September 1971

?

3

COLLEGE PARK,

170

Virtual Memory
Gee~yin Kwok and Yaohan Chu

~-197
tectural Design and Simulation of a

A

1 Report TR~

Archi

Technica
NGR-21-002

Technical Report TR-170 September 1971
NGR-21-002-197

Architectural Design and Simulation of a
) Virtual Memory

by

Gee~yin Kwok and Yaohan Chu

This research was supported by Grant NGRr21-002—197,
from the National Aeronautics and Space Administration to
the Computer Science Center of the University of Maryland.

Abstract

Virtual memory is an imaginary main memory with a very
large éapacity which the programmer has at his disposal. It
greatly contributes to the solution of the dynamié storage allo-
catio# problem, a problem of great importance in time-~sharing
computer- system. This report presents the architectural design
of a.virtual memory which implements by hardware the idea of queu-
iné and -scheduling the page requests to a paging" drum in such a
way that the access of the paging drum.is increased many times;
for the design reported here, an increase of up to 16 times in
page transfer rate is achievable when the virtual memory is heav-
ily loaded. This in turn makes feasible a great increase in the
system throughput. Detailed design of the virtual meﬁory and sim-
ulation of the paging drum channel have been reported previously;
therefore, only the design and simulation of the input-output con-

trol system for paging is presented in this report.

_ Table of Contents -

Abstract

Introduction

Configuration of the virtual memory

2.1 Central processing unit
2.2 Main memory

2.3 Translation memory

2.4 Page table memory
2.5
2.6

Paging-drum memory
Paging drum channel

Architecture of the Virtual Memory

3.1 Address translation table
3.2 Lists

3.3 Channel command words
3.4 Listhead table
3.5
3.6

Page-transfer requests
Architectural design -

Operation of the virtual memory

1 An overview

2 Virtual address translation

.3 Paging policies

4 Input-output control system for paging

The I0CSP Routines

Paéing request queue
Paging initiation routine (IOCS1)

Fetch routine (FETCH) :
Paging completion routine (IOCSZ)

Simulation of the page-transfer operation under IOCSP

5.1

5.2 .

5.3 Paging drum channel unit interpretive routine (UNIT)
5.4

5.5

6.1 Simulation’ program
6.2 Inputs

6.3 Results

6.4 Discussion

Acknowiedgement

References

Appendix A, Listing of the simulation Erogram

Architectual Design and Simulation of a Virtual Méﬁo;z

1. Introdﬁction

Virtual memory, as is being called now, is an imaginary memory with
a very large capacity which the programmer has at his disposal, even though
the co;putgfvhas a relatively small main memory. It is first introduced
vas a one-level memory on the Atlas computer by the group (11) at Manchester,
England. Since then, it has been implemented by a combination of hardware
and software in a number of so-called time-sharing computers such as RCA
Spectra 70/46, IBM 360/67, and GE 645. Virtual mem;ry has become one of
the most important advances in the architecture of modern computer systems.
It contributes greatly to solving the problem of dynamic storage alloca-
tion. Though the virtual memory is not without its problems such as frag- -
mentation and thrashing, more knowledge and more experience have been accumu-
lated. It enhances significantly the cost-performance ratio. It might not be
imprudent to predict tﬁat most of the large-scale and medium scale computer
systems in the near future will have a virtual memory, even when they are batch
computer s&stems, bec;;;e ;f the poteﬁtial impressive impro;ement in cost;per—
formance ratio.

The design in this report is based upon the virtual memory system
preéented by O. R. Pa;do in an earlier report (6). This design makes use
of the ideas reported by Weingarten (12), Denning (13,14) and Coffman (3).
The central idea is to queue and schedule the page requests to a paging
drum in such a way that the access of the paging drum is optimized. This

idea can give a multifold increase in the page transfer rate and in tumn,

can significantly improve the cost<performance ratio of a computer system.

This idéa,‘however, could not be successfully-implemented'by using software
aléne on anlexisting‘computer system. This report presents an implementation
by hardware; F§r this particular design, an increése'of up to 16 times

in page transfer rate 1s achievable when the virtual memory is heavily
loaded. More detailed information about the design and simulation is avail-

able in references (5,6).

2. Configuration of the Virtual Memory

The configuration of the virtual meﬁory is sﬁown in the block dia-
gram of Fig} 1. There are six system units:
(a) eeﬁtral processing wmit (CPU)
(b) main memory (MM)
(c)'translation memory (TM)
(d) page table memory (PTM)
(e) paging drum memory (PbRUMD

(f) paging drum channel (PDC)

In this section, the translation memory is described in some detail, while
the other units are treated briefly since they are described elsewhere

(5 ,6) .

2.1 Central Processing Unit

A computer system with a virtual memory allows the use of vir-
tual address in the programs. The central processing unit fetches an instruc-

tion and translates the virtual address in the instruction into a real address

= toe - e o= om =

by means of the translation memory. The virtual address format for the virtual
memory described in this report is shown in Fig. 2. There are five fields in
the format. The 1-bit D field when 0 indicates a virtual address; else, a

real address. The 1-bit I field when 1 indicates indirect addressing; else, di-
rect addressing. The 2-bit X field specifies which index register is used. |
When X=0, no index register is used. When X=1, 2, and 3, index registers 1,

2, and 3 are used respectively. The virtual address consists of two fields,

a PAGE field and a WORD fieid. The 10-bit PAGE field contains the virtual page

address, while the 10-bit WORD field contains the virtual word address. The

Paging Drum Memory

PDRUM
/
paging-in
Y
Page Table Memory ' ' Paging Drum Channel
PTM : I< Ee
_ : PDC
\ N
paging-out

Y | *

Central Processing Unit _ Main Memory
CPU < MM

Trapslation L
Memory TM

Fig. 1 Configuration of a virtual memory

D I X PAGE WORD

= — bits
11 lQ 10
D=0, - virtual address; el_se réal address
I=1, © indirect addressing, elsefdirect addressing
X=1,2, or 3 index register
PAGE virtual page address

WORD word address

Figure 2 Virtual memory address format

virtual word address is, however, identical to the real main memory word ad-
dress.
In_addition to instruction decoding and execution, the CPU is also

capable of accepting priority interrupts.
2.2 Main memory

Tﬁefmain memory is assumed to have a capacity of 65,536 36-bit words.
It is orgaﬁiéed.into equal size blocks of locations known as page frames.
Each block of main memory locations consists of]024 words; thus, there are
64 page frames. The main ﬁemory address is 16 bits; 6.bits specify the
main memory page address and 10 bits specify the.word address within the

page. The characteristics of the main memory are summarized in Table 1.

2.3 Translation memory

The translation from a virtual page address into a main memory page

address is achieved by the address translation table stored in the translation

memory. This memory has a capacity of 1,024 16-bit words and a memory cycle.

time of 100 nanoseconds. The configuration of the translation memory is shown in_
Fig. 3. There are a 10-bit translation memory address register TADR, a 16-bit
translation memory buffer register TMR, a 24-bit virtual address register VAD,
and rive single bit registers (TMA, RW1l, RFLAG, WFLAG, and PFAULT). Register

TMA is set to 1 when the translation memory is accessed. Register RW1l, when 1,
indicates a write operation; else, a read operation. Register RFLAG is set to

1 when there is a read error, while register WFLAG is éet to 1 when there is a
write error. Register PFAULT is set to 1 whén there is a page fault (i.e.,

the CPU encounters a page not in the main meﬁory).

The translation word format is shown in Fig. 4. There are five fields.

%Z0T 30 31draTnu e sjussaxdaxr j xy
PTI3T3 19d speay 33TIm/pea1 9f 918 919yl

¥

§3Tq g7 :ssaappe a8ed (9)
S3Tq 4 :SS3IPpPe 10309s (q)
S1Tq 9 :ss3appe PITI (®)

§31q 0T :Ssa1ppe piom (p) |

S3ITq 91
:ssaippe piom

13351391 ssaappe

se3ed %Z0T (q)
spiom i #Z0T (®)

se8ed 19 (q)
spiom Y 49 (®)

£31oedEd L10wowW

sp1at3 %9 (P)

Joead 1ad s3Tq A 9T ()
P12T3 1od saded 91 (q)
piom 13d sitq 9¢ (®)

SPIOM xxAT (Q)
piom 1ad sitq 9¢ (®)

si1Tun eBlEPp

i

¥ PIom T Io SITQ 9¢

PIom T 10 S3ITQ 9¢

Y3prm 1ajsueil eIep |

puooas
-oxoTw 1ad piom I1Tq-9¢ ‘T

9wWTl 193jsuelrl Liowdw

puodesoaoTwm T

BWI3 9T04D Axowmauw

Laowa Enua

LIowey ureER

SOTISTISIOBIRYY

Aioway wniQ ay3 pue KIOWSR UTPY oYl JO SOTISTILIOEBILY) T STqeL

TADR(1-10)

)

Translation
Memory

™ (0-1023,1-16)

~
N

TMR(1-16)
 VAD(1-24)
RW1 | . PFAULT
RFLAG WFLAG
TMA

Fig. 3 Configuration of the Translation Memory

ST ' ki
558 59
<0 wp wKkEY & 9 BLK
1111 & 32 6 bits
ACT=1, page is active in the main memory -
REFD=1,’ page has been referenced
CHGD=1, page has been written into the main memory
WP=1, page is write protected
WKEY, protection key of the page

BLK main memory page address if the
: page 1s in the main memory

Fig. 4 Translation memory word format

10

The 1-bit ACT field, when 1, means that the page is active ih thé main memory.
The 1-bit REFD field, when 1, means that the page.has been referenced.. The
1jbit CHGD fiéld, when 1, indicates that the page has been written into the main
memory. Thé,l—bit WP field, when 1, means that the page isAwrite-protected.
The 4-bit WKEY field contains the protection key of the page. Lastly, the
6-bit BLK field contains the main memory page address corresponding to the vir-
tual page if it is in the main memory. |

The configuration of the translation memory is now desg;ibed by thé'

' following éDL’étatements.

Comment, translation memory

Memory, TM(TADR)=TM(0-1024,1-16) $trénslation memory

‘Register, TADR (0-8),: $translation memory address register
MR (1-16), S$translation memory buffer register

VAD(1-24), $virtual address register

TMA, Stranslation memory access register
RW1, $read/write register (for CPU)
RFLAG, $read error flag

WFtAG, Swrite e?ror flag

PFAULT, Spage fault Fegistef

Subregister, TMR(ACT,REFD,CHGD,WP,WKEY,NOTUSED, BLK)=TMR(1,2,3,4,5-8,9-10,11-16)

VAD(D,I,X,PAGE,WORD)=VAD(1,2,3-4,5-14,15-24),

11 B

The translation memory contains a translation table which accepts a
10-bit virtual memory page address and deli&ers a 6~bit main memory page
address if ;he page is in the main memory. This traﬁslation table is formed
by the opefating system for the program in.execution (seé p- 11 in reference
7).

The operation of transla;ion memory TM is described by the sequence
chart of Fig. 5. A read or a write sequence is started when register TMA
contains aAl. Register RWl is next tested for a read or a write operation.

If RW1 is-O, it is the write sequence. The translation memory address register
TADR is sét to the giveﬁ address and the translatipn memory buffer register

TMR receives the input &ata; then the input word is transferred into the trans-
lation memory from the buffer register TMR. If RW1l is 1, it is the read se-
quence., The tranélation memory address register is set to the given address
and the desired word is transferred from the translation memory into the

buffer register TMR. Lastly, regsiter TMA is set to 0 and the TM returns to

the waiting loop.

2.4 Page table memory

In order that the CPU can keep track of main memory page assignments
(e.g., available pages), and in order that the paging drum channel can keep |
a list of pages to be swapped, a fast page table memory (PTM) is provided.
This memory has a capacity of 64 66-bit words. It stores a page table.

Each entry of the page table (that is, each word of the page table memory)

stores a page descriptor. Thus,there are 64 page descriptors. Each page

descriptor provides for each main memory page the following information:

(a) the current status of the page,
(b) the task which the page is or was attached to,

(c) the protection bits,

12

————————— .
. . N
L !

' '_ _ : . - waiting loop
- TMA€-0 ' l//)///’ .
% . 4 : V

| read from
write into the ™M ~
the ™:. ~
- TADR<¢-"address" -} TADR&-"address"
TMRé-"input data" "
h "2
TM(TADR)&~TMR TMR&=——TM/TADR)

|

TMA<-0

word

‘1;—* transfer

complete

Fig. 5 Sequence chart for the translation memory

13

(d) utilization informationm,
(e) the corresponding virtual address of the page,
(f) the drum address of the page, and

(g) list linkage informationm.

By means of the linkage fields of these descriptors, the 64 pages in the main
memory can be linked together_into one or more lists such as available page
list and‘sﬁappabie page list.

