
Technical Report TR-170
NGR-2 1-002-19 7

September 1971

Architectural Design and Simulation of a
Virtual Memory

by

Gee-yin Kwok and Yaohan Chu

CA
COPY

UNIVERSITY OF MARYLA

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

Technical Report TR-170 September 1971
NGR-21-002-197

Architectural Design and Simulation of a
Virtual Memory

by

Gee-yin Kwok and Yaohan Chu

This research was supported by Grant NGR-21-002-197
from the National Aeronautics and Space Administration to
the Computer Science Center of the University of Maryland!

Abstract

Virtual memory is an imaginary main memory with a very

large capacity which the programmer has at his disposal. It

greatly contributes to the solution of the dynamic storage allo-

cation problem, a problem of great importance in time-sharing

computer system. This report presents the architectural design

of a virtual memory which implements by hardware the idea of queu-

ing and scheduling the page requests to a paging'-drum in such a

way that the access of the paging drum is increased many times;

for the design reported here, an increase of up to 16 times in

page transfer rate is achievable when the virtual memory is heav-

ily loaded. This in turn makes feasible a great increase in the

system throughput. Detailed design of the virtual memory and sim-

ulation of the paging drum channel have been reported previously;

therefore, only the design and simulation of the input-output con-

trol system for paging is presented in this report.

Table of Contents

Abstract

1. Introduction

2. Configuration of the virtual memory

2.1 Central processing unit
2.2 Main memory
2.3 Translation memory
2.4 Page table memory
2.5 Paging-drum memory
2.6 Paging drum channel

3. Architecture of the Virtual Memory

3.1 Address translation table
3.2 Lists
3.3 Channel command words
3.4 Listhead table
3.5 Page-transfer requests
3.6 Architectural design

4. Operation of the virtual memory

4.1 An overview
4.2 Virtual address translation
4.3 Paging policies
4.4 Input-output control system for paging

5. The IOCSP Routines

5.1 Paging request queue
5.2 Paging initiation routine (IOCS1) •
5.3 Paging drum channel unit interpretive routine (UNIT)
5.4 Fetch routine (FETCH)
5.5 Paging completion routine (IOCS2)

6. Simulation of the page-transfer operation under IOCSP

6.1 Simulation program
6.2 Inputs
6.3 Results
6.4 Discussion

7. Acknowledgement

8. References

Appendix A, Listing of the simulation program

Architectual Design and Simulation of a Virtual Memory

1. Introduction

Virtual memory, as is being called now, is an imaginary memory with

a very large capacity which the programmer has at his disposal, even though

the computer has a relatively small main memory. It is first introduced

as a one-level memory on the Atlas computer by the group (11) at Manchester,

England. Since then, it has been implemented by a combination of hardware

and software in a number of so-called time-sharing computers such as RCA

Spectra 70/46, IBM 360/67, and GE 645. Virtual memory has become one of

the most important advances in the architecture of modern computer systems.

It contributes greatly to solving the problem of dynamic storage alloca-

tion. Though the virtual memory is not without its problems such as frag-

mentation and thrashing, more knowledge and more experience have been accumu-

lated. It enhances significantly the cost-performance ratio. It might not be

imprudent to predict that most of the large-scale and medium scale computer

systems in the near future will have a virtual memory, even when they are batch

computer systems, because of the potential impressive improvement in cost/per-

formance ratio.

The design in this report is based upon the virtual memory system

presented by 0. R. Pardo in an earlier report (6). This design makes use

of the ideas reported by Weingarten (12), Denning (13,14) and Coffman (3).

The central idea is to queue and schedule the page requests to a paging

drum in such a way that the access of the paging drum is optimized. This

idea can give a multifold increase in the page transfer rate and in turn,

can significantly improve the cost-Lperformance ratio of a computer system.

This idea, however, could not be successfully implemented by using software

alone on an existing computer system. This report presents an implementation

"by hardware. For this particular design, an increase of up to 16 times

in page transfer rate is achievable when the virtual memory is heavily

loaded. More detailed information about the design and simulation is avail-

able in references (5,6).

2. Configuration of the Virtual Memory

The configuration of the virtual memory is shown in the block dia-

gram of Fig. 1. There are six system units:

(a) central processing unit (CPU)

(b) main memory (MM)

(c) translation memory (TM)

(d) page table memory (PTM)

(e) paging drum memory (PDRUM)

(f) paging drum channel (PDC)

In this section, the translation memory is described in some detail, while

the other units are treated briefly since they are described elsewhere

(5,6).

2.1 Central Processing Unit

A computer system with a virtual memory allows the use of vir-

tual address in the programs. The central processing unit fetches an instruc-

tion and translates the virtual address in the instruction into a real address

by means of the translation memory. The virtual address format for the virtual

memory described in this report is shown in Fig. 2. There are five fields in

the format. The 1-bit D field when 0 indicates a virtual address; else, a

real address. The 1-bit I field when 1 indicates indirect addressing; else, di-

rect addressing. The 2-bit X field specifies which index register is used.

When X=0, no index register is used. When X=l, 2, and 3, index registers 1,

2, and 3 are used respectively. The virtual address consists of two fields,

a PAGE field and a WORD field. The 10-bit PAGE field contains the virtual page

address, while the 10-bit WORD field contains the virtual word address. The

Page Table Memory
PTM

Central Processing Unit
CPU

Paging Drum Memory

PDRUM

paging-in

Paging Drum Channel

PDC

> ̂

paging-out

Main Memory
MM

Translation
Memory TM

Fig. 1 Configuration of a virtual memory

D I X PAGE

1 1 10

WORD

bits
10

D=0, virtual address; else real address

1=1, indirect addressing, else direct addressing

X=l,2, or 3 index register

PAGE virtual page address

WORD word address

Figure 2 Virtual memory address format

virtual word address is, however, identical to the real main memory word ad-

dress.

In addition to instruction decoding and execution, the CPU is also

capable of accepting priority interrupts.

2.2 Main memory

The main memory is assumed to have a capacity of 65,536 36-bit words.

It is organized into equal size blocks of locations known as page frames.

Each block of main memory locations consists of]024 words; thus, there are

64 page frames. The main memory address is 16 bits; 6 bits specify the

main memory page address and 10 bits specify the word address within the

page. The characteristics of the main memory are summarized in Table 1.

2.3 Translation memory

The translation from a virtual page address into a main memory page

address is achieved by the address translation table stored in the translation

memory. This memory has a capacity of 1,024 16-bit words and a memory cycle

time of 100 nanoseconds. The configuration of the translation memory is shown in

Fig. 3. There are a 10-bit translation memory address register TADR, a 16-bit

translation memory buffer register TMR, a 24-bit virtual address register VAD,

and irive single bit registers (TMA., RW1, RFLAG, WFLAG, and PFAULT) . Register

TMA is set to 1 when the translation memory is accessed. Register RW1, when 1,

indicates a write operation; else, a read operation. Register RFLAG is set to

1 when there is a read error, while register WFLAG is set to 1 when there is a

write error. Register PFAULT is set to 1 when there is a page fault (i.e.,

the CPU encounters a page not in the main memory).

The translation word format is shown in Fig. 4. There are five fields.

CU
S

Q

cu

C

•H
cfl

MH
O

CO
CJ

M
CU

CJ
CO

cO
rC

CJ

cfl
H

s
cu
a
|
Q

^»V-i
o

^
a

•H
cd
a

CO
o
•rl
4J
CO
•H
t-i
CU
4J
CJ
cd
S-l
cd
g

i

*&
a
0o
cu
CO
0
M
CJ

•H
3

rH

0)

•3
4J

<u
rH
CJ

O

K^

Jta(

Os
0)s

1
o
}-l
a
•H
S
M
CU
cx

M
o

4-1 T:
•H C

1 C.
vo a)
ro co

rH

1
1

CU

4J

M
cu

^M
CO

a
M
4J

M̂
0a
cus

*
T3
f-l
O
IS

H

O

CO
4-1
•H
^Q

^O
CO

T3

O

rH

}-|
O

CO
4J
•H
rQ

S

•o
•M

J.)

CU

CO

cd
4J

cd
4J
n)

<o

s^
T3 O
rH Cd

T) Q) rJ

M -iH 4J
O >4H
IS rJ

M CU
)-J CU O.
cu ex
ex co co

CO 4J T3
CO CU -H rH
4J 00 J3 CU
•H cd -H
f^ pi, *^ i) |

\O vO \O *^
CO i-H tH vO

^^V X"N S~\ S~ .̂

Cfl 43 0 'O
^** **^ **^ ^^

TJ

O

M
CU CO
CX.T3

co o
4J >
•H

•°s
VO t*M

CO rH

/"N X™ S

Cfl J3

CO

•H

S
cfl
4-1
Cfl

"O

CO
T3
V-I CO
o cu
S 00

[v/J Q_,

CN CN
0 0
rH rH

X~N X~x
Cfl J3

v~ ' ̂ ^

CO

1-1 CO
o cu
!5 00

cfl
^ Pi

*^ "̂vO vO

s~\ ^^
CO rO

f^>
4J
•H
o

a
o

» J

Q
g

cus

CO
CO 4J CO CD
4J -H 4-1 4J
•rl J3 -H -H

^>
VO CN O

" CN rH
.. co
CO CO •• ••
CO CU CO CO
CU rJ CO CO
>-i ~Q Q) CU
t3 T3 ti M
T3 cfl T3 TJ
Cfl T3 *O

M cfl cfl
T3 O
rH 4J Q) T3
CU CJ OO M

•H CU CO O
MH CO Pa £

X— S /— N X— s X"̂ \

cfl ,O O T3
v_^ VX V-' V_x

,,

CO CO
CO 4J
CU -H

^ ^13
•a vo
CO rH

-a
•n
0

L

«J

CU
4J
CO

•H
00
CU
M

CO
CO
cu
_)

r^
CO

CU
•H

<U

CN
CO O

0) o>
4J r-l
•H pi.
M -rl

T3 3
co 3
cu
VJ cO

vO CO
CO 4J

cu cu
M CO
CO CU

M
Q) &,
M CU
CU M

*
*

TADR(l-lO)

Translation
Memory

TM (0-1023,1-16)

i *•
v

TMR(1-16)

VAD(l-24)

RW1 PFAULT

RFLAG WFLAG

Fig. 3 Configuration of the Translation Memory

' H E O 4J U
O W 33 0 £
< « o WP WKEY e 3 BLK

1 1 1 1 bits

ACT=1,

REFD=1,

CHGD=1,

WP»1,

WKEY,

BLK

page is active in the main memory •

page has been referenced

page has been written into the main memory

page is write protected

protection key of the page

main memory page address if the
page is in the main memory

Fig. 4 Translation memory word format

10

The 1-bit ACT field,' when 1, means that the page is active in the main memory.

The 1-bit REFD field, when 1, means that the page has been referenced. The

1-bit CHGD field, when 1, indicates that the page has been written into the main

memory. The 1-bit WP field, when 1, means that the page is write-protected.

The 4-bit WKEY field contains the protection key of the page. Lastly, the

6-bit BLK field contains the main memory page address corresponding to the vir-

tual page if it is in the main memory.

The configuration of the translation memory is now described by the

following CDL statements.

Comment, translation memory

Memory, TM(TADR)=TM(0-1024,1-16) $translation memory

Register, TADR(0-8), $translation memory address register

TMR(1-16), $translation memory buffer register

VAD(l-24), $virtual address register

TMA,

RW1,

RFLAG,

WFLAG,

PFAULT,

$translation memory access register

$read/write register (for CPU)

$read error flag

$write error flag

$page fault register

Subregister, TMR(ACT,REFD,CHGD,WP,WKEY,NOTUSED,BLK)=TMR(l,2,3,4,5-8,9-10,11-16)

VAD(D,I,X,PAGE,WORD)=VAD(l,2,3-4,5-14,15-24),

11

The translation memory contains a translation table which accepts a

10-bit virtual memory page address and delivers a 6-bit main memory page

address if the page is in the main memory. This translation table is formed

by the operating system for the program in execution (see p. 11 in reference

7).

The operation of translation memory TM is described by the sequence

chart of Fig. 5. A read or a write sequence is started when register TMA

contains a 1. Register RW1 is next tested for a read or a write operation.

