both successes and failures), as well as histories of the 
value of each parameter versus  number of successes (also available would be displays 
related to the model). Based on this information, the analyst may be able to determine 
the sensitivity of certain parameters in the current region of operation of the cost domain. 
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If a parameter appears sensitive, the gain, or perturbation size, of that parameter may 
be increased. On the other hand, if a parameter appears insensitive (varies randomly 
about some mean) or if  the parameter requires a certain value in order to obtain a suc­
cess,  it may be made constant. In this situation, the number of possible directions is 
greatly reduced, as evidenced by table I, and the a r ray  of directions is regenerated for 
the reduced number of parameters involved. Use of this method to speed convergence 
is illustrated in figures 11and 12. 

Figure 11 shows typical variations of parameters as a function of the number of 
successes from a seven-parameter study. The first parameter a1 appeared to be 
quite sensitive in this region of the parameter space. Therefore, the analyst decided to 
increase the gain (the perturbation size) for this parameter. When the behavior of the 
parameter stabilized (became insensitive), it was made a constant. Little can be said 
of the sensitivity of cr2, although initially the analyst decided to increase its gain. The 
third parameter a3 appeared to be insensitive in this region (note the difference in 

CY 2 

I I I I I I I I I I 

l8 r 

Increased 

10 


16l I I I I I I I I I I 

"4 .5c -Made constant 

I,,,,,,,,,,
0 8 16 24 	 32 40 48 56 64 72 80 

Number of successes 

Figure 11.-Typical parameter histories. 
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scales), whereas a4 seemed to require a certain value to  obtain successes with the 
present step size. Thus the analyst chooses to f i x  the values of some parameters and to 
increase or decrease gains on other parameters in order to speed convergence in the 
current region of the cost -function domain. 

The results of the analyst's decisions just discussed a r e  displayed in figure 12  in 
t e rms  of the cost function versus the total number of tries (both successes and failures). 
The analyst employed his initial decisions on the fifteenth success after 71 tries. As 
can be seen, successes occurred more often and with greater reductions in the cost func­
tion. This method was used in the following two application problems. 

11400 ­

11 000­

8 10600­
5 
w3 
;10200­
8 

-9800 

9400­

9000 ­

8600-
0 

1 ___ I -I - I -1 II 
10 20 30 40 50 60 7 0  80 90 1:O 

Tries 

Figure 12.- Typical cos t - func t ion  h i s t o r y .  

Human-transfer-function problem.- A s  pointed out in reference 16, mathematical 
. .. .__c___ 

models for  human pilots are beginning to play a large role in aerodynamic investigations. 
The present example is concerned with estimating the five parameters contained in a 
given transfer function used to pilot a simple three-degree-of -freedom aircraft model in 
a pursuit environment with a three -degree -of -freedom target (equations for this problem 
are presented in appendjx A). The physical situation is represented in figure 13,  and a 
block diagram of the system is illustrated in figure 14. Motivation for using the modi­
fied creeping-random-search algorithm for this problem w a s  the presence of limits on 
transfer -function variables. 
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The parameters were to be estimated using a least-squares cost function consisting 
of differences between model response in the translational degrees of freedom and in 
normal acceleration az and actual flight data available for  these variables. However, 
in order  to eliminate from consideration such things as measurement noise (on flight data) 

X 


Figure 13. - Geometry of human t r a n s f e r  func t ion  problem. 

and process noise (modeling e r ror ) ,  as discussed in references 17 to 19, pseudoflight 
data - o r  flight data obtained from the model itself for selected parameter values -
were used for the purposes of this paper. Only the normal-acceleration data were used 
in the estimation process. 

Table V contains results obtained from the creeping-random -search algorithm, a 
steepest-descent algorithm, and a Davidon-conjugate -gradient algorithm for the same 
starting point. (The latter two algorithms used were part  of the program of reference 7, 
and no attempt was made to alter the algorithms to handle the limits present in the math­
ematical model.) Tabulated a r e  the true parameter values, and for each algorithm, the 
starting values, the final values, the number of cost-function evaluations, and the total 
computer time (central-processing-unit usage). The results indicate that the presence 
of limits in the mathematical model degrade the gradient information required by both 
the steepest -descent algorithm and the Davidon-conjugate -gradient algorithm to  such a 
degree that convergence to the proper parameter values a r e  extremely time consuming, 
if indeed possible. 
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A 
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A 
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a5 
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I 

1 Stored flight data 

Figure 14.-Block diagram of human-transfer-function problem. 



Beam-transport-design problem.- A beam-transport-design problem is concerned~--

with transporting a high-energy beam of charged particles from one given area to another 
by utilizing magnetic fields. As reference 20 emphasizes ,detailed computer-optimization 
solutions are highly desirable because of the large amount of effort and time that must be 
devoted to moving the unwieldy magnets. The fact that the problem inherently contains 
constraints on several state variables, as well as a stochastic model for representing 
individual members of the beam, often renders conventional deterministic optimization 
methods useless. 