The page descriptor format is shown in Fig. 6.. There are 12 fields
in a ﬁage descriptor. However, only fields LB, LF, DP, and ROW are needed for
the simulation here. LE is the backward link pointing to the previous page
descriptof of a 1list of page descriptors. LF is the forward link pointing to
the next page descriptor of the list. DP is a 10-bit drum page address; the
first 6 bits of DP specifies the field.address of the drum page,while the other
4 bits of DP specifies the sector address. ROW is a read/write indicator. If

ROW is 0, it is the read operation; else, the write operation.

2.5 Paging drum memory

The paging drum memory is a large rotating magnetic drum with a fixed
head per track. The drum circumference is divided info equal parts called
sectors, and the drum length is divided into groups of 36 tracks called fields.
There are 16 sectors and 64 fields. The intersected area of a sector and a field
is a drum page. There are 1,024 drum pages. A group of 36 bits in‘a field
parallel with the axis form a drum word. There are 1,024 drum words in each
drum page. Therefore, the drum page and the main-memory page are of the same
size. The data transfer between the drum memory and the main memory is 36
bits.at a time and one page at one transfer. The characteristics of the paging

drum memory is also shown in Table 1.

14

PUSE LB LF | WkEY |wp CHGE RES UTIL TID} VP DP ROW

LB: backward link
LF: forward link _
DP: drum address of this page

ROW: read/write indicator

Note. The other fields are hot used in the simuiation. See reference (6).

Fig. 6 -Page descriptor format

15

2.6 Paging Drum Channel

The paging drum channel PDC is essentially a dedicated processor that
controls the operation of the paging drum in response to the paging-in and paging-
out requests; A page of words is transferred from the drum through the PDC to
the main memory when the CPU encounters a missing page (paging-in a’page), or a
page of words is transferred from the main memory through the PDC to the drum
Qhen the CPU releases a page (paging-out a page).

Thé,configuration of the PDC is shown in the block diagram of Fig. 7.
There are two memories'in the PDC. Memory COM with address register SEC and buffer
registef COMMAND has a caéacity of 16 52-bit words for storing 16 channel command
words. Memory LISTS with address register SECTORS and buffer register PTL has a
capacity of 16 12-bit words for storing 16 pairs of listheads. These 16 pairs are
for the 16 sector lists in the page table memory.

The channel command word CCW férmat is shown in Fig. 8. There are five
fields: the 1-bit C field, the 1-bit RWC field, the 8—bit.CHAN field, the 6-bit
PGE field, and the 36-bit FIRSTWORD field. When C is 0, there is no page transfer
between the PDRUM and the MM. When RWC is 0, a drum page is to be transferred from
the PDRUM to the MM through the PDC. When RWC is 1, a MM page is to be transferred
from the MM to the PDRUM through the PDC. Only 6 bits of the 8-bit CHAN field are used
for addressing the 64 fields in a drum sector. The 6-bit PGE field contains the MM page
zddress. The PGE field must be non-zero since we assume that MM page 0 is not available.
The 36-bit FIRSTWORD field contains the first actual word of MM page just in case
the transfer is from the MM to the PDRUM.

The listhead format is shown in Fig. 9. There are two 6-bit fields. Thé first

6 bits specify the location of the front node and the last 6 bits specify the lo-

cation of the rear node of the doubly linked sector queue in the page table memory.

SEC(1-4) SECTORS (1-4)

\ o

command memory listhead memory
COM(0-15,1-52)) LISTS(O—lS,l—lZ)
;[! N .
. COMMAND(1-52) ' : PTL(1-12)
MADR2 (1-16) SBR2 (1-36) PC(1-6)
PDR2(1-6) 1 PDR2 (1-64) PAGEPOST (1-6)
FIELD(1-6) | COUNT (1-10) PTRAN(1-2)

INTERRUPT (1-10)

© POST PAGINT PAGEI
1
PTM1 PTM2 7 PTM3

Fig. 7 Configuration of the Paging Drum Channel

17

12 3 10 11 16 17 ‘ 52
¢ | Rwe CHAN PGE FIRSTWORD

1 1 8 6 36

_C:. no page transfer when C=0; else, there is a page transfer.
RWC: page to be read when 0;. else, page to be written.
CHAN: drum field address
PGE:" MM page address

FIRSTWORD: first word of the transferring page

Fig. 8 Channel .Command Word Format

FP LP

FP: the front listhead of the doubly linked list in the
page table memory for use when an element of the list is detached.

LP: the rear listhead of the doubly linked list for use when
an element of the list is inserted.

Fig. 9 Listhead format

.18

3. Architecture of the virtual memory

This section presents the architectural'desigﬁ of the virtual
memory. It de5cribes the address translation table, various lists, the chan-
nel command words, the listhead table, the handling of the paging requests,

and finally, various functions required for the virtual memory.

3.1 . Address translation table

The tfanslation of the virtual page address into the physical main
memory page address 1s achieved by the address tramnslation table in the trans-
lation memory.> The basic idea is simple. It is a table with two columns:
ﬁhe left column with the virtual page address and the right column with the
main memory page address. However, the left column is not required when a
random-access memory 1s used, as it can be served by the address register
of the random-access memory. As shown previously, several bits are added to
eaéh translation memory word to store control and status information re-

quired for each main memofy page.
3.2 Lists

There are 64 pages in the main memory. Each page is pointed by a
pagé descriptor stored in the page table memory. The pagetable memory ad-‘
dress of each page descriptor corresponds to one main memory page address.
Thus, 64 page table memory words store 64 page descriptors for 64 main meméry
pages. The format of the page descriptor has been shown in Fig. 6. As shown,
there are two 6-bit fields LB and LF (backward link and fofdward link) in
the page descriptor. By means of these backward and forward links, the 64 main
memory pages can be linked into one or more lists in the page table memory.A

Each node of the list is doubly linked with one link pointing in the forward

¢

19

direction by the forward links LF's and the_other link pointing-in the back-
ward direction by the backward links LB's. |

Ihére are many lists of page descriptofs'linked by fields LB and
LF of the page descriptors as follows: |

(a) one availablefpggg list which links those pages of the MM that are avail-

able to the CPU;

(b) one swappable-page list which links those pages in the MM that are re-

leased by the CPU to be transferred from the MM to the drum;

(c) one or more user's lists, each of which links those ﬁages of the MM

that belong to a particular user;

(d) sixteen sector lists, each of which links those pages of the MM that are

waiting (i.e., already in the queue) to be transferred either from the
MM to the drum or vice versa. Since these 16 lists are used as queues,

they are also called sector queues.

To enable a quick access of the first entry and the last entry in
each sector list, two 6fbit listheads are provided for each sector list. The
32 listheads for the 16 sector lists are stored in the 16 words of the LISTS
memory. The listheads for the available-page list :and the swappable-page: ‘-
list are stored in register LAVP(1-12) and LSP(1-12), respectively. The
listheads for the current user is stored in regisfer PTLIST(1-12) or register
GPTL(l—iZ); the listheads for the users' lists are stored in the system table

permanently resident in the main memory described elsewhere (6).

3.3 Channel Command Words

The words in the COM memory are called Channel Command Words or
CCW's. Each CCW stores the following pertinent information for initiating

~and controlling a page transfer:

20

(a) main memory page address,

(b)'drum fiel&:address,

(c) read/Writejéberation,

(d) transfervréquest, and

(e) the first word of the main memory page in case the transfer is from the

main memory to the paging drum.

There are 16 CCW's; each CCW contains control informatién for
handling its drﬁm sector. There is a linkage between each page descriptor and
the channel command word constructed from this page descriptor. This linkage
is the main memory page address which is stored in the channel command
just constructed. This maln memory page address is used aé the page memory
address, by means of which the page descriptor in the page'table memory.can
be located.

There is an important exception to the way that the first page
deécriptor of every sector list is linked: this first page descriptor is detached
from its sector list, after its pertinent information for initia-
ting the data transfer is used to construct the CCW for that sector. ‘The
page descriptor of this page can be located in the page table memory by the
CCW whose field PGE holds the MM page address of this page. The reason for
not linking the first MM page to its sector list is to enable the immediate
accessability of this page information from the CdM memory in the PDC, since
the COM memory is exclusively accessable by the PDC whilé the page table mémory
is accessable by the PDC and the CPU. As a result, the PDC can rapidly
respond to the drum each time when a new drum-sector begins to.be scanned.

. In other words, as the drum heads>reach the beginning of each sector, the CCW
of this‘sector is accessed from the COM memory and the data transfer, if

called for, is initiated right away. After the initiation, the current

© 21

CCW is of no further use; this COM memory location can now be refilled with
the pertinent information for initiating the next page transfer for the same
sector which occurs when the drum completes another_revolution and again be-
gins to scéﬁ_this sector. This refilling is accoﬁplished as follows. While

a page is Being transferred to or from a drum sector, the next page descriptor
is detachgd from the sector list in the page table memory and the pertinent
informatién.bf fhe page obtained from the page descriptor is used to construct
a CCW for the current drum sector. This CCW will be used after one drum re-
volution;r'

There are 16 ghannel command words in the COM memory. Since the
first page descriptor of eaéh.sector list is not linked to that sector list,
there can be as many as 16 main memory péges that are not linked at all by
the page descriptors. Howe&er, the page descriptors of these main memory
pages aré pointed by (and thus indirectly linked by) the channel command words

as described previously.

3.4 Lisfhead table

For each drum sector, the paging drum channel needs to quickly lo-
cate the corresponding sector list for converting the first page descriptor
on that sector list into a channel command word. The pointers or listheads
tor locating these 16 sector lists are the entries of the listhead table
stored in the LISTS memory.

There are 16 entries in the listhead table; each entry occupies
one LISTS memory word. As shown previously in Fig. 9, each LISTS memory word
contains a pair of listheads which point té the front and the back of the
corresponding sector queue in the page memory. By means of the pair of the

listheads, the paging drum channel can quickly locate the sector queue for

22

the drum sector now being séanned by the drum heads.

3.5V Page-transfer requests

As ﬁentioned previously, the swappable-page list links those pages

in the main memory that are released by the CPU to be transferfed to.the‘
drum, while each of the sector lists links those main-memory pages queued to
be paged—in'or paged-out. The reason why two kinds of lists are required is
that the opéréting systém of the computer system aims to schedule alternately
the read and write page transfers in the sector lists.

\ Fig. 10 is a diaéram showing the queuing of page.transfer requests
in the sector queues. The 16 sector lists are maintained by the PDC; the avail-
able-page list and tﬂe swappable—page list are maintained by the CPU. When
a page 1is requested by the CPU and found missing in the main meﬁory,‘a page-
fault interrupt is generated; this interrupt signifies that a new page is fo be
paged-in. The CPU allocates a page descriptor from the available-page list and
posts a read page-transfer request to the PﬁC. The PbC responds by placing
the request in the appropriate sector list for the drum sector where the page
ig stored. The CPU next posts a write page-transfer request to the PDC for
swapping out a page from the swapping-page list. In this manner, the réad

and write page transfers are scheduled alternately, as also indicated in Fig. 10.

Fig. 11 is a diagram showing the handling of the lists. As mentioned
before, the CPU posts a read page-transfer request owing to a page fault or posts
a writé page—-transfer reqﬁest owing to a page release. These requests are entered‘
by the CPU into the appropriate sector lists. The PDC next generates channel com-
mand words for each drum sector from the information in the'secﬁor lists
and the 1i$thead'table. Whenever a page transfer is completed, the PDC sig-

nals the CPU. The CPU then updates the user's lists and resumes the execu-

16 sector lists
queuing read and write
page-transfer requests

A

J

L

—
page transfer
requests
A A
read request write request
Available Swappable
page list page list
Fig. 10, . Quening of paging-in (read) requests

and paging-out (write) requests

23

read request
write request
read request
write request

2

gatqed PUe °

3817 2ud 3

1871 288d
a1qeddens

| §,3980 jm — — T

‘@

—

ged[3x
a8ed |

a8l
8 —HOWAw

25

tion of program, or it links the éage descriptor now released to the avail-
ablé page list. The CPU posts page-tranéfe;s one after another, while the
PDC initiates and executes the page transfers in an alternate read and write
operation ih order to optimize the drum transfer operatibn. The CPU handles
all the lists including the users' lists except the sector lists which is

handled by the PDC.

3.6 Architectural design

‘_The architectural design of the virtual memory is presented in the

diagr;m of Fig. 12. 1In this diagram, major func;ions of the virtual memory
are indicated: virtual address translation, generation of page descriptors,
queueing of paging requests, generation sf PDC command words, and execution of
page transfers, in addition to functions handled by the operating system (not
shown) .

The first function is virtual address translatiﬁn. The CPU exam-
ines the virtual address of an instruction, and determines from the transla-
tion memory whether the page specified by the virtual address is in the main
memory. If it is in the main memory, the virtual address.is-translated into
a main memory address by address translation table in the translation memory.
The particular main memory address derived from the virtual address is then used to
fetch the desired main memory.QOrd. If this page is not in the main memory, then
a page fault is generated to signal an interrupt. The operating system then
takes over; it exéminég the cause of the interrupt and isSues a paging-in
request.