If RW1 is 0, it is the write sequence. The translation memory address register

TADR is set to the given address and the translation memory buffer register

TMR receives the input data; then the input word is transferred into the trans-

lation memory from the buffer register TMR. If RW1 is 1, it is the read se-

quence. The translation memory address register is set to the given address

and the desired word is transferred from the translation memory into the

buffer register TMR. Lastly, regsiter TMA is set to 0 and the TM returns to

the waiting loop.

2.4 Page table memory

In order that the CPU can keep track of main memory page assignments

(e.g., available pages), and in order that the paging drum channel can keep

a list of pages to be swapped, a fast page table memory (PTM) is provided.

This memory has a capacity of 64 66-bit words. It stores a page table.

Each entry of the page table (that is, each word of the page table memory)

stores a page descriptor. Thusfthere are 64 page descriptors. Each page

descriptor provides for each main memory page the following information:

(a) the current status of the page,

(b) the task which the page is or was attached to,

(c) the protection bits,

12

START

TMA4-0
waiting loop

C TMA y

write into
the TM? "

: >

V

f

TADR«-"address"

TMR^-"input data"

^ f

TM(TADR)4-TMR |

> f

^1— ' "••

^

read from
the TM: '

f

TADR4-"address"

TMR^- — TMCTADR)

>

^ f

r

TMA.4-0

word
transfer
complete

Fig. 5 Sequence chart for the translation memory

13

(d) utilization information,

(e) the corresponding virtual address of the page,

(f) the drum address of the page, and

(g) list linkage information.

By means of the linkage fields of these descriptors, the 64 pages in the main

memory can be linked together into one or more lists such as available page

list and swappable page list.

The page descriptor format is shown in Fig. 6. There are 12 fields

iri a page descriptor. However, only fields LB, LF, DP, and ROW are needed for

the simulation here. LB is the backward link pointing to the previous page

descriptor of a list of page descriptors. LF is the forward link pointing to

the next page descriptor of the list. DP is a 10-bit drum page address; the

first 6 bits of DP specifies the field address of the drum page?while the other

4 bits of DP specifies the sector address. ROW is a read/write indicator. If

ROW is 0, it is the read operation; else, the write operation.

2.5 Paging drum memory

The paging drum memory is a large rotating magnetic drum with a fixed

head per track. The drum circumference is divided into equal parts called

sectors, and the drum length is divided into groups of 36 tracks called fields.

There are 16 sectors and 64 fields. The intersected area of a sector and a field

is a drum page. There are 1,024 drum pages. A group of 36 bits in a field

parallel with the axis form a drum word. There are 1,024 drum words in each

drum page. Therefore, the drum page and the main-memory page are of the same

size. The data transfer between the drum memory and the main memory is 36

bits.at a time and one page at one transfer. The characteristics of the paging

drum memory is also shown in Table 1.

14

FUSE I,B LF WKEY WP CHGE RES UTIL

2 6 6 4 1 1 1 6

LB : backward link

TID VP DP ROW

16 10 10 1

LF : forward link •

DP: drum address of this page

ROW: read/write indicator

Note. The other fields are hot used in the simulation. See reference (6),

Fig. 6 Page descriptor format

15

2.6 Paging Drum Channel

The paging drum channel PDC is essentially a dedicated processor that

controls the operation of the paging drum in response to the paging-in and paging-

out requests. A page of words is transferred from the drum through the PDC to

the main memory when the CPU encounters a missing page (paging-in a page), or a

page of words is transferred from the main memory through the PDC to the drum

when the CPU releases a page (paging-out a page).

The configuration of the PDC is shown in the block diagram of Fig. 7.

There are two memories in the PDC. Memory COM with address register SEC and buffer

register COMMAND has a capacity of 16 52-bit words for storing 16 channel command

words. Memory LISTS with address register SECTORS and buffer register PTL has a

capacity of 16 12-bit words for storing 16 pairs of listheads. These 16 pairs are

for the 16 sector lists in the page table memory.

The channel command word CCW format is shown in Fig. 8. There are five

fields: the 1-bit C field, the 1-bit RWC field, the 8-bit CHAN field, the 6-bit

PGE field, and the 36-bit FIRSTWORD field. When C is 0, there is no page transfer

between the PDRUM and the MM. When RWC is 0, a drum page is to be transferred from

the PDRUM to the MM through the PDC. When RWC is 1, a MM page is to be transferred

from the MM to the PDRUM through the PDC. Only 6 bits of the 8-bit CHAN field are used

for addressing the 64 fields in a drum sector. The 6-bit PGE field contains the MM page

address. The PGE field must be non-zero since we assume that MM page 0 is not available.

The 36-bit FIRSTWORD field contains the first actual word of MM page just in case

the transfer is from the MM to the PDRUM.

The listhead format is shown in Fig. 9. There are two 6-bit fields. The first

6 bits specify the location of the front node and the last 6 bits specify the lo-

cation of the rear node of the doubly linked sector queue in the page table memory.

16

SEC(1-4)

command memory

COM(0-15,1-52)

COMMAND(1-52)

SECTORS(1-4)

llsthead memory

LISTS(0-15,1-12)

PTL(1-12)

MADR2(1-16) SBR2(l-36) PC(1-6)

PDR2(l-6)

FIELD(1-6)

PDR2(l-64)

COUNT(1-10)

PAGEPOST(l-6)

PTRAN(l-2)

INTERRUPT(1-10)

POST

Fig. 7 Configuration of the Paging Drum Channel

17

2 3 -10 11 16 17

c RWC CHAN PGE FIRSTWORD

36

C: no page transfer when C=0; else, there is a page transfer.

RWC: page to be read when 0;. else, page to be written.

CHAN: drum field address

PGE: MM page address

FIRSTWORD: first word of the transferring page

Fig. 8 Channel .Command Word Format

6 7 .12.

FP LP

6 6 - -

FP:

LP:

the front listhead of the doubly linked list in the
page table memory for use when an element of the list is detached.

the rear listhead of the doubly linked list for use when
an element of the list is inserted.

Fig. 9 Listhead format

18

3. Architecture of the virtual memory

This section presents the architectural design of the virtual

memory. It describes the address translation table, various lists, the chan-

nel command words, the listhead table, the handling of the paging requests,

and finally, various functions required for the virtual memory.

3.1 Address translation table

The translation of the virtual page address into the physical main

memory page address is achieved by the address translation table in the trans-

lation memory. The basic idea is simple. It is a table with two columns:

the left column with the virtual page address and the right column with the

main memory page address. However, the left column is not required when a

random-access memory is used, as it can be served by the address register

of the random-access memory. As shown previously, several bits are added to

each translation memory word to store control and status information re-

quired for each main memory page.

3.2 Lists

There are 64 pages in the main memory. Each page is pointed by a

page descriptor stored in the page table memory. The pagetable memory ad-

dress of each page descriptor corresponds to one main memory page address.

Thus, 64 page table memory words store 64 page descriptors for 64 main memory

pages. The format of the page descriptor has been shown in Fig. 6. As shown,

there are two 6-bit fields LB and LF (backward link and fordward link) in

the page descriptor. By means of these backward and forward links, the 64 main

memory pages can be linked into one or more lists in the page table memory.

Each node of the list is doubly linked with one link pointing in the forward

19

direction by the forward links LF's and the other link pointing in the back-

ward direction by the backward links LB's.

There are many lists of page descriptors linked by fields LB and

LF of the page descriptors as follows:

(a) one available-page list which links those pages of the MM that are avail-

able to the CPU;

(b) one swappable-page list which links those pages in the MM that are re-

leased by the CPU to be transferred from the MM to the drum;

(c) one or more user's lists, each of which links those pages of the MM

that belong to a particular user;

(d) sixteen sector lists, each of which links those pages of the MM that are

waiting (i.e., already in the queue) to be transferred either from the

MM to the drum or vice versa. Since these 16 lists are used as queues,

they are also called sector queues.

To enable a quick access of the first entry and the last entry in

each sector list, two 6-bit listheads are provided for each sector list. The

32 listheads for the 16 sector lists are stored in the 16 words of the LISTS

memory. The listheads for the available-page list -and the swappable-page-

list are stored in register IAVP(1-12) and LSP(1-12), respectively. The

listheads for the current user is stored in register PTLIST(1-12) or register

GPTL(1-12); the listheads for the users' lists are stored in the system table

permanently resident in the main memory described elsewhere (6).

3.3 Channel Command Words

The words in the COM memory are called Channel Command Words or

CCW's. Each CCW stores the following pertinent information for initiating

and controlling a page transfer:

20

(a) main memory page address,

(b) drum field address,

(c) read/write operation,

(d) transfer request, and

(e) the first word of the main memory page in case the transfer is from the

main memory to the paging drum.

There are 16 CCW's; each CCW contains control information for

handling its drum sector. There is a linkage between each page descriptor and

the channel command word constructed from this page descriptor. This linkage

is the main memory page address which is stored in the channel command

just constructed. This main memory page address is used as the page memory

address, by means of which the page descriptor in the page table memory can

be located.

There is an important exception to the way that the first page

descriptor of every sector list is linked: this first page descriptor is detached

from its sector list, after its pertinent information for initia-

ting the data transfer is used to construct the CCW for that sector. The

page descriptor of this page can be located in the page table memory by the

CCW whose field PGE holds the MM page address of this page. The reason for

not linking the first MM page to its sector list is to enable the immediate

accessability of this page information from the COM memory in the PDC, since

the COM memory is exclusively accessable by the PDC while the page table memory

is accessable by the PDC and the CPU. As a result, the PDC can rapidly

respond to the drum each time when a new drum sector begins to be scanned.

In other words, as the drum heads reach the beginning of each sector, the CCW

of this sector is accessed from the COM memory and the data transfer, if

called for, is initiated right away. After the initiation, the current

21

CCW is of no further use; this COM memory location can now be refilled with

the pertinent information for initiating the next page transfer for the same

sector which occurs when the drum completes another revolution and again be-

gins to scan this sector. This refilling is accomplished as follows. While

a page is being transferred to or from a drum sector, the next page descriptor

is detached from the sector list in the page table memory and the pertinent

information of the page obtained from the page descriptor is used to construct

a CCW for the current drum sector. This CCW will be used after one drum re-

volution.

There are 16 channel command words in the COM memory. Since the

first page descriptor of each sector list is not linked to that sector list,

there can be as many as 16 main memory pages that are not linked at all by

the page descriptors. However, the page descriptors of these main memory

pages are pointed by (and thus indirectly linked by) the channel command words

as described previously.

3.4 Listhead table

For eactv drum sector, the paging drum channel needs to quickly lo-

cate the corresponding sector list for converting the first page descriptor

on that sector list into a channel command word. The pointers or listheads

ror locating these 16 sector lists are the entries of the listhead table

stored in the LISTS memory.

There are 16 entries in the listhead table; each entry occupies

one LISTS memory word. As shown previously in Fig. 9, each LISTS memory word

contains a pair of listheads which point to the front and the back of the

corresponding sector queue in the page memory. By means of the pair of the

listheads, the paging drum channel can quickly locate the sector queue for

22

the drum sector now being scanned by the drum heads.

3.5 Page-transfer requests

As mentioned previously, the swappable-page list links those pages

in the main memory that are released by the CPU to be transferred to the

drum, while each of the sector lists links those main-memory pages queued to

be paged-in or paged-out. The reason why two kinds of lists are required is

that the operating system of the computer system aims to schedule alternately

the read and write page transfers in the sector lists.

Fig. 10 is a diagram showing the queuing of page.transfer requests

in the sector queues. The 16 sector lists are maintained by the PDC; the avail-

able-page list and the swappable-page list are maintained by the CPU. When

a page is requested by the CPU and found missing in the main memory, a page-

fault interrupt is generated; this interrupt signifies that a new page is to be

paged-in. The CPU allocates a page descriptor from the available-page list and

posts a read page-transfer request to the PDC. The PDC responds by placing

the request in the appropriate sector list for the drum sector where the page

is stored. The CPU next posts a write page-transfer request to the PDC for

swapping out a page from the swapping-page list. In this manner, the read

and write page transfers are scheduled alternately, as also indicated in Fig. 10.