From an a priori  probability distribution, used to model the position of individual 
members of the beam prior to entering the magnetic field, a set of random initial condi­
tions for the state variables is selected. The equations of motion are then solved to eval­
uate the deviations from the desired end conditions and, also, to evaluate any violations 
of the state-variable constraints. This process is then repeated and the deviation is 
accumulated to form the mean cost function over the desired sample size. A constraint-
violation percentage over the sample is also calculated and may be included in a weighted 
cost function if so desired. The parameters of the system, focusing strengths and sepa­
ration distances of the magnets, a r e  then perturbed by the creeping-search algorithm; 
and the entire sequence is iterated until convergence is achieved. A pooled t test ,  as 
described in reference 21, is used to determine successes o r  failures of parameter per­
turbations, thus fixing a confidence level on differences in cost-function means. 

The five-parameter problem considered here used algebraic solutions, rather than 
numerical-integration solutions, of the linear differential equations of motion (nonlinear 
equations of motion are often required for other applications). The algebraic equations 
apply to the physical situation illustrated in figure 15, and all equations a re  presented in 
appendix B. A more complete treatment of the problem is found in reference 22. 

Again extensive use of the CRT display capabilities is made, not only for plots of 
the cost function versus number of iterations and time histories of parameter values fo r  
successful tries, but also for model displays such as output distributions along the trans­
port path and beam traces through the focusing system. 

Figures 16 and 17 illustrate a typical starting point in the optimization process for 
one case under investigation. Figure 16 shows the output phase distribution at the end of 
the last magnetic field for the starting values of the parameters, as squares; the desired 
end condition is that the distribution lies within the ellipse. Figure 17 shows the beam 
traces  for  these starting values. Figures 18 and 19 show the same displays after the 
algorithm has achieved convergence. 
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Figure 16.- Phase-plane plots for beam-transport problem. Cost function of 354.7; 
al = 1.25; a2 = -1.10; a3 = 1.29; a4 = 1.26; 7 = 3.31. 

f i O T T O M  VIEW 

SIDE VIEW 
Figure 17.- Beam traces fo r  beam-transport problem. Cost function of 354.7; 

al = 1.25; a2 = -1.10; a3 = 1.29; a4 = 1.26; = 3.31. 
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Figure 18.- Phase-plane p l o t s  f o r  beam t r a n s p o r t  problem. Cost f u n c t i o n  of 0.993; 
al = 1.06; a2 = -1.18; a3 = 0.89; a4 = -0.77; 9 = 3.82. 

S I D E  VIEW 
Figure 	19.- Beam t r a c e s  f o r  beam-transport problem. Cost func t ion  of 0.993; 

al = 1.06; a2= -1.18; a3 = 0.89; ab= -0.77; a5 = 3.82. 
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CONCLUDING REMARKS 

A modified version of the creeping-random -search algorithm has been developed 
and applied to several  different types of problems in the field of parameter identification. 
The modified version, the nonredundant algorithm, reduces the number of cost -function 
evaluations when compared to  the unmodified version, the redundant algorithm. Also, it 
has been demonstrated that the algorithm can be applied successfully to problems that 
contain limits, inequality constraints (both dependent and independent, and linear and non­
linear),and/or stochastic models; these a r e  problems on which deterministic methods 
without modification a r e  often of little value. 

Other results indicated that strategy performance within the algorithm is highly 
problem dependent and, therefore, difficult to  implement successfully. A method that 
utilized analyst-algorithm interaction through a cathode-ray-tube display to speed con­
vergence was  shown to be feasible. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., November 12, 1971. 
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APPENDIX A 

EQUATIONS FOR HUMAN-TRANSFER-FUNCTION PROBLEM 

The equations for  the human-transfer -function problem are presented in the fol­
lowing two parts: (1)The transfer-function equations representing the human pilot, 
presented in Laplace notation, and (2) the equations of motion for  two three-degree-of­
freedom aircraft  in a pursuit environment. 

The transfer-function equations a r e  as follows: 
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APPENDIX A - Concluded 

The equations of motion fo r  the aircraft  a r e  as follows: 

jrT = VT sin GT 

jrA = VA sin *A 

X = tan -1 	YT - yA 
XT - xA 
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APPENDIX B 

EQUATIONS FOR BEAM-TRANSPORT -DESIGN PROBLEM 

The equations for  the beam-transport-design problem a re  presented in the fol­
lowing two parts: (1)The linear differential equations, which are not used in the digital 
program, and (2) the algebraic solutions to  the differential equations, which a r e  used in 
the program. The equations consist of translational equations which govern motion 
within a magnetic field and within a drift space, as well as extremum equations which 
determine extremes of the state variables within the magnetic fields in order  to  check 
for  violation of the state -variable constraints. 

The differential equations within a magnetic field a r e  

and 

2-z + o i z = 0  
dv2 

where i = 1, 2 ,  3 ,  4. 