The second function is generatioﬁ of page descriptor. When a paging-
in request is issued, a page descriptor is generated by the CPU, using the
virtual address, the main memory address, and the required transfer operation.

This page descriptor contains the page address in the drum,. the corresponding

v

26

193sueay

Iajsueiy
ssaippe P

193813831 1933nq

Axows uyrey

L10may TENn3ITp BYy3 JO aan3jds3Tyoay

ssaappe aded
f1owau—uteum

‘TT 814
Iiney aled

V)

Axousm
uog3eTSURI]

uawma ax
I233nq

spaom

puemmod ’
Tauueyd’ 971

N

A &iowau

11(08)

21qe3 -

" SPEaYISTT

15381801
ss2appe

S —

N |

%uoawa
SLSIT,

TouuRY) Wnig Jujseq

‘318771 a8ed aTqeddenms
31871 mwmm aTqeIFRAR

‘s38FT ,saasn
‘sananb 10309s

\

+cmmnumﬁa JO i v
uoT3eIau’l Azowauw
lllllll,mlilll 91qB], °8eg
paom
pusmmod jo
uorjeI3Uag

Y

uotiIaTduod
93ed 7

~__

5t
Biiaac: . NSV

a1qe3
uoy3IeTSUBLY
8831ppe

wmuvvw
23ed

ssaippe
paom

Ten3jaya.

mummawwum
8urled . psde
Itup
8uyssasoayg
Tei3ua)
103d1a0sap

98ed 3Jo
c“Muwumcww

27

virtual address of the mainApage,and other control information provided by
the operating éystém,.as mentioned previously. This page dé5criptor is
inserted and’iinked into one of the 16 sector queues.

'The third function is the queuing of paging requests. As mentioned,
thereiare 16 sector queues in the page table ﬁemory. Each sector'queue stores
the paging-in and paging-out requests for one drum sector. The requests are
processed:by the paging drum channel-at an optimum time later.

| fhé fourth function is exegution of page transfers. During each
drum revblutipn, the drum heads scan 16 sectors. At the begining of scanning
eéqh éector, the channelycommand word for that sector is taken out of the COM
memory, and the page transfer specified by this channel command word is carried
out. During éach drum revolution, there may be as many as 16 page transfers.

The fifth function is generation of channel command words. As
mentioned, each channel command word in the COM memory is actually the first
paging request of a sector queue in the page table memory; While a channel
command word is being executed for the drum sector that is being scanned by
the drum heads, the first entry of the current sector queue is fetched from
the page table memory and_converted into the channel command word for the
current drum sector to be executed during the next drum revolution.

There are a number of viftual memory functions that are carried out
by the operating system: paging interrupt handling, drum page allocation,
initial loading, and execution of virtual memory policies. Paging interrupts
are th§se due to paging faults, paging requests and paging completions. In-
terrupts including thése paging interrupts are handled by the interrupt routine of
the operating system. Drum page allocatioﬁ refers to the allocation of avail-
able pages on the drum to a user's program. Initial loading refers to the

loading of the program into the allocated drum pages. Drum storage alloca-

28

tion and initial loading are dynamic storage allocation functions of the oper-
ating system. Virtual memory policies are to>be further discussed; execution

of the replacement policy is assigned to the operating system.

4. Operation of the Virtual Memory

This section presents a flow chart which shows an overview of
the operation of the virtual memory. It then describes more fully the virtual
address translation, the paging policies, and the program for initiating and

controlling page transfers.
4.1 An overview

Fig. 13 is a flow chart showing'an overview of the virtual memory
operation. As shown, the virtual address is first fetched by the CPU. By
means of the address translation table in the translation memory, whether
the page addressed the virtual address is in the main memory or not is de-
termined. If the page is in fhe main memory, the CPU continues to execute
the current instruction. If it is not in the mainAmEmory, execution of the
current program is suspended and a page fault is issued. The operating sys-
tem identifies the cause of interrupt and then examines the available-page
list. If no page is available as indicated from the available-page list, the
operating systeﬁ next examines the sﬁappable—page list.

If the swappable-page list indicates that no page is available
for swapping, the operating system selects'a page to be paged out by applying the
replacement policy. Once a main memory page is selecFed to be paged out,
its address is inserted into the swappable—p;ge list. The éwapgable—page
list is no longer empty, and it now becomes the case that a page is available

for swapping. The operating system issues a paging-out request and calls the

virtual address
entry

virtual address
translation

page in
main memory?

no

issue a page fault

!}

operating system identifies
the interrupt

page availab{g available page

list empty?

no page available
swappable

page available swappéble

N \pagg available?

.} no swappable
page available

use replacement policy and select
a page to be paged out

insert an entry into the
swappable page list

>3-
7

issue a paging-out request

Y

call I0CSP to page out a swappable
) page to the paging drum

Y

_update the available and the
swappable page lists

N
4

4

]issue a paging-in request]
call IOCSP to page~in the page
from the paging drum

update the available and the
swappable page lists

operating system returns execution
to the interrupted instruction

3
>

A

continue instruction
execution

exit

Fig. 13, Flow chart showing an overview of the virtual
memory operation

30

IOCSP to page out the swappable page to the paging drﬁm, and:then updates both
the available page list and the swappable page list. Now,-thg-available—page
list is no longéf empty. It becomes the case that a page is available for
paging—in.

When a page'is available, the operating system issues a paging—in
request, calls the IOCSP to page in the required page from the paging drum,
and then updatés the avéilable‘page list and the swappable-page list. The
operating system now returns to the executions of the interrupted instruc-
tion. |

The operation shown in Fig. 13 could be and should be fmproved.
First, the page swapping could be made concurrent with other paging operations
so that the available page list will be built up to make pages available for
allocation. Second, after the desired page is paged in, the operating system does
not have to return immediately to the interrupted instruction, depehding on

the scheduling algorithm that is adopted by the operating system.

31

4,2 Virtual address translation

Fig. 14 shows the configuration for #irtqal a&dress translation.
The translaﬁion begins with a virtual address in thé 24-bit virtual address
register VAD and ends with the physical main memory address in the 16-bit
main memory address register MADR1(1—16). Register MADRl.consists of two
parts: subregister MADR1(1-6) which contains the main memory page address
énd subregister MADR1(7—16).which contains the word address of the page. As
shown in-Fig; 6, subregister VAD(5-14) is connected to the translation memory
address register TADR; subregister VAD(15-24) is connected to subregister

MADR1(7-16); and subregister TMR(11-16) is connected to subregister MADR1 (1-6).

The algorithm for the virtual address translation is shown in the
sequence chart of Fig. 15. It begins when the virtual address ''P-W'" is trans-
ferred from the CPU to register VAD. Since subregister VAD(5-14) contains the
location of the translation memory word that has the main-memory pageladdress,
it is transferred to the translation memory address register TADR. The desired
translation memory word is next read out of the translation memory into regis-
ter TMR. Then, the contents of subregister TMR(11-16) afe transferred to sub-
register MADR1(1-6), while the contents of subregister VAD(WORD) are trans-
ferred to subregister MADR1(7-16). Thus, register MADRL now contains the

main memory address.

4.3 Paging policies

There are three policies involved in the paging transfers: replace-
ment policy, fetch policy and placement policy. The replacement policy de-
termines which page in the main memory is to be paged out. The fetch policy

decides when the page is to be paged in. The placement policy decides where

CPU

l

\ ! -
- 5-14 ' 15-24
VAD 1 5\> . —J
J vap (paGE) Y
TADR(1~10)
VAD (WORD)
Translation Memory
(0-1023,1-16)
\ 4
™r| 1-10 L 11-16
— ~ o \
¥ ! A
MADR1 1-6 ' 716
A\ *)

[

Main Memory

1

Main Memory Buffer Register |

Fig. 14 Configuration for the virtual address translation

Start

VAD<E--"P-Y"

TADR€--VAD(PAGE)

Y

TMR<~- TM(TADR)

‘ 4
MADR1 (1~6)&--TMR (BLK)
MADR1(7-16)¢&-~VAD (WORD)

END

Fig.’15 Sequence chart of the virtual address translation

33

34

in the main memory the page is to be'placed.

A commonly used paging policy i1s the demand paging. In demand pag-

ing, one page of the program is paged in at the beginning of the time quantum
in a time—sharing system; each additional page is then pgged in when the page
is demanded (i.e., when a page fault ogéurs). At the end of the timé quan-
tum, no.pages of the program are removed from the main memory; its removal is
determined by the replacement policy. This design employs the demand paging
as the fetch éolicy. The placement policy makes use.of the previously dis-
cussed listét the available page list and the swappable list. The entries
in thése ?wo lists are madg available by the replacement policy.
There are a number of known replacement policies:
(a) select the page randomly,
(b) select the page which has been in the main memory the longest time,
(c) select the page which is the least recently referenced by an active
process, |
(d) select a page from the working set of an inactive process or a page
not in the working set of any active process.
The working set of a process is the smallest set of pages which must be in
the main memory in order ;hat the process may run efficiently. The replace-
ment policy chosen in this design is the working set model as has been des-

cribed elsewhere (6, 9, 10).

4.4 TInput-output Control System for Paging

The'Input—Output Control System for Paging (IOCSP) for the vir-
tual memory is a program that initiates and controls automatic transmission of
data to and from the paging drum memory. The IOCSP performs the following

functions:

35

(a) it accepts page-transfer requests;

(b) it constructs paging request entries;

(¢) it constructs channel programs for the pagiﬁg_drum channel;

) it»initiates the PDC to exécute the channel‘prﬁgfam;

(e) it updates the address translation table after a.éage—transfer oper-

ation is completed.

Fig. 16 is a flow chart which shows handling of paging reqﬁeéts.ﬁy the IOCSP.
As shown} after initialization, the IOCSP accepts paging reﬁuests from the CPU.
It then coﬁstructs a paging requeSt entry and places it in the pagiﬁg—request
queue. For each paging request, it constructs . a paging—drum channel program
and stores it in the main memory. This channel program is néXt transferred
to the command memory of the PDC and is ﬁhen executed ﬂy the PDC. ‘After the
execution is completed, the address translation table ié.up&ated.‘ Finally,
the CPU notified. | |

The above functions of the IOCSP are implemented by four routines:

10CS1, UNIT, FETCH, and IOCS2 to be further described.

36

IOCSP entry

|

Initialization

N 4
Cd

lr

accept paging request to transfer
a page from the paging drum by th
CPU .

l

construct a paging request entry and
insert the entry into the paging
queue - (by IOCS1)

!

construct a channel prbgram-for the
PDC and store it in the main memory
“(by UNIT)

l

transfer the channel program from
the main memory to the PDC and
activate the PDC to execute the
channel program (by FETCH)

L

update the address translation
table (by 10CS2)

Fig. 16

~& termination?

return

Flow chart showing servicing a paging request

by the I0CSP

37

5. The IOCSP Routines

'The I0CSP consists of four routine§:
(a)-faging Initiation Routine (IOCS1)
(g)‘Paging Drum Unit Interpretive Routine (UNIT)
(c) Fetch Routine (FETCH)
(d)fPaging Completion Routine (I0CS2)

Thése routines are described below.

The Paging Initiation Routine is activated when a page-transfer is
fequired during the exgcution of a user's program or the supervisor program.
It determines the nature of fhe paging request;(paging—in or paging-out),
constructs a paging request entry described in the next section, and checks
the availability of the paging drum. -

The Paging Drum Unit Interpretive Routine is called by IOCS1. It
checks the function code of the paging request (0 for paging-in and 1 for pag-
ing-out), generates a page descriptor and a channel command word to be exe~
cuted by the PDC using the information in the given paging request entry, and
calls the Fetch routine ‘which is described-belowf < - s -

The Fetch Routine transfers the channel program from the main memory
to the PDC, and then initiates the PDC to execute the channel program. Once
the PﬁC is initiated, it carries out. data trénsfer independent of the process
in the CPU.

The Paging Comple;ipn Routine routine gains control when the page-
transfer operatidon is complgted. It marks the paging request entry as ser-
viced, updates the address translation taﬁlé, and then returns contrél to the
user's program.

Detailed description of each of these routines is now given below.

38

5.1 Paging request queue

Whén'the page addressed by the virtual page addrgss of an instruction
is in the main memory, the virtual address is translated into the main memory
address and the instruction is éhen executed. If the page is not in the memory,
this page has to be brought in from the éaging drum memory by the IOCSP.

The'iOCSP,first places the paging request in the paging-request
queue, whiéh is a linear list of paging request entries in the main memory for
the sake dfvcOnvenience~in-later.simulation; Each éntry is esi?e@“a node; re-
.Présentingiong request. - Table 2.shows the six fields of the node.

There are six fields in a node which répresents a paging request.

. The mark field when O indicates that the request is not serviced; otherwise,
it is serviced. The paging instruction field when O indicates the paging-in,
otherwise, it indicates paging-out. Other fields give the MM page address,
‘the virtual page address, the drum memory field address, aﬂd the drum memory.
sector address. Fig. 17 shows the (K-1)th node, the Kth ﬁode, and the

(K+1)th node in the paging request queue.