Fig. 11 is a diagram showing the handling of the lists. As mentioned

before, the CPU posts a read page-transfer request owing to a page fault or posts

a write page-transfer request owing to a page release. These requests are entered

by the CPU into the appropriate sector lists. The PDC next generates channel com-

mand words for each drum sector from the information in the sector lists

and the listhead table. Whenever a page transfer is completed, the PDC sig-

nals the CPU. The CPU then updates the user's lists and resumes the execu-

23

16 sector lists
queuing read and write
page-transfer requests

read request
write request
read request
write request

page transfer
requests

read request write request

Available
page list

Swappable
page list

Fig. 10, Quening of paging-in (read) requests
and paging-out (write) requests

m<u
r*

•a
4J

CO

tn
•H

•s

00

.5

I

CO
•H

25

tion of program, or it links the page descriptor now released to the avail-

able page list. The CPU posts page-transfers one after another, while the

PDC initiates and executes the page transfers in an alternate read and write

operation in order to optimize the drum transfer operation. The CPU handles

all the lists including the users' lists except the sector lists which is

handled by the PDC.

3.6 Architectural design

The architectural design of the virtual memory is presented in the

diagram of Fig. 12. In this diagram, major functions of the virtual memory

are indicated: virtual address translation, generation of page descriptors,

queueing of paging requests, generation of PDC command words, and execution of

page transfers, in addition to functions handled by the operating system (not

shown).

The first function is virtual address translation. The CPU exam-

ines the virtual address of an instruction, and determines from the transla-

tion memory whether the page specified by the virtual address is in the main

memory. If it is in the main memory, the virtual address>is-translated into

a main memory address by address translation table in the translation memory.

The particular main memory address derived from the virtual address is then used to

fetch the desired main memory,word. If this page is not in the main memory, then

a page fault is generated to signal an interrupt. The operating system then

takes over; it examines the cause of the interrupt and issues a paging-in

request.

The second function is generation of page descriptor. When a paging-

in request is issued, a page descriptor is generated by the CPU, using the

virtual address, the main memory address, and the required transfer operation.

This page descriptor contains the page address in the drum,-the corresponding

26

27

virtual address of the main page;and other control information provided by

the operating system, as mentioned previously. This page descriptor is

inserted and linked into one of the 16 sector queues.

The third function is the queuing of paging requests. As mentioned,

there are 16 sector queues in the page table memory. Each sector queue stores

the paging-in and paging-out requests for one drum sector. The requests are

processed by the paging drum channel at an optimum time later.

The fourth function is execution of page transfers. During each

drum revolution, the drum heads scan 16 sectors. At the begining of scanning

each sector, the channel command word for that sector is taken out of the COM

memory, and the page transfer specified by this channel command word is carried

out. During each drum revolution, there may be as many as 16 page transfers.

The fifth function is generation of channel command words. As

mentioned, each channel command word in the COM memory is actually the first

paging request of a sector queue in the page table memory. While a channel

command word is being executed for the drum sector that is being scanned by

the drum heads, the first entry of the current sector queue is fetched from

the page table memory and.converted into the channel command word for the

current drum sector to be executed during the next drum revolution.

There are a number of virtual memory functions that are carried out

by 'the operating system: paging interrupt handling, drum page allocation,

initial loading, and execution of virtual memory policies. Paging interrupts

are those due to paging faults, paging requests and paging completions. In-

terrupts including these paging interrupts are handled by the interrupt routine of

the operating system. Drum page allocation refers to the allocation of avail-

able pages on the drum to a user's program. Initial loading refers to the

loading of the program into the allocated drum pages. Drum storage alloca-

28

tion and initial loading are dynamic storage allocation functions of the oper-

ating system. Virtual memory policies are to be further discussed; execution

of the replacement policy is assigned to the operating system.

4. Operation of the Virtual Memory

This section presents a flow chart which shows an overview of

the operation of the virtual memory. It then describes more fully the virtual

address translation, the paging policies, and the program for initiating and

controlling page transfers.

4.1 An overview

Fig. 13 is a flow chart showing an overview of the virtual memory

operation. As shown, the virtual address is first fetched by the CPU. By

means of the address translation table in the translation memory, whether

the page addressed the virtual address is in the main memory or not is de-

termined. If the page is in the main memory, the CPU continues to execute

the current instruction. If it is not in the main memory, execution of the

current program is suspended and a page fault is issued. The operating sys-

tem identifies the cause of interrupt and then examines the available-page

list. If no page is available as indicated from the available-page list, the

operating system next examines the swappable-page list.

If the swappable-page list indicates that no page is available

for swapping, the operating system selects a page to be paged out by applying the

replacement policy. Once a main memory page is selected to be paged out,

its address is inserted into the swappable-page list. The swappable-page

list is no longer empty, and it now becomes the case that a page is available

for swapping. The operating system issues a paging-out request and calls the

virtual address
entry

virtual address
translation

/ page in J
Vtnain memory?/

issue a page fault

operating system identifies
the interrupt

Jt (available page\
\list empty? J

page available /awH1ah1t. page\

swappable
page available /

\page

I
no page available

swappable \
available? J

no swappable
available

use replacement policy and select
a page to be paged out

insert an entry into the
swappable page list

issue a paging-out request

call 10CSP to page out a swappable
page to the paging drum

update the available and the
swappable page lists

issue a paging-in request

JL
call IOCSP to page-in the page
from the paging drum

update the available and the
swappable page lists

operating system returns execution
to the interrupted instruction

continue instruction
execution

exit

Fig. 13, Flow chart showing an overview of the virtual
memory operation

30

IOCSP to page out the swappable page to the paging drum, and then updates both

the available page list and the swappable page list. Now, the available-page

list is no longer empty. It becomes the case that a page is available for

paging-in.

When a page is available, the operating system issues a paging-in

request, calls the IOCSP to page in the required page from the paging drum,

and then updates the available-page list and the swappable-page list. The

operating system now returns to the executions of the interrupted instruc-

tion.

The operation shown in Fig. 13 could be and should be Improved.

First, the page swapping could be made concurrent with other paging operations

so that the available page list will be built up to make pages available for

allocation. Second, after the desired page is paged in, the operating system does

not have to return immediately to the interrupted instruction, depending on

the scheduling algorithm that is adopted by the operating system.

31

4.2 Virtual address translation

Fig. 14 shows the configuration for virtual address translation.

The translation begins with a virtual address in the 24-bit virtual address

register VAD and ends with the physical main memory address in the 16-bit

main memory address register MAORI(1-16). Register MAORI consists of two

parts: subregister MADRl(l-6) which contains the main memory page address

and subregister MADR1(7-16) which contains the word address of the page. As

shown in Fig. 6, subregister VAD(5-14) is connected to the translation memory

address register TADR; subregister VAD(15-24) is connected to subregister

MADR1(7-16); and subregister TMR(11-16) is connected to subregister MAORI (1-6).

The algorithm for the virtual address translation is shown in the

sequence chart of Fig. 15. It begins when the virtual address "P-W" is trans-

ferred from the CPU to register VAD. Since subregister VAD(5-14) contains the

location of the translation memory word that has the main-memory page address,

it is transferred to the translation memory address register TADR. The desired

translation memory word is next read out of the translation memory into regis-

ter TMR. Then, the contents of subregister TMR(11-16) are transferred to sub-

register MADRl(l-6), while the contents of subregister VAD(WORD) are trans-

ferred to subregister MADR1(7-16). Thus, register MAORI now contains the

main memory address.

4.3 Paging policies

There are three policies involved in the paging transfers: replace-

ment policy, fetch policy and placement policy. The replacement policy de-

termines which page in the main memory is to be paged out. The fetch policy

decides when the page is to be paged in. The placement policy decides where

32

CPU

VAD 1-4 5-14 15-24
'v̂ _

VAD(PAGE)

TADR(l-

Translation Memory

(0-1023,1-16)

TMR1 1-1Q JJ.-16

MADRl 1-6

Main Memory

VAD (WORD)

7-16

Main Memory Buffer Register

Fig. 14 Configuration for the virtual address translation

jjtart

33

VAD^~ "P-W"

TADR<—VAD (PAGE)

. V

TMR<— TM(TADR)

MADRl(l-6K—TMR(BLK)
MADR1 (7-16)«—VAD (WORD)

END

Fig. 15 Sequence chart of the virtual address translation

in the main memory the page is to be placed.

A commonly used paging policy is the demand paging. In demand pag-

ing, one page of the program is paged in at the beginning of the time quantum

in a time-sharing system; each additional page is then paged in when the page

is demanded (i.e., when a page fault occurs). At the end of the time quan-

tum, no pages of the program are removed from the main memory; its removal is

determined by the replacement policy. This design employs the demand paging

as the fetch policy. The placement policy makes use of the previously dis-

cussed lists: the available page list and the swappable list. The entries

in these two lists are made available by the replacement policy.

There are a number of known replacement policies:

(a) select the page randomly,

(b) select the page which has been in the main memory the longest time,

(c) select the page which is the least recently referenced by an active

process,

(d) select a page from the working set of an inactive process or a page

not in the working set of any active process.

The working set of a process is the smallest set of pages which must be in

the main memory in order that the process may run efficiently. The replace-

ment policy chosen in this design is the working set model as has been des-

cribed elsewhere (6,9, 10).

4.4 Input-output Control System for Paging

The Input-Output Control System for Paging (IOCSP) for the vir-

tual memory is a program that initiates and controls automatic transmission of

data to and from the paging drum memory. The IOCSP performs the following

functions:

35

(a) it accepts page-transfer requests;

(b) it constructs paging request entries;

(c) it constructs channel programs for the paging drum channel;

(d) it initiates the PDC to execute the channel program;

(e) it updates the address translation table after a page-transfer oper-

ation is completed.

Fig. 16 is a flow chart which shows handling of paging requests by the IOCSP.

As shown, after initialization, the IOCSP accepts paging requests from the CPU.

It then constructs a paging request entry and places it in the paging-request

queue. For each paging request, it constructs a paging-drum channel program

and stores it in the main memory. This channel program is next transferred

to the command memory of the PDC and is then executed by the PDC. After the

execution is completed, the address translation table is updated. Finally,

the CPU notified.

The above functions of the IOCSP are implemented by four routines:

IOCS1, UNIT, FETCH, and IOCS2 to be further described.

36

IOCSP entry

Initialization

accept paging request to transfer
a page from the paging drum by the
CPU

construct a paging request entry and
insert the entry into the paging
queue (by IOCS1)

construct a channel program for the
PDC and store it in the main memory

(by UNIT)

transfer the channel program from
the main memory to the PDC and
activate the PDC to execute the
channel program (by FETCH)

update the address translation
table (by IOCS2)

no
•4 termination? I

yes

return

Fig. 16 Flow chart showing servicing a paging request
by the IOCSP

37

5. The IOCSP Routines

The IOCSP consists of four routines:

(a) Paging Initiation Routine (IOCS1)

(b) Paging Drum Unit Interpretive Routine (UNIT)

(c) Fetch Routine (FETCH)

(d) Paging Completion Routine (IOCS2)

These routines are described below.

The Paging Initiation Routine is activated when a page-transfer is

required during the execution of a user's program or the supervisor program.

It determines the nature of the paging request (paging-in or paging-out),

constructs a paging request entry described in the next section, and checks

the availability of the paging drum.

The Paging Drum Unit Interpretive Routine is called by IOCS1. It .

checks the function code of the paging request (0 for paging-in and 1 for pag-

ing-out) , generates a page descriptor and a channel command word to be exe-

cuted by the PDC using the information in the given paging request entry, and

calls the Fetch routine'which is described below. - - - - - -

The Fetch Routine transfers the channel program from the main memory

to the PDC, and then initiates the PDC to execute the channel program. Once

the PDC is initiated, it carries out data transfer independent of the process

in the CPU.

The Paging Completion Routine routine gains control when the page-

transfer operation is completed. It marks the paging request entry as ser-

viced, updates the address translation table, and then returns control to the

user's program.

Detailed description of each of these routines is now given below.

38

5.1 Paging request queue

When the page addressed by the virtual page address of an instruction

is in the main memory, the virtual address is translated into the main memory

address and the instruction is then executed. If the page is not in the memory,

this page has to be brought in from the paging drum memory by the IOCSP.

The IOCSP first places the paging request in the paging-request

queue, which is a linear list of paging request entries in the main memory for

the sake of convenience in later simulation. Each entry is esl4ea-a node, re-

presenting, one request. Table. 2,shows the six fields of the node.

There are six fields in a node which represents a paging request.

The mark field when 0 indicates that the request is not serviced; otherwise,

it is serviced. The paging instruction field when 0 indicates the paging-in,

otherwise, it indicates paging-out. Other fields give the MM page address,

the virtual page address, the drum memory field address, and the drum memory

sector address. Fig. 17 shows the (K-l)th node, the Kth node, and the

(K+l)th node in the paging request queue.