The differential equations within a drift space a r e  

and 
2 - = o  

dv2 

The algebraic equations for magnetic field translation a r e  as follows: 
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APPENDIX B - Continued 

The algebraic equations for drift space translation are as follows: 

'"("in)
u(vout) = upin) + dv pou t  - 'in) 

The algebraic state-variable extremum equations within a magnetic field are as 
follows: 

r 
v = (  
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APPENDIX B - Concluded 

V =  

v s o  

vin 

z(v~,=Z(Vin) cash [$q+sinh [@qg
+ /m 


The algebraic equations a re  for positive focusing strength ai. For negative ai, 
the equations for u and z are simply interchanged; the u equations become hyper­
bolic functionals, and the z equations become trigonometric functionals. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  

TABLE I.- COMPARISON OF NUMBER OF TRIES FOR BOTH 


ALGORITHMS BEFORE STEP-SIZE CUT 

Number of 
parameters,  

n 
Nonredundant 

tries, r 
Redundant 
tries, r 

(P > 90 percent) 

Redundant tries 
Nonredundant t r i e s  

(a) 
~ 

(b) 
2 9 4.50 
8 39 4.88 

26 149 5.73 
80 540 6.75 

242 1 8 9 1  7.81 
728 6 480 8.90 

2186 21  850 10.00 
a r = 3n -1. 

TABLE II. - STRATEGY DEFINITIONS 

Pure  random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Last successful direction first. . . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Variable step size based on runs . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Correlation on past history . . . . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Correlation on last success . . . . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Strategies 2 and 4 combined . . . . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Strategies 2 and 5 combined . . . . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Strategies 2 and 3 combined . . . . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Strategies 3 and 4 combined . . . . . . . . . . . . . . . . . . . . . . . . . . . Strategy 
Strategies 3 and 5 combined . . . . . . . . . . . . . . . . . . . . . . . . . . .Strategy 
Strategies 2, 3, and 4 combined . . . . . . . . . . . . . . . . . . . . . . . . .Strategy 
Strategies 2,  3, and 5 combined . . . . . . . . . . . . . . . . . . . . . . . . .Strategy 
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TABLE III.- STRATEGY RANKINGS 


Strategy 

8 
12 
11 
10 
9 
3 
7 
6 
2 
5 
1 
4 

I 

Static problem I 

Average number 
Rank of iterations 

to  convergence 

2 44 
1 35 
4 56 
3 51 

10 175 
5 66 
8 143 
6 97 
9 156 
7 118 

11 198 
1 2  298 

Static problem I1 

Average number 
Rank of iterations 

' to convergence 

2 58 
1 45 
3 60 
4 64 
5 70 

10 269 
7 153 
8 168 
6 132 
9 200 

12 307 
11 280 

Dynamic problem I 

Average number 
Rank of iterations 

to convergence 

1 33 
6 59 
3 48 
5 54 
2 38 
3 48 
7 156 
8 161 
9 169 

11 247 
10 233 
12  423 
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TABLE 1V.- RUN PARAMETERS 

[S = Number of successes in a row before step increase; 
F = Number of failures in a row before step decreasd 

I v e r a g e  number of iterations to convergence when ­

s = 5  S = 6  

113.6 88.7 68.7 68.1 49.7 63.8-
83.2 138 128.8 175.6 181.7 
71.8 79.9 75.3 87.6 80.7 

104.3 77.7 80.0 82.2 79.9 78.8 
122.3 88.2 94.9 89.0 87.2 86.3 
112.7 99.1 100.9 96.8 93.4 93.9 

_. _ _  

772.6 326.5 184.5 146.0 145.7 130.3 
166.O 1694.6 1878.6 803.8 763.0 659.9 
93.3 265.9 1438.1 4930.4 4700.1 2720.2-
99.1 2 58.6 264.7 829.9 1112.2 1853.9 

118.7 232.2 235.5 302.2 398.1 795.3 
121.5 255.3 249.8 269.9 248.4 410.0 
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TABLE V.- COMPARISON OF ALGORITHMS FOR 


HUMAN-TRANSFER-FUNCTION PROBLEMS 


- - --. --__ 

Parameters True 
value 

Creeping search 
- .  

Starting
value 

Final 
value 

Steepest descent -
Starting
value 

Final 
value 

Davidon 

Starting
value 

~ 

Final 
value 

..__- - - __ _ _  - .  . . . -~ 

@l 
@ 2  

14.75 
10.0 

18.00 
13.00 

14.7E 
10.0 

18.00 
13.OO 

15.483 
12.235 

18.00 
13.OO 

16.443 
13.147 

cu3 26.5 30.00 26.5 30 .OO 29.112 30.00 29.950 

@4 25.4 20.00 25.4 20.00 27.497 20.00 19.995 

@5 .1 
... . 

.17 
- .__-

.1 
- -

.17 
-~ 

.09678 .17 .0984'i 

2ost . . . . . . . . ---- 0.6 5814 0 o .6 5814 0.00 1736 0.65814 0.00603 
\Jo. cost -function 

evaluations . . . 2723 36 52 1384 
rota1 computer 

t ime.  . . . . . . 1743 1828 2210 
~-.- .- .. ~. -. -
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