5.2 Paging Initiation Routine (IOCS1)

The Paging Initiation Routine (IOCS1) gains controi when there is
a paging request to bé serviced. The IOCS1 routine first constructs a paging
request entry and then passes control over to‘the UNIT routine.

Fig. 18 is a flow chart of the IOCS1 routine. When IOCS1 routine
starts, index K of‘the paging request entry is‘incremented by 1. Next, the
value of K is examingd. If K'is’greater than 64.which is the.maximum paging
request queue length, then the value of K is reset to 1 to avoid overflow.

If K is less than 6%, then a paging request entry is constructed as follows:

Table 2. Representation of a paging request entry by a 6 word .NODE

Words of * Fields of the

the Kth node /| XKth node o Contents of words
NODE(K,I): mark o 0 for not serviced;
o ‘ " 1 1 for serviced.

NODE(K,2) paging instruc- 0 for paging-in;

' " tion T 1 for paging-out.

NODE (K, 3) MM page address MM page addresses range from

. : 0 to 63 .

NODE (K, 4) virtual page ad- virtual page addresses or the
dress (same as translation memory addresses
translation mem-—
ory address)

NODE(K,5) drum memory drum field addresses
field address

NODE(K,6) drum memory drum sector addresses
sector address e

* K is the index for the paging request

Note: The paging-in or paging-out operation, the MM page address, and
the virtual page. address are available from the operating system.

40

(K-1) t®h oad -

NODE (K-1,1)
NODE(K-1,2)
NODE (K-1, 3)
NODE(K-1,4)

k\ __;;;—4=7 NODE (K-1,5)

Kth node

NODE(K-1,6)

(K-1)th mark bit
= (K-1)th paging instruction
= MM page address

]

Virtual page address

Drum memory field address

= Drum memory sector address

NODE (K, 1)
NODE(K,2)
NODE (K, 3)
NODE (K, 4)
NODE (K, 5)

(K+1)th nodd

C

NODE (K, 6)

Drum memory sector address

Kth mark bit

Kth paging instruction
MM page address
Virtual page address

Drum memory field address

—"—“-4

NODE (K+1,1)
NODE (K+1,2)
NODE (K+1, 3)
NODE (K+1,4)
3 NODE (K+1,5)
NODE (K+1,6)

(K&l)th mark bit
(Kt1l) th paging instruction

MM page address

Virtual page address
= Drum memory fleld address

= Drum memory sector address

Fig. 17 The (K-1)th node, Kth node, and (K+l)th node in the
paging request queue

Paging
Initiation
Routine

K &-K+1

v

Input Instruction

input Main Memory
‘Page

Input Translation
Memory Address

Set Field Address
to 1

N\ ves
(compute field address) (TMADDR <l€‘/’
N

oG
Y yes
K é&-1
NODE(XK,1) £-~ 0
\
{ NODE(K,2) &-- INST
. Y
([NODE(K,3) €-- MMPAGE
] :
{ NODE(K,4) €-- TMADDR
(
{_NODE(K.S) —— 1

7

maximum paging request
queue length is 64

(field address = 1)
N, ,

no

7
n

NODE(K,S}(F*NODE(K,5)+1

AN

N

4

. TMADDR £-- TMADDR—ld

1

\?MADDR <0 ::)

yes

41

NODE (K, 6)€—--TMADDR

| NoDE (K, 6) €--TMADDR41 6 |

a

)

RETURN

Fig. 18 Flow chart of the Paging Initiation (I0CS1l) Routine

42

(a) NODE(K,1) is set to O since the paging reqﬁest is not yet seiviced.
(b) NODE(K,2) is set to O f;f paging-in or 1 for paging—but.
(c) NODE(K,3) is set to the main memory page address MMPAGE vhere 0 MMPAGE<63.
(d) NODE(K,A) is .set to the translation memory .address TMADDR (same as the
virtual page address) where O<TMADDR<63. |
(e) NODE(K,5) is set to the paging drum membry field address. Initially,
it is set to 1. |

(f) NODE(K,6) is set to the paging drum memory sector address.

Next; the drum memofy field address and the drum memory sector ad-
dress are COmputed.v If TMADDR is less than 16, then drum memory field address
is set to 1 and the drﬁm memory sector address is the same as TMADDR. There-
fore, NODE(K,6) is sét to TMADDR. If TMADDR is greater than 16, then 16 is
subtracted from TMADDR‘while 1 is added to NODE(K,S). The subtraction and
addition operations continue until TMADDR becomes negative. When TMADDR is
negative, then NODE(K+6) is set to (TMADDR+16) which is the éomputed drum
memory sector addfess. After the paging request entry is constfucted, the

10CS1 passes control to the UNIT routine. A simpler way is to shift the trans-
lation memory address 4 bit positions to the right, '

5.3 Paging Drum Channel Unit Interpretive Routine (UNIT)

The Paging Drum Channel Unit Interpretive Routine (UNIT) is called
by the I0CS1 after a paging request entry is constructed.. The ﬁNIT routine
constructs:a page descriptor for the main memory page to be transferred. It
~ also constructs a channel command word for execution by the PDC.

A flow chart of thé UNIT routine is shown in Fig. 19. When the UNIT
routine starts, a CCW is constructed with the information in the paging re-
quest entry. The left half of the CCW is constructed according to NODE(K,Z),

NODE(K,3), and NODE(K,5) and the result is stored in the MM location 4. The **

43

- IMBR&--8**5+NODE (K, 2) *4% 8*%*4+NODE (K,’S) *8**2+NODE(,K3 3)

\

MEM(0,4)&—-MBR

MBR<——NODE(K,3)
Y
) MEM(O’S)é__MBR

store channel
command words in

Vo locations 4 & 5
' MBRE--0
‘ Y -
store page des- MEM(O, 6)&—-MBR
criptor word in loca-
tions 6 & 7 Y

|

! MB&&——NODE(K,5)*8**2*4+NODE(K.6)?8***22*2+8**2

“A MEM(Q 7)€ —_MBR

Fig. 19 Flow chart of the Unit-Interpretive (UNIT) Routine

44

'symbol means exponentiation which is used to shift céntrol information in a
computer word to the desired bit position. The right half of the CCW is set

to NODE(K,3) and is.stored in the MM location 5. Next, a page descriptor is
constructed;"The left half of the page descriptor 1is set fo'O and the result is
transferred to the MM location 6. The right half of the page descriptor is
constructed according to NODE(K,5) and NODE(K,6) and the result is stored in
the MM 10catidn’7, After the constructed channel ﬁrogram is stored in the MM

locations 4 thfough 7, the UNIT routine passes control to the Fetch routine.

5.4 Fetch Routine (FETCH).

The Fetch Routiné (FETCH) transfers coﬁﬁrol iﬁformation from the
main memory to both the page table memory and the PDC COM memory.

The flow chart showing the FETCH routine is shown ianig. 20. When
the FETCH routine begins, thé contents of the MM location 4 are transferred to
the left half of buffer register COMMAND of the COM ﬁemofy in the PDC, and the
contents of the MM locétion 5 are transferred to the right half of register
COMMAND. Address register SEC of the COM memory is next set to NODE(K,6) in
order that the CCW for the page-transfer operation can be tramsferred into the
proper location of the COM memory.

Next, the contents of the MM location 6 are transferred tq the left
half of the page table memory buffer register PTR, and the contents of the
MM location 7 are transferred to the right half of register PTR; The page
table memory address register PADR is set to the contents of NODE (K, 3) in or-
der that the page descriptor can be stored into the proper location of the page -
table memory. At the end, the FETCH routine initiates the PDC to execute the

channel program.

‘Fetch
Routine

MARE-—4

v

MBR €--MEM(0, 4)

N

SBR2£--MBR

COMMAND (1) ¢--SBR2 _

72

MARE-=5
'.

MBR¢-~MEM(0,5)

\

SBR2&€--MBR J

oo

Y

COMMAND (2) é--SBR2

| n__whwl L{/’

4

SECE~~NODE (K, 6)

¥

store channel

COM(SEC, 1) €¢-~COMMAND (1)
COM(SEC, 2)&~—-COMMAND(2)

Fetch the
CCW from
main memory }\
loc. 4 &5

command word
in the .chan-
nel command
memory

Y
MAR€~—6
y

45

MBR&--MEM(0,6)

N

SBR2¢--MBR

PTR2 (1) €¢--SBR2

N

PTR(1)&~-PTR2 (1)

{

MAR¢--7

N

Fetch the page
descriptor

from main mem-
ory loc. 6 & 7

MBR€-~-MEM(0,.7)

N\

SBR2 €--MBR

\
PTR2 (2) €&~-SBR2

N

| PTR(2)€--PTR2(2)

Y

PADR&—-NODE (K, 3)

A

PAGETABLE (PADR,1) ¢-PTR(1)
‘PAGETABLE(PADR,2)<—PTR(2)

store page descriptor

in the page table memory /\‘

Fig. 20 TFlow chart of the Fetch (FEICH) Routine which tramsfers the
' channel program from the main memory to the channel

46

5.5 Paging Completion Routine (IOCS2)

The.paging completion routine 10CS2 géins qontrél'when a bit is set
in the interrﬁpt register INTERRUPT. The flow chart éhowiﬁg.the I0CS2 rou-
tine is shown in Fig. 21. When the IOCS2 routine starts, the paging request
entry is marked as serviced by setting the mark field NODE(K,1l) to 1. Nexf,
the translatiqﬂ memory address register TADR is set to NODE(K,4) and the corres-
poﬁding translation memory word is transferred to the translation memory buffer
register TMR. -NbDE(K,Z) is then tegted to see if a paging-in or a paging-out
request was serviced. | |

If NODE(K,Z) is 1, a paging~out operation has been complgted. The
contents of register TMR aré modified such that the "in-cére bit" is 0. If
NODE(K,2) is 0, completion of a pagin-in operation is’indicated. The content
of register TMR are modified such that the "active bit" is set to 1 and the MM
page address field is set to the contents of NODE(K,3). For both paging-in
and paging-out, the contents of register TMR are stored into the translation
memory TM. Thus, the translation memory word 1s updated for virtual address

translation. Finally, control is returned to the user program.

47

{:Mark the service Paging

NODE (K, 1)¢--1 Request Entry

TADR€--NODE (K, 4)

I Fetch the translation
memory word

TMR¢--TM (TADR)

y

 ~\ = (paging-out)
@0DE(K,2)=1 s >

(paging-in) # i)

_ TMRACT€--1
/7 TMRBLK&--NODE (K, 3)

set active bit to 1
and fill in MM
page address

IS

TMRE--TMRACT *2%**15+TMRBLK

TMR<-~TMR-FLDA (20, 1 ,TMR) 2% *20

N\
set in-core bit
to 0

Z
)

‘¥ (TADR)¢—-TMR

[

Fig. 21 Flow chart of the Paging Complétion (1I0CS2) Routine which
’ updates the Translation Memory

48

6. Simulation of the Page Transfer Operation Under IOCSP

The paging drum channel was simulated by using Siﬁula on the UNIVAC
1108 and reportéd in reference (5). This simulation, aiso in Simula, is
an exteﬁded model which combines the PDC and the IOCSP. We first describe
tﬁe simulation program, then the inputs, and finally the results and discussions.
Two assumptions have been made. First, the drum has 8 sectors
instééd of 16 sectors. Second, the translation-memory has 512 words instead

of 1,024 words.

6.1 Simulation program

The structure of the program simulating the IOCSP and the PDC is
shown in the flow chart of Fig. 22. When the simulation begins, data are
loaded into the counters for the paging request entries, for the paging re-
quest queue and for the IOCSP simulation routines. Data-are also loaded
into the translation memory, the paging drum memory, and the main memory.
Next, a paging request is read from a card reader. The IOCS1 routine is
then called to handle the incoming paging request. It examines the request,
determines its function, and coﬁétructs a paging request entry. The UNIT
routine is next called to service a page-transfer request. It constructs a
channel program (for the PDC) in main memory locations 4, 5, 6, and 7.

The FETICH routine, is then called to transfer the channel program in the
main memory to the PDC.

The paging drum'channel PDC is initiated to execute the channel pro-
gram. Upon completion of a page-transfer, the - IOCS2 routine is‘called.

It marks the paging requesf entry és "serviced" and updates the translation
memory for address translation. If there are more requests, the next paging

request is read and processed; otherwise, the simulation terminates.

start

Initiate the counters. Load the:
data to the paging drum memory,
the main memory, and the
translation memory.

N Y
v

read in a paging
request on the card

.

call IOCS1 routine

"4
call UNIT routine

¥

call FETCH routine

Y
initiate the PDC to
execute the channel

program

L

céll I0CS2 routine

yes
. any more
N
request?
end
Fig. 22, 'Flow chart showing the structure of the

simulation program

49 -

50

6.2 Inputs

Two sets of input data are chosen."Tﬁe.fifst set consists of 8§
paging-out requésts, while the second set consists of 8 pagihg—in requests.
A paging request is specified by the following:

(a) paging instruction (1 for paging~out and 0 for paging-in);
.(b) main memory page address (between 0 and 63);

(¢) virtual page address (between O and 511).