5.2 Paging Initiation Routine (IOCS1)

The Paging Initiation Routine (IOCS1) gains control when there is

a paging request to be serviced. The IOCS1 routine first constructs a paging

request entry and then passes control over to the UNIT routine.

Fig. 18 is a flow chart of the IOCS1 routine. When IOCS1 routine

starts, index K of the paging request entry is incremented by 1. Next, the

value of K is examined. If K is greater than 64 which is the maximum paging

request queue length, then the value of K is reset to 1 to avoid overflow.

If K is less than 6-4, then a paging request entry is constructed as follows:

39

Table 2. Representation of a paging request entry by a 6 word ̂

Words of *
the Kth node

NODE(K,1)

NODE (K, 2)

NODE (K, 3)

NODE (K, 4)

NODE (K, 5)

NODE(K,6)

Fields of the
Kth node

mark

paging instruc-
tion

MM page address

virtual page ad-
dress (same as
translation mem-
ory address)

drum memory
field address

drum memory
sector address

Contents of words

0 for not serviced;
1 for serviced.

0 for paging-in;
1 for paging-out .

MM page addresses range
0 to 63

from

virtual page addresses or the
translation memory addresses

drum field addresses

drum sector addresses

* K is the index for the paging request

Note: The paging-in or paging-out operation, the MM page address, and
the virtual page, address are available from the operating system.

(K-l)th node

i^ jK node

I

(K+l)th nodal

NODE(K-l.l)

NODE(K-1,2)

NODE(K-1,3)

NODE(K-1,4)

NODE(K-1,5)

NODE(K-1,6)

(K-l)th mark bit

(K-l)th paging instruction

MM page address

Virtual page address

Drum memory field address

Drum memory sector address

NODE(K,1) = Kth mark bit

NODE(K,2) - Kth paging instruction

NODE(K,3) = MM page address

NODE(K, 4) = Virtual page address

NODE(K,5) = Drum memory field address

NODE(K,6) = Drum memory sector address

NODE(K+1,1)

NODE(K+1,2)

NODE(K+1,3)

NODE(K+1,4)

,NODE(K+1,5)

NODE(K+1,6)

(K-t-l)th mark bit

(K+l)th paging instruction

MM page address

Virtual page address

Drum memory field address

Drum memory sector address

I

Fig. 17 The (K-l)th node, Kth node, and (K+l)th node in the
paging request queue

41

/"Paging "\
(Initiation)
\Rputine/

K <"—K+l

K > 64 y _ maximum paging request
queue length is 64

yes

K <— 1

NODE (K.I) <g— 0

Input Instruction f j"
I

NODE(K.2) 4— INST

Input Main Memory
Page

Input Translation
Memory Address

Set Field Address

if
I

NODE(K.3) 4— MMPAGE

NODE (K, 4) 4— TMADDR

NODECK.5) <— 1
to 1

(compute field address) c I
TMADDR

\ f no

j TMADDR 4-- TMADDR-lfi

NODE (K, 5) <~NODE (K, 5)+l

\TMADDR <

yes

NODE (K. 6)^—TMADDBrfeLfi

(field address = 1)

NODE (K, 6 K---TMADDR

Fig. 18 Flow chart of the Paging Initiation (IOCS1) Routine

42

(a) NODE(K,1) is set to 0 since the paging request is not yet serviced.

(b) NODE(K, 2) is set to 0 for paging-in or 1 for paging-out.

(c) NODE(K, 3) is set to the main memory page address MMPAGE where 0 MMPAGE^63.

(d) NODE(K,4) is_set to the translation memory.address TMADDR (same as the

virtual page address) where 0<TMADDR<63.

(e) NODE(K,5) is set to the paging drum memory field address. Initially,

it is set to 1.

(f) NODE(K,6) is set to the paging drum memory sector address.

Next, the drum memory field address and the drum memory sector ad-

dress are computed. If TMADDR is less than 16, then drum memory field address

is set to 1 and the drum memory sector address is the same as TMADDR. There-

fore, NODE(K,6) is set to TMADDR. If TMADDR is greater than 16, then 16 is

subtracted from TMADDR while 1 is added to NODE(K,5). The subtraction and

addition operations continue until TMADDR becomes negative. When TMADDR is

negative, then NODE(K+6) is set to (TMADDR+16) which is the computed drum

memory sector address. After the paging request entry is constructed, the

IOCS1 passes control to the UNIT routine. A simpler way is to shift the trans-

lation memory address 4 bit positions to the right.

5.3 Paging Drum Channel Unit Interpretive Routine (UNIT)

The Paging Drum Channel Unit Interpretive Routine (UNIT) is called

by the IOCS1 after a paging request entry is constructed. The UNIT routine

constructs a page descriptor for the main memory page to be transferred. It

also constructs a channel command word for execution by the PDC.

A flow chart of the UNIT routine is shown in Fig. 19. When the UNIT

routine starts, a CCW is constructed with the information in the paging re-

quest entry. The left half of the CCW is constructed according to NODE(K,2),

NODE(K,3), and NODE(K,5) and the result is stored in the MM location 4. The **

43

MBR<—8**5+NODE (K, 2) *4*8**4+NODE (K,'5) *8**2+NODE(K, 3)

MEM(0.4)<—MBR

MBR^—NODE (K, 3)

> f

MBR^-- 0

store channel
command words in
locations 4 & 5

E
store page des- | MEMCO,6)̂ —MBR

criptor word in loca- *' '"'"" j
tions 6 & 7 V

!l ' =
\ I MBR^—NODE (K. 5) *8**3*4+NODE (K. 6) *8***2) *2+8**2

MEM(0 J^—MBR

Fig. 19 Flow chart of the Unit Interpretive (UNIT) Routine

44

symbol means exponentiation which is used to shift control information in a

computer word to the desired bit position. The right half of the CCW is set

to NODE(K,3) and is stored in the MM location 5. Next, a page descriptor is

constructed. The left half of the page descriptor is set to 0 and the result is

transferred to the MM location 6. The right half of the page descriptor is

constructed according to NODE(K,5) and NODE(K,6) and the result is stored in

the MM location 7. After the constructed channel program is stored in the MM

locations 4 through 7, the UNIT routine passes control to the Fetch routine.

5.4 Fetch Routine (FETCH)

The Fetch Routine (FETCH) transfers control information from the

main memory to both the page table memory and the PDC COM memory.

The flow chart showing the FETCH routine is shown in Fig. 20. When

the FETCH routine begins, the contents of the MM location 4 are transferred to

the left half of buffer register COMMAND of the COM memory in the PDC, and the

contents of the MM location 5 are transferred to the right half of register

COMMAND. Address register SEC of the COM memory is next set to NODE(K,6) in

order that the CCW for the page-transfer operation can be transferred into the

proper location of the COM memory.

Next, the contents of the MM location 6 are transferred to the left

half of the page table memory buffer register PTR, and the contents of the

MM location 7 are transferred to the right half of register PTR. The page

table memory address register PADR is set to the contents of NODE(K,3) in or-

der that the page descriptor can be stored into the proper location of the page

table memory. At the end, the FETCH routine initiates the PDC to execute the

channel program.

45

/^ Fetch A
(Routine J

v 1

MAR<— 4 V^-

\ \

MBR<— MEM(0,4) \

\ ' \

SBR2^-- MBR \

• \
Fetch the

r rnj fT-ntn

COMMAND UX— SBR2 main mem°5y >

>

.MAR^-5

7
MBR<— MEM (0,5) |

\

SBR2^— MBR 1

COMMAND (2 X—SBR2 ^

\ <

SEC^— NODE (K, 6)

> (store channel

COM(SEC,1X— COMMAND(l) commana word
COM (SEC , 2 • V— COMMAND (2) ±n

i
 the -chan~N nel command

memory

~\ '

MAR^ — 6 K-

V \
MBR«— MEM(0,6) \

^ f
qbrsK./^

,
\

v /\

>

PTR(l)^ — F

i

MAK^

\

\
1
\

-MBR \

\

•SBR2 I_ i

TR2(1)

-7 descriptor
from main mem-

MBR4~MEM(0.7) i

•

SBR2^™-~MBR

'
PTR2(2)<— SBR2 /

i /1 /
. . . PTR(2)«(— PTR2C2) ^

PADR4 —

> t

NODE (K. 3)

.(

PAGETABLE (PADR,1) ^-PTR(1!
PAGETABLECPADR,2)<:-PTR(2)

store page descriptor J \ s

in the page table memory

Fig. 20 Flow chart of the Fetch (FETCH) Routine which transfers the
channel program from the main memory to the channel

5.5 Paging Completion Routine (IOCS2)

The paging completion routine IOCS2 gains control when a bit is set

in the interrupt register INTERRUPT. The flow chart showing the IOCS2 rou-

tine is shown in Fig. 21. When the IOCS2 routine starts, the paging request

entry is marked as serviced by setting the mark field NODE(K,1) to 1. Next,

the translation memory address register TADR is set to NODE(K.A) and the corres-

ponding translation memory word is transferred to the translation memory buffer

register TMR. NODE(K,2) is then tested to see if a paging-in or a paging-out

request was serviced.

If NODE(K,2) is 1, a paging-out operation has been completed. The

contents of register TMR are modified such that the "in-core bit" is 0. If

NODE (K,2) is 0, completion of a pagin-in operation is indicated. The content

of register TMR are modified such that the "active bit" is set to 1 and the MM

page address field is set to the contents of NODE(K,3). For both paging-in

and paging-out, the contents of register TMR are stored into the translation

memory TM. Thus, the translation memory word is updated for virtual address

translation. Finally, control is returned to the user program.

47

/Paging
(Completion
\Routine

NODE (K,
f Mark the service Paging

[^Request Entry

TADR<--NODE(K,4)

|TMR<—TM (TADR) j

(NODE(K,2)

Fetch the translation
memory word

(paging-out)

.(paging-in) ^ \T

TMRACT<~1
TMRBLK4—NODE (K, 3)

set active bit to 1
and fill in
page address

n MM
ss I

S> '
T— TMRACT*2**15+TMRBLK

TMR<~TMR-FLBA(20,1 ,TMR) *2**20

set in-core bit
to 0

TM (TADR)<—TMR

Fig. 21 Flow chart of the Paging Completion (IOCS2) Routine which
updates the Translation Memory

48

6. Simulation of the Page Transfer Operation Under IOCSP

The paging drum channel was simulated by using Simula on the UNIVAC

1108 and reported in reference (5). This simulation, also in Simula, is

an extended model which combines the PDC and the IOCSP. We first describe

the simulation program, then the inputs, and finally the results and discussions.

Two assumptions have been made. First, the drum has 8 sectors

instead of 16 sectors. Second, the translation memory has 512 words instead

of 1,024 words.

6.1 Simulation program

The structure of the program simulating the IOCSP and the PDC is

shown in the flow chart of Fig. 22. When the simulation begins, data are

loaded into the counters for the paging request entries, for the paging re-

quest queue and for the IOCSP simulation routines. Data are also loaded

into the translation memory, the paging drum memory, and the main memory.

Next, a paging request is read from a card reader. The IOCS1 routine is

then called to handle the incoming paging request. It examines the request,

determines its function, and constructs a paging request entry. The UNIT

routine is next called to service a page-transfer request. It constructs a

channel program (for the PDC) in main memory locations 4, 5, 6, and 7.

Th& FETCH routine, is then called to transfer the channel program in the

main memory to the PDC.

The paging drum channel PDC is initiated to execute the channel pro-

gram. Upon completion of a page-transfer, the IOCS2 routine is called.

It marks the paging request entry as "serviced" and updates the translation

memory for address translation. If there are more requests, the next paging

request is read and processed; otherwise, the simulation terminates.

49

start

Initiate the counters. Load the
data to the paging drum memory,
the main memory, and the
translation memory.

read in a paging
request on the card

-it-

call IOCS1 routine

call UNIT routine

call FETCH routine

initiate the PDC to
execute the channel

program

call IOCS2 routine

yes(any more j
request? J

Jr
end

Fig. 22, Flow chart showing the structure of the
simulation program

50

6.2 Inputs^

Two sets of input data are chosen. The first set consists of 8

paging-out requests, while the second set consists of 8 paging-in requests.

A paging request is specified by the following:

(a) paging instruction (1 for paging-out and 0 for paging-in);

(b) main memory page address (between 0 and 63);

(c) virtual page address (between 0 and 511).

Table 3 contains 8 paging-out requests of Test Data 1. As shown,

the paging instructions are all set to 1. Main memory page 32 is to be

transferred to virtual page 32; main memory page 39 is to be transferred

to virtual page 39. Table 4 shows the data initially in the main memory

pages. With Test Data 1, 8 main memory pages are paged out to the 5th

field of the paging drum as shown in Fig. 23. In this figure, main memory

page 32 is stored at the first drum page of sector 0, and main memory page

39 is stored at the first drum page of sector 7.

After the paging-out operations, the contents of drum sector 0

through 7 are tabulated in Table 5. As shown, there are eight 32's in the

drum sector 0; there are eight 33's in drum sector 1, etc. These eight drum

pages are then paged-in by Test Data 2.

Table 6 contains the 8 paging-in requests of Test Data 2. As

shown, the paging instructions are all set to 0. Virtual page 32 is to be

transferred to main memory page 32; and virtual page 39 is to be transferred

to main memory page 39. With Test Data 2, 8 drum pages are paged in as

illustrated in Fig. 24. In the figure, the first drum page of sector 0 is

transferred to the 32nd main memory page; and the first drum page sector 7

is transferred to the 39th main memory page.'

51

Table 3: Paging-out requests of Test Data 1

(for paging-out 8 MM pages to 8 drum sectors)

Test

1

2

3

4

5

6

7

8

Paging*
Instruction

1

1

1

1

1

1

1

1

Main Memory
Page Address

32

33

34

35

36

37

38

39

Virtual
Page Address

032

033

034

035

036

037

038

039

*Paging-out when 1

Table 4 Initial Data of 8 Main Memory Pages of Test Data 1

MM
Page number

32

33

34

35

MM
word number

0 to 7

0 to 7

0 to 7

0 to 7

Contents
of words

32

33

34

35

MM
page number.

'36

37

38

39

MM
word number

0 to 7

0 to 7

0 to 7

0 to 7

Contents
of words

' 36 '

37

38

39

52

Table 5 Data on the 8 Drum Sectors of Test Data 2

(for paging-in 8 MM pages from the 8 Drum Sectors)

Drum
Sector
Number

0

1

2

3

Field .:
Number

r

5

5

5

Word
Address

0 to 7

0 to 7

0 to 7

0 to 7

Contents
of Word

32

33

34

35

Drum
Sector
Number

4

5

6

7

Field
Number

5

5

5

5

Word i Contents ;
Address f of Word :

0 to 7

0 to 7

0 to 7

0 to 7

36

37

37

38

Table 6 • Paging-in requests of Test Data 2

(for paging-in 8 MM pages from 8 drum sectors)

Test

1
i n

L

3

4

5

6

7

8

Paging*
Instruction

0

0

0

0

0

0

0

0

Main Memory
Page Address

32

33

34

35

36

37

38

39

Virtual Page
Address

032

033

034

035

036

037

038

039

*Paging-in when 0

53

Main Memory

32 33 34 35 36 37 38 39 63

I V 3£ ^

Paging Drum Channel

Fig. Paging-out 8 pages from Main Memory
to 8 drum sectors (Test Data 1)

Main Memory

32 33 34 35 36 37 38 39

/ ̂ / s / ̂ LLJ V S ,S.

Paging Drum Channel

Fig .,;&&? Paglng-ln 8 pages Into the Main Memor7
from 8 drum sectors (Test Data 2)

55

6.3 Results

There are two kinds of simulation output,

(a) the contents of the main memory buffer register, the drum buffer

register, the word count in the page, and the page transfer status

after a word is transferred.

(b) the modified channel command word, the listheads, the drum field

address, and the drum sector address of the page after a page is

transferred.

Table 7 explains the variables in the printed outputs. Register

PAGEPOST contains the main memory page address of the posted page; the page to

be transferred. Register RW is the paging-in (when 1) or paging-out (when 0)

indicator. Register SECTOR contains the drum sector address (there are 8

drum sectors). Register FIELD contains the drum field address (there are 64

drum fields). Register SBR2 is the main memory buffer register, while regis-

ter DBR is the drum memory buffer register. Register COUNT is a counter

which specifies the word address of the current page being transferred.

COM(0,1) and COM(0,2) store the left half and the right half of the channel

command word for the Oth drum sector respectively. LISTS(0) contains the

listheads of the Oth sector queue in the page table memory. INTERRUPT(PAGE)

is the page-transfer-complete indicator; it is set to 1 when the page-transfer

is successful. PTRAN is the page-transfer indicator. When it is 1 or 2,

it represents a paging-in and paging-out operations respectively; when it is 3,

it indicates an error. COM(7,1) and COM(7,2) store the left half and the right

half of the CCW for the 7th drum sector respectively. LISTS(7) contains the

listheads of the 7th sector queue in the page table memory.

The outputs for paging-out 8 main memory pages to 8 drum sectors

of Test Data 1 are summarized in Table 8-(a) through 8-(d). Table 8-(a)

56

Table 7 Variables in the Print-out

Variables

PAGEPOST

RW

SECTOR

FIELD

SBR2

DBR

COUNT

COM (0,1)

COM(0,2)

LISTS(O)

INTERRUPT (PAGE)

FT RAN

COM (7,1)

COM(7,2)

LISTS (7)

Representation

Register which contains the MM page ad-
dress of the posted page

Paging-in or paging-out indicator

Drum sector address

Drum field address

Main memory buffer register

Drum memory buffer register

Counter of the word address in the cur-
rent page

Left half of the channel command word
for the Oth drum sector

Right half of the channel command word
for the Oth drum sector

List-heads of the Oth sector queue

Page- transfer-complete indicator

Page-transfer status indicator

Left-half of the channel command word
for the 7th drum sector

Right-half of the channel command word
for the 7th drum sector

List-heads of the 7th sector queue

57

Table 8 Octal Output from Test Data 1

(a) Print out when the first page is being transferred

PAGEPOST

40
40
40
40
40
40
40
40

RW

1
1
1
1
1
1
1
1

SECTOR

0
0
0
0
0
0
0
0

FIELD

5
5
5
5
5
5
5
5

SBR2

40
40
40
40
40
40
40
40

DBR

40
40
40
40
40
40
40
40

COUNT .

0
1
2
3
4
5
6
7

(b) Print out after the first page is transferred

COM (0,1)

140540

COM(0,2)

40

LISTS (0)

4040

INTERRUPT (PAGE)

1

PTRAN

2

(c) Print out when the last page is being transferred

PAGEPOST

47
47
47
47
47
47
47
47

RW

1
1
1
1
1
1
1
1

SECTOR

7
7
7
7
7

. 7
7
7

FIELD

5
- -5

5
5
5
5
5
5

SBR2

47
47 -
47

. 47
47
47
47
47

DBR

47
47 - .
47
47
47
47
47
47

COUNT

0
. 1,
2
3
4
5
6
7

(d) Print-out after the last page is transferred

COM (7,1)

140547

COM (7, 2)

47

LISTS (7)

4747

INTERRUPT (PAGE)

1

PTRAN

2

58

shows the output when main memory page 400 is transferred. In Table 8-(a),
o

PAGEPOST contains 40 . When a word of page 400 is transferred, SBR2 is 400o o . o

and DBR is 40 . COUNT is the word counter for the first page; it varies from

0 to 7. RW is 1 indicating a paging-out operation. Since SECTOR is 0

and FIELD is 5, the first page 40 _ is transferred to field 5 in drum sector 0.
o

After page 40Q is paged-out, the print out of the correspondingo

CCW, the listheads for sector queue 0, the page transfer interrupt signal,

and the page transfer status are summarized in Table 8-(b). In this table,

COM(0,1) is 140540p where the underlined portion 1405p or 110000001 which

is interpeted as follows: (a) the C field of the CCW is 1 implying a page-

transfer, (b) the RW field is 1 implying a paging-out operation, (c) the drum

field address is 5; and the remaining 40 not underlined is the main memory
o

page address of the current page. COM(0,2) contains 400 which is the firsto

actual word of the first page. The listheads of sector queue 0 are 400o

and 40 _; thus LISTS (0) is 4040_. INTERRUPT(PAGE) is 1 indicating that page
o o

transfer is successfully completed. PTRAN is 2 indicating a paging-out oper-

ation.

Table 8-(c) shows the output after a word of main memory page 470.o

In this Table, PAGEPOST is 47Q. Each time when there is a word transfer,
o

SBR2 and DBR become 47 _ and 470 respectively. COUNT contains 0 through 7.
o o

RW is 1, indicating a paging-out operation. SECTOR is 7 and FIELD is 5 so

that the last page is transferred to field 5 in drum sector 7.

After paging-out page 470, the print out of the corresponding CCW,o

the listheads for sector queue 7, the page transfer interrupt signal, and

the page transfer status are summarized in Table 8-(d). COM(7,1) is 140547

where the underlined portion 1405p has the same meaning as that for the first

page, and the remaining 470 not underlined is the main memory page addresso

of the current page. The listheads of sector queue 7 are 47_ and 47g;

59

therefore, LISTS(7) is 47470. The settings for INTERRUPT(PAGE) and PTRAN
o

are the same as those for the first page.

The outputs for paging-in the 8 main memory pages of Test Data

2 mentioned previously are summarized in Table 9-(a) to 9-(d). Table 9-(a)

and 9-(b) differ only bh the value for RW. In Table 9-(a), RW is.O, indi-

cating a paging-in operation. Table 9-(b) and 8-(b) differ only by the values

for COM(0,1) and PTRAN. In Table 9-(b), COM(0,1) is 100540 where the 1005Q

is 100000001 which is interpreted as follows: (a) the C field of the CCW

being 1 indicates a page transfer; (b) it is paging-in; and (c) the drum

field address is 5; and the remaining 40 0 not underlined is the main memoryo

page address of the current page. In Table 9-(b), PTRAN is set to 1 for

paging-in.

Table 9-(c) and Table 8-(.c) differ only by the value for RW. In

Table 9-(c), RW is 0, indicating a paging-in operation.

Table 9-(d) and Table 8-(d) differ by the values for COM(7,1)

and PTRAN. In Table 9-(d), COM(7,1) is 100547,, where the underlined portion
o

10050 has the same meaning as that for the first page. In Table 9-(d),
o

PTRAN is set to 1 for pagingrin. .. . , = '..

6.4 Discussion

Fig. 25 shows the relationships of the IOCSP to the processing pro-

gram and the paging drum channel system (model 1). In this figure, the

dashed box contains a pagin drum channel which controls a large-capacity

paging drum. The IOCSP is the interface between the processing program and

the paging drum channel system. The IOCSP handles the page-transfer requests

issued by the processing program. A paging-in request causes a page of

words to be transferred from the paging drum through the paging drum channel

to the main memory. A paging-out request will cause a page of words to be

60

Table 9 Octal Output from Test Data 2

(for paging-in 8 drum pages from 8 drum sectors)

(a) Print-out when the first page is being transferred

PAGEPOST

40
40
40
40
40
40
40
40

RW

0
0
0
0
0
0
0
0

SECTOR

0
0
0
0
0
0
0
0

FIELD

5
5
5
5
5
.5
5
5

SBR2

40
40
40
40
40
40
40
40

DBR |

40
40
40
40
40
40
40
40

COUNT

0
1
2
3
4
5
6
7

(b) Print-out after the first page is transferred

COM(0,1)

100540

COM(0,2)

40

LISTS (0)

4040

INTERRUPT (PAGE)

1 .

PTRAN

1

(c) Print-out when the last page is being transferred

PAGEPOST

. 47
47
47
47
47
47
47
47

RW

0
0
0
0
0
0
0
0

SECTOR

7
7
7
7
7
7
7
7

FIELD

5
5
5
5
5
5
5
5

SBR2

47
47
47
47
47
47
47
47

DBR

47
47
47
47
47
47
47
47

COUNT

0
1
2
3
4
5
6
7

(d) Print-out after the last page is transferred

COM(7,1)

100547

COM(7,2)

74

LISTS(7)

4747

INTERRUPT (PAGE)

1

PTRAN

1

61

r

PROCESSING

PROGRAM

/ \

IOCSP

Paging
Drum
Channel

DRUM

~1

Paging Drum
Channel System

Fig- 25 The relationship of IOCSP to the Processing Program and
the paging drum channel system (model 1)

62

transferred from the main memory through the paging drum channel to the paging

drum.