Table 3 contains 8 paging—out requests of Tesf Data 1. As shown,
the péginé instructions are'all set to 1. Main memory page 32 is to: be
transfer;ed to virtual page 32; main memory page 39 is to be transferred
to virtual page 39. Table 4 shows the data initially in the maiﬁ memory
pages. With Test Data 1, 8 main memory pages are paged out to the 5th
field of the paging drum as shown in Fig. 23. In this figure, ﬁain memory
page 32 is stored at the first drum page of sector 0, and main memory page
39 is stored at the first drum page of sector 7.

After the paging—out operations, the contents of drum sector 0
through 7 are tabulated in Tabie 5. As shown, there are eight 32's in the
drum sector 0; there are eight 33's in drum sector 1, etc. These eight drum
pages are then paged-in by Test Data 2.

Table 6 contains the 8 paging—in requests of Test Data 2. As
shown, the paging instructions are all set to 0. Virtual page 32 is‘to be -
" transferred to main memory page 32; and virtual page 39 is to be transferred
to main meméry page 39. With Test Data 2, 8 drum pages are paged in as
illﬁstrated in Fig. 24. In the figure, the fifst arum'page of sector 0 is
transferred to the 32nd main memory page; and the first drum page sector 7

is transferred to the 39th main memory page.’

Table 3: Paging-out requests of Test Data 1

(for paging-out 8 MM pages to 8 drum sectors)

. Test - Paging* Main Memory Virtual o
B Instruction Page Address Page Address
1 1 32 032
2 1 33 033
3 1 34 034
4 1 35 035
5 1 36 036
6 1 37 037
7 1 38 038
8 1 39 039

*Paging-out when 1

Table 4 Initial Data of 8 Main Memory Pages

of Test Data 1

MM MM : Contents MM MM Contents
Page number |word number | of words page number. | word number | of words

32 0 to 7 32 36 0 to 7 36

33 0 to 7 33 37 0to7 37

34 0 to 7 34 38 0 to 7 38

35 0 to 7 .35 39 0 to 7 39

52

Table 5 Data on the 8 Drum Sectors of Test Data 2

(for paging-in 8 MM pages from the 8 Drum Sectors)

Drum Field .! Word Contents Drum Field Word ¢ Contentéj
Sector | Number | Addressjof Word Sector Numb ex Address | of Word
Number Number ;

0 5 1 0¢to7 32 4 5 0 to 7 36

1 5 0 to 7 33 5 5 0 to 7 37

2 | 5 {0to7 34 6 5 0to7 | 37

3 5 0 to 7 35 7 5 0 to 7 38

Table 6 Paging-in requests of Test Data 2

(for paging-in 8 MM pages from 8 drum sectors)

Test Paging* Main Memory Virtual Page
Instruction Page Address | Address
1 -0 32 032
z 0 33 033
3 0 34 034
4 0 35 035
5 0 36 036
6 0 37 037
7 0 38 038
8 0 39 039

*#Paging-in when O

lMain Memory

53

321 33| 34|35} 36|37

38

39

63

Paging Drum Channel

TTI1]

Fig. 237 Paging-out 8 pages from Main Memory -
to 8 drum sectors (Test Data 1)

54

Main Memory
o v t32) 333 35{36 {37 |38] 39 .-
.\ N S NI N N
: Paging Drum Chahhel'
E J]jj A A AN
7 g /'-" .
T e T
/ﬂ-///,,/"’/' - - - T
\ / y ‘d/ e /‘/ — TS
// / ,,/ ’//.// N
/’/ 77 7 7
Ly s 4
Yy
Ty
/(1 /
i// [!
l'/ '/ ‘:
[.l, / 6|7)
IR ' N
RE]
Lo
! | ! 3{2 /
AR /

Fig. 24 Paging~in 8 pages into the Main Memory
from 8 drum sectors (Test Data 2)

55

6.3 Results

There are two kinds of simulation output,

(a) the'cbntents of the main memory buffer register, the drum buffer
register, the word count in the page, and the page‘transfer status
after a word is transferred.

(b) the modified channel commana word, the listhéads, the drum field
address, and the drum sector address of the page after a page is

transferred.

Table 7 explains the variables in the printed outputs. Register
PAGEPOST contains the main memory pége address of the posted page; the page to
be transferred. Register RW is the paging-in (when 1) or paging-out (when 0)
indicator. Register SECTOR contains the drum sector address (there are 8
drum sectors). Register FIELD contains the drum field address (there are 64
drum fields). Register SBR2 is the main memory buffer register, while regis-
ter DBR is the drum memory buffer register. Register COUNT is a counter
which specifies the word address of the current‘page being transferred.
COM(0,1) and COM(0,2) store the left half and the right half of the channel
command word for the Oth drum sectofr;eéﬁéctively. LISTS(OS ;oﬁtains the
listheads of the Oth sector queue in the page table memory. INTERRUPT(PAGE)
is the page-transfer-complete indicator; it is set to 1 when the page-transfer
is successful. PTRAN is the page-transfer indicator. When it is 1 or 2,
it represents é paging~in and paging-out operations respectively; when if is 3,
it indicates an error. COM(7,1) and COM(7,2) store the left half and the right
half of the CCW for the 7th drum sector reépectively. LISTS(7) contains the
listheads of the 7th sector queue in the page table memory.

The outputs for paging-out 8 main memory pages to 8 drum sectors

of Test Data 1 are summarized in Table 8-(a) through 8-(d). Table 8-(a)

56

Table 7 Variables in the Print-out

Representation

Variables

PAGEPOST Register which contains the MM page ad-
dress of the posted page

RW Paging-in or paging-out indicator

SECTOR: Drum sector address

FIELD Drum field address

SBR2 'Main memory buffer register

DBR Drum memory buffer register

COUNT Counter of the word address in the cur-
rent page :

CoM(0,1) Left half of the channel command word
for the Oth drum sector

CcOoM(0,2) Right half of the channel command word
for the Oth drum sector

LISTS(0) List-heads of the Oth sector queue

INTERRUPT (PAGE) Page-transfer-complete indicator

PTRAN-- Page-transfer status indicator

coM(7,1) Left-half of the channel command word
for the 7th drum sector

CoM(7,2) - Right-half of the channel command word
for the 7th drum sector

LISTS(7) List-heads of the 7th sector queue

Table 8 Octal Output from Test Data ‘1

(a) Print out when the first page is being transferred

COUNT .

PAGEPOST: RW SECTOR FIELD | SBR2 DBR
40 1 0 5 40 .40 0
40 1 0 5 40 40 1
40 1 0 5 40 40 2
40 1 0 5 40 40 3
40 1 .0 5 40 40 4
40 1 0 5 40 40 5
40 1 0 5 40 40 6
40 1 0 5 40 40 7
. (b) Print out after the first page is transferred
COM(O,i) coM(0,2) LISTS(0) | INTERRUPT(PAGE) | PTRAN
140540 40 4040 1 2

(c) Print out when the last page is being transferred

PAGEPOST RW SECTOR { FIELD SBR2 DBR COUNT
47 1 7 5 47 47 0
47 1 7 5 47 -y 47-%L 1.
47 1 7 5 47 47 2
47 1 7 5 47 47 3
47 1 7 5 47 47 4
47 1 .7 5 47 47 5
47 1 7 5 47 47 6
47 1 7 5 47 47 7
(d) Pfint—out after the last page is transferred

coM(7,1) | coM(7,2) | LISTS(7) | INTERRUPT (PAGE) | PTRAN

47 1

140547

4747

,57..

58

shows the output when main memory page 40_ is transferred. In Table 8-(a),

8

PAGEPOST contains 408. When a word of page 408>is transferred, SBR2 is 408

and DBR is 408. COUNT is the word counter for the first page; it varies from

0 to 7. RW is 1 indicating a paging-out operation. Since SECTOR is 0

and FIELD is 5, the first page 408 is transferred to field 5 in drum sector O.
After page 408 is paged-out, the print out of the corresponding

CCW, the listheads for sector queue 0, the page transfer interrupt signal,

and the page transfer status are summarized in Table 8-(b). In this table,

COM(0,1) is 140540, where the underlined portion 14058 or 1100000012 which

8
is interpéted.as follows: (a) the C field of the CCW is 1 implying a page-

transfer, (b) the RW field is 1 implying a paging-out operation, (c) the drum

field address is 5; and the remaining 40, not underlined is the main mémory'

8
page address of the current page. COM(0,2) contains 408 which is the first

actual word of the first page. The listheads of sector queue 0 are 408

and 40g; thus LISTS(0) is 4040,. INTERRUPT(PAGE) is 1 indicating that page

8;
transfer is successfully completed. PTRAN is 2 indicating a paging-out oper-
ation. |
Table 8-(c) shows the output after a word of main memory page 478.
In this Table, PAGEPOST is 478. Each time when there is a word transfer,
SBR2 and DBR become 478 and 478 respectively. COUNT contains 0 through 7. °
RW is 1, indicating a paging-out operation. SECTOR is 7 and FIELD is 5 so
that the last page is transferred to field 5 in drum sector 7. |
After paging-out pagg 478, the print out of the corresponding CCW,
the listheads for sector queue 7, the page transfer interrupt signal, and
the page transfer status are summarized in Table 8-(d). COM(7,1) is ;ﬁg§ﬁ78
where the underlined portion 1405, has the same meaning as .that for the first

8

page, and the remaining 47_ not underlined is the main memory page address

8

of the current page. The listheads of sector queue 7 are 47_ and 478;

8

59

8" The settings for INTERRUPT(PAGE) and PTRAN

are the same as those for the first page.

therefore, LISTS(7) is. 4747

" The outputs for paging-in the 8 main memory pages of Test'Data
2 mentioned‘previously are éuﬁmarized in ‘Table 9-(a) to 9;(d). ‘Table 9-(a)_
and 9-(b) differ only bh the value for RW. In Table 9—(aj, RW is 0, in&i—
cating a paging-in operation. Table 9~(b) and 8-(b) differ only by the values

for COM(0,1) and PTRAN. In Table 9-(b), COM(0,1) is 100540, where the 1005

is lOOOOOOOlz_which is interpreted as follows: (a) the C field of the CCW
being 1 indicates a page transfer; (b) it is paging-in; and (c) the drum

field a&dress is 5; and'the remaining 408_not underlined is the main memory.
page address of the curreﬁt page. In Table 9f(b), PTRAN is set to 1 for
paging-in. | |

Table 9-(c) and Table 8-(c) differ only by the value for Rw.. Iq
Table 9-(c), RW is 0, indicating a paging-in operation.

Table 9-(d) and Table-8;(d) differ by the values for COM(7,1)
and PTRAN. In Table‘9F(d), COM(7,1) is 1922978 where the underlined portion
;gggﬁ has the same meaning as that for the first‘page. In Table 9-(d),

PTRAN is set to 1 for paging-in. . e

6.4 Discussion
L}

Fig. 25 éhows'thé’rélatibnships of the IOCSP to tﬁe processing pro-
grém and the paging drum channel system (model 1). In this figure, the
dashed box contains a pagin d;um channel which controls a 1argé—capacity‘
paging drum. The IOCSP is the interface between the prdcéssing program and
the paging drqm cﬁannel éystem. ’fhe.IdCSP'Handiés the page-transfer requests
issued by the processing Rfogram,ﬂ A:paginé—in.request,causés a page of
words to be transferfed from the paging drum through the paging drum channel

to the main memory. A paging-out request will cause a page of words to be

Table 9 Octal Output from Test Data 2

(for paging-in 8 drum pages from 8 drum sectors)

(a) Print-out when the first page is béing transferred

PAGEPOST RW | SECTOR | FIELD | SBRZ | DBR | COUNT
40 0 0 5 40 40 0
40 0 0 5 40 40 1
40 0 0 5 40 40 2
40 0 0 5 40 40 3
40 0 0 5 40 40 4
40 0 0 5 40 40 5
40 0 0 5 40 40 6
40 0 0 5 40 40 7

(b) Print-out after the first page is transferred

CoM(0,1)

COM(0,2)

LISTS(0)

INTERRUPT (PAGE)

PTRAN

100540

40

4040

(c) Print-out when the last page is being transferred

PAGEPOST RW SECTOR FIELD SBR2 DBR COUNT
47 0 7 5 47} 47 0
47 0 7 5 47 47 1
47 0 7 5 47 47 2
47 0 7 5 47 47 3
47 0 7 5 47 47 4
47 0 7 5 47 47 5
47 0 7 5 47 47 6
47 0 7 5 47 47 7

(d) Print-out after the last page is transferred

coM(7,1)

CcoM(7,2)

LISTS(7)

INTERRUPT (PAGE)

PTRAN

100547

74

4747

61

PROCESSING
PROGRAM

.I0CSP

Paging ' l
Drum ‘

Channel Paging Drum

l Channel System

=== ——
\ .

|

|

\

|

l

|

DRUM

m-l‘— e ee— —

I

Fig. 25 The relationship of IOCSP to the Processing Program and
the paging drum channel system (model 1)

62

transferred from the main memory thxough the paging drumbchanﬁel to the paging
drum.