Fig. 26 shows the relationship of the Input-Output Control System

IOCS which includes the IOCSP and the three channels with five I/O devices

attached to the channels (model 2). As shown, multiplexor channel 1 and multi-

plexor channel 2 are controlled by the IOCS while the Paging Drum Channel

System is controlled by the IOCSP. With these two additional multiplexor

channels, the IOCS in Fig. 26 may consist of many routines. For example,

the I/O Scheduling Routine selects the channel and the I/O device; consequent-

ly, one unit interpretive routine is required for each type of I/O devices.

The I/O Buffering Routine simulates double buffering for reading ahead from

and writing ahead to magnetic tapes.

63

Multiplexor
Channel 1

Printer

PROCESSING

PROGRAM

IOCS

Multiplexor
Channel 2

card
reader

controlled by
the IOCSP

Paging
Drum
Channel

.26 The relationship of IOCS to the Processing Program and
three channels with five I/O devices (model 2)

64

7. Acknowledgmen t

The authors wish to express their thanks to 0. R. Pardo and Jeffrey

Yen for thier helpful discussions and suggestions and to Nancy A. Novell for

her typing of the entire manuscript.

65

8. References

1. Chu, Y., "Introduction to Computer Organization", Prentice-Hall,
Inc., 1970.

2. Chu, Y., "Notes on Channel Organization", Computer Science Center,
University of Maryland, November, 1970.

3. Coffman, E.G., Jr., "Analysis of a Drum Input/Output Queue Under
scheduled Operation in a Paged Computer System", JACM, January 1969,
pp. 73-90.

4. IBM S. R. L., IBM 7094/7094 Input/Output Control System, File Number
7090-30, Form C28-6345.

5. Kwok, G., "Simulation of a Paging Drum Channel", Technical Report
TR-155, University of Maryland, May, 1971.

6. Pardo, 0. R., "A Virtual Memory System Design", Technical Report 71-
144, Computer Science Center, University of Maryland, January 1971.

7. RCA Information Systems, Spectra 70 System 70/61, Processor Reference
Manual, 70-61-601, September 1969.

8. Yeh, J.W., "An IOCS Algorithm for Microprogramming", Technical Report,
70-124, University of Maryland, July 1970.

9. Denning, "The Working Set Model for Program Behavior", CACM, May 1968,
pp. 323-333.

10. Denning, Peter J., "Virtual Memory", Computer Surveys, Vol. 2, No.3,
September 1970.

11. Kilburn, T., et. al., "One-level Storage System", IRE Trans, on EC.,
Aptil, 1962, pp. 223-235.

12. Weingarten, A., "The Eschenback Drum Scheme", CACM, July, 1966, pp. 509-
512.

13. Denning, P. J., Effects of scheduling on file memory operation", Proc. of
SJCC, 1967, pp. 9-21.

14. Denning, P. J., "Queuing models for file memory operations", Report MAC-
TR-21 (thesis), Project MAC, M.I.T., Cambridge, Mass., October, 1965.

APPENDIX A. SIMULATION PROGRAM LISTING

Al

RUN A3,001-11-768,K*IQK*1*100
ALG*CIS PDCSIMfPCCSIM
EXTERNAL NON-RECURSIVE INTEGER
SIMULA BEGIN

COMMENT ***** INPUT-OUTPUT
COMMENT INDEX FOR THE FIELDS IN

INTEGER J '$
COMMENT INSTRUCTION ** 1 FOR PAGING

INTEGER INST $
COMMENT MAIN MEMORY PAGE ADDRESS $

INTEGER NMPAGE $
COMMENT TRANSLATION MEMORY ACCRESS FOR

INTEGER TMADDR $
COMMENT 40 PAGING REQUEST IS MAXIMUM

PROCEDURE FLDA $

CONTROL SYSTEM *** $
A PAGING REQUEST ENTRY

CUT 0 FOR PAGING IN $

THE VIRTUAL PAGE $

REGISTER (FOR CPU) $

(FOR CPU) $

HARK BIT FOR THE RECUEST
PAGING INSTRUCTION* 0 FOR PAGING-IN AND 1 FOR PAGING-OUT
*M PAGE ACDRESS
VIRTUAL PAGE ADDRESS
DRUM FIELD ADDRESS
DRUM SECTOR ADDRESS

ONLY N O D £ (K , 2) , NODE(K,3) , NCOE(K,4) ARE INPUT FROM THE USER $
INTEGER ARRAY NODEU..40t1.. 10) $

EACH NODE REPRESENTS A PAGING REQUEST ENTRY $
TRANSLATION MEMORY SUBSYSTEM $
A R R A Y TMEMQ..511 I $
TRANSLATION MEMORY ACCRESS REGISTER $
TADR $
TRANSLATION MEMORY BUFFER REGISTER $
TMR $
VIRTUAL ACDRESS REGISTER $
VAD $
MAIN MEMORY ADDRESS
MAORI $
READ/WRITE REGISTER
RW1 $
READ ERROR FLAG *
RFLAG $
fcRITE ERROR FLAG $
WFLAG- $
PAGE FAULT REGISTER
PFAULT $
fAIN MEMORY ACCESS
I"A1$
STORAGE BUFFER REGISTER (FOR THE CPU
SBR1 $
PAGE IS ACTIVE WHEN 1 $
TMRACT $
PAGE HAS BEEN
TMRREFD$
PAGE HAS BEEN
TMRCHGD $
PAGE IS WRITE
TMRWP $
PROTECTION KEY

NCDE(K,1>
NODE(K,2)
NODE(K,3)
NODE(K,A)
NODE(K,5)
NODE(K,6)

COMMENT
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT
INTEGER
COMMENT

REGISTER $

)$

REFERENCED-'WHEN 1 $

CHANGED WHEN 1 $

PROTECTED WHEN 1 $

OF THE PAGE $

INTEGER TMRWKEY $
2 COMMENT NM PAGE ACDRESS FOR THE VIRTUAL PAGE IF IT IS IN THE MM $

INTEGER TMR8LK $
CCMMENT VIRTUAL PAGE ADOPESS $
INTEGER VADPAGE $
CCMMENT VIRTUAL WGRD ADDRESS $
INTEGER VADWCRD $

C Of KENT ***$
COMMENT ***A PAGING DRUM CHANNEL ***$

COMMENT FOR TESTING AND SIMULATION ON THE 1108 MEMORY,
PAGE SIZE IS REDUCED TC 8 WORDS PER PAGE
64 PAGES IN THE MAIN MEMORY
512 PAGES IN THE PAGING DRUM WHICH HAS 8 SECTORS

64 DRUN PAGES IN A DRU* SECTOR
36 BITS PER WCRDS

COMMENT K IS THE INDEX OF THE PAGING REQUEST ENTRY $
INTEGER K $

COMMENT I IS THE LOOP CONTROL VARIABLES
INTEGER 1$

COMMENT MAIN MEMCRY AND RELATEC REGISTERS$
COMMENT MAIN MEMCRYS

INTEGER ARRAY MEM(0..63,0..7) $
COMMENT MAIN MEMCRY ADDRESS REGISTER$

INTEGER MAR$
COMMENT MAIN MEMORY BUFFER REGISTERS

INTEGER MBR$
COMMENT MAIN MEMCRY READ/WRITE CONTROL REGISTERS

INTEGER RW2$
COMMENT MAIN MEMCRY PAGE ADDRESS*

INTEGER MADR2BLOCKS
COMMENT MAIN MEMCRY BUFFER REGISTERS

INTEGER SBR2f
COMMENT MAi2) IS MAIN MEMCRY ACCESS REGISTERS

INTEGER MA2S
COMMENT MADR2<fcRO) IS MAIN MEMCRY WORD ADDRESSS

INTEGER MADR2WRDS
COMMENT MAIN MEMCRY PAGE ADDRESS OF THE POSTED PAGES
INTEGER PAGEPOSTS

COMMENT PAGE-TABLE MEMORY*
INTEGER ARRAY PAGETABLE(0..63,1 . .2) S

COMMENT PAGE-TABLE MEMORY ADDRESS REGISTERS
INTEGER PADRS
CCMMENT PAGE TABLE BUFFER REGISTER $

INTEGER ARRAY PTR (1 .. 2) S
COMMENT PAGE-TABLE MEMORY BUFFER REGISTERS

INTEGER ARRAY PTR2(1..2)$
CCMMENT SUBFIELDS CF A PAGE DESCRIPTOR $
INTEGER PTR2CHS
INTEGER RTR2SECS
INTEGER PTR2RQWS
INTEGER PTR2LBS

INTEGER PTR2LFS
COMMENT LISTHEAD MEMCRYS

INTEGER ARRAY LISTSIO.. 7)$
COMMENT LISTHEAD MEMCRY ADDRESS REGISTERS

INTEGER SECTCRSS
COMMENT LISTHEAD MEMCRY BUFFER REGISTERS

INTEGER PTLS
COMMENT POINTER THE FIRST PAGE CF A SECTOR QUEUE IN THE DRUMS

INTEGER PTLFF$

A3

COGENT POINTER THE LAST PAGE CF A SECTOR QUEUE IN THE DRUMS
INTEGER PTLLPS

COMMENT GPTL IS AN AUXILIARY REGISTER!
INTEGER GPTL$
INTEGER GPTLFPS ,
INTEGER GPTLLP$

COMMENT PAGE TABLE SEMAPHORS
INTEGER PTSEM1S
INTEGER PTSEN2S

COMMENT PAGING DRUM AND RELATEC REGISTERS
COMMENT PAGING DRUM MEMORY*

INTEGER ARRAY PDRUM<0.. 7,1.. 64,0..7)$
COMMENT PAGING DRUM SECTOR ADDFESSS

INTEGER CWORCSECTS
COMMENT PAGING DRUM FIELD ADDRESS S

INTEGER FIELD $
COMMENT PAGING DRUM FIELD WORD ADDRESS $

INTEGER OWCRDCCUNTS
COMMENT DRUM READ/WRITE CONTROL REGISTERS

INTEGER RWf
COMMENT DRUM BUFFER REGISTERS

INTEGER DBR$
COMMENT DRUM ACTIVE INDICATORS

INTEGER DACTVS
COMMENT CCMMAND MEMORY AND REL/TEC REGISTERSS

INTEGER ARRAY COMIO.. 7,1..2)1
COMMENT CCMMAND MEMORY ADDRESS REGISTERS

INTEGER SEC$
COMMENT CCMMAND MEMCRY BUFFER REGISTERS

INTEGER ARRAY COMMAND(1..2)S
COMMENT SUBREGISTERS OF THE COMMAND WORDS

INTEGER COMCS
INTEGER COMRWCS
INTEGER COMCHA'NS
INTEGER CGMPGES
INTEGER COKFIRSTfcORDS

COMMENT DRUM BUFFER STATUS REGISTERS
INTEGER BSS

COMMENT INTERRUPTtDRUMPAGElS
INTEGER INTERRUPTDPI

COMMENT MAIN MEMORY PAGE WHICH INTERRUPT OCCUREDS
INTEGER PAGINTS

COMMENT INTERRUPTS PAGE)$
INTEGER INTERRUPTPGES

COMMENT CURRENT PAGE ADCRESSS
INTEGER PCS

COMMENT WCRD CCUNT OF THE PAGES
INTEGER COUNTS

COMMENT PAGE TRANSFER DIRECT ICf*,0 WHEN NO TRANSFER, 1 WHEN DRUM TO WEMORY,
2 WHEN MEMCRY TO CRUM,3 WHEN ERROR OCCURSS

INTEGER PTRANS f

COMMENT PAGE TRANSFER COMPLETE WHEN 1$
INTEGER PAGE IS

COMMENT PAGE POSTING INDICATORS
INTEGER POSTS
FORMAT Fl { • ** TRANSFER / PAGE ********************#**»,A3.3)$
FORMAT F3 { X2*I10.8,2X, 110.8, 2X, 110.8, Al.DS
FORMAT F4 (• COMMAND IN OCTAL =!., I10.8,Al,l)$

FORMAT F5(A, I1,I2,I3)S

A4 F O R M A T F20(X8 j« LISTHEADS IN O C T A L 1 . A l .3)$
F O R M A T F21 (X5 ,12 , X2 , 110.8 , /!.!)$
F C R M A T F 2 2 (X 2 ,« CHANNEL COMMNC W O R C S IN OCTAL •, A 1. 3)$