Fig.v26 shows the relationship‘of the Input-Output Control System
I0CS which inciudes the IOCSP and the three channels witﬁ five 1/0 devices
attached to tﬁe channels (model 2). As shown, multiplexor channel 1 and multi-
plexor channel 2 are controlled by the IOCS while the Péging Drum Channel
System is'coﬁ£r011ed by the IOCSP. With these two additional multiplexor
channels, the IOCS in Fig. 26 may consist of many routines. For example,
the I/0 Scheauling Routine sglects the channel and the I/0 device; consequent-
1y, oﬁe uﬂit interpretive routine is required for each type of I/0 devices.
The I/0 Buffering Routine simulates double buffering for reading ahead from

and writing ahead to mégnetic tapes.

“ 63

PROCESSING
PROGRAM

I0CS

t controlled by

' ' the I?iif
/8 |

| A
‘ I
: | Paging i
Multiplexor Multiplexor | | Drum |
Channel 1 Channel 2 | Channel |
' | i |
| ~ |
{
. I
' l
! l
Printer ! |
= _

card
reader

Fig.26 The relationship of I0CS to the Processing Program and
three channels with five I/0 devices (model 2)

64

7. Aéknowledgment

The authors wish to express their thanks to 0. R. Pardo and Jeffrey
Yeh for thier -helpful discussions and suggestions and to Nancy A. Nowell for

her typing of the entire manuscript.

- 65

References
1. Chu, Y., "Introduction to Computer Organization', Prentice-Hall,
Inc., 1970.
2. Chu, Y., "Notes on Channel Organization", Computer Science Center,
University of Maryland, November, 1970.
3. Coffman, E.G., Jr., "Analysis of a Drum Input/Output Queue Under
scheduled Operation in a Paged Computer System', JACM, January 1969,
pp. 73-90.
4, IBM S. R. L., IBM 7094/7094 Input/Output Control System, File Number
7090-30, Form C28-6345.
5. Kwok, G., "Simulation of a Paging Drum Channel"; Technical Report
TR-155, University of Maryland, May, 1971.
6. Pardo, 0. R., "A Virtual Memory System Design', Technical Report 71-
144, Computer Science Center, University of Maryland, January 1971.
7. RCA Information Systems, Spectra 70 System 70/61, Processor Reference
Manual, 70-61-601, September 1969.
8. Yeh, J.W., "An IOCS Algorithm for Microprogramming",'Technical Report,
: 70-124, University of Maryland, July 1970.
9., Denning, '"The Working Set Model for Program Behavior', CACM, May 1968,
pPpP. 323-333.
10. Denning, Peter J., "Virtual Memory', Computer Surveys, Vol. 2, No.3,
September 1970.
11. Kilburn, T., et. al., "One-level Storage System", IRE Trans. on EC.,
April, 1962, pp. 223-235. o
12, Weingarten, A., "The Eschenback Drum Scheme', CACM, July, 1966, pp. 509-
512. .
13. Denning, P. J., Effects of scheduling on file memory operation', Proc. of
sJcc, 1967, pp. 9-21.
14. Denning, P. J., "Queuing models for file memory operations", Report MAC-

TR-21 (thesis), Project MAC, M.I.T., Cambridge, Mass., October, 1965.

APPENCIX A.

SIPULATIUB PROGRAN LISTING

AL

e ey L T e L LR L L s

RUN A3,001-11-768 yKWCK,1,100
... ..PDCSI¥,PCCSIM
EXTERNAL NCN-RECURSIVE INTEGER PROCECURE FLDA $

ALGsCIS

SIMULA BEGIN
CCMNMENT

CCMMENT INSTRUCTION ** 1 FOR PAGING CUT »

. Fdk k% INPUT-OUTFUT CONTROL SYSTEM *k% §
CCMMENT INDEX FOR THE FIELDS IN A PAGING REQUEST ENTRY $
INTEGER J '8

INTEGER INST $
CCMMENT MAIN MEMCRY PAGE ADCFRESS. $
INTEGER MMPAGE $
CCMMENT TRANSLATION MEMCRY ACCRESS FCR THE VIRTUAL PAGE $
" INTEGER TMADDR $
CCMMENT 40 PAGING REQUEST IS MAXIMUM
MARK BIT FOR THE REQUEST

NCDE (K41}
NCDE (K ,2)
NCDE (K,3) -
NCDE (K ,4)
NCDE (K4 5)
NCDE (K,6)

CNLY NODE(K

Wownow

“PAGING INSTRUCTICN,

b 4

INTEGER:

COMMENT
COMMENT
INTEGER
CCMNMENT
INTEGER
CCMMENT
INTEGER
CCMMENT
INTEGER
CCMMENT
INTEGER

CCMFMENT

INTEGER
COMNENT
INTEGER
CCMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
CCMMENT
INTEGER
CCMVENT
INTEGER
COMMENT
INTEGER
CCMMENT
INTEGER
CCMMENT
INTEGER
COMMENT

0 FOR PAGING IN $

0 FCR PAGING-IN AND 1 FOR PAGING-0OUT

MM PAGE ACDRESS 5
VIRTUAL PAGE ACDRESS
CRUM FIELD ADDRESS
DRUM. SECTCR ADDRESS

21,

ARRAY NCDE(l..40+1..

NOBDE(K43),

NCCE(Ky4) ARE INPUT FRUM THE USER $
10) §

EACH NODE REPRESENTS A PAGING REQUEST ENTRY $
TRANSLATICN MEMCFY SUBSYSTEM $

ARRAY TMEM(O..511)¢

TRANSLATICN MEMORY ACCRESS REGISTER $

TADR ¢

TRANSLATICN MEMCFY BUFFER REGISTER $

TMR $

VIRTUAL ACDRESS REGISTER $

VAD $

MAIN MEMORY ADDRESS REGISTER (FOR CPU) §

MADRL1 $

READ/WRITE REGISTER (FCR CPU) $ __

RK1 $

s e e =a o<

READ ERRCR FLAG ¢

RFLAG $

WRITE ERRCR FLAG ¢

WFLAG §

FAGE FAULT REGISTER §

FEAULT $

VAIN MEMCRY ACCESS REGISTER §

FALS

STORAGE BUFFER RECISTER

SBR1 $

(FOR THE CPU)%

FAGE IS ACTIVE WHEN 1 %

TMRACT $

FAGE HAS BEEN. REFERENCEC NHEN 1 ¢

TMRREFCS

PAGE HAS BEEN CHANGED WHEEN 1 $

TMRCHGD $

PAGE IS WRITE PRCTECTED WHEN 1 $

TMRUP ¢

PRCTECTION

KEY OF THE PAGE $

INTEGER TMRWKEY § -
A2 CCMMENT MM PAGE ACDRESS FCR THE VIRTUAL PAGE IF IT IS IN THE MM 3

INTEGER TMRBLK $
CCMMENT VIRTUAL PAGE ADDKESS $
INTEGER VADPAGE $
CCMVENT VIRTUAL WCRD ADDFESS $
INTEGER VADWCRC $
COMMENT *kkkkkdkdkk *****#*****#*#*#*#**####t###*#*************#*****#*$
CCMMENT #%%A PAGING DRUM CHANNEL *%%*$
COMMENT FOR TESTING AND SIMULATION ON THE 1108 MEMORY,
PAGE SIZE IS REDUCED TC 8 WORLCS PER PAGE
64 PAGES IN THE MAIN MENMORY
512 PAGES IN THE PAGIMNG CRUM WHICH HAS 8 SECTORS
64 DRUM PAGES IN A DRUF SECTOR
36 BITS PER WCRD$
CCMMENT K IS THE INDEX CF THE PAGING REQUEST ENTRY
INTEGER & $
COMMENT I IS THE LOCP CCNTROL VARIABLES
INTEGER I$
" COMMENT MAIN MEMCRY AND RELATEL REGISTERSS
COMMENT MAIN MEMORY$
INTEGER ARRAY MEM(0..63,0..7)%
COMMENT MAIN MEMCRY ADDRESS RECISTERS$
INTEGER MARS
COMMENT MAIN MEMORY BUFFER REGISTERS
INTEGER MBRS
COMMENT MAIN MEMCRY REAC/WRITE CONTROL REGISTERS
INTEGER RW2$
COMMENT MAIN MEMCRY FAGE ADCRESSS
INTEGER MACR2BLOCKS
COMMENT MAIN MEMCRY BUFFER REGISTERS
INTEGER SBR2$
COVMMENT MA{2) IS MAIN MEMCRY ACCESS REGISTERS
INTEGER MA2$
COMMENT MADR2(WRD) IS MAIN MEMCRY WCRLC ACCRESSS
INTEGER MADR2WRDS
COMMENT MAIN MEMCRY FAGE ADDRESS CF THE POSTEC PAGES$
INTEGER PAGEPOSTS$
COMMENT PAGE-TABLE MEMCRYS
INTEGER ARRAY PAGETABLE(O..6251..2)%
COMMENT PAGE-TABLE MEMORY ADCRESS REGISTERS
INTEGER PADRS$
CCMMENT PAGE TABLE BUFFER RECISTER $
INTEGER ARRAY PTR {1 .. Z) ¢
COMMENT PAGE-TABLE MEMORY BUFFER REGISTERS
INTEGER ARRAY PTR2(1..2)%
CCMMENT SUBFIELDS CF A PAGE CESCRIPTCR $
INTEGER PTR2CH$
INTEGER RTR2SECS
INTEGER PTR2ROWS
INTEGER PTR2LBS
INTEGER PTR2LFS$
COMMENT LISTHEAD MEMCRYS
INTEGER ARRAY LISTS{0.. 7)$
COMMENT LISTHEAD MEMCRY ADDRESS REGISTERS
" INTEGER SECTCRSS
COMMENT LISTHEAD MEMCRY BUFFER REGISTERS
INTEGER PTLS$
COMMENT PCINTER THE FIRST PAGE CF A SECTOR QUEUE IN THE DRUMS
INTEGER PTLFF$

. A3
COMMENT PCINTER THE LAST PAGE CF A SECTOR QUEUE IN THE DRUMS$
INTEGER PTLLFS '
COMMENT GPTL IS AN AUXILIARY REGISTERS
INTEGER GPTL$
INTEGER GPTLFPS$
INTEGER GPTLLPS
COMMENT PAGE TABLE SEMAPHORS
INTEGER PTSENML S
INTEGER PTSEN2$
COMMENT PAGING DRUM AND RELATEL REGISTERS
COMMENT PAGING. DRUM MEMCRYS
INTEGER ARRAY PDRUM{(Oee Tylee 6490..7)8
COMMENT PAGING DRUM SECTOR ADCFESSS
INTEGER CWCRCSECTS
COMMENT PAGING DRUM FIELD ADCRESS $
INTEGER FIELL $
COMMENT PAGING DRUM FIELD WCORD ADCRESS $
INTEGER GWCRCCCUNTS$
COMMENT DRUM READ/WRITE CONTROL REGISTERS
INTEGER RW$
COMMENT DRUM BUFFER REGISTERS
INTEGER DBRS$:
COMMENT DRUM ACTIVE INDICATORS
INTEGER DACTVS
COMMENT CCMMAND MEMCRY AND RELZTECL RECISTERSS
COMMENT CCMMAND NEMERY ADDRESS RECISTERS
INTEGER SEC$,
COMMENT CCMMAND MEMCRY BUFFER FEGISTERS
INTEGER ARRAY COMMAND(l..2)%
COMMENT SUBREGISTERS CF THE CCMMAND WCRDS$
INTEGER CCMC S
INTEGER CGNRMWC$
INTEGER CONCHANS
INTEGER CCWNPGES$
INTEGER CCMFIRSTWCRODS
COMMENT DRUM BUFFER STATUS REGISTERS
INTEGER BSs
COMMENT INTERRUPTADRUMPAGE) S
INTEGER INTERRUPTDFPS :
COMMENT MAIN MEMCRY FAGE WHICH INTERRUPT OCCUREDS$
INTEGER PAGINTS
COMMENT INTERRUPT{PAGE} S
INTEGER INTERRUPTPGES
COMMENT CURRENT PAGE ADCRESSS
INTEGER PC$
COMMENT WCRD CCUNT CF THE PAGES
INTEGER COUNTS

COMMENT PAGE TRANSFER DIRECTICMN,0 WHEN NO TRANSFER,1 WHEN DRUM TO MEMORY,

2 WHEN MEMCRY. T0 C[RUM,3 WHEN ERROR OCCURSS
INTEGER PTRANS '
COMPENT PAGE TRANSFER CCMPLETE WHEN 1%
INTEGER PAGEIS
COMMENT PAGE PCSTING INDICATORY
INTEGER POSTH S ' o :
FCRMAT F1 (' %% TRANSFER 2 PAGE %ddkkkgkgikkhkrkhkhkrk?,A3,3)$
FCRMAT F3 (x2,110.8,2X, 110.8, 2X, I10.8, Al.l)$
FCRMAT F4 (' COMMAND IN OCTAL =', I10.8,A1,1)$
FCRNAT F5(Ay 11,12,13)$

A4

FCRMAT F20(X8 4 LISTHEADS IN CCTAL'y Al.3)$
FCRMAT F21 (X5,124X2,110.8, £1.1)%
FCRMAT F22(X2 »* CHANNEL CCMMANC WORLS IN OCTAL®,A1.3)$
LGCAL LABEL LASTS
LCCAL LABEL L3$
COMNMENT 3ok % dkok sl oo sie oo ool ok s ok e ofe ofe ol ol o o ofe ol e ol ok o sdofeosle ook kol e e ok ok ok s e e ook koo ek e ek 4
ACTIVITY ICCS1$
BEGIN o
FORMAT F2(Ey X25,' *%* SIMULATICN OF I0CS *%% ¢,A2.2) 3
COMMENT PRINT TITLE ¢
WRITE(F2) §
IF INST EQL 1 THEN WRITE('PACING-OUT') ELSE WRITE('PAGING-IN')$
K = K +1 8
IF K GTR 40 THEN K = 1 $
CCMMENT CONSTRUCTICN CF A PAGING REGUEST ENTRY $
CONMENT MARK BIT IS ZERC FIRST ANC IS SET TO 1 WHEN REQUEST IS SERVICEDS
NCDE(K,1) = 0 $

COMMENT O FOR FAGING IN AND 1 FCR PAGING OUT $

NCDE(Ks2) = INST %
COMMENT MAIN MEMCRY PAGE ADCRESS ¢
NCDE(K,3} = MMPAGE $
COMNENT TRANSLATICN NEMCRY ADDFESS %
NCDE(Ky4) = TMACDR $
COMMENT CCNSTRUCTICN OF A CHANNEL COMMAND WORD IN MM LOCATIONS 4,5 %
NCDEA(K,5) = 1 ¢
CCMMENT COMPLTE DRUN PAGE ACLRESS $
IF TMADCR LSS 8 THEN GO TO N1 ¢
NO <o TMACCR = TNMADDR - 8 $
IF TMADLCR LSS O THEN GG TC N2 $
CCMMENT CONMPUTE DCRUNM FIELD AULRESS %
NCDE(Ky5) = NODE(Ks5) + 1 $%
G0 T0 NO $
Nl .« NCDELlK4y5) =1 §
NCODE(K36) = TMADCR %
GO TC N3 3%
CCMMENT COMPLTE DRUM SECTOR ALCDRESS ¢
N2 .o NCDE{K,6) = TMADDR + B $
N3 .s HCLC{(50) %
TERMINATE (CURRENT) §
END $
COMNENT okt oot dokob ol b ook ok o e bbb o ootk o e ok ol ook ok ok ook ok ok ke e ke §
COMNMENT UNIT INTERPRETIVE ROUTINE FCR THE PAGING DRUM CHANNEL %
ACTIVITY UNIT ¢
- BEGIN .
MB8R 8%%5 4+ NCDE(K2)*4%82%4 + NODE(K,S)%8%%2 + NODE(K33)$
MEM(0y44) MBR $
CCMNMENT CCMPUTE CCONMMAND (2) %
MBR NCDE(K,,3) §
MEMA{(0,45) MBR ¢
CCMMENT CCNSTRUCTICN CF ? PAGE CESCRIPTOR WORL IN MM LOCATION 6317%
CCMMENT COMPLUTE PAGE CESCRIPTCR FOR THE MM PAGE %
MBR = 0 &
MEM(C4,6) = MBR ¢
CCMMENT COMPUTE PTR (2) %
MBR = NOCDE(K,5)%8%%2%4 + NOCE(K,6)%(B8%%2)%2 + B%x%x2 3
MEM{C,7) = MBR §
CCMNMENT CUTPUT CHANNEL PFCGRAM $
HCLD(50)¢%
TERMINATE (CURRENT) S
ENDS%

]

1

_COMMENT FIX UP THE TRANSLATICN MEMCRY §

o . A5 ,
CONPENT * #****#*## #*#######*## ##*#****#***##***#**##***#**********##*# $
ACTIVITY FETCH $

BEGIN

COMVENT FETCH THE CHANNEL PROGFAM FROM THE MAIN MEMGRY BUILT BY I0OCS $
MAR = 4 $
MBR = MENM(Cy4) $

SBR2 = MBR $
COMMAND(L) = SBR2 §
MAR = 5 §
MBR = NEMIG,5) §
SBR2 = MBR $
COMMAND(2) = SBR2 $
SEC = NODE(K;6) $
COM(SEC,1) = CCMMAND(1) $
COM(SEC,2) = COMMANC(2) $
MAR = 6 §
CMBR = MENM(0,6) $
SBR2 = MBR. $ _
PTR2(1) = SBR2 $
PTR(1) = PTR2{1) $

MAR = 7 § .

MBR = MENM(C,7) $
SBR2 = MBR ¢
PTR2(2) = SBR2 §

PTR(2) = PTR242) %
PADR = NCDE(K53) ¢
PAGETABLE(FADR,1) = PTR{1l) ¢
PAGETABLE(FADR,,2) = PTR(2) %
ChORDSECT==-1 §
HOLD(5C) $ o
TERMINATE(CURRENT) ¢
END $
COMMENT ##****#**#**#**##***####*4###*#*********#*#*****************#s
ACTIVITY ICCES2 %
BEGIN
LCCAL LABEL PCUT ¢
COMNENT MARK THE PAGING REQUEST EATRY AS SERVICED $
NODE(Ks1) =1 $

TADR = NCDE{(K34) §
TMR = TMEM{(TADR) $
COMMENT FETCH A WORD FRCM THE TRANSLATION MEMORY INTO TFE BUFFER %
COMMENT CHECK FAGING CUT / PAGING IN ¢
IF NODE(K,2) ECL 1 THEN GO TO POUT $
COMMENT SET PAGE IN CCRE BIT TC 1 $
TMRACT =1 $%
COMMENT FILL IN MM PAGE ADODRESS INTQ THE TRANSLATION MEMORY ENTRY §
TMRBLK = NCDE{K,3) ¢
TMR = TMRACT#2%%15 4+ TMRBLK $
GO 1O CUT ¢
COMMENTY PAGING OUT CPERATICN CCMES HERE $
COMMENT TURN IN CORE BIT OFF §
POUT .o TNRACT =0 $
TMR = TMR - FLDA{2D,1,TMR)%2%%20 $
COMMENT STORE THE MCCIFIED TRAMNSLATION MEMORY WORD $
OUT oo TMEM(TACR) = TMR $
HOLD(50) $:
TERMINATE(CLRRENT) $
END $

A6

COMNENT #xddkokkdokkok ok kdhdd ket 40k ud o dakgdk kR doki ok ko kg kkakokdkokk kokkkk §
ACTIVITY LEFTS
BEGIN ’ .
WRITE(* *%¥% DRUM REAC/WRITE SUBSEQUENCE #*%*%*)%
COMMNENT CHECK PAGE SWAFP INDICATORS
IF DACTV ELQL Y} THEN GCTO L1
PAGEI=1¢
PTRAN=C$.
WRITE('PTRAN=",PTRAN) §
HCLD(5.0) %
TERMINATE(CURRENT)$
COMNMENT PAGE TRANSFER STARTS HERE %
COMMENT BRANCH CUT TC WRITE.S$
Ll <o IF RW EQGL 1 THEN GO TO LE $
MA2=0%
COMMENT
WRITE('BS= " ,BSy?* RW= *,RW)S$
COMMENT CRUM TC MAIN MEMCRY TEANSFER{ READ BRANCH)$
L4.s IF MA2 EQL 1 THEN GO TC L4$
BS=1%
Léso IF BS EQL 0O THEN GCTC LGS
MADR2WRC= CCUNTS
WRITEL(* - INFUT WCRD COUNT = '3 MADR2WRD)S
DBR = PCRUM({ SEC, FIELDy, CWCFCCCUNT) %
WRITE(* DBR =*'§ DBR) S
COMMENT INPUT FRCM THE PAGING LRUM ONE WORLS
SBR2=DBR$
RW2=Rh$
MA2=1%
BS = C $
WRITE (kb Addkkd k¥ 4% *%DRUM TC MEMORY !)$
MBR= SBR2S$
WRITE(' MBR ', NMBR)S
MEM(MADRZBLOCKyMADR2WRD)= MBR$

If COUNT EQL 7 THEN BEGIN
PAGEI = 1%
DACTvV=0s$
END$
L7 .. IF PAGET EQL O THEN BECIN

CCUNT= CCUNT+1¢
CWORDCOUNT= CWCRCCCUNT +1%
GOTC L1$
END$
CCUNT=CCUNT+RWS
IF COUNT EQL 7 THEN BEGIN
PTRAN=RW+1$
WRITE(*PTRAN = %,PTRAN)$
HCLD(32C.0) $
TERMINATE(CURRENT)S
‘GCTO L3$
END
ELSE BEGIN |
COMMENT SET ERRCR INCICATCRS$
INTERRUPTDP=1%
PTRAN=3$
WRITE(YPTRAN =%, PTRAN)S
HCLD(32C.0)$ -
TERMINATE(CURRENT)$
GCTO L3
ENDS

A7

"COMMENT MAIN PEFORY TC DRUM TFANSFER t WRITE BRANCKF)$
LS. MAZ2=CS$
IF MA2 ECL 1 THEN GCTC LSS
Rh2= RW$,
MADR2WRLC= CCULNT+1s$s
WRITE(* WCRL COUNT = ', MACFKZWRLC) S
. NA2=1% P -
‘LB8ss MA2=C$
IF MA2 EGL 1 THEN GCTC L8¢
Lgao BS ‘l$: o ’
COMMENT DATA TRANSFERS FROM MENMCRY BUFFER TO DRUM BUFFERS
SBR2= MEM(MACRZ2BLCCK,MADR2WRL)S
WRITE(7SBR2 =',SBR2)S$
WRITE("%k dderdekkddokdhkhdbhpdkpkddddkkdkakhkkxkkxd*¥MEMORY T0 DRUM')$
DBR=SBR2S
BS = 0 %
WRITE('CBR= ',DBR) ¢
PORUM(SECy FIELC,yCWCRDCCUNT) = CBR ¢
COMMENT IN THE WRITE COPERATION THE WORC COUNT DOES NOT INCLUDE THE
FIRST WCRD CF THE PAGE. IF EXACTLY 7 MORE WORDS (0-6)
PERE WRITTEN, AN ENTIFE PAGE WILL BE COMPLETELY TRANSFERREDS$
IF CCUNT EGQL 6 THEN BEGIN
PAGEI = 1%
DACTv= C$
END$
GCTC L7 s
COMMENT THE SECCOND PARALLEL PRCCESS STARTS HERES
COMMENT CHECK IF THE READ/WRITE LCCP NEECEC.$
ENDS$ C :
COMNENT skokkokdrse bkt okokok ok kb okl 4o sk oo ok okl s ko ook kokofok ek ok ek kel koo ke %k §
ACTIVITY RIGHT $
BEGIN
COMMENT MEMORIES UPDATING SUBSECUENCE STARTS HERES
L1IC .. SECTORS = SECS$
WRITE(' *%%x UPDATING SUESECQUENCE *%% ¢)¢
PTL= LISTS(SECTGQRS) S
PTLFP=FLDA(24,64PTL) $
PTLLP= FLDA(30,6,PTL)$
COMMENT FQOR ENMPTY QUEUE, SET FAGE SHAPPING INCICATCR$
IF PTLFP EGL O THEN BEGIN
CCMC=C3
GCTC L13s
ENDS$
COMNMENT GETTING A PAGES
Kloe ®TSEN1=0$%$
I+ PTSEM1 EGQL 1 THEN CUTC K14
PTSEM2=15%
COMNMENT PLT THE LIST HEAD INTC REGISTER GPTLS
GPTL=PTLS
GPTLFP= FLDA(Z416,GFTL\$
GPTLLP= FLDA(30,6,GPTL)$
WRITEU('GPTLU{FP=)",GPTLFPy* GFTL(LP)="', GPTLLP)S
PADR=GPTLFPS$
PC= GPTLFPS$
COMMENT GET A PAGE DESCRIPTCR FRCM TEE PAGE TAELE MEMORYS$
PTR2(1)= PAGETABLE(PACR,1)$