LOCAL L A B E L L A S T S
LOCAL LABEL L3$

COP PENT ************************•*****
A C T I V I T Y IGCS1S
BEGIN
F O R M A T F 2 (E , X 2 5 , « *** SIMULATION OF IOCS *** « , A 2 . 2) $

CONSENT PRINT T ITLE $
K R I T E I F 2) $

IF INST EQL 1 THEN WR I T E (' P A G INC—OUT') ELSE W R I T E (* P A G I N G - I N «) $
K = K +1 $

IF K GTR 40 THEN K = 1 $
CCMMENT CONSTRUCTION OF A PAGING REQUEST ENTRY $

CONSENT MARK BIT IS ZERO FIRST ANC IS SET TO 1 WHEN REQUEST IS SERVICED$
NODEtK.l) - 0 $

COMMENT 0 FOR PAGING IN AND 1 FCR PAGING OUT $
NODE (K,2) = INST $

COMMENT MAIN MEMORY PAGE ADDRESS $
NCDE(K,3) = MMPAGE $

COMMENT TRANSLATION MEMORY ADDFESS I
NODE(K,4) = TMADDP $

COMMENT CONSTRUCTION OF A CHANNEL COMMAND WORD IN MM LOCATIONS 4,5 $
NCDE(K,5) = 1 $
COMMENT COMPUTE DRUM PAGE ADCRESS $
IF TMADDR LSS 8 THEN GO TO Nl $

NO .. TMACOR = TMADDR - 8 $
IF TMADDR LSS 0 THEN GO TO N2 $
COMMENT COMPUTE DRUM FIELD ACCRESS $
NCDE(K,5) = NODE(K,5) + I $

GO TO NO $
Nl .. NCDE(K,5) = 1 $

NODE(Ki6) = TMADDR $
GO TO N3 $

COMMENT COMPUTE DRUM SECTOR /JCDRESS $
N2 .. NCDE(K,6) = TMADDR + 8 $
N3 .i HCLDC50) $

TERMINATE (CURRENT) $
END $

COMMENT ***************#*********=>********************************#*$
COMMENT UNIT INTERPRETIVE ROUTINE FCR THE PAGING DRUM CHANNEL $
ACTIVITY UNIT f

BEGIN
MBR = 8**5 + NCDE(K,2)*4*8**4 + NODE(K,5)*8**2 + NODE(Ki3)$

MEM(0,A) = MBR $
COMMENT CCMPUTE COMMAND (2) $

MBR = NODE(K,3) $
MEM (0,5) = MBR $
COMMENT CONSTRUCTION OF t PAGE CESCRIPTOR WORC IN MM LOCATION 6*7$

COMMENT COMPUTE PAGE DESCRIPTOR FOR THE MM PAGE $
MBR = 0 $

MEM (0,6) = MBR $
CCMMENT COMPUTE PTR (2) $

MBR = NODE(K,5)*8**2*4 + NOCE(K,6)*(8**2)*2 + 8**2 $
MEM(C,7) = MBR $
COMMENT CUTPUT CHANNEL PFCGPAM $

HCLD(50)$
TERMINATE (CURRENT)$
ENO$

A5

CQVNE NT *****V**V*****W******"#***'*-*'******'**********'***'*'***'********'***$'
A C T I V I T Y FETCH $

BEGIN
COWENT FETCH THE CHANNEL PROGRAM FROM THE MAIN MEMORY BUILT BY IOCS $

MAR = 4 $ • '] ' • • ' .
MBR = WE MO,4) $
SBR2 = MBR $
C O M M A N D (t) = SBR2 $
MAR = 5 $
MBR = NEMO, 5) $
SBR2 = MBR $,
C O M M A N D (2) = S B R 2 $: ' ' ' . ' ' '
SEC = NODE (K i6) $
C O f (S E C f l) = C O M K A N D (l) $
C Q M (S E C , 2) = C O P P A N G (2) $
MAR = 6 $
MBR = M E P (0 , 6) $
SBR2 = MBR $
P T R 2 (1 > = S8R2 $
P T R (l) = PTR2U) $
MAR = 7 $
MBR = KEF- (C f 7) $
SBR2 = MBR $.
P T R 2 (2) = SBR2 $
P T R (2) = PTR212) $
PADR = NCDE(K' ,3) $ ' ;

PAGETABLEIFADR, !) = PTR(l) $
P A G E T A B L E (F A D R , 2) = P T R (2) $

C fcQRDSECT=- l $
H O L D (5 C) $

T E R * I f v A T £ < CURRENT) $
END $

COCfENT ***
A C T I V I T Y IOCS2 $
BEGIN

L O C A L LABEL PCUT $
CGWENT M A R K THE PAGING REQUEST ENTRY AS SERVICED $

NODE mi) = 1 $
COfcKENT FIX UP THE T R A N S L A T I O N fEKCRY $

TADR = N C D E t K ' i A) $
TMR te T M E K (T A D R) $

COMMENT FETCH A W O R D FRCM THE T R A N S L A T I O N MEMORY INTO THE BUFFER $
COMMENT CHECK PAGING CUT / PAGING IN $

IF N O D E (K , 2) EGL 1 THEN GO TO POUT $
COMMENT SET PAGE IN CORE BIT TC 1 $

T M R A C T = 1 $
CGffENT FILL IN NM PAGE ADDRESS INTO THE TRANSLATION MEMORY ENTRY $

TMRBLK = N O D E * K , 3) $
TMR = TMRACT*2**15 + TMRBLK $
GO TO OUT $

COCKENT PAGING OUT OPERAT ION CCKES HERE $
COIWENT TURN IN CORE BIT OFF $
POUT .. T N W A C T = 0 $

TMR = TMR - FLDA{20,1,TMR)*2**20 $
COKNENT STORE THE KGCIFIED TRANSLATION MEMORY WORD $
OUT o. T M E M (T A D R) = TMR $

HOLD(50) $
T E R M I N A T E < CURRENT) $
END $

A6 C OWE NT ********************** *****# *******************************•**$
ACTIVITY LEFT*
BEGIN
fcRITEt ' *** DRUN R E A D / W R I T E SUBSEQUENCE *** ')$

CONSENT CHECK PAGE S W A P INDICATOR*
IF D A C T V ECL 1 THEN GOTO 11$
PAGEI=1$
P T R A N = C $
fcRITEt ' P T R A N = « , P T R A N) 1
H C L D (5 . C) $
T E R M I N A T £ (CURRENT)!

CONSENT PAGE TRANSFER STARTS HERE $
CONSENT BRANCH CUT TC ViRITE.S
LI .. IF Rfc EQL 1 THEN GO TO L5 $

f*A2 = 0$
COWENT

feRITE('BS= ',BS, • RN= '»RW)$
CONSENT DRUW'TG WAIN NEMCRY TMNSFERt READ 8RANCH)$
L4.. IF MA2 EQL 1 THEN GO TC L4*

8S = 1$
L6.. IF BS EC'L 0 THEN GCTC L6$

f AOR2V»RD= COtNT$
K R I T E t ' INPUT W O R D COUNT =i ' » ^ A D R 2 W R D) $
DBR = PDRUKt SEC, FIELD, C W C F C C C U N T) $
fcRITEl « DBR =« i DERM

COGENT INPUT FRCM THE PAGING [RUM ONE W O R D S
SBR2=DBR$

BS = C $
ITE («**************************DRUK TO MEMORY ')f
= SBR2$

t«RITE(' MBR », PBR)$
HEM(MADR2BLOCK,MAOR2WRD)= M.BR$
IF COUNT EQL 7 THEN BEGIN

PAGEI = 1$
DACTV=0$

END*
L7 .. IF PAGEI ECL 0 THEN BEGIN

CCUNT= CGUKT + LS
CkQRDCOLNT= CWCRDCCUNT +1$

GOTO Ll$
ENDS
CCUNT=CCUNT+RW$
IF COUNT ECL 7 THEN BEGIN

V > R I T E (» P T R A N = %
H C L D (3 2 C . O) $
TERHINATEt CLRRENT)$
•GCTO L3S
END

ELSE BEGIN
COGENT SET ERROR INDICATORS

INTERRUPTDP=1S
PTRAN=3$
feRI TE CPTRAN =•> PTPAN) S
HCLD(32C.O)S
TERMINATE(CURRENT)$
GOTO L3S
ENDS

\, 'COPfENT NAIN fEFQRY TC DRUM TRANSFER (W R I T E BRANCh)$
L5.. NA2=CS

IF MA2 EGL 1 THEN GCTC L5S
Rfc2= R W S

•••- " K A D R 2 W R D = CCLNT-filS
V R I T E (• W O R D COUNT = ', M A D F 2 W R C 1 S

L8.. MA2=C$
IF MA2 EGL 1 THEN G C T C L8S

LS.. BS =1$ • :. •
COf^ENT D A T A T R A N S F E R S FROM NEfCRY BUFFER TO DRUM BUFFERS

S8R2= M E K (K A C R 2 B L C C K , K A D R 2 W R C) $
V . R I T E C S B R 2 = » , S e R 2) S
W R I T E (»****'*********#****************************MEMORY TO D R U M f) $
DER=SBR2$

BS = 0 $
V « R I T E (« C B R = SDBRJt
PDRUN(SEC, F IELD ,CWCPDCCUNT) = CBR $

COMMENT IN THE W R I T E OPERATION THE W O R C COUNT DOES NOT INCLUDE THE
FIRST WCRD CF THE PAGE. IF E X A C T L Y 7 MORE W O R D S (0-6)
VERE W R I T T E N , AN ENTIFE P A G E WILL BE COMPLETELY TRANSFERREDS

IF COUNT EGL 6 THEN BEGIN
PAGEI = 1$
D A C T V = 0$
END$
GCTC L7 $

COMMENT THE SECOND P A R A L L E L P R O C E S S .STARTS HERE$
COMMENT CHECK IF THE R E A D / W R I T E LCGP NEEDED.$

ENDS
COf^ENT ******«*********#***** 4********#******************************$
ACTIVITY RIGHT $

BEGIN
COWENT M E M O R I E S UPDATING SUBSECUENCE S T A R T S HERES
L1C „. SECTORS = S E C $

W R I 7 E (• *** UPDATING SUESECUENCE *** «)$
P T L = L I S T S (S E C T O R S) $
P 7 L F P = F L D A (2 ^ t 6 i , P T L) $
P T L L P = F L D A (3 0 , 6 , P T L) $

CGf fENT FOR EI^PTY GUEUE, SET F A C E S W A P P I N G INDICATORS
I F PTLFP E C L 0 THEN BEGIN - - - - -
CCMC=G$
G C T C LI 3$
ENDS

COGENT G E T T I N G A P A G E S
Kl., PTSEM = OS

I^ : PTSEf ' l EGL 1 THEN GOTO Kll
PTSEM2=1$

CONSENT PUT THE L IST HEAD INTC R E G I S T E R GPTLS
G P T L = P T L $
G P T L F P = F L O A t 2 ^ » 6 t G P T L) $
GPTLLP= F L D A (3 0 , 6 , G P T L) S
V R I T E (1 G P T L (F P =) » ,GPTLFP,» G F T L (L P) = ', G P T L L P J S
P A D R = G P T L F P $
PC= G P T L F P S

CONSENT GET A PAGE DESCRIPTOR FRCP THE PAGE TABLE HEMORYS
P 7 R 2 (1) = P A G E T A B L E (P A D R , 1) S
P T R 2 (2) = P A G E T A S L E (P A C R , 2) S
PTR2CH = F L D f l (1 7 , 8 , P T P 2 (2)) $
V > R I T E t ' FIELD ADDRESS = «, fTR2CHH

A8 P 7 R 2 S E C = F LD A < 25 ,4, PTP2 (2))=$
fcRITEi ' S E C T O R = 't PTR2SEOI
P T R 2 R O f c = F L D A (2 9 » 1 » P T P 2 < 2)) $
PTR2LB= F L D A (2 , 6 , P T R 2 U M $
P7R2LF= FLDA (8,6 , P T R 2 (1)) $
GPTLFP= P T R 2 L F $

COMMENT T R A N S F E R THE U P D A T E D LIST H E A D TO PTL$
PTL = GFTL$
PTSEM2= 0$

CONSENT STORE THE UPDATED L ISTHEAC TC THE LISTS MEMORY*
L15.. L I S T S (S E C T C R S) = PTL$
COGENT SET UF A CHANNEL CGMM/ND W G R C I

COMC=1$
CONPGE=PC$
COI"CHAN=PTP2CH$
C O M R W C = P T P 2 R O W S

COMMAND (1)= CONC*8**5 + COMRWC*^i*8**4 + COMCHAN*8**2+ COMPGES
IF P T R 2 R O W ECL 0 THEN GOTO L13$

CONSENT W R I T E GNTC DPUPS
Lll.i M A 2 = 0$

IF MA2 EGL 1 THEN GCTO Lll$
R K 2 = 1 $

CONSENT SET UP PAIN NEVGRY ADCRESS REGISTERS
NADR28LCCK= FC$
MADR2KRD= 0$

L12 .. NA2=0$
IF WA2 ECL 1 THEN GOTC L12$

COMMENT SET UP THE FIRST DATA WCRC IN THE COMMAND REGISTER$
VBR= KEN,(MADR2BLCCK,0)$
SBR2= MBR$
CCMNAND(2)= SBR2 $

COf^ENT PUT THE NEW CHANNEL CCKMAND WORD INTO THE COMMAND MEMORY$
L13.. CCK(SECtl):- CCKFAND(1)$

CCMSEC,2)= CCNfAND(2)$
KRITE(F22) $
WRITE(SEC, COK(SEC,1), CCN (SEC ,2) , F 2) $
PAG6I = C$
PCST = 1$

L1A.. IF FAGEI ECL 1 THEN BEGIN
HOLD (50)$
T E R M I N A T E ICIRRENT)$
ENDS
PCST= 1$

CONSENT REQUEST - ACCEPT SU8SECUENCE STARTS HERE *****$
IF PCST EOL 0. THEN GOTO L14$

CONSENT LOAD PAGE DESCRIPTOR SEQUENCE STARTS HERES
K2 .* PTSEML = 0$

IF PTSEM EQL 1 THEN GOTC K2*
PTSEM2=1$

COVFENT GET A PAGE DESCRIPTORS
PADR= PAGEPOSTS
P T R 2 (1) = P A G E T A 8 L E (P A C R , 1) $
P T R 2 (2) = P A G E T A B L E (P A C R , 2) $

COfKENT FREE THE P A G E - T A B L E M E N O R Y S
PTSEM2=0$
PTR2SEC= F L D A C 2 5 ,4,PTR2(2))$
S E C T C R S = P T R 2 S E C $
P T L = L I S T S (S E C T O R S) $
PTLFP= F L D A (2 A , 6 ,PTL) $

A9
COMMENT BRANCH TO PUT THE PACE DESCRIPTOR IN THE PTM $

IF PTLFP E6L 0 THEN GOTO K34
COGENT GET THE NEXT CHANNEL COMMAND WORD*

SEC= SECTORS $
COMMANDU)= COMISEC,!)*
COMMAND(2)= COMfSEC,2>*
IF COMC EQL 0 THEN BEGIN
PC* PAGEPOSTi

POST = 0 *
PAGEI = li-
CC TO LI 5$
END*

COMMENT PUT A PAGE B A C K TO THE SECTOR QUEUE IN THE PTM $
K3.. PTSEM1=0*

IF PTSEM1 EGL 1 THEN GOTO K3J
PTSEM2=1*
GPTL= PTL*
GPTLFP= FLDA (24^6,GPTL)$

COMMENT IF THE SECTOR CUEUE IS EHPTY THE CURRENT PAGE BECOMES THE FIRST
PAGE (FRONT OF THE QUEUE)$

IF GPTLFP, EGL 0 THEN BEGIN
GPTLFP = PAGEPCST$
GPTL = GPTLFF*8**2 + FLDA (30 ,6i GPTL) t
GOTO KA$
ENDS

CQfKENT INSERT THE NEV1 PAGE AT THE R E A R OF AN NON-EHPTY QUEUES
GPTLLP= FLDA (30s ,6 t GPTL)$
PADR= GP=TLLP$
PTR2(1)= P A G E T A B L E (P A C R , 1) $
P T R 2 J 2) = P A G E T A B L E (P A D R , 2) $

COPPENT UPDATE A PAGE DESCRIPTOR*
PTR2LF= HOD(PTR2(I) f 2**28)$
PTR2LB = PTR2(1) - PTR2LF* 2<*28 $
PTR2(1)= PTR2LB + PAGEPOST*2**22$
P A G E T A 8 L E (P A D R , 1) = P T R 2 < 1) $
P A G E T A B L £ (P A C R , 2) = P T R 2 (2) $

COMMENT GET THE PAGE DESCRIPTOR OF THE POSTED PAGE*
K4.. PADR * PAGEPOST*

P T R 2 (1) = P A G E T A B L E (F A O R , l) $
P T R 2 < 2) = P A G E T A B L E (P A C R , 2) $

COMMENT LET THE BACKWORD POINTER POINT TO THE REAR OF THE QUEUE$
PTR2LB= GPTLLPS
PTR2LF =0$
PTR2(1)= GPTLLP*2**28$

COMMENT RETURN THE NEW PAGE DESCRIPTOR TO THE PAGE-TABLE MEMORY*
PAGETABL€(PACR,1)= PTR21D*
P A G E T A B L £ (P A O R , 2) = P T R 2 (2) $

COMMENT UPDATE LISTHEAOS*
GPTLLP* MOD(GPTL,8**2)$
GPTLFP= GPTL - GPTLLP*
GPTL = GPTLFF < PADR*
PTL= GPTL*
PTSEM2=0*

COMMENT STORE LISTHEAD*
L I S T S (S E C T C R S) = PTL*
KRITE(« SECTOR L ISTHEADS' l *
W R I T E (SECTORS* LI STS (SECTORS) , F2D*
POST=C$
PAGEI =1* •

AlO GCTO L1A$
ENDS

CONNENT
CCMMENT MAIN ACTIVITY STARTS HERE $

CONSENT CLEAR 7RANSLATICN VEVCFY $
FOR J = 0 STEP 1 UNTIL 511 DC
TMEN(J) = 0 $

CONVENT COUNTER $
K= C $

CONVENT INITIALIZE CCUNTER $
1 = 1 $

CONVENT INITIALIZATION CF THE V A I N MEVCRY $
FCR MAR = 1 STEP 1 UNTIL 63 CC BEGIN

FOR CCUNT = 0 STEP 1 UNTIL 7 CC
MEfMMARt CCUNT) = M/SR $

END $
COMMENT INITIALIZATION CF THE PAGING DRUM MEMORY $
CCMMENT EACH ORUV PAGE CONTAINS THE VALUE OF ITS VIRTUAL PAGE NUMBERS
FCR FIELD = 1 STEP 1 UNTIL 64 DC BEGIN

FOR SEC = 0 STEP 1 UNTIL 7 DC BEGIN
FCR CCUNT =0 STEP 1 UNTIL 7 CC
PDRUV ISEC,FIELD,CCUNT) = TVACDR $
TMACDR = TV-ADDR 4 1 $
END $
END $

\ » R I T E < « 1 FCR PAGING-CUT , 0 FOR P/SGING IN •)$
WRITE (' 2 DIGITS FCR NM PAGE ,3 DIGITS FOR VIRTUAL PAGE ADDRESS f)$
KRITEC 032032 MEANS TO PAGE IN DRUN PAGE 32 TO MM PAGE 32')$
URITEC 132032 MEANS TO PAGE CUT MM PAGE 32 TO DRUM PAGE 32 »)$
CCMMENT INPUT A PAGING REQUEST $

XICCS .. REAO(INST,VMPAGE,TMACCR,F5,L/SST)$
VsRITEC *** INPUT PAGING REQUEST *** «)$

ACTIVATE NEW ICCS1S
CONVENT CALL IN UNIT INTERPRETIVE ROUTINE $

ACTIVATE NEW UMT$
CCMMENT FETCH CHANNEL PRCGRAN FROM THE MAIN MEMORY $
ACTIVATE NEW FETCH $
HCLD(1COO)$

PDC.* PAGEI=1$
IF PAGEI ECL 0 THEN BEGIN
HCLD(1.C)$
GCTO PDC$
END ELSE

L3 .. PAGINT = N/SDR2BLCCK$
INTERRUPTPGE=1$

HCLO (1C.O)$
LC.. PAGE 1=0$

C V v O R D S E C T = C V « O R D S E C T + 1 $
C O N V E N T T H E R E A R E 8 P A G E - T R A N S F E R S I N C N E D R U M R E V O L U T I O N $

.IF C W C R D S E C T EGL 8 T H E N C W O R C S E C T = 0 $
C O N V E N T O B T A I N A C H A N N E L C O M M A N D W O R C J
C O N V E N T I N P U T F R O M C A R D I S A C C V M / S N D W C R D S

C C U N T = 0 $
C V » O R D C C L N T = 0 $
W R I T E (F 1) $
C C M M A N D (1) ^ C C M (S E C , 1) $
V » R I T E (C C M N A N D (l) , F4) $
C C M M A N D (2) = C C M (S E C , 2) $
V«RITE(' FIRSTKORD = •, COMMAND (2))$

CONVENT DECODING A CCVV^ND WCPC AND PUT THE CONTROL INFORMATION

All

INTO THE APPROPRIATE REGISTERS!
CCMC = FLDA(20 ,1 ,CGMFAND{1))$

COKPENT INDICATE A PAGE HAS BEEN SWAPPED WHEN 1$
DACTV= COMCS
CCMRWC=FLDA(21>,1 ,COK*AND(1) U
RM C C M R W C S
CCMCHAN=FLDA(22|8,COKKAND(1))J
FIELD = GONCHAN S

I *ADR28LCCK=CCKPGES
PAG6POST = CCMPGES
W R I T E C PAGEPOST « , P A G E P O S T) $

COWENT D A T A T R A N S F E R S
CCMFIRSTfcORD = GGI*KAND(2) $

COfKENT TRANSFER THE FIRST WOFC OF A PAGE TO THE DRUM BUFFER REGISTERS
DBR* COKFIRSTWCRDS

WRITE< 'FIELD ADDRESS = ', FIELOS
IF RW ECt 1 THEN BEGIN
WRITE('WRITE CPERATION,RW= f,RW)$
COMMENT OUTPLT FIRST WORD TO DRUMS
WRITE(«***************#***********3

COKP.ENT FOR WRITE OPERATION THE FIRST
BEFORE ENTERING THE WFITE LOO!

TO DRUM!)$
WORD IS ALREADY IN THE BUFFER
P $

WRITE(' WORD COUNT = •
WRI TEC DBR= • ,DBR)S
PDRUf« <SEC, FIELD,0) =
END ELSE

WRITE(
COK^ENT PARALLEL PROCESS

HOLD <4C.O)S
ACTIVATE NEW LEFTS
ACTIVATE NEW RIGHTS
HCLD(1COO)$
ACTIVATE NEW ICCS2 $
HCLDUOOO) S
GO TO XIGCS S

END $

, COUNT IS

DBR S

• REAC OPERATION, RW= «,RW)$
STARTS HERES

L A S T ..
A S P , I S

$(1)
DECODE,DECODE

AXRS.
ROUTINE FOR DECODING PAGE DES
AND LISTHEADS FOR THE PAGING

<** FLCAII,J,K
1 . FETCH T
1 . FETCH T

CRIPTORS,CHANNEL COMMAND WORDS
OPERATION .

o

FLDA*

LI
L2

L3

MAP
XCT
132C32
133C33

INPUT
LA
LA
SA,H2
SA,H2
LSSL
SSL
LA,U
AN
AN
SA,H2
SSL
J
END

FORMAT
A2 i *3 ,
A0% *1 ,
AO.L1
A04L2
A2 ̂ 0
A2,0
A 1,3 6
Alj*2,
A14AO
AUL3
A2,0
A » X 1 L

HE WORD K
HE BIT POSITION I

GETTING RID OF UPPER BITS

SHIFT LEFT I BIT POSITIONS
SHIFT RIGHT I BIT POSITIONS
COMPUTE 36-I-J

GETTING RID OF THE LOWER BITS
SHIFT RIGHT 36-I-J BIT POSITIONS
RETURN TO THE ALGOL SIMULATION PROGRAM

TEST D A T A 1 ... PAGING-OUT 8 PAGES

A12 134C3A
135C35
136C36
137C37 i • • . .
138C38
135C39
032032 TEST DATA 2 ...PAGING-IN 8 PAGES
033C33
03AC34
035C35
036C36
037C37
038C38
03?C39
FIN

TOTAL CARDS = 671