PTR2(2)= PAGETABLE(FACR,2)%
PTR2CH = FLDA(17,8,PTR2{(2))%
WRITE(* FIELD ADBRESS = *, FTRZCH)S

A8

PTR2SEC= FLDA{25,49PTR2(2))%
WRITE(* SECTOR = *, PTR2SEC)$
PTR2RCW= FLDA(29,1,PTR2(2))¢
PTR2LB= FLDA (2446 ,PTR2(1)) %
PTR2LF= FLDA(B46,PTR2(1))$
GPTLFP= PTR2LFS$
COMMENT TRANSFER THE UFDATED LIST HEAC TO PTLS$
PTL = GFTLS
PTSEM2= 0%
COMMENT STORE THE UPDATED LISTHEAC TC THE LISTS MEMORY $
L15.. LISTS(SECTCRS)= PTLS$
COMMENT SET UF A CHANNEL COMMAND WGRC$
comMC=1%
COMPGE=PCS
COMCHAN=PTR2CH$
COMRWC= PTR2ROWS
CCMMAND (1) = COMC*B8##5+4COMRWC#4%8%%4+COMCHAN*8#*%2+ COMPGES$
IF PTR2RCW EGCL O THEN GOTC L13%
COMMENT WRITE CNTC ORUNMS
Lll.s MA2= 0$
IF MA2 ECL 1 THEN GCTC L11$
RwW2=1%$ T
COMMENT SET UP NMAIN MEVCRY ADLRESS RECISTERS
MADR2BLCCK= fC$
MADR2WRC= 0%
- MA2=1%
L12 .. MA2=0$
IF MA2 EQL 1 THEN GCTC L12%
COMMENT SET UP THE FIRST DATA WCRC IN THE COMMAND REGISTER$
MBR= MENM{MADR2BLCCK,0)$
SBR2= MBRS$
CCMMAND (2)= SBR2S$

COMMENT PUT THE NEW CHANNEL CCMMANC WCRD INTO THE COMMAND MEMORYS$

L12.. CCM(SEC,1)= CCNMMANDI(1)S
CCM(SEC,2)= CCNMNAND(2)S
WRITE(F22) $
WRITE(SEC, COMISECs1)y CCM{SEC2),F2)8

PAGEI = 0%
PCST = 1%
Ll4.. IF FAGEI ECL 1 THEN BEGIN
HCLD(50)3%
TERMINATE (CLRREANT) S
ENDS
PCST= 1%

COMMENT REQUEST - ACCEPT SUBSECUENCE STARTS HERE #¥%x%x§
IF PCST EQL 22 THEN GCTC Ll4ts
COMMENT LCAD PAGE DESCRIPTCR SEQUENCE STARTS HERES
K2 <& PTSEML = 0%
IF PTSEM1 EQL 1 THEN GCTC K24
PTSEM2=1%
COMMENT GET A PAGE EESCRIPTCRS
PADR= PAGEPOSTS
PTR2(1)= PAGETABLE(PALCR,1)$
PTR2(2)= PAGETABLE(FACR,2)¢$
COMMENT FREE THE PAGE-TABLE MENORYS
PT1SEM2=0%
PTR2SEC= FLDA(25,44,4PTR2(2))%$
SECTCRS= PTR2SECS
PTL= LISTS(SECTGRS)$
PTILFP= FLDA(2446,PTL) ¢

A9

COMMENT BRANCH T0 PUT THE PAGE DESCRIPTOR IN THE PTM $

IF PTLFP EQL O THEN GCTO K3
‘COMMENT GET ‘'THE NEXT CHANNEL CCHFAND WORDS

SEC= SECTORS

CCMMAND (1) = COMA{SEC,1)$

CCMMAND (2)= COM{SEC,2)$

IF COMC EQL O THEN BECGIN

PC= PAGEPROSTH

POST = O &
PAGEI = 1$
GCTO L158°
ENDS$

COMMENT PUT A PAGE BACK TO THE SECTOR QUEUE IN THE PTM $
K3.. PTSEM1=0%
If PTSENL EQL 1 THEN GOTC K3%¢
PTSEM2=18
GPTL= PTLS
GPTLFP= FLDA(2446,GPTL)$
COMMENT IF THE SECTCR QUEUE IS EMPTY THE CURRENT PAGE BECOMES THE FIRST
PAGE (FRONT CF THE CUEUE)S
IF GPTLFP EGL O THEN BEGIN
GPTLFP = PAGEPCSTS
GPTL = GPTLFFP#8%%2 4+ FLDA(30,65CPTL)$
GCTO K43
END$
COMMENT INSERT THE NEW PAGE AT THE REAR GF AN NON-EMPTY QUEUES
GPTLLP= FLDA(3046,GPTL)$
PADR= GPTLLPS
PTR2(1)= PAGETABLE(PACR,1)$
PTR2(2)= PAGETABLE(PACR,2)$
COMMENT UFDATE A PAGE DESCRIPTCRS
PTR2LF= MOD(PTR2(1),2%%28)$
PTR2LB = PTR2(1) - PTR2LF* 2#%28 §
PTR2(1)= PTR2LB + PAGEPOST*2#322$
PAGETABLE (PACR,1)= PTR2(1)$
PAGETABLE(PACR,2)= PTR2(2)$
COMMENT GET THE PAGE DESCRIPTCR CF THE POSTED PAGES
K4.. PADR = PAGEPOSTS
PTR2(1)= PAGETABLE(FACR,1)$
PTR2(2)= PAGETABLE(PACR,2)$
COMMENT LET THE BACKWORD POINTER POINT TO THE REAR OF THE GUEUES$
PTR2LB= GPTLLPS$
PTR2LF =0%
PTR2(1)= GPTLLP%2%%28%$
COMMENT RETURN THE NEW PAGE DESCRIPTQR TO THE PAGE-TABLE MEMORYS$
PAGETABLE (PACR,1)= PTR2(1)$
PAGETABLE (PADR,2)= PTR2(2)$
COMMENT UPDATE LISTHEADSS
GPTLLP= MOD(GPTL,8%%2)$
GPTLFP= GPTL - GPTLLPS
GPTL = GPTLFF + PADRS$
PTL= GPTL$
PTSEM2=C$
COMMENT STORE LISTHEADS
LISTS{SECTCRS)= PTLS

WRITE(¢ SECTOR LISTHEADS ') $
WRITE(SECTORS, LISTS(SECTORS)sF21)$
PCST=C$

PAGEI = 1%

GCTO L1l4$
ENDS _ : - :
CONMNENT #*****#*##***#****######*#*####****#*#*#*##*********#******#**3:,
CCMMENT MAIN ACTIVITY STARTS HERE $
COMMENT CLEAR TRANSLATICN MEMCFY ¢
FCR J = 0 STEP 1 UNTIL 511 DC
TMENM(J) = 0 &
COMVNENT COUNTER §
K= C $
CONMENT INITIALIZE CCUNTER §
I= 1 3% o
COMMENT INITIALIZATICN CF THE FAIN MEMCRY $
FCR MAR = 1 STEP 1 UNTIL 63 [C PEGIN
CFQOR CCUNT = 0 STEP 1 UNTIL 7 CC
MEM (MAR, CCUNT) = MAR $
"END %
CCMMENT INITIALIZATICN CF THE PAGING DRUM MEMORY §
CCMMENT EACH DRUM PAGE CCNTAINS THE VALUE OF ITS VIRTUAL PAGE NUMBERS
FCR FIELD = 1 STEP 1 UNTIL 64 DC BECGIN
FOR SEC = ¢ STEP 1 UNTIL 7 DC RECGIN
FCR CCUNT =0 STEP 1 UNTIL 7 CC
PDRUM (SEC,FIELD,CCUNT) = TMNACCR ¢
TMACDR = TMADDR + 1 §$
END $
END $.
WRITE(® 1 FOR PAGING-CUT , O FOR PAGING IN *)%
WRITE(" 2 DIGITS FCR MM PAGE ,3 CIGITS FOR VIRTUAL PAGE ADDRESS *)$
WRITE(' 032032 MEANS TC PAGE IN CRUM PAGE 32 TO MM PAGE 32')$
WRITE(' 132032 MEANS TO PAGE CUT MM PAGE 32 TO DRUM PAGE 32 ")$
CCMMENT INPUT A FAGING REQUEST ¢
XICCS .. READ(INST4NMPAGE,TMALLR,F5,LAST)%
‘ WRITE (" %*%% [NFUT PAGING REQUEST #*%*% ¢)s%
ACTIVATE NEW ICCS1$
COMMENT CALL IN UNIT INTERPRETIVE ROUTINE $
ACTIVATE NEW UNTTS
CCMMENT FETCH CHANNEL PRCGRAM FRCM THE MAIN MEMORY $.
ACTIVATE NEW FETCH §
HCLD(1C00)$
PDCes PAGEI=1%
IF PAGEI EGL O THEN REGIN
HCLD(1.C)$
GCTC PDCS
END ELSE
L3 .. PAGINT=MADR2BLCCKS
INTERRUPTPGE=1%
HCLD (1C.0)%
LC.e PAGEI=C$
CWORDSECT= CwWORDSECT+1$
COMNENT THERE ARE 8 FAGE-TRANSFERS IN CNE DRUM REVOLUTION $
.IF CWCRCSECT EGL 8 THEN CWCRLSECT =0 $
COMMENT CBTAIN A CHANNEL CGCMMAND WGRCS
COMMENT INPUT FRCM CARD IS A CCNMANC WCRDS
CCUNT=0%$
CWORDCOUNT=04
WRITE(F1)$ _
CCMMAND (1) 2CCM(SEC,1)¢
WRITE(CCMMAND{1), F4)$
CCMMAND (2)=CCM{SEC,2) ¢
WRITE(' FIRSTWGRD = ', CCMMANDI(2))$
COMMENT DECODING A CCMMAND WCRL ANC PUT THE CONTROL INFORMATION

C

1]

L : | CAll
INTO THE APPROPRIATE REGISTERSS : :

CCMC=FLDA{20 ,1,CCMMAND(1))$ ' o
COMMENT INDICATE A PAGE HAS BEEN SWAPPEC WHEN 1%

0ACTV= CCMCS$
© CCMRWC=FLDA (21:41 ,CCMMAND(1)) $

Rw2 CCMRWCS

CCMCHAN=ELDA (2248 ,COMMAND (118

FIELD = COMCHAN $

CCMPGE=FLDA (20,6 ,CCMMAND(1)) §

NADR2BLCCK=CCMPGES

PAGEPCST = CCMPGES

WRITE (' PAGEPOST: *,PAGEPOST) S
COMVENT DATA TRANSFERS

CCMFIRSTWORD = CCMMAND(2)$,
COMMENT TRANSFER THE FIRST WORC CF A PAGE TO THE DRUM BUFFER REGISTERS

DBR= COMF IRSTWCRD$

WRITE{('FIELD ADDRESS = *, FIELLC)S

IF RW ECL 1 THEN BEGIN

WRITE('WRITE CPERATICN,RW= ',RW)S$

CCMMENT OUTPUT EIRST WORD TO CRUMS

WRITE(thdkdkkedhkkgdbfhdhidhiddkdrtnt sk bdhkkkdkkxsMEMORY TO DRUM')S
COMMENT FCR WRITE CPERATION THE FIRST WORC IS ALREACY IN THE BUFFER

" BEFGRE ENTERING THE WRITE LOCP $

WRITE(' WORC COUNT = ', COUNT)S$

WRITE{(' DBR= *,DBR)$

PCRUM (SECH FIELD,0) = DBR $

END ELSE
WRITE(* REAC CPERATION, RW= ',RW)S$
COMMENT PARALLEL PRCCESS STARTS FKERES)

HCLD (4C.0)$ g

ACTIVATE NEW LEFTS . |

ACTIVATE NEW RIGHTS

HCLD(1€00)$

ACTIVATE NEW 10CS2 $

HCLD(1000) $

GC TO XIGCS ¢
LAST .. END $

ASM4IS DECCOE,DECCDE
$(1) AXR$.
s RCUTINE FOR DECODING FAGE CDESCRIPTORS,CHANNEL COMMAND WORDS
. AND LISTHEACS FCR THE FAGING CPERATION .
° INPUT FCRMAT #%%x FLLA(I,J,K) _
FLOA%x LA A24%3,X11 « FETCH TEE WORD K , 9
LA AQy *14X11 FETCH THE BIT POSITION 1

SA,H2 AQs Ll

GETTING RID OF UPPER BITS
SA,H2 AQ§L2 '

tl LSSL A2 40 « SHIFT LEFT I BIT POSITIONS
L2 SStL A2450 o SHIFT RIGHT I BIT POSITIGNS
LA,U Al,36 . « COMPUTE 36-1-J
AN Als*2,X11 .
AN Al3AQ .
SA,H2 AlelL3 e CETTINC RIC OF THE LCWER BITS
L3 SStL A2,0 o SHIFT RIGHT 36-1-J BIT POSITIONS
: J 49X11 ‘e RETURN TO THE ALGOL SIMULATIUON PROGRAM
ENC
MAP
XG7T
132C32 TEST DATA 1 ... PAGING-OUT 8 PAGES

133€33

Al2 134C34
135C35
12¢C36
137¢€37
13ec3s8
135C39 o f '
032¢32 ' _ TEST DATA 2 ...PAGING-IN 8 PAGES
033C33 : ‘
034C34
035C€35
03¢€C36
037C37
03€C38
036C36
- FIN

TOTAL CARDS = 671

